JP2004244661A - Method of producing thin film - Google Patents

Method of producing thin film Download PDF

Info

Publication number
JP2004244661A
JP2004244661A JP2003033587A JP2003033587A JP2004244661A JP 2004244661 A JP2004244661 A JP 2004244661A JP 2003033587 A JP2003033587 A JP 2003033587A JP 2003033587 A JP2003033587 A JP 2003033587A JP 2004244661 A JP2004244661 A JP 2004244661A
Authority
JP
Japan
Prior art keywords
thin film
supply
raw material
film
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003033587A
Other languages
Japanese (ja)
Other versions
JP4168775B2 (en
Inventor
Koji Mizutani
厚司 水谷
Masayuki Katayama
片山  雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003033587A priority Critical patent/JP4168775B2/en
Publication of JP2004244661A publication Critical patent/JP2004244661A/en
Application granted granted Critical
Publication of JP4168775B2 publication Critical patent/JP4168775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suitably realize an objective film thickness with minimized period of time in the method of producing a thin film using an atomic layer growth method. <P>SOLUTION: In the method of producing a thin film where AlCl3 and H2O as source materials are alternatingly fed to a substrate to deposit an Al2O3 thin film, the feeding time of AlC13 in the first cycle in the feeding cycles is made longer than the feeding time of AlC13 in the cycles on and after the second time. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属元素を含む第1の原料物質と金属元素と反応する元素を含む第2の原料物質とを、基板に対して交互に供給することにより薄膜を形成する薄膜の製造方法、いわゆる原子層成長法に関する。
【0002】
【従来の技術】
従来より、原子層成長法(Atomic Layer Epitaxy:ALE法)は、金属酸化物や金属硫化物の薄膜を形成する際に用いられ、結晶性が良く、膜厚制御性に優れた成膜方法として使用されている(例えば、特許文献1参照)。
【0003】
この方法は、金属元素を含む第1の原料物質(例えば金属塩化物や有機金属化合物等)と、金属元素と反応する元素を含む第2の原料物質(例えば水等の酸化物質や硫化水素等の還元性物質等)とを、基板に対して交互に供給するサイクルを単純に繰り返すことにより、基板表面の反応にて反応化合物を1層ずつ基板表面に配置するものであり、供給する回数により膜厚を容易に制御できるとされている。
【0004】
このALE法を使用して、様々な薄膜を形成することが可能である。例えばエレクトロルミネッセンス素子において、絶縁層として用いられる酸化アルミニウムと酸化チタニウムとの複合膜であるATO薄膜や、発光層として用いられる硫化亜鉛、硫化ストロンチウムがある。
【0005】
【特許文献1】
特開昭55−130896号公報
【0006】
【発明が解決しようとする課題】
しかしながら、ALE法は、上記のような利点があるが、一層づつ原子を配置するという形成方法であるため、薄膜を構成する各原料の供給時間を長くすると、所望の膜厚を得るために膨大な時間を要するという問題がある。
【0007】
一方、本発明者の検討によれば、例えばATO薄膜をALE法にて形成する際、Al2O3薄膜とTiO2薄膜を交互に積層する場合において、Al2O3薄膜上にTiO2薄膜を形成する際、若しくはTiO2薄膜上にAl2O3薄膜を形成する際に、成膜時間を短くしようとすると、単分子層膜厚から算出した原料供給回数で形成した膜厚が、狙い膜厚と異なり薄くなってしまうという問題が生じた。
【0008】
そこで、本発明は上記問題に鑑み、金属元素を含む第1の原料物質と金属元素と反応する元素を含む第2の原料物質とを、基板に対して交互に供給することにより薄膜を形成する薄膜の製造方法において、できるだけ短い形成時間で狙いの膜厚を適切に実現できるようにすることを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、上述したATO薄膜の形成において狙い膜厚よりも薄くなってしまうという問題について、さらに検討を進めた。
【0010】
例えばTiO2薄膜上にAl2O3薄膜を形成する際、通常であればAlの原料であるAlCl3を供給し、H2Oを供給することにより酸化しAl2O3分子を形成する。
【0011】
このとき、全体の薄膜形成時間を短縮する目的で、AlCl3原料の供給時間、すなわち1回のAlCl3原料の供給量が少ないと、下地である異種の膜(つまりTiO2薄膜)上には結晶の整合性の悪化により、うまく成長することができない。その結果、1回の原料供給では下地の表面を十分にAlCl3で覆うことができない。
【0012】
そして、このままの状態で、AlCl3とH2Oの供給サイクルを繰り返し、膜成長を継続させると、部分的に成長の早い部分ができ、クラスター状にAl2O3が成長する。その結果、できあがったAl2O3薄膜が不均一な厚さとなり、所望の膜厚を制御良く得ることができないということが実験により判明した。
【0013】
また、逆に1回のAlCl3原料の供給量を十分な量として、供給サイクルを繰り返し継続した場合には、所望の膜厚を得るための成膜時間が膨大なものとなってしまう。
【0014】
さらに、TiO2薄膜上にAl2O3薄膜を形成するような場合には、最初にAlの原料であるAlCl3を供給すると、下地であるTiO2表面の分子とAlCl3分子が置換反応し、TiO2を侵食することを発見した。このことは、蒸気圧が薄膜原料よりも相対的に下地膜の方が高いような場合に起こりうると考えられる。
【0015】
したがって、AlCl3原料が不均一に供給されると、TiO2との置換反応が不均一に行われ、上記した下地との結晶の整合性不良による成長不良と相俟って、薄膜成長速度が異なる部分が生じ、不均一な膜厚となってしまうということがわかった。
【0016】
これらの検討結果から、供給サイクルの初期の段階において下地との結晶の整合性不良や下地と薄膜原料物質との不均一な反応を解消してやれば、その後の供給において均一な膜成長ができるのではないかと考えた。本発明は、このような点に着目し、実験検討した結果、得られたものである。
【0017】
すなわち、請求項1に記載の発明では、金属元素を含む第1の原料物質と金属元素と反応する元素を含む第2の原料物質とを、基板に対して交互に供給することにより薄膜を形成する薄膜の製造方法において、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間を、2回目以降のサイクルにおける第1の原料物質の供給時間よりも長くすることを特徴とする。
【0018】
それによれば、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間を十分に長くすることで、金属元素を含む第1の原料物質によって下地を十分に被覆することができる。
【0019】
そのため、形成される薄膜とその下地との結晶の整合性が悪かったり、下地と薄膜原料物質との反応が起こりやすい場合であっても、供給サイクルの2回目以降においては、下地との結晶の整合性が良くなり、また、下地との反応も起こらないため、均一な層成長が可能となる。
【0020】
そして、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間は長くなるが、2回目以降はそれよりも短く、ほぼ通常の供給時間とすることができるため、薄膜の形成時間全体ではさほど長時間とはならない。
【0021】
よって、本発明によれば、できるだけ短い形成時間で狙いの膜厚を適切に実現することができる。
【0022】
ここで、請求項2に記載の発明のように、第1の原料物質としては金属ハロゲン化物または有機金属化合物を用いることができる。
【0023】
また、薄膜としてはアルミナ(Al2O3)等のようなが絶縁体や、チタニア(TiO2)等のような半導体とすることができる。
【0024】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0025】
【発明の実施の形態】
以下、本発明を具体的な実施形態に基づいて説明する。本実施形態では、形成する薄膜は、EL素子の絶縁膜として用いられるATO薄膜とした。これは、絶縁体であるAl2O3(アルミナ)薄膜と半導体であるTiO2(チタニア)薄膜とをALE法によって交互に多数積層してなる膜である。
【0026】
EL素子の絶縁膜としてのATO薄膜においては、ALE法によって、Al2O3薄膜から順にTiO2薄膜、Al2O3薄膜の順に交互に積層し、最後に再びAl2O3薄膜を形成する。
【0027】
具体的には、Al2O3薄膜をALE法にて形成する場合は、金属元素を含む第1の原料物質であるAlCl3と、金属元素と反応する元素を含む第2の原料物質であるH2Oとを、基板に対して交互に供給するサイクルを繰り返すことで、Al2O3を1原子層ずつ成長させ、所定の膜厚のAl2O3薄膜を形成する。
【0028】
また、TiO2薄膜をALE法にて形成する場合は、金属元素を含む第1の原料物質であるTiCl4と金属元素と反応する元素を含む第2の原料物質であるH2Oとを、基板に対して交互に供給するサイクルを繰り返すことで、TiO2を1原子層ずつ成長させ、所定の膜厚のTiO2薄膜を形成する。
【0029】
そして、各々所定の膜厚のAl2O3薄膜とTiO2薄膜とが交互に積層されて、ATO薄膜ができあがるのである。
【0030】
ここでは、ATO薄膜の最上部のAl2O3薄膜および最下部のAl2O3薄膜を除くAl2O3薄膜の膜厚は5nmとし、TiO2薄膜の膜厚は1.5から5nmの範囲であれば良く、本例では2nmとした。また、最上部および最下部のAl2O3薄膜の膜厚は15から30nmの範囲であれば良く、本例では20nmとした。
【0031】
次に、ATO薄膜の具体的な製造方法について述べる。なお、ここでは、ATO薄膜のうちAl2O3薄膜を形成する方法について、供給サイクルのうち1回目のサイクルにおけるAlCl3の供給時間を、2回目以降のサイクルにおけるAlCl3の供給時間よりも長くするようにし、TiO2薄膜については、通常のALE法にて成膜する例を述べる。
【0032】
まず、基板を固定するための基板ホルダーボックス内に基板をセットする。このとき本例では、基板において薄膜が成膜される面を垂直に立ててセットする。そして、基板がセットされた基板ホルダーボックスを真空引き可能なロードロック室に投入する。
【0033】
次に、ロードロック室内を10−3Torr以下まで真空引きし、原料を輸送するキャリアガスである窒素を導入する。この操作を繰り返し、最終的にロードロック室内が再び10−3Torr以下になるように真空引きを行う。
【0034】
そして、ロードロック室で十分に窒素置換され、真空引きされた基板ホルダーボックスを、予め窒素で置換および真空引きされた薄膜形成のための成膜室内に移動させる。
【0035】
そして、基板ホルダーボックスを、成膜室内に設置してある加熱ヒータにて加熱し、基板温度を成膜時の温度である500℃にする。ただし、この加熱中は、成膜開始時の供給ガスによる温度低下を防止するため、キャリアガスである窒素を成膜時と同量、基板ホルダーボックス内に導入しておく。
【0036】
基板温度が500℃に到達し温度が安定したら、その後、次に示すプロセスの内、まず、第1、第2のプロセスを実施し、次に、第3、第4、第5のプロセスを28回繰り返し、最後に第6のプロセスを実施することによりATO薄膜(Al2O3薄膜とTiO2薄膜の積層複合膜)を形成する。なお、各プロセスにおいて()内は供給時間を示す。
【0037】
「第1のプロセス」:原料ガスであるAlCl3ガス(第1の原料物質)を含んだ窒素ガス供給(9秒)と、配管内に残留したAlCl3ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2O(第2の原料物質)を含んだ窒素ガス供給(2秒)と、配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(1.5秒)のサイクルを1回実施する。
【0038】
「第2のプロセス」:原料ガスであるAlCl3ガスを含んだ窒素ガス供給(0.5秒)と、配管内に残留したAlCl3ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2Oを含んだ窒素ガス供給(0.8秒)と、配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(1.5秒)のサイクルを333回繰り返す。
【0039】
「第3のプロセス」:原料ガスであるAlCl3ガスを含んだ窒素ガス供給(0.5秒)と、配管内に残留したAlCl3ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2Oを含んだ窒素ガス供給(0.8秒)と、配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(1.5秒)のサイクルを111回繰り返す。
【0040】
「第4のプロセス」:原料ガスであるTiCl4ガスを含んだ窒素ガス供給(0.6秒)と、配管内に残留したTiCl4ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2Oを含んだ窒素ガス供給(0.8秒)と、配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(2秒)のサイクルを51回繰り返す。
【0041】
「第5のプロセス」:原料ガスであるAlCl3ガスを含んだ窒素ガス供給(9秒)と、配管内に残留したAlCl3ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2Oを含んだ窒素ガス供給(2秒)と、配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(1.5秒)のサイクルを1回実施する。
【0042】
「第6のプロセス」:原料ガスであるAlCl3ガスを含んだ窒素ガス供給(0.5秒)と、配管内に残留したAlCl3ガスを押し出すための窒素ガスによる配管パージガス供給(1秒)、原料ガスであるH2Oを含んだ窒素ガス供給(0.8秒)と配管内に残留したH2Oを押し出すための窒素ガスによる配管パージガス供給(1.5秒)のサイクルを444回繰り返す。
【0043】
ここで、第1、第2、第3のプロセスを1回実施することでATO薄膜における最下部のAl2O3薄膜(厚さ20nm)が形成される。次に、第4のプロセスを1回実施することで、その上のTiO2薄膜(厚さ2nm)が形成される。
【0044】
次に、第5のプロセス、第3のプロセスをこの順に1回実施することで、その上のAl2O3薄膜(厚さ5nm)が形成される。次に、第4のプロセスを1回実施してその上のTiO2薄膜(厚さ2nm)を形成し、次に、第5のプロセス、第3のプロセスをこの順に1回実施してその上のAl2O3薄膜(厚さ5nm)を形成する。
【0045】
本例では、このような第3、第4、第5のプロセスの繰り返しが28回行われる。そして、最後のTiO2薄膜の形成すなわち最後の第4のプロセスが終了した後、第5のプロセス、第6のプロセスをこの順に1回実施することにより最上部のAl2O3薄膜(厚さ20nm)が形成され、本例のATO薄膜が完成する。
【0046】
ここで、上記原料ガスおよびパージガスは、基板ホルダーボックスの上部に設置されたガス分配器にて、基板上部からそれぞれ均等に分配されるようになっている。分配された原料ガスおよびパージガスは、成膜面が垂直に配置された基板の上部から下部に向かって流れる。すなわち成膜面に沿ってガスが流れる。
【0047】
また原料となるAlCl3およびTiCl4の原料供給量は、それぞれ7.2×10−6〜9.8×10−5mol/pulse、6.0×10−6〜2.4×10−4mol/pulse(いずれも計算値)の範囲内で、それぞれの原料を基板に供給した。
【0048】
上記製造方法において、Al2O3薄膜の形成について、供給サイクルのうち1回目のサイクルにおけるAlCl3の供給時間を、2回目以降のサイクルにおけるAlCl3の供給時間よりも長くしたことは、具体的には、次のようなことである。
【0049】
まず、最下部のAl2O3薄膜(厚さ20nm)は、第1、第2、第3のプロセスを1回実施することで形成されるが、これら第1〜第3のプロセスを1回実施することとは、AlCl3とH2Oとの交互の供給サイクルを(1+333+111)回すなわち445回繰り返すことである。
【0050】
ここで、この供給サイクルの1回目は、第1のプロセスであって、そのAlCl3の供給時間は9秒であり、2回目以降のサイクルにおけるAlCl3の供給時間である0.5秒よりも長くしている。
【0051】
また、1回目のサイクルにおいてAlCl3の供給時間を長くしたことに対応して、1回目のサイクルではH2Oの供給時間(2秒)も2回目以降のサイクルにおけるH2Oの供給時間(0.8秒)よりも長くしている。
【0052】
また、中間のAl2O3薄膜(厚さ5nm)は、第5のプロセス、第3のプロセスを順に1回実施することで形成されるが、これら第5、第3のプロセスを1回実施することとは、AlCl3とH2Oとの交互の供給サイクルを(1+111)回すなわち112回繰り返すことである。
【0053】
ここで、この供給サイクルの1回目は、第5のプロセスであって、そのAlCl3の供給時間は9秒であり、2回目以降のサイクルにおけるAlCl3の供給時間である0.5秒よりも長くしている。H2Oについても、1回目のサイクルの供給時間(2秒)を2回目以降のサイクルにおける供給時間(0.8秒)よりも長くしている。
【0054】
さらに、最上部のAl2O3薄膜についても、これら最下部および中間のAl2O3薄膜と同様である。このように本実施形態では、Al2O3薄膜の形成について、供給サイクルのうち1回目のサイクルにおけるAlCl3の供給時間を、2回目以降のサイクルにおけるAlCl3の供給時間よりも長くしている。
【0055】
ここで、図1に、上述した本例のAl2O3薄膜の形成における初期から3回目の供給サイクルまでのAlCl3原料、H2O原料およびそれぞれのパージガスの供給タイミングチャートを同軸の時間軸にて示しておく。図1では、横軸に時間軸、縦軸に原料供給を示すパルス波形を示している。
【0056】
また、図2は、上記製造方法によって、中間のAl2O3薄膜(厚さ5nm)を形成する場合の膜の成長の様子をAl、O、Clの薄膜表面における挙動として模式的に表した図である。この場合、下地はTiO2薄膜であり、初期、ステップ1、2、3、4の順に膜が成長していく。
【0057】
さらに、図3は、上記図1に対する比較例として、従来のALE法によるAl2O3薄膜の形成における各原料の供給タイミングチャートを示す図である。この場合、Al2O3薄膜は、上記第3のプロセスに示した原料供給時間によってすべての供給サイクルが行われる。
【0058】
そして、図4は、上記図2に対する比較例として、従来のALE法によって、中間のAl2O3薄膜(厚さ5nm)を形成する場合の膜の成長の様子を分子レベルにて模式的に表した図である。
【0059】
図4に示す従来の製造方法では、1回目のサイクルにおけるAlCl3の供給時間が短く不十分であるため、ステップ1に示すように、TiO2薄膜の表面に乱雑にAlCl3分子が部分的に配置(置換)される。そのため、その後の原料供給サイクルにおいて、ステップ2、3、4の順に示すように、島状にAl2O3薄膜が成長していく。そのため、不均一な膜厚となってしまう。
【0060】
一方、図2に示す本実施形態では、金属元素を含む原料であるAlCl3をTiO2薄膜上に配置する場合、通常0.5秒間であるAlCl3の原料供給時間に対して、1回目のサイクルでは9秒間の長時間の原料供給時間としている。
【0061】
つまり、従来の製造方法に対して、本実施形態のAl2O3薄膜の製造方法は、上記第1のプロセス、第5のプロセスを1回目の供給サイクルに入れた独自の方法となっている。
【0062】
そのため、図2のステップ1に示すように、1回目のAlCl3の供給により、TiO2薄膜表面に整然とAlCl3分子が配列し、その後の通常の原料供給時間(0.5秒)の繰り返しサイクルにおいても、整然とAlおよびOが配置される。こうして、本実施形態によれば、原料の供給サイクル回数に応じた均一な膜厚が得られる。
【0063】
図5は、上記した本実施形態の製造方法によってAl2O3薄膜を形成した場合において、原料(AlCl3、H2O)の供給回数(供給サイクル回数)とAl2O3の膜厚との関係を調べた結果を示す図である。なお、図5には、上記した従来法にてAl2O3薄膜を形成した場合についても調べた結果を併記してある。
【0064】
図5からわかるように、従来法で形成した場合には、薄膜形成初期の成膜速度が不安定であったために、その後の成膜速度も不安定であり、安定した膜厚が得られなかった。それに対して、本実施形態の製造方法を使用することにより、薄膜形成初期の速度が安定し、その結果、膜厚のばらつきがほとんど無くなり、安定した膜の供給が可能になった。
【0065】
例えば、膜厚5nmのAl2O3薄膜を形成する場合、従来の製造方法では、狙いの膜厚5nmに対して1nm程度の膜厚分布のばらつきが生じたのに対し、本実施形態の製造方法では、狙いの膜厚5nmに対して0.3nm程度のばらつきに抑えることができた。
【0066】
すなわち、従来法では、成膜初期段階の成膜状態が不良で、原料が部分的に表面に配置していることから、膜厚分布が悪かった。これに対して、本実施形態の製造方法で形成した場合には、原料供給回数に対して正確に膜厚が制御でき、均一にAlCl3が配置されていることから、膜厚分布状態も良好なものにすることができる。
【0067】
なお、上記例では、ATO薄膜のうちAl2O3薄膜を形成する方法に対して、供給サイクルのうち1回目のサイクルにおける金属元素を含む第1の原料物質の供給時間を2回目以降のサイクルにおける供給時間よりも長くするという製造方法を適用した例を述べたが、TiO2薄膜の形成についても同様の方法を適用して良いことは勿論である。
【0068】
その場合、供給サイクルのうち1回目のサイクルにおけるTiCl4の供給時間を、2回目以降のサイクルにおけるTiCl4の供給時間よりも長くするようにすればよい。それによって、上述したAl2O3薄膜の場合と同様の効果が得られた。
【0069】
以上述べてきたように、本実施形態によれば、金属元素を含む第1の原料物質と金属元素と反応する元素を含む第2の原料物質とを、基板に対して交互に供給することにより薄膜を形成する薄膜の製造方法において、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間を、2回目以降のサイクルにおける第1の原料物質の供給時間よりも長くすることを特徴とする薄膜の製造方法が提供される。
【0070】
それによれば、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間を十分に長くすることで、金属元素を含む第1の原料物質によって下地を十分に被覆することができる。
【0071】
そのため、形成される薄膜とその下地との結晶の整合性が悪かったり、下地と薄膜原料物質との反応が起こりやすい場合であっても、供給サイクルの2回目以降においては、下地との結晶の整合性が良くなり、また、下地との反応も起こらないため、均一な層成長が可能となる。
【0072】
そして、供給サイクルのうち1回目のサイクルにおける第1の原料物質の供給時間は、長くなるが、2回目以降はそれよりも短く、ほぼ通常の供給時間とすることができるため、薄膜の形成時間全体ではさほど長時間とはならない。
【0073】
よって、本実施形態によれば、薄膜の形成時間を極力短い時間としつつ、狙いの膜厚を適切に実現することができる。
【0074】
なお、2回目以降の供給において、後のサイクルに行くに連れて第1の原料物質の供給時間を短くするようにしても良い。例えば、2回目のサイクルにおけるAlCl3の供給時間を3回目以降のAlCl3の供給時間よりも長くしても良い。ただし、1回目のサイクルの供給時間を最も長いものとした上で行う必要がある。
【0075】
また、本発明の製造方法は、上記したTiO2薄膜上にAl2O3薄膜を形成するプロセスのみでなく、Al2O3薄膜上にTiO2薄膜を形成するプロセス、ガラス基板上にAl2O3薄膜を形成するプロセス、ZnS等の発光層上にAl2O3薄膜を形成するプロセス、その他、有機錯体や塩化物等のハロゲン化物を出発原料とする酸化物薄膜をALE法で形成するプロセス等において適用可能である。
【図面の簡単な説明】
【図1】本発明の実施形態におけるAl2O3薄膜の形成における各原料の供給タイミングチャートを示す図である。
【図2】上記実施形態においてAl2O3薄膜を形成する場合の膜の成長の様子を分子レベルにて模式的に表した図である。
【図3】従来の製造方法によるAl2O3薄膜の形成における各原料の供給タイミングチャートを示す図である。
【図4】従来の製造方法においてAl2O3薄膜を形成する場合の膜の成長の様子を分子レベルにて模式的に表した図である。
【図5】実施形態の製造方法によってAl2O3薄膜を形成した場合において、原料供給回数と膜厚との関係を調べた結果を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a method for manufacturing a thin film in which a thin film is formed by alternately supplying a first raw material containing a metal element and a second raw material containing an element that reacts with a metal element to a substrate, a so-called thin film manufacturing method. The present invention relates to an atomic layer growth method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an atomic layer epitaxy (ALE) method has been used when forming a thin film of a metal oxide or a metal sulfide, and has been used as a film forming method having good crystallinity and excellent film thickness controllability. (For example, see Patent Document 1).
[0003]
In this method, a first raw material containing a metal element (for example, a metal chloride or an organometallic compound) and a second raw material containing an element that reacts with the metal element (for example, an oxidized substance such as water, hydrogen sulfide, or the like) are used. ) Is simply repeated on the substrate by alternately supplying the reaction compound to the substrate, whereby the reaction compound is disposed on the substrate surface one layer at a time by the reaction on the substrate surface. It is said that the film thickness can be easily controlled.
[0004]
Various thin films can be formed using this ALE method. For example, in an electroluminescence element, there are an ATO thin film which is a composite film of aluminum oxide and titanium oxide used as an insulating layer, and zinc sulfide and strontium sulfide used as a light emitting layer.
[0005]
[Patent Document 1]
JP-A-55-130896
[Problems to be solved by the invention]
However, although the ALE method has the above advantages, it is a formation method in which atoms are arranged one by one. Therefore, if the supply time of each raw material constituting the thin film is lengthened, a large amount of ALE method is required to obtain a desired film thickness. It takes a long time.
[0007]
On the other hand, according to the study of the present inventors, for example, when forming an ATO thin film by the ALE method, when alternately laminating an Al2O3 thin film and a TiO2 thin film, when forming a TiO2 thin film on an Al2O3 thin film, If an attempt is made to reduce the film formation time when forming an Al2O3 thin film thereon, there arises a problem that the film thickness formed by the number of times of supply of the raw material calculated from the film thickness of the monomolecular layer becomes different from the target film thickness and becomes thin. Was.
[0008]
In view of the above problems, the present invention forms a thin film by alternately supplying a first raw material containing a metal element and a second raw material containing an element that reacts with a metal element to a substrate. In a method of manufacturing a thin film, it is an object to appropriately realize a target film thickness with a formation time as short as possible.
[0009]
[Means for Solving the Problems]
The present inventor has further studied the above-described problem that the thickness of the ATO thin film becomes smaller than a target film thickness.
[0010]
For example, when an Al2O3 thin film is formed on a TiO2 thin film, usually, AlCl3 which is a raw material of Al is supplied, and H2O is supplied to oxidize the Al2O3 molecule to form Al2O3 molecules.
[0011]
At this time, if the supply time of the AlCl3 raw material, that is, the supply amount of the AlCl3 raw material at one time, is small for the purpose of shortening the entire thin film formation time, the alignment of the crystals on the different kind of film (that is, the TiO2 thin film) which is the base is made. Due to worse sex, they cannot grow well. As a result, it is not possible to sufficiently cover the surface of the underlayer with AlCl3 by a single supply of the raw material.
[0012]
When the supply cycle of AlCl3 and H2O is repeated in this state, and the film growth is continued, a portion where the growth is partially fast occurs, and Al2O3 grows in a cluster. As a result, it has been found through experiments that the completed Al2O3 thin film has an uneven thickness, and a desired film thickness cannot be obtained with good control.
[0013]
Conversely, if the supply cycle of the AlCl3 raw material is set to a sufficient amount once and the supply cycle is repeated, the deposition time for obtaining a desired film thickness becomes enormous.
[0014]
Furthermore, in the case of forming an Al2O3 thin film on a TiO2 thin film, if AlCl3, which is a raw material of Al, is supplied first, the molecules on the surface of the TiO2 as a base and the AlCl3 molecules undergo a substitution reaction, so that TiO2 is eroded. discovered. This is considered to be possible when the vapor pressure is relatively higher in the base film than in the thin film material.
[0015]
Therefore, when the AlCl3 raw material is supplied non-uniformly, the substitution reaction with TiO2 is performed non-uniformly, and in combination with the above-mentioned poor growth due to the poor matching of the crystal with the underlayer, the portion where the thin film growth rate is different. Was generated, resulting in a non-uniform film thickness.
[0016]
From the results of these studies, it is possible to achieve uniform film growth in the subsequent supply if the poor alignment of the crystal with the base and the non-uniform reaction between the base and the thin film raw material are eliminated in the initial stage of the supply cycle. I thought it might be. The present invention has been obtained as a result of an experimental study focusing on such points.
[0017]
That is, according to the first aspect of the invention, a thin film is formed by alternately supplying a first raw material containing a metal element and a second raw material containing an element that reacts with a metal element to a substrate. In the thin film manufacturing method described above, the supply time of the first raw material in the first cycle of the supply cycle is longer than the supply time of the first raw material in the second and subsequent cycles.
[0018]
According to this, by sufficiently increasing the supply time of the first raw material in the first cycle of the supply cycle, the base can be sufficiently covered with the first raw material containing the metal element.
[0019]
Therefore, even if the consistency between the crystal of the thin film to be formed and the underlying film is poor or the reaction between the underlying film and the thin film raw material is likely to occur, the crystal of the underlying film and the underlying film are not reconstituted after the second supply cycle. Consistency is improved, and no reaction with the underlayer occurs, so that uniform layer growth is possible.
[0020]
The supply time of the first raw material in the first cycle of the supply cycle is longer, but is shorter than that in the second and subsequent supply cycles, and can be almost the normal supply time. That's not a long time.
[0021]
Therefore, according to the present invention, a target film thickness can be appropriately realized with a formation time as short as possible.
[0022]
Here, as in the invention according to claim 2, a metal halide or an organometallic compound can be used as the first raw material.
[0023]
As the thin film, an insulator such as alumina (Al2O3) or the like, or a semiconductor such as titania (TiO2) can be used.
[0024]
It should be noted that reference numerals in parentheses of the above-described units are examples showing the correspondence with specific units described in the embodiments described later.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on specific embodiments. In this embodiment, the thin film to be formed is an ATO thin film used as an insulating film of an EL element. This is a film formed by alternately stacking a large number of Al2O3 (alumina) thin films as insulators and TiO2 (titania) thin films as semiconductors by the ALE method.
[0026]
In the ATO thin film as the insulating film of the EL element, the TiO2 thin film and the Al2O3 thin film are alternately laminated in order from the Al2O3 thin film by the ALE method, and finally, the Al2O3 thin film is formed again.
[0027]
Specifically, when an Al2O3 thin film is formed by an ALE method, AlCl3, which is a first raw material containing a metal element, and H2O, which is a second raw material containing an element that reacts with a metal element, By repeating a cycle of alternately supplying Al2O3 to the substrate, Al2O3 is grown one atomic layer at a time, and an Al2O3 thin film having a predetermined thickness is formed.
[0028]
When the TiO2 thin film is formed by the ALE method, TiCl4, which is a first raw material containing a metal element, and H2O, which is a second raw material containing an element that reacts with a metal element, are added to the substrate. By repeating the alternate supply cycle, TiO2 is grown one atomic layer at a time to form a TiO2 thin film having a predetermined thickness.
[0029]
Then, the Al2O3 thin film and the TiO2 thin film each having a predetermined film thickness are alternately laminated to form an ATO thin film.
[0030]
Here, the thickness of the Al2O3 thin film excluding the uppermost Al2O3 thin film and the lowermost Al2O3 thin film of the ATO thin film is 5 nm, and the thickness of the TiO2 thin film may be in the range of 1.5 to 5 nm. And The thickness of the uppermost and lowermost Al2O3 thin films may be in the range of 15 to 30 nm, and in this example, was 20 nm.
[0031]
Next, a specific manufacturing method of the ATO thin film will be described. Here, in the method of forming the Al2O3 thin film among the ATO thin films, the supply time of AlCl3 in the first cycle of the supply cycle is set to be longer than the supply time of AlCl3 in the second and subsequent cycles. An example in which a thin film is formed by a normal ALE method will be described.
[0032]
First, a substrate is set in a substrate holder box for fixing the substrate. At this time, in this example, the surface on which the thin film is formed on the substrate is set upright. Then, the substrate holder box on which the substrate is set is put into a load lock chamber that can be evacuated.
[0033]
Next, the load lock chamber is evacuated to 10 −3 Torr or less, and nitrogen as a carrier gas for transporting the raw material is introduced. This operation is repeated, and evacuation is performed so that the load lock chamber finally becomes 10 −3 Torr or less.
[0034]
Then, the substrate holder box which has been sufficiently purged with nitrogen in the load lock chamber and evacuated is moved to a deposition chamber for forming a thin film which has been previously substituted with nitrogen and evacuated.
[0035]
Then, the substrate holder box is heated by a heater installed in the film formation chamber, and the substrate temperature is set to 500 ° C., which is the temperature at the time of film formation. However, during this heating, nitrogen as a carrier gas is introduced into the substrate holder box in the same amount as during the film formation in order to prevent a temperature drop due to the supply gas at the start of the film formation.
[0036]
After the substrate temperature reaches 500 ° C. and the temperature is stabilized, first, of the following processes, first, the second process is performed, and then the third, fourth, and fifth processes are performed. The ATO thin film (laminated composite film of the Al2O3 thin film and the TiO2 thin film) is formed by repeating the process six times and finally performing the sixth process. Note that in each process, the number in parentheses indicates the supply time.
[0037]
"First process": supply of a nitrogen gas containing an AlCl3 gas (first raw material) as a source gas (9 seconds) and supply of a purge gas with a nitrogen gas for pushing out the AlCl3 gas remaining in the pipe ( 1 second), supply of nitrogen gas containing H2O (second raw material) as a source gas (2 seconds), and supply of pipe purge gas with nitrogen gas for pushing out H2O remaining in the pipe (1.5 seconds) Is performed once.
[0038]
"Second process": supply of nitrogen gas containing AlCl3 gas as a raw material gas (0.5 seconds), supply of pipe purge gas with nitrogen gas for pushing out AlCl3 gas remaining in the pipe (1 second), raw material A cycle of supplying a nitrogen gas containing H2O as a gas (0.8 seconds) and supplying a purge gas with a nitrogen gas for pushing out H2O remaining in the pipe (1.5 seconds) is repeated 333 times.
[0039]
"Third process": supply of nitrogen gas containing AlCl3 gas as a raw material gas (0.5 seconds), supply of pipe purge gas with nitrogen gas for pushing out AlCl3 gas remaining in the pipe (1 second), raw material A cycle of supplying nitrogen gas containing H2O as a gas (0.8 seconds) and supplying a purge gas with nitrogen gas for pushing out H2O remaining in the pipe (1.5 seconds) is repeated 111 times.
[0040]
"Fourth process": supply of nitrogen gas containing TiCl4 gas as a raw material gas (0.6 seconds), supply of pipe purge gas with nitrogen gas for pushing out TiCl4 gas remaining in the pipe (1 second), raw material A cycle of supplying a nitrogen gas containing H2O as a gas (0.8 seconds) and supplying a pipe purge gas with a nitrogen gas for extruding H2O remaining in the pipe (2 seconds) is repeated 51 times.
[0041]
“Fifth process”: supply of nitrogen gas containing AlCl 3 gas as a source gas (9 seconds), supply of pipe purge gas with nitrogen gas for pushing out AlCl 3 gas remaining in the pipe (1 second), A cycle of supplying a nitrogen gas containing a certain amount of H2O (2 seconds) and supplying a purge gas with a nitrogen gas for pushing out H2O remaining in the piping (1.5 seconds) is performed once.
[0042]
"Sixth process": supply of nitrogen gas containing AlCl3 gas as a raw material gas (0.5 seconds), supply of pipe purge gas with nitrogen gas to push out AlCl3 gas remaining in the pipe (1 second), raw material A cycle of supplying a nitrogen gas containing H2O as a gas (0.8 seconds) and supplying a pipe purge gas with a nitrogen gas for pushing out H2O remaining in the pipe (1.5 seconds) is repeated 444 times.
[0043]
Here, by performing the first, second, and third processes once, an Al2O3 thin film (thickness: 20 nm) at the bottom of the ATO thin film is formed. Next, the fourth process is performed once to form a TiO2 thin film (2 nm thick) thereon.
[0044]
Next, the fifth process and the third process are performed once in this order, whereby an Al2O3 thin film (5 nm thick) is formed thereon. Next, a fourth process is performed once to form a TiO2 thin film (thickness: 2 nm) thereon, and then a fifth process and a third process are performed once in this order to perform a fourth process. An Al2O3 thin film (5 nm thick) is formed.
[0045]
In the present example, the third, fourth, and fifth processes are repeated 28 times. After the formation of the last TiO2 thin film, that is, the last fourth process, the fifth process and the sixth process are performed once in this order, thereby forming the uppermost Al2O3 thin film (thickness: 20 nm). Thus, the ATO thin film of this example is completed.
[0046]
Here, the raw material gas and the purge gas are each evenly distributed from above the substrate by a gas distributor installed above the substrate holder box. The distributed source gas and purge gas flow from the upper part to the lower part of the substrate on which the film formation surface is arranged vertically. That is, the gas flows along the film formation surface.
[0047]
The supply amounts of the raw materials AlCl3 and TiCl4 are respectively 7.2 × 10 −6 to 9.8 × 10 −5 mol / pulse and 6.0 × 10 −6 to 2.4 × 10 −4 mol / pulse. Each raw material was supplied to the substrate within a range of pulse (all calculated values).
[0048]
In the above-mentioned manufacturing method, regarding the formation of the Al2O3 thin film, the fact that the supply time of AlCl3 in the first cycle of the supply cycle is longer than the supply time of AlCl3 in the second and subsequent cycles is specifically as follows. It is like that.
[0049]
First, the lowermost Al2O3 thin film (thickness: 20 nm) is formed by performing the first, second, and third processes once, and the first to third processes are performed once. This means that the alternate supply cycle of AlCl3 and H2O is repeated (1 + 333 + 111) times, that is, 445 times.
[0050]
Here, the first supply cycle is the first process, and the supply time of AlCl3 is 9 seconds, which is longer than 0.5 second, which is the supply time of AlCl3 in the second and subsequent cycles. ing.
[0051]
In addition, in response to the increase in the supply time of AlCl3 in the first cycle, the supply time of H2O (2 seconds) in the first cycle is also increased (0.8 second) in the second and subsequent cycles. Longer than it is.
[0052]
The intermediate Al2O3 thin film (thickness: 5 nm) is formed by sequentially performing the fifth process and the third process once, and performing the fifth and third processes once. Means that the alternate supply cycle of AlCl3 and H2O is repeated (1 + 111) times, that is, 112 times.
[0053]
Here, the first supply cycle is the fifth process, and the supply time of AlCl3 is 9 seconds, which is longer than 0.5 second, which is the supply time of AlCl3 in the second and subsequent cycles. ing. Also for H2O, the supply time (2 seconds) in the first cycle is longer than the supply time (0.8 seconds) in the second and subsequent cycles.
[0054]
Further, the uppermost Al2O3 thin film is similar to the lowermost and intermediate Al2O3 thin films. As described above, in the present embodiment, in the formation of the Al2O3 thin film, the supply time of AlCl3 in the first cycle of the supply cycle is set longer than the supply time of AlCl3 in the second and subsequent cycles.
[0055]
Here, FIG. 1 shows a supply timing chart of the AlCl3 raw material, the H2O raw material, and the respective purge gas from the initial stage to the third supply cycle in the above-described formation of the Al2O3 thin film of the present example on a coaxial time axis. In FIG. 1, the horizontal axis indicates a time axis, and the vertical axis indicates a pulse waveform indicating material supply.
[0056]
FIG. 2 is a diagram schematically showing a state of film growth in the case where an intermediate Al2O3 thin film (thickness: 5 nm) is formed by the above manufacturing method, as behaviors of Al, O, and Cl on the surface of the thin film. . In this case, the base is a TiO2 thin film, and the films grow in the order of steps 1, 2, 3, and 4 in the initial stage.
[0057]
Further, FIG. 3 is a diagram showing a supply timing chart of each raw material in forming an Al2O3 thin film by the conventional ALE method as a comparative example with respect to FIG. In this case, all the supply cycles of the Al2O3 thin film are performed according to the material supply time shown in the third process.
[0058]
FIG. 4 is a diagram schematically showing, at a molecular level, a growth state of a film when an intermediate Al2O3 thin film (5 nm thick) is formed by a conventional ALE method as a comparative example with respect to FIG. It is.
[0059]
In the conventional manufacturing method shown in FIG. 4, since the supply time of AlCl3 in the first cycle is short and insufficient, as shown in Step 1, AlCl3 molecules are partially arranged (substituted) randomly on the surface of the TiO2 thin film. ) Is done. Therefore, in the subsequent material supply cycle, as shown in the order of steps 2, 3, and 4, the Al2O3 thin film grows in an island shape. Therefore, the film thickness becomes uneven.
[0060]
On the other hand, in the embodiment shown in FIG. 2, when AlCl 3, which is a raw material containing a metal element, is disposed on the TiO2 thin film, the supply time of the AlCl 3 raw material, which is usually 0.5 seconds, is 9 deg. It is a long material supply time of seconds.
[0061]
That is, in contrast to the conventional manufacturing method, the manufacturing method of the Al2O3 thin film of the present embodiment is a unique method in which the first process and the fifth process are included in the first supply cycle.
[0062]
Therefore, as shown in step 1 of FIG. 2, the first supply of AlCl 3 causes the AlCl 3 molecules to be arranged neatly on the surface of the TiO 2 thin film, and in the subsequent repetition cycle of the normal raw material supply time (0.5 seconds), Al and O are arranged neatly. Thus, according to the present embodiment, a uniform film thickness can be obtained according to the number of supply cycles of the raw material.
[0063]
FIG. 5 is a diagram showing the result of examining the relationship between the number of supply times (number of supply cycles) of the raw material (AlCl 3, H 2 O) and the thickness of Al 2 O 3 when an Al 2 O 3 thin film is formed by the above-described manufacturing method of the present embodiment. It is. In addition, FIG. 5 also shows the result of an examination on a case where an Al2O3 thin film is formed by the above-described conventional method.
[0064]
As can be seen from FIG. 5, when the film was formed by the conventional method, the film formation rate at the initial stage of the thin film formation was unstable, and the film formation rate thereafter was also unstable, and a stable film thickness could not be obtained. Was. On the other hand, by using the manufacturing method of the present embodiment, the initial speed of forming the thin film was stabilized, and as a result, there was almost no variation in the film thickness, and a stable film supply became possible.
[0065]
For example, when an Al2O3 thin film having a thickness of 5 nm is formed, in the conventional manufacturing method, a variation in the film thickness distribution of about 1 nm occurs with respect to the target film thickness of 5 nm, but in the manufacturing method of the present embodiment, It was possible to suppress the variation to about 0.3 nm with respect to the target film thickness of 5 nm.
[0066]
That is, in the conventional method, the film formation state at the initial stage of film formation was poor, and the film thickness distribution was poor because the raw material was partially disposed on the surface. On the other hand, when the film is formed by the manufacturing method of the present embodiment, the film thickness can be accurately controlled with respect to the number of times of supply of the raw material, and since the AlCl 3 is uniformly disposed, the film thickness distribution state is also good. Can be something.
[0067]
In the above example, the supply time of the first raw material containing the metal element in the first cycle of the supply cycle is set to the supply time in the second and subsequent cycles, compared to the method of forming the Al2O3 thin film in the ATO thin film. Although the example in which the manufacturing method of making the length longer is applied has been described, it goes without saying that the same method may be applied to the formation of the TiO2 thin film.
[0068]
In this case, the supply time of TiCl4 in the first cycle of the supply cycle may be longer than the supply time of TiCl4 in the second and subsequent cycles. Thereby, the same effect as in the case of the Al2O3 thin film described above was obtained.
[0069]
As described above, according to this embodiment, the first raw material containing the metal element and the second raw material containing the element that reacts with the metal element are alternately supplied to the substrate. In the method of manufacturing a thin film for forming a thin film, the supply time of the first raw material in the first cycle of the supply cycle is longer than the supply time of the first raw material in the second and subsequent cycles. A method for producing a thin film is provided.
[0070]
According to this, by sufficiently increasing the supply time of the first raw material in the first cycle of the supply cycle, the base can be sufficiently covered with the first raw material containing the metal element.
[0071]
Therefore, even if the consistency between the crystal of the thin film to be formed and the underlying film is poor or the reaction between the underlying film and the thin film raw material is likely to occur, the crystal of the underlying film and the underlying film are not reconstituted after the second supply cycle. Consistency is improved, and no reaction with the underlayer occurs, so that uniform layer growth is possible.
[0072]
The supply time of the first raw material in the first cycle of the supply cycle is longer, but is shorter than that in the second and subsequent supply cycles, and can be made almost the normal supply time. The whole is not very long.
[0073]
Therefore, according to the present embodiment, the target film thickness can be appropriately realized while the formation time of the thin film is made as short as possible.
[0074]
In addition, in the second and subsequent supply, the supply time of the first raw material may be shortened as going to a later cycle. For example, the supply time of AlCl3 in the second cycle may be longer than the supply time of AlCl3 in the third and subsequent cycles. However, it is necessary to make the supply time of the first cycle the longest.
[0075]
In addition, the manufacturing method of the present invention includes not only the above-described process of forming an Al2O3 thin film on a TiO2 thin film, but also a process of forming a TiO2 thin film on an Al2O3 thin film, a process of forming an Al2O3 thin film on a glass substrate, and a process such as ZnS. The present invention can be applied to a process of forming an Al2O3 thin film on a light emitting layer, a process of forming an oxide thin film using a halide such as an organic complex or a chloride as a starting material by an ALE method, and the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing a supply timing chart of each raw material in forming an Al2O3 thin film according to an embodiment of the present invention.
FIG. 2 is a diagram schematically showing, at a molecular level, how a film grows when an Al2O3 thin film is formed in the embodiment.
FIG. 3 is a diagram showing a supply timing chart of each raw material in forming an Al2O3 thin film by a conventional manufacturing method.
FIG. 4 is a diagram schematically showing a state of film growth at the molecular level when an Al2O3 thin film is formed in a conventional manufacturing method.
FIG. 5 is a diagram showing the result of examining the relationship between the number of times of supply of a raw material and the film thickness when an Al2O3 thin film is formed by the manufacturing method of the embodiment.

Claims (6)

金属元素を含む第1の原料物質と前記金属元素と反応する元素を含む第2の原料物質とを、基板に対して交互に供給することにより薄膜を形成する薄膜の製造方法において、
供給サイクルのうち1回目のサイクルにおける前記第1の原料物質の供給時間を、2回目以降のサイクルにおける前記第1の原料物質の供給時間よりも長くすることを特徴とする薄膜の製造方法。
In a method for producing a thin film, a first raw material containing a metal element and a second raw material containing an element that reacts with the metal element are alternately supplied to a substrate to form a thin film.
A method for producing a thin film, wherein the supply time of the first raw material in the first cycle of the supply cycle is longer than the supply time of the first raw material in the second and subsequent cycles.
前記第1の原料物質として金属ハロゲン化物または有機金属化合物を用いることを特徴とする請求項1に記載の薄膜の製造方法。2. The method according to claim 1, wherein a metal halide or an organometallic compound is used as the first raw material. 前記薄膜が絶縁体であることを特徴とする請求項1または2に記載の薄膜の製造方法。The method according to claim 1, wherein the thin film is an insulator. 前記絶縁体がアルミナであることを特徴とする請求項3に記載の薄膜の製造方法。The method according to claim 3, wherein the insulator is alumina. 前記薄膜が半導体であることを特徴とする請求項1または2に記載の薄膜の製造方法。3. The method according to claim 1, wherein the thin film is a semiconductor. 前記半導体がチタニアであることを特徴とする請求項5に記載の薄膜の製造方法。The method according to claim 5, wherein the semiconductor is titania.
JP2003033587A 2003-02-12 2003-02-12 Thin film manufacturing method Expired - Fee Related JP4168775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033587A JP4168775B2 (en) 2003-02-12 2003-02-12 Thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033587A JP4168775B2 (en) 2003-02-12 2003-02-12 Thin film manufacturing method

Publications (2)

Publication Number Publication Date
JP2004244661A true JP2004244661A (en) 2004-09-02
JP4168775B2 JP4168775B2 (en) 2008-10-22

Family

ID=33019524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033587A Expired - Fee Related JP4168775B2 (en) 2003-02-12 2003-02-12 Thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP4168775B2 (en)

Cited By (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288923A (en) * 2003-03-24 2004-10-14 Semiconductor Leading Edge Technologies Inc Method for manufacturing semiconductor device
JP2006009152A (en) * 2004-06-25 2006-01-12 Tokyo Electron Ltd High rate atomic layer deposition apparatus and method for using the same
JP2006253106A (en) * 2004-07-20 2006-09-21 Denso Corp Color organic el display and its manufacturing method
JP2006257554A (en) * 2005-03-16 2006-09-28 Ips Ltd Thin film deposition system
KR100640638B1 (en) 2005-03-10 2006-10-31 삼성전자주식회사 Method for forming high dielectric film by atomic layer deposition and method of fabricating semiconductor device having high dielectric film
JP2007042499A (en) * 2005-08-04 2007-02-15 Denso Corp Manufacturing method of collar organic el display
JP2007201327A (en) * 2006-01-30 2007-08-09 Denso Corp Organic el panel, and manufacturing method thereof
JP2013122069A (en) * 2011-12-09 2013-06-20 Ulvac Japan Ltd Method and apparatus for forming tungsten nitride film
JP2016119358A (en) * 2014-12-19 2016-06-30 株式会社デンソー Method of producing thin film made of aluminium compound
JP2019054291A (en) * 2018-12-25 2019-04-04 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus and program
JP2020004971A (en) * 2018-06-29 2020-01-09 エーエスエム アイピー ホールディング ビー.ブイ. Thin film deposition method and manufacturing method of semiconductor device
JP2020095859A (en) * 2018-12-13 2020-06-18 キヤノン株式会社 Organic light emitting element and manufacturing method thereof, organic light emitting device and manufacturing method thereof, lighting device, moving body, imaging device, electronic apparatus
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11967488B2 (en) 2022-05-16 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor

Cited By (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288923A (en) * 2003-03-24 2004-10-14 Semiconductor Leading Edge Technologies Inc Method for manufacturing semiconductor device
JP4713241B2 (en) * 2004-06-25 2011-06-29 東京エレクトロン株式会社 High speed atomic layer deposition apparatus and method of use
JP2006009152A (en) * 2004-06-25 2006-01-12 Tokyo Electron Ltd High rate atomic layer deposition apparatus and method for using the same
JP2006253106A (en) * 2004-07-20 2006-09-21 Denso Corp Color organic el display and its manufacturing method
KR100640638B1 (en) 2005-03-10 2006-10-31 삼성전자주식회사 Method for forming high dielectric film by atomic layer deposition and method of fabricating semiconductor device having high dielectric film
JP2006257554A (en) * 2005-03-16 2006-09-28 Ips Ltd Thin film deposition system
JP2007042499A (en) * 2005-08-04 2007-02-15 Denso Corp Manufacturing method of collar organic el display
JP2007201327A (en) * 2006-01-30 2007-08-09 Denso Corp Organic el panel, and manufacturing method thereof
JP4626526B2 (en) * 2006-01-30 2011-02-09 株式会社デンソー Organic EL panel and manufacturing method thereof
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
JP2013122069A (en) * 2011-12-09 2013-06-20 Ulvac Japan Ltd Method and apparatus for forming tungsten nitride film
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
JP2016119358A (en) * 2014-12-19 2016-06-30 株式会社デンソー Method of producing thin film made of aluminium compound
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
JP2020004971A (en) * 2018-06-29 2020-01-09 エーエスエム アイピー ホールディング ビー.ブイ. Thin film deposition method and manufacturing method of semiconductor device
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
JP2020095859A (en) * 2018-12-13 2020-06-18 キヤノン株式会社 Organic light emitting element and manufacturing method thereof, organic light emitting device and manufacturing method thereof, lighting device, moving body, imaging device, electronic apparatus
US11342535B2 (en) 2018-12-13 2022-05-24 Canon Kabushiki Kaisha Organic light-emitting element, method for producing organic light-emitting element, organic light-emitting device, method for producing organic light-emitting device, lighting device, moving object, image pickup device, and electronic apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
JP2019054291A (en) * 2018-12-25 2019-04-04 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus and program
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11967488B2 (en) 2022-05-16 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11972944B2 (en) 2022-10-21 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11970766B2 (en) 2023-01-17 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus

Also Published As

Publication number Publication date
JP4168775B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4168775B2 (en) Thin film manufacturing method
US9646820B2 (en) Methods for forming conductive titanium oxide thin films
KR100716654B1 (en) Method for manufacturing tetragonal zirconium oxide and method for manufacturing capacitor with the same
US8592294B2 (en) High temperature atomic layer deposition of dielectric oxides
US6451119B2 (en) Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
TWI296015B (en) Passivation method for improved uniformity and repeatability for atomic layer deposition and chemical vapor deposition
JP4133659B2 (en) Method for depositing multiple high kappa gate dielectrics for CMOS applications
US20030183171A1 (en) Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US20080054332A1 (en) Method of depositing nanolaminate film for non-volatile floating gate memory devices by atomic layer deposition
JP2015012179A (en) Vapor phase growth method
KR20090068179A (en) Process for producing a thin film comprising silicon dioxide
JP2002252286A (en) Semiconductor capacitor with tantalum oxide film and its fabrication method
JP2021182632A (en) Novel formulation for deposition of silicon doped hafnium oxide as ferroelectric materials
KR101799190B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and program
JP2020133002A (en) Method for depositing hafnium lanthanum oxide film on substrate by circulation deposition process in reaction chamber
TW202041705A (en) Atomic layer deposition of oxides and nitrides
TW201535521A (en) Deposition of germanium
US11476117B2 (en) Method of forming transition metal dichalcogenide thin film
EP1205574A2 (en) Atomic layer deposition of Ta205 and high-K dielectrics
KR20220011093A (en) Method and system for depositing molybdenum layers
KR101884555B1 (en) Method of forming a metal oxide by plasma enhanced atomic layer deposition
JP2008524785A5 (en)
CN114262878A (en) Silicon oxide deposition method
JP6912913B2 (en) Method for producing yttrium oxide-containing thin film by atomic layer deposition
KR100587687B1 (en) Method and apparatus of forming thin film using atomic layer deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4168775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees