US20030183171A1 - Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition - Google Patents

Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition Download PDF

Info

Publication number
US20030183171A1
US20030183171A1 US10401646 US40164603A US2003183171A1 US 20030183171 A1 US20030183171 A1 US 20030183171A1 US 10401646 US10401646 US 10401646 US 40164603 A US40164603 A US 40164603A US 2003183171 A1 US2003183171 A1 US 2003183171A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
surface
cvd
precursor
apparatus
pre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10401646
Inventor
Ofer Sneh
Carl Galewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron Inc
Original Assignee
Ofer Sneh
Galewski Carl J.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/4554Plasma being used non-continuously in between ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure

Abstract

A new method and apparatus for avoiding contamination of films deposited in layered depositions, such as Atomic Layer Deposition (ALD) and other sequential chemical vapor deposition (CVD) processes, is taught, wherein CVD-deposited contamination of ALD films is prevented by use of a pre-reaction chamber that effectively causes otherwise-contaminating gaseous constituents to deposit on wall elements of gas-delivery apparatus prior to entering the ALD chamber.

Description

    FIELD OF THE INVENTION
  • The present invention is in the area of chemical vapor deposition, and pertains more particularly to new methods and apparatus for depositing films by atomic layer deposition. This invention is an extension of these new methods and particularly covers a method for preventing parasitic chemical vapor deposition and the resultant contamination. [0001]
  • BACKGROUND OF THE INVENTION
  • In the manufacture of integrated circuits, deposition of thin films of many pure and compound materials is necessary, and many techniques have been developed to accomplish such depositions. In recent years the dominant technique for deposition of thin films in the art has been chemical vapor deposition (CVD), which has proven to have superior ability to provide uniform even coatings, and to coat relatively conformally into vias and over other high-aspect and uneven features in wafer topology. As device density has continued to increase and geometry has continued to become more complicated, even the superior conformal coating of CVD techniques has been challenged, and new and better techniques are needed. [0002]
  • The approach of a variant of CVD, Atomic Layer Deposition has been considered for improvement in uniformity and conformality, especially for low temperature deposition. However the practical implementation of this technology requires a solution to higher purity and higher throughput. This patent addresses these requirements. [0003]
  • Atomic Layer Deposition [0004]
  • In the field of CVD a process known as Atomic Layer Deposition (ALD) has emerged as a promising candidate to extend the abilities of CVD techniques, and is under rapid development by semiconductor equipment manufacturers to further improve characteristics of chemical vapor deposition. ALD is a process originally termed Atomic Layer Epitaxy, for which a competent reference is: [0005] Atomic Layer Epitaxy, edited by T. Suntola and M. Simpson, published by Blackie, Glasgo and London in 1990. This publication is incorporated herein by reference.
  • Generally ALD is a process wherein conventional CVD processes are divided into single-monolayer deposition steps, wherein each separate deposition step theoretically goes to saturation at a single molecular or atomic monolayer thickness, and self-terminates. [0006]
  • The deposition is the outcome of chemical reactions between reactive molecular precursors and the substrate. In similarity to CVD, elements composing the film are delivered as molecular precursors. The net reaction must deposit the pure desired film and eliminate the “extra” atoms that compose the molecular precursors (ligands). In the case of CVD the molecular precursors are fed simultaneously into the CVD reactor. A substrate is kept at temperature that is optimized to promote chemical reaction between the molecular precursors concurrent with efficient desorption of byproducts. Accordingly, the reaction proceeds to deposit the desired pure film. [0007]
  • For ALD applications, the molecular precursors are introduced into the ALD reactor separately. This is practically done by flowing one precursor at a time, i.e. a metal precursor —ML[0008] x (M=Al, W, Ta, Si etc.) that contains a metal element —M which is bonded to atomic or molecular ligands —L to make a volatile molecule. The metal precursor reaction is typically followed by inert gas purging to eliminate this precursor from the chamber prior to the separate introduction of the other precursor.
  • This purge step (or sometimes a pump-down step) is key for ALD films without the undesired CVD component. During the purge (evacuation) step the last used chemical is removed from the chamber and gas introduction lines, enabling introduction of a different chemical. [0009]
  • An ALD reaction will take place only if the surface is prepared to react directly with the molecular precursor. Accordingly the surface is typically prepared to include hydrogen-containing ligands —AH that are reactive with the metal precursor. Surface-molecule reactions can proceed to react with all the ligands on the surface and deposit a monolayer of the metal with its passivating ligand: substrate —AH+ML[0010] x→substrate —AMLy+HL, where HL is the exchange reaction by-product. During the reaction the initial surface ligands —AH are consumed and the surface becomes covered with L ligands, that cannot further react with the metal precursor —MLx. Therefore, the reaction self-saturates when all the initial ligands are replaced with —MLy species.
  • After completing the metal precursor reaction all of the metal precursor is typically removed from the reactor prior to the introduction of another precursor. The second type of precursor is used to restore the surface reactivity towards the metal precursor, i.e. eliminating the L ligands and redepositing AH ligands. [0011]
  • Most ALD processes have been applied to deposit compound films. In this case the second precursor is composed of a desired (usually nonmetallic) element-A (i.e. O, N, S), and hydrogen using, for example H[0012] 2O, NH3, or H2S. The reaction: —ML+AHz→—M—AH+HL (for the sake of simplicity the chemical reactions are not balanced) converts the surface back to be AH-covered. The desired additional element-A is deposited and the ligands L are eliminated as volatile by-product. Again, the reaction consumes the reactive sites (this time the L terminated sites) and self-saturates when the reactive sites are entirely depleted.
  • The sequence of surface reactions that restores the surface to the initial point is called the ALD deposition cycle. Restoration to the initial surface is the keystone of ALD. It implies that films can be layered down in equal metered sequences that are all identical in chemical kinetics, deposition per cycle, composition and thickness. Self-saturating surface reactions make ALD insensitive to transport nonuniformity either from flow engineering or surface topography (i.e. deposition into high aspect ratio structures). Non uniform flux can only result in different completion time at different areas. However, if each of the reactions is allowed to complete on the entire area, the different completion kinetics bear no penalty. [0013]
  • As is often the case with process development, the initial promised advantages of a new technique do not, in the end, attain their full initial promise. Unfortunately, ALD has a serious fundamental problem. Unlike CVD reactions that are of a continuous steady state nature, ALD reactions follow kinetics of molecular-surface interaction. Kinetics of molecular-surface reactions depends on the individual reaction rate between a molecular precursor and a surface reactive site and the number of available reactive sites. As the reaction proceeds to completion, the surface is converted from being reactive to non-reactive. As a result the reaction rate is slowing down during the deposition. In the simplest case the rate, dN/dt is proportional to the number of reactive sites, dN/dt=-kN, where N is the number of reactive sites and k is the (single site) reaction rate. Eliminating reactive sites (or growing of the already-reacted sites) follows an exponential time dependence kN(t)=kN[0014] 0exp(-kt). This fundamental property of molecule-surface kinetics was named after the great scientist Langmuir, and is quite well-known in the art.
  • The interpretation of Langmuirian kinetics limitations illustrates a serious drawback of ALD and a severe deviation from the ideal picture. Accordingly, the self-terminating reactions never really self-terminate (they would require an infinite time because the rate is exponentially decreasing). It means that under practical conditions the surface is never entirely reacted to completion after a deposition cycle. If the surface is not completely reacted there are leftover undesired elements in the film. For example, if the ML[0015] x reaction cannot totally consume the surface —AH sites, the film will have H incorporation. Likewise, if the AHy reaction is not carried to completion, undesired L incorporation is inevitable. Clearly, the quality of the film depends on the impurity levels. The throughput-quality tradeoff is of particular concern because it carries an exponential throughput penalty to attain a reduction of impurity levels.
  • In conventional atomic layer deposition one must accept low throughput to attain high-purity film, or accept lower-purity films for higher throughput. What is clearly needed is an apparatus and methods which not only overcome the Langmuirian limitations but simultaneously provide higher-purity films than have been available in the prior art methods. Such apparatus and methods are provided in embodiments of the present invention, taught in enabling detail below. [0016]
  • In addition to the above ideal situation, ALD chemicals, such as the ML[0017] x and AHz in the above example are typically extremely reactive, and will lead to extensive undesired CVD side reactions if they coexist in the chamber even at trace levels. Since CVD is a very undesirable companion, fast and efficient purge has been the most difficult and challenging aspect of engineering high throughput ALD apparatuses.
  • Chemical delivery lines must be short and free of trapped volume to facilitate efficient purging of chemicals. However, some limitation on efficient purge come from line surface outgassing that is difficult to avoid. Accordingly, some trace of chemical mixing is impossible to suppress with throughput limited short purge times. What is needed is a rapid method of removing trace quantities of the previously used chemical precursor prior to introduction of the desired new chemical precursor. [0018]
  • Our invention, which provides the clear and present need, provides an ALD Pre-Reactor as an apparatus and process that eliminates trace amounts of chemical mixing without CVD contribution to the ALD film on the substrates. [0019]
  • SUMMARY OF THE INVENTION
  • In a preferred embodiment of the present invention a method for minimizing parasitic chemical vapor deposition during an atomic layer deposition process is provided, comprising steps of (a) imposing a pre-reaction chamber between gas sources and a substrate to be coated; and (b) heating a surface in the pre-reaction chamber to a temperature sufficient to cause contaminant elements to deposit by CVD reaction on the heated surface. [0020]
  • In an alternative embodiment a pre-reaction chamber for an atomic layer deposition system is provided, comprising a passage for delivery of gases in alternating, incremental fashion from a gas source to a gas distribution apparatus; and a heated surface within the pre-reaction chamber for causing contaminant elements to deposit prior to the gases entering the gas distribution apparatus. [0021]
  • In the embodiments of the invention taught in enabling detail below, for the first time a method and apparatus is provided that effectively removes contaminant gases in atomic layer deposition processes, and allows cycle times to be significantly increased as a result.[0022]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a generalized diagram of a reactor and associated apparatus for practicing a radical-assisted sequential CVD process according to an embodiment of the present invention. [0023]
  • FIG. 2 is a step diagram illustrating the essential steps of an atomic layer deposition process. [0024]
  • FIG. 3 is a step diagram illustrating steps in a radical-assisted CVD process according to an embodiment of the present invention. [0025]
  • FIG. 4 illustrates a typical time dependent chemical precursor partial pressure curve for systems with well designed gas flow source and pulsing subsystems. [0026]
  • FIG. 5 represents a time dependent chemical precursor partial pressure curve where sharply defined “flow off” conditions are achieved as a result of practicing an embodiment of the present invention. [0027]
  • FIG. 6 is a generalized diagram of a reactor and associated apparatus for achieving radical assisted sequential CVD according to an improved embodiment of the present invention which eliminates undesired CVD side reactions. [0028]
  • FIG. 7 illustrates a second implementation of the reactor in FIG. 6. [0029]
  • FIG. 8 illustrates a third implementation of the reactor in FIG. 6 [0030]
  • FIG. 9 illustrates a fourth implementation of the reactor in FIG. 6.[0031]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The inventor has developed an enhanced variation of ALD which alters the conventional surface preparation steps of ALD and overcomes the problems of conventional ALD, producing high throughput without compromising quality. The inventor terms the new and unique process Radical-Assisted Sequential CVD (RAS-CVD). [0032]
  • FIG. 1 is a generalized diagram of a system [0033] 11 for practicing RAS-CVD according to an embodiment of the present invention. In this exemplary system a deposition chamber 13 has a heatable hearth for supporting and heating a substrate 19 to be coated, and a gas distribution apparatus, such as a showerhead 15, for delivering gaseous species to the substrate surface to be coated. Substrates are introduced and removed from chamber 13 via a valve 21 and substrate-handling apparatus not shown. Gases are supplied from a gas sourcing and pulsing apparatus 23, which includes metering and valving apparatus for sequentially providing gaseous materials. An optional treatment apparatus 25 is provided for producing gas radicals from gases supplied from apparatus 23.
  • The term radicals is well-known and understood in the art, but will be qualified again here to avoid confusion. By a radical is meant an unstable species. For example, oxygen is stable in diatomic form, and exists principally in nature in this form. Diatomic oxygen may, however, be caused to split to monatomic form, or to combine with another atom to produce ozone, a molecule with three atoms. Both monatomic oxygen and ozone are radical forms of oxygen, and are more reactive than diatomic oxygen. In many cases in embodiments of the present invention the radicals produced and used are single atom forms of various gases, such as oxygen, hydrogen, and nitrogen, although the invention is not strictly limited to monatomic gases. [0034]
  • FIG. 2 is a step diagram of a conventional Atomic Layer Deposition process, and is presented here as contrast and context for the present invention. In conventional ALD, as shown in FIG. 2, in step [0035] 31 a first molecular precursor is pulsed in to a reactor chamber, and reacts with the surface to produce (theoretically) a monolayer of a desired material. Often in these processes the precursor is a metal-bearing gas, and the material deposited is the metal; Tantalum from TaCl5, for example.
  • In step [0036] 33 in the conventional process an inert gas is pulsed into the reactor chamber to sweep excess first precursor from the chamber.
  • In step [0037] 35 in the conventional system a second precursor, typically non-metallic, is pulsed into the reactor. The primary purpose of this second precursor is to condition the substrate surface back toward reactivity with the first precursor. In many cases the second precursor also provides material from the molecular gas to combine with metal at the surface, forming compounds such as an oxide or a nitride with the freshly-deposited metal.
  • At step [0038] 37 the reactor chamber is purged again to remove excess of the second precursor, and then step 31 is repeated. The cycle is repeated as many times as is necessary to establish a desired film.
  • FIG. 3 is a step diagram illustrating steps in a radical-assisted CVD process according to an embodiment of the present invention. In the unique process illustrated by FIG. 3 the first steps, steps [0039] 41 and 43, are the same as in the conventional process. A first precursor is pulsed in step 41 to react with the substrate surface forming a monolayer of deposit, and the chamber is purges in step 43. The next step is unique. In step 45 single or multiple radical species are pulsed to the substrate surface to optionally provide second material to the surface and to condition the surface toward reactivity with the first molecular precursor in a subsequent step. Then step 41 is repeated. There is no need for a second purge, and the cycle is repeated as often as necessary to accomplish the desired film.
  • Step [0040] 45 may be a single step involving a single radical species. For example, the first precursor may deposit a metal, such as in W from WF6, and the radical species in step 45 may be atomic hydrogen. The atomic hydrogen very quickly and effectively neutralizes any remaining F to HF, and terminates the surface with atomic hydrogen, providing reactive surface for the next pulse of WF6.
  • In many cases step [0041] 45 will be a compound step comprising substeps involving different radical species. A good example is a sequence of atomic hydrogen followed by atomic oxygen, followed by atomic hydrogen again. The first hydrogen step neutralizes Cl or other remaining ligand, the atomic oxygen provides an oxide of the freshly-deposited metal, and the second atomic hydrogen terminated the surface with (OH) in preparation for the next metal precursor step.
  • There are a broad variety of materials and combinations in step [0042] 45, and many are disclosed in more detail below, along with a more complete explanation of process chemistry.
  • In RAS-CVD, following the metal precursor reaction, highly reactive radical species are introduced to quickly react with products of the metal precursor reaction and to prepare the surface for the next metal precursor reaction. Radical species, as introduced above, are reactive atoms or molecular fragments that are chemically unstable and therefore are extremely reactive. In addition, radicals chemisorb to surfaces with virtually 100% efficiency. Radicals may be created in a number of ways, and plasma generation has been found to be an efficient and compatible means of preparation. [0043]
  • RAS-CVD processes use only a single molecular precursor, in many cases a metal precursor. Surface preparation as well as the deposition of nonmetallic elements are accomplished by atom-surface reactions. Following the metal precursor reaction, The —ML terminated surface is reacted with hydrogen atoms to convert the surface into —MH and eliminate HL by-product. Unlike molecule-surface reactions, atom-surface reactions do not depend on the number density of reactive sites. Most atoms (except for noble gases) stick very efficiently to surfaces in an irreversible process because atomic desorption is usually unfavorable. The atoms are highly mobile on non-reactive sites and very reactive at reactive sites. Consequently, atom-surface reactions have linear exposure dependence, as well as high rates. [0044]
  • The —MH surface can be reacted with A atoms to yield a —M—A— surface. In this case some of the H ligands can be eliminated as AH[0045] y. For example the —MH surface can be reacted with oxygen atoms to deposit oxide compound. Alternatively, —MH surface can be reacted again with MLx for atomic layer controlled deposition of M metal films. For the deposition of nitride compound films, A is atomic nitrogen. The surface after the A atomic reaction is terminated with A— and AH. At this point an additional atomic reaction with hydrogen converts the surface to the desired AH ligands that are reactive towards the metal precursor. Alternatively, the MH surface can be reacted with a mixture of A and H atoms to convert the surface into —AH terminated surface with one less step. All the above described reactions are radical-surface reactions that are fast and efficient and depend linearly on exposure. In addition, the final hydrogen reaction results in a complete restoration to the initial surface without any incorporation of impurities.
  • Another throughput benefit of RAS-CVD is that a single purge step after the metal precursor step is needed, rather than the two purge steps needed in the conventional process. Purge steps are expected by most researchers to be the most significant throughput-limiting step in ALD processes. Another advantage is that RAS-CVD promises longer system uptime and reduced maintenance. This is because atomic species can be efficiently quenched on aluminum walls of the deposition module. Downstream deposition on the chamber and pumping lines is therefore virtually eliminated. RAS-CVD eliminates the use of H[0046] 2O and NH3 that are commonly applied for oxides and nitrides deposition (respectively) in the prior art. These precursors are notorious to increase maintenance and downtime of vacuum systems.
  • According to the above a typical RAS-CVD cycle for a metal oxide film will comprise steps as follows: [0047]
  • 1. Metal precursor reaction with —OH (hydroxyl) terminated surface to attach —O—ML[0048] y and eliminate the hydrogen by HL desorption. The surface becomes covered with L ligands, i.e. in the case of TaCl5 the surface becomes covered with Cl atoms.
  • 2. Purge with inert gas to sweep away excess metal precursor. [0049]
  • 3. Atomic hydrogen step-eliminates the ligands L by HL desorption and terminates the surface with hydrogen. [0050]
  • 4. Atomic oxygen step-reacts with monolayer of metal to form oxide. Atomic hydrogen again to leave hydroxyl saturated surface for next metal precursor step. [0051]
  • At this point the quality of oxide films (i.e. insulation properties, dielectric strength, charge trapping) can be improved by running steps 4+5 for multiple times. For example: Al[0052] 2O3 RAS-CVD can be realized from trimethylaluminum Al(CH3)3, hydrogen and oxygen exposures. Al(CH3)3 reacting with —OH terminated surface will deposit —OAl(CH3)x concurrent with the desorption of methane (CH4). The —OAl(CH3)x (x=1,2) surface will be treated with H atoms to eliminate x number of methane molecules and terminate the surface with —OAlH. This surface after consecutive (or concurrent) reaction with O atoms and H atoms will be terminated —OAl—OH which is the restoration state. At this point, the RAS-CVD process can proceed by applying another Al(CH3)3 reaction. Alternatively, the —OAl—OH surface can be exposed to another cycles of O and H atoms. At temperature above 100° C. this process will exchange OH groups and Al—O—Al bridge sites and the resulted —OAl—OH surface will be more thermodynamically favorable than the beginning surface, because the process eliminates the more strained (Al—O—)n ring structures as well as titrating away defects and broken bonds). Since the atomic reactions are rather fast, these quality improvements are not expected to be a major throughput concern. In fact, ultimate quality may be achieved by applying the O, H cycles for several times. Following, a given number of O, H atomic reactions the sequence will continue with the next Al(CH3)3 reaction.
  • 6. Repeat Steps from 1. [0053]
  • For metal nitrides atomic nitrogen is substituted for oxygen. For pure metal depositions the oxygen/nitrogen step may be eliminated in favor of a single atomic hydrogen step, such as for tungsten films. The hydrogen saturated surface after the first atomic hydrogen step is reactive with WF[0054] 6 to produce the pure metal.
  • The generic nature of RAS-CVD is advantageous for multiple layer combination films of different oxides, different nitrides, oxides with nitrides, different metals and metals with compound films. [0055]
  • In another unique process, useful for barrier layers, the WN process may be combined with the pure W process to produce alternating W and WN layers in a variety of schemes to suppress polycrystallization and to reduce the resistivity of the barrier layer. Other properties, such as electromigration may be controlled by an ability to provide a graded layer of WN with reduced nitrogen content at the copper interface for such applications. [0056]
  • In embodiments of the invention a broad variety of process chemistries may be practiced, providing a broad variety of final films. In the area of pure metals, for example, the following provides a partial, but not limiting list: [0057]
  • 1. Tungsten from tungsten hexafluoride. [0058]
  • 2. Tantalum from tantalum pentachloride. [0059]
  • 3. Aluminum from either aluminum trichloride or trimethylaluminum. [0060]
  • 4. Titanium from titanium tetrachloride or titanium tetraiodide. [0061]
  • 5. Molybdenum from molybdenum hexafluoride. [0062]
  • 6. Zinc from zinc dichloride. [0063]
  • 7. Hafnium from hafnium tetrachloride. [0064]
  • 8. Niobium from niobium pentachloride. [0065]
  • 9. Copper from Cu[0066] 3Cl3.
  • In the area of oxides the following is a partial but not limiting list: [0067]
  • 1. Tantalum pentoxide from tantalum pentachloride. [0068]
  • 2. Aluminum oxide from trimethylaluminum or aluminum trichloride. [0069]
  • 3. Titanium oxide. from titanium tetrachloride or titanium tetraiodide. [0070]
  • 4. Niobium pentoxide from niobium pentachloride. [0071]
  • 5. Zirconium oxide from zirconium tetrachloride. [0072]
  • 6. Hafnium oxide from hafnium tetrachloride. [0073]
  • 7. Zinc oxide from zinc dichloride. [0074]
  • 8. Molybdenum oxide from molybdenum hexafluoride or molybdenum pentachloride. [0075]
  • 9. Manganese oxide from manganese dichloride. [0076]
  • 10. Tin oxide from tin tetrachloride. [0077]
  • 11. Indium oxide from indium trichloride or trimethylindium. [0078]
  • 12. Tungsten oxide from tungsten hexafluoride. [0079]
  • 13. Silicon dioxide from silicon tetrachloride. [0080]
  • In the area of nitrides, the following is a partial but not limiting list: [0081]
  • 1. Tungsten nitride from tungsten hexafluoride. [0082]
  • 2. Tantalum nitride from tantalum pentachloride. [0083]
  • 3. Aluminum nitride from aluminum trichloride or trimethylaluminum. [0084]
  • 4. Titanium nitride from titanium tetrachloride. [0085]
  • 5. Silicon nitride from silicon tetrachloride or dichlorosilane. [0086]
  • 6. Gallium nitride from trimethylgallium. [0087]
  • Hardware Requirements [0088]
  • Another advantage of RAS-CVD is that it is compatible in most cases with ALD process hardware. The significant difference is in production of atomic species and/or other radicals, and in the timing and sequence of gases to the process chamber. Production of the atomic species can be done in several ways, such as (1) in-situ plasma generation, (2) intra-showerhead plasma generation, and (3) external generation by a high-density remote plasma source or by other means such as UV dissociation or dissociation of metastable molecules. referring again to FIG. 1, these methods and apparatus are collectively represented by apparatus [0089] 25.
  • Of the options, in-situ generation is the simplest design, but poses several problems, such as turn on-turn off times that could be a throughput limitation. Intra-showerhead generation has been shown to have an advantage of separating the atomic specie generation from the ALD space. The preferable method at the time of this specification is remote generation by a high-density source, as this is the most versatile method. The radicals are generated in a remote source and delivered to the ALD volume, distributed by a showerhead over the wafer in process. [0090]
  • It will be apparent to the skilled artisan that there are a variety of options that may be exercised within the scope of this invention as variations of the embodiments described above.. some have already been described. For example, radicals of the needed species, such as hydrogen, oxygen, nitrogen, may be generated in several ways and delivered in the process steps. Further, ALD chambers, gas distribution, valving, timing and the like may vary in many particulars. Still further, many metals, oxides nitrides and the like may be produced, and process steps may be altered and interleaved to create graded and alternating films. [0091]
  • Apparatus and Concept for Minimizing Parasitic Chemical Vapor Deposition During Atomic Layer Deposition [0092]
  • In a further embodiment of the present invention an apparatus and method is provided for preventing contamination by CVD deposition during ALD processes. FIG. 4 is a generalized chemical precursor partial pressure vs. time curve [0093] 46 for a well behaved system using rapid pulsing of the chemical precursor species and purge steps. The partial pressure 47 of each active chemical precursor is qualitatively shown on the Y axis of the diagram against time on the X axis. The partial pressure of precursor “A” 49 and precursor “B” 50 are shown for convenience. Systems with more than two precursors would behave similarly with distinct partial pressure peaks for each chemical precursor.
  • Of particular note in FIG. 4 is that while the partial pressure of each precursor rises rapidly at the start of each pulse, there is a distinct “tail” at the end of each pulse. This “tail” represents an undesired condition where the precursor is not fully removed from the deposition system. This tail is a result of various real phenomena, such as, for example, the fact that gases molecules have a certain affinity for surfaces in conduits and chambers, and such surface-restrained molecules continue to evolve in a system after gas flow is shut off, a phenomenon known in the vacuum arts as outgasing. If the next precursor is introduced into the deposition chamber [0094] 59, FIG. 6 while the prior precursor is still present, an undesired CVD side reaction occurs and contaminates the desired film on the substrate 61 on FIG. 6. In addition to the contamination of the film, the undesired CVD reaction could nucleate in the gas phase leading to undesirable particle accumulation on the substrate 61 or in the deposition chamber 59.
  • FIG. 5 is an idealized chemical precursor partial pressure vs. time curve [0095] 51 for a well behaved system using rapid pulsing of the chemical precursor species, purge steps, and the innovative Pre-Reactor invention embodied in this patent application. The partial pressure 52 of each active chemical precursor is qualitatively shown on the Y axis of the diagram against time on the X axis. The partial pressure of precursor “A” 54 and precursor “B” 55 are shown for convenience. Systems with more than two precursors would behave similarly with distinct partial pressure peaks for each chemical precursor.
  • Of particular note in FIG. 5 is that the partial pressure of each precursor rises rapidly at the start of each pulse and falls rapidly at the end of each programmed flow pulse. The distinct chemical “tail” present in FIG. 4 is eliminated primarily as a result of an innovative Pre-Reactor described in this invention. The methods and apparatus used to remove the trace chemical precursor that causes this “tail” effect are described in enabling detail below. [0096]
  • FIG. 6 is a generalized diagram of a system [0097] 56 for practicing RAS-CVD according to an additional embodiment of the present invention. Although RAS-CVD is used as an example, the inventor intends it to be clear that the apparatus and methods of the present invention are not limited to RAS-CVD, but applicable in general to all sorts of ALD and many other sequential CVD processes.
  • In this exemplary system a deposition chamber [0098] 59 has a heatable hearth for supporting and heating a substrate 61 to be coated, and a gas distribution apparatus, such as a showerhead 60, for delivering gaseous species to the substrate surface to be coated. Substrates are introduced and removed (item 65) from chamber 59 via a valve 64 and substrate-handling apparatus not shown. Gases are supplied from a gas sourcing and pulsing apparatus 57, which includes metering and valving apparatus for sequentially providing gaseous materials. An optional treatment apparatus 58 is provided for producing gas radicals from gases supplied from apparatus 57. A Pre-Reactor 66 has been added to this system to provide improved control of unwanted CVD side reactions.
  • The pre-reactor may take various forms, and some of the possible variations are shown in FIG. 6, 7, [0099] 8 and 9, described in more detail below. All of the figures commonly utilize the gas sourcing and pulsing apparatus 57, the optional treatment apparatus for creating radicals 58, the gas distribution apparatus 60, the deposition chamber 59, a heating hearth 62 for heating substrate 61, a spent chemical effluent system 63, a substrate entry and removal 65 valve 64. These items are common in this exemplary system. In addition, some but not all implementations of the Pre-Reactor are shown. For example, in one embodiment, the gas distribution apparatus, such as a showerhead, may serve double duty, and be the pre-reactor chamber as well.
  • In FIG. 6, the Pre-Reactor [0100] 66 is shown as a physically separate chamber which is placed in the process gas pathway between the Optional Treatment Apparatus Producing Gas Radicals and the Gas Distribution Showerhead. The Pre-Reaction process may take place on any surface with sufficient activation energy supplied either by thermal heating, RF plasma, UV or by other means.
  • FIG. 7 is a generalized diagram of a system [0101] 67 for practicing RAS-CVD in a further embodiment of the present invention. In FIG. 7, two embodiments of the Pre-Reactor 68 are shown. The first is the incorporation of the Pre-Reactor 68 into the Gas Distribution Showerhead 60. In this case, the undesired CVD side reactions are caused to occur on a free-standing, thermally heated surface inside the Gas Distribution Showerhead 68. Such a thermally-heated surface may be provided in a wide variety of ways, and the form of the pre-reactor chamber can take a wide variety of forms as well, such as, for example, a long, coiled, heated conduit. The rapid depletion of the undesired chemical “tail” eliminates the possibility that the side reaction will occur on the substrate allowing a decrease in the time between each chemical reactant entering the system. In one preferred embodiment the necessary thermal input for the pre-reaction is provided by proximity of the showerhead apparatus to substrate 61, with heat transfer from the hearth and the substrate.
  • FIG. 8 is a generalized diagram of a further embodiment of the present invention providing system [0102] 69 for practicing RAS-CVD. In FIG. 8, two embodiments of the Pre-Reactor 70 are shown. The first is the incorporation of the Pre-Reactor 70 into the Gas Distribution Showerhead 60 which is conceptually similar to FIG. 7. In this case, the undesired CVD side reactions are caused to occur on the heated surface of the Gas Distribution Showerhead 68 itself, which is heated in this embodiment by hearth 62 and substrate 61 by virtue of near proximity of these elements to showerhead 60. Again, the rapid depletion of the undesired chemical “tail” eliminates the possibility that the side reaction will occur on the substrate allowing a decrease in the time between each chemical reactant entering the system.
  • FIG. 9 is a generalized diagram for a system [0103] 71 for practicing RAS-CVD in yet a further embodiment of the present invention. In FIG. 9, two embodiments of the Pre-Reactor 72 are shown. The first is the incorporation of the Pre-Reactor 72 into the Gas Distribution Showerhead 60 which is conceptually similar to FIG. 7. In this new embodiment, however, the undesired CVD side reactions are caused to occur within the combination Gas Distribution Showerhead 68 and Pre-Reactor 72 by activating the undesired CVD side reaction using an RF plasma generated within the showerhead. This process causes rapid depletion of the undesired chemical “tail” and eliminates the possibility that the side reaction will occur on the substrate allowing a decrease in the time between each chemical reactant entering the system
  • In addition to these variations it will be apparent to the skilled artisan that one may, by incorporating processes described herein, alternate process steps in a manner that alloys of two, three or more metals may be deposited, compounds may be deposited with two, three or more constituents, and such things as graded films and nano-laminates may be produced as well. These variations are simply variants using particular embodiments of the invention in alternating cycles, typically in-situ. There are many other variations within the spirit and scope of the invention, so the invention is limited only by the claims that follow. Further, in particular reference to the pre-reaction chamber aspects of the invention, it will be apparent to the skilled artisan that various deviations from the embodiments described will still fall within the spirit and scope of the present invention, and, in addition, many combinations of embodiments and variations may be made. For example, a plasma activation may readily be used in a pre-reaction chamber within the scope of the invention, wherein the chamber itself may assume any of a wide variety of forms. [0104]

Claims (2)

    What is claimed is:
  1. 1. A method for minimizing parasitic chemical vapor deposition during an atomic layer deposition process, comprising steps of:
    (a) imposing a pre-reaction chamber between gas sources and a substrate to be coated; and
    (b) heating a surface in the pre-reaction chamber to a temperature sufficient to cause contaminant elements to deposit by CVD reaction on the heated surface.
  2. 2. A pre-reaction chamber for an atomic layer deposition system, comprising;
    a passage for delivery of gases in alternating, incremental fashion from a gas source to a gas distribution apparatus; and
    a heated surface within the pre-reaction chamber for causing contaminant elements to deposit prior to the gases entering the gas distribution apparatus.
US10401646 1999-03-11 2003-03-27 Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition Abandoned US20030183171A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09267953 US6200893B1 (en) 1999-03-11 1999-03-11 Radical-assisted sequential CVD
US09466100 US6305314B1 (en) 1999-03-11 1999-12-17 Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US09727978 US6451119B2 (en) 1999-03-11 2000-11-29 Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US10186071 US6540838B2 (en) 2000-11-29 2002-06-28 Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US10401646 US20030183171A1 (en) 1999-03-11 2003-03-27 Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10401646 US20030183171A1 (en) 1999-03-11 2003-03-27 Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10186071 Continuation US6540838B2 (en) 1999-03-11 2002-06-28 Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition

Publications (1)

Publication Number Publication Date
US20030183171A1 true true US20030183171A1 (en) 2003-10-02

Family

ID=24924903

Family Applications (2)

Application Number Title Priority Date Filing Date
US10186071 Active US6540838B2 (en) 1999-03-11 2002-06-28 Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US10401646 Abandoned US20030183171A1 (en) 1999-03-11 2003-03-27 Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10186071 Active US6540838B2 (en) 1999-03-11 2002-06-28 Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition

Country Status (1)

Country Link
US (2) US6540838B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040016394A1 (en) * 2002-07-29 2004-01-29 Castovillo Paul J. Atomic layer deposition methods
US20040033310A1 (en) * 2002-08-15 2004-02-19 Demetrius Sarigiannis Deposition methods
US6753271B2 (en) 2002-08-15 2004-06-22 Micron Technology, Inc. Atomic layer deposition methods
US20040126954A1 (en) * 2002-08-27 2004-07-01 Eugene Marsh Deposition methods with time spaced and time abutting precursor pulses
US20050100669A1 (en) * 2003-11-12 2005-05-12 Veeco Instruments, Inc. Method and apparatus for fabricating a conformal thin film on a substrate
US7037574B2 (en) 2001-05-23 2006-05-02 Veeco Instruments, Inc. Atomic layer deposition for fabricating thin films
US20060196418A1 (en) * 2005-03-04 2006-09-07 Picosun Oy Apparatuses and methods for deposition of material on surfaces
US20060216548A1 (en) * 2005-03-22 2006-09-28 Ming Mao Nanolaminate thin films and method for forming the same using atomic layer deposition
US20060272577A1 (en) * 2005-06-03 2006-12-07 Ming Mao Method and apparatus for decreasing deposition time of a thin film
US20060292707A1 (en) * 2005-06-22 2006-12-28 Goodner Michael D Healing detrimental bonds in deposited materials
US20130133696A1 (en) * 2002-03-28 2013-05-30 Hitachi Kokusai Electric Inc. Substrate processing apparatus
US20140295083A1 (en) * 2013-03-29 2014-10-02 Tokyo Electron Limited Film forming apparatus, gas supply device and film forming method

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974766B1 (en) 1998-10-01 2005-12-13 Applied Materials, Inc. In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application
US6319766B1 (en) 2000-02-22 2001-11-20 Applied Materials, Inc. Method of tantalum nitride deposition by tantalum oxide densification
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US7964505B2 (en) 2005-01-19 2011-06-21 Applied Materials, Inc. Atomic layer deposition of tungsten materials
US7732327B2 (en) 2000-06-28 2010-06-08 Applied Materials, Inc. Vapor deposition of tungsten materials
US6551929B1 (en) 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US7101795B1 (en) 2000-06-28 2006-09-05 Applied Materials, Inc. Method and apparatus for depositing refractory metal layers employing sequential deposition techniques to form a nucleation layer
US7405158B2 (en) 2000-06-28 2008-07-29 Applied Materials, Inc. Methods for depositing tungsten layers employing atomic layer deposition techniques
DE10111938A1 (en) * 2001-03-13 2002-09-26 Merck Patent Gmbh Production of high temperature superconductor powders in a pulsation reactor
WO2002090614A1 (en) * 2001-03-20 2002-11-14 Mattson Technology, Inc. Method for depositing a coating having a relatively high dielectric constant onto a substrate
US6596643B2 (en) 2001-05-07 2003-07-22 Applied Materials, Inc. CVD TiSiN barrier for copper integration
US6849545B2 (en) * 2001-06-20 2005-02-01 Applied Materials, Inc. System and method to form a composite film stack utilizing sequential deposition techniques
US7211144B2 (en) 2001-07-13 2007-05-01 Applied Materials, Inc. Pulsed nucleation deposition of tungsten layers
US20040013803A1 (en) * 2002-07-16 2004-01-22 Applied Materials, Inc. Formation of titanium nitride films using a cyclical deposition process
US6936538B2 (en) 2001-07-16 2005-08-30 Applied Materials, Inc. Method and apparatus for depositing tungsten after surface treatment to improve film characteristics
WO2003029515A3 (en) 2001-07-16 2004-02-12 Applied Materials Inc Formation of composite tungsten films
US8110489B2 (en) 2001-07-25 2012-02-07 Applied Materials, Inc. Process for forming cobalt-containing materials
US20090004850A1 (en) 2001-07-25 2009-01-01 Seshadri Ganguli Process for forming cobalt and cobalt silicide materials in tungsten contact applications
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
US6718126B2 (en) 2001-09-14 2004-04-06 Applied Materials, Inc. Apparatus and method for vaporizing solid precursor for CVD or atomic layer deposition
WO2003031679B1 (en) * 2001-10-10 2004-05-13 Applied Materials Inc Method for depositing metal layers employing sequential deposition techniques
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
US6916398B2 (en) 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
US6773507B2 (en) 2001-12-06 2004-08-10 Applied Materials, Inc. Apparatus and method for fast-cycle atomic layer deposition
US7081271B2 (en) 2001-12-07 2006-07-25 Applied Materials, Inc. Cyclical deposition of refractory metal silicon nitride
US6809026B2 (en) 2001-12-21 2004-10-26 Applied Materials, Inc. Selective deposition of a barrier layer on a metal film
US6939801B2 (en) * 2001-12-21 2005-09-06 Applied Materials, Inc. Selective deposition of a barrier layer on a dielectric material
US6911391B2 (en) 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
US6998014B2 (en) 2002-01-26 2006-02-14 Applied Materials, Inc. Apparatus and method for plasma assisted deposition
US6827978B2 (en) 2002-02-11 2004-12-07 Applied Materials, Inc. Deposition of tungsten films
US6833161B2 (en) 2002-02-26 2004-12-21 Applied Materials, Inc. Cyclical deposition of tungsten nitride for metal oxide gate electrode
US6972267B2 (en) 2002-03-04 2005-12-06 Applied Materials, Inc. Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor
US6846516B2 (en) 2002-04-08 2005-01-25 Applied Materials, Inc. Multiple precursor cyclical deposition system
US6720027B2 (en) 2002-04-08 2004-04-13 Applied Materials, Inc. Cyclical deposition of a variable content titanium silicon nitride layer
US7279432B2 (en) 2002-04-16 2007-10-09 Applied Materials, Inc. System and method for forming an integrated barrier layer
US20040025787A1 (en) * 2002-04-19 2004-02-12 Selbrede Steven C. System for depositing a film onto a substrate using a low pressure gas precursor
US20040247787A1 (en) * 2002-04-19 2004-12-09 Mackie Neil M. Effluent pressure control for use in a processing system
US6861094B2 (en) * 2002-04-25 2005-03-01 Micron Technology, Inc. Methods for forming thin layers of materials on micro-device workpieces
US6838114B2 (en) * 2002-05-24 2005-01-04 Micron Technology, Inc. Methods for controlling gas pulsing in processes for depositing materials onto micro-device workpieces
US6858547B2 (en) 2002-06-14 2005-02-22 Applied Materials, Inc. System and method for forming a gate dielectric
US7067439B2 (en) * 2002-06-14 2006-06-27 Applied Materials, Inc. ALD metal oxide deposition process using direct oxidation
US20030232501A1 (en) 2002-06-14 2003-12-18 Kher Shreyas S. Surface pre-treatment for enhancement of nucleation of high dielectric constant materials
US7118783B2 (en) * 2002-06-26 2006-10-10 Micron Technology, Inc. Methods and apparatus for vapor processing of micro-device workpieces
US6821347B2 (en) * 2002-07-08 2004-11-23 Micron Technology, Inc. Apparatus and method for depositing materials onto microelectronic workpieces
US7186385B2 (en) 2002-07-17 2007-03-06 Applied Materials, Inc. Apparatus for providing gas to a processing chamber
KR100476370B1 (en) * 2002-07-19 2005-03-16 주식회사 하이닉스반도체 Batch type Atomic Layer Deposition and method for insitu-cleaning in the batch type atomic layer deposition
US6772072B2 (en) 2002-07-22 2004-08-03 Applied Materials, Inc. Method and apparatus for monitoring solid precursor delivery
US20050084610A1 (en) * 2002-08-13 2005-04-21 Selitser Simon I. Atmospheric pressure molecular layer CVD
US6821563B2 (en) 2002-10-02 2004-11-23 Applied Materials, Inc. Gas distribution system for cyclical layer deposition
US7262133B2 (en) * 2003-01-07 2007-08-28 Applied Materials, Inc. Enhancement of copper line reliability using thin ALD tan film to cap the copper line
US6753248B1 (en) 2003-01-27 2004-06-22 Applied Materials, Inc. Post metal barrier/adhesion film
US7282239B2 (en) * 2003-09-18 2007-10-16 Micron Technology, Inc. Systems and methods for depositing material onto microfeature workpieces in reaction chambers
US6867152B1 (en) 2003-09-26 2005-03-15 Novellus Systems, Inc. Properties of a silica thin film produced by a rapid vapor deposition (RVD) process
US20050067103A1 (en) 2003-09-26 2005-03-31 Applied Materials, Inc. Interferometer endpoint monitoring device
US7647886B2 (en) * 2003-10-15 2010-01-19 Micron Technology, Inc. Systems for depositing material onto workpieces in reaction chambers and methods for removing byproducts from reaction chambers
US7258892B2 (en) 2003-12-10 2007-08-21 Micron Technology, Inc. Methods and systems for controlling temperature during microfeature workpiece processing, e.g., CVD deposition
US7906393B2 (en) * 2004-01-28 2011-03-15 Micron Technology, Inc. Methods for forming small-scale capacitor structures
US8133554B2 (en) 2004-05-06 2012-03-13 Micron Technology, Inc. Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
US8323754B2 (en) 2004-05-21 2012-12-04 Applied Materials, Inc. Stabilization of high-k dielectric materials
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
US7699932B2 (en) 2004-06-02 2010-04-20 Micron Technology, Inc. Reactors, systems and methods for depositing thin films onto microfeature workpieces
US7202185B1 (en) 2004-06-22 2007-04-10 Novellus Systems, Inc. Silica thin films produced by rapid surface catalyzed vapor deposition (RVD) using a nucleation layer
US7129189B1 (en) 2004-06-22 2006-10-31 Novellus Systems, Inc. Aluminum phosphate incorporation in silica thin films produced by rapid surface catalyzed vapor deposition (RVD)
US7297608B1 (en) 2004-06-22 2007-11-20 Novellus Systems, Inc. Method for controlling properties of conformal silica nanolaminates formed by rapid vapor deposition
US7097878B1 (en) 2004-06-22 2006-08-29 Novellus Systems, Inc. Mixed alkoxy precursors and methods of their use for rapid vapor deposition of SiO2 films
US7241686B2 (en) 2004-07-20 2007-07-10 Applied Materials, Inc. Atomic layer deposition of tantalum-containing materials using the tantalum precursor TAIMATA
US20060073276A1 (en) * 2004-10-04 2006-04-06 Eric Antonissen Multi-zone atomic layer deposition apparatus and method
US7148155B1 (en) 2004-10-26 2006-12-12 Novellus Systems, Inc. Sequential deposition/anneal film densification method
US7790633B1 (en) 2004-10-26 2010-09-07 Novellus Systems, Inc. Sequential deposition/anneal film densification method
DE102004061094A1 (en) * 2004-12-18 2006-06-22 Aixtron Ag Deposition of single layers, on a flat or structured substrate, uses a limiter to stop the deposition automatically when the layer is closed
US7294583B1 (en) 2004-12-23 2007-11-13 Novellus Systems, Inc. Methods for the use of alkoxysilanol precursors for vapor deposition of SiO2 films
US7482247B1 (en) 2004-12-30 2009-01-27 Novellus Systems, Inc. Conformal nanolaminate dielectric deposition and etch bag gap fill process
US7271112B1 (en) 2004-12-30 2007-09-18 Novellus Systems, Inc. Methods for forming high density, conformal, silica nanolaminate films via pulsed deposition layer in structures of confined geometry
US7223707B1 (en) 2004-12-30 2007-05-29 Novellus Systems, Inc. Dynamic rapid vapor deposition process for conformal silica laminates
US7109129B1 (en) 2005-03-09 2006-09-19 Novellus Systems, Inc. Optimal operation of conformal silica deposition reactors
US7135418B1 (en) 2005-03-09 2006-11-14 Novellus Systems, Inc. Optimal operation of conformal silica deposition reactors
US20060237138A1 (en) * 2005-04-26 2006-10-26 Micron Technology, Inc. Apparatuses and methods for supporting microelectronic devices during plasma-based fabrication processes
US7407892B2 (en) * 2005-05-11 2008-08-05 Micron Technology, Inc. Deposition methods
US7402534B2 (en) 2005-08-26 2008-07-22 Applied Materials, Inc. Pretreatment processes within a batch ALD reactor
US20070087581A1 (en) * 2005-09-09 2007-04-19 Varian Semiconductor Equipment Associates, Inc. Technique for atomic layer deposition
KR101019293B1 (en) 2005-11-04 2011-03-07 어플라이드 머티어리얼스, 인코포레이티드 Apparatus and process for plasma-enhanced atomic layer deposition
US7589028B1 (en) 2005-11-15 2009-09-15 Novellus Systems, Inc. Hydroxyl bond removal and film densification method for oxide films using microwave post treatment
US7491653B1 (en) 2005-12-23 2009-02-17 Novellus Systems, Inc. Metal-free catalysts for pulsed deposition layer process for conformal silica laminates
JP2007211326A (en) * 2006-02-13 2007-08-23 Nec Electronics Corp Film deposition apparatus and film deposition method
US8176871B2 (en) * 2006-03-28 2012-05-15 Hitachi Kokusai Electric Inc. Substrate processing apparatus
US7737035B1 (en) 2006-03-31 2010-06-15 Novellus Systems, Inc. Dual seal deposition process chamber and process
US20070234956A1 (en) * 2006-04-05 2007-10-11 Dalton Jeremie J Method and apparatus for providing uniform gas delivery to a reactor
US7288463B1 (en) 2006-04-28 2007-10-30 Novellus Systems, Inc. Pulsed deposition layer gap fill with expansion material
US7798096B2 (en) 2006-05-05 2010-09-21 Applied Materials, Inc. Plasma, UV and ion/neutral assisted ALD or CVD in a batch tool
DE102006027932A1 (en) * 2006-06-14 2007-12-20 Aixtron Ag Method for the deposition of layers in a process chamber used in the production of electronic components comprises using a first starting material containing two beta-diketones and a diene coordinated with a ruthenium atom
US7625820B1 (en) 2006-06-21 2009-12-01 Novellus Systems, Inc. Method of selective coverage of high aspect ratio structures with a conformal film
US20080081114A1 (en) * 2006-10-03 2008-04-03 Novellus Systems, Inc. Apparatus and method for delivering uniform fluid flow in a chemical deposition system
US7521379B2 (en) 2006-10-09 2009-04-21 Applied Materials, Inc. Deposition and densification process for titanium nitride barrier layers
US8092695B2 (en) 2006-10-30 2012-01-10 Applied Materials, Inc. Endpoint detection for photomask etching
US7692222B2 (en) * 2006-11-07 2010-04-06 Raytheon Company Atomic layer deposition in the formation of gate structures for III-V semiconductor
US7993457B1 (en) 2007-01-23 2011-08-09 Novellus Systems, Inc. Deposition sub-chamber with variable flow
KR20100019414A (en) * 2007-03-06 2010-02-18 노스이스턴 유니버시티 Technique for atomic layer deposition
US20080314311A1 (en) * 2007-06-24 2008-12-25 Burrows Brian H Hvpe showerhead design
US7678298B2 (en) 2007-09-25 2010-03-16 Applied Materials, Inc. Tantalum carbide nitride materials by vapor deposition processes
US7824743B2 (en) 2007-09-28 2010-11-02 Applied Materials, Inc. Deposition processes for titanium nitride barrier and aluminum
US20090149008A1 (en) * 2007-10-05 2009-06-11 Applied Materials, Inc. Method for depositing group iii/v compounds
US7659158B2 (en) 2008-03-31 2010-02-09 Applied Materials, Inc. Atomic layer deposition processes for non-volatile memory devices
US20100062149A1 (en) 2008-09-08 2010-03-11 Applied Materials, Inc. Method for tuning a deposition rate during an atomic layer deposition process
US8491967B2 (en) 2008-09-08 2013-07-23 Applied Materials, Inc. In-situ chamber treatment and deposition process
US8146896B2 (en) 2008-10-31 2012-04-03 Applied Materials, Inc. Chemical precursor ampoule for vapor deposition processes
US8183132B2 (en) * 2009-04-10 2012-05-22 Applied Materials, Inc. Methods for fabricating group III nitride structures with a cluster tool
US8491720B2 (en) * 2009-04-10 2013-07-23 Applied Materials, Inc. HVPE precursor source hardware
WO2010124261A4 (en) * 2009-04-24 2011-03-24 Applied Materials, Inc. Substrate pretreatment for subsequent high temperature group iii depositions
US8110889B2 (en) * 2009-04-28 2012-02-07 Applied Materials, Inc. MOCVD single chamber split process for LED manufacturing
WO2010127156A3 (en) * 2009-04-29 2011-02-24 Applied Materials, Inc. Method of forming in-situ pre-gan deposition layer in hvpe
US20110256692A1 (en) 2010-04-14 2011-10-20 Applied Materials, Inc. Multiple precursor concentric delivery showerhead
US8778204B2 (en) 2010-10-29 2014-07-15 Applied Materials, Inc. Methods for reducing photoresist interference when monitoring a target layer in a plasma process
WO2012128789A1 (en) 2011-03-18 2012-09-27 Applied Materials, Inc. Multiple level showerhead design
US8961804B2 (en) 2011-10-25 2015-02-24 Applied Materials, Inc. Etch rate detection for photomask etching
US8808559B2 (en) 2011-11-22 2014-08-19 Applied Materials, Inc. Etch rate detection for reflective multi-material layers etching
US8900469B2 (en) 2011-12-19 2014-12-02 Applied Materials, Inc. Etch rate detection for anti-reflective coating layer and absorber layer etching
US9805939B2 (en) 2012-10-12 2017-10-31 Applied Materials, Inc. Dual endpoint detection for advanced phase shift and binary photomasks
US8778574B2 (en) 2012-11-30 2014-07-15 Applied Materials, Inc. Method for etching EUV material layers utilized to form a photomask
US9353439B2 (en) 2013-04-05 2016-05-31 Lam Research Corporation Cascade design showerhead for transient uniformity
US9922872B2 (en) 2015-05-13 2018-03-20 Applied Materials, Inc. Tungsten films by organometallic or silane pre-treatment of substrate
US10023959B2 (en) 2015-05-26 2018-07-17 Lam Research Corporation Anti-transient showerhead

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015503A (en) * 1990-02-07 1991-05-14 The University Of Delaware Apparatus for producing compound semiconductor thin films
US5536321A (en) * 1995-10-27 1996-07-16 Specialty Coating Systems, Inc. Parylene deposition apparatus including a post-pyrolysis filtering chamber and a deposition chamber inlet filter
US6099649A (en) * 1997-12-23 2000-08-08 Applied Materials, Inc. Chemical vapor deposition hot-trap for unreacted precursor conversion and effluent removal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916365A (en) * 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
US6086679A (en) * 1997-10-24 2000-07-11 Quester Technology, Inc. Deposition systems and processes for transport polymerization and chemical vapor deposition
US6200893B1 (en) 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6305314B1 (en) 1999-03-11 2001-10-23 Genvs, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015503A (en) * 1990-02-07 1991-05-14 The University Of Delaware Apparatus for producing compound semiconductor thin films
US5536321A (en) * 1995-10-27 1996-07-16 Specialty Coating Systems, Inc. Parylene deposition apparatus including a post-pyrolysis filtering chamber and a deposition chamber inlet filter
US6099649A (en) * 1997-12-23 2000-08-08 Applied Materials, Inc. Chemical vapor deposition hot-trap for unreacted precursor conversion and effluent removal

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7037574B2 (en) 2001-05-23 2006-05-02 Veeco Instruments, Inc. Atomic layer deposition for fabricating thin films
US20130133696A1 (en) * 2002-03-28 2013-05-30 Hitachi Kokusai Electric Inc. Substrate processing apparatus
US20050039674A1 (en) * 2002-07-29 2005-02-24 Castovillo Paul J. Atomic layer deposition method
US7150789B2 (en) 2002-07-29 2006-12-19 Micron Technology, Inc. Atomic layer deposition methods
US7128787B2 (en) 2002-07-29 2006-10-31 Micron Technology, Inc. Atomic layer deposition method
US20040016394A1 (en) * 2002-07-29 2004-01-29 Castovillo Paul J. Atomic layer deposition methods
US7498057B2 (en) 2002-08-15 2009-03-03 Micron Technology, Inc. Deposition methods
US7303991B2 (en) 2002-08-15 2007-12-04 Micron Technology, Inc. Atomic layer deposition methods
US20050147751A1 (en) * 2002-08-15 2005-07-07 Demetrius Sarigiannis Deposition methods
US6890596B2 (en) 2002-08-15 2005-05-10 Micron Technology, Inc. Deposition methods
US20040224527A1 (en) * 2002-08-15 2004-11-11 Micron Technology, Inc. Atomic layer deposition methods
US6753271B2 (en) 2002-08-15 2004-06-22 Micron Technology, Inc. Atomic layer deposition methods
US20080241386A1 (en) * 2002-08-15 2008-10-02 Micron Technology, Inc. Atomic Layer Deposition Methods
US20060205227A1 (en) * 2002-08-15 2006-09-14 Demetrius Sarigiannis Atomic layer deposition methods
US20040033310A1 (en) * 2002-08-15 2004-02-19 Demetrius Sarigiannis Deposition methods
US7378354B2 (en) 2002-08-15 2008-05-27 Micron Technology, Inc. Atomic layer deposition methods
US7368382B2 (en) 2002-08-15 2008-05-06 Micron Technology, Inc. Atomic layer deposition methods
US20040126954A1 (en) * 2002-08-27 2004-07-01 Eugene Marsh Deposition methods with time spaced and time abutting precursor pulses
US7271077B2 (en) 2002-08-27 2007-09-18 Micron Technology, Inc. Deposition methods with time spaced and time abutting precursor pulses
US7071118B2 (en) 2003-11-12 2006-07-04 Veeco Instruments, Inc. Method and apparatus for fabricating a conformal thin film on a substrate
US20050166843A1 (en) * 2003-11-12 2005-08-04 Veeco Instruments, Inc. Apparatus for fabricating a conformal thin film on a substrate
US20050100669A1 (en) * 2003-11-12 2005-05-12 Veeco Instruments, Inc. Method and apparatus for fabricating a conformal thin film on a substrate
US8211235B2 (en) 2005-03-04 2012-07-03 Picosun Oy Apparatuses and methods for deposition of material on surfaces
US20060196418A1 (en) * 2005-03-04 2006-09-07 Picosun Oy Apparatuses and methods for deposition of material on surfaces
US20060216548A1 (en) * 2005-03-22 2006-09-28 Ming Mao Nanolaminate thin films and method for forming the same using atomic layer deposition
US20060272577A1 (en) * 2005-06-03 2006-12-07 Ming Mao Method and apparatus for decreasing deposition time of a thin film
US20060292707A1 (en) * 2005-06-22 2006-12-28 Goodner Michael D Healing detrimental bonds in deposited materials
US7439179B2 (en) * 2005-06-22 2008-10-21 Intel Corporation Healing detrimental bonds in deposited materials
US20140295083A1 (en) * 2013-03-29 2014-10-02 Tokyo Electron Limited Film forming apparatus, gas supply device and film forming method
US9644266B2 (en) * 2013-03-29 2017-05-09 Tokyo Electron Limited Film forming apparatus, gas supply device and film forming method

Also Published As

Publication number Publication date Type
US20020162506A1 (en) 2002-11-07 application
US6540838B2 (en) 2003-04-01 grant

Similar Documents

Publication Publication Date Title
US7250083B2 (en) ALD method and apparatus
US7109129B1 (en) Optimal operation of conformal silica deposition reactors
US7041335B2 (en) Titanium tantalum nitride silicide layer
US6689220B1 (en) Plasma enhanced pulsed layer deposition
US6773507B2 (en) Apparatus and method for fast-cycle atomic layer deposition
US7393561B2 (en) Method and apparatus for layer by layer deposition of thin films
US20060208215A1 (en) Method for hafnium nitride deposition
US6905737B2 (en) Method of delivering activated species for rapid cyclical deposition
US20030215570A1 (en) Deposition of silicon nitride
US5916365A (en) Sequential chemical vapor deposition
US20060088985A1 (en) Low temperature silicon compound deposition
US20020106846A1 (en) Formation of a tantalum-nitride layer
US20040026374A1 (en) Assembly line processing method
US6638859B2 (en) Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
US6720259B2 (en) Passivation method for improved uniformity and repeatability for atomic layer deposition and chemical vapor deposition
US7589017B2 (en) Methods for growing low-resistivity tungsten film
US20040058293A1 (en) Assembly line processing system
US20150162214A1 (en) Methods Of Selective Layer Deposition
US20030235961A1 (en) Cyclical sequential deposition of multicomponent films
US7638170B2 (en) Low resistivity metal carbonitride thin film deposition by atomic layer deposition
US7098131B2 (en) Methods for forming atomic layers and thin films including tantalum nitride and devices including the same
US7655567B1 (en) Methods for improving uniformity and resistivity of thin tungsten films
US20040026371A1 (en) Two-compartment chamber for sequential processing method
US20050186731A1 (en) Atomic layer deposition method of forming an oxide comprising layer on a substrate
US20140273492A1 (en) Methods Of Etching Films Comprising Transition Metals

Legal Events

Date Code Title Description
AS Assignment

Owner name: AIXTRON, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:GENUS, INC.;REEL/FRAME:042524/0283

Effective date: 20060331