US3862397A - Cool wall radiantly heated reactor - Google Patents

Cool wall radiantly heated reactor Download PDF

Info

Publication number
US3862397A
US3862397A US39763173A US3862397A US 3862397 A US3862397 A US 3862397A US 39763173 A US39763173 A US 39763173A US 3862397 A US3862397 A US 3862397A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
lamps
reflector
segments
coolant
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Emmett R Anderson
Douglas S Schatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Technologies Inc
Original Assignee
Applied Materials Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL-GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0047Heating devices using lamps for industrial applications for semiconductor manufacture

Abstract

A cool wall radiantly heated chemical vapor deposition reactor includes a plurality of banks of elongated heat lamps surrounding the radiant energy transmissive wall of the reactor for heating the susceptor in the reactor on which the wafer substrates are supported. Each bank of lamps includes a segmented reflector assembly having the reflector segments spaced from each other to provide slots aligned with the lamp filaments for permitting a gaseous coolant to be introduced from a cooling structure into contact with the lamps and with the wall of the reactor and which precludes direct reflection of radiant heat back on the lamp filaments which would cause damage thereto and shorten lamp life. Furthermore, reflector segments are arranged to isolate the individual lamps in each bank from each other to further enhance lamp life by precluding direct filament-to-filament radiation transfer between adjacent lamps. The reflector segments are hollow and the cooling structure is designed to introduce the gaseous coolant directly into the hollow interior of the reflector segments from which the coolant thereafter circulates through the slots and over the lamps. Each reflector segment may also be provided with conduit means through with a liquid coolant is circulated to additionally cool the segments.

Description

[ 1 Jan. 21, 1975 Primary ExaminerA. Bartis Attorney, Agent, or FirmFlehr, Hohbach, Test, Albritton & Herbert I [57] ABSTRACT A cool wall radiantly heated chemical vapor deposition reactor includes a plurality of banks of elongated heat lamps surrounding the radiant energy transmissive wall of the reactor for heating the susceptor in the reactor on. which the wafer substrates are supported. Each bank of lamps includes a segmented reflector assembly having the reflector segments spaced from each other to provide slotsaligned with the lamp filaments for permitting a gaseous coolant to be introduced from a cooling structure into contact with the lamps and with the wall of the reactor and which precludes direct reflection of radiant heat back on the lamp filaments which would cause damage thereto and shorten lamp life. Furthermore, refle'ctor segments are arranged to isolate the individual lamps in each bank from each other to further enhance lamp life by precluding direct filament-to-filament radiation transfer between adjacent lamps. The reflector segments are hollow and the cooling structure is designed to introduce the gaseous coolant directly into the hollow interior of the. reflector segments from which the coolant 5 Claims, 9 Drawing Figures thereafter circulates through the slots and over the lamps. Each reflector segment may also be provided with conduit means through with a liquid coolant is circulated to additionally cool the segments.

Panama 7.5

. 219/343 UX 219/349 UX 219/349 UX 219/343 UX Elfii J 219/343 UX' 219/343 X United States Patent Anderson et a1.

[ COOL WALL RADIANTLY HEATED REACTOR Inventors: Emmett R. Anderson, Saratoga;

Douglas S. Schatz, Los Gatos, both of Canada Applied Materials Technology, Inc.,

Santa Clara, Calif.

Sept. 17, 1973 Assigneez' 1221 Filed:

[51] Int. Cl....... H05b 1/00, F27b 5/14, F2lv 29/00 [58] Field of Search 219/411, 343, 347-349,

[56] References Cited UNITED STATES PATENTS 3,114,322 12/1963 Boland.................L...... 3,240,915 3/1966 Carter et al;.

3,381,125 4/1968 Cooper 3,427,435 2/1969 Webb.. 3,472,721 10/1969 Abramson et a1 3,623,712 1l/19 71 McNeilly et al. 3,654,471 11/1969 Nilsson............. 3,761,677 9/1973 Mizutani et al..

27 {L Panama/7'5 Patented Jan. 21, 1975 3,862,397

2 Sheets-Sheet 2 COOL WALL RADIANTLY HEATED REACTOR This application is a continuation of application Ser. No. 237,698, filed Mar. 24, 1972 and now abandoned.

BACKGROUND OF THE INVENTION Field of the Invention This invention relates to the field of radiant energy assemblies. More particularly, the field of this invention involves radiant energy sources for transmitting heat energy against a surface to be heated thereby. This invention further relates to the field of high temperature radiant heat lamps, and reflectors therefor, such as high intensity lamps capable of producing and transmitting radiant heat energy at short wave lengths, such as approximately one micron. 7

Still morev particularly, this invention relates to the field of utilization of radiant heat energy in the heating of silicon or like wafer substrates used in the production of semiconductor devices while chemical vapor films are deposited on such substrates. This invention further relates to the field of means for cooling high temperature radiant heat sources and for prolonging the useful life of high temperature lamps utilized as radiant heat sources. I

Description of the Prior Art Radiant heat sources comprising one or more radiant heat lamps utilized to heat silicon wafer substrates or susceptors supporting such substrates in the production of semi-conductor devices have been knownheretofore. However, so far as-is known, the particular reflector assembly and-cooling structure embodied in the heat source of the present invention has not been known or utilized heretofore, The reflector assembly of the present invention has been designed to enhance lamp life and efficiency, by facilitating cooling of lamps used as a source of high temperature radiant heat, and by minimizing lamp damage by eliminating reflected radiation which heretofore has been directed back.

against the lamp by prior known reflector assemblies. By way of example of one desirable field of use of the present invention, in chemical vapor deposition systems, it is highly desirable to carry out the deposition reaction in a cold wall type reaction chamber. By maintaining the reaction chamber walls in the relatively unheated state, such walls receive little or no film deposition thereon during substrate coating. Cold wall systems are additionally desirable because they insure the deposition of high purity films on the substrates being coated. Impurities can be evolved from or permeate through heated reaction chamber walls. Thus, because such impurities would interfere with and adversely affect the purity of the substrate coating, cold wall reaction chambers preferably are employed.

Cold wall chemical vapor deposition processes have been developed which permit heating of the substrate positioned within a reaction chamber without simultaneously heating the reaction chamber walls. Such processes frequently involve the use of radio frequency (RF) induction heating of a graphite susceptor positioned within a reaction chamber, the walls of which are formed of non-conducting material, such as quartz. However, RF heating of graphite or like susceptors positioned within a quartz reaction chamber has inherent drawbacks which are well 'known in the art.

As a result, improved cold wall reactors have been devised within recent years to replace the prior known RF reactors used in conjunction with the vapor deposition of oxide, nitride, metal or other similar films on substrates. Such improved reactors and processes overcome the disadvantages of prior known RF induction heated systems by utilizing radiant heat sources which transmit heat energy from a radiant heat lamp positioned outside a transparent reaction chamber. The wave length of the radiated heat energy and of the material from which the reactor walls are formed are selected so that the radiant heat energy is transmitted through the walls of the reaction chamber with minimal absorption so that the walls remain essentially unheated.

The radiant heat source utilized preferably comprises one or more high intensity,-high temperature lamps which operate at a filament temperature in the range of 5 ,0OO to 6,000F., by way of example. Such lamps may be selected from the type which produce-radiant heat energy in the short wave length range of, for example, approximately one micron. Radiant heat energy at such short wave length passes through material found suitable for defining the walls of the reaction chamber, of which quartz is preferred. Quartz possesses excellent radiant energy transmission characteristics at the short wave length noted so that minimal radiation is absorbedby the walls, thus insuring the advantages of cool wall reaction systems as noted previously to preclude the deposition of chemical vapor films on the reactor walls during a chemical vapor deposition procedure.

Prior to the subject invention, however, the useful life of lamps utilized to emit radiant heat energy in a chemical vapor deposition reaction or other procedure was shortened because of difficulty in providing adequate coolant in conjunction with the lamp to overcome the high filament temperatures at which such lamps operate. Additionally, because such lamps normally are utilized in conjunction with a highly polished reflector structure to insure maximum heat transfer to the articles being heated, radiant energy emanating from the filaments of the lamps was directed back onto such filament, or onto thefilaments of adjacent lamps, which resulted in lamp damage and shortened lamp life.

The present invention relates to an improved radiant heat lamp reflector assembly and cooling structure, particularly as the same is utilizable in conjunction with a chemical vapor deposition reactor. Thus, the advantages of use of radiant heat energy generally recognized as favorable in conjunction with a cool wall reaction sured.

In applicants assignees McNeilly et al. US. Pat. No.

3,623,712, dated Nov. 30, l971,'and in applicants as-' signees pending Rosler application Ser. No. 208,732, filed Dec. 16, 1971, improved cool wall radiation heated systems are disclosed which were designed to replace the RF type and other previously known reaction systems utilized theretofore. In that regard, the subject invention is illustrated and described herein in conjunction with one of the reactor embodiments disclosed in said Rosler application but it should be understood that utility-of the present invention is not restricted to such an environment and that the same may be utilized in conjunction with the other reactor construction shown in the Rosler application as well as with the various reactor structures shown in said McNeilly et al. patent, as well as in other environments.

SUMMARY OF THE INVENTION This invention relates generally to an improved heat source. More particularly, this invention relates to an improved radiant energy heat source well suited for use in conjunction with a chemical vapor deposition apparatus, or other apparatus requiring a heat source in conjunction therewith. Still more particularly, this invention relates to an improved radiant lamp assembly, and associated cooling structure, well suited for use in conjunction with a cool wall chemical vapor deposition reactor, and to improved reflector means which permits lamp coolant to be effectively circulated relative to the lamp assembly and reaction chamber associated therewith, and which precludes the reflection back of radiant energy onto the filaments of the lamps or onto the filaments of adjacent lamps.

While this invention is disclosed herein in conjunction with a chemical vapor deposition reactor, it should be understood that its utility is not so limited and that the same is applicable in any apparatus or system requiring radiant energy transmission and the reflection and focusing of such energy onto an object to be heated. That is, while this invention has particular utility in conjunction with a chemical vapor deposition systern for coating substrates with various types of known films, including epitaxial, polycrystalline and amorphous films, its utility is not so limited. Similarly, while this invention, is disclosed herein in conjunction with a particular type-of chemical vapor deposition reactor, it should be understood that utility of this invention in conjunction with other types and constructions of reactors also is contemplated.

To prolong the life of each lamp utilized as a heat source in the manner noted, the reflector of this invention which is associated with such a lamp is provided with improved means which defines a slotted base structure through which a suitable coolant, such as air, maybe introduced along the length of the lamp. With tubular radiant heat lamps of the type commonly utilized for the noted purpose, such coolant introduction along the length of the lamp is particularly important. Heretofore, coolant, such as air, necessarily was introduced and passed longitudinally of the tubular lamps; such coolant circulation along the length of the lamp was less than fully effective.

Additionally, with prior known lamp reflector assemblies not possessing the slotted base structure of the present invention, radiant energy emanating from the filament of thelamp was reflected directly back onto the lamp, resulting in damage, due to overheating, to the transparent quartz envelope surrounding the lamp filament and to the seals at the lamp ends, with attendant shortened lamp life and lowered lamp efficiency.

With the subject invention, the slotted base structure of the reflector also provides an exit passage for radiant heat energy emanating from the filament so that damaging reflection of radiant energy back to the lamp is precluded.

In a modified embodiment, a suitable liquid, such as water, may be introduced into the reflector assembly to further assist in cooling the same.

From the foregoing, it should be understoodthat objects of this invention include the provision of an improved radiant heat lamp source; the provision of means for prolonging the effective life of a radiant heat BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a generally schematic vertical sectional'view through a chemical vapor deposition reactor showing the subject invention positioned to heat a susceptor positioned therein;

FIG. 2 is a horizontal sectional view through the reactor of FIG. 1 taken in the plane of line 22 of FIG. 1;

FIG. 3 is a partial vertical sectional view, on an enlarged scale, taken generally in the area defined by line 33 of FIG. 1;

FIGS. 4 and 5 are sectional views of prior art conventional radiant heat lamp and reflector assemblies;

FIGS. 6 and 7 are sectional views of a portion of a reflector assembly having the improved construction of the present invention;

FIG. 8 is aview corresponding generally to a portion of FIG. 3 showing additional cooling means provided in conjunction'with the. reflector assembly thereof;

FIG. 9 is an isometric illustration of a modified embodiment of the subject invention utilized in conjunction with a single lamp rather than a bank of lamps.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of radiant heat source reflectors and cooling structures are disclosed herein in conjunction with one exemplary embodiment of a chemical vapor deposition reactor of the type disclosed in the above identified Rosler application. However, full structural details of such reactor and its 'mode of operation are not described in detail herein. For a full understanding of the construction and operation of a radiant heated reactor of the type illustrated herein, reference is directed to the aforementioned Rosler et al.- application and to the aforementioned McNeilly et al. US. Pat. No. 3,623,712. The chemical vapor deposition procedure effected within the reaction chamber of the illustrated reactor is fully described in said McNeilly et al. patent.

Generally, it should be understood that the reactor with which the subject radiant heat source is illustrated is designed to produce various chemical reactions and- /or thermal pyrolysis reactions to deposit a variety of films on silicon wafers or like substrates. Such films include various types of epitaxial, polycrystalline or amorphous films, such as silicon, aluminum oxide, silicon nitride and silicon dioxide, as well as metal films such as molybdenum, titanium, zirconium, and tungsten, depositable in accordance with known chemical vapor deposition reactions in the presence of heat.

In that regard, the heat source illustrated desirably comprises one or more tungsten filament lamps, such as tungsten filament quartz-halogen high intensity lamps of which quartz-iodine and quartz bromide are exemplary. Such lamps are commercially available as described in said McNeilly et al. patent. Such lamps are capable of producing high filament temperatures in the range of 5,000 to 6,000F. The lamps chosen desirably are selected from the type which producesmaximum radiant heat energy in the short wave length, preferably approximately one micron. Radiant heat energy in such short wave length passes through material found suitable for defining the walls of a chemical vapor deposition reaction chamber, of which quartz is preferred.

Reactors of the type described briefly herein have been effectively used heretofore for producing films of the type identified with film thickness uniformity of plus or minus 5 percent from substrate to substrate within a given run. Highly effective results are insured because operating temperatures can be controlled closely and uniformly with the radiant heat source described. Such operating temperature uniformity can now be even more closely controlled, and heat source life extended, by utilizing a reflector assembly and cooling structure of the present invention.

Referring first to the showing of FIGS. 1 and 2 in which an exemplary barrel type chemical vapor deposition reactor system is shown, it should be understood that thereactor structure is intended to be enclosed within a surrounding cabinet (not shown) in and on which the necessary gaseous reactant flow controls, electrical power sources and other attendant mechanisms are to be housed and mounted. For purposes of understanding the subject invention, only those portions of the reactor necessary to illustrate the environment in which the improved radiant lamp and reflector assembly is utilized have been illustrated. It should be understood that those portions of the reactor illustrated are intended-tobe supported within the aforementioned cabinet in any suitable fashion and that suitable power supply sources are provided for energizing the lamps shown. r

The reactor illustrated in FIG. 1, generally designated l, is defined by an enclosure, generally designated 2, within which the subject heat source, generally designated 3, is positioned. The enclosure 2 is defined 'by'a pair of opposed upper and lower plates, 4 and 6,

the upper one of which is apertured for the purpose to become apparent.

Heat source 3, as will be described in greater detail hereinafter, is defined by a plurality of banks of high intensity lamps capable of producing and transmitting radiant heat energy at the short wave length noted previously. As seen from FIG. 2, heat source 3 is defined by a plurality of four banks of radiant lamps designated 7, 8, 9 and 11, respectively. Such banks of lamps are positioned at right angles to each other to surround the reaction chamber of the reactor, which in the embodiment shown in FIG. 1, is defined by a quartz bell jar 12 which is transparent to heat energy emanating from the heat source at the wave length noted.

The bell jar surrounds the susceptor structure 14 of the reactor which corresponds in construction to that shown in the aforementioned Rosler application. At its lower end, the bell jar is provided with a circular pee ripheral flange 16 which is supported upon the lower plate 6 of the enclosure 2.

Susceptor 14"includes a vertically extending shaft 17 which extends upwardly through a boss 18 provided in lower plate 6 and through a bearing 19 positioned in the boss as seen in FIG. 1. Within the reaction chamher, shaft 17 is provided with an enlarged retaining ring 21 which supports the susceptor for rotation withinthe reaction chamber. In that regard, the lower portion 22 of the shaft is operatively connectable with suitable means for rotating the same (not shown) so that the entire susceptor is rotatable within the reaction chamber in the presence of radiant heat energy emanating from the banks of radiant heat lamps surrounding the chamber.

The susceptor further comprises a plurality of graphite or like susceptor slabs, designated 23, each of which carries a plurality of wafer substrates 8 to be chemically vapor deposition coated in the known manner. In that regard, each of such slabs is separable from the supporting framework of the susceptor when the bell jar is removed from around the susceptor by raising the same in the direction of the arrows shown at the top of FIG.

Suitable chemical vaporreactants are introducible into the reaction chamber through a conduit 26 for contacting the substrates to be coated in the presence of heat emanating from the radiant heat source. The spent gaseous reactants are withdrawable from the reaction chamber through a conduit 27 after the reactants have been maintained in contact with the substrates for a suitable period of time to effect the desired revolutions per minute has been found effective to insure uniform heating of the susceptor slabs 23 and substrates carried thereby.

It will be noted from FIG; 2 that each of the lamp banks 7, 8, 9 and 11 is supported by lower plate 6 and is enclosed within a vertical framework, generally designated 31, which extends between the upper and lower plates 4 and 6 of the enclosure 2. The lamp banks, as seen in FIG. 1, are generally coextensive with the susceptor to insure effective heating thereof.

In that regard, each bank of lamps comprises a plurality of vertically spaced radiant heat lamps 32 of the aforementioned type; five such lamps are illustrated in each bank in the reactor embodiment shown. It should be noted further from FIG. 2 that each of the lamps 32 is tubular in construction and elongated in configuration to extend substantially the full width of one side of the reactor enclosure. Each such lamp has a transparent envelope surroundingan elongated filament F extending longitudinally thereof which produces the infrared radiant heat energy emanating therefrom.

The combined four lamp banks, as seen in FIG. 2,

completely surround the reaction chamber to insure effective heating of the susceptor 14 positioned therein as noted. It will be notedthat each lamp envelope at each of its opposite ends is sealed around a metal electrical contact which in turn is received in and clamped by a metal contact clamp, each designated 33. Such contact clamps are operatively connected with a suitable electrical source (not shown) in known fashion. Thus, to replace a lamp it is merely necessary to slip the same from its associated pair of electrical contact clamps and substitute a new lamp therefor, as may be required.

Heretofore the life of such lamps has been unnecessarily shortenedbecause of the inability to effectively cool the same, and furthermore because of the contact of radiant energy with the lamp which is reflected from the lamp itself or emanates from an adjacent lamp in a bank of lamps. The present invention obviates the cooling problem noted, as well as the radiant energy problem noted by including in the lamp assembly an improved reflector assembly and cooling structure.

Before describing the preferred embodiment of the improved reflector assembly and cooling structure of this invention, reference is directed to FIGS. 4 and 5 i which illustrate the problems encountered in the prior art constructions. FIG. 4 shows a standard highly polished parabolic metal reflector of the type commonly used and readily available on the market in conjunction with lamps of the type noted. Such reflector, designated 36, is formed from any suitable reflective temperature-resistant material. A lamp 32 is positioned to extend generally longitudinally through the focal point of the reflector so that the parabolic configuration of the reflector base will direct radiant energy em anating from the filament F of the lamp back towards the body to be heated. In that regard, it will be noted by arrow 37-in FIG. 4 that a portion of the radiant energy emanating from the filament F of the lamp will strike the base of the parabolic reflector surface and will be directed thereby back onto the filament. Such reflective energy traveling back to the lampv filament cooling such radiant heat lamps, namely the utilization therewith of a coolant barrier, designated 39, which extends longitudinally of the lamp. Such a coolant barrier comprises a transparent sheet, such as a sheet of quartz, which extends longitudinally of the reflector 36 and the lamp 32, The purpose of such barrier sheet is to retain cooling air in contact with the lamp during operation thereof. Such cooling air is introduced longitudinallyof the lamp at one end of the reflector and exits from the other end thereof. However, such longitudinal coolant flow is not fully effective and does not produce uniform lamp cooling. Additionally, the requirement for a quartz or like air barrier complicates the construction of the-lamp assembly unnecessarily.

In FIG. 5 a further prior art arrangement is illustrated, which possesses the inherent disadvantages noted previously, in conjunction with a bank of lamps. As illustrated by the arrows 37 in such figure, the problem of reflected energy from the base of the reflector 36 onto the filaments of the respective lamps 32 is encountered. Additionally, as illustrated by arrows 41, the embodiment of FIG. 5 has the furtherdisadvantage in that radiant heat energy may pass directly from the filament of one lamp onto another which further shortens the lamp filament and envelope effectiveness and life as above noted. The requirement for a quartz or like-for barrier 39' with its inherent disadvantages and ineffective cooling similarly is encounteredin the prior art bank of lamps shown in FIG. 5.

In the schematic showings of FIGS. 6 and 7, the improved features of the present invention are illustrated. Such features comprise a simple yet highly effective modification of the base of the reflector structure utilized in conjunction with a radiant heat lamp so that more effective coolant circulation around the lamps and reaction chamber 12 may be effected and so that reflected radiant energy back onto the filament of the lamp is precluded. The schematic showings of FIGS. 6 and 7 should be taken in conjunction with the detailed showing of the reflector assembly of this invention, generally designated 46 in FIG. 3.

In the embodiment of FIG. 3, the reflector assembly 46 comprises a reflector structure defined by a series of adjacent reflector elements designated 47 adjacent which the respective lamps 32 are positioned. The reflector assembly illustrated in FIGS. 1 through 3 is defined by a plurality of said reflector segments 47 mounted closely adjacent each other but in vertically spaced orientation relative to adjacent segments. Thus, two adjacent reflector segments 47 cooperate as seen in FIG. 3 to define a single parabolic reflector surface, designated 48, adjacent which the respective lamps 32 are positioned.

In that regard, each reflector segment 47 is formed with a generally triangular tip portion comprising a peak lying between a pair of highly polished concave reflecting surfaces, the contour of which is designed to define the' parabolic reflecting surface 48 mentioned previously when such reflector segment is positioned adjacent a similarly contoured reflector segment. However, because of the vertical spacing of adjacent reflector segments, the base of each parabolic reflector surface is provided with a discontinuous or open structure which extends the full length of the reflector. Each such discontinuous base includes a longitudinal opening or slot 49 extending therealong as seen in FIG. 3 and illustrated generally schematically in FIGS. 6 and 7.

As noted in those latter figures, the purpose of each slot 49 is two-fold, namely to permit the introduction of coolant through the reflectorassembly to pass over and around a lamp to cool the same so that the temperature thereof may be effectively controlled, and, secondly, to permit the selective escape of radiant energy emanating from the filament F of the lamp in the manner seen in FIG. 7 so that such energy is not reflected directly back onto the lamp in the manner characteristic of prior known reflector assemblies so that envelope, end seal and filament damage are obviated. Thus, efficiency and lamp life are enhanced. Also, as noted from FIGS. 1. and 2, after the coolant passes over the lamps 32, it contacts the wall of the reaction chamber 12, and passes thereover prior to exiting through the apertured top of the reactor. Thus, cool wall deposition reactions as discussed hereinabove are further enhanced.

Each reflector segment 47 is mounted in its operative position by securing opposite ends 51 and 52 thereof in any suitable fashion (by bolting or bonding) to mounting blocks 53 and 54 which extend vertically of the framework 31 within which the lamp and reflector assemblies are positioned. The mounting blocks 53 and 54 may be of any suitable insulating material to preelude unwanted transmission of heat from the reflector assembly to the framework.

- Each reflector segment 47 is formed from any known reflective material used in the art heretofore. The various parabolic respective reflecting surfaces 48 preferably are gold plated and are highly polished for most effective radiant heat energy transmission. The actual material from which the reflector segments are formed may be chosen from a list of ceramics or metals which are known to be capable of withstanding the substantial I heat to which thesegments are subjected.

. reflector segments is provided therein to admit a coolant fluid into the interior of the segments to maintain the temperature thereof at a workable level during operation of the lamp bank assembly. In that regard, provided in conjunction with the reflector assembly is a coolant manifold, generally designated 61, defined by a main conduit 62 which is positioned in operative communication with a source of coolant fluid (not shown), such as a supply of cool air under pressure.

' Branching from the main conduit 62 are a series of vertically spaced branch conduits 63, each of which is positioned to extend through openings provided in the side walls 64 of the framework 31 surrounding the lamp assembly, each such side wall forming a baffle plate positioned behind the respective reflector assemblies.

' Thus, cooling fluid such as air introduced through the respective conduits 63 passes into the opening behind the reflector assembly and such cooling fluid enters the respective hollow interiors of the reflector segments 47, circulates therein, and passes out therefrom to subsequently pass between the respective segments through the slots 49 to pass over the lamps 32. As a result, the temperature of the reflector segments and of the lamps maybe maintained below the critical level. Additionally, such cooling fluid also passes over the wall of the reaction chamber 12 to enhance the cool wall deposition reaction capability carried out in that chamber as discussed previously herein.

It will be noted that the branch conduits 63 are positioned generally in line with the slots 57 provided in the respective reflector segments to insure direct introduction of coolant into the hollow interiors of the segments for most effective cooling thereof. With the arrangement illustrated, a cooling fluid may be introduced into contact with the reflector assembly in a manner unknown heretofore to cool the reflector segments as well as to pass therefrom into contact with the high temperature lamps 32 to maintain the temperature of such lamps at a workable level also.

FIG. 8 shows a modified arrangement for the cooling structure of the reflector assembly shown in FIG. 3 which includes additional means for introducing coolant into contact with the respective segments 47. In

that regard, each such segment is provided with a fluid conduit, such as a length of copper tubing, designated 66, positioned in the semi-spherical extension 58 of the hollowed out interior of each reflector segment. Each such conduit extends longitudinally for the full length of its associated reflector segment and such conduit is maintained in position within the segment by means of a threaded wedge bolt 67 which passes through a threaded plate member 68 positioned within the hollow interior of each segment 47. The wedge bolt 67 urges a conduit 66 against the bottom of extension 58 and holds the same in operative position within the respective reflector segments.

The conduits 66 may be positioned in the segments during any stage of production thereof. It should be understood that the respective conduits in turn are operatively connected with a fluid manifold (not shown) at each of the opposite ends of the respective reflector assemblies. The manifold at one endof the assembly introduces cooling fluid, such as water, through the respective conduits 66 and the manifold at the other end removes the fluid from the respective segments after the fluid has passed longitudinally the length of the rerespective reflector segments to further effectively cool the same.

It should be understood from the foregoing descrip-' tion that with the subject arrangement a reflector assembly may be fabricated to any desired size, depending upon the nature of the work piece or susceptor to be heated, merely by adding or subtracting reflector units and lamps from the assembly. In that regard, suitable fasteners, such as bolts, or other means such as bonding adhesive, may be utilized to position the re flector segments in place in the manner seen in FIG. 2.

It should also be noted from FIGS. 3 and 8 that the peaked center portions of adjacent reflector segments 47 provide shields which prevent direct radiation from passing between adjacent lamps of the lamp bank, thereby prolonging lamp life in a fashion not possible with the prior art arrangement of FIG. 5.

Reference is now directed to FIG. 9 for an illustration of a modified arrangement of the subject reflector structure. In the FIG. 9 embodiment, the lamp 32 is held in place in opposed clip members 33 in the manner described previously, such clip members being secured to suitable mounting plates corresponding to the mounting plates 53 and 54 described previously. Such mounting plates 53 and 54 also provide means for mounting segments of a reflector in the manner shown. In that regard, the single lamp reflector illustrated in FIG. 9 comprises a pair of spaced opposed reflector segments 71 and 72 which define a slot 73 for the passage of coolant therebetween in the manner described previously. It will be noted that each of the segments 71 and 72 forms essentially one-half of a segment of the type described previously. Additionally, each such segment is generally solid, that is, it does not include recess portions 56, 57 and 58 described previously with respect to segments 47. However, the respective segments 71 and 72 each includes a portion of a curved reflective surface of the type noted previously with the portions of the two segments cooperating to define a parabolic reflecting surface of the type described previa gaseous ously. Such parabolic surface is continuous except for the slotted opening 73 passing therethrough to permit coolant to be circulated around the lamp 32 as previously noted.

With the arrangement shown in FIG. 9, a single lamp heating unit may be employed, or a plurality of reflector units of the type shown in FIG. 9 may be positioned adjacent each other to form a composite reflector assembly useable with a bank of lamps in an arrangement similar to that shown in FIGS. 1 through 3.

It should be understood that the slots 49 in the reflector assembly of FIG. 3 and'the slot 73 in the modified arrangement of FIG. 9 may vary in width to meet particular needs. However, each such slot should have a width which is at least equal to the thickness of the filament F of the lamp with which the reflector is to be used so that radiant energy emanating from the filament and directed towards the base of an associated parabolic reflecting surface will pass through the slot and none of such energy will be reflected directly back to the lamp filament and its surrounding quartz envelope.

While the subject invention has been illustrated in conjunction with an upright reactor utilizing a generally barrel shaped susceptor of the type shown in the aforementioned Rosler et al. application, it should be understood that reflector assemblies of this invention may be utilized with horizontal reactors of the type shown in the aforementioned McNeilly et al. patent. Similarly, as previously noted, the improved reflector assembly and cooling structure illustrated herein may be utilized in conjunction with the heating or other radiant energy treatment of various other structures in addition to susceptors or substrates used in chemical vapor deposition reactors as illustrated and described herein. Furthermore, while this invention has been illustrated herein in conjunction with an elongated tubular lamp, it should be understood that the principles disclosed herein are also applicable for use in effectively cooling other high temperature lamps having configurations and sizes different from those of the lamp shown.

Having thus made a full disclosure of this invention, reference is directed to the appended claims for the scope of protection to be afforded thereto.

We claim:

1. A cool wall radiantly heated chemical vapor depowall thereof; a reflector assembly; for each bank comprising a plurality of adjacently disposed reflector segments; and cooling structure in conjunction with said reaction chamber and each of said lamp banks, said lamps of each bank being spaced from each other and from the wall of said reaction chamber with portions of adjacent-segments of each reflector assembly being interposed between adjacent lamps to prevent direct transmission of radiant energy between the filaments of such adjacent lamps; each reflector assembly having the plurality of said reflector segments spaced from each other so that elongated generally slot shaped openings are provided between adjacent reflector segments, each of said lampsbeing positioned so that its elongated filament lies generally in line with one of said elongated openings, said openings being at least as wide as the width of said filaments and at least as long as the lenght of said filaments aligned therewith so that radiant energy passing in one direction from each said filament may exit length an adjacent opening so that reflection of said energy back toward said lamp filament is precluded; said cooling structure comprising dual purpose conduit means associated with each reflector assembly for introducing a coolant through said slot shaped openings of each reflector assembly, such coolant upon passing through such openings passing over each of said lamps in said bank positioned in line therewith to effect cooling of such lamps, and further passing over the wall of said reaction chamber to assist in maintaining such chamber wall cool during treatment of substrates in said reactor.

2. The combination of claim 1 in which at least some of said reflector segments are hollow and have a coolant entrance so that coolant from said cooling structure may enter said segments to cool the same internally.

3. The combination of claim 2 in which said conduit means comprises an air manifold defined by a plurality of conduit sections, each of said conduit sections being aligned with the coolant entrance extending into a hollow reflector segment, whereby coolant may be introduced directly intosaid reflector segments and thereafter may circulate from such segments into and through said slot shaped openings over said lamps.

4. The combination of claim 1 in which said cooling structure further includes elongated conduits positioned within at least some of said reflector segments, said conduits being operatively connected with means for introducing a coolant into said conduits for circulation therethrough and through said segments.

5. The combination of claim 1 in which said conduit means comprises an air manifold defined by a plurality of conduit sections arranged to direct air over and between said segments of each reflector assembly.

Claims (5)

1. A cool wall radiantly heated chemical vapor deposition reactor comprising in combination a plurality of banks of elongated radiant energy heat lamps for heating substrates to be treated in said reactor, each of said lamps including an elongated filament therein; a radiant energy transmissive cool wall reaction chamber in which said substrates are to be treated, said banks of lamps being oriented to generally surround said reaction chamber to transmit radiant energy through the wall thereof; a reflector assembly; for each bank comprising a plurality of adjacently disposed reflector segments; and cooling structure in conjunction with said reaction chamber and each of said lamp banks, said lamps of each bank being spaced from each other and from the wall of said reaction chamber with portions of adjacent segments of each reflector assembly being interposed between adjacent lamps to prevent direct transmission of radiant energy between the filaments of such adjacent lamps; each reflector assembly having the pluraLity of said reflector segments spaced from each other so that elongated generally slot shaped openings are provided between adjacent reflector segments, each of said lamps being positioned so that its elongated filament lies generally in line with one of said elongated openings, said openings being at least as wide as the width of said filaments and at least as long as the lenght of said filaments aligned therewith so that radiant energy passing in one direction from each said filament may exit length an adjacent opening so that reflection of said energy back toward said lamp filament is precluded; said cooling structure comprising dual purpose conduit means associated with each reflector assembly for introducing a coolant through said slot shaped openings of each reflector assembly, such coolant upon passing through such openings passing over each of said lamps in said bank positioned in line therewith to effect cooling of such lamps, and further passing over the wall of said reaction chamber to assist in maintaining such chamber wall cool during treatment of substrates in said reactor.
2. The combination of claim 1 in which at least some of said reflector segments are hollow and have a coolant entrance so that coolant from said cooling structure may enter said segments to cool the same internally.
3. The combination of claim 2 in which said conduit means comprises an air manifold defined by a plurality of conduit sections, each of said conduit sections being aligned with the coolant entrance extending into a hollow reflector segment, whereby coolant may be introduced directly into said reflector segments and thereafter may circulate from such segments into and through said slot shaped openings over said lamps.
4. The combination of claim 1 in which said cooling structure further includes elongated conduits positioned within at least some of said reflector segments, said conduits being operatively connected with means for introducing a coolant into said conduits for circulation therethrough and through said segments.
5. The combination of claim 1 in which said conduit means comprises an air manifold defined by a plurality of conduit sections arranged to direct air over and between said segments of each reflector assembly.
US3862397A 1972-03-24 1973-09-17 Cool wall radiantly heated reactor Expired - Lifetime US3862397A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US23769872 true 1972-03-24 1972-03-24
US3862397A US3862397A (en) 1972-03-24 1973-09-17 Cool wall radiantly heated reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3862397A US3862397A (en) 1972-03-24 1973-09-17 Cool wall radiantly heated reactor

Publications (1)

Publication Number Publication Date
US3862397A true US3862397A (en) 1975-01-21

Family

ID=26930935

Family Applications (1)

Application Number Title Priority Date Filing Date
US3862397A Expired - Lifetime US3862397A (en) 1972-03-24 1973-09-17 Cool wall radiantly heated reactor

Country Status (1)

Country Link
US (1) US3862397A (en)

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964430A (en) * 1974-11-14 1976-06-22 Unicorp Incorporated Semi-conductor manufacturing reactor instrument with improved reactor tube cooling
US4030964A (en) * 1976-04-29 1977-06-21 The United States Of America As Represented By The United States Energy Research And Development Administration Temperature cycling vapor deposition HgI2 crystal growth
US4048916A (en) * 1975-09-26 1977-09-20 Sun Chemical Corporation Curing section for continuous motion decorator
US4079104A (en) * 1976-04-16 1978-03-14 Owens-Illinois, Inc. Method for heating plastic articles
US4101759A (en) * 1976-10-26 1978-07-18 General Electric Company Semiconductor body heater
US4115163A (en) * 1976-01-08 1978-09-19 Yulia Ivanovna Gorina Method of growing epitaxial semiconductor films utilizing radiant heating
US4141060A (en) * 1975-06-18 1979-02-20 Ppg Industries, Inc. Ultraviolet light processor having movable reflectors
US4168522A (en) * 1976-07-12 1979-09-18 Oce-Van Der Grinten N.V. Light emission control for gas-discharge lamp
US4208573A (en) * 1976-12-11 1980-06-17 Vita Zahnfabrik H. Rauter Kg Kiln utilizing infrared radiation in the range of 0.7 to 1.5 μm to heat dental ceramic material
US4275282A (en) * 1980-03-24 1981-06-23 Rca Corporation Centering support for a rotatable wafer support susceptor
US4306515A (en) * 1976-06-08 1981-12-22 Balzers Patent- Und Beteilingungs-Aktiengesellschaft Vacuum-deposition apparatus
US4408658A (en) * 1981-06-30 1983-10-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus and method for heating a material in a transparent ampoule
US4419332A (en) * 1979-10-29 1983-12-06 Licentia Patent-Verwaltungs-G.M.B.H. Epitaxial reactor
EP0119654A1 (en) * 1983-03-18 1984-09-26 Philips Electronics Uk Limited A furnace suitable for heat-treating semiconductor bodies
US4496828A (en) * 1983-07-08 1985-01-29 Ultra Carbon Corporation Susceptor assembly
US4511788A (en) * 1983-02-09 1985-04-16 Ushio Denki Kabushiki Kaisha Light-radiant heating furnace
US4550684A (en) * 1983-08-11 1985-11-05 Genus, Inc. Cooled optical window for semiconductor wafer heating
EP0161540A1 (en) * 1984-05-04 1985-11-21 Th. Goldschmidt AG Device for hardening flat materials from compounds, and compositions hardenable by U.V. radiation
EP0162111A1 (en) * 1983-11-23 1985-11-27 Gemini Research, Inc. Method and apparatus for chemical vapor deposition
US4565157A (en) * 1983-03-29 1986-01-21 Genus, Inc. Method and apparatus for deposition of tungsten silicides
US4592933A (en) * 1984-06-29 1986-06-03 International Business Machines Corporation High efficiency homogeneous chemical vapor deposition
US4620884A (en) * 1979-07-24 1986-11-04 Samuel Strapping Systems Ltd. Heat treat process and furnace
US4680447A (en) * 1983-08-11 1987-07-14 Genus, Inc. Cooled optical window for semiconductor wafer heating
US4709655A (en) * 1985-12-03 1987-12-01 Varian Associates, Inc. Chemical vapor deposition apparatus
US4741928A (en) * 1985-12-27 1988-05-03 General Electric Company Method for selective deposition of tungsten by chemical vapor deposition onto metal and semiconductor surfaces
US4747368A (en) * 1985-05-17 1988-05-31 Mitel Corp. Chemical vapor deposition apparatus with manifold enveloped by cooling means
US4760244A (en) * 1985-11-11 1988-07-26 Jiri Hokynar Apparatus for the treatment of semiconductor materials
EP0276061A1 (en) * 1987-01-15 1988-07-27 Varian Associates, Inc. Rapid thermal chemical vapour deposition apparatus
EP0291273A2 (en) * 1987-05-12 1988-11-17 Gemini Research, Inc. Reflector apparatus for chemical vapor deposition reactors
US4812620A (en) * 1985-05-08 1989-03-14 Hy-Bec Corporation Concentrated radiant energy heat source unit
US4859832A (en) * 1986-09-08 1989-08-22 Nikon Corporation Light radiation apparatus
US4908495A (en) * 1988-12-20 1990-03-13 Texas Instruments Incorporated Heating lamp assembly for ccvd reactors
US4914276A (en) * 1988-05-12 1990-04-03 Princeton Scientific Enterprises, Inc. Efficient high temperature radiant furnace
US4920908A (en) * 1983-03-29 1990-05-01 Genus, Inc. Method and apparatus for deposition of tungsten silicides
US4928210A (en) * 1986-10-24 1990-05-22 Kabushiki Kaisha Hybec Linear lamp unit with contacts at both ends
EP0381247A2 (en) * 1989-02-03 1990-08-08 Applied Materials, Inc. Apparatus and method for epitaxial deposition
WO1990010093A1 (en) * 1989-02-28 1990-09-07 Moore Epitaxial, Inc. A high capacity epitaxial reactor
US4970428A (en) * 1988-12-26 1990-11-13 Kabushiki Kaisha Hybec Double-ended miniature lamp
US4976996A (en) * 1987-02-17 1990-12-11 Lam Research Corporation Chemical vapor deposition reactor and method of use thereof
US5014339A (en) * 1987-12-30 1991-05-07 Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. Device for heating up a flow of gas
WO1991010873A1 (en) * 1990-01-19 1991-07-25 G-Squared Semiconductor Corporation Heating apparatus for semiconductor wafers or substrates
US5053247A (en) * 1989-02-28 1991-10-01 Moore Epitaxial, Inc. Method for increasing the batch size of a barrel epitaxial reactor and reactor produced thereby
US5097890A (en) * 1988-06-16 1992-03-24 Tel Sagami Limited Heat treating apparatus with cooling fluid nozzles
US5148714A (en) * 1990-10-24 1992-09-22 Ag Processing Technology, Inc. Rotary/linear actuator for closed chamber, and reaction chamber utilizing same
DE4223133A1 (en) * 1991-07-15 1993-01-21 T Elektronik Gmbh As Rapid thermal processing of sensitive devices - using heat source programme control to avoid defects in e.g. semiconductor devices
US5253324A (en) * 1992-09-29 1993-10-12 North Carolina State University Conical rapid thermal processing apparatus
US5279986A (en) * 1989-02-03 1994-01-18 Applied Materials, Inc. Method for epitaxial deposition
US5317492A (en) * 1990-01-19 1994-05-31 Applied Materials, Inc. Rapid thermal heating apparatus and method
WO1994017353A1 (en) * 1993-01-21 1994-08-04 Moore Epitaxial, Inc. A rapid thermal processing apparatus for processing semiconductor wafers
US5346555A (en) * 1992-07-30 1994-09-13 Kabushiki Kaisha Toshiba Device for thermal treatment and film forming process
US5359693A (en) * 1991-07-15 1994-10-25 Ast Elektronik Gmbh Method and apparatus for a rapid thermal processing of delicate components
US5580388A (en) * 1993-01-21 1996-12-03 Moore Epitaxial, Inc. Multi-layer susceptor for rapid thermal process reactors
US5930456A (en) * 1998-05-14 1999-07-27 Ag Associates Heating device for semiconductor wafers
US5960158A (en) * 1997-07-11 1999-09-28 Ag Associates Apparatus and method for filtering light in a thermal processing chamber
US5970214A (en) * 1998-05-14 1999-10-19 Ag Associates Heating device for semiconductor wafers
US6016383A (en) * 1990-01-19 2000-01-18 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US6072160A (en) * 1996-06-03 2000-06-06 Applied Materials, Inc. Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection
EP1030535A1 (en) * 1999-02-16 2000-08-23 Ushiodenki Kabushiki Kaisha Heat treatment device of the light irradiation type
US6114664A (en) * 1998-07-08 2000-09-05 Amana Company, L.P. Oven with combined convection and low mass, high power density heating
US6167196A (en) * 1997-01-10 2000-12-26 The W. B. Marvin Manufacturing Company Radiant electric heating appliance
US6210484B1 (en) 1998-09-09 2001-04-03 Steag Rtp Systems, Inc. Heating device containing a multi-lamp cone for heating semiconductor wafers
US6281141B1 (en) 1999-02-08 2001-08-28 Steag Rtp Systems, Inc. Process for forming thin dielectric layers in semiconductor devices
US6310328B1 (en) 1998-12-10 2001-10-30 Mattson Technologies, Inc. Rapid thermal processing chamber for processing multiple wafers
US6331212B1 (en) * 2000-04-17 2001-12-18 Avansys, Llc Methods and apparatus for thermally processing wafers
US6367410B1 (en) * 1996-12-16 2002-04-09 Applied Materials, Inc. Closed-loop dome thermal control apparatus for a semiconductor wafer processing system
US6496648B1 (en) * 1999-08-19 2002-12-17 Prodeo Technologies, Inc. Apparatus and method for rapid thermal processing
US6564810B1 (en) 2000-03-28 2003-05-20 Asm America Cleaning of semiconductor processing chambers
US6570137B1 (en) * 2002-03-04 2003-05-27 Applied Materials, Inc. System and method for lamp split zone control
US20030098039A1 (en) * 2001-11-29 2003-05-29 Woo-Seock Cheong Device for deposition with chamber cleaner and method for cleaning the chamber
US20030132692A1 (en) * 2001-12-25 2003-07-17 Hiromasa Eguchi Flash emitting device and radiant heating apparatus
US6666924B1 (en) 2000-03-28 2003-12-23 Asm America Reaction chamber with decreased wall deposition
US20040035847A1 (en) * 1998-11-20 2004-02-26 Arnon Gat Fast heating and cooling apparatus for semiconductor wafers
US6717158B1 (en) 1999-01-06 2004-04-06 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US6744017B2 (en) * 2002-05-29 2004-06-01 Ibis Technology Corporation Wafer heating devices for use in ion implantation systems
US6765178B2 (en) * 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
EP1464904A1 (en) * 2003-03-19 2004-10-06 Rudolf Barget Melting device with a crucible
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US6998579B2 (en) 2000-12-29 2006-02-14 Applied Materials, Inc. Chamber for uniform substrate heating
US7037797B1 (en) 2000-03-17 2006-05-02 Mattson Technology, Inc. Localized heating and cooling of substrates
US20080038950A1 (en) * 2006-08-11 2008-02-14 Haro Robert C Lamp fasteners for semiconductor processing reactors
US20100307415A1 (en) * 2009-04-06 2010-12-09 Eric Shero Semiconductor processing reactor and components thereof
US20110033610A1 (en) * 2008-06-30 2011-02-10 Bertram Jr Ronald Thomas Modular and readily configurable reactor enclosures and associated function modules
US20110070380A1 (en) * 2009-08-14 2011-03-24 Eric Shero Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US20110193479A1 (en) * 2010-02-08 2011-08-11 Nilssen Ole K Evaporation Cooled Lamp
US8877655B2 (en) 2010-05-07 2014-11-04 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8894870B2 (en) 2013-02-01 2014-11-25 Asm Ip Holding B.V. Multi-step method and apparatus for etching compounds containing a metal
US8933375B2 (en) 2012-06-27 2015-01-13 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US8986456B2 (en) 2006-10-10 2015-03-24 Asm America, Inc. Precursor delivery system
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9005539B2 (en) 2011-11-23 2015-04-14 Asm Ip Holding B.V. Chamber sealing member
US9017481B1 (en) * 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9029253B2 (en) 2012-05-02 2015-05-12 Asm Ip Holding B.V. Phase-stabilized thin films, structures and devices including the thin films, and methods of forming same
US9096931B2 (en) 2011-10-27 2015-08-04 Asm America, Inc Deposition valve assembly and method of heating the same
US9117866B2 (en) 2012-07-31 2015-08-25 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
US9167625B2 (en) 2011-11-23 2015-10-20 Asm Ip Holding B.V. Radiation shielding for a substrate holder
US9169975B2 (en) 2012-08-28 2015-10-27 Asm Ip Holding B.V. Systems and methods for mass flow controller verification
US9177784B2 (en) 2012-05-07 2015-11-03 Asm Ip Holdings B.V. Semiconductor device dielectric interface layer
US9202727B2 (en) 2012-03-02 2015-12-01 ASM IP Holding Susceptor heater shim
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9341296B2 (en) 2011-10-27 2016-05-17 Asm America, Inc. Heater jacket for a fluid line
US20160167258A1 (en) * 2013-07-04 2016-06-16 Sidel Participations Heating module comprising a lamp and a lens fastened by a brace to a non-emissive portion of the lamp
US9396934B2 (en) 2013-08-14 2016-07-19 Asm Ip Holding B.V. Methods of forming films including germanium tin and structures and devices including the films
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
EP3261407A1 (en) * 2012-12-28 2017-12-27 Haimerl, Helmut Radiant heater with heating pipe element
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9891521B2 (en) 2014-11-19 2018-02-13 Asm Ip Holding B.V. Method for depositing thin film
US9899405B2 (en) 2014-12-22 2018-02-20 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3114322A (en) * 1959-04-09 1963-12-17 Carrier Corp Hermetic pump
US3240915A (en) * 1962-09-19 1966-03-15 Fostoria Corp Infra-red heater
US3381125A (en) * 1967-06-01 1968-04-30 George D. Cooper Light fixture
US3427435A (en) * 1967-06-02 1969-02-11 Webb James E High speed infrared furnace
US3472721A (en) * 1966-01-24 1969-10-14 Research Inc Apparatus for lap joinder of plastic sheets
US3623712A (en) * 1969-10-15 1971-11-30 Applied Materials Tech Epitaxial radiation heated reactor and process
US3654471A (en) * 1968-11-13 1972-04-04 Infraroedteknik Ab Reflector device
US3761677A (en) * 1971-02-06 1973-09-25 Nippon Electric Co Apparatus for producing single crystals including halogen lamps aligned with the common major axes of a spheroidal reflector pair

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3114322A (en) * 1959-04-09 1963-12-17 Carrier Corp Hermetic pump
US3240915A (en) * 1962-09-19 1966-03-15 Fostoria Corp Infra-red heater
US3472721A (en) * 1966-01-24 1969-10-14 Research Inc Apparatus for lap joinder of plastic sheets
US3381125A (en) * 1967-06-01 1968-04-30 George D. Cooper Light fixture
US3427435A (en) * 1967-06-02 1969-02-11 Webb James E High speed infrared furnace
US3654471A (en) * 1968-11-13 1972-04-04 Infraroedteknik Ab Reflector device
US3623712A (en) * 1969-10-15 1971-11-30 Applied Materials Tech Epitaxial radiation heated reactor and process
US3761677A (en) * 1971-02-06 1973-09-25 Nippon Electric Co Apparatus for producing single crystals including halogen lamps aligned with the common major axes of a spheroidal reflector pair

Cited By (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964430A (en) * 1974-11-14 1976-06-22 Unicorp Incorporated Semi-conductor manufacturing reactor instrument with improved reactor tube cooling
US4141060A (en) * 1975-06-18 1979-02-20 Ppg Industries, Inc. Ultraviolet light processor having movable reflectors
US4048916A (en) * 1975-09-26 1977-09-20 Sun Chemical Corporation Curing section for continuous motion decorator
US4115163A (en) * 1976-01-08 1978-09-19 Yulia Ivanovna Gorina Method of growing epitaxial semiconductor films utilizing radiant heating
US4079104A (en) * 1976-04-16 1978-03-14 Owens-Illinois, Inc. Method for heating plastic articles
US4030964A (en) * 1976-04-29 1977-06-21 The United States Of America As Represented By The United States Energy Research And Development Administration Temperature cycling vapor deposition HgI2 crystal growth
US4306515A (en) * 1976-06-08 1981-12-22 Balzers Patent- Und Beteilingungs-Aktiengesellschaft Vacuum-deposition apparatus
US4168522A (en) * 1976-07-12 1979-09-18 Oce-Van Der Grinten N.V. Light emission control for gas-discharge lamp
US4101759A (en) * 1976-10-26 1978-07-18 General Electric Company Semiconductor body heater
US4208573A (en) * 1976-12-11 1980-06-17 Vita Zahnfabrik H. Rauter Kg Kiln utilizing infrared radiation in the range of 0.7 to 1.5 μm to heat dental ceramic material
US4620884A (en) * 1979-07-24 1986-11-04 Samuel Strapping Systems Ltd. Heat treat process and furnace
US4419332A (en) * 1979-10-29 1983-12-06 Licentia Patent-Verwaltungs-G.M.B.H. Epitaxial reactor
US4275282A (en) * 1980-03-24 1981-06-23 Rca Corporation Centering support for a rotatable wafer support susceptor
US4408658A (en) * 1981-06-30 1983-10-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus and method for heating a material in a transparent ampoule
US4511788A (en) * 1983-02-09 1985-04-16 Ushio Denki Kabushiki Kaisha Light-radiant heating furnace
EP0119654A1 (en) * 1983-03-18 1984-09-26 Philips Electronics Uk Limited A furnace suitable for heat-treating semiconductor bodies
US4565157A (en) * 1983-03-29 1986-01-21 Genus, Inc. Method and apparatus for deposition of tungsten silicides
US4920908A (en) * 1983-03-29 1990-05-01 Genus, Inc. Method and apparatus for deposition of tungsten silicides
US4496828A (en) * 1983-07-08 1985-01-29 Ultra Carbon Corporation Susceptor assembly
US4550684A (en) * 1983-08-11 1985-11-05 Genus, Inc. Cooled optical window for semiconductor wafer heating
US4680447A (en) * 1983-08-11 1987-07-14 Genus, Inc. Cooled optical window for semiconductor wafer heating
EP0162111A1 (en) * 1983-11-23 1985-11-27 Gemini Research, Inc. Method and apparatus for chemical vapor deposition
EP0162111A4 (en) * 1983-11-23 1986-09-15 Gemini Res Inc Method and apparatus for chemical vapor deposition.
EP0161540A1 (en) * 1984-05-04 1985-11-21 Th. Goldschmidt AG Device for hardening flat materials from compounds, and compositions hardenable by U.V. radiation
US4592933A (en) * 1984-06-29 1986-06-03 International Business Machines Corporation High efficiency homogeneous chemical vapor deposition
US4812620A (en) * 1985-05-08 1989-03-14 Hy-Bec Corporation Concentrated radiant energy heat source unit
US4747368A (en) * 1985-05-17 1988-05-31 Mitel Corp. Chemical vapor deposition apparatus with manifold enveloped by cooling means
US4760244A (en) * 1985-11-11 1988-07-26 Jiri Hokynar Apparatus for the treatment of semiconductor materials
US4709655A (en) * 1985-12-03 1987-12-01 Varian Associates, Inc. Chemical vapor deposition apparatus
US4796562A (en) * 1985-12-03 1989-01-10 Varian Associates, Inc. Rapid thermal cvd apparatus
US4741928A (en) * 1985-12-27 1988-05-03 General Electric Company Method for selective deposition of tungsten by chemical vapor deposition onto metal and semiconductor surfaces
US4859832A (en) * 1986-09-08 1989-08-22 Nikon Corporation Light radiation apparatus
US4928210A (en) * 1986-10-24 1990-05-22 Kabushiki Kaisha Hybec Linear lamp unit with contacts at both ends
EP0276061A1 (en) * 1987-01-15 1988-07-27 Varian Associates, Inc. Rapid thermal chemical vapour deposition apparatus
US4976996A (en) * 1987-02-17 1990-12-11 Lam Research Corporation Chemical vapor deposition reactor and method of use thereof
EP0291273A2 (en) * 1987-05-12 1988-11-17 Gemini Research, Inc. Reflector apparatus for chemical vapor deposition reactors
EP0291273A3 (en) * 1987-05-12 1990-05-16 Gemini Research, Inc. Reflector apparatus for chemical vapor deposition reactors
US5014339A (en) * 1987-12-30 1991-05-07 Deutsche Forschungsanstalt Fur Luft- Und Raumfahrt E.V. Device for heating up a flow of gas
US4914276A (en) * 1988-05-12 1990-04-03 Princeton Scientific Enterprises, Inc. Efficient high temperature radiant furnace
US5097890A (en) * 1988-06-16 1992-03-24 Tel Sagami Limited Heat treating apparatus with cooling fluid nozzles
US4908495A (en) * 1988-12-20 1990-03-13 Texas Instruments Incorporated Heating lamp assembly for ccvd reactors
US4970428A (en) * 1988-12-26 1990-11-13 Kabushiki Kaisha Hybec Double-ended miniature lamp
US5279986A (en) * 1989-02-03 1994-01-18 Applied Materials, Inc. Method for epitaxial deposition
EP0381247A3 (en) * 1989-02-03 1991-08-07 Applied Materials, Inc. Apparatus and method for epitaxial deposition
EP0381247A2 (en) * 1989-02-03 1990-08-08 Applied Materials, Inc. Apparatus and method for epitaxial deposition
WO1990010093A1 (en) * 1989-02-28 1990-09-07 Moore Epitaxial, Inc. A high capacity epitaxial reactor
US5053247A (en) * 1989-02-28 1991-10-01 Moore Epitaxial, Inc. Method for increasing the batch size of a barrel epitaxial reactor and reactor produced thereby
US5207835A (en) * 1989-02-28 1993-05-04 Moore Epitaxial, Inc. High capacity epitaxial reactor
US5743643A (en) * 1990-01-19 1998-04-28 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5790751A (en) * 1990-01-19 1998-08-04 Applied Materials, Inc. Rapid thermal heating apparatus including a plurality of light pipes and a pyrometer for measuring substrate temperature
US6434327B1 (en) 1990-01-19 2002-08-13 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
WO1991010873A1 (en) * 1990-01-19 1991-07-25 G-Squared Semiconductor Corporation Heating apparatus for semiconductor wafers or substrates
US5317492A (en) * 1990-01-19 1994-05-31 Applied Materials, Inc. Rapid thermal heating apparatus and method
EP1049356A3 (en) * 1990-01-19 2001-03-28 Applied Materials, Inc. Heating apparatus for semiconductor wafers or substrates
EP1049356A2 (en) * 1990-01-19 2000-11-02 Applied Materials, Inc. Heating apparatus for semiconductor wafers or substrates
US5708755A (en) * 1990-01-19 1998-01-13 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5767486A (en) * 1990-01-19 1998-06-16 Applied Materials, Inc. Rapid thermal heating apparatus including a plurality of radiant energy sources and a source of processing gas
US5487127A (en) * 1990-01-19 1996-01-23 Applied Materials, Inc. Rapid thermal heating apparatus and method utilizing plurality of light pipes
US6016383A (en) * 1990-01-19 2000-01-18 Applied Materials, Inc. Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US5683173A (en) * 1990-01-19 1997-11-04 Applied Materials, Inc. Cooling chamber for a rapid thermal heating apparatus
US5840125A (en) * 1990-01-19 1998-11-24 Applied Materials, Inc. Rapid thermal heating apparatus including a substrate support and an external drive to rotate the same
US5689614A (en) * 1990-01-19 1997-11-18 Applied Materials, Inc. Rapid thermal heating apparatus and control therefor
US6122439A (en) * 1990-01-19 2000-09-19 Applied Materials, Inc. Rapid thermal heating apparatus and method
US5148714A (en) * 1990-10-24 1992-09-22 Ag Processing Technology, Inc. Rotary/linear actuator for closed chamber, and reaction chamber utilizing same
US5359693A (en) * 1991-07-15 1994-10-25 Ast Elektronik Gmbh Method and apparatus for a rapid thermal processing of delicate components
DE4223133A1 (en) * 1991-07-15 1993-01-21 T Elektronik Gmbh As Rapid thermal processing of sensitive devices - using heat source programme control to avoid defects in e.g. semiconductor devices
US5346555A (en) * 1992-07-30 1994-09-13 Kabushiki Kaisha Toshiba Device for thermal treatment and film forming process
US5253324A (en) * 1992-09-29 1993-10-12 North Carolina State University Conical rapid thermal processing apparatus
US5683518A (en) * 1993-01-21 1997-11-04 Moore Epitaxial, Inc. Rapid thermal processing apparatus for processing semiconductor wafers
US5444217A (en) * 1993-01-21 1995-08-22 Moore Epitaxial Inc. Rapid thermal processing apparatus for processing semiconductor wafers
US6310327B1 (en) 1993-01-21 2001-10-30 Moore Epitaxial Inc. Rapid thermal processing apparatus for processing semiconductor wafers
US5580388A (en) * 1993-01-21 1996-12-03 Moore Epitaxial, Inc. Multi-layer susceptor for rapid thermal process reactors
US5710407A (en) * 1993-01-21 1998-01-20 Moore Epitaxial, Inc. Rapid thermal processing apparatus for processing semiconductor wafers
WO1994017353A1 (en) * 1993-01-21 1994-08-04 Moore Epitaxial, Inc. A rapid thermal processing apparatus for processing semiconductor wafers
US6151447A (en) * 1993-01-21 2000-11-21 Moore Technologies Rapid thermal processing apparatus for processing semiconductor wafers
US6072160A (en) * 1996-06-03 2000-06-06 Applied Materials, Inc. Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection
US6367410B1 (en) * 1996-12-16 2002-04-09 Applied Materials, Inc. Closed-loop dome thermal control apparatus for a semiconductor wafer processing system
US6167196A (en) * 1997-01-10 2000-12-26 The W. B. Marvin Manufacturing Company Radiant electric heating appliance
US5960158A (en) * 1997-07-11 1999-09-28 Ag Associates Apparatus and method for filtering light in a thermal processing chamber
US5970214A (en) * 1998-05-14 1999-10-19 Ag Associates Heating device for semiconductor wafers
US5930456A (en) * 1998-05-14 1999-07-27 Ag Associates Heating device for semiconductor wafers
US6114664A (en) * 1998-07-08 2000-09-05 Amana Company, L.P. Oven with combined convection and low mass, high power density heating
US6210484B1 (en) 1998-09-09 2001-04-03 Steag Rtp Systems, Inc. Heating device containing a multi-lamp cone for heating semiconductor wafers
US20040035847A1 (en) * 1998-11-20 2004-02-26 Arnon Gat Fast heating and cooling apparatus for semiconductor wafers
US20050183854A1 (en) * 1998-11-20 2005-08-25 Arnon Gat Fast heating and cooling apparatus for semiconductor wafers
US6919271B2 (en) 1998-11-20 2005-07-19 Mattson Technology, Inc. Method for rapidly heating and cooling semiconductor wafers
US7226488B2 (en) 1998-11-20 2007-06-05 Mattson Technology, Inc. Fast heating and cooling apparatus for semiconductor wafers
US6610967B2 (en) 1998-12-10 2003-08-26 Mattson Technology, Inc. Rapid thermal processing chamber for processing multiple wafers
US6310328B1 (en) 1998-12-10 2001-10-30 Mattson Technologies, Inc. Rapid thermal processing chamber for processing multiple wafers
US6727474B2 (en) 1998-12-10 2004-04-27 Mattson Technology, Inc. Rapid thermal processing chamber for processing multiple wafers
US7038174B2 (en) 1999-01-06 2006-05-02 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US20100018960A1 (en) * 1999-01-06 2010-01-28 Arnon Gat Heating Device For Heating Semiconductor Wafers in Thermal Processing Chambers
US20050008351A1 (en) * 1999-01-06 2005-01-13 Arnon Gat Heating device for heating semiconductor wafers in thermal processing chambers
US6717158B1 (en) 1999-01-06 2004-04-06 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US20060201927A1 (en) * 1999-01-06 2006-09-14 Arnon Gat Heating device for heating semiconductor wafers in thermal processing chambers
US6771895B2 (en) 1999-01-06 2004-08-03 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US7608802B2 (en) 1999-01-06 2009-10-27 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US8138451B2 (en) 1999-01-06 2012-03-20 Mattson Technology, Inc. Heating device for heating semiconductor wafers in thermal processing chambers
US6281141B1 (en) 1999-02-08 2001-08-28 Steag Rtp Systems, Inc. Process for forming thin dielectric layers in semiconductor devices
US6414279B1 (en) 1999-02-16 2002-07-02 Ushiodenki Kabushiki Kaisha Heat treatment device of the light irradiation type
EP1030535A1 (en) * 1999-02-16 2000-08-23 Ushiodenki Kabushiki Kaisha Heat treatment device of the light irradiation type
US6741804B2 (en) * 1999-08-19 2004-05-25 Innovent Systems, Inc. Apparatus and method for rapid thermal processing
US6496648B1 (en) * 1999-08-19 2002-12-17 Prodeo Technologies, Inc. Apparatus and method for rapid thermal processing
US7037797B1 (en) 2000-03-17 2006-05-02 Mattson Technology, Inc. Localized heating and cooling of substrates
US6666924B1 (en) 2000-03-28 2003-12-23 Asm America Reaction chamber with decreased wall deposition
US6564810B1 (en) 2000-03-28 2003-05-20 Asm America Cleaning of semiconductor processing chambers
US6708700B2 (en) 2000-03-28 2004-03-23 Asm America Cleaning of semiconductor processing chambers
US6331212B1 (en) * 2000-04-17 2001-12-18 Avansys, Llc Methods and apparatus for thermally processing wafers
US20040255861A1 (en) * 2000-12-29 2004-12-23 Quanyuan Shang Chamber for uniform substrate heating
US6998579B2 (en) 2000-12-29 2006-02-14 Applied Materials, Inc. Chamber for uniform substrate heating
US6825447B2 (en) 2000-12-29 2004-11-30 Applied Materials, Inc. Apparatus and method for uniform substrate heating and contaminate collection
US7022948B2 (en) * 2000-12-29 2006-04-04 Applied Materials, Inc. Chamber for uniform substrate heating
US6765178B2 (en) * 2000-12-29 2004-07-20 Applied Materials, Inc. Chamber for uniform substrate heating
US6923869B2 (en) * 2001-11-29 2005-08-02 Hynix Semiconductor Inc. Device for deposition with chamber cleaner and method for cleaning the chamber
US20030098039A1 (en) * 2001-11-29 2003-05-29 Woo-Seock Cheong Device for deposition with chamber cleaner and method for cleaning the chamber
US20030132692A1 (en) * 2001-12-25 2003-07-17 Hiromasa Eguchi Flash emitting device and radiant heating apparatus
US6798142B2 (en) * 2001-12-25 2004-09-28 Ushio Denki Kabushiki Kaisha Flash emitting device and radiant heating apparatus
US6570137B1 (en) * 2002-03-04 2003-05-27 Applied Materials, Inc. System and method for lamp split zone control
US6744017B2 (en) * 2002-05-29 2004-06-01 Ibis Technology Corporation Wafer heating devices for use in ion implantation systems
EP1464904A1 (en) * 2003-03-19 2004-10-06 Rudolf Barget Melting device with a crucible
US7597574B2 (en) * 2006-08-11 2009-10-06 Asm America, Inc. Lamp fasteners for semiconductor processing reactors
US20080038950A1 (en) * 2006-08-11 2008-02-14 Haro Robert C Lamp fasteners for semiconductor processing reactors
US8986456B2 (en) 2006-10-10 2015-03-24 Asm America, Inc. Precursor delivery system
US20110033610A1 (en) * 2008-06-30 2011-02-10 Bertram Jr Ronald Thomas Modular and readily configurable reactor enclosures and associated function modules
EP2294608A4 (en) * 2008-06-30 2013-08-21 Soitec Silicon On Insulator Modular and readily configurable reactor enclosures and associated function modules
EP2294608A2 (en) * 2008-06-30 2011-03-16 S.O.I.Tec Silicon on Insulator Technologies Modular and readily configurable reactor enclosures and associated function modules
US20100307415A1 (en) * 2009-04-06 2010-12-09 Eric Shero Semiconductor processing reactor and components thereof
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US20110070380A1 (en) * 2009-08-14 2011-03-24 Eric Shero Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8883270B2 (en) 2009-08-14 2014-11-11 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen—oxygen species
WO2011097486A3 (en) * 2010-02-08 2011-11-03 Nilssen Ole K Evaporation cooled lamp
US20110193479A1 (en) * 2010-02-08 2011-08-11 Nilssen Ole K Evaporation Cooled Lamp
WO2011097486A2 (en) * 2010-02-08 2011-08-11 Nilssen Ole K Evaporation cooled lamp
US8877655B2 (en) 2010-05-07 2014-11-04 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US9096931B2 (en) 2011-10-27 2015-08-04 Asm America, Inc Deposition valve assembly and method of heating the same
US9341296B2 (en) 2011-10-27 2016-05-17 Asm America, Inc. Heater jacket for a fluid line
US9892908B2 (en) 2011-10-28 2018-02-13 Asm America, Inc. Process feed management for semiconductor substrate processing
US9017481B1 (en) * 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US9167625B2 (en) 2011-11-23 2015-10-20 Asm Ip Holding B.V. Radiation shielding for a substrate holder
US9340874B2 (en) 2011-11-23 2016-05-17 Asm Ip Holding B.V. Chamber sealing member
US9005539B2 (en) 2011-11-23 2015-04-14 Asm Ip Holding B.V. Chamber sealing member
US9202727B2 (en) 2012-03-02 2015-12-01 ASM IP Holding Susceptor heater shim
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US9384987B2 (en) 2012-04-04 2016-07-05 Asm Ip Holding B.V. Metal oxide protective layer for a semiconductor device
US9029253B2 (en) 2012-05-02 2015-05-12 Asm Ip Holding B.V. Phase-stabilized thin films, structures and devices including the thin films, and methods of forming same
US9177784B2 (en) 2012-05-07 2015-11-03 Asm Ip Holdings B.V. Semiconductor device dielectric interface layer
US8933375B2 (en) 2012-06-27 2015-01-13 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US9299595B2 (en) 2012-06-27 2016-03-29 Asm Ip Holding B.V. Susceptor heater and method of heating a substrate
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9117866B2 (en) 2012-07-31 2015-08-25 Asm Ip Holding B.V. Apparatus and method for calculating a wafer position in a processing chamber under process conditions
US9169975B2 (en) 2012-08-28 2015-10-27 Asm Ip Holding B.V. Systems and methods for mass flow controller verification
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US10023960B2 (en) 2012-09-12 2018-07-17 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9605342B2 (en) 2012-09-12 2017-03-28 Asm Ip Holding B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
EP3261407A1 (en) * 2012-12-28 2017-12-27 Haimerl, Helmut Radiant heater with heating pipe element
US9228259B2 (en) 2013-02-01 2016-01-05 Asm Ip Holding B.V. Method for treatment of deposition reactor
US8894870B2 (en) 2013-02-01 2014-11-25 Asm Ip Holding B.V. Multi-step method and apparatus for etching compounds containing a metal
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US20160167258A1 (en) * 2013-07-04 2016-06-16 Sidel Participations Heating module comprising a lamp and a lens fastened by a brace to a non-emissive portion of the lamp
US9790595B2 (en) 2013-07-12 2017-10-17 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9412564B2 (en) 2013-07-22 2016-08-09 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9396934B2 (en) 2013-08-14 2016-07-19 Asm Ip Holding B.V. Methods of forming films including germanium tin and structures and devices including the films
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US9605343B2 (en) 2013-11-13 2017-03-28 Asm Ip Holding B.V. Method for forming conformal carbon films, structures conformal carbon film, and system of forming same
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US9891521B2 (en) 2014-11-19 2018-02-13 Asm Ip Holding B.V. Method for depositing thin film
US9899405B2 (en) 2014-12-22 2018-02-20 Asm Ip Holding B.V. Semiconductor device and manufacturing method thereof
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus

Similar Documents

Publication Publication Date Title
US6217662B1 (en) Susceptor designs for silicon carbide thin films
Roozeboom et al. Rapid thermal processing systems: A review with emphasis on temperature control
US3626154A (en) Transparent furnace
US5317492A (en) Rapid thermal heating apparatus and method
US3172774A (en) Method of forming composite graphite coated article
US6197121B1 (en) Chemical vapor deposition apparatus
US4615294A (en) Barrel reactor and method for photochemical vapor deposition
US4698486A (en) Method of heating semiconductor wafers in order to achieve annealing, silicide formation, reflow of glass passivation layers, etc.
US5561735A (en) Rapid thermal processing apparatus and method
US6476362B1 (en) Lamp array for thermal processing chamber
US4796562A (en) Rapid thermal cvd apparatus
US4914276A (en) Efficient high temperature radiant furnace
US6016383A (en) Rapid thermal heating apparatus and method including an infrared camera to measure substrate temperature
US5207835A (en) High capacity epitaxial reactor
US6143079A (en) Compact process chamber for improved process uniformity
US4539933A (en) Chemical vapor deposition apparatus
US5370371A (en) Heat treatment apparatus
US6970644B2 (en) Heating configuration for use in thermal processing chambers
US5421322A (en) Central solar receiver
US5204145A (en) Apparatus for producing diamonds by chemical vapor deposition and articles produced therefrom
US4747368A (en) Chemical vapor deposition apparatus with manifold enveloped by cooling means
US4680447A (en) Cooled optical window for semiconductor wafer heating
US4550684A (en) Cooled optical window for semiconductor wafer heating
US6547876B2 (en) Apparatus for growing epitaxial layers on wafers by chemical vapor deposition
US5892886A (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes