DE8902307U1 - Device for thermal treatment of semiconductor materials - Google Patents
Device for thermal treatment of semiconductor materialsInfo
- Publication number
- DE8902307U1 DE8902307U1 DE8902307U DE8902307U DE8902307U1 DE 8902307 U1 DE8902307 U1 DE 8902307U1 DE 8902307 U DE8902307 U DE 8902307U DE 8902307 U DE8902307 U DE 8902307U DE 8902307 U1 DE8902307 U1 DE 8902307U1
- Authority
- DE
- Germany
- Prior art keywords
- turntable
- tube
- reaction chamber
- heating
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004065 semiconductor Substances 0.000 title claims description 37
- 239000000463 material Substances 0.000 title claims description 8
- 238000007669 thermal treatment Methods 0.000 title claims description 4
- 238000000034 method Methods 0.000 claims description 108
- 239000007789 gas Substances 0.000 claims description 70
- 238000006243 chemical reaction Methods 0.000 claims description 63
- 238000010438 heat treatment Methods 0.000 claims description 50
- 235000012431 wafers Nutrition 0.000 claims description 40
- 238000011010 flushing procedure Methods 0.000 claims description 9
- 238000011068 loading method Methods 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 description 27
- 238000010926 purge Methods 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- -1 poly(vinyl chloride) Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000012369 In process control Methods 0.000 description 1
- 239000012494 Quartz wool Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000010965 in-process control Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000009418 renovation Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67115—Apparatus for thermal treatment mainly by radiation
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/06—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
- C30B31/10—Reaction chambers; Selection of materials therefor
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/06—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
- C30B31/10—Reaction chambers; Selection of materials therefor
- C30B31/103—Mechanisms for moving either the charge or heater
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B31/00—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
- C30B31/06—Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
- C30B31/16—Feed and outlet means for the gases; Modifying the flow of the gases
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Description
Dr.S/s 0189G 27.Februar 1989Dr.S/s 0189G February 27, 1989
VORRICHTUNG ZUR IHERMISCHBJi BEHAM)LUNG VON HALBLEITERMATERIALIENDEVICE FOR THE THERMOSTATIC TREATMENT OF SEMICONDUCTOR MATERIALS
Die Neuerung bezieht sich auf eine Vorrichtung zur thermischen Behandlung von Halbleitermaterialien in der die zu behandelnden Halbleiterscheiben oder dergl. Proz&ssgasm!schungen unterschiedlicher und wechselnder Zusammensetzung und Temperatur ausgesetzt sind, wobei ein vertikal angeordneter Prozessrauin mit einem einseitig offenen Prozessrohr und einer zylindrisch das Prozessrohr umfassenden Heizkassette vorgesehen siivd in dem die zu behandelnden Halbleiterscheiben auf einem Träger angeordnet sind sowie einer in einem das Prozessrohr umfassenden Ringraum vorgesehenen Fluldspülung.The innovation relates to a device for the thermal treatment of semiconductor materials in which the semiconductor wafers or similar process gas mixtures to be treated are exposed to different and changing compositions and temperatures, whereby a vertically arranged process chamber is provided with a process tube that is open on one side and a heating cassette that cylindrically surrounds the process tube, in which the semiconductor wafers to be treated are arranged on a carrier, as well as a fluid flush provided in an annular chamber that surrounds the process tube.
Vorrichtungen zur Durchführung solcher Verfahren sind allgemein auch unter dem Begriff "Diffusionsofen" bekannt.Sie bestehen im wesentlichen aus einem Prozessrohr mit einer Heizkassette umgeben und der Beschickungseinrichtung, meist ein sogen. Cant Ileversystem. Solche Diffusionsofen sind meist als Horizontalofen im Eineatz, d.h. das Prozessrohr ist horizontal angeordnet und wird von vorn mit den zu behandelnden Halbleiterscheiben beschickt. Es sind auch Vertikalöfen bekannt, bei denen das Prozessrohr vertikal angeordnet Ist und die von unten oder von oben mit den Halbleiterscheiben beschickt werden. Die bekannten Vertikalöfen bestehen im wesentlichen aus dem vertikal angeordneten Prozessrohr, das von einer HeizkassetteDevices for carrying out such processes are also generally known under the term "diffusion furnace". They essentially consist of a process tube surrounded by a heating cassette and the loading device, usually a so-called cantilever system. Such diffusion furnaces are usually used as horizontal furnaces, i.e. the process tube is arranged horizontally and is loaded from the front with the semiconductor wafers to be treated. Vertical furnaces are also known in which the process tube is arranged vertically and which are loaded with the semiconductor wafers from below or from above. The known vertical furnaces essentially consist of the vertically arranged process tube, which is surrounded by a heating cassette.
• · ··* --■■· ··* --â– â–
herkömmlicher Bauart umschlossen ist. Die Halbleitericheiben sind in dem Prozessrohr in einer hängenden oder stehenden Horde in Prozessbedingten Abständen senkrecht übereinander geschichtet, jedoch horizontal ausgerichtet. Sie werden in dem Prozessrohr einer Wärmebehandlung mit unterschiedlichen Prozessgasen ausgesetzt, die den Reaktionsraum von unten nach oben durchströmen. Der Reaktionsraum ist an seinem offenen Ende, unten oder oben, mittels lose angelegter Verschlußelemente mit integriertem Gaszu- und ableitungen weitgehend gegen die umgebende Reinraumatmosphäre abgedichtet. Dabei wird bei der Durchführung des Verfahrens, das der Vorrichtung angewpasst ist, mit Gasverdrängungsspülung gearbeitet.conventional design. The semiconductor wafers are stacked vertically on top of each other in the process tube in a hanging or standing tray at process-related intervals, but aligned horizontally. In the process tube they are subjected to heat treatment with different process gases that flow through the reaction chamber from bottom to top. The reaction chamber is largely sealed against the surrounding clean room atmosphere at its open end, bottom or top, by means of loosely placed closure elements with integrated gas supply and discharge lines. When carrying out the process, which is adapted to the device, gas displacement flushing is used.
Die Nachteile solcher Vorrichtungen und darin durchgeführten Verfahren liegen auf der Hand. Insbesondere die systemimmanenten Technologie-Nachteile sind es, die die Ausbeute nachteilig beeinflussen, so u.a. die Undefinierte Gasatmosphäre sowie regelmäpslo auftretende Rückdiffusion, die eine Reproduzierbarkeit der Prozessparameter und dan.lt des Verfahrensergebnisses von Charge zu Charge unmöglich machen. Weitere technologische Nachteile sind die nicht errelchbars Isothermle im Reaktionsraum, nicht vorhandene vakuumdichte Trennung des Reaktio^neraumes von der Außenwelt und eine mit erheblichen Mängeln behaftete Gasströmung, die durch Thermik, Konvektion und Laminarltät charakterisiert Ist. SchileCilch sind die bekannten Verfahren und Vorrichtungen dieser Art unwirtschaftlich, weisen einen großen Mater IaIverschlelB auf und unterliegen einem hohen Bruchrislko. Hier will die Neuerung Abhilfe schaffen. Die Neuerung, wie sie in den Ansprüchen gekennzeichnet Ist, Iöä'u dieThe disadvantages of such devices and the processes carried out in them are obvious. In particular, it is the inherent technological disadvantages that have a negative impact on the yield, such as the undefined gas atmosphere and regularly occurring back diffusion, which make it impossible to reproduce the process parameters and thus the process result from batch to batch. Other technological disadvantages are the unattainable isotherm in the reaction chamber, the lack of vacuum-tight separation of the reaction chamber from the outside world and a gas flow with significant defects that is characterized by thermals, convection and laminarity. In other words, the known processes and devices of this type are uneconomical, have a high material wear and are subject to a high risk of breakage. This is where the innovation aims to remedy the situation. The innovation, as characterized in the claims, Iöä'u the
Aufgabe, die oben geschilderten Nachteile mit Sicherheit zu vermelden und eine Vorrichtung zui Durchführung solcher Verfahren zu besitzen, die an dleseangepasst ist und in der der Gasfluß innerhalb des Reaktlonsraumes steuerbar ist.The aim is to reliably avoid the disadvantages described above and to have a device for carrying out such processes which is adapted to the reading and in which the gas flow within the reaction chamber is controllable.
Mit der Neurung werden mehrere Vorteile glelchioltlg erzielt. Durch die Einflußnahme auf die Prozessgas-Strömung Innerhalb des Prozessrohres, also Im Reaktionsraum wird die Ausbeute nicht nur verbessert, sondern die Prozessbedingungen und damit die Reproduzlerbarkelt derselben ist gegeben. Insbesondere sind die Gasströme durch die Anordnung der VerwIrbeIungs-Dusen in der Wand des Prozess rohres nicht n.ohr, wie bisher, stete auf die gleiche Stelle der zu behandelnden Halbleiterscheiben gerichtet, sondevn sie treffen in Immer wechselnden Winkeln, auf die Oberfläche der Halbleiterscheiben verteilt, auf. Außerdem Ist durch die Schräglage der Halbleiterscheiben auf der Horde gewährleistet, daß sich keine unerwünschten Gaskonzentrationen an bestimmten Teilen der Oberfläche derselben bilden. Ein weiterer Vorteil ist die übergeordnete Flußrichtung der Gasströme von oben nach unten, d.h. das Gas wird unten aus dem Prozessraum entfernt und kann sich nicht oben oder an sonstiger Stellen sammeln. Der Einsatz von inerten Spulgasen zur Verhinderung jedwelcher Kontamination aus dem Bereich der hteizkassette !st ein weiterer Vorteil. Somit können keine. moiekuSaren oder atomaren Verunre &iacgr;&pgr; &iacgr; gur.ger in den Reaktionsraum gelangen. Die wirksame Kühlung durch Spülgase im tonnte I- und Zwischenraum trägt zu raschem ChargenweohseI und damit wirtschaftlicher Durchführung solcher Verfahren bei. Die Vorrichtuni ist den Verfahrensbedingungen angepasst und weistThe innovation achieves several advantages at the same time. By influencing the process gas flow inside the process tube, i.e. in the reaction chamber, the yield is not only improved, but the process conditions and thus the reproducibility of the same are also ensured. In particular, the gas flows are not always directed at the same point on the semiconductor wafers to be treated, as was previously the case, thanks to the arrangement of the turbulence nozzles in the wall of the process tube, but rather they hit the surface of the semiconductor wafers at constantly changing angles. In addition, the inclined position of the semiconductor wafers on the rack ensures that no undesirable gas concentrations form on certain parts of the surface. Another advantage is the overall flow direction of the gas flows from top to bottom, i.e. the gas is removed from the bottom of the process chamber and cannot collect at the top or in other places. The use of inert purge gases to prevent any contamination from the area of the heating cassette is a further advantage. This means that no molecular or atomic contaminants can enter the reaction chamber. The effective cooling by purge gases in the inner and intermediate spaces contributes to rapid batch turnover and thus to the economical implementation of such processes. The device is adapted to the process conditions and has
außer einem Mehrrohrsystem, bestehend aus einem Inneren und einem äußeren Reaktionsrohr, Insbesondere einen während des Verfahrensablaufes rotieren^den Drehtisch für die zu behandelnden Halbleiterscheiben, an der Wand des Inneren Prozessrohres vorgesehene Verwlrbelungedüeen für die Einleitung der Prozessgase in den Prozessraum auf.In addition to a multi-pipe system consisting of an inner and an outer reaction tube, in particular a rotating turntable for the semiconductor wafers to be treated during the process, there are turbulence nozzles provided on the wall of the inner process tube for the introduction of the process gases into the process chamber.
Das Systemdesign weist darüber hinaus den Vorteil auf, auch besonders für die Durchführung von Verfahren der Wärmebehandlung von wenigen oder nur einer einzigen Halbleiterscheibe, auch sehr großen, ( Eln-Scheiben-Prozesse, bzw. Cassette-to-Cassette-EIn-ScheIben-Pruzeß ) geeignet zu sein.The system design also has the advantage of being particularly suitable for carrying out heat treatment processes on a few or only a single semiconductor wafer, even very large ones (single-wafer processes or cassette-to-cassette single-wafer processes).
Die Neurung ist nachstehend anhand der in den Abbildungen dargestellten AusfOhrungsbeIspieIe näher erläutert.The innovation is explained in more detail below using the exemplary embodiments shown in the figures.
Es zeigt:It shows:
Figur 2 eine Ausführungsvariante (W Figur 1, Figur 3 eine weitere Ausfuhrungsvariante, Figur 4 einen kompletten Diffusionsofen und Figur 5 eine Ausführungsvariante des Diffusionsofens.Figure 2 shows a variant (W Figure 1, Figure 3 shows another variant, Figure 4 shows a complete diffusion furnace and Figure 5 shows a variant of the diffusion furnace.
Die !n Figur 1 dargestellte Vorrichtung stellt den 'riauptböstandtei ! eines sogen. Di f f us icnscf sns dar, nämlich die eigentliche Prozesseinheit, die im wesentlichen aus dem inneren Prozessrohr 1, dem äußeren Prozessrohr 2, die vorzugsweise aus Quarz gefertigt sind, dem Mantelrohr 3, beispielsweise aus Keramik, der Heizkassette 4 mit den weiteren Heizelementen 17The device shown in Figure 1 represents the main component of a so-called diffuser, namely the actual process unit, which essentially consists of the inner process tube 1, the outer process tube 2, which are preferably made of quartz, the jacket tube 3, for example made of ceramic, the heating cassette 4 with the additional heating elements 17
und 18 sowie dem Reakt lonsraumversehl ußsystem 15 und dem Drehtisch 14 besteht.and 18 as well as the reaction chamber sealing system 15 and the rotary table 14.
Die etwa glockenförmige Heizkassette 4wlrd nach außen noch von der Haube &bgr; umfaßt. Diese Haube 6 besitzt an Ihrem oberen Ende eine öffnung für d©n SpOlgasauslaßstutzen 24 und den Küh I gasaus I aßstutzen 25 der HeIzkassettenmantel-KOhIung 5.The approximately bell-shaped heating cassette 4 is still enclosed on the outside by the hood 6. This hood 6 has an opening at its upper end for the purge gas outlet nozzle 24 and the cooling gas outlet nozzle 25 of the heating cassette casing cooling 5.
in dem Hohlraum 9, dem sogen. Pf özessyää-Zwi »&Ogr;&iacgr;&idiagr;&ogr;&Pgr;&Ggr;&aacgr;&udigr;&iacgr;&idigr;&idigr;, befindet sich strömendes Prozessgas stets unter einem geringen Überdruck, um eine gute Verteilung der Prozessgasml schung bereits vor dessen Einblasen in den Reaktionsraum 8 zu erzielen. Das Prozessgas wird durch mindestens eine Lochreihe 7 in den inneren Isotherma- |pn Reaktionsraum 8 derart eingebracht, daß darin die auf dem Drehtisch 14 d.h. dessen Scheibenträger 13 mit seinen Scheibenaufnahmen 12 befindlichen Halbleiterscheiben 11 allseits von dem ProzeBgas umspült werden. Die Lochreihe-n 7 ist/sind daher vorzugsweise schraubenförmig mit unterschiedlicher Steigung und unbestimmter Lochanzahl in der Wand des inneren Reaktionsrohres 1 vorgesehen, wobei die Durchmesser der Löcher etwa 0,5 mm oder größer sind und die räumliche Achse der Löcher bezogen auf die zentrale Rohrachse desorientiert ist. Die Halbleiterscheiben 11 sind dabei auf der Scheibenaufnahme 12 in leicht geneigter Anordnung übereinander geschichtet, sodaß während der Behandlung deren gesamte Oberfläche dem Gasstrom aus der, bzw. den Lochreihen 7 ausgesetzt ist. Eine Charge böstsht dabei aus einer typischen Losgröße von 25 Halbleiterscheiben 11 zuzüglich einiger Dummies. Bei unkritischen Prozessen können auch mehr Halbleiterscheiben gleichzeitig eingefahren und behandelt werden.In the cavity 9, the so-called Pfözessyää-Zwi »&Ogr;&iacgr;&idiagr;&ogr;&Pgr;&Ggr;&aacgr;&udigr;&iacgr;&idigr;&idigr;, the flowing process gas is always under a slight overpressure in order to achieve a good distribution of the process gas mixture before it is blown into the reaction chamber 8. The process gas is introduced through at least one row of holes 7 into the inner isothermal reaction chamber 8 in such a way that the semiconductor wafers 11 located on the rotary table 14, i.e. its wafer carrier 13 with its wafer holders 12, are surrounded on all sides by the process gas. The rows of holes 7 are therefore preferably provided in a helical shape with different pitches and an indeterminate number of holes in the wall of the inner reaction tube 1, with the diameters of the holes being approximately 0.5 mm or larger and the spatial axis of the holes being disoriented relative to the central tube axis. The semiconductor wafers 11 are stacked on top of one another on the wafer holder 12 in a slightly inclined arrangement so that their entire surface is exposed to the gas flow from the row(s) of holes 7 during treatment. A batch consists of a typical batch size of 25 semiconductor wafers 11 plus a few dummies. In non-critical processes, more semiconductor wafers can also be fed in and treated at the same time.
Die Prozessgasmischung wird durch dan El &eegr; IcBstutzen 28 in den Prozessgas-Zwischenraum 9 eingebracht und durch das Prozessgas-Aus IaBrohr 30 wieder aus dem System entfernt.The process gas mixture is introduced into the process gas space 9 through the El &eegr; IcBstutzen 28 and removed from the system again through the process gas outlet IaBrohr 30.
Zwischen dem äußeren Reaktionsrohr 2 und dem die Heizkassette 4 tragenden Keramikrohr 3 ist ein äußerer ringförmiger Spülraum 10 vorgesehen, der in sogen. " I ow-f low-moieH oder "h i gh-&tgr; i öw-müu6v1 mit Spuigas durchströmt wird, um einerseits in "low-flow-mode" mit wenigen Litern Spülgas pro Minute zu verhindern, daß der Reaktionsraum durch Bestandteile der Heizkassette 4 kontaminiert wird und andererseits in "hlgh-flowmode" eine rasche Abkühlung erreicht werden kann. Auf diese Weise wird nämlich das Gesamtsystem auf Temperaturen deutlich unter die bisher üblichen stand-by Temperaturen von 700° bis 800° C schnell abgekühlt. Es sind damit stand-by Temperaturen von 300° C und darunter (bis Raumtemperatur) erzielbar, d.h. die sogen, "schnei leHelzkassette" Ist damit verwirklicht. Zwischen dem Außenmantel der Heizkassette 4 und der Haube 6 befindet sich ein weiterer Kühlraum 5, dar die Heizkassette 4 umgibt und an seiner Basis mindestens einen tangentialen Einblasstutzen 19 für die Mantelkühlung besitzt, die, nach Durchströmen des Kühlraumes 5, diesen durch den Stutzen 25 wieder verlässt. Die als HeizkassettenummanteIung dienende haube 6 ist relnraumtauglich ausgebildet, wozu sich u.a. Edelstahl gut eignet.Between the outer reaction tube 2 and the ceramic tube 3 carrying the heating cassette 4, an outer ring-shaped flushing chamber 10 is provided, through which flushing gas flows in so-called "low-flow mode " or "high-flow mode" in order to prevent the reaction chamber from being contaminated by components of the heating cassette 4 in "low-flow mode" with a few liters of flushing gas per minute, on the one hand, and to achieve rapid cooling in "high-flow mode". In this way, the entire system is quickly cooled to temperatures well below the previously usual stand-by temperatures of 700° to 800° C. Stand-by temperatures of 300° C and below (down to room temperature) can thus be achieved, i.e. the so-called "fast heating cassette" is thus realized. Between the outer casing of the heating cassette 4 and the hood 6 there is a further cooling chamber 5 which surrounds the heating cassette 4 and has at its base at least one tangential blow-in nozzle 19 for the jacket cooling which, after flowing through the cooling chamber 5, leaves it again through the nozzle 25. The hood 6 which serves as the heating cassette casing is designed to be suitable for use in a room, for which stainless steel is well suited.
Unterhalb des Reaktionsrohres 1 befindet sich ein Prozessgasvorwärmer 16, der als zylindrischer, doppe I-wandiger Ring mit breitem Flansch ausgebildet ist und das Reaktionsrohr 1 trägt. In diesen Ring ist ein Heizelement 16 integriert sowie ein oder mehrereBelow the reaction tube 1 there is a process gas preheater 16, which is designed as a cylindrical, double-I-walled ring with a wide flange and supports the reaction tube 1. A heating element 16 is integrated into this ring as well as one or more
Prozeßgaseinlaß- und -aus I aß-Stutzen 28 bzw. 30. Für eine rasche Systemabkühlung ist außerdem mindestens ein Gaseinlaß-Stutzen 27 für Spülgas vorgesehen. Das Heizelement 17, unterhalb des Reaktionsrohres 1 Im Reakt ions raumversch I uß-System 15 angeordnet, wird von einem Stützring 21 getragen.Process gas inlet and outlet nozzles 28 and 30 respectively. For rapid system cooling, at least one gas inlet nozzle 27 is also provided for purge gas. The heating element 17, arranged below the reaction tube 1 in the reaction chamber closure system 15, is supported by a support ring 21.
Der Prozessgasvorwärmer 16 enthält ein zylindrisches He i zelement 18 und besitzt in sei &eegr;em als Flansch aus — gebildeten Kragen ein oder mehrere Prozeßgaseinlaß -kanäle 28. Der von dem ReaktionsraumverschIuBsystern 15, unterhalb des scheibenförmigen Heizelementes 17 befindliche topfförmige Hohlraum 20 ist mit Quarz-, Steinwolle oder dergl. eingefüllt. Das Stützrohr 21 ist auf der Tragrohr Iagerscha I e 22 mit integrierter Kühlung aus hitzebeständigem, Schmierstoffreien Material, wie ZcB. Keramik angeordnet, wobei die Luftkühlung das Lager 35 aus Keramik oder Metall oder Kunststoff kühlt. Mit 26 ist eine Flanschverbindung bezeichnet.The process gas preheater 16 contains a cylindrical heating element 18 and has one or more process gas inlet channels 28 in its collar, which is formed as a flange made of -. The pot-shaped cavity 20 located by the reaction chamber closure system 15, below the disk-shaped heating element 17, is filled with quartz, rock wool or the like. The support tube 21 is arranged on the support tube bearing shell 22 with integrated cooling made of heat-resistant, lubricant-free material, such as ceramic, with the air cooling cooling the bearing 35 made of ceramic or metal or plastic. A flange connection is designated by 26.
Das gesamte System 1 bis 28 wird von einer gemeinsamen Montagevorrichtung 29 getragen, an die auch ein Wasserkühlungskanal 31 und Luftkühlungskanal 32 angefI anseht 8 i nd.The entire system 1 to 28 is supported by a common mounting device 29, to which a water cooling channel 31 and an air cooling channel 32 are also attached.
Das koaxiale Tragrohr 33 des Turntables 14 ist innen mit einem Luftkühlrohr 33a versehen. Dieses Tragrohr 33 i &bgr; t in den Lagern 34 und 35 gelagert. Eine Inertgasspülung i 81 in dem Schutzrohr 36 vorgesehen, und besitzt eine Absaugeinrichtung mit einem Mehr-Wege-VentiI .The coaxial support tube 33 of the turntable 14 is provided with an air cooling tube 33a on the inside. This support tube 33 i β t is mounted in the bearings 34 and 35. An inert gas purge i 81 is provided in the protective tube 36 and has an extraction device with a multi-way valveI.
Der Antrieb 37 des Turntables 14 ist in dem Rahmen 40 angeordnet, der das von unten in die ReaktionsrohreInheit einfahrbare System trägt und In Lagern 39 auf dem Schienensystem 38 geführt Ist. Das Schienensystem 38The drive 37 of the turntable 14 is arranged in the frame 40, which supports the system that can be inserted into the reaction tube unit from below and is guided in bearings 39 on the rail system 38. The rail system 38
Ü:T:
Das mit 15 bezeichnete, zylindrisch ausgebildete, Verschlußsystem des Reaktionsraumes hat eine Mehrfachfunktion. Zunächst dient es dazu, den Reaktionsraum 8 beladesei t! g, also von unten« vakuumdicht zu verschließen. Es trögt das regelbare Heizelement 17, welches zur Erhaltung der Isothermie erforderlich Uv und durch den StCtzring 21 in der dargestellten Position fixiert ist. Das Verschlußsystem 15 besteht vorzugsweise aus halbleitertauglichem Material, beispielsweise aus Quarz, PoIy-Si I Izium, SiC oder anderenThe cylindrical closure system of the reaction chamber, designated 15, has a multiple function. Firstly, it serves to seal the reaction chamber 8 on the loading side, i.e. from below, in a vacuum-tight manner. It carries the adjustable heating element 17, which is required to maintain the isothermal temperature and is fixed in the position shown by the support ring 21. The closure system 15 is preferably made of semiconductor-compatible material, for example quartz, poly-silicon, SiC or other
&ogr; Keramikmaterial fen, die samt I ich bis we i t Ober 1300 C&ogr; Ceramic material, which can withstand temperatures well over 1300 C formstabil sein mOßen.must be dimensionally stable.
Während gem. Figur 1 der Turntable 14 mitsamt dem Verschluß-System des Reaktionsraumes 8 nach der Beladung mit Halbleiterscheiben 11 von unten in das stationäre Reaktionsrohr 1 eingefahren wird, sieht die in Fig.2 dargestellte Ausführungsvariante vor, üaß die komplette Reaktionseinheit, bestehend eus dem inneren Reaktionsrohr 1, dem äußeren Reaktionsrohr 2, dem Mantelrohr 3, der Heizkassette 4 mit der Haube 6 sowie den Zu- und Ableitungen 27 für das Spülgas und die Mantelkühlung 5 nach oben gefahren wird, während der Turntable 14 stationär verbleibt. Dazu Ist das Verschluß-System des Reaktlonsraumes 15 wieder in dem Rahmen 40 gehalten und das Gestell 41 für das Schienensystem 44 seitlich angeordnet. Eine Halteplatte 42 mit zwei Ringflanschen trägt die bewegliche Reaktionseinheit und gleitet Ober die Gleitlager 39 an den Holmen des Schienensystems 44. Mit 43a Ist der obere und mit 43b der untere Ringflansch bezeichnet. Ein innerer, regelbarer Heizzylinder 45 Ist unterhalb des Turntables 14 vorgesehen. Die Vorwärmung derWhile according to Figure 1 the turntable 14 together with the closure system of the reaction chamber 8 is moved into the stationary reaction tube 1 from below after loading with semiconductor wafers 11, the variant shown in Figure 2 provides that the complete reaction unit, consisting of the inner reaction tube 1, the outer reaction tube 2, the jacket tube 3, the heating cassette 4 with the hood 6 and the supply and discharge lines 27 for the purge gas and the jacket cooling 5, is moved upwards while the turntable 14 remains stationary. For this purpose, the closure system of the reaction chamber 15 is again held in the frame 40 and the frame 41 for the rail system 44 is arranged to the side. A holding plate 42 with two ring flanges carries the movable reaction unit and slides over the sliding bearings 39 on the bars of the rail system 44. 43a is the upper ring flange and 43b the lower ring flange. An inner, adjustable heating cylinder 45 is provided below the turntable 14. The preheating of the
• · · · I l• · · · I l
Or.Heinrich Sohl brand, WirtsbauernstraSe 26, D 8027 Neurl ed Or.Heinrich Sohl brand, Wirtsbauernstrasse 26, D 8027 Neurl ed
Prozeßgase gem. Fig.2 wird durch die Anordnung der Heizelemente 45 und 46 und der im Verschluß-System 15 des Reaktionsraumes 8 vorgesehenen Prozeßgasein- und -auslasse 28 und 30 gewährleistet. Die AüschluBplatte des Rohrverschlußsystems isc mit 47 bezeichnet. Diese trögt die regelbaren Heizelemente 17, 45 üf.d 46, derartig angeordnet, daß die von unten einströmenden Prozeßgasae vorgewärmt werden und ein Kondensieren nach unten ausströmender Abgase im Gesamtsystem verhindert wird. Verbleibende Hohlräume sind mit QuarzwoMe innerhalb des Mantels 48 ausgefüllt, um die notwendige Wärmedämmung zu gewährleisten. Schließlich ist noch eine ringförmige Dichtung 49 mit Fluidkühlung vorgesehen.Process gases according to Fig. 2 are ensured by the arrangement of the heating elements 45 and 46 and the process gas inlets and outlets 28 and 30 provided in the closure system 15 of the reaction chamber 8. The closure plate of the pipe closure system is designated 47. This carries the adjustable heating elements 17, 45 via 46, arranged in such a way that the process gases flowing in from below are preheated and condensation of exhaust gases flowing out downwards in the overall system is prevented. Remaining cavities are filled with quartz wool inside the jacket 48 in order to ensure the necessary thermal insulation. Finally, an annular seal 49 with fluid cooling is provided.
Eine weiter; AusfQhrungsvariante ist in Figur 3 dargestellt. Sie 7-iigt Insbesondere eine andere Ausbildung des Prozessgasvorwärmers 16 gem. Figur 1, bzw. 17, 45 und 46 gem. Figur 2.A further design variant is shown in Figure 3. It shows in particular a different design of the process gas preheater 16 according to Figure 1, or 17, 45 and 46 according to Figure 2.
Der Prozeßgasvorwärmer gem. Figur 3 besteht hu:i dem
zylindrischen Heizelement 50 und einem U-profiIförmigen
Ringflansch 51, der ggf. auch aus einzelnen Segmenten zusammengesetzt sein kann und einem Heizelement
52. Dieses Heizelement 52 kann sowohl aus einzelnen, stabförmlgen, einen Ring bildenden einzelnen Heizelementen
gebildet sein, als auch aus einer Heizschlange, die um den U-profMförmigen Flansch 51 gewickelt Ist,
oder aus einzelnen einschiebbaren Heizelementsegmenten, die dem U-profiIförmigen Ringflansch 51 angepaßt
sind. Eine solche Anordnung der Heizelemente 50 und 52 ermöglicht einen raschen Austausch und eine einfachere
Anpassung an unterschiedliche Prozessparameter.
Die Figur 4 zeigt die Seitenansicht eines Diffusfonsofens
mit vertikaler, stationärer Reaktionseinheit undThe process gas preheater according to Figure 3 consists of the cylindrical heating element 50 and a U-profile-shaped ring flange 51, which can optionally also be composed of individual segments, and a heating element 52. This heating element 52 can be formed from individual, rod-shaped heating elements forming a ring, as well as from a heating coil wound around the U-profile-shaped flange 51, or from individual insertable heating element segments that are adapted to the U-profile-shaped ring flange 51. Such an arrangement of the heating elements 50 and 52 enables rapid exchange and easier adaptation to different process parameters.
Figure 4 shows the side view of a diffuser furnace with vertical, stationary reaction unit and
■Heinrich Söhlbrand, Wl rtsbauernstraße 26, D 8027 Neuried■Heinrich Söhlbrand, Wl rtsbauernstrasse 26, D 8027 Neuried
nach unten beweglichem Turntable 14.downwards movable turntable 14.
Auf einem Reinraumtisch 53, außerhalb der eigentlichen Reaktionseinheit, wie in Fig. 1 beschrieben, ist ein Roboter 54 montiert, der den Turntable 14 automatisch be- und entlad. Der Turntable 14 wird dazu -links oben im Bild- mit Halbleiterscheiben 11 beladen und, nach Absenkung mittels der Verschiebeeinrichtung 56 nach rechts verfahren, um nach rechts und aufwärts in das Reaktionsrohr 1 einzufahren. Mit 55a und 55b sind Gebläse bezeichnet, incl. Filtereinheiten, um zu sicherezustel len, daß während der Auf- und Ab- sowie Translationsbewegungen im Tunnel unter dem Reinraumtisch 53 die Scheiben ausschließlich in Reinraumluft der Klasse 1-5 bewegt werden.A robot 54 is mounted on a clean room table 53, outside the actual reaction unit, as described in Fig. 1, which automatically loads and unloads the turntable 14. The turntable 14 is loaded with semiconductor wafers 11 - top left in the picture - and, after being lowered, is moved to the right using the displacement device 56 in order to move to the right and upwards into the reaction tube 1. 55a and 55b designate blowers, including filter units, to ensure that during the up and down and translation movements in the tunnel under the clean room table 53 the wafers are only moved in clean room air of class 1-5.
Figur 5 zeigt einen Diffusionsofen gem. Figur 2 mit stationärem Turntable 14 und nach oben beweglicher Reaktionseinheit. Zur Be- und Entladung wird die Reaktionseinheit angehoben, damit der Roboter 54 die Halbleiterscheiben 11 in den Turntable 14 einbringen, bzw. aus diesem entfernen kann.Figure 5 shows a diffusion furnace according to Figure 2 with a stationary turntable 14 and a reaction unit that can be moved upwards. For loading and unloading, the reaction unit is raised so that the robot 54 can insert the semiconductor wafers 11 into the turntable 14 or remove them from it.
Der Prozessablauf in dem Reaktionsrohr 1 ( Oxydation, H,-Tempern, Diffussion, Deposition ) ist wie folgt:The process sequence in reaction tube 1 (oxidation, H, tempering, diffusion, deposition) is as follows:
Beispiel 1: Oxydation (anhand der Fig.4 eriäutert)
Zunächst wird der innere isothermal &ogr; Reaktionsraum 8
auf Starttemperaturen zwischen Raumtompeeratur und
300° C temperiert und der Turntable 14 mit Halbleiterscheiben
11 beladen, indem der Roboter 54 diese scheiben einer nicht dargestellten Lagerhorde entnimmt
und In Scheibenaufnahmen 12 des Scheibenträgers 13
einlegt. Die Sehefbenaufnahmen 12 sind vorzugsweise
rund ausgebildet und sind bis weit Ober 130C0C forvnetabil.
Ein Abrutschen der schräg gestellten ScheibenExample 1: Oxidation (explained using Fig.4)
First, the inner isothermal γ reaction chamber 8 is heated to starting temperatures between room temperature and
300° C and the turntable 14 is loaded with semiconductor wafers 11 by the robot 54 removing these wafers from a storage rack (not shown) and placing them in wafer holders 12 of the wafer carrier 13. The wafer holders 12 are preferably round and are stable up to well over 130 ° C. Slipping of the inclined wafers
1010
11 wird durch einen Anschlag In der Scheibenaufnahme vermieden. Sodann fahrt der Turntable 14 nach unten & und anschließend nach links, um danach wieder nach 5 oben In den Reaktionsraum 8 der Reaktionseinheit einzufahren, wie aus den Figuren 1 und 4 ersichtlich. Bei der Au s f Oh rungs var I an te gem. den Figuren 2 und 5 bleibt der Turntable 14 stationär, dafür wird die Reaktionseinheit mit dem Reaktionsraum 8 angehoben, 10 sodaß der Beladevorgang von dem Roboter durchgeführt werden kann. Nach Abschluß der Beladung wird die Reaktionseinheit wieder absenkt.11 is avoided by a stop in the disk holder. The turntable 14 then moves downwards and then to the left, before moving upwards again into the reaction chamber 8 of the reaction unit, as can be seen in Figures 1 and 4. In the design variant according to Figures 2 and 5, the turntable 14 remains stationary, but the reaction unit with the reaction chamber 8 is raised so that the loading process can be carried out by the robot. After loading is complete, the reaction unit is lowered again.
Nach Einfahren der zu behandelnden Halbleiterscheiben 11 in den inneren Reaktions raun» 8 wird zunächst ein Gasaustausch vorgenommen, wobei die zunächst weitgehend atmosphärische Zusammensetzung der Gase (ro Reaktionsraum 8 gegen die bereits durch den Prozessgasvorwärmer 16 erwärmte Prozeßgasmischung mittels eines "soft-pump-down" Schrittes ausgetauscht wird, d.h. durch ein- oder mehrfaches Evakuieren und Wiederfüllen mit der gewünschten Prozeßgasmischung. Der Austausch der Gase erfolgt durch d'n/dle Prozessgasei&eegr; Iasß-Stutzen 28 und das/die Prozeßgasaus Iaß-Rohr-e 30. Der Druck im Inneren Reaktionsrohr 8 wird prozessabhängig auf die erforderlichen Werte eingestellt. Als Prozessgasmischung eignet sich z.B. O /HCL i.V. 97/3 Vol.% sehr gut. Die Prozeßgase strömen durch den ProzeSgas-ZwSschenraum 9, der Konstant mit geringem überdruck beaufschiagt ist und durch die Löcher 7 in der Wand des inneren Reaktionsrohres 1 In den inneren Reaktionsrawm 8, wo sie, stets nach unten strömend, auf die Oberflache der schräg im Gasstrom mit dem Turntable 14 rotierenden Halbleiterscheiben 11 treffen. Indem die Heizkassette 4 und das Heizelement 17After the semiconductor wafers 11 to be treated have been introduced into the inner reaction chamber 8, a gas exchange is first carried out, whereby the initially largely atmospheric composition of the gases (in the reaction chamber 8) is exchanged for the process gas mixture already heated by the process gas preheater 16 by means of a "soft pump-down" step, i.e. by evacuating once or several times and refilling with the desired process gas mixture. The exchange of gases takes place through the process gas inlet nozzles 28 and the process gas outlet pipe(s) 30. The pressure in the inner reaction tube 8 is set to the required values depending on the process. O /HCL in a ratio of 97/3 vol.% is very suitable as a process gas mixture, for example. The process gases flow through the process gas intermediate chamber 9, which is constant with a slight overpressure and through the holes 7 in the wall of the inner reaction tube 1 into the inner reaction chamber 8, where they, always flowing downwards, hit the surface of the semiconductor disks 11 rotating obliquely in the gas flow with the turntable 14. By the heating cassette 4 and the heating element 17
1111
hoch'geregeit werden, steigt die Temperatur im inneren Reaktionsrohr &thgr; auf 800° C. Während dieser sogen« "ramp I ng-up" Phase erfolgt eine Decontam I &eegr; I erung der Oberflache und oberflächennaher Gitterplätze der Halbleiterscheiben 11, Insbesondere durch die Einwirkung von Chlor. Nach einer gewissen Verweildauer bei 800° C erfolgt weiteres "rampIng-up" bis auf die eigentliche Prozeßtemperatur von etwa 900"CbIs 1 1 00~ C. Jetzt wird der Zustrom von Chlorgas unterbunden und die Oxydationsphase eingeleitet, die in drei oder vier Varianten, die auch teilweise hintereinander geschaltet sein können, abläuft:If the temperature is raised to 800° C, the temperature in the inner reaction tube rises to 800° C. During this so-called "ramp-up" phase, the surface and the lattice sites near the surface of the semiconductor wafers 11 are decontaminated, particularly through the action of chlorine. After a certain dwell time at 800° C, further "ramp-up" takes place up to the actual process temperature of around 900° C. Now the flow of chlorine gas is stopped and the oxidation phase is initiated, which takes place in three or four variants, some of which can also be connected in series:
2.Einleitung von feuchtem O1, &Ogr;&lgr;/&EEgr;21 : 1,72.Introduction of moist O 1 , �O λ /�EEgr; 2 1 : 1.7
3.Einleitung von trockenem Ox, mit Inertgas3.Introduction of dry O x , with inert gas
(z.B. Ar) verdünnt,(e.g. Ar) diluted,
4.Einleitung von trockenem oder feuchtem Q, mit oder ohne Inertgas (z.B. Ar), Jedoch unter Niederdruck, d.h. die Varianten 1 bis 3,Jedoch mit reduziertem Arbeitsdruck pals weiterem unabhängig variablen Prozeßparameter.4. Introduction of dry or moist Q, with or without inert gas (e.g. Ar), but under low pressure, i.e. variants 1 to 3, but with reduced working pressure and other independently variable process parameters.
Die Varianten gern 4. eignen sich besonders zur Erzeugung geringmächtiger Gateoxydschichten von etwa 2-10 nM (20 - 100 X) mit bestmögl icher Reproduzierbarkeit und geringsten Prozeßtoleranzen. Die Oxydation wird beendet, indem die Prozeßgase durch N1, mittels eines weiteren "soft-pump-down" Schrittes wiederholen. Darauf folgt ein lineares "ramping-down" auf ca. 800°C und unterschiedlich langem Verweilen bei dieser Temperatur. Nun wird Ober den SpOlgaseinlaßstutzen 27 und den -auslaßstutzen 24 von "lowflow-mode" auf "h i gh-f I ow-mode unter Einsatzvon N1 The variants like 4. are particularly suitable for producing thin gate oxide layers of about 2-10 nM (20 - 100 X) with the best possible reproducibility and the lowest process tolerances. The oxidation is terminated by repeating the process gases with N 1 by means of another "soft pump down" step. This is followed by a linear "ramping down" to about 800°C and a different length of time at this temperature. Now the process gas inlet nozzle 27 and outlet nozzle 24 are switched from "low flow mode" to "high flow mode" using N 1
1212
&ogr; umgeschaltet« um das gesamte System rasch auf etwa 300&ogr; switched to "quickly heat up the entire system to about 300 C, oder, prozeßabhängig, bis auf Raumtemperatur abzukühlen.C, or, depending on the process, to room temperature.
Nach Erreichen dieser Temperatur werden die behandelten Halbleiterscheiben 11 mit dem Turntable 14 wieder ausgefahren, bzw. die Reaktionseinheit angehoben und von dem Roboter 54 gegen eine neue Charge ausgetauscht, üer Prozess beginnt nun von vorn. Infolge des vakuumdicht verschlossenen Reaktionsraumes 6 können auch weitere, bisher mit den bekannten Vertikal vorrichtungen nicht durchführbare Verfahrensvarianten bei der Oxydation ablaufen. So ist es beispielsweise möglich, mit der Vorrichtung auch eine Niederdruckoxydat I on oder auch eine Niederdruckoxydation unter gleichzeitiger Verdünnung der Restgasatmosphäre mit Inertgas (z.B. N ,Ar,He,Kr,Xe usw.) durchzuführen. Bei beiden Varianten ist eine einwandfreie Kontrolle des Oxydwachstums unter extremen Bedingungen möglich, d.h. es können selbst kleine I angzeItkonstante Wachstumsraten bei äußerst geringmächtigen Oxydschich-After this temperature has been reached, the treated semiconductor wafers 11 are moved out again with the turntable 14, or the reaction unit is lifted and replaced by the robot 54 with a new batch, and the process now begins again. As a result of the vacuum-tight reaction chamber 6, other process variants can also be carried out during oxidation that were previously not possible with the known vertical devices. For example, it is possible to use the device to carry out low-pressure oxidation or low-pressure oxidation while simultaneously diluting the residual gas atmosphere with inert gas (e.g. N, Ar, He, Kr, Xe, etc.). With both variants, perfect control of the oxide growth under extreme conditions is possible, i.e. even small growth rates can be achieved with extremely thin oxide layers.
ten (ZO - 100 A) erzielt werden, wenn in-s&igr;tu-OberfIächen angeboten werden.ten (ZO - 100 A) can be achieved if in-situ surfaces are offered.
Durch die Einführung eines äußeren Spülraumes 10, der In "hlgh-flow" und "low-flow11 mode betrieben werden kann, ist sichergestellt, daß die Heizkassette 4 den Reaktionsraum 8 nicht contami&eegr;ieren kann. Es genügt dabei eine Spülung mit wenigen Litern Spülgas pro Minute ("low-flow" mode). Bei Anwendung der "high-&Pgr;&ogr;&idigr;&udigr; mode", d.h. Durchfluß großer Mengen Spülgas dagegen ist eine rasche Abkühlung der Heizkassette 4 und somit des gesamten Systems Innerhalb kürzester Zeit möglich. Die bisher nicht unterschreitbaren oder üblicherweise eingehaltenen stand-by Temperaturen von 700° - 800° C werden sehr rasch zeitlich linear oderBy introducing an external flushing chamber 10, which can be operated in "high-flow" and "low-flow " mode, it is ensured that the heating cassette 4 cannot contaminate the reaction chamber 8. A flush with a few liters of flushing gas per minute ("low-flow" mode) is sufficient. When using the "high-flow" mode, ie flow of large quantities of flushing gas, a rapid cooling of the heating cassette 4 and thus of the entire system is possible within a very short time. The stand-by temperatures of 700° - 800° C, which could not be undercut or were usually maintained, are very quickly reduced linearly or
1313
.Heinrich Sohlbrarcd-iWirtSDfcdefnstf &Agr;&bgr;&bgr;.,26, D 8027 Neuried.Heinrich Sohlbrarcd-iWirtSDfcdefnstf &Agr;&bgr;&bgr;.,26, D 8027 Neuried
exponentiell bis ca. 300 C und darunter bzw. Raumtemperatur herabgesetzt, (sogen, "schnei Ie Heizkassette"). Der Turntable 14 rotiert während des gesamten Prozessablaufes langsam, mit ggf. wechselnden Winkelgeschwindigkeiten, mit den Halbleiterscheiben 11 im radialen Gasstrom, der sich zwischen den Halblelter-exponentially reduced to approx. 300 C and below or room temperature (so-called "snap heating cassette"). The turntable 14 rotates slowly during the entire process, with possibly changing angular speeds, with the semiconductor wafers 11 in the radial gas flow that is between the semiconductor wafers. &lgr; r* K &agr; i K^n uortal H iinH cnmlfr ria r an noeamto OHo r f I Arha &lgr; r* K &agr; i K^n uortal H iinH cnmlfr ria r an noeamto OHo rf I Arha
bespült. Auf diese Weise wird ein äußerst gleichmäßiges, reproduzierbares ProzeBergebnis erzielt. Der Turntable 14 besteht vorzugsweise aus Po IysI Ii&zgr;ium,In this way, an extremely uniform, reproducible process result is achieved. The turntable 14 is preferably made of poly(vinyl chloride),
&ogr; wie 7.B. SiC oder andere und ist bis weit Ober 1300&ogr; like 7.B. SiC or others and is up to well over 1300
C forrnstjbU, als Scheibe ausgebildet, die ein nach unten ragendes koaxiales Tragrohr 33 aus gleichem Material mit zweifacher Lagerung 34,35 mit innerer 33a und äußerer 22 Kühlung besitzt.C forrnstjbU, designed as a disk, which has a downwardly projecting coaxial support tube 33 made of the same material with double bearings 34,35 with internal 33a and external 22 cooling.
Das Tempern von Halbleiterscheiben wird in der Vorrichtung, die ein absolut geschlossenes, vertikal angeordnetes Ofensystem darstellt, eindeutig definierte Gaseinlaß- und Gasaus Iaß-öffungen besitzt und sowohl Start als auch Beendigung des dar ir. durchgeführten Verfahrens bei Raumtemperatur ermöglicht, in 100% Reinst-Wasserstoff im Ka It-HeiB-KaIt-Zyk I us durchgeführt. Dies ist möglich, da die Vorteile der neuerungsgemäßen Vorrichtung in vorteilhafter Weise eine Prozessführnng mit gesichertem Gasaustausch (zunächst wird Undefinierte Reinraumluft gegen N2, und anschließend der Stickstoff gegen Reinst-H^ 100 % ausgetauscht) bei Raumtemperatur, Hochrampen auf dieThe tempering of semiconductor wafers is carried out in the device, which is an absolutely closed, vertically arranged furnace system, has clearly defined gas inlet and outlet openings and enables both the start and termination of the process carried out therein at room temperature, in 100% pure hydrogen in a cold-hot-cold cycle. This is possible because the advantages of the innovative device advantageously allow a process to be carried out with assured gas exchange (first undefined clean room air is exchanged for N 2 , and then the nitrogen for 100% pure H 2 ) at room temperature, ramping up to the
1414
gewünschte Tr aiper temper at u r (typisch: 420°- 4900C oder auch höher), prozeßabhängiges Verweilen beidesired drag temperature (typically: 420°- 490 0 C or higher), process-dependent dwell time at
dieser Temperatur und dann definiertes Abkühlen in der 100 % H^ Atmosphäre bis auf Raumtemperatur und anschließend -immer noch in dem geschlossenen System-Austausch dieses 100 % H2, gegen N2 und dann, nach angemessener SpQlzeit mit Spülgas, Austausch desselben gegen die Reinraumatmosphäre zum Entladen wie bei Be i sp iel 1.this temperature and then defined cooling in the 100% H^ atmosphere to room temperature and then - still in the closed system - exchange of this 100% H 2 for N 2 and then, after an appropriate purging time with purge gas, exchange of the same for the clean room atmosphere for discharging as in Example 1.
Beispiel 3: Diffusion, Belegung mit Dotierstoff. Ein weiter Vorteil der neuerungsgemZßen Vorrichtung ist, erstmalig in Verbindung mit dem "soft-pump-down" Schritt zu einem beliebig vorbestimmbaren Zeitpunkt während des Verfahrens den eindeutig definierten sofortigen Abbruch einer Belegung mit Dotierstoff, d.h. die sofortige Beendigung dor Einspeisung des Dotier— stoffes in den Reaktionsraum 8 und spontane Absaugung dieses Dotiergasgemisches aus dsm Reaktionsraum 8 herbeizuführen. Somit sind auch sehr geringe Dotierungen mit minimalsten Eindringtiefen xj und hohen Schichtwiderstandswerten RgSVa , d.h. geringste OberfIächenkonzentrationen, reali sIerbar. In jedem Falle wird durch die neuerungsgemäß ausgebildete Vorrichtung eine wesentlich bessere Prozeßqualität und Reproduzierbarkeit erreicht. Dazu trägt auch die Ausbildung des inneren Prozeßrohres 1, das als sogen. Injektorrohr ausgebildet ist, bei, well durch diese Maßnahme das gesamte System von vornherein auf die sogen, "in-cage" Prozeßföhrung abgestimmt Ist, d.h. für alle Prozesse der Oxydation, Temperung, Diffusion/Belegung, Drive-in, Deposition usw. entfallen die sogen, "cage-boats". In diese sind SeheibenträyorExample 3: Diffusion, coating with dopant. A further advantage of the device according to the innovation is that, for the first time in conjunction with the "soft pump-down" step, at any predeterminable time during the process, the clearly defined immediate termination of coating with dopant, ie the immediate termination of the feeding of the dopant into the reaction chamber 8 and the spontaneous extraction of this dopant gas mixture from the reaction chamber 8, can be brought about. In this way, even very low doping with minimal penetration depths xj and high layer resistance values RgSVa , ie the lowest surface concentrations, can be achieved. In any case, a significantly better process quality and reproducibility is achieved by the device according to the innovation. The design of the inner process tube 1, which acts as a so-called Injector tube is designed, because through this measure the entire system is adapted from the outset to the so-called "in-cage" process control, ie for all processes of oxidation, tempering, diffusion/coating, drive-in, deposition etc. the so-called "cage boats" are no longer required. Disc carriers are placed in these
1515
in geschlossenen Zylindern mit endständiger Abschlußplatten und mehreren Lochreihen in der ZyIinderflache (für den ProzeBgaselntritt) eingearbeitet oder gestellt, Die mit dieser "cage-boat"-Techno IogIe verbundenen Nachteile bei der Prozeßführung, nämlich die festgelegte Position der Halbleiterscheiben relativ ;; den Löchern der Lochreihen und die dadurch systembe dingte ungleichmäßige Anströmung ist bei der erf Indungsgemäß vorgeschlagenen Vorrichtung ausgeschlossen. Die Halbleiterscheiben 11 und die Lochreihen 7 sind nämlich schräg zueinander angeordnet, wobei die Halbleiterscheiben sich relativ dazu und somit auch relativ zu dem Injektionsstrom in einer Rotationsbewegung auf dem Turntable 14 befinden.in closed cylinders with end plates and several rows of holes in the cylinder surface (for the process gas inlet). The disadvantages associated with this "cage-boat" technology in process control, namely the fixed position of the semiconductor wafers relative to the holes in the rows of holes and the resulting uneven flow, are excluded in the device proposed according to the invention. The semiconductor wafers 11 and the rows of holes 7 are arranged at an angle to one another, with the semiconductor wafers being in a rotational movement relative to them and thus also relative to the injection flow on the turntable 14.
Auf diese Weise sind In der Halbleitertechnologie engste Prozeßtoleranzen und bestmögliche Reproduzierbarkeit realisierbar, was sich mit Vorteil bei CVD-Prozessen aller Art einsetzen läßt; denn diese Prozesse sind in außergewöhnlich starkem Maße von den Strömungsverhältnissen im Reaktioneraum 6 und der variierbaren Rotationegeschwindlgkeit des Turntables 14 und dem Reaktionsrohr 1 als "cage-boat" -Ersatz abhängig. Selbstverständlich trägt auch das kIeinstmögl (ehe Durchmesserverhältnis Reaktionsrohr 1 / Halbleiterscheibe 11 (Qw^) ^ 1»3 -typisch 1,26 bis 1,2 und, je nach Durchmesser der Halbleiterscheiben 11, noch kleiner- zu den Vorteilen der mit derNeurung vorgeschlagenen, vertikal arbeitenden Vorrichtung bei.In this way, the tightest process tolerances and the best possible reproducibility can be achieved in semiconductor technology, which can be used to advantage in CVD processes of all kinds; because these processes are extremely dependent on the flow conditions in the reaction chamber 6 and the variable rotation speed of the turntable 14 and the reaction tube 1 as a "cage boat" replacement. Of course, the smallest possible diameter ratio of reaction tube 1 / semiconductor wafer 11 (Qw^) ^ 1»3 - typically 1.26 to 1.2 and, depending on the diameter of the semiconductor wafers 11, even smaller - also contributes to the advantages of the vertically operating device proposed in the innovation.
1616
Or. Heinrich Söhlbrand, Wirtsbauernstr. 26, 8027 NeuriedOr. Heinrich Söhlbrand, Wirtsbauernstr. 26, 8027 Neuried
1 - Inneres Prozessrohr 1 - Inner process pipe
2 - äußeres Prozessrohr2 - outer process pipe
3 - Mantelrohr3 - Jacket pipe
4 - Heizkassette4 - Heating cassette
5 - HeizkassettenmantelkQhiung5 - Heating cassette jacket cooling
6 - Haube6 - Hood
7 - Lochreihen7 - Rows of holes
&dgr; - Reaktionsraum 9 - Hohlraun?« sog. Prozessgaszwischenraum&dgr; - reaction space 9 - cavity?« so-called process gas space
10 - äußerer ringförmiger Spülraum10 - outer ring-shaped flushing chamber
11 - Halbleiterscheiben11 - Semiconductor wafers
12 - Scheibenaufnahme12 - Disc holder
13 - Scheibenträger13 - Disc carrier
;4 - Drehtisch = Turn table;4 - Turntable = Turn table
15 - iteaktiwisraumverschluß-System15 - iteaktiwisraumverschlüsse-System
16 - Prozess^ svorwärmer16 - Process preheater
17 - Heizelement (regelbares, scheibenförmiges)17 - Heating element (adjustable, disc-shaped)
18 - Heizelement18 - Heating element
19 - Einblasstutzen (tangential, für die Mantelkühlung?19 - Injection nozzle (tangential, for jacket cooling?
20 - Hohlraum20 - Cavity
21 - Stützrohr21 - Support tube
22 - Kühlraum mit Einlaßstutzen (mit tangentialer Einblasung)22 - Cooling chamber with inlet nozzle (with tangential injection)
und Auslaßstutzenand outlet nozzle
23 - Tragrohrlagerschale mit integrierter Kühlung23 - Support tube bearing shell with integrated cooling
24 - SpUlgasauslaßstutzen24 - Purge gas outlet nozzle
25 - KUhlgasauslaßstutzen25 - Cooling gas outlet
26 - Flanschverbindung26 - Flange connection
27 - Spülgaseinlaßstutzen27 - Purge gas inlet nozzle
28 - Prozessgaseinlaßstutzen28 - Process gas inlet nozzle
29 - Montagevorrichtung29 - Mounting device
30 - Prozessgasaus laßstutzen30 - Process gas outlet nozzle
31 - Wasserkühlungskanal31 - Water cooling channel
32 - Luftkühlungskanal32 - Air cooling duct
33 - Tragrohr33 - Support tube
33a) Luftkühlung (für das Tragrohr 33)33a) Air cooling (for the support tube 33)
34 - Lager34 - Warehouse
35 - Lager35 - Warehouse
36 - Schutz-(Kühl-/Absaug)Rohr36 - Protection (cooling/extraction) pipe
37 - Antrieb37 - Drive
38 - Schienensystem38 - Rail system
39 - Lager39 - Warehouse
40 - Rahmen40 - Frame
41 - Gestell41 - Frame
42 - Halteplatte42 - Holding plate
43 a) oberer Ringflansch43 a) upper ring flange
43 b) unterer Ringflansch43 b) lower ring flange
44 - Schienensystem44 - Rail system
45 - Heizzylinder (innerer, regelbarer)45 - Heating cylinder (inner, adjustable)
46 - Heizelement, regelbar46 - Heating element, adjustable
47 - Abschlußplatte47 - End plate
48 - (Stahl-)Mantei48 - (Steel) Mantle
49 - Dichtung, ringförmig (mit Fluidkühlung)49 - Seal, ring-shaped (with fluid cooling)
50 - zylindrisches Heizelement50 - cylindrical heating element
51 - U-profilförmiger Ringflansch51 - U-profile ring flange
52 - Heizelement52 - Heating element
53 - Reinraumtisch53 - Cleanroom table
54 - Roboter54 - Robots
55 a) Gebläse mit Fi ltereinheiten 55b) Gebläse mit Filtereinheiten55 a) Blower with filter units 55b) Blower with filter units
56 - Verschiebeeinrichtung56 - Shifting device
Claims (5)
daß ein Prozeßgasvorwärmer 16 vorgesehen Ist.2. Device according to claim 1 , characterized in that
that a process gas preheater 16 is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE8902307U DE8902307U1 (en) | 1989-02-27 | 1989-02-27 | Device for thermal treatment of semiconductor materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE8902307U DE8902307U1 (en) | 1989-02-27 | 1989-02-27 | Device for thermal treatment of semiconductor materials |
Publications (1)
Publication Number | Publication Date |
---|---|
DE8902307U1 true DE8902307U1 (en) | 1989-08-31 |
Family
ID=6836458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE8902307U Expired DE8902307U1 (en) | 1989-02-27 | 1989-02-27 | Device for thermal treatment of semiconductor materials |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE8902307U1 (en) |
Cited By (231)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3922833A1 (en) * | 1989-07-09 | 1991-01-10 | Heinrich Dr Soehlbrand | Semiconductor disc heat treatment oven - has inlet apertures in row(s) in inner processing tube |
NL1005963C2 (en) * | 1997-05-02 | 1998-11-09 | Asm Int | Vertical oven for treating semiconductor substrates. |
US11001925B2 (en) | 2016-12-19 | 2021-05-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11004977B2 (en) | 2017-07-19 | 2021-05-11 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11069510B2 (en) | 2017-08-30 | 2021-07-20 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11094546B2 (en) | 2017-10-05 | 2021-08-17 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US11094582B2 (en) | 2016-07-08 | 2021-08-17 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US11101370B2 (en) | 2016-05-02 | 2021-08-24 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11107676B2 (en) | 2016-07-28 | 2021-08-31 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11114294B2 (en) | 2019-03-08 | 2021-09-07 | Asm Ip Holding B.V. | Structure including SiOC layer and method of forming same |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
US11127617B2 (en) | 2017-11-27 | 2021-09-21 | Asm Ip Holding B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US11127589B2 (en) | 2019-02-01 | 2021-09-21 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11164955B2 (en) | 2017-07-18 | 2021-11-02 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11171025B2 (en) | 2019-01-22 | 2021-11-09 | Asm Ip Holding B.V. | Substrate processing device |
US11168395B2 (en) | 2018-06-29 | 2021-11-09 | Asm Ip Holding B.V. | Temperature-controlled flange and reactor system including same |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
US11205585B2 (en) | 2016-07-28 | 2021-12-21 | Asm Ip Holding B.V. | Substrate processing apparatus and method of operating the same |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
US11222772B2 (en) | 2016-12-14 | 2022-01-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11227789B2 (en) | 2019-02-20 | 2022-01-18 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11242598B2 (en) | 2015-06-26 | 2022-02-08 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US11244825B2 (en) | 2018-11-16 | 2022-02-08 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US11251068B2 (en) | 2018-10-19 | 2022-02-15 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11251040B2 (en) | 2019-02-20 | 2022-02-15 | Asm Ip Holding B.V. | Cyclical deposition method including treatment step and apparatus for same |
US11251035B2 (en) | 2016-12-22 | 2022-02-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
US11270899B2 (en) | 2018-06-04 | 2022-03-08 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11274369B2 (en) | 2018-09-11 | 2022-03-15 | Asm Ip Holding B.V. | Thin film deposition method |
US11282698B2 (en) | 2019-07-19 | 2022-03-22 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US11289326B2 (en) | 2019-05-07 | 2022-03-29 | Asm Ip Holding B.V. | Method for reforming amorphous carbon polymer film |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11296189B2 (en) | 2018-06-21 | 2022-04-05 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
US11315794B2 (en) | 2019-10-21 | 2022-04-26 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching films |
US11339476B2 (en) | 2019-10-08 | 2022-05-24 | Asm Ip Holding B.V. | Substrate processing device having connection plates, substrate processing method |
US11342216B2 (en) | 2019-02-20 | 2022-05-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11345999B2 (en) | 2019-06-06 | 2022-05-31 | Asm Ip Holding B.V. | Method of using a gas-phase reactor system including analyzing exhausted gas |
US11355338B2 (en) | 2019-05-10 | 2022-06-07 | Asm Ip Holding B.V. | Method of depositing material onto a surface and structure formed according to the method |
US11361990B2 (en) | 2018-05-28 | 2022-06-14 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11378337B2 (en) | 2019-03-28 | 2022-07-05 | Asm Ip Holding B.V. | Door opener and substrate processing apparatus provided therewith |
US11387120B2 (en) | 2017-09-28 | 2022-07-12 | Asm Ip Holding B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US11387106B2 (en) | 2018-02-14 | 2022-07-12 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11390945B2 (en) | 2019-07-03 | 2022-07-19 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11390946B2 (en) | 2019-01-17 | 2022-07-19 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US11393690B2 (en) | 2018-01-19 | 2022-07-19 | Asm Ip Holding B.V. | Deposition method |
US11398382B2 (en) | 2018-03-27 | 2022-07-26 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11396702B2 (en) | 2016-11-15 | 2022-07-26 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US11401605B2 (en) | 2019-11-26 | 2022-08-02 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11410851B2 (en) | 2017-02-15 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US11417545B2 (en) | 2017-08-08 | 2022-08-16 | Asm Ip Holding B.V. | Radiation shield |
US11414760B2 (en) | 2018-10-08 | 2022-08-16 | Asm Ip Holding B.V. | Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same |
US11424119B2 (en) | 2019-03-08 | 2022-08-23 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11430640B2 (en) | 2019-07-30 | 2022-08-30 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
US11443926B2 (en) | 2019-07-30 | 2022-09-13 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
US11476109B2 (en) | 2019-06-11 | 2022-10-18 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11482418B2 (en) | 2018-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Substrate processing method and apparatus |
US11488854B2 (en) | 2020-03-11 | 2022-11-01 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11488819B2 (en) | 2018-12-04 | 2022-11-01 | Asm Ip Holding B.V. | Method of cleaning substrate processing apparatus |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11495459B2 (en) | 2019-09-04 | 2022-11-08 | Asm Ip Holding B.V. | Methods for selective deposition using a sacrificial capping layer |
US11501956B2 (en) | 2012-10-12 | 2022-11-15 | Asm Ip Holding B.V. | Semiconductor reaction chamber showerhead |
US11501973B2 (en) | 2018-01-16 | 2022-11-15 | Asm Ip Holding B.V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US11499226B2 (en) | 2018-11-02 | 2022-11-15 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
US11515187B2 (en) | 2020-05-01 | 2022-11-29 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US11515188B2 (en) | 2019-05-16 | 2022-11-29 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11521851B2 (en) | 2020-02-03 | 2022-12-06 | Asm Ip Holding B.V. | Method of forming structures including a vanadium or indium layer |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11527400B2 (en) | 2019-08-23 | 2022-12-13 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11530483B2 (en) | 2018-06-21 | 2022-12-20 | Asm Ip Holding B.V. | Substrate processing system |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US11530876B2 (en) | 2020-04-24 | 2022-12-20 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US11551925B2 (en) | 2019-04-01 | 2023-01-10 | Asm Ip Holding B.V. | Method for manufacturing a semiconductor device |
US11551912B2 (en) | 2020-01-20 | 2023-01-10 | Asm Ip Holding B.V. | Method of forming thin film and method of modifying surface of thin film |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
US11557474B2 (en) | 2019-07-29 | 2023-01-17 | Asm Ip Holding B.V. | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11587821B2 (en) | 2017-08-08 | 2023-02-21 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
US11594450B2 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
US11594600B2 (en) | 2019-11-05 | 2023-02-28 | Asm Ip Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
US11605528B2 (en) | 2019-07-09 | 2023-03-14 | Asm Ip Holding B.V. | Plasma device using coaxial waveguide, and substrate treatment method |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
US11610775B2 (en) | 2016-07-28 | 2023-03-21 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11610774B2 (en) | 2019-10-02 | 2023-03-21 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
US11615970B2 (en) | 2019-07-17 | 2023-03-28 | Asm Ip Holding B.V. | Radical assist ignition plasma system and method |
US11626316B2 (en) | 2019-11-20 | 2023-04-11 | Asm Ip Holding B.V. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11626308B2 (en) | 2020-05-13 | 2023-04-11 | Asm Ip Holding B.V. | Laser alignment fixture for a reactor system |
US11629407B2 (en) | 2019-02-22 | 2023-04-18 | Asm Ip Holding B.V. | Substrate processing apparatus and method for processing substrates |
US11637011B2 (en) | 2019-10-16 | 2023-04-25 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US11639548B2 (en) | 2019-08-21 | 2023-05-02 | Asm Ip Holding B.V. | Film-forming material mixed-gas forming device and film forming device |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US11646204B2 (en) | 2020-06-24 | 2023-05-09 | Asm Ip Holding B.V. | Method for forming a layer provided with silicon |
US11646184B2 (en) | 2019-11-29 | 2023-05-09 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
US11644758B2 (en) | 2020-07-17 | 2023-05-09 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11646197B2 (en) | 2018-07-03 | 2023-05-09 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11649546B2 (en) | 2016-07-08 | 2023-05-16 | Asm Ip Holding B.V. | Organic reactants for atomic layer deposition |
US11658029B2 (en) | 2018-12-14 | 2023-05-23 | Asm Ip Holding B.V. | Method of forming a device structure using selective deposition of gallium nitride and system for same |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
US11658030B2 (en) | 2017-03-29 | 2023-05-23 | Asm Ip Holding B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US11664267B2 (en) | 2019-07-10 | 2023-05-30 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11664245B2 (en) | 2019-07-16 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing device |
US11664199B2 (en) | 2018-10-19 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11676812B2 (en) | 2016-02-19 | 2023-06-13 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on top/bottom portions |
US11674220B2 (en) | 2020-07-20 | 2023-06-13 | Asm Ip Holding B.V. | Method for depositing molybdenum layers using an underlayer |
US11680839B2 (en) | 2019-08-05 | 2023-06-20 | Asm Ip Holding B.V. | Liquid level sensor for a chemical source vessel |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
US11688603B2 (en) | 2019-07-17 | 2023-06-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium structures |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11705333B2 (en) | 2020-05-21 | 2023-07-18 | Asm Ip Holding B.V. | Structures including multiple carbon layers and methods of forming and using same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11725277B2 (en) | 2011-07-20 | 2023-08-15 | Asm Ip Holding B.V. | Pressure transmitter for a semiconductor processing environment |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
US11735422B2 (en) | 2019-10-10 | 2023-08-22 | Asm Ip Holding B.V. | Method of forming a photoresist underlayer and structure including same |
US11742189B2 (en) | 2015-03-12 | 2023-08-29 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
US11781221B2 (en) | 2019-05-07 | 2023-10-10 | Asm Ip Holding B.V. | Chemical source vessel with dip tube |
US11798999B2 (en) | 2018-11-16 | 2023-10-24 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US11795545B2 (en) | 2014-10-07 | 2023-10-24 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US11802338B2 (en) | 2017-07-26 | 2023-10-31 | Asm Ip Holding B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US11804388B2 (en) | 2018-09-11 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11804364B2 (en) | 2020-05-19 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11810788B2 (en) | 2016-11-01 | 2023-11-07 | Asm Ip Holding B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US11814747B2 (en) | 2019-04-24 | 2023-11-14 | Asm Ip Holding B.V. | Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly |
US11823866B2 (en) | 2020-04-02 | 2023-11-21 | Asm Ip Holding B.V. | Thin film forming method |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US11823876B2 (en) | 2019-09-05 | 2023-11-21 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11830738B2 (en) | 2020-04-03 | 2023-11-28 | Asm Ip Holding B.V. | Method for forming barrier layer and method for manufacturing semiconductor device |
US11827981B2 (en) | 2020-10-14 | 2023-11-28 | Asm Ip Holding B.V. | Method of depositing material on stepped structure |
US11828707B2 (en) | 2020-02-04 | 2023-11-28 | Asm Ip Holding B.V. | Method and apparatus for transmittance measurements of large articles |
US11840761B2 (en) | 2019-12-04 | 2023-12-12 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11848200B2 (en) | 2017-05-08 | 2023-12-19 | Asm Ip Holding B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US11873557B2 (en) | 2020-10-22 | 2024-01-16 | Asm Ip Holding B.V. | Method of depositing vanadium metal |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US11885023B2 (en) | 2018-10-01 | 2024-01-30 | Asm Ip Holding B.V. | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US11887857B2 (en) | 2020-04-24 | 2024-01-30 | Asm Ip Holding B.V. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
US11885020B2 (en) | 2020-12-22 | 2024-01-30 | Asm Ip Holding B.V. | Transition metal deposition method |
US11891696B2 (en) | 2020-11-30 | 2024-02-06 | Asm Ip Holding B.V. | Injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US11901179B2 (en) | 2020-10-28 | 2024-02-13 | Asm Ip Holding B.V. | Method and device for depositing silicon onto substrates |
US11898243B2 (en) | 2020-04-24 | 2024-02-13 | Asm Ip Holding B.V. | Method of forming vanadium nitride-containing layer |
US11915929B2 (en) | 2019-11-26 | 2024-02-27 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
US11923190B2 (en) | 2018-07-03 | 2024-03-05 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11923181B2 (en) | 2019-11-29 | 2024-03-05 | Asm Ip Holding B.V. | Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing |
US11929251B2 (en) | 2019-12-02 | 2024-03-12 | Asm Ip Holding B.V. | Substrate processing apparatus having electrostatic chuck and substrate processing method |
US11939673B2 (en) | 2018-02-23 | 2024-03-26 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
US11961741B2 (en) | 2020-03-12 | 2024-04-16 | Asm Ip Holding B.V. | Method for fabricating layer structure having target topological profile |
US11959168B2 (en) | 2020-04-29 | 2024-04-16 | Asm Ip Holding B.V. | Solid source precursor vessel |
US11967488B2 (en) | 2013-02-01 | 2024-04-23 | Asm Ip Holding B.V. | Method for treatment of deposition reactor |
US11976359B2 (en) | 2020-01-06 | 2024-05-07 | Asm Ip Holding B.V. | Gas supply assembly, components thereof, and reactor system including same |
US11986868B2 (en) | 2020-02-28 | 2024-05-21 | Asm Ip Holding B.V. | System dedicated for parts cleaning |
US11987881B2 (en) | 2020-05-22 | 2024-05-21 | Asm Ip Holding B.V. | Apparatus for depositing thin films using hydrogen peroxide |
US11996309B2 (en) | 2019-05-16 | 2024-05-28 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
US11996292B2 (en) | 2019-10-25 | 2024-05-28 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
US12006572B2 (en) | 2019-10-08 | 2024-06-11 | Asm Ip Holding B.V. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
US12020934B2 (en) | 2020-07-08 | 2024-06-25 | Asm Ip Holding B.V. | Substrate processing method |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US12027365B2 (en) | 2020-11-24 | 2024-07-02 | Asm Ip Holding B.V. | Methods for filling a gap and related systems and devices |
US12033885B2 (en) | 2020-01-06 | 2024-07-09 | Asm Ip Holding B.V. | Channeled lift pin |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US12040184B2 (en) | 2017-10-30 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US12051567B2 (en) | 2020-10-07 | 2024-07-30 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including gas supply unit |
US12057314B2 (en) | 2020-05-15 | 2024-08-06 | Asm Ip Holding B.V. | Methods for silicon germanium uniformity control using multiple precursors |
US12074022B2 (en) | 2020-08-27 | 2024-08-27 | Asm Ip Holding B.V. | Method and system for forming patterned structures using multiple patterning process |
US12087586B2 (en) | 2020-04-15 | 2024-09-10 | Asm Ip Holding B.V. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US12106944B2 (en) | 2020-06-02 | 2024-10-01 | Asm Ip Holding B.V. | Rotating substrate support |
US12107005B2 (en) | 2020-10-06 | 2024-10-01 | Asm Ip Holding B.V. | Deposition method and an apparatus for depositing a silicon-containing material |
US12112940B2 (en) | 2019-07-19 | 2024-10-08 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US12125700B2 (en) | 2021-01-13 | 2024-10-22 | Asm Ip Holding B.V. | Method of forming high aspect ratio features |
-
1989
- 1989-02-27 DE DE8902307U patent/DE8902307U1/en not_active Expired
Cited By (274)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3922833A1 (en) * | 1989-07-09 | 1991-01-10 | Heinrich Dr Soehlbrand | Semiconductor disc heat treatment oven - has inlet apertures in row(s) in inner processing tube |
NL1005963C2 (en) * | 1997-05-02 | 1998-11-09 | Asm Int | Vertical oven for treating semiconductor substrates. |
WO1998050606A1 (en) * | 1997-05-02 | 1998-11-12 | Asm International N.V. | Vertical furnace for the treatment of semiconductor substrates |
US6225602B1 (en) | 1997-05-02 | 2001-05-01 | Advanced Semiconductor Materials International N.V. | Vertical furnace for the treatment of semiconductor substrates |
US11725277B2 (en) | 2011-07-20 | 2023-08-15 | Asm Ip Holding B.V. | Pressure transmitter for a semiconductor processing environment |
US11501956B2 (en) | 2012-10-12 | 2022-11-15 | Asm Ip Holding B.V. | Semiconductor reaction chamber showerhead |
US11967488B2 (en) | 2013-02-01 | 2024-04-23 | Asm Ip Holding B.V. | Method for treatment of deposition reactor |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US11795545B2 (en) | 2014-10-07 | 2023-10-24 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US11742189B2 (en) | 2015-03-12 | 2023-08-29 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US11242598B2 (en) | 2015-06-26 | 2022-02-08 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US11956977B2 (en) | 2015-12-29 | 2024-04-09 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US11676812B2 (en) | 2016-02-19 | 2023-06-13 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on top/bottom portions |
US11101370B2 (en) | 2016-05-02 | 2021-08-24 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US11094582B2 (en) | 2016-07-08 | 2021-08-17 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US11749562B2 (en) | 2016-07-08 | 2023-09-05 | Asm Ip Holding B.V. | Selective deposition method to form air gaps |
US11649546B2 (en) | 2016-07-08 | 2023-05-16 | Asm Ip Holding B.V. | Organic reactants for atomic layer deposition |
US11694892B2 (en) | 2016-07-28 | 2023-07-04 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11205585B2 (en) | 2016-07-28 | 2021-12-21 | Asm Ip Holding B.V. | Substrate processing apparatus and method of operating the same |
US11107676B2 (en) | 2016-07-28 | 2021-08-31 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11610775B2 (en) | 2016-07-28 | 2023-03-21 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US11810788B2 (en) | 2016-11-01 | 2023-11-07 | Asm Ip Holding B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US11396702B2 (en) | 2016-11-15 | 2022-07-26 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including the gas supply unit |
US11222772B2 (en) | 2016-12-14 | 2022-01-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US12000042B2 (en) | 2016-12-15 | 2024-06-04 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11970766B2 (en) | 2016-12-15 | 2024-04-30 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11851755B2 (en) | 2016-12-15 | 2023-12-26 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
US11001925B2 (en) | 2016-12-19 | 2021-05-11 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11251035B2 (en) | 2016-12-22 | 2022-02-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US12043899B2 (en) | 2017-01-10 | 2024-07-23 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US11410851B2 (en) | 2017-02-15 | 2022-08-09 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US12106965B2 (en) | 2017-02-15 | 2024-10-01 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US11658030B2 (en) | 2017-03-29 | 2023-05-23 | Asm Ip Holding B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US11848200B2 (en) | 2017-05-08 | 2023-12-19 | Asm Ip Holding B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11976361B2 (en) | 2017-06-28 | 2024-05-07 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US11695054B2 (en) | 2017-07-18 | 2023-07-04 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11164955B2 (en) | 2017-07-18 | 2021-11-02 | Asm Ip Holding B.V. | Methods for forming a semiconductor device structure and related semiconductor device structures |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US11004977B2 (en) | 2017-07-19 | 2021-05-11 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11802338B2 (en) | 2017-07-26 | 2023-10-31 | Asm Ip Holding B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US11417545B2 (en) | 2017-08-08 | 2022-08-16 | Asm Ip Holding B.V. | Radiation shield |
US11587821B2 (en) | 2017-08-08 | 2023-02-21 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11581220B2 (en) | 2017-08-30 | 2023-02-14 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11069510B2 (en) | 2017-08-30 | 2021-07-20 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US11387120B2 (en) | 2017-09-28 | 2022-07-12 | Asm Ip Holding B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US11094546B2 (en) | 2017-10-05 | 2021-08-17 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US12033861B2 (en) | 2017-10-05 | 2024-07-09 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US12040184B2 (en) | 2017-10-30 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
US11127617B2 (en) | 2017-11-27 | 2021-09-21 | Asm Ip Holding B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US11682572B2 (en) | 2017-11-27 | 2023-06-20 | Asm Ip Holdings B.V. | Storage device for storing wafer cassettes for use with a batch furnace |
US11639811B2 (en) | 2017-11-27 | 2023-05-02 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
US11501973B2 (en) | 2018-01-16 | 2022-11-15 | Asm Ip Holding B.V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
US11482412B2 (en) | 2018-01-19 | 2022-10-25 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11393690B2 (en) | 2018-01-19 | 2022-07-19 | Asm Ip Holding B.V. | Deposition method |
US12119228B2 (en) | 2018-01-19 | 2024-10-15 | Asm Ip Holding B.V. | Deposition method |
US11972944B2 (en) | 2018-01-19 | 2024-04-30 | Asm Ip Holding B.V. | Method for depositing a gap-fill layer by plasma-assisted deposition |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11735414B2 (en) | 2018-02-06 | 2023-08-22 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US11387106B2 (en) | 2018-02-14 | 2022-07-12 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11482418B2 (en) | 2018-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Substrate processing method and apparatus |
US11939673B2 (en) | 2018-02-23 | 2024-03-26 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
US12020938B2 (en) | 2018-03-27 | 2024-06-25 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11398382B2 (en) | 2018-03-27 | 2022-07-26 | Asm Ip Holding B.V. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
US11908733B2 (en) | 2018-05-28 | 2024-02-20 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11361990B2 (en) | 2018-05-28 | 2022-06-14 | Asm Ip Holding B.V. | Substrate processing method and device manufactured by using the same |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11837483B2 (en) | 2018-06-04 | 2023-12-05 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11270899B2 (en) | 2018-06-04 | 2022-03-08 | Asm Ip Holding B.V. | Wafer handling chamber with moisture reduction |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
US11296189B2 (en) | 2018-06-21 | 2022-04-05 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
US11530483B2 (en) | 2018-06-21 | 2022-12-20 | Asm Ip Holding B.V. | Substrate processing system |
US11952658B2 (en) | 2018-06-27 | 2024-04-09 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11814715B2 (en) | 2018-06-27 | 2023-11-14 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11492703B2 (en) | 2018-06-27 | 2022-11-08 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11499222B2 (en) | 2018-06-27 | 2022-11-15 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
US11168395B2 (en) | 2018-06-29 | 2021-11-09 | Asm Ip Holding B.V. | Temperature-controlled flange and reactor system including same |
US11923190B2 (en) | 2018-07-03 | 2024-03-05 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11646197B2 (en) | 2018-07-03 | 2023-05-09 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11274369B2 (en) | 2018-09-11 | 2022-03-15 | Asm Ip Holding B.V. | Thin film deposition method |
US11804388B2 (en) | 2018-09-11 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
US11885023B2 (en) | 2018-10-01 | 2024-01-30 | Asm Ip Holding B.V. | Substrate retaining apparatus, system including the apparatus, and method of using same |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11414760B2 (en) | 2018-10-08 | 2022-08-16 | Asm Ip Holding B.V. | Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same |
US11251068B2 (en) | 2018-10-19 | 2022-02-15 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
US11664199B2 (en) | 2018-10-19 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing apparatus and substrate processing method |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11735445B2 (en) | 2018-10-31 | 2023-08-22 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11866823B2 (en) | 2018-11-02 | 2024-01-09 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11499226B2 (en) | 2018-11-02 | 2022-11-15 | Asm Ip Holding B.V. | Substrate supporting unit and a substrate processing device including the same |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US11244825B2 (en) | 2018-11-16 | 2022-02-08 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US11798999B2 (en) | 2018-11-16 | 2023-10-24 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
US11488819B2 (en) | 2018-12-04 | 2022-11-01 | Asm Ip Holding B.V. | Method of cleaning substrate processing apparatus |
US11769670B2 (en) | 2018-12-13 | 2023-09-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
US11658029B2 (en) | 2018-12-14 | 2023-05-23 | Asm Ip Holding B.V. | Method of forming a device structure using selective deposition of gallium nitride and system for same |
US11390946B2 (en) | 2019-01-17 | 2022-07-19 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11959171B2 (en) | 2019-01-17 | 2024-04-16 | Asm Ip Holding B.V. | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
US11171025B2 (en) | 2019-01-22 | 2021-11-09 | Asm Ip Holding B.V. | Substrate processing device |
US11127589B2 (en) | 2019-02-01 | 2021-09-21 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11798834B2 (en) | 2019-02-20 | 2023-10-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11251040B2 (en) | 2019-02-20 | 2022-02-15 | Asm Ip Holding B.V. | Cyclical deposition method including treatment step and apparatus for same |
US11227789B2 (en) | 2019-02-20 | 2022-01-18 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
US11615980B2 (en) | 2019-02-20 | 2023-03-28 | Asm Ip Holding B.V. | Method and apparatus for filling a recess formed within a substrate surface |
US11342216B2 (en) | 2019-02-20 | 2022-05-24 | Asm Ip Holding B.V. | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
US11629407B2 (en) | 2019-02-22 | 2023-04-18 | Asm Ip Holding B.V. | Substrate processing apparatus and method for processing substrates |
US11114294B2 (en) | 2019-03-08 | 2021-09-07 | Asm Ip Holding B.V. | Structure including SiOC layer and method of forming same |
US11424119B2 (en) | 2019-03-08 | 2022-08-23 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
US11901175B2 (en) | 2019-03-08 | 2024-02-13 | Asm Ip Holding B.V. | Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer |
US11378337B2 (en) | 2019-03-28 | 2022-07-05 | Asm Ip Holding B.V. | Door opener and substrate processing apparatus provided therewith |
US11551925B2 (en) | 2019-04-01 | 2023-01-10 | Asm Ip Holding B.V. | Method for manufacturing a semiconductor device |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11814747B2 (en) | 2019-04-24 | 2023-11-14 | Asm Ip Holding B.V. | Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly |
US11781221B2 (en) | 2019-05-07 | 2023-10-10 | Asm Ip Holding B.V. | Chemical source vessel with dip tube |
US11289326B2 (en) | 2019-05-07 | 2022-03-29 | Asm Ip Holding B.V. | Method for reforming amorphous carbon polymer film |
US11355338B2 (en) | 2019-05-10 | 2022-06-07 | Asm Ip Holding B.V. | Method of depositing material onto a surface and structure formed according to the method |
US11515188B2 (en) | 2019-05-16 | 2022-11-29 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
US11996309B2 (en) | 2019-05-16 | 2024-05-28 | Asm Ip Holding B.V. | Wafer boat handling device, vertical batch furnace and method |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
US11345999B2 (en) | 2019-06-06 | 2022-05-31 | Asm Ip Holding B.V. | Method of using a gas-phase reactor system including analyzing exhausted gas |
US11908684B2 (en) | 2019-06-11 | 2024-02-20 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
US11476109B2 (en) | 2019-06-11 | 2022-10-18 | Asm Ip Holding B.V. | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
US11746414B2 (en) | 2019-07-03 | 2023-09-05 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11390945B2 (en) | 2019-07-03 | 2022-07-19 | Asm Ip Holding B.V. | Temperature control assembly for substrate processing apparatus and method of using same |
US11605528B2 (en) | 2019-07-09 | 2023-03-14 | Asm Ip Holding B.V. | Plasma device using coaxial waveguide, and substrate treatment method |
US11664267B2 (en) | 2019-07-10 | 2023-05-30 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US12107000B2 (en) | 2019-07-10 | 2024-10-01 | Asm Ip Holding B.V. | Substrate support assembly and substrate processing device including the same |
US11664245B2 (en) | 2019-07-16 | 2023-05-30 | Asm Ip Holding B.V. | Substrate processing device |
US11996304B2 (en) | 2019-07-16 | 2024-05-28 | Asm Ip Holding B.V. | Substrate processing device |
US11688603B2 (en) | 2019-07-17 | 2023-06-27 | Asm Ip Holding B.V. | Methods of forming silicon germanium structures |
US11615970B2 (en) | 2019-07-17 | 2023-03-28 | Asm Ip Holding B.V. | Radical assist ignition plasma system and method |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
US11282698B2 (en) | 2019-07-19 | 2022-03-22 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US12112940B2 (en) | 2019-07-19 | 2024-10-08 | Asm Ip Holding B.V. | Method of forming topology-controlled amorphous carbon polymer film |
US11557474B2 (en) | 2019-07-29 | 2023-01-17 | Asm Ip Holding B.V. | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
US11443926B2 (en) | 2019-07-30 | 2022-09-13 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11430640B2 (en) | 2019-07-30 | 2022-08-30 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11876008B2 (en) | 2019-07-31 | 2024-01-16 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11680839B2 (en) | 2019-08-05 | 2023-06-20 | Asm Ip Holding B.V. | Liquid level sensor for a chemical source vessel |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
US11639548B2 (en) | 2019-08-21 | 2023-05-02 | Asm Ip Holding B.V. | Film-forming material mixed-gas forming device and film forming device |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
US11594450B2 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
US12040229B2 (en) | 2019-08-22 | 2024-07-16 | Asm Ip Holding B.V. | Method for forming a structure with a hole |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US11898242B2 (en) | 2019-08-23 | 2024-02-13 | Asm Ip Holding B.V. | Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film |
US11827978B2 (en) | 2019-08-23 | 2023-11-28 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
US12033849B2 (en) | 2019-08-23 | 2024-07-09 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane |
US11527400B2 (en) | 2019-08-23 | 2022-12-13 | Asm Ip Holding B.V. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
US11495459B2 (en) | 2019-09-04 | 2022-11-08 | Asm Ip Holding B.V. | Methods for selective deposition using a sacrificial capping layer |
US11823876B2 (en) | 2019-09-05 | 2023-11-21 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
US11610774B2 (en) | 2019-10-02 | 2023-03-21 | Asm Ip Holding B.V. | Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process |
US12006572B2 (en) | 2019-10-08 | 2024-06-11 | Asm Ip Holding B.V. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
US11339476B2 (en) | 2019-10-08 | 2022-05-24 | Asm Ip Holding B.V. | Substrate processing device having connection plates, substrate processing method |
US11735422B2 (en) | 2019-10-10 | 2023-08-22 | Asm Ip Holding B.V. | Method of forming a photoresist underlayer and structure including same |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
US11637011B2 (en) | 2019-10-16 | 2023-04-25 | Asm Ip Holding B.V. | Method of topology-selective film formation of silicon oxide |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
US11315794B2 (en) | 2019-10-21 | 2022-04-26 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching films |
US11996292B2 (en) | 2019-10-25 | 2024-05-28 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
US11594600B2 (en) | 2019-11-05 | 2023-02-28 | Asm Ip Holding B.V. | Structures with doped semiconductor layers and methods and systems for forming same |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
US11626316B2 (en) | 2019-11-20 | 2023-04-11 | Asm Ip Holding B.V. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
US11401605B2 (en) | 2019-11-26 | 2022-08-02 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11915929B2 (en) | 2019-11-26 | 2024-02-27 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
US11646184B2 (en) | 2019-11-29 | 2023-05-09 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11923181B2 (en) | 2019-11-29 | 2024-03-05 | Asm Ip Holding B.V. | Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing |
US11929251B2 (en) | 2019-12-02 | 2024-03-12 | Asm Ip Holding B.V. | Substrate processing apparatus having electrostatic chuck and substrate processing method |
US11840761B2 (en) | 2019-12-04 | 2023-12-12 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11885013B2 (en) | 2019-12-17 | 2024-01-30 | Asm Ip Holding B.V. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
US12119220B2 (en) | 2019-12-19 | 2024-10-15 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
US11976359B2 (en) | 2020-01-06 | 2024-05-07 | Asm Ip Holding B.V. | Gas supply assembly, components thereof, and reactor system including same |
US12033885B2 (en) | 2020-01-06 | 2024-07-09 | Asm Ip Holding B.V. | Channeled lift pin |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
US11551912B2 (en) | 2020-01-20 | 2023-01-10 | Asm Ip Holding B.V. | Method of forming thin film and method of modifying surface of thin film |
US11521851B2 (en) | 2020-02-03 | 2022-12-06 | Asm Ip Holding B.V. | Method of forming structures including a vanadium or indium layer |
US11828707B2 (en) | 2020-02-04 | 2023-11-28 | Asm Ip Holding B.V. | Method and apparatus for transmittance measurements of large articles |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
US11986868B2 (en) | 2020-02-28 | 2024-05-21 | Asm Ip Holding B.V. | System dedicated for parts cleaning |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
US11488854B2 (en) | 2020-03-11 | 2022-11-01 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11837494B2 (en) | 2020-03-11 | 2023-12-05 | Asm Ip Holding B.V. | Substrate handling device with adjustable joints |
US11961741B2 (en) | 2020-03-12 | 2024-04-16 | Asm Ip Holding B.V. | Method for fabricating layer structure having target topological profile |
US11823866B2 (en) | 2020-04-02 | 2023-11-21 | Asm Ip Holding B.V. | Thin film forming method |
US11830738B2 (en) | 2020-04-03 | 2023-11-28 | Asm Ip Holding B.V. | Method for forming barrier layer and method for manufacturing semiconductor device |
US11437241B2 (en) | 2020-04-08 | 2022-09-06 | Asm Ip Holding B.V. | Apparatus and methods for selectively etching silicon oxide films |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
US12087586B2 (en) | 2020-04-15 | 2024-09-10 | Asm Ip Holding B.V. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
US11530876B2 (en) | 2020-04-24 | 2022-12-20 | Asm Ip Holding B.V. | Vertical batch furnace assembly comprising a cooling gas supply |
US11887857B2 (en) | 2020-04-24 | 2024-01-30 | Asm Ip Holding B.V. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
US11898243B2 (en) | 2020-04-24 | 2024-02-13 | Asm Ip Holding B.V. | Method of forming vanadium nitride-containing layer |
US11959168B2 (en) | 2020-04-29 | 2024-04-16 | Asm Ip Holding B.V. | Solid source precursor vessel |
US11798830B2 (en) | 2020-05-01 | 2023-10-24 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US11515187B2 (en) | 2020-05-01 | 2022-11-29 | Asm Ip Holding B.V. | Fast FOUP swapping with a FOUP handler |
US11626308B2 (en) | 2020-05-13 | 2023-04-11 | Asm Ip Holding B.V. | Laser alignment fixture for a reactor system |
US12057314B2 (en) | 2020-05-15 | 2024-08-06 | Asm Ip Holding B.V. | Methods for silicon germanium uniformity control using multiple precursors |
US11804364B2 (en) | 2020-05-19 | 2023-10-31 | Asm Ip Holding B.V. | Substrate processing apparatus |
US11705333B2 (en) | 2020-05-21 | 2023-07-18 | Asm Ip Holding B.V. | Structures including multiple carbon layers and methods of forming and using same |
US11987881B2 (en) | 2020-05-22 | 2024-05-21 | Asm Ip Holding B.V. | Apparatus for depositing thin films using hydrogen peroxide |
US11767589B2 (en) | 2020-05-29 | 2023-09-26 | Asm Ip Holding B.V. | Substrate processing device |
US12106944B2 (en) | 2020-06-02 | 2024-10-01 | Asm Ip Holding B.V. | Rotating substrate support |
US11646204B2 (en) | 2020-06-24 | 2023-05-09 | Asm Ip Holding B.V. | Method for forming a layer provided with silicon |
US11658035B2 (en) | 2020-06-30 | 2023-05-23 | Asm Ip Holding B.V. | Substrate processing method |
US12020934B2 (en) | 2020-07-08 | 2024-06-25 | Asm Ip Holding B.V. | Substrate processing method |
US12055863B2 (en) | 2020-07-17 | 2024-08-06 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11644758B2 (en) | 2020-07-17 | 2023-05-09 | Asm Ip Holding B.V. | Structures and methods for use in photolithography |
US11674220B2 (en) | 2020-07-20 | 2023-06-13 | Asm Ip Holding B.V. | Method for depositing molybdenum layers using an underlayer |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
US12074022B2 (en) | 2020-08-27 | 2024-08-27 | Asm Ip Holding B.V. | Method and system for forming patterned structures using multiple patterning process |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
US12107005B2 (en) | 2020-10-06 | 2024-10-01 | Asm Ip Holding B.V. | Deposition method and an apparatus for depositing a silicon-containing material |
US12051567B2 (en) | 2020-10-07 | 2024-07-30 | Asm Ip Holding B.V. | Gas supply unit and substrate processing apparatus including gas supply unit |
US11827981B2 (en) | 2020-10-14 | 2023-11-28 | Asm Ip Holding B.V. | Method of depositing material on stepped structure |
US11873557B2 (en) | 2020-10-22 | 2024-01-16 | Asm Ip Holding B.V. | Method of depositing vanadium metal |
US11901179B2 (en) | 2020-10-28 | 2024-02-13 | Asm Ip Holding B.V. | Method and device for depositing silicon onto substrates |
US12027365B2 (en) | 2020-11-24 | 2024-07-02 | Asm Ip Holding B.V. | Methods for filling a gap and related systems and devices |
US11891696B2 (en) | 2020-11-30 | 2024-02-06 | Asm Ip Holding B.V. | Injector configured for arrangement within a reaction chamber of a substrate processing apparatus |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
US11885020B2 (en) | 2020-12-22 | 2024-01-30 | Asm Ip Holding B.V. | Transition metal deposition method |
US12125700B2 (en) | 2021-01-13 | 2024-10-22 | Asm Ip Holding B.V. | Method of forming high aspect ratio features |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE8902307U1 (en) | Device for thermal treatment of semiconductor materials | |
DE69120193T2 (en) | Batch process and device for treating semiconductor wafers | |
DE69733923T2 (en) | Vertical double oven for heat treatment | |
EP0597053B1 (en) | Device for heat-treating a magazine for lead frames with electronic components | |
DE4005956C1 (en) | ||
DE69024077T2 (en) | Device and method for treating semiconductor wafers | |
DE3906075C2 (en) | ||
DE102005024118B4 (en) | Apparatus and method for reducing particles in the thermal treatment of rotating substrates | |
DE8801785U1 (en) | Device for temperature treatment of semiconductor materials | |
EP0225501A2 (en) | Process and apparatus for treating semiconductor materials | |
CH673351A5 (en) | ||
DE69110619T2 (en) | Separation device for the growth of a material with reduced risk. | |
DE69224942T2 (en) | Processing system free of ambient air | |
DE19803740C2 (en) | Gas phase coating method and device for gas phase coating workpieces | |
EP3600730B1 (en) | Device, method and system for the additive manufacture of workpieces | |
EP0727498A1 (en) | Process and installation for cooling workpieces, in particular for hardening | |
DE69111540T2 (en) | Device for producing a layer in a vacuum. | |
DE2838553A1 (en) | DEVICE FOR COOLING LONG, WARMED WORKPIECES | |
DE69616631T2 (en) | Method and device for the heat treatment of workpieces | |
EP0763148B1 (en) | Reactor and process for coating flat substrates | |
DE2727232A1 (en) | DEVICE AND METHOD FOR CONTINUOUS TREATMENT OF METAL REELS ETC. | |
DE2244913A1 (en) | METHOD AND DEVICE FOR HEAT TREATMENT OF STEEL STRIP | |
DE19856191C2 (en) | Plant for heat treatment of parts | |
WO2003031680A1 (en) | Methods for the production of components and ultra high vacuum cvd reactor | |
DE4030675C2 (en) | Device and method for depositing materials on a substrate |