JP2006124832A - Vapor phase growth system and vapor phase growth method - Google Patents

Vapor phase growth system and vapor phase growth method Download PDF

Info

Publication number
JP2006124832A
JP2006124832A JP2005285210A JP2005285210A JP2006124832A JP 2006124832 A JP2006124832 A JP 2006124832A JP 2005285210 A JP2005285210 A JP 2005285210A JP 2005285210 A JP2005285210 A JP 2005285210A JP 2006124832 A JP2006124832 A JP 2006124832A
Authority
JP
Japan
Prior art keywords
reaction vessel
exhaust
gas
vapor phase
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005285210A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sato
清 佐藤
Naoki Abe
直毅 阿部
Akira Asano
昭 浅野
Junichi Irimura
純一 入村
Naohiko Saeki
尚彦 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2005285210A priority Critical patent/JP2006124832A/en
Publication of JP2006124832A publication Critical patent/JP2006124832A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor phase growth system capable of enhancing the durability of a reaction vessel and further enhancing exhaust efficiency and efficiently depositing high-quality deposit, and to provide a vapor phase growth method. <P>SOLUTION: The pulse CVD system is equipped with the reaction vessel, a heating apparatus for controlling heating of an object to be treated arranged on a stage in the reaction vessel, a treatment gas supply system for supplying the treatment gas from a treatment gas generation source into the reaction vessel, and an exhaust system having an exhaust pump, controlling the inside of the reaction vessel to a reduced pressure and exhausting the inside of the reaction vessel, and performs the supply and exhaust of the treatment gas to and from the reaction vessel repeatedly a prescribed number of times, wherein the reaction vessel is a double tube structure consisting of an inner tube and an outer tube and an outer tube and in addition, a treatment gas storage vessel for temporarily storing the treatment gas is arranged between the reaction vessel and the treatment gas generation source, and an exhaust gas storage vessel for temporarily storing the exhaust gas is arranged between the reaction vessel and the vacuum pump. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、気相成長装置及び気相成長法に関する。   The present invention relates to a vapor phase growth apparatus and a vapor phase growth method.

気相成長法は、被処理体を収容した反応容器内に処理ガスを導入し、熱分解反応により被処理体上に処理ガスに由来する反応生成物を析出させる方法であり、種々の用途に使用されている。気相析出法の一つとして、多孔質基材を被処理体とし、その気孔内部を含めてセラミックスや炭素、金属等の各種物質を析出させる気相化学含浸法(CVI:Chemical Vapor Infiltration)が知られている。このCVI法は、処理ガスを多孔質基材の気孔内部にまで送り込み、熱分解反応等を利用して処理ガスに由来する反応生成物を析出させる方法である。   Vapor phase epitaxy is a method in which a processing gas is introduced into a reaction vessel containing an object to be processed, and a reaction product derived from the processing gas is deposited on the object to be processed by a thermal decomposition reaction. in use. As one of the vapor phase deposition methods, there is a vapor phase chemical impregnation method (CVI: Chemical Vapor Infiltration) in which a porous substrate is used as an object to be treated and various substances such as ceramics, carbon, and metal are deposited including the inside of the pores. Are known. This CVI method is a method in which a processing gas is fed into the pores of a porous substrate, and a reaction product derived from the processing gas is deposited using a thermal decomposition reaction or the like.

CVI法は、析出プロセスの形式により、減圧CVI、強制流型CVI、パルスCVI等に分類される。減圧CVIは、反応容器内を減圧にすることで、気体の拡散速度を増加させ、気孔内部への物質輸送を促進させる方法である。強制流型CVIは、多孔質基材にガスを流通させ、強制的に気孔内に処理ガスを導入し、生成ガスを排出する方法である。パルスCVI法は、反応容器の減圧と昇圧とを短周期で繰り返し行い、間歇的に処理ガスを気孔内部に供給し、生成ガスを排出する方法である。中でも、ガス供給・排出の形式から、パルスCVI法は、多孔質基材内部への均質成膜性に優れることが知られている。   The CVI method is classified into reduced pressure CVI, forced flow type CVI, pulse CVI, etc., depending on the type of precipitation process. The reduced pressure CVI is a method of increasing the gas diffusion rate by reducing the pressure in the reaction vessel and promoting the material transport into the pores. The forced flow type CVI is a method in which a gas is circulated through a porous substrate, a processing gas is forcibly introduced into the pores, and a generated gas is discharged. The pulse CVI method is a method in which the pressure reduction and pressure increase of the reaction vessel are repeated in a short cycle, the processing gas is intermittently supplied into the pores, and the generated gas is discharged. Among these, the pulse CVI method is known to be excellent in uniform film formation inside a porous substrate because of the form of gas supply / discharge.

但し、パルスCVI法では、反応容器が減圧と昇圧とを繰り返し受けるため、反応容器には特に耐圧性が要求される。従来は、石英ガラス製の反応容器が使用されているが(特許文献1、特許文献2参照)、石英ガラスは1000℃以上で軟化変形するので、反応温度1000℃以上を必要とする材料を析出させることはできない。特に装置を大型化した場合に、軟化変形の問題が大きくなる。また、石英ガラスは衝撃や過荷重により、簡単に脆性破壊するという欠点を持つ。   However, in the pulse CVI method, since the reaction vessel repeatedly receives pressure reduction and pressure increase, the reaction vessel is particularly required to have pressure resistance. Conventionally, reaction vessels made of quartz glass have been used (see Patent Document 1 and Patent Document 2). Since quartz glass is softened and deformed at 1000 ° C. or higher, a material that requires a reaction temperature of 1000 ° C. or higher is deposited. I can't let you. In particular, when the apparatus is enlarged, the problem of softening deformation increases. In addition, quartz glass has a drawback that it easily brittlely breaks due to impact or overload.

1000℃以上の反応温度を実現するために、石英ガラスの代わりに、SiC等の耐熱セラミックスを用いる方法も考えられる。しかし、大型のセラミック部品は、セラミックが持つ脆性ゆえに、強度の保証が難しい。また、生産性を上げるために、反応容器の急速昇温、急速冷却を行おうとすると、セラミックスの耐熱衝撃性の弱さが問題になる。   In order to realize a reaction temperature of 1000 ° C. or higher, a method using heat-resistant ceramics such as SiC instead of quartz glass is also conceivable. However, it is difficult to guarantee the strength of large ceramic parts due to the brittleness of ceramics. In addition, in order to increase the productivity, if the temperature of the reaction vessel is rapidly raised and rapidly cooled, the weak thermal shock resistance of ceramics becomes a problem.

石英ガラスやセラミックスの代わりに、耐熱金属で反応管を作成する方法も考えられるが、この場合、耐食性が問題となる。例えばインコネル等Ni基の耐熱合金を使用した場合、Siを含む処理ガスに高温で接触させると、その表面にNi−Si系の金属間化合物が生成する。Ni−Si系の金属間化合物で融点の最も低いのはNiSiで、その共融点は970℃である。そのため、反応容器の温度を970℃以上に上げると、液相NiSiによる、Ni基合金の侵食が進み、最悪の場合には腐蝕孔が開く。Ni基以外の耐熱合金にも、Niが含まれているので同様の問題が発生する。   A method of creating a reaction tube with a refractory metal instead of quartz glass or ceramics is also conceivable, but in this case, corrosion resistance becomes a problem. For example, when a Ni-based heat-resistant alloy such as Inconel is used, a Ni—Si based intermetallic compound is formed on the surface of the Ni-based heat-resistant alloy when it is brought into contact with a processing gas containing Si at a high temperature. NiSi has the lowest melting point among Ni-Si based intermetallic compounds, and its eutectic point is 970 ° C. Therefore, when the temperature of the reaction vessel is increased to 970 ° C. or more, the Ni-base alloy is eroded by the liquid phase NiSi, and in the worst case, corrosion holes are opened. A similar problem occurs because heat-resistant alloys other than Ni-based alloys also contain Ni.

また、炭素質の反応管を金属製の密閉容器に収め、密閉容器内に収めたヒータで炭素質反応管を加熱すること(特許文献3参照)や、更に炭素質反応管の表面をガス不透過性のSiCで被覆して反応管の気密性を向上させることも行なわれている(特許文献4参照)。しかし、特許文献3の装置では、(1)冷却速度が遅い:密閉容器内に、反応管、ヒータ、断熱材が収められているので、熱容量が大きく冷めにくい、(2)試料の取り出しが頻繁である:試料が2重の密閉容器に収められているので、2つ以上のフランジを外さないと試料を取り出せない、という問題がある。また、特許文献4の装置では、SiC被覆炭素管の信頼性に問題がある。実施例には50回の運転に耐えたとあるが、例えば、急速冷却を行なうことで、SiC層に亀裂が入れば、炭素質反応管の酸化が急激に進む危険がある。また、取り扱い上の不注意で、工具等を反応管にぶつけると、SiC層が脱落し、やはり炭素質反応管の酸化が進む。パルスCVI法では、使用する処理ガスとして水素を使用することが多く、リークすると爆発の危険が高く、SiC被覆炭素管は管理が難しく、実用的でない。   In addition, the carbonaceous reaction tube is housed in a metal sealed container, and the carbonaceous reaction tube is heated with a heater housed in the sealed container (see Patent Document 3). It is also practiced to improve the airtightness of the reaction tube by coating with permeable SiC (see Patent Document 4). However, in the apparatus of Patent Document 3, (1) the cooling rate is slow: the reaction tube, the heater, and the heat insulating material are housed in the sealed container, so the heat capacity is large and it is difficult to cool down. (2) Samples are frequently taken out There is a problem that the sample cannot be taken out unless two or more flanges are removed because the sample is stored in a double sealed container. Moreover, in the apparatus of patent document 4, there exists a problem in the reliability of a SiC covering carbon tube. In the embodiment, it is said that the device has endured 50 times. However, for example, if the SiC layer cracks due to rapid cooling, there is a risk that the oxidation of the carbonaceous reaction tube proceeds rapidly. In addition, if a tool or the like is struck against the reaction tube due to careless handling, the SiC layer falls off, and oxidation of the carbonaceous reaction tube proceeds. In the pulse CVI method, hydrogen is often used as a processing gas to be used, and if it leaks, there is a high risk of explosion, and the SiC-coated carbon tube is difficult to manage and is not practical.

更に、パルスCVI法では処理ガスの導入と生成ガスの排気とを繰り返し、反応を多数回行なうため、反応毎にバラツキがあると良質な析出物が得られない。そのため、特に排気は重要であるが、排気を長時間かけて十分に行なうと処理効率が低下する。真空ポンプを大型化することも考えられるが、設備コスト及び運転コストを招く。工業的には反応容器の容量を大きくして一度により多数の多孔質基材を処理することが望まれるが、排気の問題が大きな障害となっている。   Furthermore, in the pulse CVI method, the introduction of the processing gas and the exhaust of the generated gas are repeated, and the reaction is performed many times. Therefore, if the reaction varies, a high-quality precipitate cannot be obtained. Therefore, exhaust is particularly important. However, if exhaust is sufficiently performed for a long time, the processing efficiency is lowered. Although it is conceivable to increase the size of the vacuum pump, the equipment cost and the operation cost are incurred. Industrially, it is desired to increase the capacity of the reaction vessel and process a large number of porous substrates at once, but the problem of exhaustion is a major obstacle.

また、一般的な気相成長装置や気相成長方法も同様に、反応容器の処理ガスによる腐食や耐久性、排気時間に伴う処理効率、安全性等の問題を抱えている。
特開平8−91963号公報 特開平8−188489号公報 特開平6−345569号公報 特開平6−57433号公報
Similarly, general vapor phase growth apparatuses and vapor phase growth methods also have problems such as corrosion and durability due to processing gas in the reaction vessel, processing efficiency associated with exhaust time, and safety.
JP-A-8-91963 Japanese Patent Laid-Open No. 8-188489 Japanese Patent Laid-Open No. 6-345569 JP-A-6-57433

本発明は上記のような状況に鑑みてなされたものであり、反応容器の耐久性を高め、更に排気効率を高めて、効率よく、高品質の析出物を析出させ得る気相成長装置及び気相成長方法を提供することを目的とする。   The present invention has been made in view of the situation as described above, and improves the durability of the reaction vessel, further increases the exhaust efficiency, and allows a vapor deposition apparatus and a gas deposition apparatus that can efficiently deposit high-quality precipitates. The object is to provide a phase growth method.

本発明は、上記の課題を解決するために、下記に示す気相成長装置及び気相成長方法を提供する。
(1)反応容器と、前記反応容器内の試料台上に配置された被処理体を加熱制御する加熱装置と、処理ガス発生源からの処理ガスを前記反応容器内に供給する処理ガス供給系と、排気ポンプを有し前記反応容器内を減圧に制御するとともに該反応容器内を排気する排気系とを備える気相成長装置において、
前記反応容器が内管と外管とからなる二重管構造であり、かつ、該反応容器と前記処理ガス発生源との間に処理ガスを一時保持する処理ガス貯留容器を配置し、該反応容器と前記真空ポンプとの間に排気ガスを一時保持する排気ガス貯留容器を配置したことを特徴とした気相成長装置。
(2)前記排気ガス貯留容器のガス導入管とガス排気管との間に、前記排気ガス貯留容器をバイパスするバイパス配管を設けたことを特徴とする上記(1)記載の気相成長装置。
(3)前記反応容器の外管と内管との間の空間が気密に保持されるとともに、該空間に非酸化性ガスを供給する非酸化性ガス供給系と、該空間から非酸化性ガスを排気する非酸化性ガス排気系とを備えたことを特徴とする上記(1)または(2)記載の気相成長装置。
(4)前記反応容器と前記排気ガス貯留容器との間に、無機質繊維を充填させたトラップ機構を配置したことを特徴とする上記(1)〜(3)の何れか1項に記載の気相成長装置。
(5)前記排気ポンプの後段に除害設備を配置するとともに、該除害設備内に設けられた金属容器の内面を耐食性樹脂で被覆したことを特徴とする上記(1)〜(4)の何れか1項に記載の気相成長装置。
(6)前記加熱装置と前記反応容器とを離間させる移動離間手段を備えたことを特徴とする上記(1)〜(5)の何れか1項に記載の気相成長装置。
(7)反応容器内に被処理体を配置し、前記反応容器を加熱しながら処理ガスを供試して前記被処理体に処理ガスの反応により析出される物質を気相成長させる気相成長方法において、
外管と内管とからなる二重管構造の反応容器内に前記被処理体を配置する第1工程と、
前記被処理体を加熱する第2工程と、
前記反応容器内を減圧に制御する第3工程と、
前記反応容器内に処理ガスを処理ガス貯留容器に供給し、かつ、一時保持する第4工程と、
前記処理ガス貯留容器から前記反応容器内に前記処理ガスを供給し、かつ、該処理ガスを該反応容器内に一時保持する第5工程と、
前記反応容器内を排気し、排気ガスを排気ガス貯留容器に一時保持する第6工程とを備え、かつ、
前記第2工程〜第6工程間において、前記外管と前記内管との間に形成された気密空間を非酸化性ガス雰囲気に保持することを特徴とする気相成長方法。
(8)前記第3工程〜第6工程を繰り返し行なうことを特徴とする上記(7)記載の気相成長方法。
(9)前記排気ガス貯留容器をバイパスするバイバス配管により前記反応容器内を直接排気する第7工程を備えることを特徴とする上記(7)または(8)記載の気相成長方法。
(10)前記第3工程〜第7工程を繰り返し行なうことを特徴とする上記(9)記載の気相成長方法。
(11)処理後に前記加熱装置と前記反応容器とを離間させる工程を備えることを特徴とする上記(7)〜(10)の何れか1項に記載の気相成長方法。
In order to solve the above-described problems, the present invention provides a vapor phase growth apparatus and a vapor phase growth method described below.
(1) A reaction vessel, a heating device that controls the heating of a target object disposed on a sample stage in the reaction vessel, and a processing gas supply system that supplies a processing gas from a processing gas generation source into the reaction vessel. And a gas phase growth apparatus comprising an exhaust system that has an exhaust pump and controls the inside of the reaction vessel to a reduced pressure and exhausts the inside of the reaction vessel.
The reaction vessel has a double tube structure composed of an inner tube and an outer tube, and a processing gas storage vessel for temporarily holding a processing gas is disposed between the reaction vessel and the processing gas generation source, and the reaction A vapor phase growth apparatus characterized in that an exhaust gas storage container for temporarily holding exhaust gas is disposed between the container and the vacuum pump.
(2) The vapor phase growth apparatus as described in (1) above, wherein a bypass pipe for bypassing the exhaust gas storage container is provided between a gas introduction pipe and a gas exhaust pipe of the exhaust gas storage container.
(3) A space between the outer tube and the inner tube of the reaction vessel is kept airtight, and a non-oxidizing gas supply system that supplies a non-oxidizing gas to the space, and a non-oxidizing gas from the space The vapor phase growth apparatus as described in (1) or (2) above, further comprising a non-oxidizing gas exhaust system for exhausting gas.
(4) The gas according to any one of (1) to (3) above, wherein a trap mechanism filled with inorganic fibers is disposed between the reaction vessel and the exhaust gas storage vessel. Phase growth equipment.
(5) The above-described (1) to (4), wherein an abatement facility is disposed downstream of the exhaust pump, and an inner surface of a metal container provided in the abatement facility is coated with a corrosion-resistant resin. The vapor phase growth apparatus of any one.
(6) The vapor phase growth apparatus according to any one of (1) to (5) above, further comprising a moving / separating means for separating the heating apparatus and the reaction vessel.
(7) A vapor phase growth method in which an object to be processed is arranged in a reaction vessel, a process gas is tested while heating the reaction vessel, and a substance deposited on the object by the reaction of the process gas is vapor phase grown. In
A first step of disposing the object to be processed in a reaction vessel having a double tube structure comprising an outer tube and an inner tube;
A second step of heating the object to be processed;
A third step of controlling the inside of the reaction vessel to a reduced pressure;
A fourth step of supplying a processing gas to the processing gas storage container in the reaction container and temporarily holding the processing gas;
A fifth step of supplying the processing gas from the processing gas storage container into the reaction container and temporarily holding the processing gas in the reaction container;
A sixth step of evacuating the reaction vessel and temporarily holding the exhaust gas in the exhaust gas storage vessel, and
A vapor phase growth method characterized in that an airtight space formed between the outer tube and the inner tube is maintained in a non-oxidizing gas atmosphere between the second step to the sixth step.
(8) The vapor phase growth method as described in (7) above, wherein the third to sixth steps are repeated.
(9) The vapor phase growth method as described in (7) or (8) above, further comprising a seventh step of exhausting the inside of the reaction vessel directly by bypass piping bypassing the exhaust gas storage vessel.
(10) The vapor phase growth method as described in (9) above, wherein the third to seventh steps are repeated.
(11) The vapor phase growth method according to any one of (7) to (10) above, further comprising a step of separating the heating device and the reaction vessel after processing.

本発明の気相成長装置では、二重構造の反応容器を用い、処理中に非酸化性ガス雰囲気に維持することにより耐久性が高まる。また、処理ガスを一時貯留する処理ガス貯留容器及び排気ガスを一時貯留する排気ガス貯留容器、更には排気ガス貯留容器をバイパスするバイパス管を備えるため、処理ガスを安定供給でき、排気効率も高まる。   In the vapor phase growth apparatus of the present invention, durability is enhanced by using a reaction vessel having a double structure and maintaining a non-oxidizing gas atmosphere during processing. In addition, since a processing gas storage container that temporarily stores processing gas, an exhaust gas storage container that temporarily stores exhaust gas, and a bypass pipe that bypasses the exhaust gas storage container, the processing gas can be stably supplied and the exhaust efficiency can be improved. .

また、本発明の気相成長方法は、上記装置を用いることにより、被処理体上に効率よく処理ガスに由来する物質を析出させることができる。   Moreover, the vapor phase growth method of the present invention can efficiently deposit a substance derived from the processing gas on the object to be processed by using the above apparatus.

以下、本発明に関して図面を参照して詳細に説明する。尚、ここでは、パルスCVI法により被処理体に炭化珪素を析出させる場合を示す。   Hereinafter, the present invention will be described in detail with reference to the drawings. Here, the case where silicon carbide is deposited on the object to be processed by the pulse CVI method is shown.

図1はパルスCVI装置の主要部を示す概略図であるが、処理ガス供給系と、反応部と、排気系とに区画されている。   FIG. 1 is a schematic diagram showing the main part of the pulse CVI apparatus, which is divided into a processing gas supply system, a reaction part, and an exhaust system.

処理ガス供給系は、処理ガス発生装置10と、処理ガス貯留容器20とを備える。処理ガス発生装置10は、例えば液化四塩化珪素(SiCl)を貯蔵したバブリングタンク11を備え、ここへ原料ガスとして水素ガス(H)を供給してバブリングさせ、原料ガスとなる四塩化珪素ガスを発生させる。水素ガスのガスボンベにはレギュレータRG5、流量計FM5及びエアオペレーバルブ(以下、「バルブ」という)V5が連結しており、流量や供給時期が制御される。発生した四塩化珪素ガスは手動流量調整バルブNV1で流量調整され、バルブV6により処理ガス貯留容器20への供給が制御される。 The processing gas supply system includes a processing gas generator 10 and a processing gas storage container 20. The processing gas generator 10 includes a bubbling tank 11 that stores, for example, liquefied silicon tetrachloride (SiCl 4 ), and supplies hydrogen gas (H 2 ) as a raw material gas to bubbling the silicon tetrachloride as a raw material gas. Generate gas. A regulator RG5, a flow meter FM5, and an air operated valve (hereinafter referred to as “valve”) V5 are connected to the hydrogen gas cylinder, and the flow rate and supply timing are controlled. The flow rate of the generated silicon tetrachloride gas is adjusted by a manual flow rate adjusting valve NV1, and the supply to the processing gas storage container 20 is controlled by the valve V6.

尚、流量調整バルブNV1は、圧力遮断弁として機能し、その開度を適度に絞ることで、四塩化珪素の発生量が安定する。圧力遮断弁が無い場合、バブリングタンク11の圧力は処理ガス貯留容器20の圧力と連動してパルス的に変動する。例えば、バブリングタンク11の圧力が下がると原料ガスの発生量が所定量より増えるようになる。そこで圧力遮断弁を設け、これを適度に絞ると、バブリングタンク11の圧力変動が抑えられ、原料ガスの発生量が安定する。   The flow rate adjustment valve NV1 functions as a pressure cutoff valve, and the amount of silicon tetrachloride generated is stabilized by appropriately reducing the opening degree. When there is no pressure cutoff valve, the pressure of the bubbling tank 11 fluctuates in a pulse manner in conjunction with the pressure of the processing gas storage container 20. For example, when the pressure in the bubbling tank 11 decreases, the amount of source gas generated increases from a predetermined amount. Therefore, if a pressure shut-off valve is provided and is appropriately throttled, pressure fluctuations in the bubbling tank 11 are suppressed, and the amount of source gas generated is stabilized.

また、処理ガス供給系は、原料ガスとなるメタン(CH)、水素ガス(H)、パージガスとしてアルゴンガス(Ar)の各ガスボンベを備えており、各ガスはバルブV2〜V4により処理ガス貯留容器20への供給が制御される。尚、図中の符号RG2〜RG4はレギュレータ、FM2〜FM4は流量計である。 The processing gas supply system includes gas cylinders of methane (CH 4 ), hydrogen gas (H 2 ) serving as source gases, and argon gas (Ar) as a purge gas, and each gas is processed by valves V2 to V4. Supply to the storage container 20 is controlled. In the figure, symbols RG2 to RG4 are regulators, and FM2 to FM4 are flow meters.

反応部は、反応容器30と、反応容器30を包囲して加熱する加熱装置50とを備える。反応容器30は、図2に示すように、内管31と外管32との二重構造になっている。内管31は、処理ガスと接触するために耐食性を有する必要があり、人造等方性黒鉛が好適である。尚、内管31には、気体透過性を下げるために、内壁にフェノール樹脂を塗布し、1000℃程度に加熱して炭化させ、炭素による目詰を行なってもよい。また、外管32は、加熱装置40により直接加熱されるため、耐熱合金、例えばインコネル等のNi基合金が好適である。   The reaction unit includes a reaction vessel 30 and a heating device 50 that surrounds and heats the reaction vessel 30. As shown in FIG. 2, the reaction vessel 30 has a double structure of an inner tube 31 and an outer tube 32. The inner tube 31 needs to have corrosion resistance in order to come into contact with the processing gas, and artificial isotropic graphite is suitable. In order to reduce gas permeability, the inner tube 31 may be clogged with carbon by applying a phenolic resin to the inner wall, heating to about 1000 ° C., and carbonizing. Further, since the outer tube 32 is directly heated by the heating device 40, a heat-resistant alloy, for example, a Ni-based alloy such as Inconel is suitable.

反応容器30において、内管31と外管32とは気密構造とされる。気密構造とするには、例えばA部分の拡大図に示すような構造とすることができる。即ち、外管32の下端には、外周面から垂直に突出した後、外周面と平行に垂下するフランジ32aが形成されており、内管31の外周面との間でリング状の空所を形成する。内管31は、その下端に僅かに突出するフランジ31aが形成されており、外管32のフランジ32aとの隙間をゴムパッキン33でシールする。また、内管31と外管32のフランジ32aとの空所には、第1の押えリング36がOリング35を介在させて収容され、更に第1の押えリング36の内部には小径の第2の押えリング37が収容され、両押えリング36,37はリング固定ボルト38により外管32のフランジ32aに固定される。そして、外管32のフランジ32aを反応容器の下部フランジ39に、Oリング40を介して固定ボルト41で固定することにより、反応容器30は気密構造となる。   In the reaction vessel 30, the inner tube 31 and the outer tube 32 have an airtight structure. In order to obtain an airtight structure, for example, a structure as shown in the enlarged view of the portion A can be used. That is, the lower end of the outer tube 32 is formed with a flange 32a that protrudes perpendicularly from the outer peripheral surface and then hangs down in parallel with the outer peripheral surface. A ring-shaped space is formed between the outer tube 32 and the outer peripheral surface. Form. The inner tube 31 has a flange 31 a that slightly protrudes at the lower end thereof, and a gap between the outer tube 32 and the flange 32 a is sealed with a rubber packing 33. A first presser ring 36 is accommodated in the space between the inner tube 31 and the flange 32a of the outer tube 32 with an O-ring 35 interposed therebetween. Two presser rings 37 are accommodated, and both presser rings 36 and 37 are fixed to the flange 32 a of the outer tube 32 by ring fixing bolts 38. Then, by fixing the flange 32a of the outer tube 32 to the lower flange 39 of the reaction vessel with the fixing bolt 41 via the O-ring 40, the reaction vessel 30 has an airtight structure.

そして、内管31と外管32との間には、反応中、非酸化性ガスを流通させる。ガスの供給及び排気は、外管32の適所に導入口及び排気口を設ければよい。これにより、炭素製の内管31から微量の処理ガスが漏れても、処理ガスが反応部から排除されるため、外管32の腐食を起こす危険性がなくなる。非反応性ガスとしては、図1ではアルゴンガスを供給する構成となっているが、窒素ガスでもよい。   A non-oxidizing gas is circulated between the inner tube 31 and the outer tube 32 during the reaction. For gas supply and exhaust, an introduction port and an exhaust port may be provided at appropriate positions of the outer tube 32. As a result, even if a small amount of processing gas leaks from the carbon inner pipe 31, the processing gas is eliminated from the reaction section, so that there is no risk of corrosion of the outer pipe 32. As the non-reactive gas, argon gas is supplied in FIG. 1, but nitrogen gas may be used.

尚、下部フランジ39は、ガスの導入/排気口が設置されており、多孔質体等の被処理体43を載置する、炭素製の試料台45が固定されている。また、試料台45には、処理ガスを導入し、生成ガスを排気するためのガス通路45aが開けられている。尚、処理ガスの導入はバルブV7により、排気はバルブV8により制御される。   The lower flange 39 is provided with a gas introduction / exhaust port, and a carbon sample stage 45 on which a workpiece 43 such as a porous body is placed is fixed. The sample stage 45 is provided with a gas passage 45a for introducing a processing gas and exhausting a generated gas. The introduction of the processing gas is controlled by a valve V7 and the exhaust is controlled by a valve V8.

加熱装置50は、反応容器30を包囲できる大きさを有し、内部を均一に加熱できるものであれば制限はない。   The heating device 50 is not limited as long as it has a size that can surround the reaction vessel 30 and can uniformly heat the inside.

反応部において、反応容器30と加熱装置50とを離間可能にすることが好ましい。離間方法としては、図3に示すように、クレーン55により反応容器30及び加熱装置40を移動させればよい。即ち、被処理体43を試料台に載置した後(同図(A))、クレーン55で反応容器30を吊り上げて反応容器30を被せ(同図(B))、次いでクレーン55で加熱装置50を吊り上げて反応容器30を覆うように配置し、処理後、クレーン55で加熱容器50を吊り上げて取り外す(同図(C))。これにより、処理後、反応容器30は外気により冷却され、加熱容器50に収容したまま加熱容器50を降温する場合に比べて冷却時間が大幅に短縮される。その際、反応容器30は、二重構造であるが、片端のみが固定されているため、急速冷却しても内管31と外管32の熱膨張差による熱応力は発生しない。   In the reaction part, it is preferable that the reaction vessel 30 and the heating device 50 can be separated from each other. As a separation method, as shown in FIG. 3, the reaction vessel 30 and the heating device 40 may be moved by a crane 55. That is, after placing the object to be processed 43 on the sample stage (FIG. 1A), the reaction vessel 30 is lifted by the crane 55 and covered with the reaction vessel 30 (FIG. 1B). 50 is lifted and arranged so as to cover the reaction vessel 30, and after the treatment, the heating vessel 50 is lifted and removed by the crane 55 ((C) in the figure). Thereby, after the treatment, the reaction vessel 30 is cooled by the outside air, and the cooling time is greatly shortened as compared with the case where the temperature of the heating vessel 50 is lowered while being accommodated in the heating vessel 50. At that time, although the reaction vessel 30 has a double structure, since only one end is fixed, thermal stress due to a difference in thermal expansion between the inner tube 31 and the outer tube 32 does not occur even when rapidly cooled.

排気系は、排気ガス貯留容器60と真空ポンプ70とを備える。排気ガス貯留容器60へのガス導入はバルブV9により、排気はバルブV11により制御される。また、両バルブV9,V11をバイパスするようにバルブV10が付設されており、バルブ操作により排気ガス貯留容器60の排気をより効率的に行なうことができる。更に、反応容器30からの非酸化性ガスの排気管が真空ポンプ70に接続しており、バルブV13により制御される。   The exhaust system includes an exhaust gas storage container 60 and a vacuum pump 70. Gas introduction into the exhaust gas storage container 60 is controlled by a valve V9 and exhaust is controlled by a valve V11. Further, a valve V10 is provided so as to bypass both valves V9 and V11, and the exhaust gas storage container 60 can be exhausted more efficiently by operating the valve. Further, a non-oxidizing gas exhaust pipe from the reaction vessel 30 is connected to the vacuum pump 70 and is controlled by a valve V13.

ところで、反応容器30からの排気ガスには、被処理体上に堆積せず浮遊したままの生成物等が含まれるため、そのまま排気すると、配管や真空ポンプ70が目詰まりを起こす。そこで、反応容器30からの排気ガスを浄化するために、排気ガス貯留容器60の前段にトラップ機構80を挿入することが好ましい。トラップ機構80は、例えば図4に示すように、円管状の本体81にガラスウール82を充填し、上下開口面を保持金網83,83で保持したものであり、フッ素ゴム製のパッキン84を介在させて配管と連結される。   By the way, since the exhaust gas from the reaction vessel 30 includes a product that is not deposited on the object to be processed and remains floating, if it is exhausted as it is, the piping and the vacuum pump 70 are clogged. Therefore, in order to purify the exhaust gas from the reaction vessel 30, it is preferable to insert the trap mechanism 80 in front of the exhaust gas storage vessel 60. For example, as shown in FIG. 4, the trap mechanism 80 is a tubular body 81 filled with glass wool 82, and the upper and lower opening surfaces are held by holding wire nets 83, 83, and a fluororubber packing 84 is interposed therebetween. And connected to the piping.

また、真空ポンプ70からの排気ガスを処理して無害化するための排気ガス処理装置90を設けることが望ましい。この排気ガス処理装置90は、金属製の容器91に処理液(例えば中和液)92が貯留されており、容器91の内面を耐食性樹脂で被覆して構成することが好ましい。尚、符号91は処理液92を循環させるための循環ポンプである。   Further, it is desirable to provide an exhaust gas processing device 90 for processing the exhaust gas from the vacuum pump 70 to make it harmless. The exhaust gas treatment device 90 is preferably configured by storing a treatment liquid (for example, a neutralization liquid) 92 in a metal container 91 and covering the inner surface of the container 91 with a corrosion-resistant resin. Reference numeral 91 denotes a circulation pump for circulating the treatment liquid 92.

更に、処理ガス貯留容器20の排気効率を高めるために、処理ガス貯留容器20のガス排出管と、排気ガス貯留容器60のガス排出管とをバイパスするバイパス配管100を設けることが好ましい。このバイパス配管100にはバルブV12が接続され、バルブV7を閉じ、バルブV12を開くことにより処理ガス貯留容器20を直接排気できる。   Further, in order to increase the exhaust efficiency of the processing gas storage container 20, it is preferable to provide a bypass pipe 100 that bypasses the gas exhaust pipe of the processing gas storage container 20 and the gas exhaust pipe of the exhaust gas storage container 60. A valve V12 is connected to the bypass pipe 100, and the processing gas storage container 20 can be directly exhausted by closing the valve V7 and opening the valve V12.

本発明のパルスCVI装置は上記の如く構成される。以下に、処理工程について表1に基づき説明する。   The pulse CVI device of the present invention is configured as described above. Below, a process process is demonstrated based on Table 1. FIG.

先ず、被処理体43を試料台45に載置し(STEP1)、反応容器30(STEP2)、加熱装置(STEP3)をセットする。これらの手順は図3を参照できる。そして、アルゴンガス配管を接続する(STEP4)。   First, the to-be-processed object 43 is mounted on the sample stand 45 (STEP1), the reaction container 30 (STEP2), and the heating apparatus (STEP3) are set. See FIG. 3 for these procedures. Then, an argon gas pipe is connected (STEP 4).

次いで、バルブV8,V9,V11,V12,V13以外を閉じて系内を真空引きし(STEP5)、所定の圧力となった後加熱装置50を通電して反応容器30を加熱する(STEP6)。それと同時に、バルブV13を閉じ、バルブV1を開いて反応容器30の内管31と外管32との空間にアルゴンガスを供給し、更にバルブV14を開く(STEP7)。   Next, the valves V8, V9, V11, V12, V13 are closed and the system is evacuated (STEP 5). After reaching a predetermined pressure, the heating device 50 is energized to heat the reaction vessel 30 (STEP 6). At the same time, the valve V13 is closed, the valve V1 is opened, argon gas is supplied to the space between the inner tube 31 and the outer tube 32 of the reaction vessel 30, and the valve V14 is further opened (STEP 7).

その後、系内のクリーニングのために以下の操作を行なう。先ず、バルブV8を閉じ、バルブV4を開いて水素ガスを流通させた後(STEP8)、バルブV8とバルブV12を閉じてからバルブV7を開き、水素ガスを反応容器30に供給する(STEP9)。しかる後、バルブV7を閉じ、反応容器30内に処理ガスを所定時間保持する(STEP10)。保持後、バルブV8を開いて反応容器30内を排気する(STEP11)。この処理ガスの導入(STEP9)から排気(STEP11)を所定回数繰り返し行なう。クリーニング終了後、バルブV4を閉じ、バルブV7を開く(STEP13)。   Thereafter, the following operation is performed for cleaning the inside of the system. First, the valve V8 is closed and the valve V4 is opened to circulate hydrogen gas (STEP 8). Then, the valve V8 and the valve V12 are closed, and then the valve V7 is opened to supply hydrogen gas to the reaction vessel 30 (STEP 9). Thereafter, the valve V7 is closed, and the processing gas is held in the reaction vessel 30 for a predetermined time (STEP 10). After holding, the valve V8 is opened to evacuate the reaction vessel 30 (STEP 11). This process gas introduction (STEP 9) to exhaust (STEP 11) are repeated a predetermined number of times. After cleaning, the valve V4 is closed and the valve V7 is opened (STEP 13).

次いで、以下の操作を行い被処理体43への析出を行なう。先ず、バルブV7、バルブV8を閉じ、バルブV12を開き、バルブV3、バルブV4、バルブV5及びバルブV6を開いて処理ガス貯留容器20に各原料ガスを供給する(STEP14)。原料ガスの供給が安定した後、バルブV12を閉じ、それと同時にバルブV7を開いて処理ガスを反応容器30に供給する(STEP15)。しかる後、バルブV7を閉じて処理ガスを反応容器30内に保持する(STEP16)。保持時間としては0.2〜10秒が一般的である。所定時間保持した後、バルブV8を開いて反応容器30内を排気する(STEP17)。この処理ガスの導入(STEP15)から排気(STEP17)を所定回数繰り返し行ない、被処理体45に炭化珪素を析出させる。そして、バルブV3、バルブV4、バルブV5及びバルブV6を閉じ、バルブV7を開いて析出処理が完了する(STEP19)。尚、流量調整バルブNV1は、予め開度を調整しておき、処理中は固定する。   Next, the following operation is performed to deposit on the workpiece 43. First, the valve V7 and the valve V8 are closed, the valve V12 is opened, the valve V3, the valve V4, the valve V5, and the valve V6 are opened, and each source gas is supplied to the processing gas storage container 20 (STEP 14). After the supply of the raw material gas is stabilized, the valve V12 is closed, and at the same time, the valve V7 is opened to supply the processing gas to the reaction vessel 30 (STEP 15). Thereafter, the valve V7 is closed and the processing gas is held in the reaction vessel 30 (STEP 16). The holding time is generally 0.2 to 10 seconds. After holding for a predetermined time, the valve V8 is opened to evacuate the reaction vessel 30 (STEP 17). The introduction of the processing gas (STEP 15) to the exhaust (STEP 17) are repeated a predetermined number of times to deposit silicon carbide on the workpiece 45. Then, the valve V3, the valve V4, the valve V5 and the valve V6 are closed, and the valve V7 is opened to complete the deposition process (STEP 19). The flow rate adjustment valve NV1 is adjusted in advance and fixed during processing.

析出完了後、バルブV7、バルブV8、バルブV9及びバルブV11を閉じ、バルブV4とバルブV12を開いた後(STEP20)、バルブV12を閉じ、バルブV7、バルブV9及びバルブV11を開き、水素ガスを系内に流通させ(STEP21)、しかる後バルブV7を閉じて反応部及び排気系において水素ガスを所定時間保持し(STEP22)。保持後、バルブV8を開いて真空引きを行なう(STEP23)。水素ガスの流通(STEP21)から真空引き(STEP23)を繰り返し行った後、バルブV4を閉じ、バルブV7を開いてクリーニングが完了する(STEP25)。   After completion of the deposition, the valves V7, V8, V9 and V11 are closed, the valves V4 and V12 are opened (STEP 20), the valve V12 is closed, the valves V7, V9 and V11 are opened, and hydrogen gas is supplied. The hydrogen gas is allowed to flow through the system (STEP 21), and then the valve V7 is closed to hold the hydrogen gas in the reaction part and the exhaust system for a predetermined time (STEP 22). After the holding, the valve V8 is opened and evacuation is performed (STEP 23). After repeating the evacuation (STEP 23) from the flow of hydrogen gas (STEP 21), the valve V4 is closed and the valve V7 is opened to complete the cleaning (STEP 25).

その後、バルブV7を閉じ、反応容器30内の真空引きを行ない(STEP26)、次いでバルブV1及びV14を閉じ、V13を開いた後、加熱装置50の通電を停止して反応容器30を冷却させた後(STEP27)、加熱装置50を吊り上げて反応容器30と離間させる(STEP28:図3参照)。離間後、バルブV8を閉じ、バルブV1、バルブV2及びバルブV7を開いて処理ガス供給系をアルゴンガスで満たす(STEP29)。   Thereafter, the valve V7 is closed and the reaction vessel 30 is evacuated (STEP 26), then the valves V1 and V14 are closed and V13 is opened, and then the energization of the heating device 50 is stopped to cool the reaction vessel 30. Thereafter (STEP 27), the heating device 50 is lifted and separated from the reaction vessel 30 (STEP 28: see FIG. 3). After the separation, the valve V8 is closed and the valve V1, the valve V2, and the valve V7 are opened to fill the processing gas supply system with argon gas (STEP 29).

以上の操作の後、アルゴン管取り外し(STEP30)、反応容器30の取り外し(STEP31)、被処理体43の取り外し(STEP32)を行ない、一連の析出工程が終了する。尚、上記の各STEPにおけるバルブの開閉状態を表1(○:開、×:閉)に示すとともに、シーケンスを図5に示す。   After the above operation, removal of the argon tube (STEP 30), removal of the reaction vessel 30 (STEP 31), and removal of the workpiece 43 (STEP 32) are performed, and the series of deposition steps is completed. The valve opening / closing states in the above STEPs are shown in Table 1 (◯: open, x: closed), and the sequence is shown in FIG.

Figure 2006124832
Figure 2006124832

尚、上記では、析出後の反応容器30の排気に際して、バルブV9とバルブV11のみを操作し、バルブV10を閉じたまま行なったが、バルブV9〜V11を連動することによりより効率良く排気を行なうことができる。その場合、上記STEP17における真空引きの後に、バルブV9とバルブV11とを閉じ、バルブV10を開く操作を付加し、この追加の真空引きを含めて同様の繰り返し操作を行なう。この追加の真空引きを加えた一連のバルブの操作を表2に示すが、上記のSTEP17の真空引き操作を「反応容器内真空引き1」とし、追加の真空引き操作を「(STEP18)反応容器内真空引き2」としてある。また、この追加の真空引きを含めたシーケンスを図6に示す。以降の工程は、上記と同様である。   In the above description, the valve V9 and the valve V11 are only operated and the valve V10 is closed when the reaction vessel 30 after deposition is exhausted. However, the exhaust is performed more efficiently by interlocking the valves V9 to V11. be able to. In this case, after the vacuuming in STEP 17, an operation of closing the valve V9 and the valve V11 and opening the valve V10 is added, and the same repeated operation including this additional vacuuming is performed. Table 2 shows the operation of a series of valves to which this additional evacuation is added. The above-described STEP 17 evacuation operation is “reaction vessel evacuation 1”, and the additional evacuation operation is “(STEP 18) reaction vessel”. Internal vacuuming 2 ”. FIG. 6 shows a sequence including this additional evacuation. The subsequent steps are the same as described above.

Figure 2006124832
Figure 2006124832

また、追加の真空引き(バイパス操作)を行なった場合と、行なわない場合とで反応容器30における排気効率を比較した結果を表3及び表4に示す。ここでは、処理ガス貯留容器20の容量32L、反応容器30の容量9L、排気速度1200L/min、サイクル3秒、Hガス流量25l/min(0℃標準状態換算)とし、排気ガス貯留容器60の容量毎に排気時間と反応容器30の到達圧力との関係を求めた。表3及び表4より、追加の真空引きを行なうことにより、排気効率が大幅に高まる(数倍〜20倍)ことがわかる。 Tables 3 and 4 show the results of comparing the exhaust efficiency in the reaction vessel 30 with and without additional evacuation (bypass operation). Here, the processing gas storage container 20 has a capacity of 32 L, a reaction container 30 has a capacity of 9 L, an exhaust speed of 1200 L / min, a cycle of 3 seconds, an H 2 gas flow rate of 25 l / min (converted to 0 ° C. standard state), and the exhaust gas storage container 60. The relationship between the exhaust time and the ultimate pressure of the reaction vessel 30 was determined for each volume. From Tables 3 and 4, it can be seen that the exhaust efficiency is significantly increased (several times to 20 times) by performing additional vacuuming.

Figure 2006124832
Figure 2006124832

Figure 2006124832
Figure 2006124832

以下、実施例を挙げて本発明を更に説明する。   Hereinafter, the present invention will be further described with reference to examples.

メカニカルカーボン製の人造等方性黒鉛材(密度1.7g/cm)を用いて、外径170mm、内径150mm、長さ410mmの内管31を作製する。この内管31には、更に、気体透過性を抑えるために、その表面に大日本インキ化学工業製のフェノール樹脂(フェノライトJ−325)を塗布・含浸・乾燥してから、非酸化性雰囲気で1100℃に加熱して開気孔をフェノール樹脂炭で目詰する。また、外径190mm、内径180mm、長さ560mmのインコネル601製の外管32を作製する。そして、内管31と外管32とで二重構造の反応容器30とする。尚、気密構造にするために、図2に示すような連結構造とする。この反応容器30の内容積は約9Lである。 An inner pipe 31 having an outer diameter of 170 mm, an inner diameter of 150 mm, and a length of 410 mm is produced using a mechanical carbon-made artificial isotropic graphite material (density 1.7 g / cm 3 ). In order to further suppress gas permeability, the inner pipe 31 is coated, impregnated and dried with a phenol resin (Phenolite J-325) manufactured by Dainippon Ink Chemical Co., Ltd. And heated to 1100 ° C. to clog the open pores with phenolic resin charcoal. Further, an outer tube 32 made of Inconel 601 having an outer diameter of 190 mm, an inner diameter of 180 mm, and a length of 560 mm is produced. The inner tube 31 and the outer tube 32 form a double reaction container 30. In order to obtain an airtight structure, a connection structure as shown in FIG. 2 is adopted. The internal volume of the reaction vessel 30 is about 9L.

また、容量約32Lの処理ガス貯留容器20と、容量約27Lの排気ガス貯留容器60とを用意し、図1に示すような配管にて反応容器30、処理ガス貯留容器20及び排気ガス貯留容器60を接続する。   Further, a processing gas storage container 20 having a capacity of about 32L and an exhaust gas storage container 60 having a capacity of about 27L are prepared, and the reaction container 30, the processing gas storage container 20 and the exhaust gas storage container are connected by piping as shown in FIG. 60 is connected.

被処理体43として、寸法80×80×40mmで、気孔径約1mmの炭素質スポンジ(ウレタン発泡体にフェノライトJ−325を含浸・液切り・乾燥してから、1000℃の非酸化雰囲気で炭化させたもの)を、反応容器30の試料台45に設置する。そして、原料ガスに、SiCl、CH、H、パージガスにArを用い、炭化珪素の析出を行う。 As the object to be treated 43, a carbonaceous sponge having a size of 80 × 80 × 40 mm and a pore diameter of about 1 mm (after impregnating, draining, and drying urethane foam with phenolite J-325, in a non-oxidizing atmosphere at 1000 ° C. The carbonized material is placed on the sample stage 45 of the reaction vessel 30. Then, SiCl 4 , CH 4 , H 2 is used as a source gas, and Ar is used as a purge gas to deposit silicon carbide.

先ず、反応容器30を真空引きし、内管31と外管32をパージするためにArガスを1L/min(0℃標準状態換算)流しながら、1100℃に昇温する。次いで、反応容器30に水素ガスを導入し、被検体43のクリーニングを行なう。ガスの導入と排気は、後述の処理ガスの処理と同様に約100パルス実施する。   First, the reaction vessel 30 is evacuated and heated to 1100 ° C. while flowing Ar gas at 1 L / min (converted to 0 ° C. standard state) in order to purge the inner tube 31 and the outer tube 32. Next, hydrogen gas is introduced into the reaction vessel 30 to clean the subject 43. About 100 pulses are introduced and exhausted as in the processing gas processing described later.

次いで、排気ガス貯留容器60、反応容器30、処理ガス貯留容器20を真空引きした状態で、モル流量で、H:1.34mol/min、CH:0.6mol/min、SiCl;0.6mol/minとなるように各原料ガス供給量及びSiClの発生量を調整する。尚、流量調整バルブNV1(swagelok SS−8RS4)の開度は、全閉から2回転ほど開いた位置とする。この開度は予備実験で、バブリングタンクの圧力が変動しないように調整した結果である。 Next, in a state where the exhaust gas storage container 60, the reaction container 30, and the processing gas storage container 20 are evacuated, at a molar flow rate, H 2 : 1.34 mol / min, CH 4 : 0.6 mol / min, SiCl 4 ; 0 Each raw material gas supply amount and the generation amount of SiCl 4 are adjusted so as to be 6 mol / min. In addition, the opening degree of the flow rate adjustment valve NV1 (swagelok SS-8RS4) is set to a position opened about two rotations from the fully closed. This opening degree is a result of adjustment in a preliminary experiment so that the pressure of the bubbling tank does not fluctuate.

析出に際し、先ず、バルブV8を閉じた状態でバルブV7を0.3秒開いて、処理ガス貯留容器20に滞留した処理ガスを反応容器30に導入する(STEP15)。次に、処理ガス導入用のバルブV7を閉じてから、排気用のバルブV8を2.1秒開いて、反応容器30の排気を行う(STEP17)。次に、バルブV7を閉じて、反応容器30を封じた状態に0.6秒間保持する(STEP16)。次に、STEP15に戻る。このSTEP15からSTEP17に至る工程を1パルスとし、3000パルスの運転を行う。約100パルスで系の圧力バランスがとれ、反応容器30のパルス圧は、最高圧75kPa abs、最低圧10kPa absとなる。   In the deposition, first, the valve V7 is opened for 0.3 seconds with the valve V8 closed, and the processing gas retained in the processing gas storage container 20 is introduced into the reaction container 30 (STEP 15). Next, after closing the processing gas introduction valve V7, the exhaust valve V8 is opened for 2.1 seconds to exhaust the reaction vessel 30 (STEP 17). Next, the valve V7 is closed, and the reaction vessel 30 is kept sealed for 0.6 seconds (STEP 16). Next, it returns to STEP15. The process from STEP 15 to STEP 17 is defined as one pulse, and 3000 pulses are operated. The system pressure balance is achieved with about 100 pulses, and the pulse pressure in the reaction vessel 30 becomes a maximum pressure of 75 kPa abs and a minimum pressure of 10 kPa abs.

所定のパルス運転が終了してから、再び水素ガスによるクリーニング運転を約100パルス行ない、その後、加熱容器50に収容したまま反応容器30を真空引きしつつ冷却を行なった。1時間後に、反応容器30の温度が500℃まで低下した時点で、加熱装置50をクレーン55で吊り上げて離間させ、反応容器30の冷却を引き続き行なった。約1時間で反応容器30の温度は約80℃まで低下した。尚、比較のために、加熱装置50の離間を行わずに冷却した場合、約80℃まで冷却するのに、約6時間を要した。即ち、2重構造の反応容器30を用い、加熱装置50の離間を行なうことで、冷却時間は4時間短縮した。   After completion of the predetermined pulse operation, the cleaning operation with hydrogen gas was performed again for about 100 pulses, and then the reaction vessel 30 was cooled while being evacuated while being contained in the heating vessel 50. One hour later, when the temperature of the reaction vessel 30 decreased to 500 ° C., the heating device 50 was lifted and separated by the crane 55, and the reaction vessel 30 was continuously cooled. In about 1 hour, the temperature of the reaction vessel 30 dropped to about 80 ° C. For comparison, when cooling was performed without separating the heating device 50, it took about 6 hours to cool to about 80 ° C. That is, the cooling time was shortened by 4 hours by using the reaction vessel 30 having a double structure and separating the heating device 50.

被処理体43を取り出し、X線回折法で析出物を調べたところ、β−SiCであった。SiCの析出により、処理前のかさ密度0.014g/cmが0.028g/cmで上昇した。 When the to-be-processed object 43 was taken out and the deposit was investigated by the X ray diffraction method, it was (beta) -SiC. The deposition of SiC, bulk density 0.014 g / cm 3 before treatment was increased by 0.028 g / cm 3.

また、同条件で20バッチの運転を行ったが、外管32の腐蝕、内管31の破壊等のトラブルは一切発生しなかった。   Further, 20 batches were operated under the same conditions, but no troubles such as corrosion of the outer tube 32 and destruction of the inner tube 31 occurred.

本発明の気相成長装置の一種であるパルスCVI装置の構成を示す図である。It is a figure which shows the structure of the pulse CVI apparatus which is 1 type of the vapor phase growth apparatus of this invention. 反応容器を示す断面図である。It is sectional drawing which shows a reaction container. 反応容器と加熱装置との離間方法を説明するための図である。It is a figure for demonstrating the separation method of the reaction container and a heating apparatus. トラップ機構を示す図である。It is a figure which shows a trap mechanism. バイパス操作を行なわない時の処理ガス導入バルブ及び処理ガス排気バルブの動作タイミングと、発生圧力の関係を示すシーケンス図である。FIG. 7 is a sequence diagram showing the relationship between the operation timing of the processing gas introduction valve and the processing gas exhaust valve and the generated pressure when the bypass operation is not performed. バイパス操作を行なった時の処理ガス導入バルブ及び処理ガス排気バルブの動作タイミングと、発生圧力の関係を示すシーケンス図である。It is a sequence diagram showing the relationship between the operation timing of the processing gas introduction valve and the processing gas exhaust valve when the bypass operation is performed, and the generated pressure.

符号の説明Explanation of symbols

10 処理ガス発生装置
11 バブリングタンク
20 処理ガス貯留容器
30 反応容器
40 加熱装置
43 被処理体
45 試料台
60 排気ガス貯留容器
70 真空ポンプ
80 トラップ機構
90 排気ガス処理装置
100 バイパス配管
DESCRIPTION OF SYMBOLS 10 Process gas generator 11 Bubbling tank 20 Process gas storage container 30 Reaction container 40 Heating apparatus 43 To-be-processed object 45 Sample stand 60 Exhaust gas storage container 70 Vacuum pump 80 Trap mechanism 90 Exhaust gas processing apparatus 100 Bypass piping

Claims (11)

反応容器と、前記反応容器内の試料台上に配置された被処理体を加熱制御する加熱装置と、処理ガス発生源からの処理ガスを前記反応容器内に供給する処理ガス供給系と、排気ポンプを有し前記反応容器内を減圧に制御するとともに該反応容器内を排気する排気系とを備える気相成長装置において、
前記反応容器が内管と外管とからなる二重管構造であり、かつ、該反応容器と前記処理ガス発生源との間に処理ガスを一時保持する処理ガス貯留容器を配置し、該反応容器と前記真空ポンプとの間に排気ガスを一時保持する排気ガス貯留容器を配置したことを特徴とした気相成長装置。
A reaction vessel, a heating device for heating and controlling an object to be processed disposed on a sample stage in the reaction vessel, a processing gas supply system for supplying a processing gas from a processing gas generation source into the reaction vessel, and an exhaust In a vapor phase growth apparatus comprising a pump and an exhaust system for controlling the inside of the reaction vessel to a reduced pressure and exhausting the reaction vessel,
The reaction vessel has a double tube structure composed of an inner tube and an outer tube, and a processing gas storage vessel for temporarily holding a processing gas is disposed between the reaction vessel and the processing gas generation source, and the reaction A vapor phase growth apparatus characterized in that an exhaust gas storage container for temporarily holding exhaust gas is disposed between the container and the vacuum pump.
前記排気ガス貯留容器のガス導入管とガス排気管との間に、前記排気ガス貯留容器をバイパスするバイパス配管を設けたことを特徴とする請求項1記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein a bypass pipe for bypassing the exhaust gas storage container is provided between a gas introduction pipe and a gas exhaust pipe of the exhaust gas storage container. 前記反応容器の外管と内管との間の空間が気密に保持されるとともに、該空間に非酸化性ガスを供給する非酸化性ガス供給系と、該空間から非酸化性ガスを排気する非酸化性ガス排気系とを備えたことを特徴とする請求項1または2記載の気相成長装置。   A space between the outer tube and the inner tube of the reaction vessel is kept airtight, a non-oxidizing gas supply system that supplies a non-oxidizing gas to the space, and a non-oxidizing gas is exhausted from the space. 3. The vapor phase growth apparatus according to claim 1, further comprising a non-oxidizing gas exhaust system. 前記反応容器と前記排気ガス貯留容器との間に、無機質繊維を充填させたトラップ機構を配置したことを特徴とする請求項1〜3の何れか1項に記載の気相成長装置。   The vapor phase growth apparatus according to any one of claims 1 to 3, wherein a trap mechanism filled with inorganic fibers is disposed between the reaction vessel and the exhaust gas storage vessel. 前記排気ポンプの後段に除害設備を配置するとともに、該除害設備内に設けられた金属容器の内面を耐食性樹脂で被覆したことを特徴とする請求項1〜4の何れか1項に記載の気相成長装置。   The abatement equipment is arranged at the rear stage of the exhaust pump, and the inner surface of a metal container provided in the abatement equipment is covered with a corrosion-resistant resin. Vapor growth equipment. 前記加熱装置と前記反応容器とを離間させる移動離間手段を備えたことを特徴とする請求項1〜5の何れか1項に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, further comprising a moving / separating unit that separates the heating device and the reaction vessel. 反応容器内に被処理体を配置し、前記反応容器を加熱しながら処理ガスを供試して前記被処理体に処理ガスの反応により析出される物質を気相成長させる気相成長方法において、
外管と内管とからなる二重管構造の反応容器内に前記被処理体を配置する第1工程と、
前記被処理体を加熱する第2工程と、
前記反応容器内を減圧に制御する第3工程と、
前記反応容器内に処理ガスを処理ガス貯留容器に供給し、かつ、一時保持する第4工程と、
前記処理ガス貯留容器から前記反応容器内に前記処理ガスを供給し、かつ、該処理ガスを該反応容器内に一時保持する第5工程と、
前記反応容器内を排気し、排気ガスを排気ガス貯留容器に一時保持する第6工程とを備え、かつ、
前記第2工程〜第6工程間において前記外管と前記内管との間に形成された気密空間を非酸化性ガス雰囲気に保持することを特徴とする気相成長方法。
In a vapor phase growth method in which an object to be treated is disposed in a reaction vessel, a process gas is tested while heating the reaction vessel, and a substance deposited by reaction of the treatment gas is vapor-phase grown on the object to be treated.
A first step of disposing the object to be processed in a reaction vessel having a double tube structure comprising an outer tube and an inner tube;
A second step of heating the object to be processed;
A third step of controlling the inside of the reaction vessel to a reduced pressure;
A fourth step of supplying a processing gas to the processing gas storage container in the reaction container and temporarily holding the processing gas;
A fifth step of supplying the processing gas from the processing gas storage container into the reaction container and temporarily holding the processing gas in the reaction container;
A sixth step of evacuating the reaction vessel and temporarily holding the exhaust gas in the exhaust gas storage vessel, and
A vapor phase growth method characterized in that an airtight space formed between the outer tube and the inner tube is maintained in a non-oxidizing gas atmosphere between the second step to the sixth step.
前記第3工程〜第6工程を繰り返し行なうことを特徴とする請求項7記載の気相成長方法。   8. The vapor phase growth method according to claim 7, wherein the third to sixth steps are repeated. 前記排気ガス貯留容器をバイパスするバイバス配管により前記反応容器内を直接排気する第7工程を備えることを特徴とする請求項7または8記載の気相成長方法。   The vapor phase growth method according to claim 7 or 8, further comprising a seventh step of exhausting the inside of the reaction vessel directly by a bypass pipe bypassing the exhaust gas storage vessel. 前記第3工程〜第7工程を繰り返し行なうことを特徴とする請求項9記載の気相成長方法。   The vapor phase growth method according to claim 9, wherein the third to seventh steps are repeated. 処理後に前記加熱装置と前記反応容器とを離間させる工程を備えることを特徴とする請求項7〜10の何れか1項に記載の気相成長方法。   The vapor phase growth method according to any one of claims 7 to 10, further comprising a step of separating the heating device and the reaction vessel after the treatment.
JP2005285210A 2004-09-30 2005-09-29 Vapor phase growth system and vapor phase growth method Pending JP2006124832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285210A JP2006124832A (en) 2004-09-30 2005-09-29 Vapor phase growth system and vapor phase growth method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004288148 2004-09-30
JP2005285210A JP2006124832A (en) 2004-09-30 2005-09-29 Vapor phase growth system and vapor phase growth method

Publications (1)

Publication Number Publication Date
JP2006124832A true JP2006124832A (en) 2006-05-18

Family

ID=36719848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285210A Pending JP2006124832A (en) 2004-09-30 2005-09-29 Vapor phase growth system and vapor phase growth method

Country Status (1)

Country Link
JP (1) JP2006124832A (en)

Cited By (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072187A1 (en) * 2007-12-04 2009-06-11 Full-Tech Co., Ltd. Method of pressurized gas pulse control processing and pressurized gas pulse control processing apparatus
JP2015207591A (en) * 2014-04-17 2015-11-19 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus and program
CN110050086A (en) * 2016-12-15 2019-07-23 Asm Ip控股有限公司 Sequence infiltration synthesis device
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
WO2024069767A1 (en) * 2022-09-27 2024-04-04 株式会社Kokusai Electric Substrate processing method, method for manufacturing semiconductor device, program, and substrate processing device
US11959171B2 (en) 2022-07-18 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process

Cited By (237)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208128B2 (en) * 2007-12-04 2013-06-12 フルテック株式会社 Pressurized gas pulse control processing method and pressurized gas pulse control processing apparatus
WO2009072187A1 (en) * 2007-12-04 2009-06-11 Full-Tech Co., Ltd. Method of pressurized gas pulse control processing and pressurized gas pulse control processing apparatus
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
JP2015207591A (en) * 2014-04-17 2015-11-19 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing apparatus and program
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
CN110050086A (en) * 2016-12-15 2019-07-23 Asm Ip控股有限公司 Sequence infiltration synthesis device
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
JP2020502361A (en) * 2016-12-15 2020-01-23 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Sequential infiltration synthesizer
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
JP7184773B2 (en) 2016-12-15 2022-12-06 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Sequential permeation synthesis equipment
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11961741B2 (en) 2021-03-04 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11959168B2 (en) 2021-04-26 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11967488B2 (en) 2022-05-16 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11959171B2 (en) 2022-07-18 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
WO2024069767A1 (en) * 2022-09-27 2024-04-04 株式会社Kokusai Electric Substrate processing method, method for manufacturing semiconductor device, program, and substrate processing device

Similar Documents

Publication Publication Date Title
JP2006124832A (en) Vapor phase growth system and vapor phase growth method
JP2006124831A (en) Reaction vessel for vapor phase growth, and vapor phase growth method
JP5820731B2 (en) Substrate processing apparatus and solid material replenishment method
JP5502721B2 (en) Method for producing tantalum carbide-coated carbon material
JP5247528B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, substrate processing method, and gas introducing means
US9493873B2 (en) Method for preparing a coating for protecting a part against oxidation
US8839740B2 (en) Simple chemical vapor deposition systems for depositing multiple-metal aluminide coatings
CN103060744B (en) Preparation method of combination type crucible utilized at ultra-high temperature
TWI519684B (en) High-temperature process improvements using helium under regulated pressure
US20130239882A1 (en) Coated crucible and method of making a coated crucible
JPH0218359A (en) Method and equipment for impregnation and carbonization
JP4086146B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
KR102107626B1 (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
JP4943536B2 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
CN218175088U (en) Device for plating carbide protective layer on surface of graphite structural member
US20050170088A1 (en) Method for modifying a metallic surface
JP4677088B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JP2008074653A (en) Apparatus for producing silicon carbide single crystal
JP3729578B2 (en) Semiconductor manufacturing method
CN108914053B (en) Method for preparing ultrahigh-temperature coating by in-situ diffusion modification of iridium coating
JP2016113338A (en) Thermal decomposition boron nitride member and method for manufacturing the same
JPH0657433A (en) Pulse cvi device
JPH1135391A (en) Silicon carbide-coated susceptor
JP2006248795A (en) Group iii nitride single crystal and method for growing the same
JP2014084240A (en) Apparatus for producing single crystal of aluminum nitride

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20060328

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129