JP2006124831A - Reaction vessel for vapor phase growth, and vapor phase growth method - Google Patents

Reaction vessel for vapor phase growth, and vapor phase growth method Download PDF

Info

Publication number
JP2006124831A
JP2006124831A JP2005284931A JP2005284931A JP2006124831A JP 2006124831 A JP2006124831 A JP 2006124831A JP 2005284931 A JP2005284931 A JP 2005284931A JP 2005284931 A JP2005284931 A JP 2005284931A JP 2006124831 A JP2006124831 A JP 2006124831A
Authority
JP
Japan
Prior art keywords
reaction vessel
gas
phase growth
vapor phase
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005284931A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sato
清 佐藤
Naoki Abe
直毅 阿部
Akira Asano
昭 浅野
Junichi Irimura
純一 入村
Naohiko Saeki
尚彦 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2005284931A priority Critical patent/JP2006124831A/en
Publication of JP2006124831A publication Critical patent/JP2006124831A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the durability and reliability of a vaporphase growth vessel and to perform precipitation by a vapor growth method with high efficiency. <P>SOLUTION: The reaction vessel for vapor phase growth is used to cause vapor phase growth of a substance to be precipitated by reaction of treatment gas on an object to be treated by housing the object to be treated therein and introducing the treatment gas therein. The reaction vessel is a double tube structure comprising an outer tube provided with impact resistance and thermal impact resistance and an inner tube provided with heat resistance and corrosion resistance, wherein the space between the outer tube and the inner tube is airtightly maintained and the space is maintained under the nonoxidizing gaseous atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、気相成長装置に使用される気相成長用反応容器、並びに前記気相成長用反応容器を用いて行なう気相成長方法に関する。   The present invention relates to a vapor phase growth reaction vessel used in a vapor phase growth apparatus, and a vapor phase growth method performed using the vapor phase growth reaction vessel.

気相成長法は、被処理体を収容した反応容器に処理ガスを導入し、熱分解反応により被処理体上に処理ガスに由来する反応生成物を析出させる方法であり、種々の用途に使用されている。気相成長法の一つとして、多孔質基材を被処理体とし、その気孔内部を含めてセラミックスや炭素、金属等の各種物質を析出させる気相化学含浸法(CVI:Chemical Vapor Infiltration)が知られている。このCVI法は、処理ガスを多孔質基材の気孔内部にまで送り込み、多孔質材の骨格にも処理ガスに由来する反応生成物を析出させる方法である。   Vapor phase epitaxy is a method in which a processing gas is introduced into a reaction vessel containing an object to be processed, and a reaction product derived from the processing gas is deposited on the object to be processed by a thermal decomposition reaction. Has been. As one of the vapor phase growth methods, there is a vapor phase chemical impregnation method (CVI: Chemical Vapor Infiltration) in which a porous substrate is used as an object to be processed and various substances such as ceramics, carbon, and metal are deposited including the inside of the pores. Are known. This CVI method is a method in which a processing gas is fed into the pores of a porous substrate, and a reaction product derived from the processing gas is also deposited on the skeleton of the porous material.

CVI法は、析出プロセスの形式により、減圧CVI、強制流型CVI、パルスCVI等に分類される。減圧CVIは、反応容器内を減圧にすることで、気体の拡散速度を増加させ、気孔内部への物質輸送を促進させる方法である。強制流型CVIは、多孔質基材にガスを流通させ、強制的に気孔内に処理ガスを導入し、生成ガスを排出する方法である。パルスCVI法は、反応容器の減圧と昇圧とを短周期で繰り返し行い、間歇的に処理ガスを気孔内部に供給し、生成ガスを排出する方法である。中でも、ガス供給・排出の形式から、パルスCVI法は、多孔質基材内部への均質成膜性に優れることが知られている。   The CVI method is classified into reduced pressure CVI, forced flow type CVI, pulse CVI, etc., depending on the type of precipitation process. The reduced pressure CVI is a method of increasing the gas diffusion rate by reducing the pressure in the reaction vessel and promoting the material transport into the pores. The forced flow type CVI is a method in which a gas is circulated through a porous substrate, a processing gas is forcibly introduced into the pores, and a generated gas is discharged. The pulse CVI method is a method in which the pressure reduction and pressure increase of the reaction vessel are repeated in a short cycle, the processing gas is intermittently supplied into the pores, and the generated gas is discharged. Among these, the pulse CVI method is known to be excellent in uniform film formation inside a porous substrate because of the form of gas supply / discharge.

但し、パルスCVI法では、反応容器が減圧と昇圧とを繰り返し受けるため、反応容器には特に耐圧性が要求される。従来は、石英ガラス製の反応容器が使用されているが(特許文献1、特許文献2参照)、石英ガラスは1000℃以上で軟化変形するので、反応温度1000℃以上を必要とする材料を析出させることはできない。特に装置を大型化した場合に、軟化変形の問題が大きくなる。また、石英ガラスは衝撃や過荷重により、簡単に脆性破壊するという欠点を持つ。   However, in the pulse CVI method, since the reaction vessel repeatedly receives pressure reduction and pressure increase, the reaction vessel is particularly required to have pressure resistance. Conventionally, reaction vessels made of quartz glass have been used (see Patent Document 1 and Patent Document 2). Since quartz glass is softened and deformed at 1000 ° C. or higher, a material that requires a reaction temperature of 1000 ° C. or higher is deposited. I can't let you. In particular, when the apparatus is enlarged, the problem of softening deformation increases. In addition, quartz glass has a drawback that it easily brittlely breaks due to impact or overload.

1000℃以上の反応温度を実現するために、石英ガラスの代わりに、SiC等の耐熱セラミックスを用いる方法も考えられる。しかし、大型のセラミック部品は、セラミックが持つ脆性ゆえに、強度の保証が難しい。また、生産性を上げるために、反応容器の急速昇温、急速冷却を行おうとすると、セラミックスの耐熱衝撃性の弱さが問題になる。   In order to realize a reaction temperature of 1000 ° C. or higher, a method using heat-resistant ceramics such as SiC instead of quartz glass is also conceivable. However, it is difficult to guarantee the strength of large ceramic parts due to the brittleness of ceramics. In addition, in order to increase the productivity, if the temperature of the reaction vessel is rapidly raised and rapidly cooled, the weak thermal shock resistance of ceramics becomes a problem.

石英ガラスやセラミックスの代わりに、耐熱金属で反応管を作成することも考えられるが、この場合、耐食性が問題となる。例えばインコネル等Ni基の耐熱合金を使用した場合、Siを含む処理ガスに高温で接触させると、その表面にNi−Si系の金属間化合物が生成する。Ni−Si系の金属間化合物で融点の最も低いのはNiSiで、その共融点は970℃である。そのため、反応容器の温度を970℃以上に上げると、液相NiSiによる、Ni基合金の侵食が進み、最悪の場合には腐蝕孔が開く。Ni基以外の耐熱合金にも、Niが含まれているので同様の問題が発生する。   It can be considered that the reaction tube is made of a heat-resistant metal instead of quartz glass or ceramics, but in this case, corrosion resistance becomes a problem. For example, when a Ni-based heat-resistant alloy such as Inconel is used, a Ni—Si based intermetallic compound is formed on the surface of the Ni-based heat-resistant alloy when it is brought into contact with a processing gas containing Si at a high temperature. NiSi has the lowest melting point among Ni-Si based intermetallic compounds, and its eutectic point is 970 ° C. Therefore, when the temperature of the reaction vessel is increased to 970 ° C. or more, the Ni-base alloy is eroded by the liquid phase NiSi, and in the worst case, corrosion holes are opened. A similar problem occurs because heat-resistant alloys other than Ni-based alloys also contain Ni.

また、炭素質の反応管を金属製の密閉容器に収め、密閉容器内に収めたヒータで炭素質反応管を加熱する構成の反応容器(特許文献3参照)や、更に炭素質反応管の表面をガス不透過性のSiCで被覆して反応管の気密性を向上させた反応容器(特許文献4参照)も知られている。しかし、特許文献3の反応容器では、(1)冷却速度が遅い:密閉容器内に、反応管、ヒータ、断熱材が収められているので、熱容量が大きく冷めにくい、(2)試料の取り出しが頻繁である:試料が2重の密閉容器に収められているので、2つ以上のフランジを外さないと試料を取り出せない、という問題がある。また、特許文献4の反応容器では、SiC被覆炭素管の信頼性に問題がある。実施例には50回の運転に耐えたとあるが、例えば、急速冷却を行なうことで、SiC層に亀裂が入れば、炭素質反応管の酸化が急激に進む危険がある。また、取り扱い上の不注意で、工具等を反応管にぶつけると、SiC層が脱落し、やはり炭素質反応管の酸化が進む。パルスCVI法では、使用する処理ガスとして水素を使用することが多く、リークすると爆発の危険が高く、SiC被覆炭素管は管理が難しく、実用的でない。   In addition, a carbonaceous reaction tube is housed in a metal sealed container, and the carbonaceous reaction tube is heated by a heater housed in the sealed container (see Patent Document 3), and the surface of the carbonaceous reaction tube. There is also known a reaction vessel (see Patent Document 4) in which gas-impermeable SiC is coated to improve the airtightness of the reaction tube. However, in the reaction vessel of Patent Document 3, (1) the cooling rate is slow: the reaction tube, the heater, and the heat insulating material are housed in the sealed vessel, so the heat capacity is large and it is difficult to cool down. (2) The sample is taken out. Frequent: Since the sample is contained in a double sealed container, there is a problem that the sample cannot be taken out unless two or more flanges are removed. Moreover, in the reaction container of patent document 4, there exists a problem in the reliability of a SiC covering carbon tube. In the embodiment, it is said that the device has endured 50 times. However, for example, if the SiC layer cracks due to rapid cooling, there is a risk that the oxidation of the carbonaceous reaction tube proceeds rapidly. In addition, if a tool or the like is struck against the reaction tube due to careless handling, the SiC layer falls off, and oxidation of the carbonaceous reaction tube proceeds. In the pulse CVI method, hydrogen is often used as a processing gas to be used, and if it leaks, there is a high risk of explosion, and the SiC-coated carbon tube is difficult to manage and is not practical.

特開平8−91963号公報JP-A-8-91963 特開平8−188489号公報Japanese Patent Laid-Open No. 8-188489 特開平6−345569号公報Japanese Patent Laid-Open No. 6-345569 特開平6−57433号公報JP-A-6-57433

上記のように、従来の反応容器には耐久性に問題があり、反応容器のメンテナンスや交換のための費用が製造コストを高めている。また、パルスCVI法においては、処理ガスの導入−保持−排気サイクルが短いほど処理効率は高まるが、反応容器の耐久性のためにおのずと限度がある。   As described above, the conventional reaction vessel has a problem in durability, and the cost for maintenance and replacement of the reaction vessel increases the manufacturing cost. In the pulse CVI method, the processing efficiency increases as the introduction / holding / exhaust cycle of the processing gas is shorter, but there is a limit to the durability of the reaction vessel.

本発明は上記のような状況に鑑みてなされたものであり、気相成長用容器の耐久性及び信頼性を高め、高効率で気相成長法による析出を行なうことを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to improve the durability and reliability of a vapor phase growth vessel and to perform precipitation by a vapor phase growth method with high efficiency.

本発明は、上記の課題を解決するために、下記に示す気相成長用反応容器及び気相成長方法を提供する。
(1)被処理体を収容し、処理ガスを導入して前記被処理体に該処理ガスの反応により析出する物質を気相成長させるために使用される気相成長用反応容器において、
耐衝撃性及び耐熱衝撃性を備える外管と、耐熱性及び耐腐食性を備える内管とからなる二重管構造であり、前記外管と前記内管との間の空間が気密に保持されるとともに、前記空間が非酸化性ガス雰囲気に保持されることを特徴とする気相成長用反応容器。
(2)前記外管がNi基、Fe基またはCo基の耐熱合金からなり、かつ前記内管が炭素質またはセラミック質からなることを特徴とする上記(1)記載の気相成長用反応容器。
(3)前記内管の表面が封止処理されていることを特徴とする上記(2)記載の気相成長用反応容器。
(4)前記外管が、非酸化性ガスの導入口及び排気口を備えることを特徴とする上記(1)〜(3)の何れか1項に記載の気相成長用反応容器。
(5)前記被処理体を載置する試料台が、前記処理ガスを導入するガス導入口と、前記処理ガスを前記反応容器外に排気するガス排気口とを備えることを特徴とする上記(1)〜(4)の何れか1項に記載の気相成長用反応容器。
(6)前記ガス導入口と前記ガス排気口とが共有化されるとともに、略均等に分散配置されていることを特徴とする上記(5)記載の気相成長用反応容器。
(7)前記気相成長が、反応容器内に処理ガスを導入し、所定時間保持した後、排気を行なうサイクルを所定回数繰り返し行なうパルスCVI法により行なわれることを特徴とする上記(1)〜(6)の何れか1項に記載の気相成長用反応容器。
(8)反応容器内に被処理体を配置し、前記反応容器を加熱しながら処理ガスを導入して前記被処理体に処理ガスの反応により析出する物質を気相成長させる気相成長方法において、
外管と内管とからなる二重構造の反応容器を用い、処理中、前記外管と前記内管との間に形成された空間を非酸化性ガス雰囲気に保持することを特徴とする気相成長方法。
(9)前記処理ガスに四塩化珪素ガス、メタンガス及び水素を用いるとともに、前記非酸化性ガスにアルゴンガスを用いることを特徴とする上記(8)記載の気相成長方法。
(10)前記反応容器内に処理ガスを導入し、所定時間保持した後、排気を行なうサイクルを所定回数繰り返し行なうことを特徴とする上記(8)または(9)記載の気相成長方法。
In order to solve the above-mentioned problems, the present invention provides the following vapor phase growth reaction vessel and vapor phase growth method.
(1) In a reaction vessel for vapor phase growth used for containing a target object, introducing a processing gas, and vapor-depositing a substance deposited on the target object by reaction of the processing gas,
It is a double tube structure consisting of an outer tube with impact resistance and thermal shock resistance and an inner tube with heat resistance and corrosion resistance, and the space between the outer tube and the inner tube is kept airtight. And the space is maintained in a non-oxidizing gas atmosphere.
(2) The reaction vessel for vapor phase growth as described in (1) above, wherein the outer tube is made of a Ni-based, Fe-based or Co-based heat-resistant alloy, and the inner tube is made of carbonaceous material or ceramic material. .
(3) The reaction vessel for vapor phase growth as described in (2) above, wherein the surface of the inner tube is sealed.
(4) The reaction vessel for vapor phase growth according to any one of (1) to (3), wherein the outer tube includes a non-oxidizing gas introduction port and an exhaust port.
(5) The sample stage on which the object to be processed is mounted includes a gas introduction port for introducing the processing gas, and a gas exhaust port for exhausting the processing gas to the outside of the reaction container. The reaction vessel for vapor phase growth according to any one of 1) to (4).
(6) The vapor phase growth reaction vessel as described in (5) above, wherein the gas introduction port and the gas exhaust port are shared, and are arranged substantially uniformly.
(7) The vapor phase growth is performed by a pulse CVI method in which a processing gas is introduced into a reaction vessel, held for a predetermined time, and then evacuated for a predetermined number of times. The reaction vessel for vapor phase growth according to any one of (6).
(8) In a vapor phase growth method in which an object to be processed is disposed in a reaction vessel, a process gas is introduced while heating the reaction vessel, and a substance that is deposited on the object to be processed by a reaction of the process gas is vapor-phase grown. ,
A double-structured reaction vessel comprising an outer tube and an inner tube is used, and a space formed between the outer tube and the inner tube is maintained in a non-oxidizing gas atmosphere during processing. Phase growth method.
(9) The vapor phase growth method as described in (8) above, wherein silicon tetrachloride gas, methane gas and hydrogen are used as the processing gas, and argon gas is used as the non-oxidizing gas.
(10) The vapor phase growth method as described in (8) or (9) above, wherein the process gas is introduced into the reaction vessel and held for a predetermined time, and then the exhaust cycle is repeated a predetermined number of times.

本発明の気相成長用反応容器は、二重構造で、処理中に非酸化性ガス雰囲気に維持されるため耐久性が高まる。また、この気相成長用反応容器を用いることにより、効率良く気相成長を行なうことができ、製造コストの低減を図ることができる。   The vapor deposition reactor of the present invention has a dual structure and is maintained in a non-oxidizing gas atmosphere during processing, so that durability is enhanced. Further, by using this reaction vessel for vapor phase growth, vapor phase growth can be performed efficiently, and the production cost can be reduced.

以下、本発明に関して図面を参照して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の気相成長用反応容器(以下、「反応容器」という)を示す断面図及びA部分の拡大図である。図示されるように、反応容器30は、内管31と外管32との二重構造になっている。内管31は、処理ガスと接触するために耐食性を有する必要があり、炭素材料で形成することが好適である。内管31に加工するには、黒鉛の押出し材やCIP材を所定形状に切削する方法が一般的である。   FIG. 1 is a sectional view showing a reaction vessel for vapor phase growth (hereinafter referred to as “reaction vessel”) of the present invention and an enlarged view of a portion A. As illustrated, the reaction vessel 30 has a double structure of an inner tube 31 and an outer tube 32. The inner pipe 31 needs to have corrosion resistance in order to come into contact with the processing gas, and is preferably formed of a carbon material. In order to process the inner tube 31, a method of cutting an extruded graphite material or CIP material into a predetermined shape is generally used.

尚、押出し材は、ミリオーダーの黒鉛粒子とコールタールピッチ等のバインダーとを混合してなる混捏物を押出プレスにて成形して得られる。また、CIP材は、粒径が10〜100μmオーダーの微細な黒鉛粒子とバインダーとの混捏物粉をゴムケースに充填し、気密シールした後、圧力媒体(水や油)が貯留された高圧容器内に入れ、圧力媒体を加圧し、圧力媒体を介してゴムケース内の混捏物粉を成形したものである。CIP材は、圧力媒体を通じて全方向から均一に加圧されるため、黒鉛粒子はランダムに配向し、人造等方性黒鉛とも称される。また、CIP材は黒鉛粒子が微細であることから、気孔サイズが小さく、ガスが透過し難いという特性があり、反応容器の材料として好ましい。   The extruded material is obtained by molding a kneaded material obtained by mixing millimeter-order graphite particles and a binder such as coal tar pitch with an extrusion press. The CIP material is a high-pressure container in which a pressure mixture (water or oil) is stored after a rubber case is filled with a mixture of fine graphite particles having a particle size of the order of 10 to 100 μm and a binder, hermetically sealed. The mixture is put in, the pressure medium is pressurized, and the mixture powder in the rubber case is formed through the pressure medium. Since the CIP material is uniformly pressed from all directions through the pressure medium, the graphite particles are randomly oriented and are also referred to as artificial isotropic graphite. Further, since the CIP material has fine graphite particles, it has the characteristics that the pore size is small and the gas hardly permeates, and it is preferable as the material for the reaction vessel.

また、内管31は、炭化珪素(SiC)等のセラミックス製とすることもできる。   The inner tube 31 can also be made of ceramics such as silicon carbide (SiC).

また、より気体透過性を下げるために、内管31の表面に封止処理を施すことが好ましい。この封止処理は、例えば、内管31にフェノール樹脂を塗布して含浸させ、乾燥した後、真空または非酸化性雰囲気中で1000℃程度の温度で焼成してフェノール樹脂を炭化させればよい。尚、フェノール樹脂は炭化に際して2分の1以下に収縮して気孔が残存するおそれがあるため、目止処理は複数回にわたり行なうことが好ましい。   In order to further reduce the gas permeability, it is preferable to perform a sealing process on the surface of the inner tube 31. For example, the sealing treatment may be performed by applying and impregnating the inner pipe 31 with a phenolic resin, drying it, and then baking it in a vacuum or a non-oxidizing atmosphere at a temperature of about 1000 ° C. to carbonize the phenolic resin. . In addition, since a phenol resin shrink | contracts to 1/2 or less in carbonization, and there exists a possibility that a pore may remain | survive, it is preferable to perform a sealing process in multiple times.

一方、外管32は、加熱装置により直接加熱されるため、耐熱合金、例えばインコネル等のNi基合金製とすることが好適である。   On the other hand, since the outer tube 32 is directly heated by a heating device, the outer tube 32 is preferably made of a heat-resistant alloy, for example, a Ni-based alloy such as Inconel.

上記の内管31と外管32とは気密構造とされる。気密構造とするには、例えばA部分の拡大図に示すような構造とすることができる。即ち、外管32の下端には、外周面から垂直に突出した後、外周面と平行に垂下するフランジ32aが形成されており、内管31の外周面との間でリング状の空所を形成する。内管31は、その下端に僅かに突出するフランジ31aが形成されており、外管32のフランジ32aとの隙間をゴムパッキン33でシールする。また、内管31と外管32のフランジ32aとの空所には、第1の押えリング36がOリング35を介在させて収容され、更に第1の押えリング36の内部には小径の第2の押えリング37が収容され、両押えリング36,37はリング固定ボルト38により外管32のフランジ32aに固定される。そして、外管32のフランジ32aを反応容器の下部フランジ39に、Oリング40を介して固定ボルト41で固定することにより、Oリング35と第1の押えリング36とが圧縮され、反応容器30は気密構造となる。   The inner tube 31 and the outer tube 32 have an airtight structure. In order to obtain an airtight structure, for example, a structure as shown in the enlarged view of the portion A can be used. That is, the lower end of the outer tube 32 is formed with a flange 32a that protrudes perpendicularly from the outer peripheral surface and then hangs parallel to the outer peripheral surface. Form. The inner tube 31 has a flange 31 a that slightly protrudes at the lower end thereof, and a gap between the outer tube 32 and the flange 32 a is sealed with a rubber packing 33. A first presser ring 36 is accommodated in the space between the inner pipe 31 and the flange 32 a of the outer pipe 32 with an O-ring 35 interposed therebetween. Two presser rings 37 are accommodated, and both presser rings 36 and 37 are fixed to the flange 32 a of the outer tube 32 by ring fixing bolts 38. Then, by fixing the flange 32a of the outer tube 32 to the lower flange 39 of the reaction vessel with the fixing bolt 41 via the O-ring 40, the O-ring 35 and the first holding ring 36 are compressed, and the reaction vessel 30 is compressed. Has an airtight structure.

また、下部フランジ39は、処理ガスの導入及び排気を行なう通気口42が形成されており、通気口42を塞ぐように、被処理体43を載置する炭素製の試料台45が固定されている。試料台45には、処理ガスの導入及び排気を行なう通気口46を備えるが、この通気口46は、下部フランジ39の通気口42に連通する本管46aと、本管46aと連通して試料台45の周壁に等間隔で複数設けられた開口に達する枝管46bとで構成される。このような通気口46により、処理ガスが枝管46bを通じて試料台45の複数箇所から放出され、処理ガスが早期に内管31の全体に拡散する。また、排気も枝管46bを通じて複数箇所で行なわれるため、排気効率も高まる。   Further, the lower flange 39 is formed with a vent 42 for introducing and exhausting a processing gas, and a carbon sample stage 45 on which the workpiece 43 is placed is fixed so as to close the vent 42. Yes. The sample stage 45 is provided with a vent 46 for introducing and evacuating process gas. The vent 46 communicates with the main pipe 46a communicating with the vent 42 of the lower flange 39 and the main pipe 46a. The branch pipe 46b reaches a plurality of openings provided at equal intervals on the peripheral wall of the table 45. Through such a vent 46, the processing gas is released from a plurality of locations on the sample stage 45 through the branch pipe 46b, and the processing gas diffuses throughout the inner tube 31 at an early stage. Further, since exhaust is performed at a plurality of locations through the branch pipe 46b, exhaust efficiency is also increased.

試料台45には、通気口46の周囲を空洞とし、空洞にセラミックウール等からなる断熱材47を配置してもよい。気相成長法では、加熱されている反応容器の内部温度を下げないように、処理ガスを加熱してから反応容器に導入することがあるが、試料台45を断熱構造にすることにより、加熱された処理ガスが試料台45を通過しても温度低下を起こすことがなくなる。   The sample stage 45 may be provided with a heat insulating material 47 made of ceramic wool or the like in the cavity around the vent 46. In the vapor phase growth method, the processing gas may be heated and then introduced into the reaction vessel so as not to lower the internal temperature of the heated reaction vessel. Even if the processed gas passes through the sample stage 45, the temperature does not decrease.

内管31と外管32との間には、析出を行なう期間、具体的には反応容器30の加熱開始から加熱終了までの期間、非酸化性ガスを流通させる。ガスの供給及び排気は、外管32の適所に導入口47及び排気口48を設ければよい。これにより、内管31から微量の処理ガスが漏れても、処理ガスが反応容器30から排除されるため、爆発を起こす危険性がなくなる。非反応性ガスとしては、アルゴンガスの他、窒素ガスを用いることができる。   A non-oxidizing gas is circulated between the inner pipe 31 and the outer pipe 32 during the period of precipitation, specifically, the period from the start of heating of the reaction vessel 30 to the end of heating. For gas supply and exhaust, an introduction port 47 and an exhaust port 48 may be provided at appropriate positions of the outer tube 32. Thereby, even if a very small amount of processing gas leaks from the inner pipe 31, the processing gas is excluded from the reaction vessel 30, so that there is no risk of explosion. As the non-reactive gas, nitrogen gas can be used in addition to argon gas.

本発明の反応容器30は上記の如く構成されるが、高温で処理ガスと接触する部分が炭素質またはセラミック質の内管31であるから、処理ガスに対する耐性に優れる。内管31は炭素質またはセラミック質であるため、高温の大気と接触すると容易に酸化するので、単独では使用できず、簡単に脆性破壊するが、耐熱合金からなる外管32で覆うことにより内管31の酸化の問題は解決される。また、内管31は外管32によって力学的に保護されており、取り扱いミスにより割れるおそれもない。もし、何らかの原因で反応中に内管31が破壊して処理ガスが漏洩しても、外管32により爆発を防ぐことができる。更には、炭素質またはセラミック質の内管31及び耐熱合金製の外管32は、石英ガラスやセラミックスに比べて、耐熱衝撃性に優れるため急熱と急冷が可能であり、処理時間を短縮することができるという利点も有する。   Although the reaction vessel 30 of the present invention is configured as described above, the portion that comes into contact with the processing gas at a high temperature is the carbonaceous or ceramic inner pipe 31 and thus has excellent resistance to the processing gas. Since the inner tube 31 is carbonaceous or ceramic, it easily oxidizes when it comes into contact with high-temperature air. Therefore, the inner tube 31 cannot be used alone and is easily brittlely broken. The problem of oxidation of the tube 31 is solved. Further, the inner tube 31 is mechanically protected by the outer tube 32, and there is no possibility of breaking due to a handling mistake. Even if the inner tube 31 is broken during the reaction for some reason and the processing gas leaks, the outer tube 32 can prevent explosion. Furthermore, the inner tube 31 made of carbon or ceramic and the outer tube 32 made of a heat-resistant alloy are excellent in thermal shock resistance compared to quartz glass and ceramics, and thus can be rapidly heated and cooled, thereby shortening the processing time. It also has the advantage of being able to.

本発明の反応容器30はこのような利点を有し、一般的な気相成長法に使用することができるが、耐久性が要求されるパルスCVI法への適用において特にその効果を発揮する。以下に、本発明の反応容器30を用いたパルスCVI法について、被処理体に炭化珪素を析出させる場合を例示して説明する。   The reaction vessel 30 of the present invention has such advantages and can be used for a general vapor deposition method, but exhibits its effect particularly in application to a pulse CVI method requiring durability. Hereinafter, the pulse CVI method using the reaction vessel 30 of the present invention will be described by exemplifying a case where silicon carbide is deposited on the object to be processed.

図2はパルスCVI装置の主要部を示す概略図であり、処理ガス発生装置10から本発明の反応容器30に供給し、処理ガスを反応容器30に所定時間保持した後、反応容器30を排気する構成となっている。   FIG. 2 is a schematic diagram showing the main part of the pulse CVI apparatus. After supplying the processing gas from the processing gas generator 10 to the reaction vessel 30 of the present invention and holding the processing gas in the reaction vessel 30 for a predetermined time, the reaction vessel 30 is evacuated. It is the composition to do.

処理ガス発生装置10は、例えば液化四塩化珪素(SiCl)を貯蔵したバブリングタンク11を備え、ここへ水素ガス(H)を供給してバブリングさせ、原料ガスとなる四塩化珪素ガスを発生させる。水素ガスのガスボンベにはレギュレータRG5、流量計FM5及びエアオペレーバルブ(以下、「バルブ」という)V5が連結しており、流量や供給時期が制御される。発生した四塩化珪素ガスは、手動流量調整バルブNV1で流量調整され、処理ガス貯留容器20に送られる。処理ガスの処理ガス貯留容器20への供給はバルブV6で制御される。 The processing gas generator 10 includes, for example, a bubbling tank 11 that stores liquefied silicon tetrachloride (SiCl 4 ). Hydrogen gas (H 2 ) is supplied to the bubbling tank 11 to generate a silicon tetrachloride gas as a raw material gas. Let A regulator RG5, a flow meter FM5, and an air operated valve (hereinafter referred to as “valve”) V5 are connected to the hydrogen gas cylinder, and the flow rate and supply timing are controlled. The generated silicon tetrachloride gas is adjusted in flow rate by the manual flow rate adjustment valve NV1 and sent to the processing gas storage container 20. Supply of the processing gas to the processing gas storage container 20 is controlled by a valve V6.

尚、流量調整バルブNV1は、圧力遮断弁として機能し、その開度を適度に絞ることで、四塩化珪素の発生量が安定する。圧力遮断弁が無い場合、バブリングタンク11の圧力は処理ガス貯留容器20の圧力と連動してパルス的に変動することがあり、例えば、バブリングタンク11の圧力が下がると原料ガスの発生量が所定量より増えるようになる。そこで圧力遮断弁を設け、これを適度に絞ると、バブリングタンク11の圧力変動が抑えられ、原料ガスの発生量が安定する。   The flow rate adjustment valve NV1 functions as a pressure cutoff valve, and the amount of silicon tetrachloride generated is stabilized by appropriately reducing the opening degree. In the absence of a pressure shut-off valve, the pressure in the bubbling tank 11 may fluctuate in a pulsed manner in conjunction with the pressure in the processing gas storage container 20. For example, when the pressure in the bubbling tank 11 decreases, the amount of raw material gas generated increases. It becomes more than quantitative. Therefore, if a pressure shut-off valve is provided and is appropriately throttled, pressure fluctuations in the bubbling tank 11 are suppressed, and the amount of source gas generated is stabilized.

また、処理ガス貯留容器10には、その他の原料ガスとなるメタン(CH)、水素ガス(H)、パージガスとしてアルゴンガス(Ar)が供給される。尚、図中のV2〜V4はバルブ、符号RG2〜RG4はレギュレータ、FM2〜FM4は流量計である。この処理ガス貯留ガス20において、各原料ガスの混合を安定して行なう。 The processing gas storage container 10 is supplied with methane (CH 4 ), hydrogen gas (H 2 ) as other source gases, and argon gas (Ar) as a purge gas. In the figure, V2 to V4 are valves, symbols RG2 to RG4 are regulators, and FM2 to FM4 are flow meters. In this process gas storage gas 20, each raw material gas is stably mixed.

処理ガス貯留容器20は、バルブV7を介して反応容器30に接続しており、試料台45の通気口46を通じて処理ガスを反応容器30に供給する。   The processing gas storage container 20 is connected to the reaction container 30 via a valve V 7, and supplies the processing gas to the reaction container 30 through the vent 46 of the sample stage 45.

反応容器30は、加熱装置50により加熱される。加熱装置50は、例えばクレーン等により吊り上げ、移動できる構成とすることが好ましい。処理後、反応容器30は冷却されるが、通常は、加熱装置50に収容したまま加熱装置50を降温することで反応容器30の冷却を行なっている。そこで、クレーンで加熱容器50を吊り上げて反応容器30を外気に曝すことにより、冷却時間を大幅に短縮することができるようになる。その際、反応容器30は二重構造であり、外管32のみが固定されているため、急速冷却しても内管31と外管32との熱膨張差による熱応力は発生せず、破壊等を起こすことがない。本発明の反応容器30はこのような利点を併せ持つ。   The reaction vessel 30 is heated by the heating device 50. The heating device 50 is preferably configured to be lifted and moved by, for example, a crane. After the treatment, the reaction vessel 30 is cooled. Usually, the reaction vessel 30 is cooled by lowering the temperature of the heating device 50 while being accommodated in the heating device 50. Therefore, the cooling time can be greatly shortened by lifting the heating vessel 50 with a crane and exposing the reaction vessel 30 to the outside air. At that time, since the reaction vessel 30 has a double structure and only the outer tube 32 is fixed, thermal stress due to a difference in thermal expansion between the inner tube 31 and the outer tube 32 does not occur even when rapidly cooled, and the destruction is broken. It does not cause etc. The reaction vessel 30 of the present invention has such advantages.

また、反応容器30には、処理中、内管31と外管32との間に非酸化性ガスであるアルゴンガス(Ar)が供給される。   Further, argon gas (Ar), which is a non-oxidizing gas, is supplied to the reaction vessel 30 between the inner tube 31 and the outer tube 32 during processing.

更に、反応容器30は、バルブV8を介して排気ガス貯留容器60に接続しており、排気ガス貯留容器60の後段に真空ポンプ70が接続している。排気ガス貯留容器60は、反応容器30からの排気ガスを一時保持するために使用される。また、真空ポンプ70の排ガスはガス処理装置80で無害化処理が施される。   Further, the reaction container 30 is connected to the exhaust gas storage container 60 via the valve V8, and the vacuum pump 70 is connected to the rear stage of the exhaust gas storage container 60. The exhaust gas storage container 60 is used to temporarily hold the exhaust gas from the reaction container 30. Further, the exhaust gas from the vacuum pump 70 is detoxified by the gas processing device 80.

気相成長の工程は、従来のパルスCVI法に従うことができ、先ず、被処理体43を試料台45に載置し、反応容器30、加熱装置50をセットする。   The vapor phase growth process can follow the conventional pulse CVI method. First, the object 43 is placed on the sample stage 45, and the reaction vessel 30 and the heating device 50 are set.

次いで、バルブV8以外を閉じて系内を真空引きし、所定の圧力となった後加熱装置50を通電して反応容器30を加熱する。それと同時に、バルブV1を開いて反応容器30の内管31と外管32との空間にアルゴンガスを供給し、更にバルブV9を開く。   Next, the system other than the valve V8 is closed to evacuate the inside of the system, and after reaching a predetermined pressure, the heating device 50 is energized to heat the reaction vessel 30. At the same time, the valve V1 is opened, argon gas is supplied to the space between the inner tube 31 and the outer tube 32 of the reaction vessel 30, and the valve V9 is further opened.

次いで、バルブV8を閉じ、バルブV4及びバルブV7を開いて水素ガスを処理ガス貯留容器20及び反応容器30に流通させた後、バルブV7を閉じ、反応容器30内に水素ガスを所定時間保持する。保持後、バルブV8を開いて反応容器30内を排気する。この処理ガスの導入及び排気を所定回数繰り返し、クリーニングを行なう。   Next, the valve V8 is closed, and the valves V4 and V7 are opened to allow hydrogen gas to flow through the processing gas storage container 20 and the reaction container 30, and then the valve V7 is closed and the hydrogen gas is held in the reaction container 30 for a predetermined time. . After holding, the valve V8 is opened to evacuate the reaction vessel 30. Cleaning is performed by introducing and exhausting the processing gas a predetermined number of times.

次いで、以下の操作を行ない被処理体43への析出を行なう。先ず、バルブV7、バルブV8を閉じ、バルブV3、バルブV4、バルブV5及びバルブV6を開いて処理ガス貯留容器20に各原料ガスを供給する。原料ガスの供給が安定した後、バルブV7を開いて処理ガスを反応容器30に供給する。しかる後、バルブV7を閉じて処理ガスを反応容器30内に保持する。保持時間としては0.2〜10秒が一般的である。所定時間保持した後、バルブV8を開いて反応容器30内を排気する。この処理ガスの導入及び排気を所定回数繰り返し行ない、被処理体45に炭化珪素を析出させる。そして、バルブV3、バルブV4、バルブV5及びバルブV6を閉じ、バルブV7を開いて析出処理が完了する。尚、流量調整バルブNV1は、予め開度を調整しておき、処理中は固定する。   Next, the following operation is performed to deposit on the workpiece 43. First, the valve V7 and the valve V8 are closed, and the valve V3, the valve V4, the valve V5, and the valve V6 are opened to supply each source gas to the processing gas storage container 20. After the supply of the source gas is stabilized, the valve V7 is opened to supply the processing gas to the reaction vessel 30. Thereafter, the valve V7 is closed to hold the processing gas in the reaction vessel 30. The holding time is generally 0.2 to 10 seconds. After holding for a predetermined time, the valve V8 is opened and the reaction vessel 30 is evacuated. The introduction and exhaust of the processing gas are repeated a predetermined number of times to deposit silicon carbide on the object to be processed 45. Then, the valve V3, the valve V4, the valve V5, and the valve V6 are closed, and the valve V7 is opened to complete the deposition process. The flow rate adjustment valve NV1 is adjusted in advance and fixed during processing.

析出完了後、水素ガスを流通させた後、系内の真空引きを行ない、その後、加熱装置50の通電を停止して反応容器30を冷却する。冷却に際して、加熱装置50を吊り上げて反応容器30と離間させても良い。冷却後、バルブV1を閉じて反応容器30の二重管の隙間へのアルゴンガスの供給を停止する。   After the completion of the deposition, hydrogen gas is circulated, the inside of the system is evacuated, and then the energization of the heating device 50 is stopped to cool the reaction vessel 30. During cooling, the heating device 50 may be lifted and separated from the reaction vessel 30. After cooling, the valve V1 is closed and the supply of argon gas to the gap between the double tubes of the reaction vessel 30 is stopped.

以下、実施例を挙げて本発明を更に説明する。   Hereinafter, the present invention will be further described with reference to examples.

メカニカルカーボン製の人造等方性黒鉛材(密度1.7g/cm)を用いて、外径170mm、内径150mm、長さ410mmの内管を作製した。この内管には、更に、気体透過性を抑えるために、下記の目止処理を施した。 Using an artificial isotropic graphite material (density 1.7 g / cm 3 ) made of mechanical carbon, an inner tube having an outer diameter of 170 mm, an inner diameter of 150 mm, and a length of 410 mm was produced. The inner tube was further subjected to the following sealing treatment in order to suppress gas permeability.

先ず、大日本インキ化学工業製のフェノール樹脂(フェノライトJ−325)とエタノールとを1:1で混合して溶液を調製し、内管のシール部を除く外面全面に塗布して含浸させ、90℃で10時間乾燥してから、電気炉に入れ、真空中、15℃/min(但し150〜500℃までは5℃/min)の昇温速度で1100℃まで昇温し、30分保持して焼成した。次いで、スラリーを内管の両面に塗布し、同様の処理を2回行なった。   First, a phenol resin (Phenolite J-325) manufactured by Dainippon Ink and Chemicals, and ethanol were mixed at a ratio of 1: 1 to prepare a solution, which was applied and impregnated on the entire outer surface excluding the seal portion of the inner tube, After drying at 90 ° C. for 10 hours, put it in an electric furnace, raise the temperature to 1100 ° C. at a rate of 15 ° C./min (5 ° C./min up to 150 to 500 ° C.) in vacuum, and hold for 30 minutes And fired. Next, the slurry was applied to both surfaces of the inner tube, and the same treatment was performed twice.

また、外径190mm、内径180mm、長さ560mmのインコネル601製の外管32を作製した。そして、内管と外管とで二重構造の反応容器とした。尚、気密構造にするために、図1に示すような連結構造とした。この反応容器の内容積は約9Lである。   In addition, an outer tube 32 made of Inconel 601 having an outer diameter of 190 mm, an inner diameter of 180 mm, and a length of 560 mm was produced. And it was set as the reaction container of the double structure with the inner tube | pipe and the outer tube | pipe. In addition, in order to make an airtight structure, it was set as the connection structure as shown in FIG. The internal volume of this reaction vessel is about 9L.

そして、図2に示すように、作製した反応容器と、容量約32Lの処理ガス貯留容器とを用い、図2に示すような配管にてパルスCVI装置を構築した。   Then, as shown in FIG. 2, a pulse CVI apparatus was constructed with piping as shown in FIG. 2 using the produced reaction container and a processing gas storage container having a capacity of about 32 L.

被処理体として、寸法80×80×40mmで、気孔径約1mmの炭素質スポンジ(ウレタン発泡体にフェノライトJ−325を含浸・液切り・乾燥してから、1000℃の非酸化雰囲気で炭化させたもの)を、反応容器の試料台に設置した。そして、原料ガスに、SiCl、CH、H、パージガスにArを用い、炭化珪素の析出を行なった。 Carbonaceous sponge with dimensions of 80 x 80 x 40 mm and pore size of about 1 mm as the object to be processed (urethane foam was impregnated with fenolite J-325, drained and dried, then carbonized in a non-oxidizing atmosphere at 1000 ° C. Was placed on the sample stage of the reaction vessel. Then, SiCl 4 , CH 4 , H 2 was used as a raw material gas, and Ar was used as a purge gas to deposit silicon carbide.

先ず、反応容器を真空引きし、内管と外管をパージするためにArガスを1L/min(0℃標準状態換算)流しながら、1100℃に昇温した。   First, the reaction vessel was evacuated and heated to 1100 ° C. while flowing Ar gas at 1 L / min (converted to 0 ° C. standard state) in order to purge the inner tube and the outer tube.

次いで、処理ガス貯留容器及び反応容器を真空引きした状態で、モル流量で、H:1.34mol/min、CH:0.6mol/min、SiCl;0.6mol/minとなるように各原料ガス供給量及びSiClの発生量を調整した。尚、流量調整バルブNV1(swagelok SS−8RS4)の開度は、全閉から2回転ほど開いた位置とした。この開度は予備実験で、バブリングタンクの圧力が変動しないように調整した結果である。 Next, in a state where the processing gas storage container and the reaction container are evacuated, the molar flow rates are such that H 2 : 1.34 mol / min, CH 4 : 0.6 mol / min, SiCl 4 ; 0.6 mol / min. Each raw material gas supply amount and the generation amount of SiCl 4 were adjusted. In addition, the opening degree of the flow rate adjustment valve NV1 (swagelok SS-8RS4) was set to a position opened about two rotations from the fully closed state. This opening degree is a result of adjustment in a preliminary experiment so that the pressure of the bubbling tank does not fluctuate.

析出に際し、先ず、処理ガス導入用のバルブ(図2のバルブV7)を閉じてから、排気用のバルブ(図2のバルブV8)を2.1秒開いて、反応容器の排気を行った(STEP1)。次に、バルブV8を閉じてから、バルブV7を0.3秒開いて、処理ガス貯留容器に滞留した処理ガスを反応容器に導入した(STEP2)。次に、バルブV7を閉じて、反応容器を封じた状態に0.6秒間保持した(STEP3)。次に、STEP1に戻った。このSTEP1からSTEP3に至る工程を1パルスとし、3000パルスの運転を行った。約100パルスで系の圧力バランスがとれ、反応容器のパルス圧は、最高圧75kPa abs、最低圧10kPa absとなった。   During deposition, first, the processing gas introduction valve (valve V7 in FIG. 2) was closed, and then the exhaust valve (valve V8 in FIG. 2) was opened for 2.1 seconds to evacuate the reaction vessel ( STEP 1). Next, after the valve V8 was closed, the valve V7 was opened for 0.3 seconds, and the processing gas retained in the processing gas storage container was introduced into the reaction container (STEP 2). Next, the valve V7 was closed, and the reaction vessel was kept sealed for 0.6 seconds (STEP 3). Next, it returned to STEP1. The process from STEP 1 to STEP 3 was set to 1 pulse, and operation of 3000 pulses was performed. The system pressure balance was achieved at about 100 pulses, and the pulse pressure in the reaction vessel became a maximum pressure of 75 kPa abs and a minimum pressure of 10 kPa abs.

所定のパルス運転が終了してから、加熱容器に収容したまま反応容器を真空引きしつつ冷却を行なった。1時間後に、反応容器の温度が500℃まで低下した時点で、加熱装置をクレーンで吊り上げて離間させ、反応容器の冷却を引き続き行なった。約1時間で反応容器の温度は約80℃まで低下した。尚、比較のために、加熱装置の離間を行わずに冷却した場合、約80℃まで冷却するのに、約6時間を要した。即ち、2重構造の反応容器を用い、加熱装置の離間を行なうことで、冷却時間は4時間短縮した。   After completion of the predetermined pulse operation, the reaction vessel was cooled while being evacuated while being accommodated in the heating vessel. One hour later, when the temperature of the reaction vessel decreased to 500 ° C., the heating device was lifted and separated by a crane, and the reaction vessel was continuously cooled. In about 1 hour, the temperature of the reaction vessel dropped to about 80 ° C. For comparison, when cooling was performed without separating the heating device, it took about 6 hours to cool to about 80 ° C. That is, the cooling time was shortened by 4 hours by using a reaction vessel having a double structure and separating the heating devices.

被処理体を取り出し、X線回折法で析出物を調べたところ、β−SiCであった。SiCの析出により、処理前のかさ密度0.014g/cmが0.028g/cmまで上昇した。 When the to-be-processed object was taken out and the precipitate was investigated by the X ray diffraction method, it was (beta) -SiC. The deposition of SiC, bulk density 0.014 g / cm 3 before treatment was increased to 0.028 g / cm 3.

また、同条件で20バッチの運転を行ったが、外管の腐蝕、内管の破壊等のトラブルは一切発生しなかった。   Further, 20 batches were operated under the same conditions, but no troubles such as corrosion of the outer tube and destruction of the inner tube occurred.

本発明の気相成長用反応容器の構成を示す図である。It is a figure which shows the structure of the reaction container for vapor phase growth of this invention. 本発明の気相成長用反応容器を用いて気相成長法を実施するための装置の一例(パルスCVI装置)の構成を示す図である。It is a figure which shows the structure of an example (pulse CVI apparatus) for implementing a vapor phase growth method using the reaction vessel for vapor phase growth of this invention.

符号の説明Explanation of symbols

30 反応容器
31 内管
32 外管
43 被処理体
45 試料台
46 通気口
47 断熱材
30 Reaction vessel 31 Inner tube 32 Outer tube 43 Object 45 Sample base 46 Vent 47 Heat insulation

Claims (10)

被処理体を収容し、処理ガスを導入して前記被処理体に該処理ガスの反応により析出する物質を気相成長させるために使用される気相成長用反応容器において、
耐衝撃性及び耐熱衝撃性を備える外管と、耐熱性及び耐腐食性を備える内管とからなる二重管構造であり、前記外管と前記内管との間の空間が気密に保持されるとともに、前記空間が非酸化性ガス雰囲気に保持されることを特徴とする気相成長用反応容器。
In a reaction vessel for vapor phase growth used for containing a target object, introducing a processing gas, and vapor-depositing a substance deposited on the target object by reaction of the processing gas,
It is a double tube structure consisting of an outer tube with impact resistance and thermal shock resistance and an inner tube with heat resistance and corrosion resistance, and the space between the outer tube and the inner tube is kept airtight. And the space is maintained in a non-oxidizing gas atmosphere.
前記外管がNi基、Fe基またはCo基の耐熱合金からなり、かつ前記内管が炭素質またはセラミック質からなることを特徴とする請求項1記載の気相成長用反応容器。   2. The reaction vessel for vapor phase growth according to claim 1, wherein the outer tube is made of a Ni-based, Fe-based or Co-based heat-resistant alloy, and the inner tube is made of carbon or ceramic. 前記内管の表面が封止処理されていることを特徴とする請求項2記載の気相成長用反応容器。   The reaction vessel for vapor phase growth according to claim 2, wherein a surface of the inner tube is sealed. 前記外管が、非酸化性ガスの導入口及び排気口を備えることを特徴とする請求項1〜3の何れか1項に記載の気相成長用反応容器。   The reaction vessel for vapor phase growth according to any one of claims 1 to 3, wherein the outer tube includes a non-oxidizing gas introduction port and an exhaust port. 前記被処理体を載置する試料台が、前記処理ガスを導入するガス導入口と、前記処理ガスを前記反応容器外に排気するガス排気口とを備えることを特徴とする請求項1〜4の何れか1項に記載の気相成長用反応容器。   The sample stage on which the object to be processed is mounted includes a gas introduction port for introducing the processing gas and a gas exhaust port for exhausting the processing gas to the outside of the reaction container. The reaction vessel for vapor phase growth according to any one of the above. 前記ガス導入口と前記ガス排気口とが共有化されるとともに、略均等に分散配置されていることを特徴とする請求項5記載の気相成長用反応容器。   6. The reaction vessel for vapor phase growth according to claim 5, wherein the gas introduction port and the gas exhaust port are shared and are distributed substantially uniformly. 前記気相成長が、反応容器内に処理ガスを導入し、所定時間保持した後、排気を行なうサイクルを所定回数繰り返し行なうパルスCVI法により行なわれることを特徴とする請求項1〜6の何れか1項に記載の気相成長用反応容器。   7. The vapor phase growth is performed by a pulse CVI method in which a processing gas is introduced into a reaction vessel, held for a predetermined time, and then evacuation is repeated a predetermined number of times. The reaction vessel for vapor phase growth according to item 1. 反応容器内に被処理体を配置し、前記反応容器を加熱しながら処理ガスを導入して前記被処理体に処理ガスの反応により析出する物質を気相成長させる気相成長方法において、
外管と内管とからなる二重構造の反応容器を用い、処理中、前記外管と前記内管との間に形成された空間を非酸化性ガス雰囲気に保持することを特徴とする気相成長方法。
In a vapor phase growth method in which an object to be processed is disposed in a reaction vessel, a process gas is introduced while heating the reaction vessel, and a substance deposited by reaction of the process gas is vapor-phase grown on the object to be processed.
A double-structured reaction vessel comprising an outer tube and an inner tube is used, and a space formed between the outer tube and the inner tube is maintained in a non-oxidizing gas atmosphere during processing. Phase growth method.
前記処理ガスに四塩化珪素ガス、メタンガス及び水素を用いるとともに、前記非酸化性ガスにアルゴンガスを用いることを特徴とする請求項8記載の気相成長方法。   9. The vapor phase growth method according to claim 8, wherein silicon tetrachloride gas, methane gas and hydrogen are used as the processing gas, and argon gas is used as the non-oxidizing gas. 前記反応容器内に処理ガスを導入し、所定時間保持した後、排気を行なうサイクルを所定回数繰り返し行なうことを特徴とする請求項8または9記載の気相成長方法。   10. The vapor phase growth method according to claim 8 or 9, wherein a cycle of introducing a processing gas into the reaction vessel and holding it for a predetermined time and then exhausting it is repeated a predetermined number of times.
JP2005284931A 2004-09-30 2005-09-29 Reaction vessel for vapor phase growth, and vapor phase growth method Pending JP2006124831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005284931A JP2006124831A (en) 2004-09-30 2005-09-29 Reaction vessel for vapor phase growth, and vapor phase growth method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004288149 2004-09-30
JP2005284931A JP2006124831A (en) 2004-09-30 2005-09-29 Reaction vessel for vapor phase growth, and vapor phase growth method

Publications (1)

Publication Number Publication Date
JP2006124831A true JP2006124831A (en) 2006-05-18

Family

ID=36719847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005284931A Pending JP2006124831A (en) 2004-09-30 2005-09-29 Reaction vessel for vapor phase growth, and vapor phase growth method

Country Status (1)

Country Link
JP (1) JP2006124831A (en)

Cited By (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293014B2 (en) 2008-12-25 2012-10-23 Hitachi Kokusai Electric Inc. Substrate processing apparatus and reaction tube for processing substrate
JP2013075892A (en) * 2011-09-14 2013-04-25 Daiichi Sankyo Healthcare Co Ltd Anti-inflammatory and/or antihistaminic agent composition
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11959171B2 (en) 2022-07-18 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process

Cited By (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293014B2 (en) 2008-12-25 2012-10-23 Hitachi Kokusai Electric Inc. Substrate processing apparatus and reaction tube for processing substrate
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
JP2013075892A (en) * 2011-09-14 2013-04-25 Daiichi Sankyo Healthcare Co Ltd Anti-inflammatory and/or antihistaminic agent composition
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11961741B2 (en) 2021-03-04 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11959168B2 (en) 2021-04-26 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11967488B2 (en) 2022-05-16 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11959171B2 (en) 2022-07-18 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process

Similar Documents

Publication Publication Date Title
JP2006124831A (en) Reaction vessel for vapor phase growth, and vapor phase growth method
JP2006124832A (en) Vapor phase growth system and vapor phase growth method
US3925577A (en) Silicon carbide coated graphite members and process for producing the same
JP3955340B2 (en) High-temperature and high-pressure gas processing equipment
JP5167116B2 (en) High density molded product of refractory material and method for producing the same
JPH0218359A (en) Method and equipment for impregnation and carbonization
CN101405438B (en) Apparatus for producing nitride single crystal
US9493873B2 (en) Method for preparing a coating for protecting a part against oxidation
US3771976A (en) Metal carbonitride-coated article and method of producing same
CN108359958B (en) Preparation method of CVD method silicon carbide coating
RU2010123917A (en) METHOD FOR PRODUCING LARGE HOMOGENEOUS SILICON CARBIDE CRYSTALS USING SUBJECT AND CONDENSATION PROCESSES
JPS6311401B2 (en)
KR20140085448A (en) Coated crucible and method of making a coated crucible
CN113549895A (en) Method for preparing tantalum carbide coating on surface of graphite substrate and graphite device
WO2007108338A1 (en) Process and apparatus for producing nitride single crystal
CN113272470A (en) Method and assembly for infiltration and rapid vapor deposition of porous components
CN218175088U (en) Device for plating carbide protective layer on surface of graphite structural member
EP1484429A1 (en) Semiconductor or liquid crystal producing device
US1893286A (en) Method of carbonizing metals and alloys
KR102501313B1 (en) Process for treating a piece of tantalum or of a tantalum alloy
US8343449B1 (en) Device and method for producing a tubular refractory metal compound structure
JP2019119629A (en) MANUFACTURING METHOD OF HIGH PURITY SiC
JPH0657433A (en) Pulse cvi device
JP2016113338A (en) Thermal decomposition boron nitride member and method for manufacturing the same
JPH1135391A (en) Silicon carbide-coated susceptor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20060328

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD04 Notification of resignation of power of attorney

Effective date: 20071129

Free format text: JAPANESE INTERMEDIATE CODE: A7424