JP2008108860A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2008108860A
JP2008108860A JP2006289442A JP2006289442A JP2008108860A JP 2008108860 A JP2008108860 A JP 2008108860A JP 2006289442 A JP2006289442 A JP 2006289442A JP 2006289442 A JP2006289442 A JP 2006289442A JP 2008108860 A JP2008108860 A JP 2008108860A
Authority
JP
Japan
Prior art keywords
film
semiconductor wafer
nitride film
forming
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006289442A
Other languages
Japanese (ja)
Inventor
Masayoshi Saito
政良 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2006289442A priority Critical patent/JP2008108860A/en
Priority to US11/973,947 priority patent/US20080102630A1/en
Publication of JP2008108860A publication Critical patent/JP2008108860A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device capable of polishing a metallic film entirely on a wafer in just proportion by a chemical mechanical polishing (CMP) method. <P>SOLUTION: The method of manufacturing a semiconductor device includes a step S5 of forming a barrier layer 6 on an insulation film 5 having a dent 5a formed, a step S6 of forming the metallic film 7 on the barrier layer 6 so that part 7a of the metallic film 7 is buried in the dent 5a, and a step S7 of polishing the metallic film 7 to leave the part 7a by the CMP method. The barrier layer 6 is formed so that its orientation is uniform entirely on a surface of a semiconductor wafer 1. Thus, the orientation of the metallic film 7 is uniform entirely on the wafer surface. This is because a crystalline structure of the metallic film is influenced by a surface condition of an underlying material. Since polishing speed by the CMP method differs depending on the difference in the orientation of the metallic film, excess or insufficiency in polishing by the CMP method can be prevented from occurring if the orientation of the metallic film 7 is uniform entirely on the wafer surface. Thus, chip yielding is improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体装置の製造方法に関し、特に、1枚の半導体ウエハから複数の半導体装置を製造する半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device in which a plurality of semiconductor devices are manufactured from a single semiconductor wafer.

従来、半導体装置における下層配線と上層配線との接続にはタングステン(W)よりなるプラグ(タングステンプラグ)が使用されている。タングステンプラグを形成する方法について説明する。はじめに、ヴィアホール(層間接続孔)が形成された層間絶縁膜の上にチタン膜(Ti膜)及び窒化チタン膜(TiN膜)を含むバリア層を形成する。次に、バリア層の上にCVD(Chemical Vapor Deposition)法によりタングステン膜(W膜)を形成する。次に、バリア層及びタングステン膜のヴィアホールに埋め込まれた部分を残すように余分な部分(層間絶縁膜の平坦部上に存在する部分)をCMP(Chemical Mechanical Polishing)法により除去する。   Conventionally, a plug (tungsten plug) made of tungsten (W) has been used to connect a lower layer wiring and an upper layer wiring in a semiconductor device. A method for forming a tungsten plug will be described. First, a barrier layer including a titanium film (Ti film) and a titanium nitride film (TiN film) is formed on an interlayer insulating film in which via holes (interlayer connection holes) are formed. Next, a tungsten film (W film) is formed on the barrier layer by a CVD (Chemical Vapor Deposition) method. Next, an extra portion (a portion existing on the flat portion of the interlayer insulating film) is removed by a CMP (Chemical Mechanical Polishing) method so as to leave a portion buried in the barrier layer and the via hole of the tungsten film.

タングステンプラグを形成する方法においては、バリア層及びタングステン膜の層間絶縁膜の平坦部上に存在する部分をCMP法により除去する工程の終点を精度良く検出することが重要である。工程を終了するタイミングが遅過ぎる場合、研磨過多によりタングステンプラグの接続抵抗が増加する。工程を終了するタイミングが早過ぎる場合、研磨不足により隣り合うタングステンプラグどうしが短絡する。   In the method of forming the tungsten plug, it is important to accurately detect the end point of the step of removing the portion of the barrier layer and the tungsten film on the flat portion of the interlayer insulating film by the CMP method. If the timing of finishing the process is too late, the connection resistance of the tungsten plug increases due to excessive polishing. When the timing of finishing the process is too early, adjacent tungsten plugs are short-circuited due to insufficient polishing.

特許文献1は、CMP法によりタングステン膜を除去する工程の終点を精度良く検出するために、結晶面が(110)面に配向した多結晶膜としてタングステン膜を形成する技術を開示している。さらに、特許文献1には、In−plane型X線回折装置を用いた2θ法で測定した場合、窒化チタン膜における結晶面が(220)面に2°以下の半値幅となるように配向していると、タングステン膜の結晶配向性が確実に向上することが記載されている。   Patent Document 1 discloses a technique of forming a tungsten film as a polycrystalline film having a crystal plane oriented in the (110) plane in order to accurately detect the end point of the process of removing the tungsten film by the CMP method. Further, in Patent Document 1, when measured by the 2θ method using an In-plane type X-ray diffractometer, the crystal plane of the titanium nitride film is oriented so that the (220) plane has a half width of 2 ° or less. It is described that the crystal orientation of the tungsten film is surely improved.

ところで、特許文献2は、チタン膜が(002)配向し、その上の窒化チタン膜が(111)配向していると、チタン膜をアニールにより窒化するときのアニール温度を低くできることを開示している。チタンの(002)面は比較的活性であるために窒化されやすく、且つ、窒化チタンの(111)面の法線方向には窒素が拡散しやすいためである。   By the way, Patent Document 2 discloses that when the titanium film is (002) -oriented and the titanium nitride film thereon is (111) -oriented, the annealing temperature when nitriding the titanium film by annealing can be lowered. Yes. This is because the (002) plane of titanium is relatively active and thus easily nitrided, and nitrogen easily diffuses in the normal direction of the (111) plane of titanium nitride.

特許文献3は、チタン層の上に窒化チタン層を形成する場合、スパッタリングにより形成すると窒化チタン層が(111)配向となり、CVDにより形成すると窒化チタン層が(200)配向となることを開示している。   Patent Document 3 discloses that when a titanium nitride layer is formed on a titanium layer, the titanium nitride layer has a (111) orientation when formed by sputtering, and the titanium nitride layer has a (200) orientation when formed by CVD. ing.

特開2002−203858号公報JP 2002-203858 A 特開平8−162530号公報JP-A-8-162530 特開2003−142577号公報JP 2003-142577 A

本発明の目的は、CMP法による金属膜の研磨をウエハ全体で過不足なく行うことが可能な半導体装置の製造方法を提供することである。   An object of the present invention is to provide a method for manufacturing a semiconductor device capable of polishing a metal film by a CMP method over and over the entire wafer.

以下に、(発明を実施するための最良の形態)で使用される番号を用いて、課題を解決するための手段を説明する。これらの番号は、(特許請求の範囲)の記載と(発明を実施するための最良の形態)との対応関係を明らかにするために付加されたものである。ただし、それらの番号を、(特許請求の範囲)に記載されている発明の技術的範囲の解釈に用いてはならない。   Hereinafter, means for solving the problem will be described using the numbers used in (Best Mode for Carrying Out the Invention). These numbers are added to clarify the correspondence between the description of (Claims) and (Best Mode for Carrying Out the Invention). However, these numbers should not be used to interpret the technical scope of the invention described in (Claims).

本発明の半導体装置の製造方法は、窪み(5a、11)が設けられた絶縁膜(5、9及び10)の上にバリア層(6、12)を形成する工程(S5、S12)と、金属膜(7、13)の第1部分(7a、13a)が前記窪みに埋め込まれるように前記バリア層の上に前記金属膜を形成する工程(S6、S13)と、前記第1部分を残すように前記金属膜をCMP(Chemical Mechanical Polishing)法により研磨する工程(S7、S14)とを具備する。前記絶縁膜は、半導体ウエハ(1)に形成されている。前記バリア層を形成する前記工程において、前記バリア層は、その配向性が前記半導体ウエハのウエハ面の全体で一様になるように形成される。   The method for manufacturing a semiconductor device according to the present invention includes a step (S5, S12) of forming a barrier layer (6, 12) on an insulating film (5, 9 and 10) provided with depressions (5a, 11), Forming the metal film on the barrier layer so that the first part (7a, 13a) of the metal film (7, 13) is embedded in the recess (S6, S13), and leaving the first part; In this manner, the metal film is polished by a CMP (Chemical Mechanical Polishing) method (S7, S14). The insulating film is formed on the semiconductor wafer (1). In the step of forming the barrier layer, the barrier layer is formed so that its orientation is uniform over the entire wafer surface of the semiconductor wafer.

したがって、バリア層の上に形成される金属膜の配向性は、ウエハ面の全体で一様になる。金属膜の結晶構造は、下地材料の表面状態の影響を受けるためである。金属膜の配向性の違いによりCMP法による研磨速度が異なるから、金属膜の配向性がウエハ面の全体で一様であるとCMP法による研磨に過不足が生じることが防がれる。ゆえに、チップ歩留まりが向上する。なお、バリア層の配向性がウエハ面の全体で一様であるとは、バリア層がウエハ面の全体で特定の配向性を主配向として有する場合と、バリア層がウエハ面の全体で主配向を実質的に有さない場合とを含む。   Therefore, the orientation of the metal film formed on the barrier layer is uniform over the entire wafer surface. This is because the crystal structure of the metal film is affected by the surface state of the base material. Since the polishing rate by the CMP method varies depending on the difference in the orientation of the metal film, if the orientation of the metal film is uniform over the entire wafer surface, it is possible to prevent the polishing by the CMP method from being excessive or insufficient. Therefore, the chip yield is improved. It should be noted that the orientation of the barrier layer is uniform over the entire wafer surface when the barrier layer has a specific orientation as the main orientation over the entire wafer surface and when the barrier layer is over the entire wafer surface. The case where it does not have substantially.

本発明の半導体装置の製造方法においては、前記バリア層が高融点金属の窒化物膜としての金属窒化物膜を含むことが好ましい。前記バリア層を形成する前記工程は、配向性が前記ウエハ面の全体で一様になるように前記金属窒化物膜を形成する工程を含む。   In the method for manufacturing a semiconductor device of the present invention, the barrier layer preferably includes a metal nitride film as a refractory metal nitride film. The step of forming the barrier layer includes a step of forming the metal nitride film so that the orientation is uniform over the entire wafer surface.

本発明の半導体装置の製造方法における前記金属窒化物膜を形成する前記工程において、前記金属窒化物膜は反応性スパッタ法により形成されることが好ましい。前記反応性スパッタ法において、前記半導体ウエハと前記高融点金属のターゲット(24)とが互いに対向するように反応室(21)内に配置される。アルゴンガスと窒素ガスとを含む混合ガスが、前記半導体ウエハの周辺部から中心部に向かう方向に流れるように、前記半導体ウエハと前記ターゲットとの間に導入される。前記ターゲットに直流の負電位が印加される。前記半導体ウエハに高周波電力が印加される。前記混合ガスが含む窒素ガスの比率としての窒素ガス流量比は、0%より大きく100%より小さい範囲から所定の範囲を除いた範囲に属する。前記所定の範囲は、前記窒素ガス流量比の変化に対する前記金属窒化物膜の成膜速度の変化において履歴現象が観察される範囲である。   In the step of forming the metal nitride film in the method for manufacturing a semiconductor device of the present invention, the metal nitride film is preferably formed by a reactive sputtering method. In the reactive sputtering method, the semiconductor wafer and the refractory metal target (24) are arranged in a reaction chamber (21) so as to face each other. A mixed gas containing argon gas and nitrogen gas is introduced between the semiconductor wafer and the target so as to flow in a direction from the peripheral part to the central part of the semiconductor wafer. A negative DC potential is applied to the target. High frequency power is applied to the semiconductor wafer. The nitrogen gas flow rate ratio as a ratio of nitrogen gas contained in the mixed gas belongs to a range excluding a predetermined range from a range larger than 0% and smaller than 100%. The predetermined range is a range in which a hysteresis phenomenon is observed in a change in the deposition rate of the metal nitride film with respect to a change in the nitrogen gas flow rate ratio.

本発明の半導体装置の製造方法は、前記所定の範囲を予備実験により求める工程を具備することが好ましい。前記所定の範囲を予備実験により求める前記工程は、前記半導体ウエハとは別の半導体ウエハを、前記別の半導体ウエハと前記ターゲットとが対向するように前記反応室内に配置する工程と、アルゴンガスと窒素ガスとを含む予備実験用の混合ガスを、前記別の半導体ウエハの周辺部から中心部に向かう方向に流れるように、前記別の半導体ウエハと前記ターゲットとの間に導入する工程と、前記ターゲットに直流の負電位を印加する工程と、前記別の半導体ウエハに高周波電力を印加する工程と、前記別の半導体ウエハ上に形成される前記高融点金属の窒化物膜の成膜速度を測定する工程と、前記成膜速度に基づいて前記所定の範囲を決定する工程とを含む。前記別の半導体ウエハと前記ターゲットとの間に導入する前記工程は、前記予備実験用の混合ガスが含む窒素ガスの比率を増加させながら前記予備実験用の混合ガスを導入する工程と、前記予備実験用の混合ガスが含む窒素ガスの比率を減少させながら前記予備実験用の混合ガスを導入する工程とを含む。   The semiconductor device manufacturing method of the present invention preferably includes a step of obtaining the predetermined range by a preliminary experiment. The step of obtaining the predetermined range by a preliminary experiment includes a step of disposing a semiconductor wafer different from the semiconductor wafer in the reaction chamber so that the other semiconductor wafer and the target face each other, argon gas, Introducing a mixed gas for a preliminary experiment containing nitrogen gas between the another semiconductor wafer and the target so as to flow in a direction from a peripheral part to a center part of the other semiconductor wafer; A step of applying a negative DC potential to the target, a step of applying high-frequency power to the other semiconductor wafer, and a deposition rate of the refractory metal nitride film formed on the other semiconductor wafer are measured. And a step of determining the predetermined range based on the film formation rate. The step of introducing between the another semiconductor wafer and the target includes the step of introducing the preliminary experimental mixed gas while increasing the ratio of the nitrogen gas contained in the preliminary experimental mixed gas; Introducing the preliminary experimental mixed gas while reducing the ratio of nitrogen gas contained in the experimental mixed gas.

本発明の半導体装置の製造方法においては、前記金属窒化物膜が窒化チタン膜であり、前記金属膜がタングステン膜であることが好ましい。前記金属膜を形成する前記工程において、前記タングステン膜がCVD(Chemical Vapor Deposition)法により形成される。   In the semiconductor device manufacturing method of the present invention, it is preferable that the metal nitride film is a titanium nitride film and the metal film is a tungsten film. In the step of forming the metal film, the tungsten film is formed by a CVD (Chemical Vapor Deposition) method.

本発明の半導体装置の製造方法における前記金属窒化物膜を形成する前記工程において、自己イオン化プラズマを用いたスパッタ法により前記窒化チタン膜が形成されることが好ましい。   In the step of forming the metal nitride film in the method for manufacturing a semiconductor device of the present invention, the titanium nitride film is preferably formed by a sputtering method using self-ionized plasma.

本発明の半導体装置の製造方法における前記スパッタ法において、前記半導体ウエハとチタンターゲット(24)とが反応室内(21)に配置され、前記半導体ウエハの基板温度が室温より高く50℃より低くなるように制御され、アルゴンガスと窒素ガスとを含む混合ガスが前記反応室内に導入され、前記チタンターゲットに直流の負電位が印加され、前記半導体ウエハに高周波電力が印加され、前記高周波電力の周波数が40MHzより高く200MHzより低くなるように制御され、前記反応室内の圧力が0.5mTorrより高く2mTorrより低くなるように制御されることが好ましい。   In the sputtering method in the method of manufacturing a semiconductor device according to the present invention, the semiconductor wafer and the titanium target (24) are disposed in a reaction chamber (21) so that the substrate temperature of the semiconductor wafer is higher than room temperature and lower than 50 ° C. A mixed gas containing argon gas and nitrogen gas is introduced into the reaction chamber, a negative DC potential is applied to the titanium target, high frequency power is applied to the semiconductor wafer, and the frequency of the high frequency power is It is preferably controlled so as to be higher than 40 MHz and lower than 200 MHz, and controlled so that the pressure in the reaction chamber is higher than 0.5 mTorr and lower than 2 mTorr.

本発明の半導体装置の製造方法においては、前記バリア層はチタン膜を含むことが好ましい。前記バリア層を形成する前記工程は、自己イオン化プラズマを用いたスパッタ法により前記チタン膜を形成する工程を含む。前記チタン膜を形成する前記工程は、前記高融点金属の窒化物膜を形成する前記工程の前に実行される。   In the semiconductor device manufacturing method of the present invention, the barrier layer preferably includes a titanium film. The step of forming the barrier layer includes a step of forming the titanium film by a sputtering method using self-ionized plasma. The step of forming the titanium film is performed before the step of forming the refractory metal nitride film.

本発明の半導体装置の製造方法においては、前記窪みは、多層配線のヴィアホールであることが好ましい。   In the method for manufacturing a semiconductor device according to the present invention, the recess is preferably a via hole of a multilayer wiring.

本発明の半導体装置の製造方法においては、前記窪みは、配線を形成するための溝であることが好ましい。   In the method of manufacturing a semiconductor device according to the present invention, the recess is preferably a groove for forming a wiring.

本発明の半導体装置の製造方法においては、前記金属膜は銅膜であることが好ましい。   In the semiconductor device manufacturing method of the present invention, the metal film is preferably a copper film.

本発明の半導体装置の製造方法においては、前記高融点金属の窒化物膜は窒化タンタル膜であることが好ましい。   In the semiconductor device manufacturing method of the present invention, the refractory metal nitride film is preferably a tantalum nitride film.

本発明によれば、CMP法による金属膜の研磨をウエハ全体において過不足なく行うことが可能な半導体装置の製造方法が提供される。   According to the present invention, there is provided a method for manufacturing a semiconductor device capable of performing polishing of a metal film by CMP method over and over the entire wafer.

添付図面を参照して、本発明による半導体装置の製造方法を実施するための最良の形態を以下に説明する。   The best mode for carrying out a method of manufacturing a semiconductor device according to the present invention will be described below with reference to the accompanying drawings.

はじめに、図1及び図2Aから2Fを参照して、本発明の実施形態に係る半導体装置の製造方法の概要を説明する。   First, an outline of a method for manufacturing a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2A to 2F.

図1は、本発明の実施形態に係る半導体装置の製造方法を示すフロー図である。図1には、トランジスタが形成された半導体ウエハ1に多層配線を形成する工程が示されている。半導体ウエハ1は、多層配線が形成された後、パッシベーションが形成され、複数の半導体チップにダイシングされる。各々の半導体チップは、リードフレームに固定され、半導体チップの電極パッドとリードフレームの端子とが結線され、樹脂でモールドされる。その後、検査工程を経て半導体装置(半導体集積回路)が完成する。半導体装置としては、揮発性メモリ、不揮発性メモリ、及びロジック集積回路が例示される。   FIG. 1 is a flowchart showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. FIG. 1 shows a process of forming a multilayer wiring on a semiconductor wafer 1 on which a transistor is formed. The semiconductor wafer 1 is formed with a multilayer wiring, and then a passivation is formed, and the semiconductor wafer 1 is diced into a plurality of semiconductor chips. Each semiconductor chip is fixed to a lead frame, and electrode pads of the semiconductor chip and terminals of the lead frame are connected and molded with resin. Thereafter, a semiconductor device (semiconductor integrated circuit) is completed through an inspection process. Examples of the semiconductor device include a volatile memory, a nonvolatile memory, and a logic integrated circuit.

図2Aから2Fは、本発明の実施形態に係る半導体製造装置の製造方法において、タングステンプラグ7aを含む多層配線を形成する工程を説明するための半導体ウエハ1の断面図である。   2A to 2F are cross-sectional views of the semiconductor wafer 1 for explaining a process of forming a multilayer wiring including the tungsten plug 7a in the manufacturing method of the semiconductor manufacturing apparatus according to the embodiment of the present invention.

(工程S1)
図2Aに示される半導体ウエハ1に下層配線層4を形成する。図2Aに示される半導体ウエハ1は、基板2上に素子分離領域(図示されず)を形成し、トランジスタ(図示されず)を形成し、絶縁膜3を堆積し、絶縁膜3を平坦化し、絶縁膜3の上にコンタクト層(図示されず)を形成することで準備された。下層配線層4は、絶縁膜3の上に形成される。下層配線層4は、図2Bに示されるように、Ti膜上にTiN膜を積層したTiN/Ti膜4a、AlCu膜4b及びTiN膜4cからなる積層構造を有している。下層配線層4の中で、TiN/Ti膜4aは絶縁膜3に近い側に配置され、TiN膜4cは絶縁膜3に遠い側に配置され、AlCu膜4bはTiN/Ti膜4aとTiN膜4cとの間に配置されている。TiN/Ti膜4aは、絶縁膜3により近いチタン膜(Ti膜)とその上に配置された窒化チタン膜(TiN膜)とを含んでいる。例えば、TiN/Ti膜4aのチタン膜の厚さは20nm、TiN/Ti膜4aの窒化チタン膜の厚さは30nm、AlCu膜4bの厚さは300nm、TiN膜4cの厚さは50nmである。
(Process S1)
A lower wiring layer 4 is formed on the semiconductor wafer 1 shown in FIG. 2A. A semiconductor wafer 1 shown in FIG. 2A forms an element isolation region (not shown) on a substrate 2, forms a transistor (not shown), deposits an insulating film 3, planarizes the insulating film 3, It was prepared by forming a contact layer (not shown) on the insulating film 3. The lower wiring layer 4 is formed on the insulating film 3. As shown in FIG. 2B, the lower wiring layer 4 has a laminated structure including a TiN / Ti film 4a, an AlCu film 4b, and a TiN film 4c in which a TiN film is laminated on a Ti film. In the lower wiring layer 4, the TiN / Ti film 4a is disposed on the side close to the insulating film 3, the TiN film 4c is disposed on the side far from the insulating film 3, and the AlCu film 4b is formed of the TiN / Ti film 4a and the TiN film. 4c. The TiN / Ti film 4a includes a titanium film (Ti film) closer to the insulating film 3 and a titanium nitride film (TiN film) disposed thereon. For example, the thickness of the titanium film of the TiN / Ti film 4a is 20 nm, the thickness of the titanium nitride film of the TiN / Ti film 4a is 30 nm, the thickness of the AlCu film 4b is 300 nm, and the thickness of the TiN film 4c is 50 nm. .

(工程S2)
次に、層間絶縁膜としての絶縁膜5を半導体ウエハ1に形成する。絶縁膜5は、例えば、プラズマCVD(Chemical Vapor Deposition)法により形成されるシリコン酸化膜(SiO膜)である。
(Process S2)
Next, an insulating film 5 as an interlayer insulating film is formed on the semiconductor wafer 1. The insulating film 5 is, for example, a silicon oxide film (SiO 2 film) formed by a plasma CVD (Chemical Vapor Deposition) method.

(工程S3)
次に、CMP(Chemical Mechanical Polishing)法により絶縁膜5を平坦化する。
(Process S3)
Next, the insulating film 5 is planarized by a CMP (Chemical Mechanical Polishing) method.

(工程S4)
次に、絶縁膜5の窪み(凹部)としてのヴィアホール5aを形成する。ヴィアホール5aが形成された半導体ウエハ1が図2Cに示されている。ヴィアホール5aの底には下層配線層4が露出している。ヴィアホール5aが形成されていない絶縁膜5の部分は平坦部5bである。
(Process S4)
Next, a via hole 5 a is formed as a depression (concave portion) of the insulating film 5. A semiconductor wafer 1 in which a via hole 5a is formed is shown in FIG. 2C. The lower wiring layer 4 is exposed at the bottom of the via hole 5a. The portion of the insulating film 5 where the via hole 5a is not formed is a flat portion 5b.

(工程S5)
次に、絶縁膜5の上にバリア層6を形成する。バリア層6は、反応性スパッタ法で形成される窒化チタン膜(TiN膜)である。窒化チタン膜は、平坦部5b上の部分の膜厚が50nmになるように形成される。バリア層6は、窒化チタン膜の下地としてのチタン膜(Ti膜)を含んでもよい。バリア層6は、後の工程において耐熱性が要求されるため、高融点金属の窒化物膜であることが好ましい。高融点金属とは、例えば、チタン(Ti)、タングステン(Ta)及びモリブデン(Mo)である。
(Process S5)
Next, the barrier layer 6 is formed on the insulating film 5. The barrier layer 6 is a titanium nitride film (TiN film) formed by reactive sputtering. The titanium nitride film is formed so that the thickness of the portion on the flat portion 5b is 50 nm. The barrier layer 6 may include a titanium film (Ti film) as a base of the titanium nitride film. The barrier layer 6 is preferably a refractory metal nitride film because heat resistance is required in a later step. Examples of the refractory metal include titanium (Ti), tungsten (Ta), and molybdenum (Mo).

(工程S6)
次に、バリア層6の上にタングステン膜(W膜)7を形成する。タングステン膜7は、CVD法により堆積される、図2Dはタングステン膜7が形成された半導体ウエハ1を示している。タングステン膜7は、その一部がヴィアホール5aに埋め込まれ、他の部分が平坦部5bの上に配置されている。タングステン膜7は、他の部分の膜厚が400nmになるように形成される。ところで、タングステン膜7をCVD法により形成する際には、六フッ化タングステン(WF)を含む原料ガスが用いられる。バリア層6により、WFと下層配線層4が反応することが防がれる。また、絶縁膜5の上に直接タングステン膜7を形成した場合には絶縁膜5とタングステン膜7の密着性が問題となるが、これらの間にバリア層6が介在すると良好な密着性が得られる。
(Step S6)
Next, a tungsten film (W film) 7 is formed on the barrier layer 6. The tungsten film 7 is deposited by the CVD method. FIG. 2D shows the semiconductor wafer 1 on which the tungsten film 7 is formed. A part of the tungsten film 7 is embedded in the via hole 5a, and the other part is disposed on the flat part 5b. The tungsten film 7 is formed so that the film thickness of other portions is 400 nm. By the way, when the tungsten film 7 is formed by the CVD method, a source gas containing tungsten hexafluoride (WF 6 ) is used. The barrier layer 6 prevents the WF 6 and the lower wiring layer 4 from reacting. Further, when the tungsten film 7 is formed directly on the insulating film 5, the adhesion between the insulating film 5 and the tungsten film 7 becomes a problem. However, when the barrier layer 6 is interposed between them, good adhesion is obtained. It is done.

(工程S7)
次に、タングステン膜7をCMP法により研磨し、平坦部5bの上に配置されている他の部分を除去する。これにより、図2Eに示されるように、ヴィアホール5aに埋め込まれたタングステンプラグ7aが形成される。
(Process S7)
Next, the tungsten film 7 is polished by the CMP method, and other portions disposed on the flat portion 5b are removed. As a result, as shown in FIG. 2E, a tungsten plug 7a embedded in the via hole 5a is formed.

(工程S8)
次に、図2Fに示されるように、絶縁膜5の上に上層配線層8を形成する。上層配線層8は、タングステンプラグ7aに接続されるように形成される。上層配線層8は、TiN/Ti膜8a、AlCu膜8b及びTiN膜8cからなる積層構造を有している。上層配線層8の中で、TiN/Ti膜8aは絶縁膜5に近い側に配置され、TiN膜8cは絶縁膜5に遠い側に配置され、AlCu膜8bはTiN/Ti膜8aとTiN膜8cとの間に配置されている。TiN/Ti膜8aは、絶縁膜5により近いチタン膜(Ti膜)とその上に配置された窒化チタン膜(TiN膜)とを含んでいる。
(Process S8)
Next, as shown in FIG. 2F, the upper wiring layer 8 is formed on the insulating film 5. The upper wiring layer 8 is formed so as to be connected to the tungsten plug 7a. The upper wiring layer 8 has a laminated structure composed of a TiN / Ti film 8a, an AlCu film 8b, and a TiN film 8c. In the upper wiring layer 8, the TiN / Ti film 8a is disposed on the side close to the insulating film 5, the TiN film 8c is disposed on the side far from the insulating film 5, and the AlCu film 8b includes the TiN / Ti film 8a and the TiN film. 8c. The TiN / Ti film 8a includes a titanium film (Ti film) closer to the insulating film 5 and a titanium nitride film (TiN film) disposed thereon.

次に、図3から図12を参照して、本発明の実施形態に係る半導体装置の製造方法を詳細に説明する。   Next, with reference to FIGS. 3 to 12, a method for manufacturing a semiconductor device according to an embodiment of the present invention will be described in detail.

図3は、バリア層6を形成する工程(工程S5)に用いられる反応性スパッタ装置20の概略図である。反応性スパッタ装置20は、ガス導入口21a及びガス導出口21bが設けられた反応室21と、直流電源26及び27と、高周波電源28と、高周波電源28を介して接地されたサセプタ22と、直流電源27を介して接地されたシールド23と、直流電源26を介して接地されたターゲット24と、反応室21内に磁場を発生するマグネット25とを備えている。反応室21は、接地され、真空ポンプ(図示されず)により減圧自在である。サセプタ22、シールド23、及びターゲット24は、反応室21内に配置されている。ターゲット24はチタンターゲットである。サセプタ22は、半導体ウエハ1がターゲット24に対向するように半導体ウエハ1を保持する。直流電源26は、ターゲット24に直流の負電位を印加する。すなわち、直流電源26は、ターゲット24の電位を接地電位よりも低くする。直流電源27は、シールド23に直流の負電位を印加する。すなわち、直流電源27は、シールド23の電位を接地電位よりも低くする。高周波電源28は、高周波電力としてのRF(Radio Frequency)バイアスをサセプタ22に保持された半導体ウエハ1に印加する。また、温度制御装置(図示されず)により基板2の温度が制御される。   FIG. 3 is a schematic view of the reactive sputtering apparatus 20 used in the step of forming the barrier layer 6 (step S5). The reactive sputtering apparatus 20 includes a reaction chamber 21 provided with a gas inlet 21a and a gas outlet 21b, DC power sources 26 and 27, a high frequency power source 28, a susceptor 22 grounded via the high frequency power source 28, A shield 23 grounded via a DC power supply 27, a target 24 grounded via a DC power supply 26, and a magnet 25 that generates a magnetic field in the reaction chamber 21 are provided. The reaction chamber 21 is grounded and can be decompressed by a vacuum pump (not shown). The susceptor 22, the shield 23, and the target 24 are disposed in the reaction chamber 21. The target 24 is a titanium target. The susceptor 22 holds the semiconductor wafer 1 so that the semiconductor wafer 1 faces the target 24. The DC power supply 26 applies a DC negative potential to the target 24. That is, the DC power source 26 makes the potential of the target 24 lower than the ground potential. The DC power source 27 applies a DC negative potential to the shield 23. That is, the DC power supply 27 makes the potential of the shield 23 lower than the ground potential. The high frequency power supply 28 applies an RF (Radio Frequency) bias as high frequency power to the semiconductor wafer 1 held by the susceptor 22. Further, the temperature of the substrate 2 is controlled by a temperature control device (not shown).

工程S5においては、アルゴンガス(Arガス)と窒素ガス(Nガス)とを含む混合ガスをガス導入口21aから反応室21内に供給する。混合ガスを半導体ウエハ1の周辺部から中心部に向かう方向に流れるように半導体ウエハ1とターゲット24との間に導入しながら、半導体ウエハ1にRFバイアスを印加する。すると、反応室21内にプラズマが発生し、半導体ウエハ1上に窒化チタン膜が形成される。プラズマは、マグネット25が発生する磁場により一定の領域に閉じ込められる。窒化チタン膜の組成や結晶方位(配向性)のような膜質は、成膜条件によって異なる。導入された混合ガスに含まれる窒素ガスの一部はターゲット24中のチタンと結びついて消費される。窒素ガスの濃度が減少した(Arガスの比率が増加した)混合ガスは、半導体ウエハ1とターゲット24との間を半導体ウエハ1の中心部から周辺部に向かう方向に拡散し、ガス導出口21bから排出される。したがって、半導体ウエハ1とターゲット24との間には、半導体ウエハ1の周辺部に対応する領域で高く中心部に対応する領域で低い窒素ガス分圧の同心円状の分布が生じる。この窒素ガス分圧の分布は、ガス導入口21aから導入される混合ガスの総流量が小さいほど、また、半導体ウエハ1の直径Dが大きいほど顕著になる。半導体ウエハ1の直径Dが12インチ(300mm)以上の場合、窒素ガス分圧の分布は特に顕著になる。 In step S5, a mixed gas containing argon gas (Ar gas) and nitrogen gas (N 2 gas) is supplied into the reaction chamber 21 from the gas inlet 21a. An RF bias is applied to the semiconductor wafer 1 while introducing the mixed gas between the semiconductor wafer 1 and the target 24 so that the mixed gas flows in the direction from the peripheral portion toward the central portion of the semiconductor wafer 1. Then, plasma is generated in the reaction chamber 21 and a titanium nitride film is formed on the semiconductor wafer 1. The plasma is confined in a certain region by the magnetic field generated by the magnet 25. The film quality such as the composition and crystal orientation (orientation) of the titanium nitride film varies depending on the film forming conditions. Part of the nitrogen gas contained in the introduced mixed gas is consumed in connection with titanium in the target 24. The mixed gas in which the concentration of nitrogen gas has decreased (the ratio of Ar gas has increased) diffuses between the semiconductor wafer 1 and the target 24 in the direction from the center to the periphery of the semiconductor wafer 1, and the gas outlet 21b. Discharged from. Therefore, between the semiconductor wafer 1 and the target 24, a concentric distribution with a nitrogen gas partial pressure that is high in a region corresponding to the peripheral portion of the semiconductor wafer 1 and low in a region corresponding to the central portion is generated. The distribution of the nitrogen gas partial pressure becomes more prominent as the total flow rate of the mixed gas introduced from the gas inlet 21a is smaller and as the diameter D of the semiconductor wafer 1 is larger. When the diameter D of the semiconductor wafer 1 is 12 inches (300 mm) or more, the distribution of the nitrogen gas partial pressure becomes particularly significant.

図4は、本発明の実施形態に係る半導体装置の製造方法における窒化チタン膜の成膜条件としての第1条件及び第3条件を示している。第2条件は、第1条件と比較するための成膜条件である。各条件について、成膜する窒化チタン膜の膜厚(膜厚)、成膜に要する時間(時間)、高周波電源28が印加するRFバイアスのパワー(パワー)、混合ガスの総流量中の窒素ガスの流量の比率(N流量比)、混合ガス中のアルゴンガスの流量(Ar流量)、混合ガス中の窒素ガスの流量(N流量)、半導体ウエハ1とターゲット24との間隔H(H)、及び半導体ウエハ1の直径D(D)が設定されている。 FIG. 4 shows the first condition and the third condition as the conditions for forming the titanium nitride film in the method for manufacturing a semiconductor device according to the embodiment of the present invention. The second condition is a film forming condition for comparison with the first condition. For each condition, the film thickness (film thickness) of the titanium nitride film to be formed, the time (time) required for film formation, the RF bias power (power) applied by the high-frequency power supply 28, and the nitrogen gas in the total flow rate of the mixed gas The flow rate ratio (N 2 flow rate ratio), the flow rate of argon gas in the mixed gas (Ar flow rate), the flow rate of nitrogen gas in the mixed gas (N 2 flow rate), and the distance H (H between the semiconductor wafer 1 and the target 24) ) And the diameter D (D) of the semiconductor wafer 1 are set.

はじめに、第2条件でバリア層6としての窒化チタン膜を成膜した場合について説明する。第2条件においては、膜厚は50nm、時間は39sec、パワーは12kW、N流量比は80.0%、Ar流量は24sccm、N流量は96sccm、間隔Hは86mm、直径Dは300mmである。 First, a case where a titanium nitride film as the barrier layer 6 is formed under the second condition will be described. Under the second condition, the film thickness is 50 nm, the time is 39 sec, the power is 12 kW, the N 2 flow rate ratio is 80.0%, the Ar flow rate is 24 sccm, the N 2 flow rate is 96 sccm, the interval H is 86 mm, and the diameter D is 300 mm. is there.

図5Aは、第2条件で成膜された窒化チタン膜のX線回折スペクトルを半導体ウエハ1の中心部で測定した結果を示すグラフである。図5Bは、第2条件で成膜された窒化チタン膜のX線回折スペクトルを半導体ウエハ1の周辺部で測定した結果を示すグラフである。ここで、窒化チタン膜は、チタンターゲットを用いた反応性DCマグネトロンスパッタ法で形成された。図5A及び5Bにおいて、縦軸はX線回折強度、横軸はX線回折角2θである。半導体ウエハ1の中心部においては、図5Aに示されるように、2θが約36.5度のところにTiN(111)の配向性を示すピークが観察され、2θが約42.5度のところにTiN(200)の配向性を示すピークが観察された。半導体ウエハ1の中心部においては、TiN(111)の配向性を示すピークにおけるX線回折強度は38count/s、TiN(200)の配向性を示すピークにおけるX線回折強度は82count/sであった。半導体ウエハ1の周辺部においては、図5Bに示されるよに、TiN(111)の配向性を示すピークは検出されず、2θが約42.5度のところにTiN(200)の配向性を示すピークが観察された。半導体ウエハ1の周辺部においては、TiN(200)の配向性を示すピークにおけるX線回折強度は140count/sであった。すなわち、第2条件で成膜された窒化チタン膜は、半導体ウエハ1の中心部においてはTiN(111)の配向性とTiN(200)の配向性とを有していたが、半導体ウエハ1の周辺部においてはTiN(111)の配向性を有さず、TiN(200)の配向性をより強く有していた。   FIG. 5A is a graph showing the results of measuring the X-ray diffraction spectrum of the titanium nitride film formed under the second condition at the center of the semiconductor wafer 1. FIG. 5B is a graph showing the result of measuring the X-ray diffraction spectrum of the titanium nitride film formed under the second condition at the periphery of the semiconductor wafer 1. Here, the titanium nitride film was formed by a reactive DC magnetron sputtering method using a titanium target. 5A and 5B, the vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the X-ray diffraction angle 2θ. In the central portion of the semiconductor wafer 1, as shown in FIG. 5A, a peak indicating the orientation of TiN (111) is observed at 2θ of about 36.5 degrees, and when 2θ is about 42.5 degrees. A peak indicating the orientation of TiN (200) was observed. In the central portion of the semiconductor wafer 1, the X-ray diffraction intensity at the peak showing the orientation of TiN (111) was 38 count / s, and the X-ray diffraction intensity at the peak showing the orientation of TiN (200) was 82 count / s. It was. In the peripheral portion of the semiconductor wafer 1, as shown in FIG. 5B, no peak indicating the orientation of TiN (111) is detected, and the orientation of TiN (200) is increased when 2θ is about 42.5 degrees. The peak shown was observed. In the peripheral part of the semiconductor wafer 1, the X-ray diffraction intensity at the peak indicating the orientation of TiN (200) was 140 count / s. That is, the titanium nitride film formed under the second condition has TiN (111) orientation and TiN (200) orientation at the center of the semiconductor wafer 1, but the semiconductor wafer 1 The peripheral portion did not have the orientation of TiN (111), but had a stronger orientation of TiN (200).

図6Aは、第2条件で成膜した窒化チタン膜の上に重ねて形成したタングステン膜7のX線回折スペクトルを半導体ウエハ1の中心部で測定した結果を示すグラフである。図6Bは、第2条件で成膜した窒化チタン膜の上に重ねて形成したタングステン膜7のX線回折スペクトルを半導体ウエハ1の周辺部で測定した結果を示すグラフである。ここで、タングステン膜7はCVD法で堆積された。図6A及び6Bにおいて、縦軸はX線回折強度、横軸はX線回折角2θである。タングステン膜7においては、図6A及び6Bに示されるように、2θが約40度のところにW(110)の配向性を示すピークが観察され、2θが約58.5度のところにW(200)の配向性を示すピークが観察された。半導体ウエハ1の中心部においては、図6Aに示されるように、W(110)の配向性を示すピークにおけるX線回折強度が3169count/sであったのに対し、W(200)の配向性を示すピークにおけるX線回折強度は592count/sと僅かであった。半導体ウエハ1の周辺部においては、図6Bに示されるように、W(110)の配向性を示すピークにおけるX線回折強度は1518count/s、W(200)の配向性を示すピークにおけるX線回折強度は4461count/sであった。すなわち、半導体ウエハ1の中心部においてはW(110)の配向性が主配向であったのに対し、半導体ウエハ1の周辺部においてはW(110)の配向性が弱くW(200)の配向性が強かった。   FIG. 6A is a graph showing the result of measuring the X-ray diffraction spectrum of the tungsten film 7 formed on the titanium nitride film formed under the second condition at the center of the semiconductor wafer 1. FIG. 6B is a graph showing the result of measuring the X-ray diffraction spectrum of the tungsten film 7 formed on the titanium nitride film formed under the second condition at the peripheral portion of the semiconductor wafer 1. Here, the tungsten film 7 was deposited by a CVD method. 6A and 6B, the vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the X-ray diffraction angle 2θ. In the tungsten film 7, as shown in FIGS. 6A and 6B, a peak indicating the orientation of W (110) is observed when 2θ is about 40 degrees, and W (2 (θ) is about 58.5 degrees. 200) orientation peak was observed. In the central portion of the semiconductor wafer 1, as shown in FIG. 6A, the X-ray diffraction intensity at the peak indicating the orientation of W (110) was 3169 count / s, whereas the orientation of W (200). The X-ray diffraction intensity at the peak indicating a low value was 592 count / s. In the peripheral portion of the semiconductor wafer 1, as shown in FIG. 6B, the X-ray diffraction intensity at the peak indicating the orientation of W (110) is 1518 count / s, and the X-ray at the peak indicating the orientation of W (200). The diffraction intensity was 4461count / s. That is, the orientation of W (110) is the main orientation in the central portion of the semiconductor wafer 1, whereas the orientation of W (110) is weak in the peripheral portion of the semiconductor wafer 1 and the orientation of W (200). Sex was strong.

図7は、第2条件で窒化チタン膜を成膜し、その上にタングステン膜7を成膜し、タングステン膜7にCMPを行った場合の半導体ウエハ1の上面図である。ここで、CMPは、半導体ウエハ1の中心部のタングステン膜7がジャストポリッシュされたところで終了した。CMPに要した時間は50秒であった。半導体ウエハ1全体に同じCMP処理を施したにも関わらず、ウエハの周辺部でタングステン膜7の膜残りが発生した。これは、同一のCMPの処理条件におけるタングステン膜7の研磨速度がW(110)の配向性を有する部分とW(200)の配向性を有する部分とで異なるためである。この処理条件におけるタングステン膜7の研磨速度は、W(200)の配向性を有する部分では200mm/min、W(110)の配向性を有する部分ではその2.5倍程度であった。したがって、タングステン膜7の配向性を半導体ウエハ1のウエハ面内において揃えることが均一な研磨速度を達成する上で重要である。すなわち、タングステン膜7の配向性を半導体ウエハ1のウエハ面内において一様にすることが重要である。   FIG. 7 is a top view of the semiconductor wafer 1 when a titanium nitride film is formed under the second condition, a tungsten film 7 is formed thereon, and CMP is performed on the tungsten film 7. Here, the CMP was completed when the tungsten film 7 at the center of the semiconductor wafer 1 was just polished. The time required for CMP was 50 seconds. Although the same CMP process was performed on the entire semiconductor wafer 1, a film residue of the tungsten film 7 occurred in the peripheral portion of the wafer. This is because the polishing rate of the tungsten film 7 under the same CMP processing conditions is different between the portion having W (110) orientation and the portion having W (200) orientation. The polishing rate of the tungsten film 7 under these processing conditions was about 200 mm / min in the portion having W (200) orientation and about 2.5 times that in the portion having W (110) orientation. Therefore, it is important to make the orientation of the tungsten film 7 uniform in the wafer surface of the semiconductor wafer 1 in order to achieve a uniform polishing rate. That is, it is important to make the orientation of the tungsten film 7 uniform within the wafer surface of the semiconductor wafer 1.

なお、半導体ウエハ1の周辺部のタングステン膜7を除去するためにCMPの処理時間を長く設定することは以下の理由から好ましくない。CMPの処理時間を長く設定すると、半導体ウエハ1の中心部においては絶縁膜5が研磨されて薄くなり、ヴィアホール5aの周囲で凹み(ディッシング)が大きくなる。その結果、下層配線層4と上層配線層8との間の寄生容量が増加し、下層配線層4及び上層配線層8を含む電気回路のRC時定数(Resistive−Capacitive time constant)が増加して信号伝播が遅延する。また、ディッシングにより半導体ウエハ1の被処理面(ウエハ面)に凹凸が形成されるため、露光プロセスにおける解像不良や、その後の加工プロセスにおける加工不良等の問題が生じる。   Note that it is not preferable to set the CMP processing time long in order to remove the tungsten film 7 in the peripheral portion of the semiconductor wafer 1 for the following reason. When the CMP processing time is set to be long, the insulating film 5 is polished and thinned at the center of the semiconductor wafer 1, and the dent (dishing) around the via hole 5a becomes large. As a result, the parasitic capacitance between the lower wiring layer 4 and the upper wiring layer 8 increases, and the RC time constant (Resistive-Capacitive time constant) of the electric circuit including the lower wiring layer 4 and the upper wiring layer 8 increases. Signal propagation is delayed. Further, since unevenness is formed on the surface to be processed (wafer surface) of the semiconductor wafer 1 by dishing, problems such as poor resolution in the exposure process and poor processing in the subsequent processing process occur.

次に、第1条件でバリア層6としての窒化チタン膜を成膜した場合について説明する。第1条件においては、膜厚は50nm、時間は28sec、パワーは11kW、N流量比は73.5%、Ar流量は18sccm、N流量は50sccm、間隔Hは56mm、直径Dは300mmである。第1条件におけるN流量比は、第2条件におけるN流量比よりも小さい。第1条件で成膜すると、ストイキオメトリーよりもややチタンリッチな組成の窒化チタン膜が成膜される。 Next, a case where a titanium nitride film as the barrier layer 6 is formed under the first condition will be described. In the first condition, the film thickness is 50 nm, the time is 28 sec, the power is 11 kW, the N 2 flow rate ratio is 73.5%, the Ar flow rate is 18 sccm, the N 2 flow rate is 50 sccm, the interval H is 56 mm, and the diameter D is 300 mm. is there. The N 2 flow ratio in the first condition is smaller than the N 2 flow ratio in the second condition. When the film is formed under the first condition, a titanium nitride film having a composition slightly richer in titanium than the stoichiometry is formed.

図8Aは、第1条件で成膜された窒化チタン膜のX線回折スペクトルを半導体ウエハ1の中心部で測定した結果を示すグラフである。図8Bは、第1条件で成膜された窒化チタン膜のX線回折スペクトルを半導体ウエハ1の周辺部で測定した結果を示すグラフである。ここで、窒化チタン膜は、チタンターゲットを用いた反応性DCマグネトロンスパッタ法で形成された。図8A及び8Bにおいて、縦軸はX線回折強度、横軸はX線回折角2θである。図8A及び8Bに示されるように、2θが約36.5度のところにTiN(111)の配向性を示すピークが観察され、2θが約42.5度のところにTiN(200)の配向性を示すピークが観察された。半導体ウエハ1の中心部においては、図8Aに示されるように、TiN(111)の配向性を示すピークにおけるX線回折強度は93count/s、TiN(200)の配向性を示すピークにおけるX線回折強度は25count/sであった。半導体ウエハ1の周辺部においては、図8Bに示されるように、TiN(111)の配向性を示すピークにおけるX線回折強度は49count/s、TiN(200)の配向性を示すピークにおけるX線回折強度は69count/sであった。すなわち、第1条件で成膜された窒化チタン膜は、半導体ウエハ1の中心部と周辺部の両方においてTiN(111)の配向性を有していた。   FIG. 8A is a graph showing the result of measuring the X-ray diffraction spectrum of the titanium nitride film formed under the first condition at the center of the semiconductor wafer 1. FIG. 8B is a graph showing the result of measuring the X-ray diffraction spectrum of the titanium nitride film formed under the first condition at the periphery of the semiconductor wafer 1. Here, the titanium nitride film was formed by a reactive DC magnetron sputtering method using a titanium target. 8A and 8B, the vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the X-ray diffraction angle 2θ. As shown in FIGS. 8A and 8B, a peak indicating the orientation of TiN (111) is observed when 2θ is about 36.5 degrees, and the orientation of TiN (200) is observed when 2θ is about 42.5 degrees. A characteristic peak was observed. At the center of the semiconductor wafer 1, as shown in FIG. 8A, the X-ray diffraction intensity at the peak indicating the orientation of TiN (111) is 93 count / s, and the X-ray at the peak indicating the orientation of TiN (200). The diffraction intensity was 25 count / s. In the peripheral portion of the semiconductor wafer 1, as shown in FIG. 8B, the X-ray diffraction intensity at the peak showing the orientation of TiN (111) is 49 count / s, and the X-ray at the peak showing the orientation of TiN (200). The diffraction intensity was 69 count / s. That is, the titanium nitride film formed under the first condition had TiN (111) orientation in both the central portion and the peripheral portion of the semiconductor wafer 1.

図9Aは、第1条件で成膜した窒化チタン膜の上に重ねて形成したタングステン膜7のX線回折スペクトルを半導体ウエハ1の中心部で測定した結果を示すグラフである。図9Bは、第1条件で成膜した窒化チタン膜の上に重ねて形成したタングステン膜7のX線回折スペクトルを半導体ウエハ1の周辺部で測定した結果を示すグラフである。ここで、タングステン膜7はCVD法で堆積された。図9A及び9Bにおいて、縦軸はX線回折強度、横軸はX線回折角2θである。タングステン膜7においては、図9A及び9Bに示されるように、2θが約40度のところにW(110)の配向性を示すピークが観察され、2θが約58.5度のところにW(200)の配向性を示すピークが観察された。半導体ウエハ1の中心部においては、図9Aに示されるように、W(110)の配向性を示すピークにおけるX線回折強度が6409count/s、W(200)の配向性を示すピークにおけるX線回折強度は321count/sであった。半導体ウエハ1の周辺部においては、図9Bに示されるように、W(110)の配向性を示すピークにおけるX線回折強度は3123count/s、W(200)の配向性を示すピークにおけるX線回折強度は409count/sであった。すなわち、半導体ウエハ1の中心部と周辺部との両方において、W(110)の配向性が主配向であった。   FIG. 9A is a graph showing the result of measuring the X-ray diffraction spectrum of the tungsten film 7 formed on the titanium nitride film formed under the first condition at the center of the semiconductor wafer 1. FIG. 9B is a graph showing the result of measuring the X-ray diffraction spectrum of the tungsten film 7 formed on the titanium nitride film formed under the first condition at the peripheral portion of the semiconductor wafer 1. Here, the tungsten film 7 was deposited by a CVD method. 9A and 9B, the vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the X-ray diffraction angle 2θ. In the tungsten film 7, as shown in FIGS. 9A and 9B, a peak indicating the orientation of W (110) is observed when 2θ is about 40 degrees, and W (2 (θ) is about 58.5 degrees. 200) orientation peak was observed. In the central portion of the semiconductor wafer 1, as shown in FIG. 9A, the X-ray diffraction intensity at the peak showing the orientation of W (110) is 6409count / s, and the X-ray at the peak showing the orientation of W (200). The diffraction intensity was 321 count / s. In the peripheral portion of the semiconductor wafer 1, as shown in FIG. 9B, the X-ray diffraction intensity at the peak indicating the orientation of W (110) is 3123count / s, and the X-ray at the peak indicating the orientation of W (200). The diffraction intensity was 409 count / s. That is, the orientation of W (110) was the main orientation in both the central portion and the peripheral portion of the semiconductor wafer 1.

図10は、第1条件で窒化チタン膜を成膜し、その上にタングステン膜7を成膜し、タングステン膜7にCMPを行った場合の半導体ウエハ1の上面図である。ここで、CMPは、半導体ウエハ1の中心部のタングステン膜7がジャストポリッシュされたところで終了した。図10に示されるように、タングステン膜7の膜残りは発生せず、半導体ウエハ1のウエハ面全体において絶縁膜5又はバリア層6が露出した。   FIG. 10 is a top view of the semiconductor wafer 1 when a titanium nitride film is formed under the first condition, a tungsten film 7 is formed thereon, and CMP is performed on the tungsten film 7. Here, the CMP was completed when the tungsten film 7 at the center of the semiconductor wafer 1 was just polished. As shown in FIG. 10, no film residue of the tungsten film 7 was generated, and the insulating film 5 or the barrier layer 6 was exposed on the entire wafer surface of the semiconductor wafer 1.

次に、バリア層6としての窒化チタン膜を成膜する第3条件について説明する。第3条件においては、膜厚は50nm、時間は36sec、パワーは12kW、N流量比は70.0%、Ar流量は60sccm、N流量は140sccm、間隔Hは55mm、直径Dは300mmである。第3条件における混合ガスの総流量(Ar流量とN流量とを合わせた流量)は、第1条件における混合ガスの総流量よりも大きい。混合ガスの総流量が大きいと半導体ウエハ1とターゲット24との間に生じる窒素ガス分圧の分布が緩和されるから、第3条件で成膜される窒化チタン膜は第1条件で成膜される窒化チタン膜よりも配向性が一様になる。 Next, the third condition for forming a titanium nitride film as the barrier layer 6 will be described. In the third condition, the film thickness is 50 nm, the time is 36 sec, the power is 12 kW, the N 2 flow rate ratio is 70.0%, the Ar flow rate is 60 sccm, the N 2 flow rate is 140 sccm, the interval H is 55 mm, and the diameter D is 300 mm. is there. The total flow rate of the mixed gas under the third condition (the flow rate that combines the Ar flow rate and the N 2 flow rate) is larger than the total flow rate of the mixed gas under the first condition. If the total flow rate of the mixed gas is large, the distribution of the nitrogen gas partial pressure generated between the semiconductor wafer 1 and the target 24 is relaxed. Therefore, the titanium nitride film formed under the third condition is formed under the first condition. The orientation is more uniform than the titanium nitride film.

一般的には、工程S5における窒化チタン膜の成膜条件を以下のようにして設定することができる。工程S5における窒化チタン膜の成膜条件を設定する方法について、図11を参照して説明する。図11において、縦軸は窒化チタン膜の成膜速度、横軸はN流量比である。反応性スパッタ装置20を用いて窒化チタン膜を成膜する際に、混合ガスの総流量及びRFバイアスを一定に保ちながら、N流量比を変化させながら窒化チタン膜の成膜速度を測定すると曲線31及び32が観察される。曲線31は、N流量比が増加しているときの成膜速度の変化を示す。曲線32は、N流量比が減少しているときの成膜速度の変化を示す。N流量比が0%より大きくP%より小さい範囲では、曲線31及び曲線32は互いに一致している。N流量比が0%より大きくP%より小さい範囲をメタリックモードの範囲という。N流量比がP%と等しいか大きく、且つ、Q%より小さいか等しい範囲では、曲線31及び曲線32は互いに一致しないでヒステリシスループを形成している。ここで、0<P<Q<100である。N流量比がP%と等しいか大きく、且つ、Q%より小さいか等しい範囲を遷移モードの範囲という。N流量比がQ%より大きく100%より小さい範囲では、曲線31及び曲線32は互いに一致している。N流量比がQ%より大きく100%より小さい範囲をナイトライドモードの範囲という。 In general, the conditions for forming the titanium nitride film in step S5 can be set as follows. A method for setting the film forming conditions of the titanium nitride film in step S5 will be described with reference to FIG. In FIG. 11, the vertical axis represents the deposition rate of the titanium nitride film, and the horizontal axis represents the N 2 flow rate ratio. When the titanium nitride film is formed using the reactive sputtering apparatus 20, the deposition rate of the titanium nitride film is measured while changing the N 2 flow rate ratio while keeping the total flow rate of the mixed gas and the RF bias constant. Curves 31 and 32 are observed. A curve 31 shows a change in the deposition rate when the N 2 flow rate ratio is increasing. Curve 32 shows the change in deposition rate when the N 2 flow ratio is decreasing. In the range where the N 2 flow rate ratio is larger than 0% and smaller than P%, the curve 31 and the curve 32 coincide with each other. A range where the N 2 flow rate ratio is larger than 0% and smaller than P% is referred to as a metallic mode range. In a range where the N 2 flow rate ratio is equal to or larger than P% and smaller than or equal to Q%, the curve 31 and the curve 32 do not coincide with each other and form a hysteresis loop. Here, 0 <P <Q <100. A range in which the N 2 flow rate ratio is equal to or larger than P% and smaller than or equal to Q% is referred to as a transition mode range. In the range where the N 2 flow rate ratio is larger than Q% and smaller than 100%, the curve 31 and the curve 32 coincide with each other. A range in which the N 2 flow rate ratio is greater than Q% and smaller than 100% is referred to as a nitride mode range.

ところで、N流量比が大きいほど、ターゲット24の表面が窒化されて窒化チタン(TiN)が形成される。ターゲット24の表面が窒化されるとターゲット24のスパッタ率Sが低下し、半導体ウエハ1に堆積する窒化チタン膜の成膜速度が低下する。ここでスパッタ率Sは、ターゲット24に入射した粒子(イオン)の数をnとし、粒子によりスパッタされたターゲット24の原子(または分子)の数をnとした場合、S=n/nで定義される。したがって、遷移モードの範囲においては、ターゲット24の表面状態の影響により曲線31と曲線32とが一致しない履歴現象が観察される。遷移モードの範囲となる成膜条件で半導体ウエハ1に窒化チタン膜を形成すると、ターゲット24の周辺部で窒化が強く中心部で窒化が弱いため、窒化チタン膜の膜質がウエハ面全体で一様になりにくい。より具体的には、半導体ウエハ1の中心部と周辺部とで窒化チタン膜の配向性が異なり易い。半導体ウエハ1の直径が大きいと、半導体ウエハ1の中心部と周辺部とで窒化チタン膜の膜質が顕著に異なり易い。 By the way, the larger the N 2 flow rate ratio, the more the surface of the target 24 is nitrided and titanium nitride (TiN) is formed. When the surface of the target 24 is nitrided, the sputtering rate S of the target 24 decreases, and the deposition rate of the titanium nitride film deposited on the semiconductor wafer 1 decreases. Here, the sputtering rate S is S = n s / where n i is the number of particles (ions) incident on the target 24 and n s is the number of atoms (or molecules) of the target 24 sputtered by the particles. It is defined by n i. Therefore, in the transition mode range, a hysteresis phenomenon is observed in which the curve 31 and the curve 32 do not match due to the influence of the surface state of the target 24. When a titanium nitride film is formed on the semiconductor wafer 1 under the film forming conditions that are in the transition mode range, since the nitridation is strong at the periphery of the target 24 and the nitridation is weak at the center, the film quality of the titanium nitride film is uniform over the entire wafer surface. It is hard to become. More specifically, the orientation of the titanium nitride film tends to be different between the central portion and the peripheral portion of the semiconductor wafer 1. When the diameter of the semiconductor wafer 1 is large, the film quality of the titanium nitride film tends to be significantly different between the central portion and the peripheral portion of the semiconductor wafer 1.

ナイトライドモードの範囲となる成膜条件で半導体ウエハ1に窒化チタン膜を形成すると、窒化チタン膜はストイキオメトリーに近い組成となる。一方、メタリックモードの範囲となる成膜条件で半導体ウエハ1に窒化チタン膜を形成すると、窒化チタン膜はチタンリッチな組成となる。窒化チタン膜の下地である絶縁膜6がアモルファスのシリコン酸化膜(SiO膜)の場合、ナイトライドモードの範囲となる成膜条件で成膜するとウエハ面全体でTiN(200)が主配向となりやすく、メタリックモードの範囲となる成膜条件で成膜するとウエハ面全体で組成がチタンリッチとなり且つ主配向がTiN(111)となりやすい。したがって、予備実験により図11に示されるデータを得ておいて、N流量比が0%より大きく100%より小さい範囲から遷移モードの範囲を除いた範囲(メタリックモードの範囲又はナイトライドモードの範囲)となる成膜条件で窒化チタン膜を成膜すればよい。ウエハ面の全体で配向が一様な窒化チタン膜を形成するためには、導入される混合ガスの総流量、スパッタ圧力(反応室1内の圧力)、及び基板温度(基板2の温度)を、ターゲット24全体が一様に窒化された状態に保たれるように制御することが好ましい。このように、ウエハ面の全体で主配向が一様になるように窒化チタン膜を形成し、その上にCVD法でタングステン膜7を形成すると、タングステン膜7のCMPによる研磨速度がウエハ面の全体で一様になる。ゆえに、タングステン膜7の膜残りが防がれる。 When a titanium nitride film is formed on the semiconductor wafer 1 under film forming conditions that are in the nitride mode range, the titanium nitride film has a composition close to stoichiometry. On the other hand, when a titanium nitride film is formed on the semiconductor wafer 1 under film formation conditions that are in the metallic mode range, the titanium nitride film has a titanium-rich composition. When the insulating film 6 that is the base of the titanium nitride film is an amorphous silicon oxide film (SiO 2 film), TiN (200) becomes the main orientation on the entire wafer surface when the film is formed under the film forming conditions within the nitride mode range. When the film is formed under the film forming conditions that are in the range of the metallic mode, the composition of the entire wafer surface becomes titanium-rich and the main orientation is easily TiN (111). Therefore, by obtaining the data shown in FIG. 11 by preliminary experiments, the range in which the N 2 flow rate ratio is larger than 0% and smaller than 100%, excluding the transition mode range (metallic mode range or nitride mode range). The titanium nitride film may be formed under the film formation conditions (range). In order to form a titanium nitride film having a uniform orientation over the entire wafer surface, the total flow rate of the introduced mixed gas, the sputtering pressure (pressure in the reaction chamber 1), and the substrate temperature (temperature of the substrate 2) are set. It is preferable to control so that the entire target 24 is kept uniformly nitrided. As described above, when the titanium nitride film is formed so that the main orientation is uniform over the entire wafer surface, and the tungsten film 7 is formed thereon by the CVD method, the polishing rate of the tungsten film 7 by CMP is increased on the wafer surface. It becomes uniform throughout. Therefore, the remaining film of the tungsten film 7 is prevented.

バリア層6としての窒化チタン膜をウエハ面の全体で主配向が実質的に認められないように形成することでタングステン膜7の膜残りを防ぐことも可能である。主配向が実質的に認められないとは、主配向が認められないか、または極めて弱い主配向しか認められないことを意味する。   It is also possible to prevent the remaining film of the tungsten film 7 by forming a titanium nitride film as the barrier layer 6 so that the main orientation is not substantially recognized over the entire wafer surface. The fact that the main orientation is not substantially recognized means that the main orientation is not recognized or only a very weak main orientation is recognized.

バリア層6としての窒化チタン膜をウエハ面の全体で主配向が実質的に認められないように形成する方法として、高イオン化スパッタ法を用いた場合について説明する。高イオン化スパッタ法は、プラズマを用いる反応性スパッタ法である。高イオン化スパッタ法では、反応室内の圧力を低く制御し、イオン化率が高い条件で成膜する。高イオン化スパッタ法では、反応性スパッタ装置20を用い、反応室21内の圧力が0.5mTorrより高く2mTorrより低い圧力になるように制御し、半導体ウエハ1の基板温度が室温より高く50℃より低くなるように制御し、マグネット25によりターゲット24の表面近くに強い磁場を形成し、RFバイアスの周波数を40MHzより高く200MHzより低くなるように制御し、イオン化率を高めて窒化チタン膜を半導体ウエハ1に成膜する。周波数を200MHzより高くすることも可能であるが、その場合には反射波を抑えるためにインピーダンスのマッチングを調整することが重要となる。図12A及び12Bは、反応室21内の圧力が2mTorrをやや下回る低い圧力となるように制御し、半導体ウエハ1の基板温度が室温程度になるように制御した高イオン化スパッタ法により成膜した窒化チタン膜のX線回折スペクトルのグラフを示している。図12Aは、半導体ウエハ1の中心部で測定した結果を示している。図12Bは、半導体ウエハ1の周辺部で測定した結果を示している。図12A及び12Bにおいて、縦軸はX線回折強度、横軸はX線回折角2θである。TiN(111)の配向性及びTiN(200)の配向性に対応するX線回折角2θが、矢印で示されている。ウエハの中央部及び周辺部の両方において、特定の配向性は認められなかった。   As a method for forming the titanium nitride film as the barrier layer 6 so that the main orientation is not substantially recognized over the entire wafer surface, a case where a high ionization sputtering method is used will be described. The high ionization sputtering method is a reactive sputtering method using plasma. In the high ionization sputtering method, the pressure in the reaction chamber is controlled to be low, and the film is formed under a condition with a high ionization rate. In the high ionization sputtering method, the reactive sputtering apparatus 20 is used and the pressure in the reaction chamber 21 is controlled to be higher than 0.5 mTorr and lower than 2 mTorr, and the substrate temperature of the semiconductor wafer 1 is higher than room temperature and higher than 50 ° C. The magnetic layer is controlled to be low, a strong magnetic field is formed near the surface of the target 24 by the magnet 25, the RF bias frequency is controlled to be higher than 40 MHz and lower than 200 MHz, and the ionization rate is increased to make the titanium nitride film a semiconductor wafer. 1 is formed. Although it is possible to make the frequency higher than 200 MHz, in that case, it is important to adjust the impedance matching to suppress the reflected wave. 12A and 12B, nitridation formed by high ionization sputtering method in which the pressure in the reaction chamber 21 is controlled to be a low pressure slightly lower than 2 mTorr, and the substrate temperature of the semiconductor wafer 1 is controlled to be about room temperature. The graph of the X-ray diffraction spectrum of a titanium film is shown. FIG. 12A shows the result of measurement at the central portion of the semiconductor wafer 1. FIG. 12B shows the result of measurement at the periphery of the semiconductor wafer 1. 12A and 12B, the vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the X-ray diffraction angle 2θ. The X-ray diffraction angle 2θ corresponding to the orientation of TiN (111) and the orientation of TiN (200) is indicated by arrows. No specific orientation was observed in both the central part and the peripheral part of the wafer.

このように形成された窒化チタン膜の上にCVD法でタングステン膜7を形成すると、体心立方格子が最密構造であるタングステン膜7はウエハ面全体で弱いW(110)の配向性を有するように形成された。この場合も、タングステン膜7に対してCMPを行うと、第1条件で窒化チタン膜を成膜した場合と同様にタングステン膜7の膜残りは発生しなかった。   When the tungsten film 7 is formed on the titanium nitride film thus formed by the CVD method, the tungsten film 7 having a body-centered cubic lattice having a close-packed structure has weak W (110) orientation on the entire wafer surface. Formed as follows. Also in this case, when CMP was performed on the tungsten film 7, the remaining film of the tungsten film 7 was not generated as in the case where the titanium nitride film was formed under the first condition.

高イオン化スパッタ法には、自己イオン化スパッタ法が含まれる。ヴィアホール5aにおいてバリア層6のカバレジ(被覆率)を適切にすることが可能であれば、通常のマグネトロンスパッタ法、ターゲットと基板との間隔を大きくして低圧で成膜する高指向性スパッタ法、コリメータを使用するスパッタ法、フラックスの指向性を電界で制御するスパッタ法を用いてもよい。   High ionization sputtering includes self-ionization sputtering. If the coverage (coverage) of the barrier layer 6 can be made appropriate in the via hole 5a, a normal magnetron sputtering method, or a highly directional sputtering method in which the gap between the target and the substrate is increased to form a film at a low pressure. Alternatively, a sputtering method using a collimator or a sputtering method in which the directivity of the flux is controlled by an electric field may be used.

これまで述べたように、ウエハ面の全体で膜質(配向性)が一様になるように窒化チタン膜をバリア層6として形成し、その上にタングステン膜7を形成することでウエハ面の全体でタングステン膜7の膜質(配向性)が一様になる。タングステン膜7の結晶構造は、下地材料の表面状態の影響を受けるためである。したがって、タングステン膜7に対してCMPを行うと、半導体ウエハ1の中心部と周辺部とにおいて同じ研磨速度でタングステン膜7が除去される。研磨不足によるタングステン膜7の膜残り、及び過剰研磨によるヴィアホール5aの周囲におけるディッシングの問題が解決される。ゆえに、チップ歩留まりが向上する。   As described above, the titanium nitride film is formed as the barrier layer 6 so that the film quality (orientation) is uniform over the entire wafer surface, and the tungsten film 7 is formed thereon, thereby forming the entire wafer surface. Thus, the film quality (orientation) of the tungsten film 7 becomes uniform. This is because the crystal structure of the tungsten film 7 is affected by the surface state of the underlying material. Therefore, when CMP is performed on the tungsten film 7, the tungsten film 7 is removed at the same polishing rate in the central portion and the peripheral portion of the semiconductor wafer 1. The problem of dishing around the via hole 5a due to excessive polishing and the remaining film of the tungsten film 7 due to insufficient polishing is solved. Therefore, the chip yield is improved.

窒化チタン膜は、CVD法により形成することも可能である。CVD法では原料ガスに由来する残留不純物の処理に注意を払う必要がある。チタンの有機物を含む原料ガスを用いると残留不純物としてカーボンが残るので、その後にプラズマ処理や加熱処理が必要である。チタンの塩化物を含む原料ガスを用いると塩素が窒化チタン膜の中に残留するので、その後に水素ガスを含む雰囲気中でのプラズマ処理が必要である。これらの処理を適切に行うことにより、CVD法をバリア層6の形成方法として適用できる。   The titanium nitride film can also be formed by a CVD method. In the CVD method, it is necessary to pay attention to the treatment of residual impurities derived from the source gas. When a source gas containing an organic material of titanium is used, carbon remains as a residual impurity, and plasma treatment or heat treatment is necessary thereafter. When a raw material gas containing titanium chloride is used, chlorine remains in the titanium nitride film, and plasma treatment in an atmosphere containing hydrogen gas is required thereafter. By performing these treatments appropriately, the CVD method can be applied as a method for forming the barrier layer 6.

次に、図13及び図14を参照して、本発明の実施形態に係る半導体装置の製造方法の変形例について説明する。   Next, with reference to FIG. 13 and FIG. 14, a modification of the method for manufacturing a semiconductor device according to the embodiment of the present invention will be described.

図13は、本発明の実施形態に係る半導体製造装置の製造方法の変形例を示すフロー図である。図13に示された工程S9から工程S14は、図1に示された工程S8のかわりに実行される。工程S9から工程S14は、上層配線層8のかわりに上層配線層13aを形成する工程である。上層配線層13aは、ダマシン法により形成される銅配線である。   FIG. 13 is a flowchart showing a modification of the manufacturing method of the semiconductor manufacturing apparatus according to the embodiment of the present invention. Steps S9 to S14 shown in FIG. 13 are executed instead of step S8 shown in FIG. Steps S <b> 9 to S <b> 14 are steps for forming the upper wiring layer 13 a instead of the upper wiring layer 8. The upper wiring layer 13a is a copper wiring formed by a damascene method.

図14Aから14Dは、本発明の実施形態に係る半導体製造装置の製造方法の変形例において、上層配線層13aを形成する工程を説明するための半導体ウエハの断面図である。   14A to 14D are cross-sectional views of a semiconductor wafer for explaining a process of forming an upper wiring layer 13a in a modification of the method for manufacturing a semiconductor manufacturing apparatus according to the embodiment of the present invention.

(工程S9)
図2Eに示された半導体ウエハ1に絶縁膜9を形成する。絶縁膜9は、シリコン酸化膜であり、タングステンプラグ7aを覆うように絶縁膜5の上に形成される。
(Process S9)
An insulating film 9 is formed on the semiconductor wafer 1 shown in FIG. 2E. The insulating film 9 is a silicon oxide film, and is formed on the insulating film 5 so as to cover the tungsten plug 7a.

(工程S10)
次に、絶縁膜9の上にシリコン窒化膜(SiN膜)10を形成する。
(Step S10)
Next, a silicon nitride film (SiN film) 10 is formed on the insulating film 9.

(工程S11)
次に、絶縁膜9及びSiN膜10の窪み(凹部)としての配線溝11を形成する。絶縁膜9及びSiN膜10に配線溝11が形成された半導体ウエハ1が図14Aに示されている。配線溝11の底にはタングステンプラグ7aが露出している。配線溝11が形成されていないSiN膜10の部分は平坦部10bである。
(Process S11)
Next, a wiring trench 11 is formed as a depression (concave portion) of the insulating film 9 and the SiN film 10. FIG. 14A shows the semiconductor wafer 1 in which the wiring groove 11 is formed in the insulating film 9 and the SiN film 10. A tungsten plug 7 a is exposed at the bottom of the wiring groove 11. The portion of the SiN film 10 where the wiring trench 11 is not formed is a flat portion 10b.

(工程S12)
次に、図14Bに示されるように、SiN膜10の上にバリア層12を形成する。バリア層12は、反応性スパッタ法で形成される窒化タンタル膜(TaN膜)である。バリア層12は、上述の窒化チタン膜を形成する方法と同様の方法により、配向性がウエハ面の全体で一様になるように形成される。この場合、タンタル(Ta)のターゲット24が用いられる。
(Process S12)
Next, as shown in FIG. 14B, the barrier layer 12 is formed on the SiN film 10. The barrier layer 12 is a tantalum nitride film (TaN film) formed by reactive sputtering. The barrier layer 12 is formed by a method similar to the method of forming the titanium nitride film described above so that the orientation is uniform over the entire wafer surface. In this case, a tantalum (Ta) target 24 is used.

(工程S13)
次に、図14Cに示されるように、バリア層12の上に銅膜13を形成する。銅膜13は、メッキ法又はスパッタ法により形成される。銅膜13は、その一部が配線溝11に埋め込まれ、他の部分が平坦部10bの上に配置されている。銅膜13は、その結晶構造が下地であるバリア層12の状態の影響を受けるため、配向性がウエハ面の全体で一様になるように形成される。
(Process S13)
Next, as shown in FIG. 14C, a copper film 13 is formed on the barrier layer 12. The copper film 13 is formed by a plating method or a sputtering method. A part of the copper film 13 is embedded in the wiring groove 11 and the other part is disposed on the flat portion 10b. The copper film 13 is formed so that the orientation is uniform over the entire wafer surface because the crystal structure is affected by the state of the barrier layer 12 as a base.

(工程S14)
次に、銅膜13をCMP法により研磨し、平坦部10bの上に配置されている他の部分を除去する。これにより、図14Dに示されるように、配線溝11に埋め込まれた上層配線層13aが形成される。上層配線層13aは、タングステンプラグ7aと接続されている。このとき、銅膜13の配向性がウエハ面の全体で一様であるため、半導体ウエハ1の中心部と周辺部とにおいて同じ研磨速度で銅膜13が除去される。したがって、研磨不足による銅膜13の膜残り、及び過剰研磨による配線溝11の周囲におけるディッシングの問題が解決される。ゆえに、チップ歩留まりが向上する。
(Step S14)
Next, the copper film 13 is polished by a CMP method to remove other portions disposed on the flat portion 10b. Thereby, as shown in FIG. 14D, the upper wiring layer 13a embedded in the wiring groove 11 is formed. The upper wiring layer 13a is connected to the tungsten plug 7a. At this time, since the orientation of the copper film 13 is uniform over the entire wafer surface, the copper film 13 is removed at the same polishing rate in the central portion and the peripheral portion of the semiconductor wafer 1. Therefore, the problem of dishing around the wiring trench 11 due to excessive polishing and the remaining film of the copper film 13 due to insufficient polishing is solved. Therefore, the chip yield is improved.

タングステンプラグ7a及び上層配線層13aをデュアルダマシン法により形成してもよい。   The tungsten plug 7a and the upper wiring layer 13a may be formed by a dual damascene method.

図1は、本発明の実施形態に係る半導体製造装置の製造方法を示すフロー図である。FIG. 1 is a flowchart showing a method for manufacturing a semiconductor manufacturing apparatus according to an embodiment of the present invention. 図2Aは、本発明の実施形態に係る半導体製造装置の製造方法において、タングステンプラグを含む多層配線を形成する工程を説明するための半導体ウエハの断面図である。FIG. 2A is a cross-sectional view of a semiconductor wafer for explaining a step of forming a multilayer wiring including a tungsten plug in the method for manufacturing a semiconductor manufacturing apparatus according to the embodiment of the present invention. 図2Bは、本発明の実施形態に係る半導体製造装置の製造方法において、タングステンプラグを含む多層配線を形成する工程を説明するための半導体ウエハの断面図である。FIG. 2B is a cross-sectional view of the semiconductor wafer for explaining the step of forming the multilayer wiring including the tungsten plug in the manufacturing method of the semiconductor manufacturing apparatus according to the embodiment of the present invention. 図2Cは、本発明の実施形態に係る半導体製造装置の製造方法において、タングステンプラグを含む多層配線を形成する工程を説明するための半導体ウエハの断面図である。FIG. 2C is a cross-sectional view of the semiconductor wafer for explaining the step of forming the multilayer wiring including the tungsten plug in the manufacturing method of the semiconductor manufacturing apparatus according to the embodiment of the present invention. 図2Dは、本発明の実施形態に係る半導体製造装置の製造方法において、タングステンプラグを含む多層配線を形成する工程を説明するための半導体ウエハの断面図である。FIG. 2D is a cross-sectional view of the semiconductor wafer for explaining the step of forming the multilayer wiring including the tungsten plug in the manufacturing method of the semiconductor manufacturing apparatus according to the embodiment of the present invention. 図2Eは、本発明の実施形態に係る半導体製造装置の製造方法において、タングステンプラグを含む多層配線を形成する工程を説明するための半導体ウエハの断面図である。FIG. 2E is a cross-sectional view of the semiconductor wafer for explaining the step of forming the multilayer wiring including the tungsten plug in the manufacturing method of the semiconductor manufacturing apparatus according to the embodiment of the present invention. 図2Fは、本発明の実施形態に係る半導体製造装置の製造方法において、タングステンプラグを含む多層配線を形成する工程を説明するための半導体ウエハの断面図である。FIG. 2F is a cross-sectional view of the semiconductor wafer for explaining the step of forming the multilayer wiring including the tungsten plug in the manufacturing method of the semiconductor manufacturing apparatus according to the embodiment of the present invention. 図3は、本発明の実施形態に係る半導体製造装置の製造方法に用いられる反応性スパッタ装置の概略図である。FIG. 3 is a schematic view of a reactive sputtering apparatus used in a method for manufacturing a semiconductor manufacturing apparatus according to an embodiment of the present invention. 図4は、本発明の実施形態に係る半導体装置の製造方法において、反応性スパッタ法により窒化チタン膜を成膜するときの成膜条件を示す図である。FIG. 4 is a diagram showing film forming conditions when a titanium nitride film is formed by reactive sputtering in the method for manufacturing a semiconductor device according to the embodiment of the present invention. 図5Aは、図4の第2条件で成膜された窒化チタン膜のX線回折スペクトルを半導体ウエハの中心部で測定した結果を示すグラフである。FIG. 5A is a graph showing the results of measuring the X-ray diffraction spectrum of the titanium nitride film formed under the second condition of FIG. 4 at the center of the semiconductor wafer. 図5Bは、図4の第2条件で成膜された窒化チタン膜のX線回折スペクトルを半導体ウエハの周辺部で測定した結果を示すグラフである。FIG. 5B is a graph showing the result of measuring the X-ray diffraction spectrum of the titanium nitride film formed under the second condition of FIG. 4 at the periphery of the semiconductor wafer. 図6Aは、図4の第2条件で成膜された窒化チタン膜の上に成膜されたタングステン膜のX線回折スペクトルを半導体ウエハの中心部で測定した結果を示すグラフである。6A is a graph showing a result of measuring an X-ray diffraction spectrum of a tungsten film formed on the titanium nitride film formed under the second condition of FIG. 4 at the center of the semiconductor wafer. 図6Bは、図4の第2条件で成膜された窒化チタン膜の上に成膜されたタングステン膜のX線回折スペクトルを半導体ウエハの周辺部で測定した結果を示すグラフである。FIG. 6B is a graph showing the result of measuring the X-ray diffraction spectrum of the tungsten film formed on the titanium nitride film formed under the second condition of FIG. 4 at the periphery of the semiconductor wafer. 図7は、図4の第2条件で窒化チタン膜を成膜し、その上にタングステン膜を成膜し、タングステン膜にCMPを行った場合の半導体ウエハの上面図である。FIG. 7 is a top view of a semiconductor wafer when a titanium nitride film is formed under the second condition of FIG. 4, a tungsten film is formed thereon, and CMP is performed on the tungsten film. 図8Aは、図4の第1条件で成膜された窒化チタン膜のX線回折スペクトルを半導体ウエハの中心部で測定した結果を示すグラフである。FIG. 8A is a graph showing the results of measuring the X-ray diffraction spectrum of the titanium nitride film formed under the first condition of FIG. 4 at the center of the semiconductor wafer. 図8Bは、図4の第1条件で成膜された窒化チタン膜のX線回折スペクトルを半導体ウエハの周辺部で測定した結果を示すグラフである。FIG. 8B is a graph showing the result of measuring the X-ray diffraction spectrum of the titanium nitride film formed under the first condition of FIG. 4 at the periphery of the semiconductor wafer. 図9Aは、図4の第1条件で成膜された窒化チタン膜の上に成膜されたタングステン膜のX線回折スペクトルを半導体ウエハの中心部で測定した結果を示すグラフである。FIG. 9A is a graph showing the result of measuring the X-ray diffraction spectrum of the tungsten film formed on the titanium nitride film formed under the first condition of FIG. 4 at the center of the semiconductor wafer. 図9Bは、図4の第1条件で成膜された窒化チタン膜の上に成膜されたタングステン膜のX線回折スペクトルを半導体ウエハの周辺部で測定した結果を示すグラフである。FIG. 9B is a graph showing the results of measuring the X-ray diffraction spectrum of the tungsten film formed on the titanium nitride film formed under the first condition of FIG. 4 at the periphery of the semiconductor wafer. 図10は、図4の第1条件で窒化チタン膜を成膜し、その上にタングステン膜を成膜し、タングステン膜にCMPを行った場合の半導体ウエハの上面図である。FIG. 10 is a top view of a semiconductor wafer when a titanium nitride film is formed under the first condition of FIG. 4, a tungsten film is formed thereon, and CMP is performed on the tungsten film. 図11は、反応性スパッタ法により窒化チタン膜を成膜する場合のスパッタレートと導入ガスの窒素ガス流量比との関係を示すグラフである。FIG. 11 is a graph showing the relationship between the sputtering rate and the nitrogen gas flow rate ratio of the introduced gas when a titanium nitride film is formed by reactive sputtering. 図12Aは、高イオン化スパッタ法により成膜された窒化チタン膜のX線回折スペクトルを半導体ウエハの中心部で測定した結果を示すグラフである。FIG. 12A is a graph showing a result of measuring an X-ray diffraction spectrum of a titanium nitride film formed by a high ionization sputtering method at the center of a semiconductor wafer. 図12Bは、高イオン化スパッタ法により成膜された窒化チタン膜のX線回折スペクトルを半導体ウエハの周辺部で測定した結果を示すグラフである。FIG. 12B is a graph showing the results of measuring the X-ray diffraction spectrum of the titanium nitride film formed by the high ionization sputtering method at the periphery of the semiconductor wafer. 図13は、本発明の実施形態に係る半導体製造装置の製造方法の変形例を示すフロー図である。FIG. 13 is a flowchart showing a modification of the manufacturing method of the semiconductor manufacturing apparatus according to the embodiment of the present invention. 図14Aは、本発明の実施形態に係る半導体製造装置の製造方法の変形例において、上層配線層を形成する工程を説明するための半導体ウエハの断面図である。FIG. 14A is a cross-sectional view of a semiconductor wafer for explaining a step of forming an upper wiring layer in a modification of the method for manufacturing a semiconductor manufacturing apparatus according to the embodiment of the present invention. 図14Bは、本発明の実施形態に係る半導体製造装置の製造方法の変形例において、上層配線層を形成する工程を説明するための半導体ウエハの断面図である。FIG. 14B is a cross-sectional view of the semiconductor wafer for explaining the step of forming the upper wiring layer in the modification of the method of manufacturing a semiconductor manufacturing apparatus according to the embodiment of the present invention. 図14Cは、本発明の実施形態に係る半導体製造装置の製造方法の変形例において、上層配線層を形成する工程を説明するための半導体ウエハの断面図である。FIG. 14C is a cross-sectional view of the semiconductor wafer for explaining the step of forming the upper wiring layer in the modification of the method for manufacturing a semiconductor manufacturing apparatus according to the embodiment of the present invention. 図14Dは、本発明の実施形態に係る半導体製造装置の製造方法の変形例において、上層配線層を形成する工程を説明するための半導体ウエハの断面図である。FIG. 14D is a cross-sectional view of the semiconductor wafer for explaining a process of forming the upper wiring layer in the modification of the method for manufacturing a semiconductor manufacturing apparatus according to the embodiment of the present invention.

符号の説明Explanation of symbols

1…半導体ウエハ
2…基板
3、5、9…絶縁膜
4…下層配線層
4a…TiN/Ti膜
4b…AlCu膜
4c…TiN膜
5a…ヴィアホール
5b…平坦部
6、12…バリア層
7…タングステン膜
7a…タングステンプラグ
8…上層配線層
8a…TiN/Ti膜
8b…AlCu膜
8c…TiN膜
10…SiN膜
10b…平坦部
11…配線溝
13…銅膜
13a…上層配線層
20…反応性スパッタ装置
21…反応室
21a…ガス導入口
21b…ガス導出口
22…サセプタ
23…シールド
24…ターゲット
25…マグネット
26、27…直流電源
28…高周波電源
31、32…曲線
DESCRIPTION OF SYMBOLS 1 ... Semiconductor wafer 2 ... Substrate 3, 5, 9 ... Insulating film 4 ... Lower wiring layer 4a ... TiN / Ti film 4b ... AlCu film 4c ... TiN film 5a ... Via hole 5b ... Flat part 6, 12 ... Barrier layer 7 ... Tungsten film 7a ... tungsten plug 8 ... upper wiring layer 8a ... TiN / Ti film 8b ... AlCu film 8c ... TiN film 10 ... SiN film 10b ... flat portion 11 ... wiring groove 13 ... copper film 13a ... upper wiring layer 20 ... reactivity Sputtering device 21 ... Reaction chamber 21a ... Gas inlet 21b ... Gas outlet 22 ... Susceptor 23 ... Shield 24 ... Target 25 ... Magnet 26, 27 ... DC power supply 28 ... High frequency power supply 31, 32 ... Curve

Claims (12)

窪みが設けられた絶縁膜の上にバリア層を形成する工程と、
金属膜の第1部分が前記窪みに埋め込まれるように前記バリア層の上に前記金属膜を形成する工程と、
前記第1部分を残すように前記金属膜をCMP(Chemical Mechanical Polishing)法により研磨する工程と
を具備し、
前記絶縁膜は、半導体ウエハに形成され、
前記バリア層を形成する前記工程において、前記バリア層は、その配向性が前記半導体ウエハのウエハ面の全体で一様になるように形成される
半導体装置の製造方法。
Forming a barrier layer on the insulating film provided with the depression;
Forming the metal film on the barrier layer such that a first portion of the metal film is embedded in the depression;
Polishing the metal film by a CMP (Chemical Mechanical Polishing) method so as to leave the first portion,
The insulating film is formed on a semiconductor wafer;
In the step of forming the barrier layer, the barrier layer is formed so that the orientation thereof is uniform over the entire wafer surface of the semiconductor wafer.
前記バリア層は、高融点金属の窒化物膜としての金属窒化物膜を含み、
前記バリア層を形成する前記工程は、配向性が前記ウエハ面の全体で一様になるように前記金属窒化物膜を形成する工程を含む
請求項1に記載の半導体装置の製造方法。
The barrier layer includes a metal nitride film as a refractory metal nitride film,
The method of manufacturing a semiconductor device according to claim 1, wherein the step of forming the barrier layer includes a step of forming the metal nitride film so that orientation is uniform over the entire wafer surface.
前記金属窒化物膜を形成する前記工程において、前記金属窒化物膜は反応性スパッタ法により形成され、
前記反応性スパッタ法において、
前記半導体ウエハと前記高融点金属のターゲットとが互いに対向するように反応室内に配置され、
アルゴンガスと窒素ガスとを含む混合ガスが、前記半導体ウエハの周辺部から中心部に向かう方向に流れるように、前記半導体ウエハと前記ターゲットとの間に導入され、
前記ターゲットに直流の負電位が印加され、
前記半導体ウエハに高周波電力が印加され、
前記混合ガスが含む窒素ガスの比率としての窒素ガス流量比は、0%より大きく100%より小さい範囲から所定の範囲を除いた範囲に属し、
前記所定の範囲は、前記窒素ガス流量比の変化に対する前記金属窒化物膜の成膜速度の変化において履歴現象が観察される範囲である
請求項2に記載の半導体装置の製造方法。
In the step of forming the metal nitride film, the metal nitride film is formed by reactive sputtering,
In the reactive sputtering method,
The semiconductor wafer and the refractory metal target are disposed in a reaction chamber so as to face each other,
A mixed gas containing argon gas and nitrogen gas is introduced between the semiconductor wafer and the target so as to flow in a direction from the peripheral part to the central part of the semiconductor wafer,
A negative DC potential is applied to the target,
High frequency power is applied to the semiconductor wafer,
The nitrogen gas flow rate ratio as a ratio of nitrogen gas contained in the mixed gas belongs to a range excluding a predetermined range from a range larger than 0% and smaller than 100%,
The method for manufacturing a semiconductor device according to claim 2, wherein the predetermined range is a range in which a hysteresis phenomenon is observed in a change in the deposition rate of the metal nitride film with respect to a change in the nitrogen gas flow rate ratio.
前記所定の範囲を予備実験により求める工程を具備し、
前記所定の範囲を予備実験により求める前記工程は、
前記半導体ウエハとは別の半導体ウエハを、前記別の半導体ウエハと前記ターゲットとが対向するように前記反応室内に配置する工程と、
アルゴンガスと窒素ガスとを含む予備実験用の混合ガスを、前記別の半導体ウエハの周辺部から中心部に向かう方向に流れるように、前記別の半導体ウエハと前記ターゲットとの間に導入する工程と、
前記ターゲットに直流の負電位を印加する工程と、
前記別の半導体ウエハに高周波電力を印加する工程と、
前記別の半導体ウエハ上に形成される前記高融点金属の窒化物膜の成膜速度を測定する工程と、
前記成膜速度に基づいて前記所定の範囲を決定する工程と
を含み、
前記別の半導体ウエハと前記ターゲットとの間に導入する前記工程は、前記予備実験用の混合ガスが含む窒素ガスの比率を増加させながら前記予備実験用の混合ガスを導入する工程と、前記予備実験用の混合ガスが含む窒素ガスの比率を減少させながら前記予備実験用の混合ガスを導入する工程とを含む
請求項3に記載の半導体装置の製造方法。
Comprising the step of determining the predetermined range by a preliminary experiment,
The step of obtaining the predetermined range by a preliminary experiment includes:
Disposing a semiconductor wafer different from the semiconductor wafer in the reaction chamber such that the other semiconductor wafer and the target face each other;
A step of introducing a mixed gas for a preliminary experiment including argon gas and nitrogen gas between the another semiconductor wafer and the target so as to flow in a direction from the peripheral part to the central part of the other semiconductor wafer. When,
Applying a negative DC potential to the target;
Applying high frequency power to the other semiconductor wafer;
Measuring a deposition rate of the refractory metal nitride film formed on the another semiconductor wafer;
Determining the predetermined range based on the deposition rate,
The step of introducing between the another semiconductor wafer and the target includes the step of introducing the preliminary experimental mixed gas while increasing the ratio of the nitrogen gas contained in the preliminary experimental mixed gas; The method for manufacturing a semiconductor device according to claim 3, further comprising: introducing the mixed gas for the preliminary experiment while reducing the ratio of the nitrogen gas included in the mixed gas for the experiment.
前記金属窒化物膜は窒化チタン膜であり、
前記金属膜はタングステン膜であり、
前記金属膜を形成する前記工程において、
前記タングステン膜がCVD(Chemical Vapor Deposition)法により形成される
請求項2に記載の半導体装置の製造方法。
The metal nitride film is a titanium nitride film;
The metal film is a tungsten film;
In the step of forming the metal film,
The method for manufacturing a semiconductor device according to claim 2, wherein the tungsten film is formed by a CVD (Chemical Vapor Deposition) method.
前記金属窒化物膜を形成する前記工程において、自己イオン化プラズマを用いたスパッタ法により前記窒化チタン膜が形成される
請求項5に記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 5, wherein in the step of forming the metal nitride film, the titanium nitride film is formed by a sputtering method using self-ionized plasma.
前記スパッタ法において、
前記半導体ウエハとチタンターゲットとが反応室内に配置され、
前記半導体ウエハの基板温度が室温より高く50℃より低くなるように制御され、
アルゴンガスと窒素ガスとを含む混合ガスが前記反応室内に導入され、
前記チタンターゲットに直流の負電位が印加され、
前記半導体ウエハに高周波電力が印加され、
前記高周波電力の周波数が40MHzより高く200MHzより低くなるように制御され、
前記反応室内の圧力が0.5mTorrより高く2mTorrより低くなるように制御される
請求項6に記載の半導体装置の製造方法。
In the sputtering method,
The semiconductor wafer and the titanium target are disposed in a reaction chamber,
The substrate temperature of the semiconductor wafer is controlled to be higher than room temperature and lower than 50 ° C .;
A mixed gas containing argon gas and nitrogen gas is introduced into the reaction chamber,
A negative DC potential is applied to the titanium target,
High frequency power is applied to the semiconductor wafer,
The frequency of the high frequency power is controlled to be higher than 40 MHz and lower than 200 MHz,
The method for manufacturing a semiconductor device according to claim 6, wherein the pressure in the reaction chamber is controlled to be higher than 0.5 mTorr and lower than 2 mTorr.
前記バリア層はチタン膜を含み、
前記バリア層を形成する前記工程は、自己イオン化プラズマを用いたスパッタ法により前記チタン膜を形成する工程を含み、
前記チタン膜を形成する前記工程は、前記高融点金属の窒化物膜を形成する前記工程の前に実行される
請求項6又は7に記載の半導体装置の製造方法。
The barrier layer includes a titanium film,
The step of forming the barrier layer includes a step of forming the titanium film by sputtering using self-ionized plasma,
The method of manufacturing a semiconductor device according to claim 6, wherein the step of forming the titanium film is performed before the step of forming the nitride film of the refractory metal.
前記窪みは、多層配線のヴィアホールである
請求項1乃至8のいずれか1項に記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 1, wherein the recess is a via hole of a multilayer wiring.
前記窪みは、配線を形成するための溝である
請求項2に記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 2, wherein the recess is a groove for forming a wiring.
前記金属膜は銅膜である
請求項10に記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 10, wherein the metal film is a copper film.
前記高融点金属の窒化物膜は窒化タンタル膜である
請求項11に記載の半導体装置の製造方法。
The method for manufacturing a semiconductor device according to claim 11, wherein the nitride film of the refractory metal is a tantalum nitride film.
JP2006289442A 2006-10-25 2006-10-25 Manufacturing method of semiconductor device Pending JP2008108860A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006289442A JP2008108860A (en) 2006-10-25 2006-10-25 Manufacturing method of semiconductor device
US11/973,947 US20080102630A1 (en) 2006-10-25 2007-10-11 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006289442A JP2008108860A (en) 2006-10-25 2006-10-25 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2008108860A true JP2008108860A (en) 2008-05-08

Family

ID=39330761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006289442A Pending JP2008108860A (en) 2006-10-25 2006-10-25 Manufacturing method of semiconductor device

Country Status (2)

Country Link
US (1) US20080102630A1 (en)
JP (1) JP2008108860A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222963A (en) * 2010-01-15 2011-11-04 Rohm Co Ltd Semiconductor device and fabrication method for the same
KR20190113580A (en) * 2018-03-27 2019-10-08 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode

Families Citing this family (220)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009071667A1 (en) 2007-12-07 2009-06-11 Oc Oerlikon Balzers Ag Reactive sputtering with hipims
WO2011013374A1 (en) * 2009-07-29 2011-02-03 キヤノンアネルバ株式会社 Semiconductor device and manufacturing method therefor
US8585180B2 (en) 2009-10-28 2013-11-19 Hewlett-Packard Development Company, L.P. Protective coating for print head feed slots
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
CN111344522B (en) 2017-11-27 2022-04-12 阿斯莫Ip控股公司 Including clean mini-environment device
KR102597978B1 (en) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. Storage device for storing wafer cassettes for use with batch furnaces
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
KR20200108016A (en) 2018-01-19 2020-09-16 에이에스엠 아이피 홀딩 비.브이. Method of depositing a gap fill layer by plasma assisted deposition
TW202325889A (en) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 Deposition method
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
CN111699278B (en) 2018-02-14 2023-05-16 Asm Ip私人控股有限公司 Method for depositing ruthenium-containing films on substrates by cyclical deposition processes
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
TWI811348B (en) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
CN112292478A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
TWI815915B (en) 2018-06-27 2023-09-21 荷蘭商Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
TW202037745A (en) 2018-12-14 2020-10-16 荷蘭商Asm Ip私人控股有限公司 Method of forming device structure, structure formed by the method and system for performing the method
TW202405220A (en) 2019-01-17 2024-02-01 荷蘭商Asm Ip 私人控股有限公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
CN111593319B (en) 2019-02-20 2023-05-30 Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling recesses formed in a substrate surface
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
JP2020136678A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Method for filing concave part formed inside front surface of base material, and device
JP2020133004A (en) 2019-02-22 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Base material processing apparatus and method for processing base material
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188254A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP7499079B2 (en) 2019-07-09 2024-06-13 エーエスエム・アイピー・ホールディング・ベー・フェー Plasma device using coaxial waveguide and substrate processing method
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (en) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 Method of forming topologically controlled amorphous carbon polymer films
TW202113936A (en) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (en) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 Liquid level sensor for chemical source container
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
CN112635282A (en) 2019-10-08 2021-04-09 Asm Ip私人控股有限公司 Substrate processing apparatus having connection plate and substrate processing method
KR20210042810A (en) 2019-10-08 2021-04-20 에이에스엠 아이피 홀딩 비.브이. Reactor system including a gas distribution assembly for use with activated species and method of using same
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
TWI834919B (en) 2019-10-16 2024-03-11 荷蘭商Asm Ip私人控股有限公司 Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
KR20210050453A (en) 2019-10-25 2021-05-07 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
KR20210080214A (en) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate and related semiconductor structures
TW202140135A (en) 2020-01-06 2021-11-01 荷蘭商Asm Ip私人控股有限公司 Gas supply assembly and valve plate assembly
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
TW202129068A (en) 2020-01-20 2021-08-01 荷蘭商Asm Ip控股公司 Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
TW202146715A (en) 2020-02-17 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method for growing phosphorous-doped silicon layer and system of the same
TW202203344A (en) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 System dedicated for parts cleaning
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
CN113394086A (en) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 Method for producing a layer structure having a target topological profile
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
TW202140831A (en) 2020-04-24 2021-11-01 荷蘭商Asm Ip私人控股有限公司 Method of forming vanadium nitride–containing layer and structure comprising the same
TW202146831A (en) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Vertical batch furnace assembly, and method for cooling vertical batch furnace
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210134226A (en) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. Solid source precursor vessel
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
KR20210145080A (en) 2020-05-22 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Apparatus for depositing thin films using hydrogen peroxide
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR20220006455A (en) 2020-07-08 2022-01-17 에이에스엠 아이피 홀딩 비.브이. Method for processing a substrate
KR20220010438A (en) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3944838B2 (en) * 2002-05-08 2007-07-18 富士通株式会社 Semiconductor device and manufacturing method thereof
US7048837B2 (en) * 2002-09-13 2006-05-23 Applied Materials, Inc. End point detection for sputtering and resputtering
US7297247B2 (en) * 2003-05-06 2007-11-20 Applied Materials, Inc. Electroformed sputtering target
US6811662B1 (en) * 2003-08-22 2004-11-02 Powership Semiconductor Corp. Sputtering apparatus and manufacturing method of metal layer/metal compound layer by using thereof
US7220642B2 (en) * 2004-11-12 2007-05-22 Spansion Llc Protection of active layers of memory cells during processing of other elements

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222963A (en) * 2010-01-15 2011-11-04 Rohm Co Ltd Semiconductor device and fabrication method for the same
KR20190113580A (en) * 2018-03-27 2019-10-08 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
KR102646467B1 (en) * 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode

Also Published As

Publication number Publication date
US20080102630A1 (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP2008108860A (en) Manufacturing method of semiconductor device
US8846451B2 (en) Methods for depositing metal in high aspect ratio features
US20140057459A1 (en) Plasma processing method and plasma processing system
JP4228560B2 (en) Capacitor element and manufacturing method thereof
TW200832552A (en) Amorphous carbon film, semiconductor device, film forming method, film forming apparatus and storage medium
JP2002009016A (en) Method for treating substrate
JP2011511437A (en) Gas conditioning for edge exclusion control in bevel edge etching plasma chambers
JP3077623B2 (en) Plasma chemical vapor deposition equipment
JP6025735B2 (en) Dielectric film deposition method using microwave plasma
CN109964303A (en) Via the method for physical vapour deposition (PVD) deposition of amorphous silicon layers or silicon oxycarbide layer
US20070238254A1 (en) Method of etching low dielectric constant films
CN102301454A (en) Film formation method, and plasma film formation apparatus
KR101713336B1 (en) Liner removal process
JP2006253290A (en) METHOD OF DEPOSITING SiC-BASED FILM AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE
KR20190051082A (en) Methods and devices using PVD ruthenium
US6759347B1 (en) Method of forming in-situ SRO HDP-CVD barrier film
JP3266492B2 (en) Method for manufacturing semiconductor device
TW201220400A (en) Silicon nitride film-forming device and method
JP2000243830A (en) Manufacture of semiconductor device
JP3601988B2 (en) Method of forming insulating film
KR20050071760A (en) Method for forming a tungsten contact plug improving a contact fill capability
US9076793B2 (en) Semiconductor device and manufacturing method thereof
US11674216B2 (en) Methods and apparatus for depositing aluminum by physical vapor deposition (PVD) with controlled cooling
TWI828904B (en) Methods and apparatus for filling a feature disposed in a substrate
US20210057186A1 (en) Methods and apparatus for depositing aluminum by physical vapor deposition (pvd)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090803