JP4755307B1 - Clean room - Google Patents

Clean room Download PDF

Info

Publication number
JP4755307B1
JP4755307B1 JP2010242798A JP2010242798A JP4755307B1 JP 4755307 B1 JP4755307 B1 JP 4755307B1 JP 2010242798 A JP2010242798 A JP 2010242798A JP 2010242798 A JP2010242798 A JP 2010242798A JP 4755307 B1 JP4755307 B1 JP 4755307B1
Authority
JP
Japan
Prior art keywords
nozzle
clean
plate
air
nozzles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010242798A
Other languages
Japanese (ja)
Other versions
JP2012093066A (en
Inventor
慎治 蕨野
清隆 和気
元彦 中村
民樹 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kogyosha Co Ltd
Original Assignee
Asahi Kogyosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogyosha Co Ltd filed Critical Asahi Kogyosha Co Ltd
Priority to JP2010242798A priority Critical patent/JP4755307B1/en
Priority to CN201080025662.4A priority patent/CN102656410B/en
Priority to PCT/JP2010/070202 priority patent/WO2012056592A1/en
Priority to KR1020117027760A priority patent/KR101284022B1/en
Priority to TW100126993A priority patent/TWI431229B/en
Application granted granted Critical
Publication of JP4755307B1 publication Critical patent/JP4755307B1/en
Publication of JP2012093066A publication Critical patent/JP2012093066A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • F24F3/167Clean rooms, i.e. enclosed spaces in which a uniform flow of filtered air is distributed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/10Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with air supply, or exhaust, through perforated wall, floor or ceiling

Abstract

【課題】循環風量が少なくても、必要なダウンフローの風速を確保でき、しかもフィルタリーク試験も簡単に行えるクリーンルームを提供する。
【解決手段】クリーンルーム10のクリーンゾーン11の温調された清浄空気の吹出口が、複数のプレートノズル20で形成されたものである。
【選択図】図1
Provided is a clean room in which a necessary downflow wind speed can be ensured even when the circulating air volume is small and a filter leak test can be easily performed.
A temperature-controlled clean air outlet in a clean zone of a clean room is formed by a plurality of plate nozzles.
[Selection] Figure 1

Description

本発明は、半導体製造、液晶基板製造、医薬品や食品製造等に用いられるクリーンルームに係り、特に、クリーンゾーンに精密温調された清浄空気を吹き出す吹出口を改良したクリーンルームに関するものである。   The present invention relates to a clean room used for manufacturing semiconductors, liquid crystal substrates, pharmaceuticals, foods, and the like, and more particularly to a clean room with an improved air outlet that blows clean air that is precisely temperature-controlled in a clean zone.

半導体製造、液晶基板製造、医薬品や食品製造等の製造工場では、建屋全体をクリーンルーム化している。   In manufacturing factories such as semiconductor manufacturing, liquid crystal substrate manufacturing, and pharmaceutical and food manufacturing, the entire building has been turned into a clean room.

クリーンルームとしては、図8に示す一方向流式(層流式)と、図9に示す非一方向式(乱流式)の2方式がある。   As the clean room, there are two types, a unidirectional flow type (laminar flow type) shown in FIG. 8 and a non-unidirectional type (turbulent flow type) shown in FIG.

図8に示した一方向流式クリーンルーム40は、製造設備Mが設置されるクリーンゾーン41の天井の略全面にわたって給気チャンバ42が設けられ、その給気チャンバ42の吹出口43に高性能フィルタ(HEPAまたはULPA)44が設けられ、床45の下部にはレターンチャンバ46が形成され、レターンチャンバ46と給気チャンバ42とを結んで循環路47が接続され、その循環路47に空調機48が接続されて構成される。   The one-way flow clean room 40 shown in FIG. 8 is provided with an air supply chamber 42 over substantially the entire ceiling of the clean zone 41 in which the manufacturing equipment M is installed, and a high performance filter is provided at the outlet 43 of the air supply chamber 42. (HEPA or ULPA) 44 is provided, a return chamber 46 is formed in the lower portion of the floor 45, a circulation path 47 is connected to the return chamber 46 and the air supply chamber 42, and an air conditioner 48 is connected to the circulation path 47. Are connected and configured.

図9に示した非一方向式クリーンルーム50では、クリーンゾーン41の天井部の必要箇所にそれぞれフィルタユニット51を設けたものである。フィルタユニット51は、給気チャンバ52の吹出口53に高性能フィルタ54を設けて構成される。この図9のクリーンルーム50では、フィルタユニット51を除いて、レターンチャンバ46、循環路47、空調機48の構成は図8のクリーンルーム40と同じである。   In the non-unidirectional clean room 50 shown in FIG. 9, filter units 51 are provided at necessary portions of the ceiling of the clean zone 41. The filter unit 51 is configured by providing a high performance filter 54 at the outlet 53 of the air supply chamber 52. In the clean room 50 of FIG. 9, except for the filter unit 51, the configuration of the return chamber 46, the circulation path 47, and the air conditioner 48 is the same as that of the clean room 40 of FIG.

図8に示した一方向流式クリーンルーム40では、給気チャンバ42の吹出口43に設けられたフィルタ44から清浄空気が均一にクリーンゾーン41に給気され、クリーンゾーン41をダウンフローで床45からレターンチャンバ46に排気(還気)される気流となるため、クリーンゾーン41内で発生した粒子が拡散することなくレターンチャンバ46に流れ、クリーンゾーン41の清浄度を高めると共に温度分布の均一化を図ることができる。   In the one-way flow clean room 40 shown in FIG. 8, clean air is uniformly supplied to the clean zone 41 from the filter 44 provided at the air outlet 43 of the air supply chamber 42, and the floor 45 is moved down the clean zone 41. Therefore, the particles generated in the clean zone 41 flow into the return chamber 46 without diffusing, increasing the cleanliness of the clean zone 41 and making the temperature distribution uniform. Can be achieved.

一方、図9に示した非一方向式クリーンルーム50では、クリーンゾーン41の天井部の必要箇所にフィルタユニット51が設置されるため、フィルタユニット51、51間では、清浄空気が流れず滞留が生じ乱流となるが、製造設備Mの設置の位置に合わせてフィルタユニット51を配置することで、必要箇所で粒子の拡散を防止することができる。しかし、非一方向式の場合、クリーンゾーン41内で要求される熱負荷を処理するために給気温度を制御しても、フィルタユニット51の直下とそれ以外では差のついた温度分布となる。   On the other hand, in the non-unidirectional clean room 50 shown in FIG. 9, the filter unit 51 is installed at a necessary portion of the ceiling portion of the clean zone 41, so that clean air does not flow between the filter units 51 and 51 and stays there. Although it becomes a turbulent flow, by disposing the filter unit 51 in accordance with the installation position of the manufacturing equipment M, it is possible to prevent the diffusion of particles at a necessary location. However, in the case of the non-unidirectional type, even if the supply air temperature is controlled in order to process the heat load required in the clean zone 41, the temperature distribution is different between the position immediately below the filter unit 51 and the rest. .

クリーンゾーン41で発生した粒子の拡散を制御し、製造設備Mの装置等からの発熱を除去するためには、ダウンフローの面風速は、0.15〜0.5m/secが必要であり、図8の一方向流式では、膨大な空気循環量を必要とする問題がある。この点では、図9の非一方向式は、必要箇所にフィルタユニット51を設置することにより、総風量は一方向流式より少なくてすむ。   In order to control the diffusion of the particles generated in the clean zone 41 and remove the heat generated from the apparatus of the production facility M, the downflow surface wind speed needs to be 0.15 to 0.5 m / sec. In the one-way flow system of FIG. 8, there is a problem that requires a huge amount of air circulation. In this regard, the non-one-way type in FIG. 9 requires less total air volume than the one-way type by installing the filter unit 51 at a required location.

特開2010−112646号公報号公報JP 2010-112646 A

ところで、最近は、製造設備Mも大型化しており、クリーンゾーン41の高さも6m以上も必要とされており、非一方向式で、フィルタ54から温調された清浄空気を吹き出しても、床45に到達する際には拡散してしまい、必要箇所でのダウンフローとなる風速(0.15〜0.5m/sec)が得られない問題がある。   By the way, recently, the manufacturing equipment M has also been increased in size, and the height of the clean zone 41 is required to be 6 m or more, and even if blown clean air temperature-controlled from the filter 54 in a non-unidirectional manner, When reaching 45, it diffuses, and there is a problem that the wind speed (0.15 to 0.5 m / sec) that causes a downflow at a necessary location cannot be obtained.

従って、一方向流式のようにクリーンゾーンの水平断面の全体をダウンフローで流すのが好ましいが、循環総風量が多くなる問題が解消されない。   Therefore, it is preferable to flow the entire horizontal cross section of the clean zone by downflow as in the one-way flow method, but the problem that the total circulation air volume increases cannot be solved.

また、両方式ともフィルタから清浄空気を吹き出すため、フィルタにピンホールがあるかどうか、給気側から給気と共にエアロゾルを流してフィルタリーク試験を行う必要がある。このフィルタリーク試験は、フィルタの下面のサンプリングプローブを縦横に走査してリークしたエアロゾルの有無とピンホールの位置を特定するものであるが、検査には膨大な時間がかる問題がある。   In addition, since both types blow out clean air from the filter, it is necessary to conduct a filter leak test by flowing an aerosol together with air supply from the air supply side to determine whether the filter has a pinhole. In this filter leak test, the sampling probe on the lower surface of the filter is scanned vertically and horizontally to determine the presence or absence of leaked aerosol and the position of the pinhole, but there is a problem that the inspection takes a long time.

そこで、本発明の目的は、上記課題を解決し、循環風量が少なくても、温度制御および清浄度確保に必要なダウンフローの風速を確保でき、しかもフィルタリーク試験も簡単に行えるクリーンルームを提供することにある。   Accordingly, an object of the present invention is to provide a clean room that solves the above-described problems and can secure the downflow air speed necessary for temperature control and cleanliness even when the circulating airflow is small, and that can easily perform the filter leak test. There is.

上記目的を達成するために本発明のクリーンルームは、クリーンゾーンの天井に、温調された清浄空気の吹出口を形成するための開口部を形成し、その開口部に、プレートの下面に複数のノズルを形成したプレートノズルを複数枚並べて設けて、前記吹出口を形成したことを特徴とするものである。 In order to achieve the above object, the clean room of the present invention has an opening for forming a temperature-controlled clean air outlet in the ceiling of the clean zone, and a plurality of openings on the lower surface of the plate. A plurality of plate nozzles on which nozzles are formed are arranged side by side to form the air outlet .

本発明のクリーンルームは、製造設備が設置されるクリーンゾーンと、該クリーンゾーンの天井に設けられ、下部に、温調された清浄空気の吹出口を形成するための開口部を有する給気チャンバと、前記クリーンゾーンの床下に設けられたレターンチャンバと、該レターンチャンバと前記給気チャンバとを結ぶ空気循環路と、空気循環路に接続された空調機と、空調機と前記給気チャンバを結ぶ循環路に設けられた高性能フィルタと、プレートの下面に複数のノズルを形成して構成され、前記給気チャンバの下部の開口部を覆うように複数枚並べて設けられ、前記クリーンゾーンの天井に前記吹出口を形成するための複数のプレートノズルとを備えてなるものである。 The clean room of the present invention includes a clean zone in which manufacturing equipment is installed , an air supply chamber provided on the ceiling of the clean zone, and having an opening for forming a temperature-controlled clean air outlet at the bottom. A return chamber provided under the floor of the clean zone, an air circulation path connecting the return chamber and the air supply chamber, an air conditioner connected to the air circulation path, and connecting an air conditioner and the air supply chamber A high performance filter provided in the circulation path and a plurality of nozzles are formed on the lower surface of the plate, and a plurality of nozzles are arranged side by side so as to cover the lower opening of the air supply chamber. And a plurality of plate nozzles for forming the outlet .

また高性能フィルタは、前記空気循環路に接続する代わりに給気チャンバ内に設けるようにしてもよい。   The high performance filter may be provided in the air supply chamber instead of being connected to the air circulation path.

本発明に用いられるプレートノズルは、薄型箱状に形成されたプレートと、そのプレートの縦横に複数のノズルが、そのプレートの下面から突出するようにプレートと一体に樹脂成形して形成される。ノズルの内径は2〜40mmの範囲内のいずれかに形成され、ノズルの高さは20〜200mmの範囲内のいずれかに形成される。 The plate nozzle used in the present invention is formed by resin molding integrally with the plate so that a plate formed in a thin box shape and a plurality of nozzles vertically and horizontally protrude from the lower surface of the plate. The inner diameter of the nozzle is formed in one of the range of 2 to 40 mm, the height of the nozzle Ru is formed either within the range of 20 to 200 mm.

また、本発明においては、プレートノズルのプレートには、一定の角度で清浄空気を吹き出す内径の大きなノズルと、そのノズル間に配置され、内径が小さく清浄空気を広角度で清浄空気を吹き出すノズルが設けられるようにしてもよい。   In the present invention, the plate nozzle plate includes a nozzle having a large inner diameter that blows clean air at a certain angle, and a nozzle that is disposed between the nozzles and that blows clean air at a wide angle with a small inner diameter. It may be provided.

本発明において、プレートノズルのノズルから吹き出された清浄空気が、風速0.5m/secとなる有効噴射距離をノズル内径に応じて予め求めておき、前記床上のある高さの面で風速0.15〜0.5m/secとなるように、前記ノズルの有効噴射距離からノズル内径を選定する。   In the present invention, the effective jetting distance at which the clean air blown out from the nozzle of the plate nozzle has a wind speed of 0.5 m / sec is obtained in advance according to the inner diameter of the nozzle, and the wind speed of 0. 0 on the surface at a certain height on the floor. The nozzle inner diameter is selected from the effective spray distance of the nozzle so as to be 15 to 0.5 m / sec.

また、各ノズルから吹き出された清浄空気は、有効噴射距離に達する間に一定の広がり角で吹き出され、ノズル同士の間隔は、隣接するノズルから吹き出された清浄空気の広がり角で、前記有効噴射距離内で隣接するノズルからの清浄空気が相互に交わるように設定される。   The clean air blown out from each nozzle is blown at a constant spread angle while reaching the effective injection distance, and the interval between the nozzles is the spread angle of the clean air blown from the adjacent nozzles, and the effective injection is performed. It is set so that clean air from adjacent nozzles intersects each other within a distance.

本発明は、次のような優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)クリーンゾーンの清浄空気の吹出口が、複数のプレートノズルで形成されることで、プレートノズルの各ノズルから吹き出す温調された清浄空気の風速とその到達距離を自在に選定することができる。   (1) By forming the clean air outlet of the clean zone with a plurality of plate nozzles, it is possible to freely select the wind speed and the reach distance of the temperature-controlled clean air blown from each nozzle of the plate nozzle. it can.

(2)クリーンルームの天井が高くてもノズルの到達距離とクリーンゾーンが必要とする風速を最適化することができる。   (2) Even if the ceiling of the clean room is high, the nozzle reachable distance and the wind speed required for the clean zone can be optimized.

(3)クリーンルーム内での空気の総循環量を従来のクリーンルームの1/3〜1/10にすることができる。   (3) The total circulation amount of air in the clean room can be reduced to 1/3 to 1/10 of the conventional clean room.

(4)高性能フィルタは、循環系路や給気チャンバに設けるため、フィルタリーク試験などの検査が簡単にできる。   (4) Since the high-performance filter is provided in the circulation system or the air supply chamber, inspection such as a filter leak test can be easily performed.

本発明の一実施の形態を示す全体図である。1 is an overall view showing an embodiment of the present invention. 本発明の他の実施の形態を示す全体図である。It is a general view which shows other embodiment of this invention. 図1、図2おいて、給気チャンバにプレートノズルを取り付ける状態を示す部分斜視図である。In FIG. 1, FIG. 2, it is a fragmentary perspective view which shows the state which attaches a plate nozzle to an air supply chamber. 図1、図2おいて、給気チャンバにプレートノズルを取り付けた状態の部分拡大断面図である。In FIG. 1, FIG. 2, it is a partial expanded sectional view of the state which attached the plate nozzle to the air supply chamber. 本発明において、ノズルの各内径の違いによる、ノズルから吹き出される風速と到達距離の関係を示す図である。In this invention, it is a figure which shows the relationship between the wind speed blown from a nozzle, and reach distance by the difference in each internal diameter of a nozzle. 本発明において、プレートノズルの各ノズルから吹き出された清浄空気の広がり状態を説明する図である。In this invention, it is a figure explaining the spreading state of the clean air which blown off from each nozzle of a plate nozzle. 本発明において、プレートノズルに、広がり角の違うノズルを設けたときの、両ノズルから吹き出された清浄空気の広がり状態を説明する図である。In this invention, it is a figure explaining the spreading | diffusion state of the clean air blown off from both nozzles when a nozzle with a different spreading | diffusion angle is provided in the plate nozzle. 従来の一方向流式クリーンルームを示す全体図である。It is a general view which shows the conventional one-way flow type clean room. 従来の非一方向式クリーンルームを示す全体図である。It is a general view which shows the conventional non-unidirectional type clean room.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明のクリーンルームの全体図を示したものである。   FIG. 1 shows an overall view of the clean room of the present invention.

先ずクリーンルーム10は、製造設備Mが設置されるクリーンゾーン11の天井には、略全面にわたって複数の給気チャンバ12が相互に隣接するように設けられ、クリーンゾーン11の床15の下部にはレターンチャンバ16が形成され、レターンチャンバ16と給気チャンバ12とを結んで循環路17が接続され、その循環路17に空調機18が接続されて構成される。   First, in the clean room 10, a plurality of air supply chambers 12 are provided on the ceiling of the clean zone 11 where the manufacturing equipment M is installed so as to be substantially adjacent to each other. A chamber 16 is formed, the return chamber 16 and the air supply chamber 12 are connected, a circulation path 17 is connected, and an air conditioner 18 is connected to the circulation path 17.

本実施の形態においては、循環路17に高性能フィルタ(HEPAまたはULPA)19が設けられ、給気チャンバ12の開口部に、複数のプレートノズル20を設けて吹出口が構成される。   In the present embodiment, a high-performance filter (HEPA or ULPA) 19 is provided in the circulation path 17, and a plurality of plate nozzles 20 are provided in the opening of the air supply chamber 12 to configure an outlet.

空調機18は、蒸発器21と循環ファン22を有し、その吸込側に外気OAの導入ライン13が接続され、空調機18に至る循環路17には、循環空気の一部を排気する排気ファンを備えた排気ライン14が接続される。   The air conditioner 18 includes an evaporator 21 and a circulation fan 22, and an introduction line 13 for outside air OA is connected to the suction side of the air conditioner 18. The circulation path 17 reaching the air conditioner 18 exhausts a part of the circulation air. An exhaust line 14 provided with a fan is connected.

このクリーンルーム10は、クリーンゾーン11の天井がプレートノズル20のノズル24で形成され、ノズル24から、空調機18で空調され、高性能フィルタ19で除塵された清浄空気CAが吹き出されるため、クリーンゾーン11の天井高さが高くてもノズル径を自由に選定することで、床15上の必要高さ(ユースポイント)、例えば床15から1mの高さで、必要なダウンフローとなる風速(0.15〜0.5m/sec)を確保することができると共に、必要な空気循環量も従来の1/3〜1/10の風量とすることが可能となる。   In this clean room 10, the ceiling of the clean zone 11 is formed by the nozzles 24 of the plate nozzles 20, and clean air CA air-conditioned by the air conditioner 18 and dust-removed by the high-performance filter 19 is blown out from the nozzles 24. Even if the ceiling height of the zone 11 is high, by selecting the nozzle diameter freely, the necessary height (use point) on the floor 15, for example, the wind speed (1 m from the floor 15) that provides the necessary downflow ( 0.15 to 0.5 m / sec) can be ensured, and the necessary air circulation rate can be reduced to 1/3 to 1/10 of the conventional air volume.

また、高性能フィルタ19は、循環路17に接続するだけであり、そのフィルタリーク試験も簡単に行える。   Further, the high-performance filter 19 is simply connected to the circulation path 17, and the filter leak test can be easily performed.

図2は、本発明の他のクリーンルームの全体図を示したものである。   FIG. 2 shows an overall view of another clean room of the present invention.

図2のクリーンルーム10は、図1のクリーンルーム10と基本構成は同じであるが、高性能フィルタ19を給気チャンバ12内に設けたものである。図2のクリーンルーム10は、高性能フィルタ19の取り付け位置が、図1と相違する以外は、図1と同じであるので、図2に図1と同じ符号を付してその説明は省略する。   The clean room 10 in FIG. 2 has the same basic configuration as the clean room 10 in FIG. 1, but has a high performance filter 19 provided in the air supply chamber 12. The clean room 10 in FIG. 2 is the same as FIG. 1 except that the attachment position of the high-performance filter 19 is different from that in FIG. 1, and therefore, the same reference numerals as those in FIG.

この図1、図2に示したクリーンルーム10において、クリーンゾーン11の天井に取り付ける給気チャンバ12は、複数個並べて天井の略全面に設置して、一方向流式クリーンルームを構成する例を示したが、給気チャンバ12を天井の必要箇所に設置して非一方向式クリーンルームを構成するようにしてもよい。   In the clean room 10 shown in FIG. 1 and FIG. 2, an example is shown in which a plurality of air supply chambers 12 attached to the ceiling of the clean zone 11 are arranged side by side and installed on substantially the entire surface of the ceiling to constitute a one-way flow clean room. However, the air supply chamber 12 may be installed at a required location on the ceiling to constitute a non-unidirectional clean room.

また給気チャンバ12は、複数個並べる代わりに、天井の略全面を覆うように1つの給気チャンバ12で構成するようにしてもよい。   Further, instead of arranging a plurality of air supply chambers 12, a single air supply chamber 12 may be formed so as to cover substantially the entire surface of the ceiling.

さて、図3は、本発明のプレートノズル20を給気チャンバ12の開口部に取り付ける際の部分拡大斜視図を示し、図4はプレートノズル20を給気チャンバ12に取り付けた部分断面図を示したものである。   3 shows a partially enlarged perspective view when the plate nozzle 20 of the present invention is attached to the opening of the air supply chamber 12, and FIG. 4 shows a partial cross-sectional view of the plate nozzle 20 attached to the air supply chamber 12. It is a thing.

プレートノズル20は、金型を用いて樹脂成形にて薄型箱状のプレート23とノズル24が一体成形される。   The plate nozzle 20 is formed by integrally molding a thin box-shaped plate 23 and a nozzle 24 by resin molding using a mold.

このプレートノズル20は、例えば30cm×30cm、50cm×50cmのサイズで、プレート23の周囲の厚さ10〜20mm程度に形成され、ノズル24の高さは、20〜200mm、内径はφ2〜40mmの範囲で適宜形成される。   The plate nozzle 20 has a size of, for example, 30 cm × 30 cm and 50 cm × 50 cm, and is formed with a thickness of about 10 to 20 mm around the plate 23. The nozzle 24 has a height of 20 to 200 mm and an inner diameter of 2 to 40 mm. It is formed as appropriate within the range.

使用する樹脂は、エンジニアリングプラスチックで、ポリアセタール、ポリイミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレートのいずれかを選択できる。また樹脂にカーボンブラックや黒鉛粉末、酸化亜鉛などの導電性粉末やノニオン系又はアニオン系界面活性剤等からなる帯電防止剤を添加するようにしてもよい。   The resin to be used is engineering plastic, and can be selected from polyacetal, polyimide, polycarbonate, modified polyphenylene ether, and polybutylene terephthalate. Moreover, you may make it add the antistatic agent which consists of electroconductive powder, such as carbon black, graphite powder, and zinc oxide, a nonionic or anionic surfactant, etc. to resin.

また、プレート23の周囲には、後述するビス止めのためのビス用穴25が各辺に3箇所形成される。   Further, around the plate 23, three screw holes 25 for screwing, which will be described later, are formed on each side.

次にプレートノズル20の給気チャンバ12への取り付けを説明する。   Next, attachment of the plate nozzle 20 to the air supply chamber 12 will be described.

先ず、プレートノズル20は、SUSやアルミニウムなど金属角パイプで形成した支持枠30に並べて支持される。この支持枠30は、プレートノズル20を支持する方形枠31、31を有し、その方形枠31に、プレートノズル20のビス用穴25に対向してネジ穴32が設けられる。   First, the plate nozzle 20 is supported side by side on a support frame 30 formed of a metal square pipe such as SUS or aluminum. The support frame 30 includes rectangular frames 31 and 31 that support the plate nozzle 20, and screw holes 32 are provided in the rectangular frame 31 so as to face the screw holes 25 of the plate nozzle 20.

プレートノズル20を支持枠30に取り付ける際に、その間をシールするシール材26が設けられる。シール材26は、支持枠30の方形枠31の枠体形状に形成され、また支持枠30のネジ穴32と一致する位置にビス穴27が形成される。   When the plate nozzle 20 is attached to the support frame 30, a sealing material 26 is provided for sealing between the plates. The sealing material 26 is formed in a frame shape of a rectangular frame 31 of the support frame 30, and a screw hole 27 is formed at a position coinciding with the screw hole 32 of the support frame 30.

支持枠30へのプレートノズル20の取り付けは、支持枠30上に枠状のシール材26を載置し、そのシール材26上にプレートノズル20を前後左右に並べる。その状態で、ビス用穴25にビス28を、シール材26のビス穴27を通して支持枠30のネジ穴32にねじ込んで、プレートノズル20を支持枠30に取り付ける。   The plate nozzle 20 is attached to the support frame 30 by placing a frame-shaped sealing material 26 on the support frame 30 and arranging the plate nozzles 20 in the front, rear, left and right directions on the sealing material 26. In this state, the screw 28 is screwed into the screw hole 25 and screwed into the screw hole 32 of the support frame 30 through the screw hole 27 of the sealing material 26, and the plate nozzle 20 is attached to the support frame 30.

このようにプレートノズル20は、シール材26を介して支持枠30にビス止めして取り付けた後、その支持枠30を、給気チャンバ12に取り付ける。   As described above, the plate nozzle 20 is screwed and attached to the support frame 30 via the sealing material 26, and then the support frame 30 is attached to the air supply chamber 12.

この給気チャンバ12は、図4に示すように、開口部が角パイプで直方体状に形成されたボックス上のフレーム33を有し、そのフレーム33の周面と上面にカバー35が取り付けられて構成される。支持枠30は、フレーム33の上面に、シール材38を介してボルト・ナット39にて取り付けられる。   As shown in FIG. 4, the air supply chamber 12 has a frame 33 on a box whose opening is formed in a rectangular parallelepiped shape with a square pipe, and a cover 35 is attached to the peripheral surface and the upper surface of the frame 33. Composed. The support frame 30 is attached to the upper surface of the frame 33 with bolts and nuts 39 via a sealing material 38.

このように、給気チャンバ12に、プレートノズル20を取り付けた支持枠30を取り付けたのち、図1、図2に示したクリーンゾーン11の天井に給気チャンバ12を取り付けると共に循環路17のダクトと接続することでクリーンルーム10が構成される。   Thus, after attaching the support frame 30 to which the plate nozzle 20 is attached to the air supply chamber 12, the air supply chamber 12 is attached to the ceiling of the clean zone 11 shown in FIGS. 1 and 2 and the duct of the circulation path 17. Is connected to the clean room 10.

次に、クリーンゾーン11の天井の吹出口を形成するプレートノズル20のノズル24の形状とその内径及びその取り付け間隔について説明する。   Next, the shape of the nozzle 24 of the plate nozzle 20 that forms the air outlet of the ceiling of the clean zone 11, its inner diameter, and its mounting interval will be described.

先ずノズル24の形状は、図3,4に示すように、逆ロート状に形成されるが、円筒状に形成してもよい。   First, as shown in FIGS. 3 and 4, the nozzle 24 is formed in a reverse funnel shape, but may be formed in a cylindrical shape.

次に、ノズル24の配置数について説明する。   Next, the number of nozzles 24 arranged will be described.

先ず従来の高性能フィルタから吹き出す清浄空気を、面積1m2当たり、面風速を0.05m/secとしたときの風量(3m3/min)を基準とし、ノズル内径を、それぞれφ2mm、φ5mm、φ10mm、φ20mm、φ40mmとし、同一風量(3m3/min)を吹き出すときのノズル本数は、次のようになる。 First, clean air blown out from a conventional high-performance filter is based on the air volume (3 m 3 / min) when the surface wind speed is 0.05 m / sec per area of 1 m 2 , and the nozzle inner diameter is 2 mm, 5 mm, 10 mm respectively. , Φ20 mm, φ40 mm, and the number of nozzles when blowing out the same air volume (3 m 3 / min) is as follows.

φ2mmのノズルではノズル数1591個(40×40個)、φ5mmのノズルではノズル数254個(16×16個)、φ10mmのノズルではノズル数63個(8×8個)、φ20mmのノズルではノズル数16個(4×4個)、φ40mmのノズルではノズル数4個(2×2個)となる。従って、これらの本数を、1m2当たり、縦横に四角形状に等間隔で、或いはジグザグに三角形状に等間隔で並べるように設ければよい。 For a φ2 mm nozzle, the number of nozzles is 1591 (40 × 40), for a φ5 mm nozzle, the number of nozzles is 254 (16 × 16), for a φ10 mm nozzle, the number of nozzles is 63 (8 × 8), and for a φ20 mm nozzle, the nozzle For a nozzle of several 16 (4 × 4) and φ40 mm, the number of nozzles is 4 (2 × 2). Therefore, these numbers may be provided so as to be arranged at equal intervals in a square shape vertically or horizontally or in a zigzag manner at equal intervals per 1 m 2 .

次に、φ2mm、φ5mm、φ10mm、φ20mm、φ40mmのノズルから下方に吹き出される清浄空気の風速(m/sec)と到達距離(m)について、シミュレーションした結果を図5により説明する。   Next, simulation results of wind speed (m / sec) and reach distance (m) of clean air blown downward from nozzles of φ2 mm, φ5 mm, φ10 mm, φ20 mm, and φ40 mm will be described with reference to FIG.

先ず、従来のフィルタでは、風速0.05m/secで吹き出したときの到達距離は、5mが最大であり、5mに達すると風速がゼロとなる。   First, in the conventional filter, the maximum reachable distance when blowing at a wind speed of 0.05 m / sec is 5 m, and the wind speed becomes zero when 5 m is reached.

これに対して、φ2mmのノズルでは、到達距離5m、φ5mmのノズルでは、到達距離6.5m、φ10mmのノズルでは、到達距離7.2m、φ20mmとφ40mmのノズルでは、到達距離8mと、ノズル径が大きくなると到達距離が長くなり、φ20mm〜φ40mmの範囲のノズルでは、到達距離に差がないことがわかる。   On the other hand, with a nozzle of φ2 mm, an arrival distance of 5 m, a nozzle of φ5 mm, an arrival distance of 6.5 m, a nozzle of φ10 mm, an arrival distance of 7.2 m, a nozzle of φ20 mm and φ40 mm, an arrival distance of 8 m, and a nozzle diameter It can be seen that as the distance increases, the reach distance becomes longer, and there is no difference in reach distance for nozzles in the range of φ20 mm to φ40 mm.

ここで、クリーンゾーンの床から必要な高さ面で、粒子の拡散を制御し、製造設備の装置等からの発熱を除去できる最小の風速0.15m/secを得ようとする場合、φ2mmのノズルでは、ノズル位置から床上の必要な高さ面(例えば高さ1m、通常高さ2m以内)までの距離(以下有効噴射距離という)は約3m、φ5mmのノズルでは、有効噴射距離は約5m、φ10mmのノズルでは有効噴射距離は6.5m、φ20mmのノズルでは、有効噴射距離は7m、φ40mmのノズルでは、有効噴射距離は8mとなる。つまり、必要な高さ面からノズルまでの距離が、そのノズルの有効噴射距離内であれば、必要な高さ面で、風速0.15m/sec以上の十分な風速が得られることが分かる。   Here, in the case of trying to obtain the minimum wind speed of 0.15 m / sec that can control the diffusion of particles at the required height surface from the floor of the clean zone and remove the heat generated from the equipment of the manufacturing facility, In the nozzle, the distance from the nozzle position to the required height surface on the floor (for example, 1 m in height, usually within 2 m in height) is about 3 m (hereinafter referred to as an effective injection distance), and in the case of a φ5 mm nozzle, the effective injection distance is about 5 m. The effective injection distance is 6.5 m for a φ10 mm nozzle, the effective injection distance is 7 m for a φ20 mm nozzle, and the effective injection distance is 8 m for a φ40 mm nozzle. That is, it can be seen that if the distance from the required height surface to the nozzle is within the effective injection distance of the nozzle, a sufficient wind speed of 0.15 m / sec or more can be obtained at the required height surface.

従って、図1、図2に示したクリーンゾーン11の天井高さから、床15の必要高さ面で、風速0.15m/sec以上が得られるノズル内径とその配置本数も自在に設計できることが可能となり、総循環風量もフィルタ全面から吹き出す方式に比べて1/3〜1/10の風量にすることができる。   Therefore, from the ceiling height of the clean zone 11 shown in FIG. 1 and FIG. 2, the nozzle inner diameter and the number of nozzles can be freely designed so that a wind speed of 0.15 m / sec or more can be obtained on the required height surface of the floor 15. It becomes possible, and the total circulating air volume can be reduced to 1/3 to 1/10 of the air volume blown from the entire filter surface.

図6は、プレートノズル20の各ノズル24から吹き出される温調された清浄空気CAの広がり状態を模式的に示したものである。   FIG. 6 schematically shows the spread state of the temperature-controlled clean air CA blown out from each nozzle 24 of the plate nozzle 20.

先ず、各ノズル24から吹き出される温調された清浄空気CAは、下向きに吹き出されると共に、ノズル24の吹出形状により、一定の広がり角θをもつ。ここで上述のように、例えば、φ10mmのノズルを選定した場合、風速0.15m/secの有効噴射距離Lは6.5mであり、その到達距離L以内で、図6に示すように隣接するノズル24からの温調された清浄空気CA同士が重なり合えば、床面からの必要高さ(例えば1m)での面全体を均一な風速、均一な温度の気流にすることができる。   First, the temperature-controlled clean air CA blown from each nozzle 24 is blown downward and has a certain spread angle θ due to the blown shape of the nozzle 24. Here, as described above, for example, when a nozzle having a diameter of 10 mm is selected, the effective injection distance L at a wind speed of 0.15 m / sec is 6.5 m, and within the reach distance L, they are adjacent as shown in FIG. If the temperature-controlled clean air CA from the nozzle 24 overlaps, the entire surface at a required height (for example, 1 m) from the floor surface can be made into an airflow having a uniform wind speed and a uniform temperature.

また、図6では、クリーンゾーン11の天井近くでは、ノズル24同士が間隔を置いて設けられるため、吹き出された温調された清浄空気CA間では、空気の滞留が生じるが、滞留する空気は、その周囲が各ノズル24からの温調された清浄空気CAで包囲されるため、滞留空気中に粒子が発生しても、いずれかの温調された清浄空気CAに同伴して広くは拡散することなくレターンチャンバに流れる。   Further, in FIG. 6, since the nozzles 24 are provided at an interval near the ceiling of the clean zone 11, air stays between the blown-out temperature-controlled clean air CA. Since the surroundings are surrounded by the temperature-controlled clean air CA from each nozzle 24, even if particles are generated in the staying air, they are widely diffused with any temperature-controlled clean air CA. Flows into the return chamber without

図7は、クリーンゾーン11の天井近くで粒子が発生した場合の拡散を確実に防止する例を示したものである。   FIG. 7 shows an example of reliably preventing diffusion when particles are generated near the ceiling of the clean zone 11.

本例においては、広がり角θをもつノズル24θ、24θの間に、より角度のある広がり角αをもつノズル24αを配置されるようにプレートノズル20を形成する例を示したものである。   In this example, the plate nozzle 20 is formed such that the nozzle 24α having a wider divergence angle α is arranged between the nozzles 24θ and 24θ having the divergence angle θ.

この広がり角αをもつノズル24αは、ノズル24θ、24θから吹き出される清浄空気CA間に吹き付けるだけであり、到達距離は短くてすむ。従って、ノズル24αは、ノズル24θ、24θの内径より小さな、例えばφ2mmのノズルを用いても5mの到達距離があり、しかもノズルの吹出角度αは自由に選定でき、より確実な発生粒子の拡散を防止できる。   The nozzle 24α having the divergence angle α is only blown between the clean air CA blown from the nozzles 24θ and 24θ, and the reach distance can be short. Therefore, the nozzle 24α has a reach distance of 5 m even when a nozzle having a diameter of, for example, φ2 mm, smaller than the inner diameters of the nozzles 24θ and 24θ is used, and the nozzle blowing angle α can be freely selected, so that the generated particles can be diffused more reliably. Can be prevented.

また、プレートノズル20のプレート23に形成するノズル24の内径を変える他に、本発明では、ノズル内径の違うプレートノズル20を種々形成しておき、これをクリーンゾーン11の製造設備Mの配置状況に応じて、ノズル径の違うプレートノズル20をクリーンゾーン11に清浄空気を吹き出す給気チャンバ12に取り付けることで、クリーンゾーン11のエリア全体の風速分布も自在に設定することができる。すなわち粒子拡散が要求されるエリア上の天井には、内径の大きなノズルからなるプレートノズル20を配置し、粒子拡散の影響のないエリアでは、ノズル内径の小さなプレートノズル20を配置することで、循環風量をより抑えた、一方向流式と非一方向流式との中間の吹出方式とすることもできる。   Further, in addition to changing the inner diameter of the nozzle 24 formed on the plate 23 of the plate nozzle 20, in the present invention, various plate nozzles 20 having different nozzle inner diameters are formed, and this is arranged as the arrangement of the manufacturing equipment M in the clean zone 11. Accordingly, by attaching the plate nozzles 20 having different nozzle diameters to the air supply chamber 12 for blowing clean air to the clean zone 11, the wind speed distribution of the entire area of the clean zone 11 can be freely set. That is, the plate nozzle 20 having a large inner diameter is arranged on the ceiling above the area where particle diffusion is required, and the plate nozzle 20 having a small nozzle inner diameter is arranged in an area where there is no influence of particle diffusion. It is also possible to use an intermediate blowing method between a one-way flow method and a non-one-way flow method with a reduced air volume.

以上本発明の実施の形態を説明したが、本発明では種々の変更が可能である。すなわち、クリーンルームとして説明したが、クリーンルームとは広義のものであり、例えば液晶基板を露光する露光装置内に形成されるクリーンルームや局所的に形成されたクリーンルームでも適用できることは勿論である。   Although the embodiments of the present invention have been described above, various modifications can be made in the present invention. In other words, the clean room has been described, but the clean room has a broad meaning. For example, the clean room can be applied to a clean room formed in an exposure apparatus that exposes a liquid crystal substrate or a locally formed clean room.

10 クリーンルーム
11 クリーンゾーン
12 給気チャンバ
16 レターンチャンバ
20 プレートノズル
23 プレート
24 ノズル
DESCRIPTION OF SYMBOLS 10 Clean room 11 Clean zone 12 Air supply chamber 16 Return chamber 20 Plate nozzle 23 Plate 24 Nozzle

Claims (16)

クリーンゾーンの天井に、温調された清浄空気の吹出口を形成するための開口部を形成し、その開口部に、プレートの下面に複数のノズルを形成したプレートノズルを複数枚並べて設けて、前記吹出口を形成したことを特徴とするクリーンルーム。 In the ceiling of the clean zone, an opening for forming a temperature-controlled clean air outlet is formed, and in the opening, a plurality of plate nozzles in which a plurality of nozzles are formed on the lower surface of the plate are arranged side by side, A clean room in which the air outlet is formed . 前記プレートノズルは、薄型箱状に形成されたプレートと、そのプレートの縦横に複数のノズルが、そのプレートの下面から突出するようにプレートと一体に樹脂成形して形成される請求項1記載のクリーンルーム。 2. The plate nozzle according to claim 1, wherein the plate nozzle is formed by resin molding integrally with the plate so that a plate formed in a thin box shape and a plurality of nozzles vertically and horizontally on the plate protrude from the lower surface of the plate. Clean room. 前記ノズルの内径が2〜40mmの範囲内のいずれかに形成され、前記ノズルの高さが20〜200mmの範囲内のいずれかに形成される請求項2記載のクリーンルーム。 The inner diameter of the nozzle is formed in any of a range of 2 to 40 mm, the clean room according to claim 2, wherein the height of the nozzle is formed in any of a range of 20 to 200 mm. 前記プレートには、内径が大きく、かつ一定の吹出角度で清浄空気を吹き出すノズルと、そのノズル間に配置され、内径が小さく清浄空気を広角度で清浄空気を吹き出すノズルが設けられる請求項3記載のクリーンルーム。 4. The plate is provided with a nozzle that has a large inner diameter and blows clean air at a constant blowing angle, and a nozzle that is disposed between the nozzles and that blows clean air at a wide angle with a small inner diameter. Clean room. 製造設備が設置されるクリーンゾーンと、該クリーンゾーンの天井に設けられ、下部に、温調された清浄空気の吹出口を形成するための開口部を有する給気チャンバと、前記クリーンゾーンの床下に設けられたレターンチャンバと、該レターンチャンバと前記給気チャンバとを結ぶ空気循環路と、空気循環路に接続された空調機と、空調機と前記給気チャンバを結ぶ循環路に設けられた高性能フィルタと、プレートの下面に複数のノズルを形成して構成され、前記給気チャンバの下部の開口部を覆うように複数枚並べて設けられ、前記クリーンゾーンの天井に前記吹出口を形成するための複数のプレートノズルとを備えたことを特徴とするクリーンルーム。 A clean zone in which manufacturing equipment is installed ; an air supply chamber which is provided on the ceiling of the clean zone and has an opening for forming a temperature-controlled clean air outlet ; and below the floor of the clean zone A return chamber, an air circulation path connecting the return chamber and the air supply chamber, an air conditioner connected to the air circulation path, and a circulation path connecting the air conditioner and the air supply chamber. A high-performance filter and a plurality of nozzles are formed on the lower surface of the plate. A plurality of nozzles are arranged side by side so as to cover the lower opening of the air supply chamber , and the air outlet is formed in the ceiling of the clean zone. A clean room comprising a plurality of plate nozzles. 前記給気チャンバの下部の開口部に、方形の開口が複数形成された支持枠が設けられ、その支持枠の各開口に、シール材を介して前記プレートノズルが取り付けられる請求項5記載のクリーンルーム。 The lower part of the opening of the air supply chamber, the support frame opening square was formed with a plurality is provided, a clean room of each opening of the support frame, said plate nozzle according to claim 5, wherein it is mounted via a seal member . 前記プレートノズルは、薄型箱状に形成されたプレートと、そのプレートの縦横に多数のノズルが、そのプレートから突出するようにプレートと一体に樹脂成形して形成される請求項5記載のクリーンルーム。 6. The clean room according to claim 5, wherein the plate nozzle is formed by resin molding integrally with the plate so that a plate formed in a thin box shape and a number of nozzles vertically and horizontally on the plate protrude from the plate . 前記ノズルの内径が2〜40mmの範囲内のいずれかに形成され、前記ノズルの高さが20〜200mmの範囲内のいずれかに形成される請求項7記載のクリーンルーム。 The inner diameter of the nozzle is formed in any of a range of 2 to 40 mm, the clean room according to claim 7, wherein the height of the nozzle is formed in any of a range of 20 to 200 mm. 前記プレートノズルのノズルから吹き出された清浄空気が、風速0.15m/secとなる有効噴射距離をノズル内径に応じて予め求めておき、前記床上のある高さの面で風速0.15〜0.5m/secとなるように、前記ノズルの有効噴射距離からノズル内径を選定する請求項7記載のクリーンルーム。 An effective injection distance at which the clean air blown out from each nozzle of the plate nozzle has a wind speed of 0.15 m / sec is obtained in advance according to the nozzle inner diameter, and a wind speed of 0.15 to 15 at a certain height on the floor is obtained. The clean room according to claim 7, wherein a nozzle inner diameter is selected from an effective spray distance of the nozzle so as to be 0.5 m / sec. 各ノズルから吹き出された清浄空気は、有効噴射距離に達する間に一定の広がり角で吹き出され、ノズル同士の間隔は、隣接するノズルから吹き出された清浄空気の広がり角で、前記有効噴射距離内で隣接するノズルからの清浄空気が相互に交わるように設定される請求項9記載のクリーンルーム。   The clean air blown out from each nozzle is blown at a constant spread angle while reaching the effective injection distance, and the interval between the nozzles is the spread angle of the clean air blown from the adjacent nozzles within the effective injection distance. The clean room according to claim 9, wherein clean air from adjacent nozzles intersects each other. 製造設備が設置されるクリーンゾーンと、該クリーンゾーンの天井に設けられ、下部に、温調された清浄空気の吹出口を形成するための開口部を有する給気チャンバと、前記クリーンゾーンの床下に設けられたレターンチャンバと、該レターンチャンバと前記給気チャンバとを結ぶ空気循環路と、空気循環路に接続された空調機と、給気チャンバ内に設けられた高性能フィルタと、プレートの下面に複数のノズルを形成して構成され、前記給気チャンバの下部の開口部を覆うように複数枚並べて設けられ、前記クリーンゾーンの天井に前記吹出口を形成するための複数のプレートノズルとを備えたことを特徴とするクリーンルーム。 A clean zone in which manufacturing equipment is installed ; an air supply chamber which is provided on the ceiling of the clean zone and has an opening for forming a temperature-controlled clean air outlet; and below the floor of the clean zone A return chamber provided in the air circulation path, an air circulation path connecting the return chamber and the air supply chamber, an air conditioner connected to the air circulation path, a high-performance filter provided in the air supply chamber, and a plate A plurality of nozzles formed on the lower surface, arranged side by side so as to cover the lower opening of the air supply chamber , and a plurality of plate nozzles for forming the outlet in the ceiling of the clean zone ; Clean room characterized by having. 前記給気チャンバの下部の開口部に、方形の開口が複数形成された支持枠が設けられ、その支持枠の各開口に、シール材を介してプレートノズルが取り付けられる請求項11記載のクリーンルーム。 The opening at the bottom of air supply chamber, the opening of the square is more than the formed support frame is provided, that each opening of the support frame, a clean room of claim 11, wherein the plate nozzle through the sealing material is attached. 前記プレートノズルは、薄型箱状に形成されたプレートと、そのプレートの縦横に多数のノズルが、そのプレートから突出するようにプレートと一体に樹脂成形して形成される請求項11記載のクリーンルーム。 12. The clean room according to claim 11, wherein the plate nozzle is formed by resin molding integrally with the plate so that a plate formed in a thin box shape and a number of nozzles vertically and horizontally on the plate protrude from the plate . ノズルの内径が2〜40mmの範囲内のいずれかに形成され、前記ノズルの高さが20〜200mmの範囲内のいずれかに形成される請求項13記載のクリーンルーム。 The clean room according to claim 13 , wherein the inner diameter of the nozzle is formed in any of the range of 2 to 40 mm , and the height of the nozzle is formed in any of the range of 20 to 200 mm. 前記プレートノズルのノズルから吹き出された清浄空気が、風速0.15m/secとなる有効噴射距離をノズル内径に応じて予め求めておき、前記床上のある高さの面で風速0.15〜0.5m/secとなるように、前記ノズルの有効噴射距離からノズル内径を選定する請求項14記載のクリーンルーム。 An effective injection distance at which the clean air blown out from each nozzle of the plate nozzle has a wind speed of 0.15 m / sec is obtained in advance according to the nozzle inner diameter, and a wind speed of 0.15 to 15 at a certain height on the floor is obtained. The clean room according to claim 14, wherein the nozzle inner diameter is selected from the effective spray distance of the nozzle so as to be 0.5 m / sec. 各ノズルから吹き出された清浄空気は、有効噴射距離に達する間に一定の広がり角で吹き出され、ノズル同士の間隔は、隣接するノズルから吹き出された清浄空気の広がり角で、前記有効噴射距離内で隣接するノズルからの清浄空気が相互に交わるように設定される請求項15記載のクリーンルーム。   The clean air blown out from each nozzle is blown at a constant spread angle while reaching the effective injection distance, and the interval between the nozzles is the spread angle of the clean air blown from the adjacent nozzles within the effective injection distance. 16. The clean room according to claim 15, wherein the clean air from adjacent nozzles is set to intersect each other.
JP2010242798A 2010-10-28 2010-10-28 Clean room Active JP4755307B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010242798A JP4755307B1 (en) 2010-10-28 2010-10-28 Clean room
CN201080025662.4A CN102656410B (en) 2010-10-28 2010-11-12 Clean room
PCT/JP2010/070202 WO2012056592A1 (en) 2010-10-28 2010-11-12 Clean room
KR1020117027760A KR101284022B1 (en) 2010-10-28 2010-11-12 Clean Room
TW100126993A TWI431229B (en) 2010-10-28 2011-07-29 Clean room

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010242798A JP4755307B1 (en) 2010-10-28 2010-10-28 Clean room

Publications (2)

Publication Number Publication Date
JP4755307B1 true JP4755307B1 (en) 2011-08-24
JP2012093066A JP2012093066A (en) 2012-05-17

Family

ID=44597130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242798A Active JP4755307B1 (en) 2010-10-28 2010-10-28 Clean room

Country Status (5)

Country Link
JP (1) JP4755307B1 (en)
KR (1) KR101284022B1 (en)
CN (1) CN102656410B (en)
TW (1) TWI431229B (en)
WO (1) WO2012056592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796079A (en) * 2017-03-06 2018-03-13 江苏嘉合建设有限公司 Top, which is sent, pushes up back purification ventilating system

Families Citing this family (236)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
CN102818323B (en) * 2012-08-02 2015-03-11 青岛海信日立空调系统有限公司 Heat pump air-conditioning system based on jet blowing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
CN103267340B (en) * 2013-05-29 2016-03-16 苏州大学 A kind of clean operating room variable air rate becomes the air-supply arrangement of rank
CN105339740B (en) * 2014-01-14 2017-12-22 株式会社日本医化器械制作所 Block formula attracts unit, block formula to supply gas unit, block formula air supply unit and the environment control unit using these units
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
CN105674393A (en) * 2014-11-18 2016-06-15 奇鼎科技股份有限公司 Rapid substrate temperature averaging device
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
JP2017219219A (en) * 2016-06-06 2017-12-14 清水建設株式会社 Air-conditioning system for clean room
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
WO2019103613A1 (en) 2017-11-27 2019-05-31 Asm Ip Holding B.V. A storage device for storing wafer cassettes for use with a batch furnace
KR102633318B1 (en) * 2017-11-27 2024-02-05 에이에스엠 아이피 홀딩 비.브이. Devices with clean compact zones
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
CN111630203A (en) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 Method for depositing gap filling layer by plasma auxiliary deposition
TWI799494B (en) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 Deposition method
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
KR101859593B1 (en) * 2018-01-31 2018-05-18 오영근 Air controlling system for cleanroom
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
CN116732497A (en) 2018-02-14 2023-09-12 Asm Ip私人控股有限公司 Method for depositing ruthenium-containing films on substrates by cyclical deposition processes
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
KR20190128558A (en) 2018-05-08 2019-11-18 에이에스엠 아이피 홀딩 비.브이. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
TWI816783B (en) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
TW202013553A (en) 2018-06-04 2020-04-01 荷蘭商Asm 智慧財產控股公司 Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
CN112292477A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
CN112292478A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (en) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming device structure using selective deposition of gallium nitride, and system for the same
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN109629006A (en) * 2019-01-31 2019-04-16 长江存储科技有限责任公司 Boiler tube board and toilet
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
TW202044325A (en) 2019-02-20 2020-12-01 荷蘭商Asm Ip私人控股有限公司 Method of filling a recess formed within a surface of a substrate, semiconductor structure formed according to the method, and semiconductor processing apparatus
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
TW202104632A (en) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
KR20200108248A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. STRUCTURE INCLUDING SiOCN LAYER AND METHOD OF FORMING SAME
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
CN110043982B (en) * 2019-04-16 2020-08-28 北京联合大学 Dynamic self-adaptive differential pressure fluctuation control system and method
KR20200123380A (en) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (en) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 Method of forming topologically controlled amorphous carbon polymer films
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (en) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
KR20210065848A (en) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
KR20210080214A (en) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
TW202219628A (en) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
TW202212623A (en) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 Method of forming metal silicon oxide layer and metal silicon oxynitride layer, semiconductor structure, and system
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
JP2022056167A (en) * 2020-09-29 2022-04-08 芝浦メカトロニクス株式会社 Air blower and mounting device of electronic component
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
TW202235675A (en) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 Injector, and substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280530A (en) * 1986-05-29 1987-12-05 Takasago Thermal Eng Co Ltd Air ejector for clean room and high ceiling clean room utilizing it
JPH01131934A (en) * 1987-11-18 1989-05-24 Hitachi Ltd Dynamic single clock tracing system
JPH0666439A (en) * 1992-08-13 1994-03-08 Kawasaki Steel Corp Clean room and air supply unit
JPH11218353A (en) * 1998-02-02 1999-08-10 Toshiba Air Conditioning Co Ltd Equipment for regulating velocity of air let out into clean room
JP2002106943A (en) * 2000-10-03 2002-04-10 Shin Nippon Air Technol Co Ltd Local space cleaning nozzle and local space cleaning unit
JP2003106591A (en) * 2001-09-28 2003-04-09 Takasago Thermal Eng Co Ltd Arrangement structure and operation method of air shower device and cleaning device
JP2008107033A (en) * 2006-10-26 2008-05-08 Takenaka Komuten Co Ltd Fan filter unit
JP2010112646A (en) * 2008-11-07 2010-05-20 Panasonic Corp Clean room

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0522745Y2 (en) * 1988-03-02 1993-06-11
KR200241269Y1 (en) * 1999-04-26 2001-09-25 김희남 A clean booth

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280530A (en) * 1986-05-29 1987-12-05 Takasago Thermal Eng Co Ltd Air ejector for clean room and high ceiling clean room utilizing it
JPH01131934A (en) * 1987-11-18 1989-05-24 Hitachi Ltd Dynamic single clock tracing system
JPH0666439A (en) * 1992-08-13 1994-03-08 Kawasaki Steel Corp Clean room and air supply unit
JPH11218353A (en) * 1998-02-02 1999-08-10 Toshiba Air Conditioning Co Ltd Equipment for regulating velocity of air let out into clean room
JP2002106943A (en) * 2000-10-03 2002-04-10 Shin Nippon Air Technol Co Ltd Local space cleaning nozzle and local space cleaning unit
JP2003106591A (en) * 2001-09-28 2003-04-09 Takasago Thermal Eng Co Ltd Arrangement structure and operation method of air shower device and cleaning device
JP2008107033A (en) * 2006-10-26 2008-05-08 Takenaka Komuten Co Ltd Fan filter unit
JP2010112646A (en) * 2008-11-07 2010-05-20 Panasonic Corp Clean room

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796079A (en) * 2017-03-06 2018-03-13 江苏嘉合建设有限公司 Top, which is sent, pushes up back purification ventilating system
CN107796079B (en) * 2017-03-06 2023-04-25 江苏嘉合建设有限公司 Top-feeding top-returning purifying ventilation system

Also Published As

Publication number Publication date
TW201217719A (en) 2012-05-01
CN102656410A (en) 2012-09-05
CN102656410B (en) 2015-07-01
KR20120057571A (en) 2012-06-05
KR101284022B1 (en) 2013-07-09
TWI431229B (en) 2014-03-21
WO2012056592A1 (en) 2012-05-03
JP2012093066A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP4755307B1 (en) Clean room
KR20090095602A (en) Clean room
JP5349868B2 (en) Air conditioning system
JP2008275233A (en) Booth for conditioning temperature
US6007595A (en) Air filtration unit equipped with isolation bars to prevent turbulence downstream of partition panels in a clean room
JP2015004455A (en) Low temperature blowout port device
JP2005229126A (en) Electronic device accomodating rack
JP2016033437A (en) Clean booth
JP5785633B2 (en) Air supply device
JP5330805B2 (en) Clean room
JP4670286B2 (en) Fan filter unit
JP3799538B2 (en) Local cleanliness maintenance system in clean room
JP2000205620A (en) Filter unit and air flow controller therefor
JP2021179262A (en) Air supply control device and air conditioning system
JP4721531B2 (en) Air conditioning equipment and precision product manufacturing method using this equipment
JP5950720B2 (en) Air curtain structure
JPH11253732A (en) Clean room
JP6324012B2 (en) Fan filter unit
JP7435950B2 (en) Fog generation module and fog environment forming device
JP2015034641A (en) Air conditioning system
JP2009257725A (en) Clean air current circulation system
JPH09159239A (en) Clean room
JP6004779B2 (en) Local cleaning system
JP2002228220A (en) Clean room
KR101626537B1 (en) Diffuser for fan filter unit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4755307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250