TW201217719A - Clean room - Google Patents

Clean room Download PDF

Info

Publication number
TW201217719A
TW201217719A TW100126993A TW100126993A TW201217719A TW 201217719 A TW201217719 A TW 201217719A TW 100126993 A TW100126993 A TW 100126993A TW 100126993 A TW100126993 A TW 100126993A TW 201217719 A TW201217719 A TW 201217719A
Authority
TW
Taiwan
Prior art keywords
nozzle
air
clean
nozzles
clean room
Prior art date
Application number
TW100126993A
Other languages
Chinese (zh)
Other versions
TWI431229B (en
Inventor
Shinji Warabino
Kiyotaka Waki
Motohiko Nakamura
Tamiki Murayama
Original Assignee
Asahi Kogyosha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogyosha filed Critical Asahi Kogyosha
Publication of TW201217719A publication Critical patent/TW201217719A/en
Application granted granted Critical
Publication of TWI431229B publication Critical patent/TWI431229B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • F24F3/167Clean rooms, i.e. enclosed spaces in which a uniform flow of filtered air is distributed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/10Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with air supply, or exhaust, through perforated wall, floor or ceiling

Abstract

Provided is a clean room wherein a necessary speed of a down flow can be ensured even if a circulating air volume is small, and furthermore, filter leak test can be easily performed. Ports for blowing out temperature-controlled cleaned air to the clean zone (11) in a clean room (10) are formed using a plurality of plate nozzles (20).

Description

201217719 六、發明說明: 【發明所屬之技術領域】 本發明,是有關於半導體製造、液晶基板製造、醫藥 品和食品製造等所使用的一種清淨室’特別是,有關於改 良了在清淨區域將被精密溫調的清淨空氣吹出的吹出口的 一種清淨室。 【先前技術】 對於半導體製造、液晶基板製造、醫藥品和食品製造 等的製造工場,會將建屋整體清淨室化。 清淨室,具有:第8圖所示的單向流式(層流式)、 及第9圖所示的非單向流式(亂流式)的2種方式。 如第8圖所示的單向流式清淨室40,是橫跨設有製造 設備Μ的清淨區域41的頂棚的大致全面設有給氣室42,在 該給氣室42的吹出口 43設有高性能過濾器(ΗΕΡΑ或ULPA )44,在地板45的下部形成有返回室46,由循環路47將旋 轉室46及給氣室42連結,在其循環路47連接有空調機48而 構成。 在如第9圖所示的非單向流式清淨室50中,在清淨區 域41的頂棚部的需要處各別設有過濾器組件51。過濾器組 件51,是在給氣室52的吹出口 53設置高性能過濾器54。在 此第9圖的清淨室50中,除了過濾器組件5 1以外’返回室 46、循環路47 '空調機48的構成是與第8圖的清淨室4〇相 同。 -5- 201217719 在如第8圖所示的單向流式清淨室40中,因爲清淨空 氣是從設在給.氣室42的吹出口 43的過濾器44均一地朝清淨 區域41被給氣,並成爲從清淨區域41由向下流動從地板45 朝返回室46排氣(還氣)的氣流,使在清淨區域41內發生 的粒子不會擴散地朝返回室46流動,來可以達成提高清淨 區域41的清淨度並且是溫度分布的均一化。 另一方面,在如第9圖所示的非單向流式清淨室50中 ,因爲在清淨區域41的頂棚部的需要處設置過濾器組件51 ,所以在過濾器組件5 1、5 1之間,清淨空氣是不流動而產 生滯留而成爲亂流,但是藉由配合製造設備Μ的設置的位 置來配置過濾器組件5 1,就可以在需要處防止粒子的擴散 。但是,非單向流式的情況,即使爲了在清淨區域4 1內處 理所要求的熱負荷而控制給氣溫度,仍會在過濾器組件5 1 的正下及其以外成爲溫差較大的溫度分布。 爲了控制在清淨區域41發生的粒子的擴散,將來自製 造設備Μ的裝置等的發熱除去,對於向下流動的面風速, 需要0.〗5〜0.5m/SeC,在第8圖的單向流式中,具有需要膨 大的空氣循環量的問題。在此點中,第9圖的非單向流式 ,是藉由在需要處設置過濾器組件5 1,使總風量比單向流 式少。 [先行技術文獻] [專利文獻] [專利文獻1]日本特開2010-112646號公報 201217719 【發明內容】 (本發明所欲解決的課題) 但是最近,製造設備Μ也大型化,清淨區域41的高度 也需要6m以上,由非單向流式,即使從過濾器54將被溫調 的清淨空氣吹出,到達地板45時仍會擴散,成爲具有無法 在需要處中獲得預定(需要)的向下流動的風速(〇_15〜 0.5m/sec)的問題。 因此,如單向流式的方式將清淨區域的水平剖面的整 體由向下流動流動雖較佳,但是無法消解循環總風量變多 的問題。 且因爲兩者皆從過濾器將清淨空氣吹出,所以爲了確 認在過濾器是否有針孔,有需要進行從給氣側給氣並且將 噴霧流的過濾器洩漏試驗。此過濾器洩漏試驗,是將過濾 器的下面的取樣探針縱橫掃描來界定洩漏的噴霧的有無及 針孔的位置,但是具有在檢查時需要膨大時間的問題。 在此,本發明的目的,是解決上述課題,提供一種清 淨室,即使循環風量減少,也可以確保所需要的向下流動 的風速來確保溫度控制及清淨度,且過濾器洩漏試驗也可 簡單地進行。 (用以解決課題的手段) 爲了達成上述目的之本發明的清淨室,是在清淨區域 的頂棚,設有作爲被溫調的清淨空氣的吹出口用的開口部 201217719 ,在該開口部,將在托板的下面形成了複數噴嘴的噴嘴板 複數枚並列設置,而形成前述吹出口。 本發明的清淨室,具備:設有製造設備的清淨區域; 及給氣室,是設在該清淨區域的頂棚,在下部,具有形成 被溫調的清淨空氣的吹出口用的開口部;及設在前述清淨 區域的地板下的返回室;及將該返回室及前述給氣室連結 的空氣循環路;及與空氣循環路連接的空調機;及設在將 空調機及前述給氣室連結的循環路上的高性能過濾器;及 複數噴嘴板,是在托板的下面形成複數噴嘴,將前述給氣 室的下部的開口部覆蓋的方式被複數枚並列設置,在前述 清淨區域的頂棚形成前述吹出口用。 且高性能過濾器,可取代與前述空氣循環路連接,而 設在給氣室內也可以。 本發明所使用的噴嘴板,是具有:形成薄型箱狀的托 板、及在該托板的縱橫方向從該托板突出的複數噴嘴,且 托板及複數噴嘴是由樹脂成形一體地形成。噴嘴的內徑是 2〜40mm的範圍內的其中任一,噴嘴的高度是20〜200mm 的範圍內的其中任一。 且在本發明中,是在噴嘴板的托板中,設有:內徑大 且由一定的吹出角度將清淨空氣吹出的噴嘴、及被配置於 該噴嘴間且內徑小且將清淨空氣由廣角度將清淨空氣吹出 的噴嘴也可以。 在本發明中,從噴嘴板的噴嘴被吹出清淨空氣,是對 應噴嘴內徑預先求得成爲風速〇.5m/sec的有效噴射距離, -8 - 201217719 使在前述地上的某高度的面成爲風速0.15〜0·5 m/sec的方 式,依據前述噴嘴的有效噴射距離選用噴嘴內徑。 且從各噴嘴被吹出的清淨空氣,是在到達有效噴射距 離期間由一定的擴散角被吹出,噴嘴彼此之間隔’是由從 相鄰接的噴嘴被吹出清淨空氣的擴散角,使來自在前述有· 效噴射距離內相鄰接的噴嘴的清淨空氣相互交叉的方式被 設定。 [發明的效果] 本發明,可發揮如以下的優異效果。 (1) 藉由使清淨區域的清淨空氣的吹出口’由複數 噴嘴板形成,就可以自由地選用從噴嘴板的各噴嘴吹出的 被溫調的清淨空氣的風速及其到達距離。 (2) 清淨室的頂棚即使較高,也可以最適化噴嘴的 到達距離及清淨區域所需要的風速。 (3) 清淨室內中的空氣的總循環量可以成爲習知的 清淨室的1 / 3〜1 /1 0。 (4 )因爲高性能過濾器,是設在循環系路和給氣室 ’所以過濾器洩漏試驗等的檢查可以簡單化。 【實施方式】 以下,依據添附圖面詳述本發明的最佳的一實施例。 第1圖,是顯示本發明的清淨室的整體圖。 首先清淨室10,是在設有製造設備Μ的清淨區域11的 201217719 頂棚,是使複數給氣室1 2相互地相鄰接的方式橫跨大致全 面被設置,在清淨區域11的地板15的下部形成有返回室16 ,且連接有將返回室16及給氣室12連結的循環路17’在該 循環路17連接有空調機18» 在本實施例中,在循環路1 7設有高性能過爐器( HEPA或ULPA) 19,且在給氣室12的開□部設置複數噴嘴 板20而構成吹出口。 空調機18,是具有蒸發器21及循環風扇22’在其吸入 側連接有外氣OA的導入線I3’在至空調機18的循環路17 中,連接有具備將循環空氣的一部分排氣的排氣風扇之排 氣線1 4。 此清淨室10,是使清淨區域11的頂棚由噴嘴板20的噴 嘴24形成,爲了從噴嘴24吹出被空調機18空調且由高性能 過濾器19被除塵的清淨空氣CA’即使清淨區域11的頂棚高 度較高,藉由自由地選用噴嘴徑’就可以確保在地板15上 的需要高度(使用點),例如從地板1 5約1 m的高度’成爲 需要的向下流動的風速(0.15〜0.5m/sec),並且需要的 空氣循環量也可成爲習知的1/3〜1/:10的風量。 且高性能過濾器1 9,是只與循環路1 7連接’其過濾器 洩漏試驗也可簡單地進行。 第2圖,是顯示本發明的其他的清淨室的整體圖。 第2圖的清淨室10,其基本構成雖是與第1圖的清淨室 10相同,但是將高性能過濾器19設在給氣室12內。第2圖 的清淨室10,其高性能過濾器19的安裝位置,是與第1圖 -10- 201217719 相異的以外,因爲是與第1圖相同,所以在第2圖中附加與 第1圖相同符號並省略其說明。 在如此第1圖、第2圖所示的清淨室10中,安裝在清淨 區域11的頂棚的給氣室12,雖顯示複數並列設在頂棚的大 致全面地構成單向流式清淨室的例,但是在頂棚的需要處 設置給氣室12地構成非單向流式清淨室也可以。 且給氣室1 2,是可取代複數並列,將頂棚的大致全面 覆蓋的方式由1個給氣室12構成也可以。 其次,第3圖,是顯示將本發明的噴嘴板20安裝在給 氣室12的開口部時的部分擴大立體圖,第4圖是顯示將噴 嘴板20安裝於給氣室12的部分剖面圖。 噴嘴板20,是使用模具由樹脂成形使薄型箱狀的托板 23及噴嘴24被一體成型。 此噴嘴板20,是由例如30cmx30cm、50cmx50cm的尺 寸,托板23的周圍的厚度是形成10〜20mm程度,噴嘴24 的高度,是在20〜200mm、內徑是在Φ 2〜40mm的範圍適 宜地形成。 使用的樹脂,是工程塑料,可以選擇聚縮醛、聚醯亞 胺、聚碳酸酯、變性聚苯乙醚、聚對苯二甲酸丁二醇酯的 其中任一。且在樹脂添加碳黑和黑鉛粉末、氧化鋅等的導 電性粉末和非離子系或是由陰離子系界面活性劑等所構成 的帶電防止劑也可以。 且在托板2 3的周圍,後述的小螺絲固定用的小螺釘用 孔2 5是在各邊分別形成3處。 -11 - 201217719 接著說明噴嘴板20的朝給氣室12的安裝。 首先,噴嘴板20,是被並列支撐於由SUS和鋁等金屬 方形管形成的支撐框30。此支撐框30,具有將噴嘴板2 0支 撐的方形框31、31,在該方形框31,設有與噴嘴板20的小 螺釘用孔25相面對的螺紋孔32。 將噴嘴板20安裝在支撐框30時,設有將其間密封的密 封材26。密封材26,是形成支撐框30的方形框31的框體形 狀,且在與支撐框30的螺紋孔32—致的位置形成有小螺釘 孔27。 朝支撐框30的噴嘴板20的安裝,是將框狀的密封材26 載置在支撐框30上,在該密封材26上將噴嘴板20朝前後左 右並列。在該狀態下,將小螺釘2 8通過小螺釘用孔2 5,並 通過密封材26的小螺釘孔27而螺入支撐框30的螺紋孔32, 將噴嘴板20安裝在支撐框30。 如此噴嘴板20,是透過密封材26螺絲固定地安裝在支 撐框30之後,將該支撐框30,安裝在給氣室12。 此給氣室1 2,是如第4圖所示,具有開口部是由方形 管形成的直方體狀的盒上的框架33,在該框架33的周面及 上面安裝有蓋35。支撐框30,是透過密封材38由螺栓及螺 帽3 9被安裝在框架33的上面。 如此’在給氣室12,安裝了已安裝了噴嘴板20的支撐 框30之後’藉由將給氣室12安裝在如第1圖、第2圖所示的 清淨區域11的頂棚並且與循環路I7的導管連接而構成清淨 室1 0。 -12- 201217719 接著,說明形成清淨區域11的頂棚的吹出口的噴嘴板 20的噴嘴24的形狀及其內徑及其安裝間隔。 首先噴嘴24的形狀,是如第3、4圖所示,形成倒漏斗 狀,但是形成圓筒狀也可以。 接著,說明噴嘴24的配置數量。 首先將從習知的高性能過濾器吹出的清淨空氣,每面 積lm2,以面風速爲〇.〇5m/sec時的風量(3m3/min)作爲基 準,噴嘴內徑,各別爲φ 2mm、05mm、φ 10mm、Φ 20mm 、</)40mm,將同一風量(3m3/min)吹出時的噴嘴個數, 是成爲如下。 在φ 2mm的噴嘴中,噴嘴數爲1591個(40x40個), 在Φ5 mm的噴嘴中,噴嘴數爲254個(16x16個),在 φ 10mm的噴嘴中,噴嘴數爲63個(8x8個),在φ20πιιη的 噴嘴中,噴嘴數爲16個(4x4個),在的噴嘴中, 噴嘴數爲4個(2x2個)。因此,將這些的個數,在每lm2 ,由縱橫四角形狀等間隔,或是由鋸齒狀三角形狀等間隔 並列的方式設置即可。 接著,由第5圖說明模擬從φ 2mm、φ 5mm、φ l〇mm、 φ 20mm、φ 40mm的噴嘴朝下方被吹出的清淨空氣的風速 (m/sec)及到達距離(m)的結果。 首先,在習知的過濾器中,由風速0.05m/sec吹出時的 到達距離,是5m爲最大,到達5m的話風速是成爲零。 對於此’在Φ 2mm的噴嘴中,到達距離爲5m,在Φ 5mm 的噴嘴中,到達距離爲6.5m,在φ 10mm的噴嘴中,到達 -13- 201217719 距離爲7.2m,在<>20mm及040mm的噴嘴中,到達距離爲 8m,噴嘴徑愈大的話到達距離愈長,在φ20ιηιη〜(i>40mm 的範圍的噴嘴中,可知其到達距離沒有差。 在此,在清淨區域的地板上預定(需要)的高度面, 可以獲得控制粒子的擴散,將來自製造設備的裝置等的發 熱除去的最小的風速0.1 5m/sec的情況,在φ 2mm的噴嘴中 ,從噴嘴位置直到地上的需要的高度面(例如高度lm、通 常高度2m以內)爲止的距離(以下稱有效噴射距離)是約 3m,在φ 5mm的噴嘴中,有效噴射距離是約5m,在 φ 10mm的噴嘴中有效噴射距離是6.5m,在φ 20mm的噴嘴 中,有效噴射距離是7m,在φ 4〇mm的噴嘴中,有效噴射 距離是成爲8m。即,從需要的高度面直到噴嘴爲止的距離 ,是在該噴嘴的有效噴射距離內的話,在需要的高度面, 可獲得風速〇.15m/sec以上的充分的風速。 因此,從如第1圖、第2圖所示的清淨區域11的頂棚高 度,在地板15上的需要高度面,可獲得風速〇.15m/sec以上 的噴嘴內徑及其配置個數也成爲可自由地設計,與從過濾 器全面吹出的方式相比總循環風量也可以成爲1 /3〜1 /1 〇的 風量。 第6圖,是示意從噴嘴板20的各噴嘴24被吹出的被溫 調的清淨空氣CA的擴散狀態。 首先,從各噴嘴24被吹出的被溫調的清淨空氣CA’是 朝下方地被吹出,並且依據噴嘴24的吹出形狀’具有—定 的擴散角Θ。在此如上述’例如選用6 1 0 m m的噴嘴的情 -14 - 201217719 況,風速0.15 m/sec的有效噴射距離L是6.5m,在其到達距 離L以內,與來自如第6圖所示相鄰接的噴嘴24的被溫調的 清淨空氣CA彼此疊合的話,地板面上的需要(預定)高度 (例如lm)中的面整體,可以成爲均一的風速、均一的溫 度的氣流。 且在第6圖中,在清淨區域11的頂棚附近,噴嘴24彼 此因爲是隔有間隔設置,所以在被吹出被溫調的清淨空氣 CA之間,空氣的滯留會發生,但是滯留的空氣,因爲是其 周圍是被來自各噴嘴24的被溫調的清淨空氣CA包圍,所以 即使在滯留空氣中發生粒子,也可不會與其中任一的被溫 調的清淨空氣CA—起擴散地朝返回室流動。 第7圖,是顯示在清淨區域11的頂棚附近發生粒子的 情況時可確實地防止擴散的例。 在本例中,顯示在具有擴散角0的噴嘴24 0、24 0之 間,配置具有更大角度的擴散角α的噴嘴24α的方式形成 噴嘴板20的例。 具有此擴散角α的噴嘴24α,因爲只有吹到從噴嘴24 0 、24 0被吹出的清淨空氣C Α之間,所以到達距離可縮短。 因此,噴嘴24 α,即使是使用比噴嘴24 Θ、24 0的內徑小的 例如φ 2mm的噴嘴也具有5m的到達距離,且噴嘴的吹出角 度α可以自由地選用,可更確實地防止發生粒子的擴散。 且除了改變形成於噴嘴板20的托板23的噴嘴24的內徑 以外,在本發明中,藉由預先形成各種噴嘴內徑相異的噴 嘴板20,將此對應清淨區域1 1的製造設備Μ的配置狀況, -15- 201217719 將噴嘴徑的相異噴嘴板20安裝朝清淨區域1 1將清淨空氣吹 出的給氣室12,就也可以自由地設定清淨區域11的區域整 體的風速分布。即在粒子擴散被要求的區域上的頂棚中, 配置由內徑較大的噴嘴所構成的噴嘴板20,在不受粒子擴 散影響的區域中,藉由配置噴嘴內徑較小的噴嘴板20,使 更抑制循環風量的單向流式及非單向流式的中間的吹出方 式也可以。 以上雖說明本發明的實施例,但是在本發明可進行各 種變更。即,雖說明清淨室,但是清淨室是廣義者,例如 形成於將液晶基板曝光的曝光裝置內的清淨室和局部形成 的清淨室當然也可以適用。 圖 β 0 β I1rL - . Γ · 圖 澧 SON 整 的 例 施 實1 的 明 發 1本 明示 說5 單圖 圖圖 2 3 的 他 其 的 明 發 本 示 顯 中 圖 2 第、 圖 第 示 顯 室 氣 給 。在 圖裝 體安 整板 的嘴 例噴 施將 的狀態的部分立體圖。 [第4圖]第1圖、第2圖中,將噴嘴板安裝在給氣室狀態 的部分擴大剖面圖。 [第5圖]顯示本發明中的內徑不同的各噴嘴的從噴嘴被 吹出的風速及到達距離的關係的圖。 [第6圖]說明本發明的從噴嘴板的各噴嘴被吹出的清淨 空氣的擴散狀態的圖。 [第7圖]說明本發明的在噴嘴板設有擴散角相異的噴嘴 -16- 201217719 時的從兩噴嘴被吹出的清淨空氣的擴散狀態的圖。 [第8圖]顯示習知的單向流式清淨室的整體圖。 [第9圖]顯示習知的非單向流式清淨室的整體圖 【主要元件符號說明】 CA :清淨空氣 Μ :製造設備 ΟΑ :外氣 1 〇 :清淨室 1 1 :清淨區域 1 2 :給氣室 1 3 :導入線 1 4 :排氣線 1 5 :地板 1 6 :返回室 1 7 :循環路 1 8 :空調機 1 9 :高性能過濾器 20 :噴嘴板 2 1 :蒸發器 2 2 :循環風扇 23 :托板 2 4 :噴嘴 2 5 :小螺釘用孔 -17- 201217719 2 6 :密封材 27 :小螺釘孔 2 8 :小螺釘 30 :支撐框 3 1 :方形框 3 2 :螺紋孔 3 3 :框架 35 :蓋 3 8 :密封材 3 9 :螺栓及螺帽 40 :清淨室 4 1 :清淨區域 42 :給氣室 43 :吹出口 44 :過濾器 4 5 :地板 46 :返回室 47 :循環路 4 8 :空調機 5 0 :清淨室 5 1 :過濾器組件 5 2 :給氣室 53 :吹出口 54 :過濾器 -18201217719 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a clean room used in semiconductor manufacturing, liquid crystal substrate manufacturing, pharmaceuticals, and food manufacturing, and in particular, it is improved in a clean area. A clean room of a blower outlet that is blown out by delicate air. [Prior Art] For manufacturing plants such as semiconductor manufacturing, liquid crystal substrate manufacturing, pharmaceuticals, and food manufacturing, the entire building will be cleaned. The clean room has two types of unidirectional flow type (laminar flow type) shown in Fig. 8 and non-unidirectional flow type (turbulent flow type) shown in Fig. 9. The unidirectional flow type clean room 40 shown in Fig. 8 is provided with a gas supply chamber 42 substantially in the vicinity of a ceiling portion of the cleaned area 41 in which the manufacturing equipment is disposed, and is provided in the air outlet 43 of the air supply chamber 42. In the high performance filter (ΗΕΡΑ or ULPA) 44, a return chamber 46 is formed in a lower portion of the floor panel 45, and the swirl chamber 46 and the air supply chamber 42 are connected by a circulation path 47, and an air conditioner 48 is connected to the circulation path 47. In the non-unidirectional flow cleaning chamber 50 as shown in Fig. 9, a filter unit 51 is separately provided at the required portion of the ceiling portion of the clean area 41. The filter unit 51 is provided with a high-performance filter 54 at the air outlet 53 of the air supply chamber 52. In the clean room 50 of Fig. 9, except for the filter unit 5 1 , the return chamber 46 and the circulation path 47 'air conditioner 48 have the same configuration as the clean room 4 of Fig. 8. -5-201217719 In the unidirectional flow type clean room 40 as shown in Fig. 8, since the clean air is uniformly supplied from the filter 44 provided at the air outlet 43 of the air supply chamber 42 toward the clean area 41 And the airflow which is exhausted from the floor area 45 toward the return chamber 46 from the clean area 41 flows downward, and the particles generated in the cleaned area 41 flow to the return chamber 46 without being diffused, so that the improvement can be achieved. The cleanliness of the cleaned area 41 is the uniformity of the temperature distribution. On the other hand, in the non-unidirectional flow type clean room 50 as shown in Fig. 9, since the filter unit 51 is provided at the need of the ceiling portion of the cleaned area 41, the filter unit 5 1 , 5 1 In the meantime, the clean air does not flow and becomes stagnant and becomes turbulent flow. However, by arranging the filter unit 5 1 in accordance with the position of the installation of the manufacturing equipment 就, it is possible to prevent the diffusion of particles as needed. However, in the case of the non-unidirectional flow type, even if the feed air temperature is controlled in order to handle the required heat load in the clean area 41, the temperature difference is large immediately below and outside the filter unit 5 1 . distributed. In order to control the diffusion of the particles generated in the clean region 41, the heat generated by the device or the like from the manufacturing equipment is removed, and for the surface wind speed to flow downward, it is required to be 0. 〖5 to 0.5 m/SeC, and the one-way in Fig. 8 In the flow type, there is a problem that the amount of air circulation that needs to be expanded is large. In this regard, the non-unidirectional flow pattern of Fig. 9 is such that the total air volume is less than the one-way flow by providing the filter assembly 51 at a desired location. [PRIOR ART DOCUMENT] [Patent Document 1] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2010-112646 (2012) The present invention is related to the problem of the present invention. The height also needs to be 6m or more. By the non-unidirectional flow type, even if the warm air that is warmed up is blown out from the filter 54, it will spread when it reaches the floor 45, and it becomes impossible to obtain a predetermined (required) downward in the need. The problem of flowing wind speed (〇_15~ 0.5m/sec). Therefore, in the unidirectional flow mode, it is preferable to flow the entire horizontal section of the clean area from the downward flow, but it is not possible to eliminate the problem that the total circulation air volume is increased. Since both of them purge the clean air from the filter, in order to confirm whether or not there is a pinhole in the filter, it is necessary to perform a leak test of the filter from the air supply side and the spray flow. This filter leak test is to vertically and horizontally scan the sampling probe under the filter to define the presence or absence of the leaked spray and the position of the pinhole, but has the problem of requiring an expansion time at the time of inspection. Accordingly, an object of the present invention is to solve the above problems and to provide a clean room capable of ensuring temperature control and cleanliness while ensuring a required downwind wind speed even if the amount of circulating air is reduced, and the filter leak test can be simplified. Conducted. (Means for Solving the Problem) The clean room of the present invention for achieving the above-described object is provided with an opening portion 201217719 for the air outlet which is a temperature-adjusted clean air in the ceiling of the clean area, and the opening portion A plurality of nozzle plates in which a plurality of nozzles are formed under the pallet are arranged in parallel to form the aforementioned air outlet. The clean room of the present invention includes: a clean area in which the manufacturing equipment is provided; and an air supply chamber in which a ceiling is provided in the clean area, and an opening portion for forming an air outlet for the temperature-adjusted clean air; and a returning chamber provided under the floor of the clean area; an air circulation path connecting the return chamber and the air supply chamber; and an air conditioner connected to the air circulation path; and connecting the air conditioner and the air supply chamber The high-performance filter on the circulation path; and the plurality of nozzle plates are formed by forming a plurality of nozzles on the lower surface of the pallet, and the plurality of nozzles covering the lower portion of the air supply chamber are arranged in parallel, and are formed in the ceiling of the clean area. For the aforementioned outlet. The high-performance filter can be connected to the air circulation path as described above, and can be installed in the air supply chamber. The nozzle plate used in the present invention has a support plate formed in a thin box shape and a plurality of nozzles projecting from the pallet in the longitudinal and lateral directions of the pallet, and the pallet and the plurality of nozzles are integrally formed by resin molding. The inner diameter of the nozzle is any one of the range of 2 to 40 mm, and the height of the nozzle is any one of the range of 20 to 200 mm. Further, in the present invention, the nozzle plate of the nozzle plate is provided with a nozzle having a large inner diameter and blowing clean air at a constant blowing angle, and a small inner diameter disposed between the nozzles and having clean air A nozzle that blows clean air at a wide angle is also possible. In the present invention, the clean air is blown from the nozzle of the nozzle plate, and the effective injection distance of the wind speed of 55 m/sec is obtained in advance in accordance with the inner diameter of the nozzle, and -8 - 201217719 makes the surface at a certain height on the aforementioned ground a wind speed. In the manner of 0.15 to 0·5 m/sec, the inner diameter of the nozzle is selected according to the effective ejection distance of the nozzle. And the clean air blown out from each nozzle is blown out by a certain diffusion angle during reaching the effective injection distance, and the interval between the nozzles is 'the diffusion angle of the clean air blown from the adjacent nozzles, so that the The manner in which the clean air of the adjacent nozzles in the effective injection distance intersect each other is set. [Effect of the Invention] According to the present invention, the following excellent effects can be exhibited. (1) By forming the air outlet □ of the clean air in the clean area from the plurality of nozzle plates, the wind speed of the temperature-adjusted clean air blown from each nozzle of the nozzle plate and its reaching distance can be freely selected. (2) Even if the ceiling of the clean room is high, the reach of the nozzle and the wind speed required for the clean area can be optimized. (3) The total circulation of air in the clean room can be 1 / 3 to 1 / 1 0 of the conventional clean room. (4) Since the high-performance filter is installed in the circulation system and the air supply chamber, the inspection of the filter leakage test and the like can be simplified. [Embodiment] Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. Fig. 1 is a general view showing a clean room of the present invention. First, the clean room 10 is a 201217719 ceiling in which the clean area 11 of the manufacturing equipment is provided, and the plurality of air supply chambers 12 are adjacent to each other so as to be disposed substantially across the floor 15 of the clean area 11. A return chamber 16 is formed in the lower portion, and a circulation path 17' connecting the return chamber 16 and the air supply chamber 12 is connected to the air passage 18 in the circulation path 17. In the present embodiment, the circulation path 17 is provided with a high A performance furnace (HEPA or ULPA) 19 is provided, and a plurality of nozzle plates 20 are provided in the opening portion of the air supply chamber 12 to constitute an air outlet. The air conditioner 18 is an introduction line I3' having an evaporator 21 and a circulation fan 22' connected to the outside air OA on the suction side thereof, and is connected to the circulation path 17 of the air conditioner 18, and is provided with a part of exhausting the circulating air. The exhaust line of the exhaust fan is 14. In the clean room 10, the ceiling of the clean area 11 is formed by the nozzle 24 of the nozzle plate 20, and the clean air CA' which is air-conditioned by the air conditioner 18 and is dusted by the high-performance filter 19 is blown out from the nozzle 24, even if the clean area 11 is cleaned. The ceiling height is high, and the required height (use point) on the floor 15 can be ensured by freely selecting the nozzle diameter ', for example, the height from the floor 1 5 to 1 m becomes the required downward flow wind speed (0.15~ 0.5 m/sec), and the amount of air circulation required can also be a conventional air volume of 1/3 to 1/:10. Further, the high-performance filter 197 is connected only to the circulation path 17'. The filter leakage test can also be easily performed. Fig. 2 is an overall view showing another clean room of the present invention. The clean room 10 of Fig. 2 has the same basic configuration as the clean room 10 of Fig. 1, but the high-performance filter 19 is provided in the air supply chamber 12. In the clean room 10 of Fig. 2, the mounting position of the high-performance filter 19 is different from that of Fig. 1 - 201217719, and since it is the same as Fig. 1, it is attached to the first figure. The figures are given the same symbols and their descriptions are omitted. In the clean room 10 shown in the first and second figures, the air supply chamber 12 attached to the ceiling of the clean area 11 is provided as an example in which a plurality of unidirectional flow clean rooms are arranged in a substantially uniform manner in the ceiling. However, it is also possible to provide a non-unidirectional flow type clean room to the air chamber 12 at the need of the ceiling. Further, the air supply chamber 12 may be arranged in parallel with a plurality of plural, and the air supply chamber 12 may be constituted by a method of substantially covering the ceiling. Next, Fig. 3 is a partially enlarged perspective view showing the nozzle plate 20 of the present invention attached to the opening of the air supply chamber 12, and Fig. 4 is a partial cross-sectional view showing the nozzle plate 20 attached to the air supply chamber 12. The nozzle plate 20 is formed by resin molding, and the thin-shaped pallet 23 and the nozzle 24 are integrally molded. The nozzle plate 20 is made of, for example, 30 cm x 30 cm and 50 cm x 50 cm. The thickness of the periphery of the pallet 23 is about 10 to 20 mm, the height of the nozzle 24 is 20 to 200 mm, and the inner diameter is in the range of Φ 2 to 40 mm. Ground formation. The resin to be used is an engineering plastic, and any of polyacetal, polyamidiamine, polycarbonate, denatured polyphenylene ether, and polybutylene terephthalate may be selected. Further, a conductive powder such as carbon black and black lead powder or zinc oxide, a nonionic type or a charge preventing agent composed of an anionic surfactant or the like may be added to the resin. Further, around the pallet 23, a small screw hole 25 for fixing a small screw, which will be described later, is formed at three sides on each side. -11 - 201217719 Next, the installation of the nozzle plate 20 toward the air supply chamber 12 will be described. First, the nozzle plate 20 is supported in parallel by a support frame 30 formed of a metal square tube such as SUS or aluminum. The support frame 30 has square frames 31 and 31 for supporting the nozzle plate 20, and the square frame 31 is provided with a screw hole 32 facing the screw hole 25 of the nozzle plate 20. When the nozzle plate 20 is attached to the support frame 30, a sealing member 26 for sealing therebetween is provided. The sealing member 26 is in the shape of a frame forming the square frame 31 of the support frame 30, and a screw hole 27 is formed at a position corresponding to the screw hole 32 of the support frame 30. The attachment of the nozzle plate 20 to the support frame 30 is such that the frame-shaped sealing material 26 is placed on the support frame 30, and the nozzle plate 20 is arranged side by side to the left and right. In this state, the small screw 28 is passed through the small screw hole 25, and is screwed into the screw hole 32 of the support frame 30 through the small screw hole 27 of the seal member 26, and the nozzle plate 20 is attached to the support frame 30. Thus, the nozzle plate 20 is screw-fixed to the support frame 30 through the seal member 26, and the support frame 30 is attached to the air supply chamber 12. The air supply chamber 12 is a frame 33 having a rectangular parallelepiped box whose opening is formed by a square tube as shown in Fig. 4. A cover 35 is attached to the circumferential surface and the upper surface of the air supply chamber 12. The support frame 30 is attached to the upper surface of the frame 33 by a bolt and a nut 39 through a sealing member 38. Thus, after the support frame 30 to which the nozzle plate 20 has been mounted is attached to the air supply chamber 12, the air supply chamber 12 is mounted on the ceiling of the clean area 11 as shown in Figs. 1 and 2 and is cycled. The conduit of the road I7 is connected to form a clean room 10 . -12-201217719 Next, the shape of the nozzle 24 of the nozzle plate 20 forming the air outlet of the ceiling of the cleaned region 11 and its inner diameter and its mounting interval will be described. First, the shape of the nozzle 24 may be an inverted funnel shape as shown in Figs. 3 and 4, but may be formed into a cylindrical shape. Next, the number of configurations of the nozzles 24 will be described. First, the clean air blown from the conventional high-performance filter is lm2 per area, and the air volume (3m3/min) at a surface wind speed of 〇.5m/sec is used as a reference. The inner diameter of the nozzle is φ 2mm. 05mm, φ 10mm, Φ 20mm, and //40mm, the number of nozzles when the same air volume (3m3/min) is blown is as follows. In the φ 2mm nozzle, the number of nozzles is 1591 (40x40), in the Φ5 mm nozzle, the number of nozzles is 254 (16x16), and in the φ 10mm nozzle, the number of nozzles is 63 (8x8) In the nozzle of φ20πιηη, the number of nozzles is 16 (4x4), and the number of nozzles in the nozzle is 4 (2x2). Therefore, the number of these may be set at equal intervals from the vertical and horizontal square shapes, or may be arranged in parallel by a zigzag triangular shape at intervals of lm2. Next, from Fig. 5, the results of simulating the wind speed (m/sec) and the arrival distance (m) of the clean air blown downward from the nozzles of φ 2 mm, φ 5 mm, φ l 〇 mm, φ 20 mm, and φ 40 mm will be described. First, in the conventional filter, the arrival distance when blowing at a wind speed of 0.05 m/sec is 5 m maximum, and when it reaches 5 m, the wind speed becomes zero. For this 'in the Φ 2mm nozzle, the reach distance is 5m, in the Φ 5mm nozzle, the reach distance is 6.5m, in the φ 10mm nozzle, reach the -13-201217719 distance is 7.2m, in <> In the 20mm and 040mm nozzles, the reach distance is 8m. The larger the nozzle diameter is, the longer the reach distance is. In the nozzles of the range of φ20ιηιη~(i>40mm, it is known that there is no difference in the reach distance. Here, the floor in the clean area On the predetermined (required) height surface, it is possible to obtain a minimum wind speed of 0.1 5 m/sec for controlling the diffusion of particles from the manufacturing equipment, and the nozzle from the nozzle position to the ground in the nozzle of φ 2 mm. The distance (hereinafter referred to as the effective ejection distance) of the required height surface (for example, the height lm and the normal height of 2 m) is about 3 m, and in the nozzle of φ 5 mm, the effective ejection distance is about 5 m, and the effective ejection is performed in the nozzle of φ 10 mm. The distance is 6.5 m. In the nozzle of φ 20 mm, the effective injection distance is 7 m. In the nozzle of φ 4 〇 mm, the effective injection distance is 8 m. That is, the distance from the required height surface to the nozzle. When it is within the effective injection distance of the nozzle, a sufficient wind speed of 15 rpm or more can be obtained at a required height surface. Therefore, the ceiling of the clean area 11 as shown in Figs. 1 and 2 is obtained. Height, the required height on the floor 15, the diameter of the nozzle that can be obtained at a wind speed of 1515m/sec or more, and the number of the nozzles are also freely designed, and the total circulating air volume is also compared with the way of fully blowing out from the filter. The air volume of 1/3 to 1/1 〇 can be obtained. Fig. 6 is a view showing a state in which the temperature-controlled clean air CA blown from each nozzle 24 of the nozzle plate 20 is diffused. First, the air is blown from each nozzle 24. The temperature-adjusted clean air CA' is blown downward, and has a constant diffusion angle 依据 according to the blown shape of the nozzle 24. Here, as described above, for example, the nozzle of 6 10 mm is used -1417717719 In other words, the effective injection distance L of the wind speed of 0.15 m/sec is 6.5 m, and within the reach distance L thereof, if the temperature-controlled clean air CA from the nozzles 24 adjacent to each other as shown in Fig. 6 overlaps each other, Required (scheduled) height on the floor (eg lm The entire surface in the middle can be a uniform wind speed and a uniform temperature. In the sixth figure, in the vicinity of the ceiling of the clean area 11, the nozzles 24 are arranged at intervals, so that they are blown out and warmed. Between the clean air CA, air retention occurs, but the trapped air is surrounded by the temperature-controlled clean air CA from each nozzle 24, so even if particles are generated in the trapped air, It flows diffusely toward the return chamber together with any of the warmed air CA. Fig. 7 is a view showing an example in which the diffusion can be surely prevented when particles are generated in the vicinity of the ceiling of the clean region 11. In this example, an example in which the nozzle plate 20 is formed in such a manner that a nozzle 24α having a larger angle of diffusion angle α is disposed between the nozzles 24 0 and 24 0 having the diffusion angle 0 is shown. Since the nozzle 24α having this diffusion angle α is only blown between the clean air C 被 blown out from the nozzles 24 0 and 24 0 , the reaching distance can be shortened. Therefore, the nozzle 24α has a reaching distance of 5 m, for example, a nozzle having a smaller inner diameter than the nozzles 24 Θ, 240, for example, φ 2 mm, and the blowing angle α of the nozzle can be freely selected, and can be prevented more reliably. The diffusion of particles. In addition to changing the inner diameter of the nozzle 24 formed on the pallet 23 of the nozzle plate 20, in the present invention, the manufacturing apparatus corresponding to the clean area 1 1 is formed by previously forming nozzle plates 20 having different nozzle inner diameters.配置 配置 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 That is, in the ceiling in the region where the particle diffusion is required, the nozzle plate 20 composed of the nozzle having a large inner diameter is disposed, and in the region not affected by the diffusion of the particles, the nozzle plate 20 having a smaller inner diameter of the nozzle is disposed. It is also possible to make the unidirectional flow type and the non-unidirectional flow type intermediate blowing mode which suppress the circulating air volume more. Although the embodiments of the present invention have been described above, various modifications can be made in the present invention. That is, although the clean room is described, the clean room is broad, and for example, a clean room formed in an exposure apparatus that exposes the liquid crystal substrate and a clean room partially formed may be applied. Fig. β 0 β I1rL - . Γ · 澧 澧 整 的 施 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实 实Room gas is given. A partial perspective view of the state in which the nozzle of the figure mounting body is sprayed. [Fig. 4] Fig. 1 and Fig. 2 are partially enlarged cross-sectional views showing a state in which a nozzle plate is attached to an air supply chamber. [Fig. 5] Fig. 5 is a view showing the relationship between the wind speed and the arrival distance of the respective nozzles having different inner diameters in the present invention. [Fig. 6] A view showing a state in which the clean air blown from each nozzle of the nozzle plate of the present invention is diffused. [Fig. 7] A view showing a state in which the nozzle plate is provided with a diffused state of the clean air blown from the two nozzles when the nozzle plate is provided with the nozzles having different diffusion angles -16 to 201217719. [Fig. 8] An overall view showing a conventional one-way flow type clean room. [Fig. 9] shows the overall diagram of the conventional non-unidirectional flow type clean room [Description of main components] CA: Clean air Μ: Manufacturing equipment ΟΑ: External air 1 〇: Clean room 1 1 : Clean area 1 2 : Air supply chamber 1 3 : Intake line 1 4 : Exhaust line 1 5 : Floor 1 6 : Return chamber 1 7 : Recirculation path 1 8 : Air conditioner 1 9 : High performance filter 20 : Nozzle plate 2 1 : Evaporator 2 2 : Circulating fan 23 : Pallet 2 4 : Nozzle 2 5 : Screw hole -17- 201217719 2 6 : Sealing material 27 : Screw hole 2 8 : Screw 30 : Support frame 3 1 : Square frame 3 2 : Threaded hole 3 3 : frame 35 : cover 3 8 : sealing material 3 9 : bolt and nut 40 : clean room 4 1 : clean area 42 : air supply chamber 43 : air outlet 44 : filter 4 5 : floor 46 : return Room 47: circulation path 4 8 : air conditioner 5 0 : clean room 5 1 : filter assembly 5 2 : air supply chamber 53 : air outlet 54 : filter -18

Claims (1)

201217719 七、申請專利範園: 1. 一種清淨室,其特徵爲:在清淨區域的頂棚,設有 形成作爲被溫調的清淨空氣的吹出口用的開口部,並將在 托板的下面形成有複數噴嘴的噴嘴板由複數枚並列設在該 開口部的方式形成前述吹出口。 2. 如申請專利範圍第1項的清淨室,其中,前述噴嘴 板,具有:形成薄型箱狀的托板、及在該托板的縱橫方向 從該托板的下面突出的複數噴嘴,且前述托板及前述複數 噴嘴是由樹脂成形一體地形成。 3. 如申請專利範圍第2項的清淨室,其中,前述噴嘴 的內徑是2〜40 mm的範圍內的其中任一,前述噴嘴的高度 是20〜200mm的範圍內的其中任一。 4. 如申請專利範圍第3項的清淨室,其中,在前述托 板中,設有:內徑大且由一定的吹出角度將清淨空氣吹出 的噴嘴、及被配置於前述噴嘴間且內徑小且將清淨空氣由 廣角度將清淨空氣吹出的噴嘴。 5. —種清淨室,其特徵爲,具備:清淨區域,其中設 有製造設備;及給氣室,是設在該清淨區域的頂棚,在下 部,具有供作爲被溫調的清淨空氣的吹出口用的開口部: 及返回室,是設在前述清淨區域的地板下;及空氣循環路 ,是將該返回室及前述給氣室連結;及空調機,是與空氣 循環路連接;及高性能過濾器,是設在將空調機及前述給 氣室連結的循環路上;及複數噴嘴板,在托板的下面形成 複數噴嘴,將前述給氣室的下部的開口部覆蓋的方式被複 19- 201217719 數枚並列設置,供在前述清淨區域的頂棚形成前述吹出口 用。 6 .如申請專利範圍第5項的清淨室,其中,在前述給 氣室的下部的開口部,設有被開設有複數方形開口的支撐 框,在該支撐框的各開口,透過密封材安裝有前述噴嘴板 〇 7 .如申請專利範圍第5項的清淨室,其中,前述噴嘴 板,具有:形成薄型箱狀的托板、及在該托板的縱橫方向 從該托板突出的複數噴嘴,且前述托板及前述複數噴嘴是 由樹脂成形一體地形成。 8 .如申請專利範圍第7項的清淨室,其中,前述噴嘴 的內徑是2〜4〇mm的範圍內的其中任一,前述噴嘴的高度 是20〜2 00mm的範圍內的其中任一。 9.如申請專利範圍第7項的清淨室,其中,從前述噴 嘴板的各噴嘴被吹出的清淨空氣,是對應噴嘴內徑預先求 得成爲風速0.1 5m/sec的有效噴射距離,使在前述地上的某 高度的面成爲風速0.15〜0.5m/sec的方式,依據前述噴嘴 的有效噴射距離選用噴嘴內徑。 1 0 .如申請專利範圍第9項的清淨室,其中,從各噴嘴 被吹出的清淨空氣,是在到達有效噴射距離期間由一定的 擴散角被吹出,噴嘴彼此之間隔,是由從相鄰接的噴嘴被 吹出清淨空氣的擴散角,使來自前述有效噴射距離內相鄰 接的噴嘴的清淨空氣相互交叉地被設定。 11· —種清淨室,其特徵爲,具備:清淨區域’其中 -20- 201217719 設有製造設備;及給氣室,是設在該清淨區域的頂棚’在 下部,具有供作爲被溫調的清淨空氣的吹出口用的開口部 :及返回室,是設在前述清淨區域的地板下;及空氣循環 路,是將該返回室及前述給氣室連結;及空調機’是與空 氣循環路連接;及高性能過濾器,是設在給氣室內:及複 數噴嘴板,是在托板的下面形成複數噴嘴,將前述給氣室 的下部的開口部覆蓋的方式被複數枚並列設置’供在前述 清淨區域的頂棚形成前述吹出口用。 12. 如申請專利範圍第11項的清淨室,其中,在前述 給氣室的下部的開口部,設有被開設有複數方形的開口的 支撐框,在該支撐框的各開口,透過密封材安裝有噴嘴板 〇 13. 如申請專.利範圍第11項的清淨室,其中’前述噴 嘴板,具有:形成薄型箱狀的托板、及在該托板的縱橫方 向從該托板突出的複數噴嘴,且前述托板及前述複數噴嘴 是由樹脂成形一體地形成。 14. 如申請專利範圍第13項的清淨室,其中,噴嘴的 內徑是2〜40mm的範圍內的其中任一,前述噴嘴的高度是 20〜200mm的範圍內的其中任一。 15. 如申請專利範圍第14項的清淨室,其中,從前述 噴嘴板的各噴嘴被吹出的清淨空氣,是對應噴嘴內徑預先 求得成爲風速0.15m/sec的有效噴射距離,使在前述地上的 某高度的面成爲風速0.15〜0.5m/sec的方式,依據前述噴 嘴的有效噴射距離選用噴嘴內徑。 -21 · 201217719 1 6.如申請專利範圍第1 5項的清淨室,其中,從各噴 嘴被吹出的清淨空氣,是在到達有效噴射距離期間由一定 的擴散角被吹出,噴嘴彼此之間隔,是由從相鄰接的噴嘴 被吹出清淨空氣的擴散角,使來自前述有效噴射距離內相 鄰接的噴嘴的清淨空氣相互交叉的方式被設定。 -22-201217719 VII. Application for Patent Park: 1. A clean room characterized in that: in the ceiling of the clean area, there is provided an opening for forming a blow-out port as a warm air to be conditioned, and will be formed under the pallet. The nozzle plate having a plurality of nozzles forms the above-described air outlet so that a plurality of nozzle plates are arranged side by side in the opening. 2. The cleaning chamber according to claim 1, wherein the nozzle plate has a support plate formed in a thin box shape, and a plurality of nozzles projecting from a lower surface of the pallet in a longitudinal direction and a transverse direction of the pallet, and The pallet and the plurality of nozzles described above are integrally formed by resin molding. 3. The clean room of claim 2, wherein the inner diameter of the nozzle is in the range of 2 to 40 mm, and the height of the nozzle is in the range of 20 to 200 mm. 4. The clean room according to claim 3, wherein the tray is provided with a nozzle having a large inner diameter and blowing clean air at a constant blowing angle, and an inner diameter disposed between the nozzles A nozzle that is small and that cleans air from a wide angle to blow clean air out. 5. A clean room characterized by comprising: a clean area in which manufacturing equipment is provided; and an air supply chamber, which is provided in the ceiling of the clean area, and in the lower portion, has a blow for the clean air to be warmed An opening for exit: and a return chamber provided under the floor of the clean area; and an air circulation path connecting the return chamber and the air supply chamber; and an air conditioner connected to the air circulation path; The performance filter is provided on a circulation path connecting the air conditioner and the air supply chamber; and the plurality of nozzle plates are formed by forming a plurality of nozzles on the lower surface of the pallet, and covering the opening of the lower portion of the air supply chamber. - 201217719 Several pieces are arranged side by side to form the above-mentioned air outlets in the ceiling of the above-mentioned clean area. 6. The clean room of claim 5, wherein a support frame having a plurality of square openings is provided in an opening portion of the lower portion of the air supply chamber, and each opening of the support frame is mounted through a sealing material A cleaning chamber according to the fifth aspect of the invention, wherein the nozzle plate has a support plate formed in a thin box shape, and a plurality of nozzles projecting from the tray in the longitudinal and lateral directions of the tray And the pallet and the plurality of nozzles are integrally formed by resin molding. 8. The clean room according to item 7 of the patent application, wherein the inner diameter of the nozzle is any one of a range of 2 to 4 mm, and the height of the nozzle is any one of a range of 20 to 200 mm. . 9. The clean room of the seventh aspect of the invention, wherein the clean air blown from each nozzle of the nozzle plate is an effective injection distance of a wind speed of 0.15 m/sec in advance corresponding to the inner diameter of the nozzle. The surface of a certain height on the ground has a wind speed of 0.15 to 0.5 m/sec, and the inner diameter of the nozzle is selected in accordance with the effective injection distance of the nozzle. 10. The clean room of claim 9, wherein the clean air blown from each nozzle is blown out by a certain diffusion angle during reaching the effective spray distance, and the nozzles are spaced apart from each other by the adjacent The nozzles that are connected are blown out by the diffusion angle of the clean air, so that the clean air from the adjacent nozzles in the effective injection distance is set to cross each other. 11·—a kind of clean room, characterized by: a clean area 'where -20- 201217719 is equipped with manufacturing equipment; and a gas supply room is provided in the ceiling of the clean area' at the lower part, having a temperature-adjusted The opening for the outlet of the clean air: and the return chamber are provided under the floor of the clean area; and the air circulation path connects the return chamber and the air supply chamber; and the air conditioner is connected to the air circulation path The high-performance filter is provided in the air supply chamber: and the plurality of nozzle plates are formed by forming a plurality of nozzles on the lower surface of the tray, and the plurality of nozzles are covered in the lower portion of the air supply chamber. The above-mentioned air outlet is formed in the ceiling of the clean area. 12. The clean room of claim 11, wherein the opening portion of the lower portion of the air supply chamber is provided with a support frame having a plurality of square openings, and each opening of the support frame is transparent to the sealing material. A nozzle plate 〇13 is installed. The cleaning chamber of the eleventh item of the application, wherein the nozzle plate has a support plate formed in a thin box shape and protrudes from the pallet in the longitudinal and lateral directions of the pallet. The plurality of nozzles, wherein the pallet and the plurality of nozzles are integrally formed by resin molding. 14. The clean room according to claim 13, wherein the inner diameter of the nozzle is in the range of 2 to 40 mm, and the height of the nozzle is in the range of 20 to 200 mm. 15. The clean room of claim 14, wherein the clean air blown from each nozzle of the nozzle plate is an effective jet distance of 0.15 m/sec in advance corresponding to the inner diameter of the nozzle. The surface of a certain height on the ground has a wind speed of 0.15 to 0.5 m/sec, and the inner diameter of the nozzle is selected in accordance with the effective injection distance of the nozzle. -21 · 201217719 1 6. The clean room of claim 15 wherein the clean air blown from each nozzle is blown out by a certain diffusion angle during the effective injection distance, and the nozzles are spaced apart from each other. The diffusion angle of the clean air is blown from the adjacent nozzles, and the clean air from the nozzles adjacent to each other within the effective injection distance is set to intersect each other. -twenty two-
TW100126993A 2010-10-28 2011-07-29 Clean room TWI431229B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010242798A JP4755307B1 (en) 2010-10-28 2010-10-28 Clean room

Publications (2)

Publication Number Publication Date
TW201217719A true TW201217719A (en) 2012-05-01
TWI431229B TWI431229B (en) 2014-03-21

Family

ID=44597130

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126993A TWI431229B (en) 2010-10-28 2011-07-29 Clean room

Country Status (5)

Country Link
JP (1) JP4755307B1 (en)
KR (1) KR101284022B1 (en)
CN (1) CN102656410B (en)
TW (1) TWI431229B (en)
WO (1) WO2012056592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105674393A (en) * 2014-11-18 2016-06-15 奇鼎科技股份有限公司 Rapid substrate temperature averaging device

Families Citing this family (241)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
CN102818323B (en) * 2012-08-02 2015-03-11 青岛海信日立空调系统有限公司 Heat pump air-conditioning system based on jet blowing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
CN103267340B (en) * 2013-05-29 2016-03-16 苏州大学 A kind of clean operating room variable air rate becomes the air-supply arrangement of rank
CN105339740B (en) * 2014-01-14 2017-12-22 株式会社日本医化器械制作所 Block formula attracts unit, block formula to supply gas unit, block formula air supply unit and the environment control unit using these units
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
JP2017219219A (en) * 2016-06-06 2017-12-14 清水建設株式会社 Air-conditioning system for clean room
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
CN107796079B (en) * 2017-03-06 2023-04-25 江苏嘉合建设有限公司 Top-feeding top-returning purifying ventilation system
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
KR102597978B1 (en) * 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. Storage device for storing wafer cassettes for use with batch furnaces
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
KR20200108016A (en) 2018-01-19 2020-09-16 에이에스엠 아이피 홀딩 비.브이. Method of depositing a gap fill layer by plasma assisted deposition
TW202325889A (en) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 Deposition method
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
KR101859593B1 (en) * 2018-01-31 2018-05-18 오영근 Air controlling system for cleanroom
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
TW202344708A (en) 2018-05-08 2023-11-16 荷蘭商Asm Ip私人控股有限公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
KR20190129718A (en) 2018-05-11 2019-11-20 에이에스엠 아이피 홀딩 비.브이. Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
WO2020002995A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
WO2020003000A1 (en) 2018-06-27 2020-01-02 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (en) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming device structure using selective deposition of gallium nitride, and system for the same
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN109629006A (en) * 2019-01-31 2019-04-16 长江存储科技有限责任公司 Boiler tube board and toilet
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
TW202044325A (en) 2019-02-20 2020-12-01 荷蘭商Asm Ip私人控股有限公司 Method of filling a recess formed within a surface of a substrate, semiconductor structure formed according to the method, and semiconductor processing apparatus
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
JP2020136677A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic accumulation method for filing concave part formed inside front surface of base material, and device
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108248A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. STRUCTURE INCLUDING SiOCN LAYER AND METHOD OF FORMING SAME
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
KR20200116033A (en) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
CN110043982B (en) * 2019-04-16 2020-08-28 北京联合大学 Dynamic self-adaptive differential pressure fluctuation control system and method
KR20200123380A (en) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (en) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 Method of forming topologically controlled amorphous carbon polymer films
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (en) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. Liquid level sensor for a chemical source vessel
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
KR20210065848A (en) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
CN113028532A (en) * 2019-12-09 2021-06-25 上海奇康再生医学技术有限公司 Clean room of self-circulation fresh air management system
JP2021097227A (en) 2019-12-17 2021-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming vanadium nitride layer and structure including vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
KR20210089077A (en) 2020-01-06 2021-07-15 에이에스엠 아이피 홀딩 비.브이. Gas supply assembly, components thereof, and reactor system including same
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
KR20210100010A (en) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210117157A (en) 2020-03-12 2021-09-28 에이에스엠 아이피 홀딩 비.브이. Method for Fabricating Layer Structure Having Target Topological Profile
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
TW202146831A (en) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Vertical batch furnace assembly, and method for cooling vertical batch furnace
CN113555279A (en) 2020-04-24 2021-10-26 Asm Ip私人控股有限公司 Method of forming vanadium nitride-containing layers and structures including the same
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210134226A (en) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. Solid source precursor vessel
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
TW202147383A (en) 2020-05-19 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
TW202219628A (en) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
KR20220027026A (en) 2020-08-26 2022-03-07 에이에스엠 아이피 홀딩 비.브이. Method and system for forming metal silicon oxide and metal silicon oxynitride
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
JP2022056167A (en) * 2020-09-29 2022-04-08 芝浦メカトロニクス株式会社 Air blower and mounting device of electronic component
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
KR20220053482A (en) 2020-10-22 2022-04-29 에이에스엠 아이피 홀딩 비.브이. Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
TW202235675A (en) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 Injector, and substrate processing apparatus
CN114639631A (en) 2020-12-16 2022-06-17 Asm Ip私人控股有限公司 Fixing device for measuring jumping and swinging
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668408B2 (en) * 1986-05-29 1994-08-31 高砂熱学工業株式会社 Air blower for clean room and high ceiling clean room using the same
JPH01131934A (en) * 1987-11-18 1989-05-24 Hitachi Ltd Dynamic single clock tracing system
JPH0522745Y2 (en) * 1988-03-02 1993-06-11
JPH0666439A (en) * 1992-08-13 1994-03-08 Kawasaki Steel Corp Clean room and air supply unit
JPH11218353A (en) * 1998-02-02 1999-08-10 Toshiba Air Conditioning Co Ltd Equipment for regulating velocity of air let out into clean room
KR200241269Y1 (en) * 1999-04-26 2001-09-25 김희남 A clean booth
JP2002106943A (en) * 2000-10-03 2002-04-10 Shin Nippon Air Technol Co Ltd Local space cleaning nozzle and local space cleaning unit
JP4824885B2 (en) * 2001-09-28 2011-11-30 高砂熱学工業株式会社 Arrangement structure and operation method of air shower device and cleaning device
JP2008107033A (en) * 2006-10-26 2008-05-08 Takenaka Komuten Co Ltd Fan filter unit
JP5330805B2 (en) * 2008-11-07 2013-10-30 パナソニック株式会社 Clean room

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105674393A (en) * 2014-11-18 2016-06-15 奇鼎科技股份有限公司 Rapid substrate temperature averaging device

Also Published As

Publication number Publication date
KR101284022B1 (en) 2013-07-09
WO2012056592A1 (en) 2012-05-03
TWI431229B (en) 2014-03-21
CN102656410B (en) 2015-07-01
KR20120057571A (en) 2012-06-05
CN102656410A (en) 2012-09-05
JP2012093066A (en) 2012-05-17
JP4755307B1 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
TW201217719A (en) Clean room
JP4889788B2 (en) Clean room
US6623353B1 (en) Venturi type air distribution system
JP6184190B2 (en) Low temperature blowout device
TW200914781A (en) Air conditioning method and apparatus for clean room
JP5916344B2 (en) Air outlet device
JP2515593B2 (en) Clean room construction system
JP5330805B2 (en) Clean room
JP7468870B2 (en) Floor radiant convection heating and cooling system
JPH0666439A (en) Clean room and air supply unit
JP7478586B2 (en) Air supply control device and air conditioning system
JP2014098550A (en) Air supplier
JP2006328687A (en) Clean room and method of designing and constructing the same
JP3799538B2 (en) Local cleanliness maintenance system in clean room
JP4733163B2 (en) Clean air circulation system
US20140271211A1 (en) Dropped ceiling fan
JP2004278887A (en) Turbulence type clean room
US20100075589A1 (en) Angled blower deck apparatus and method
JP6004779B2 (en) Local cleaning system
JP4721531B2 (en) Air conditioning equipment and precision product manufacturing method using this equipment
JP5950720B2 (en) Air curtain structure
JP3173962U (en) Ventilation equipment
JP2010259485A (en) Blower
JP2010223465A (en) Clean air conditioning system
JPH11248212A (en) Clean room