JP2017220011A - Laminated film, display device, and input device - Google Patents

Laminated film, display device, and input device Download PDF

Info

Publication number
JP2017220011A
JP2017220011A JP2016113599A JP2016113599A JP2017220011A JP 2017220011 A JP2017220011 A JP 2017220011A JP 2016113599 A JP2016113599 A JP 2016113599A JP 2016113599 A JP2016113599 A JP 2016113599A JP 2017220011 A JP2017220011 A JP 2017220011A
Authority
JP
Japan
Prior art keywords
film
layer
atomic
aluminum alloy
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2016113599A
Other languages
Japanese (ja)
Inventor
陽子 志田
Yoko Shida
陽子 志田
後藤 裕史
Yasushi Goto
裕史 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016113599A priority Critical patent/JP2017220011A/en
Priority to PCT/JP2017/019882 priority patent/WO2017212970A1/en
Priority to TW107119673A priority patent/TW201833749A/en
Priority to TW106118598A priority patent/TW201743178A/en
Publication of JP2017220011A publication Critical patent/JP2017220011A/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated thin film (low-reflection conductive film) with low electrical resistivity and low reflectance.SOLUTION: Provided herein is a laminated film comprising a first layer, second layer, and third layer laminated in the described order, the first layer being a metallic thin film having an electrical resistivity of 15 μΩcm or less, the second layer being an aluminum nitride film or aluminum alloy nitride film containing 40-61 atom% nitrogen, inclusive, and the third layer being either: an aluminum oxide film or aluminum alloy oxide film containing 50-60 atom% oxygen, inclusive; an aluminum oxynitride film or aluminum alloy oxynitride film containing 50-60 atom% oxygen, inclusive, and 1-10 atom% nitrogen, inclusive; or an aluminum nitride film or aluminum alloy nitride film containing 50-60 atom% nitrogen, inclusive.SELECTED DRAWING: Figure 1

Description

本発明は、光吸収性を有し、入力装置内の金属電極に用いられる積層膜、前記積層膜を備えた表示装置及び入力装置に関する。   The present invention relates to a laminated film that has light absorptivity and is used for a metal electrode in an input device, a display device including the laminated film, and an input device.

以下に入力装置の代表例としてタッチパネルセンサーを例に挙げて説明するが、本発明はこれに限定されない。タッチパネルセンサーは、液晶表示装置又は有機EL装置などの表示装置の表示画面上に入力装置として貼り合わせて使用される。   Hereinafter, a touch panel sensor will be described as an example of a typical input device, but the present invention is not limited to this. The touch panel sensor is used by being attached as an input device on a display screen of a display device such as a liquid crystal display device or an organic EL device.

タッチパネルセンサーの入力ポイントの検出方式には、抵抗膜方式、静電容量方式、光学式又は圧電式等が挙げられる。   Examples of the detection method of the input point of the touch panel sensor include a resistance film method, a capacitance method, an optical method, and a piezoelectric method.

静電容量方式のタッチパネルセンサーは、一例として、ガラス基板などの透明基板上に、二方向の透明電極が直交して配置され、その表面に保護ガラスなどの絶縁体であるカバーが被覆された構造を有している。   As an example, a capacitive touch panel sensor has a structure in which transparent electrodes in two directions are arranged orthogonally on a transparent substrate such as a glass substrate, and a cover that is an insulator such as protective glass is coated on the surface. have.

上記構成のタッチパネルセンサーに用いられる透明基板として、表示装置に用いられる透明基板を用いることもできる。具体的には、液晶表示装置に用いられるカラーフィルター基板又は有機EL装置に用いられるガラス基板などが例として挙げられる。   As the transparent substrate used in the touch panel sensor having the above-described configuration, a transparent substrate used in a display device can be used. Specific examples include a color filter substrate used in a liquid crystal display device or a glass substrate used in an organic EL device.

最近では、入力装置内の電極薄膜として、低抵抗な金属電極薄膜の使用が検討されている。金属電極薄膜は接触感度向上又はノイズ低減に有効である。しかし、金属電極薄膜は反射率が高く、使用者の肉眼で見える、即ち視認されるため、コントラスト比が低下する。   Recently, the use of a low-resistance metal electrode thin film as an electrode thin film in an input device has been studied. The metal electrode thin film is effective for improving contact sensitivity or reducing noise. However, since the metal electrode thin film has a high reflectance and is visible to the naked eye of the user, that is, visually recognized, the contrast ratio is lowered.

そこで、特許文献1には、導電性透明パターンセルを相互接続するブリッジ電極における視認性の問題を解決するため、基板上に相互離隔される複数の導電性パターンセルを形成し、前記導電性パターンセル上に絶縁層を形成し、前記絶縁層上に黒色の導電材料を用いて前記ブリッジ電極を形成する、ことを特徴とするタッチパネルの電極の形成方法が開示されている。具体的には、ブリッジ電極として、Al又はTiなどの金属を、薬品との反応により酸化物、窒化物又はフッ化物などに黒色化させる方法が例示されている。   Therefore, in Patent Document 1, in order to solve the problem of visibility in the bridge electrodes interconnecting the conductive transparent pattern cells, a plurality of conductive pattern cells spaced apart from each other are formed on the substrate, and the conductive pattern There is disclosed a method for forming an electrode of a touch panel, wherein an insulating layer is formed on a cell and the bridge electrode is formed on the insulating layer using a black conductive material. Specifically, as a bridge electrode, a method of blackening a metal such as Al or Ti into an oxide, nitride or fluoride by reaction with a chemical is exemplified.

また、特許文献2には透明性基板上に形成された反射防止膜であって、膜厚25nmにおいて波長550nmの透過率が10%未満であり、主成分がAlであるAl系膜と、前記Al系膜の上層、又は/及び下層に形成され、膜厚25nmにおいて波長550nmの透過率が10%以上であり、かつ、主成分がAlであり、添加物として少なくともN元素を含むアルミニウム系N含有膜と、を備え、比抵抗値が1.0×10−2Ω・cm以下であり、前記Al系N含有膜面の可視光領域における反射率が50%以下である反射防止膜が開示されている。 Patent Document 2 discloses an antireflection film formed on a transparent substrate, which has an Al-based film whose transmittance at a wavelength of 550 nm is less than 10% at a film thickness of 25 nm and whose main component is Al, Aluminum-based N formed on the upper layer and / or lower layer of an Al-based film, having a transmittance of 10% or more at a wavelength of 550 nm at a film thickness of 25 nm, a main component being Al, and containing at least N element as an additive And an antireflection film having a specific resistance value of 1.0 × 10 −2 Ω · cm or less and a reflectance in the visible light region of the Al-based N-containing film surface of 50% or less. Has been.

特開2013−127792号公報JP2013-127792A 特許5197418号公報Japanese Patent No. 5197418

しかしながら、特許文献1に記載の薬液を使用する黒化処理では、金属薄膜として膜厚が数百nm程度の薄膜を用いる場合は黒化層成長の制御が難しく黒化層を形成する化合物からなる高抵抗層の増加により配線の断線が生じ易くなり、金属部の膜厚が薄くなるため抵抗増加に繋がる。   However, in the blackening treatment using the chemical solution described in Patent Document 1, when a thin film having a thickness of about several hundreds of nanometers is used as the metal thin film, it is difficult to control the growth of the blackened layer and is made of a compound that forms the blackened layer. The increase in the high resistance layer is likely to cause disconnection of the wiring, and the thickness of the metal part is reduced, leading to an increase in resistance.

また、特許文献2に記載されるAl系膜は膜厚25nmにおける透過率は通常1%以下である。そのため、比抵抗値が1.0×10−2Ω・cm以下であり、前記Al系N含有膜面の可視光領域における反射率が50%以下である反射防止膜をAl系膜に積層しただけでは、特許文献2の実施例3−1に示されているような、上層膜面側での波長550nmにおける反射率値1.6%という値は達成できない。 Further, the Al-based film described in Patent Document 2 generally has a transmittance of 1% or less at a film thickness of 25 nm. Therefore, an antireflection film having a specific resistance value of 1.0 × 10 −2 Ω · cm or less and a reflectance of 50% or less in the visible light region of the Al-based N-containing film surface is laminated on the Al-based film. As a result, it is impossible to achieve a reflectance value of 1.6% at a wavelength of 550 nm on the upper film surface side as shown in Example 3-1 of Patent Document 2.

そのため、従来、特許文献2に記載されるような膜厚25nmにおいて波長550nmの透過率が10%未満であり、主成分がAlであるAl系膜に関しては、酸化もしくは窒化又は添加元素によって低反射化させるか、あるいは、膜厚を薄くし透過率を高くすることで反射率を下げている。主成分がAlであるAl系膜をこのような方法で低反射化する場合、当該Al系膜を含む積層膜を配線に用いると抵抗増加につながるため、低反射かつ低抵抗な配線材料として利用することはできない。しかしながら、特許文献2では積層膜の抵抗については考慮されていない。   Therefore, conventionally, the transmittance at a wavelength of 550 nm at a film thickness of 25 nm as described in Patent Document 2 is less than 10%, and an Al-based film whose main component is Al has low reflection due to oxidation or nitridation or an additive element. Alternatively, the reflectance is lowered by reducing the film thickness and increasing the transmittance. When an Al-based film whose main component is Al is made low-reflective by such a method, use of a laminated film containing the Al-based film for wiring leads to an increase in resistance, so it is used as a wiring material with low reflection and low resistance. I can't do it. However, Patent Document 2 does not consider the resistance of the laminated film.

本発明は上記を鑑みてなされたものであり、電気抵抗率及び反射率が共に低い、積層薄膜(低反射導電膜)を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a laminated thin film (low reflective conductive film) having both low electrical resistivity and reflectance.

本発明者らは、鋭意研究を重ねた結果、電気抵抗率が特定範囲以下である金属薄膜である第1層、特定の組成を有するアルミニウム又はアルミニウム合金の窒化膜である第2層、特定の組成を有するアルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜である第3層がこの順に積層された積層膜を採用することにより、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive research, the inventors of the present invention have found that a first layer that is a metal thin film whose electrical resistivity is not more than a specific range, a second layer that is a nitride film of aluminum or aluminum alloy having a specific composition, a specific layer To find out that the above problems can be solved by adopting a laminated film in which a third layer, which is an oxide film, nitride film or oxynitride film of aluminum or aluminum alloy having a composition, is laminated in this order, and to complete the present invention It came.

すなわち、本発明は、以下の[1]〜[3]に係るものである。
[1]第1層、第2層及び第3層がこの順に積層された積層膜であって、
第1層が電気抵抗率が15μΩ・cm以下である金属薄膜であり、
第2層が40原子%以上61原子%以下の窒素を含むアルミニウム窒化膜又はアルミニウム合金窒化膜であり、
第3層が50原子%以上60原子%以下の酸素を含むアルミニウム酸化膜若しくはアルミニウム合金酸化膜、50原子%以上60原子%以下の酸素及び1原子%以上10原子%以下の窒素を含むアルミニウム酸窒化膜若しくはアルミニウム合金酸窒化膜、又は50原子%以上60原子%以下の窒素を含むアルミニウム窒化膜若しくはアルミニウム合金窒化膜である積層膜。
[2][1]に記載の積層膜を備えた表示装置。
[3][1]に記載の積層膜を備えた入力装置。
That is, the present invention relates to the following [1] to [3].
[1] A laminated film in which a first layer, a second layer, and a third layer are laminated in this order,
The first layer is a metal thin film having an electrical resistivity of 15 μΩ · cm or less,
The second layer is an aluminum nitride film or an aluminum alloy nitride film containing nitrogen of 40 atomic% or more and 61 atomic% or less,
Aluminum oxide film containing aluminum oxide film or aluminum alloy oxide film in which the third layer contains oxygen of 50 atomic percent to 60 atomic percent, aluminum acid containing oxygen of 50 atomic percent to 60 atomic percent and nitrogen of 1 atomic percent to 10 atomic percent A laminated film which is a nitride film or an aluminum alloy oxynitride film, or an aluminum nitride film or an aluminum alloy nitride film containing nitrogen of 50 atomic% to 60 atomic%.
[2] A display device comprising the laminated film according to [1].
[3] An input device comprising the laminated film according to [1].

本発明によれば、前記した金属薄膜である第1層、アルミニウム又はアルミニウム合金の窒化膜である第2層、及びアルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜である第3層をこの順に積層することで、電気抵抗率が低く、低反射性、導電性及びエッチング加工性に優れ、かつ安価な光吸収薄膜及び低反射導電膜を得られるとともに、安定した製造が可能になる。   According to the present invention, the first layer that is the metal thin film, the second layer that is the nitride film of aluminum or aluminum alloy, and the third layer that is the oxide film, nitride film, or oxynitride film of aluminum or aluminum alloy are provided. By laminating in this order, it is possible to obtain a light-absorbing thin film and a low-reflective conductive film that have low electrical resistivity, excellent low reflectivity, conductivity, and etching processability, and are inexpensive, and can be stably manufactured.

図1は、本発明の積層膜の一構造例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing one structural example of the laminated film of the present invention. 図2は、本発明の積層膜の一構造例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing one structural example of the laminated film of the present invention. 図3は、本発明の積層膜の一構造例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing one structural example of the laminated film of the present invention. 図4は、本発明の積層膜の一構造例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing one structural example of the laminated film of the present invention.

以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。また本明細書において数値範囲を示す「〜」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。「反射率」とは、波長450nm、550nm及び650nmにおける反射率を意味する。また「at%」と「原子%」とは同義である。   Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the gist of the present invention. In the present specification, “to” indicating a numerical range is used in the sense of including the numerical values described before and after the numerical value as a lower limit value and an upper limit value. “Reflectance” means reflectance at wavelengths of 450 nm, 550 nm, and 650 nm. “At%” and “atomic%” are synonymous.

<積層膜>
図1〜図4に本発明の積層膜の一構造例の概略断面図を示す。図1の積層膜は、基板1上に導電層となる金属薄膜である第1層2を備え、その上にアルミニウム窒化膜又はアルミニウム合金窒化膜である第2層3を備え、その上にアルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜である第3層4を備える。第1層と第3層との間に第2層が配置されていればよく、図2で示すように基板1上に第3層4を備え、その上に第2層3を備え、その上にさらに第1層2を備えてもよい。
<Laminated film>
1 to 4 show schematic sectional views of one structural example of the laminated film of the present invention. 1 includes a first layer 2 which is a metal thin film serving as a conductive layer on a substrate 1, a second layer 3 which is an aluminum nitride film or an aluminum alloy nitride film thereon, and aluminum thereon. Alternatively, the third layer 4 which is an aluminum alloy oxide film, nitride film or oxynitride film is provided. It is only necessary that the second layer is disposed between the first layer and the third layer. As shown in FIG. 2, the third layer 4 is provided on the substrate 1, the second layer 3 is provided thereon, and the second layer 3 is provided thereon. The first layer 2 may be further provided on the top.

また、図3又は図4に示すように、密着層又は保護層5を、基板1と第1層2との界面、又は第1層2の上下層に積層してもよい。第1層2となる金属膜の種類によって、密着性の改善及び耐食性の改善を目的として、該密着層又は保護層5を設けることが好ましい。   Moreover, as shown in FIG. 3 or FIG. 4, the adhesion layer or the protective layer 5 may be laminated on the interface between the substrate 1 and the first layer 2 or on the upper and lower layers of the first layer 2. Depending on the type of the metal film to be the first layer 2, it is preferable to provide the adhesion layer or the protective layer 5 for the purpose of improving adhesion and improving corrosion resistance.

(基板)
基板の材料としては、PETフィルム若しくはプラスチック等の樹脂基板、ガラス基板、シリコン基板又はカラーフィルター基板等、従来公知の材料から適宜選択することができる。基板の厚みは用途によっても異なるが、一般的には0.1〜3mmが好ましい。
(substrate)
The material of the substrate can be appropriately selected from conventionally known materials such as a resin substrate such as a PET film or plastic, a glass substrate, a silicon substrate, or a color filter substrate. Although the thickness of a board | substrate changes with uses, generally 0.1-3 mm is preferable.

(金属薄膜:第1層)
導電層となる金属電極薄膜(以下、金属膜ともいう。)である第1層2は、単膜としての電気抵抗率が15μΩ・cm以下であり、10μΩ・cm以下が好ましく、8μΩ・cm以下がより好ましい。電気抵抗率の下限は特に限定されないが、通常1.5μΩ・cm以上である。金属膜の電気抵抗率が15μΩ・cmを超えると、積層膜とした時の目安であるシート抵抗が1.5Ω/cm以下となるように厚膜を積層する必要がある。電気抵抗率及びシート抵抗は四端子法で測定する。
(Metal thin film: 1st layer)
The first layer 2, which is a metal electrode thin film (hereinafter also referred to as a metal film) serving as a conductive layer, has an electric resistivity of 15 μΩ · cm or less as a single film, preferably 10 μΩ · cm or less, and preferably 8 μΩ · cm or less. Is more preferable. The lower limit of the electrical resistivity is not particularly limited, but is usually 1.5 μΩ · cm or more. When the electrical resistivity of the metal film exceeds 15 μΩ · cm, it is necessary to laminate the thick film so that the sheet resistance, which is a standard when a laminated film is formed, is 1.5 Ω / cm 2 or less. Electrical resistivity and sheet resistance are measured by the four probe method.

金属膜としては、導電性の観点から純アルミニウム薄膜、アルミニウム合金薄膜、純銅薄膜、銅合金薄膜、純銀薄膜又は銀合金薄膜が好ましく、耐熱性及び耐薬品性を鑑みると、アルミニウム合金薄膜、銅合金薄膜又は銀合金薄膜がより好ましい。   The metal film is preferably a pure aluminum thin film, an aluminum alloy thin film, a pure copper thin film, a copper alloy thin film, a pure silver thin film or a silver alloy thin film from the viewpoint of conductivity, and in view of heat resistance and chemical resistance, an aluminum alloy thin film or a copper alloy is preferred. A thin film or a silver alloy thin film is more preferable.

金属膜の合金薄膜として含まれていてもよい合金成分としては、例えば、Al、Cu、Ag、Ni、La、Ge、Nd、Ta、Zr、Mn、Bi及びZn等が挙げられる。これらの主元素でない成分の合計含有量は一般的に0.1〜3.0原子%である。なお、具体的な金属膜の例とその電気抵抗率を表1に示す。   Examples of the alloy component that may be included as the alloy thin film of the metal film include Al, Cu, Ag, Ni, La, Ge, Nd, Ta, Zr, Mn, Bi, and Zn. The total content of these non-main elements is generally 0.1 to 3.0 atomic%. Table 1 shows examples of specific metal films and their electrical resistivity.

金属膜はスパッタリング法又は蒸着法等により成膜することができる。金属膜の膜厚は好ましくは50nm以上であり、シート抵抗の点から80nm以上がより好ましい。また、膜厚が厚くなると成膜プロセス時間が長くなるため、500nm以下が好ましく、350nm以下がより好ましい。スパッタリング法を用いて金属膜を成膜する場合、スパッタリング条件を変えることで、膜厚を調整することができる。   The metal film can be formed by sputtering or vapor deposition. The thickness of the metal film is preferably 50 nm or more, and more preferably 80 nm or more from the viewpoint of sheet resistance. Moreover, since the film forming process time becomes longer as the film thickness increases, the thickness is preferably 500 nm or less, and more preferably 350 nm or less. When a metal film is formed using a sputtering method, the film thickness can be adjusted by changing sputtering conditions.

(アルミニウム窒化膜又はアルミニウム合金窒化膜:第2層)
アルミニウム窒化膜又はアルミニウム合金窒化膜である第2層3は光吸収膜として機能する。そのため、第2層は光の入射側又は視認する側に設けることが好ましい。第2層は、金属膜である第1層とアルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜である第3層との間に設ける。
(Aluminum nitride film or aluminum alloy nitride film: second layer)
The second layer 3 which is an aluminum nitride film or an aluminum alloy nitride film functions as a light absorption film. For this reason, the second layer is preferably provided on the light incident side or the viewing side. The second layer is provided between the first layer that is a metal film and the third layer that is an oxide film, nitride film, or oxynitride film of aluminum or an aluminum alloy.

第2層は、金属膜の低反射化を目的とするため、例えば図1に示すように表面側に設けてもよいし、図2に示すように基板側に設けてもよく、その位置は光の入射側又は視認する側に依存する。これにより、積層膜の低反射化を実現する。   For the purpose of reducing the reflection of the metal film, the second layer may be provided on the surface side as shown in FIG. 1, for example, or may be provided on the substrate side as shown in FIG. Depends on the light incident side or the viewing side. Thereby, low reflection of the laminated film is realized.

アルミニウム窒化膜又はアルミニウム合金窒化膜は、窒素の含有量が40原子%以上であり、好ましくは45原子%以上である。窒素の含有量が40原子%未満では単膜反射率が高く、積層構造にしても反射率15.0%以下を達成することができない。窒素の含有量は、61原子%以下であり、好ましくは58原子%以下である。窒素の含有量が61原子%超では透過率が高く、積層構造にしても反射率15.0%以下を達成することができない。   The aluminum nitride film or the aluminum alloy nitride film has a nitrogen content of 40 atomic% or more, preferably 45 atomic% or more. When the nitrogen content is less than 40 atomic%, the single film reflectance is high, and even with a laminated structure, the reflectance of 15.0% or less cannot be achieved. The nitrogen content is 61 atomic% or less, preferably 58 atomic% or less. If the nitrogen content exceeds 61 atomic%, the transmittance is high, and even with a laminated structure, a reflectance of 15.0% or less cannot be achieved.

アルミニウム窒化膜又はアルミニウム合金窒化膜の膜厚は、その組成及び積層する金属膜の種類等によっても異なるが、反射率をより低減できることから20nm以上が好ましく、より好ましくは25nm以上である。膜厚が厚くなりすぎると、成膜プロセス時間の超過につながるため、200nm以下が好ましく、150nm以下がより好ましい。   The film thickness of the aluminum nitride film or the aluminum alloy nitride film varies depending on the composition and the type of the metal film to be laminated, but is preferably 20 nm or more, more preferably 25 nm or more because the reflectance can be further reduced. If the film thickness becomes too thick, the film formation process time will be exceeded, so 200 nm or less is preferable, and 150 nm or less is more preferable.

アルミニウム窒化膜又はアルミニウム合金窒化膜は、スパッタリング法又は蒸着法等により成膜することができる。スパッタリング法を用いてアルミニウム窒化膜又はアルミニウム合金窒化薄膜を成膜する場合、スパッタリング条件を変えることで、膜厚を調整することができる。   The aluminum nitride film or the aluminum alloy nitride film can be formed by sputtering or vapor deposition. When an aluminum nitride film or an aluminum alloy nitride thin film is formed using a sputtering method, the film thickness can be adjusted by changing the sputtering conditions.

アルミニウム窒化膜又はアルミニウム合金窒化膜は上記成分以外のその他の成分として酸素(O)、銅(Cu)、イットリウム(Y)、ケイ素(Si)、チタン(Ti)若しくはネオジム(Nd)等の元素又は不可避不純物が含まれていてもよい。その他の成分の含有量は、アルミニウム窒化膜又はアルミニウム合金窒化膜における窒素含有量又はその他の元素組成によっても異なる。   The aluminum nitride film or the aluminum alloy nitride film is an element other than the above components such as oxygen (O), copper (Cu), yttrium (Y), silicon (Si), titanium (Ti), neodymium (Nd) or the like. Inevitable impurities may be included. The content of other components varies depending on the nitrogen content or other elemental composition in the aluminum nitride film or aluminum alloy nitride film.

アルミニウム窒化膜又はアルミニウム合金窒化膜における酸素の含有量は、一般的には、10.0原子%以下であることが好ましく、より好ましくは5.0原子%以下である。また、酸素の含有量は、3原子%以上であることが好ましく、より好ましくは5原子%以上である。   In general, the oxygen content in the aluminum nitride film or the aluminum alloy nitride film is preferably 10.0 atomic% or less, and more preferably 5.0 atomic% or less. The oxygen content is preferably 3 atomic percent or more, more preferably 5 atomic percent or more.

アルミニウム合金窒化膜におけるCuの含有量は、3原子%以上であることが好ましく、より好ましくは5原子%以上である。また、Cuの含有量は、20原子%以下であることが好ましく、より好ましくは15原子%以下である。   The content of Cu in the aluminum alloy nitride film is preferably 3 atomic% or more, more preferably 5 atomic% or more. Moreover, it is preferable that content of Cu is 20 atomic% or less, More preferably, it is 15 atomic% or less.

アルミニウム合金窒化膜におけるYの含有量は、1原子%以上であることが好ましく、より好ましくは2原子%以上である。また、Yの含有量は、2.9原子%以下であることが好ましく、より好ましくは2.5原子%以下である。   The Y content in the aluminum alloy nitride film is preferably 1 atomic% or more, more preferably 2 atomic% or more. Moreover, it is preferable that content of Y is 2.9 atomic% or less, More preferably, it is 2.5 atomic% or less.

アルミニウム合金窒化膜におけるSiの含有量は、1原子%以上であることが好ましく、より好ましくは1.5原子%以上である。また、Siの含有量は、3原子%以下であることが好ましく、より好ましくは2.5原子%以下である。   The Si content in the aluminum alloy nitride film is preferably 1 atomic% or more, more preferably 1.5 atomic% or more. Moreover, it is preferable that content of Si is 3 atomic% or less, More preferably, it is 2.5 atomic% or less.

アルミニウム合金窒化膜におけるTiの含有量は、0.5原子%以上であることが好ましく、より好ましくは1原子%以上である。また、Tiの含有量は、7原子%以下であることが好ましく、より好ましくは5原子%以下である。   The Ti content in the aluminum alloy nitride film is preferably 0.5 atomic% or more, and more preferably 1 atomic% or more. Moreover, it is preferable that content of Ti is 7 atomic% or less, More preferably, it is 5 atomic% or less.

アルミニウム合金窒化膜におけるNdの含有量は、1原子%以上であることが好ましく、より好ましくは2原子%以上である。また、Ndの含有量は、5原子%以下であることが好ましく、より好ましくは4.5原子%以下である。   The Nd content in the aluminum alloy nitride film is preferably 1 atomic% or more, more preferably 2 atomic% or more. Moreover, it is preferable that content of Nd is 5 atomic% or less, More preferably, it is 4.5 atomic% or less.

不可避不純物としてはC、Fe又はMg等の金属元素が挙げられる。不可避不純物の含有量の上限は、合計で0.1原子%未満であることが好ましい。   Inevitable impurities include metal elements such as C, Fe or Mg. The upper limit of the content of inevitable impurities is preferably less than 0.1 atomic% in total.

(アルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜:第3層)
アルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜である第3層4は積層膜の低反射化を実現するために機能するための光学調整層として機能する。そのため、第3層は、アルミニウム又はアルミニウム合金の窒化膜である第2層の直上又は直下に設けることが好ましい。金属膜の低反射化を目的とするため、例えば、図1に示すように第3層を表面側に設けてもよいし、図2に示すように基板側に設けてもよく、その位置は光の入射側又は視認する側に依存する。
(Aluminum or aluminum alloy oxide film, nitride film or oxynitride film: third layer)
The third layer 4 that is an oxide film, nitride film, or oxynitride film of aluminum or an aluminum alloy functions as an optical adjustment layer for functioning to realize low reflection of the laminated film. Therefore, the third layer is preferably provided directly above or directly below the second layer, which is a nitride film of aluminum or aluminum alloy. In order to reduce the reflection of the metal film, for example, the third layer may be provided on the surface side as shown in FIG. 1, or may be provided on the substrate side as shown in FIG. Depends on the light incident side or the viewing side.

第3層が単層である場合、以下の(1)〜(3)のいずれか1であることを特徴とする。
(1)50原子%以上60原子%以下の酸素を含む、アルミニウム酸化膜又はアルミニウム合金酸化膜
(2)50原子%以上60原子%以下の酸素及び1原子%以上10原子%以下の窒素を含む、アルミニウム酸窒化膜又はアルミニウム合金酸窒化膜
(3)50原子%以上60原子%以下の窒素を含む、アルミニウム窒化膜又はアルミニウム合金窒化膜
When the third layer is a single layer, it is any one of the following (1) to (3).
(1) Aluminum oxide film or aluminum alloy oxide film containing 50 atomic% to 60 atomic% oxygen (2) 50 atomic% to 60 atomic% oxygen and 1 atomic% to 10 atomic% nitrogen Aluminum oxynitride film or aluminum alloy oxynitride film (3) Aluminum nitride film or aluminum alloy nitride film containing nitrogen of 50 atomic% to 60 atomic%

前記(1)のアルミニウム酸化膜又はアルミニウム合金酸化膜における酸素の含有量は、50原子%以上である。また、酸素の含有量は、60原子%以下である。酸素の含有量が50原子%以上であることにより、低反射性を実現することができる。また、酸素の含有量が60原子%以下であることにより、ウェットエッチング法での加工性を確保できる。   The oxygen content in the aluminum oxide film or aluminum alloy oxide film of (1) is 50 atomic% or more. The oxygen content is 60 atomic% or less. Low reflectivity can be realized when the oxygen content is 50 atomic% or more. Moreover, when the oxygen content is 60 atomic% or less, workability by the wet etching method can be secured.

前記(2)のアルミニウム酸窒化膜又はアルミニウム合金酸窒化膜における酸素の含有量は、50原子%以上である。また、酸素の含有量は、60原子%以下である。酸素の含有量が50原子%以上であることにより、低反射性を実現することができる。また、酸素の含有量が60原子%以下であることにより、ウェットエッチング法での加工性を確保できる。   The oxygen content in the aluminum oxynitride film or aluminum alloy oxynitride film of (2) is 50 atomic% or more. The oxygen content is 60 atomic% or less. Low reflectivity can be realized when the oxygen content is 50 atomic% or more. Moreover, when the oxygen content is 60 atomic% or less, workability by the wet etching method can be secured.

前記(2)のアルミニウム酸窒化膜又はアルミニウム合金酸窒化膜における窒素の含有量は、1原子%以上である。また、窒素の含有量は、10原子%以下であり、好ましくは7原子%以下である。窒素の含有量が上記範囲になることで、低反射性とウェットエッチング加工性を確保できる。   The nitrogen content in the aluminum oxynitride film or aluminum alloy oxynitride film of (2) is 1 atomic% or more. The nitrogen content is 10 atomic% or less, preferably 7 atomic% or less. When the nitrogen content falls within the above range, low reflectivity and wet etching processability can be ensured.

前記(2)のアルミニウム酸窒化膜又はアルミニウム合金酸窒化膜における酸素と窒素の含有量の合計は、50原子%以上であることが好ましく、より好ましくは55原子%以上である。また、65原子%以下であることが好ましく、より好ましくは62原子%以下である。酸素と窒素の含有量の合計が55原子%以上であることにより、低反射性と高い透過性を確保できる。また、酸素と窒素の含有量の合計が65原子%以下であることにより、ウェットエッチング加工性を確保できる。   The total content of oxygen and nitrogen in the aluminum oxynitride film or aluminum alloy oxynitride film (2) is preferably 50 atomic% or more, more preferably 55 atomic% or more. Moreover, it is preferable that it is 65 atomic% or less, More preferably, it is 62 atomic% or less. When the total content of oxygen and nitrogen is 55 atomic% or more, low reflectivity and high transparency can be secured. Moreover, wet etching processability is securable because the sum total of content of oxygen and nitrogen is 65 atomic% or less.

前記(3)のアルミニウム窒化膜又はアルミニウム合金窒化膜における窒素の含有量は、50原子%以上であり、好ましくは55原子%以上である。また、窒素の含有量は、60原子%以下である。窒素の含有量が50原子%以上であることにより、低反射性を実現することができる。また、窒素の含有量が60原子%以下であることにより、ウェットエッチング加工性を確保できる。   The nitrogen content in the aluminum nitride film or aluminum alloy nitride film of (3) is 50 atomic% or more, preferably 55 atomic% or more. The nitrogen content is 60 atomic% or less. Low reflectivity can be realized when the nitrogen content is 50 atomic% or more. Further, wet etching processability can be ensured when the nitrogen content is 60 atomic% or less.

アルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜の膜厚は、その組成及び積層する金属膜の種類等によっても異なるが、反射率をより低減できることから20nm以上が好ましく、より好ましくは25nm以上である。膜厚が厚くなりすぎると、成膜プロセス時間の超過につながるため、200nm以下が好ましく、より好ましくは150nm以下である。   The film thickness of the oxide film, nitride film or oxynitride film of aluminum or aluminum alloy varies depending on the composition and the type of metal film to be laminated, but is preferably 20 nm or more, more preferably 25 nm because the reflectance can be further reduced. That's it. If the film thickness becomes too thick, the film formation process time will be exceeded, so 200 nm or less is preferable, and more preferably 150 nm or less.

アルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜は、スパッタリング法又は蒸着法等により成膜することができる。スパッタリング法を用いてアルミニウム合金窒化薄膜を成膜する場合、スパッタリング条件を変えることで、膜厚を調整することができる。   An oxide film, a nitride film, or an oxynitride film of aluminum or an aluminum alloy can be formed by a sputtering method, an evaporation method, or the like. When an aluminum alloy nitride thin film is formed using a sputtering method, the film thickness can be adjusted by changing the sputtering conditions.

アルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜は上記成分以外のその他の成分として銅(Cu)、ネオジム(Nd)、鉄(Fe)、炭素(C)等の元素又は不可避不純物が含まれていてもよい。その他の成分の含有量は、アルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜における酸素含有量若しくは窒素含有量又はその他の元素組成によっても異なる。   The oxide film, nitride film or oxynitride film of aluminum or aluminum alloy contains elements such as copper (Cu), neodymium (Nd), iron (Fe), carbon (C) or inevitable impurities as other components besides the above components. It may be. The content of other components varies depending on the oxygen content or nitrogen content or other elemental composition in the oxide film, nitride film, or oxynitride film of aluminum or aluminum alloy.

アルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜におけるCuの含有量は3原子%以上であることが好ましく、より好ましくは5原子%以上である。Cuの含有量は、20原子%以下であることが好ましく、より好ましくは15原子%以下である。   The Cu content in the oxide film, nitride film or oxynitride film of aluminum or aluminum alloy is preferably 3 atomic% or more, more preferably 5 atomic% or more. The Cu content is preferably 20 atomic% or less, and more preferably 15 atomic% or less.

アルミニウム合金の酸化膜、窒化膜又は酸窒化膜におけるNdの含有量は1原子%以上であることが好ましく、より好ましくは2.0原子%以上である。Ndの含有量は、5原子%以下であることが好ましく、より好ましくは4.5原子%以下である。   The Nd content in the oxide film, nitride film, or oxynitride film of the aluminum alloy is preferably 1 atomic% or more, and more preferably 2.0 atomic% or more. The Nd content is preferably 5 atomic percent or less, and more preferably 4.5 atomic percent or less.

不可避不純物としてはC、Fe又はMg等の金属元素が挙げられる。不可避不純物の含有量の上限は、合計で0.1原子%未満であることが好ましい。   Inevitable impurities include metal elements such as C, Fe or Mg. The upper limit of the content of inevitable impurities is preferably less than 0.1 atomic% in total.

(密着層又は保護層)
密着層又は保護層5は、金属電極薄膜の種類によって、密着性の改善又は耐食性の改善を目的として適宜設ける。具体的には、例えば、金属電極薄膜が純アルミニウム薄膜又はアルミニウム合金薄膜である場合には、加熱によるヒロック発生を抑制するため、保護層としてTi、Mo、TiN又はMoNを積層することが好ましい。
(Adhesion layer or protective layer)
The adhesion layer or protective layer 5 is appropriately provided for the purpose of improving adhesion or improving corrosion resistance depending on the type of the metal electrode thin film. Specifically, for example, when the metal electrode thin film is a pure aluminum thin film or an aluminum alloy thin film, it is preferable to stack Ti, Mo, TiN or MoN as a protective layer in order to suppress generation of hillocks due to heating.

また、例えば、金属電極薄膜が純Cu薄膜又はCu合金薄膜である場合には、密着性の向上又は耐熱性向上を目的としてTi、TiN、Ta、TaN、SiN又はSiCNを積層することが好ましい。また、例えば、金属電極薄膜が純Ag薄膜又はAg合金薄膜である場合には、密着性の向上又は耐熱性向上を目的としてITO薄膜又はIZO薄膜に代表される透明導電膜を積層することが好ましい。   For example, when the metal electrode thin film is a pure Cu thin film or a Cu alloy thin film, it is preferable to stack Ti, TiN, Ta, TaN, SiN or SiCN for the purpose of improving adhesion or heat resistance. For example, when the metal electrode thin film is a pure Ag thin film or an Ag alloy thin film, a transparent conductive film typified by an ITO thin film or an IZO thin film is preferably laminated for the purpose of improving adhesion or heat resistance. .

密着層又は保護層はスパッタリング法、CVD法又は蒸着法等により成膜することができる。密着層又は保護層の膜厚は、金属電極薄膜の種類等にもよっても異なるが、連続的に表面が平坦な膜を得るためには10nm以上が好ましく、より好ましくは15nm以上である。また膜厚の増加は成膜プロセス時間が長くなるため、500nm以下が好ましく、より好ましくは300nm以下である。スパッタリング法を用いて密着層又は保護層を成膜する場合、スパッタリング条件を変えることで、膜厚を調整することができる。   The adhesion layer or the protective layer can be formed by a sputtering method, a CVD method, an evaporation method, or the like. The film thickness of the adhesion layer or the protective layer varies depending on the type of the metal electrode thin film, but is preferably 10 nm or more, more preferably 15 nm or more in order to obtain a film having a continuously flat surface. Further, since the increase in the film thickness increases the film forming process time, it is preferably 500 nm or less, more preferably 300 nm or less. When the adhesion layer or the protective layer is formed using a sputtering method, the film thickness can be adjusted by changing the sputtering conditions.

以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、その趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples, and modifications are made within a range that can be adapted to the gist thereof. It is also possible to carry out and they are all included in the technical scope of the present invention.

[評価方法]
(1)窒化薄膜中の窒素量
純アルミニウム窒化薄膜及びアルミニウム合金窒化薄膜における膜中窒素量(膜中N濃度)(原子%)はPerkinElmer社製のPHI650走査型オージェ電子分光装置を用いて、エネルギー 3keV、電流 約50nAの電子線を75°の角度で膜表面に照射し、オージェ(Auger)スペクトルを測定した。膜の深さ方向については、Arのイオンスパッタでエッチングしながら、上記と同様の条件で測定を行った。
[Evaluation method]
(1) Nitrogen amount in nitride thin film The amount of nitrogen (N concentration in the film) (atomic%) in pure aluminum nitride thin film and aluminum alloy nitride thin film was measured using a PHI650 scanning Auger electron spectrometer manufactured by PerkinElmer. The surface of the film was irradiated with an electron beam of 3 keV and a current of about 50 nA at an angle of 75 °, and an Auger spectrum was measured. For the depth direction of the film, measurement was performed under the same conditions as described above while etching by Ar + ion sputtering.

(2)単膜の反射率、透過率及び吸収率
純アルミニウム窒化薄膜及びアルミニウム合金窒化薄膜における反射率及び透過率は、日本分光社製V−570分光光度計を用い、波長400nm〜800nmの反射率スペクトルと透過率スペクトルを測定した。表1には波長450nm、550nm及び650nmにおける反射率と透過率を記載した。また各波長における吸収率は下記式より求めた。
吸収率(%)=100−反射率(%)−透過率(%)
(2) Reflectivity, transmittance, and absorptivity of single film Reflectance and transmittance in pure aluminum nitride thin film and aluminum alloy nitride thin film are reflected at wavelengths of 400 nm to 800 nm using a V-570 spectrophotometer manufactured by JASCO Corporation. The rate spectrum and transmittance spectrum were measured. Table 1 shows the reflectance and transmittance at wavelengths of 450 nm, 550 nm, and 650 nm. Moreover, the absorptance in each wavelength was calculated | required from the following formula.
Absorptivity (%) = 100-reflectance (%)-transmittance (%)

(3)窒化薄膜、金属電極薄膜及びアルミニウム合金窒化積層薄膜の電気抵抗率及びシート抵抗
窒化薄膜、金属電極薄膜及びアルミニウム合金窒化積層薄膜のシート抵抗はそれぞれ四端子法で測定した。なお窒化薄膜及び金属電極薄膜の単膜の電気抵抗率は、上記で得られたシート抵抗の値に膜厚を掛けることにより算出した。
(3) Electrical resistivity and sheet resistance of nitride thin film, metal electrode thin film and aluminum alloy nitride laminated thin film Sheet resistance of the nitride thin film, metal electrode thin film and aluminum alloy nitride laminated thin film was measured by a four-terminal method. The electrical resistivity of the single film of the nitride thin film and the metal electrode thin film was calculated by multiplying the sheet resistance value obtained above by the film thickness.

(4)積層薄膜の反射率
積層薄膜の反射率は、日本分光社製V−570分光光度計を用い、波長400nm〜800nmの反射率スペクトルを測定した。
(4) Reflectance of laminated thin film The reflectance of the laminated thin film was measured using a V-570 spectrophotometer manufactured by JASCO Corporation, and a reflectance spectrum having a wavelength of 400 nm to 800 nm was measured.

[金属電極薄膜の評価:試験例1−1〜1−22]
金属電極薄膜の評価を行うため、表1に示す組成となるように、下記条件でスパッタリング法により金属電極薄膜を成膜した。基板には厚みが0.7mmのCorning社製EAGLE XGガラスを用いた。
[Evaluation of Metal Electrode Thin Film: Test Examples 1-1 to 1-22]
In order to evaluate the metal electrode thin film, the metal electrode thin film was formed by sputtering under the following conditions so as to have the composition shown in Table 1. Corning EAGLE XG glass with a thickness of 0.7 mm was used for the substrate.

(スパッタリング条件)
・成膜装置:ULVAC社製 型式CS−200
・ガス圧:2mTorr
・成膜ガス:Arガス
・成膜パワー:DC500W
・基板温度:室温
(Sputtering conditions)
・ Film forming apparatus: Model CS-200 manufactured by ULVAC
・ Gas pressure: 2mTorr
・ Deposition gas: Ar gas ・ Deposition power: DC500W
・ Substrate temperature: Room temperature

なお、アルミニウム合金窒化薄膜及び金属電極薄膜の膜厚は成膜時間を変更することで調整した。得られた薄膜の膜厚は触針式段差計により測定した。得られた試験例1−1〜1−22の金属電極薄膜の組成及び評価結果を表1に示す。   The film thicknesses of the aluminum alloy nitride thin film and the metal electrode thin film were adjusted by changing the film formation time. The film thickness of the obtained thin film was measured with a stylus type step gauge. Table 1 shows the compositions and evaluation results of the obtained metal electrode thin films of Test Examples 1-1 to 1-22.

表1に示すように、いずれの金属電極薄膜も電気抵抗率が15μΩ・cm以下であって、高い導電性を示し、第1層として利用可能であることがわかった。   As shown in Table 1, it was found that any of the metal electrode thin films had an electrical resistivity of 15 μΩ · cm or less, showed high conductivity, and could be used as the first layer.

[アルミニウム合金窒化薄膜の評価:試験例2−1〜2−29]
アルミニウム合金窒化薄膜の光吸収特性についての評価を行うため、純アルミニウム窒化薄膜(試験例2−1〜2−4)及びアルミニウム合金窒化薄膜(試験例試験例2−5〜2−29)を表2に記載の組成となるように下記条件でスパッタリング法により成膜した。基板には厚みが0.7mmのCorning社製EAGLE XGガラスを用いた。
[Evaluation of Aluminum Alloy Nitride Thin Film: Test Examples 2-1 to 2-29]
In order to evaluate the light absorption characteristics of the aluminum alloy nitride thin film, pure aluminum nitride thin films (Test Examples 2-1 to 2-4) and aluminum alloy nitride thin films (Test Examples Test Examples 2-5 to 2-29) are shown. The film was formed by sputtering under the following conditions so that the composition described in 2 was obtained. Corning EAGLE XG glass with a thickness of 0.7 mm was used for the substrate.

(スパッタリング条件)
・成膜装置:ULVAC社製 型式CS−200
・ガス圧:2mTorr
・成膜ガス:Arガス及びNガスからなる混合ガス
・成膜パワー:DC500W
・基板温度:室温
(Sputtering conditions)
・ Film forming apparatus: Model CS-200 manufactured by ULVAC
・ Gas pressure: 2mTorr
・ Film formation gas: Mixed gas consisting of Ar gas and N 2 gas ・ Film formation power: DC500W
・ Substrate temperature: Room temperature

なお、表2に示す膜中窒素量(膜中N濃度)(原子%)になるように、Arガス及びNガスの混合量を変化させた成膜ガスにより成膜した。得られた試験例2−1〜2−29の純アルミニウム窒化薄膜又はアルミニウム合金窒化薄膜の組成及び評価結果を表2に示す。表2中、波長450nm、550nm及び650nmにおける反射率が50%以下であれば、評価を「○」とした。 It should be noted that the film was formed with a film forming gas in which the mixed amount of Ar gas and N 2 gas was changed so that the nitrogen amount in the film (N concentration in the film) (atomic%) shown in Table 2 was obtained. Table 2 shows the compositions and evaluation results of the pure aluminum nitride thin films or aluminum alloy nitride thin films obtained in Test Examples 2-1 to 2-29. In Table 2, when the reflectance at wavelengths of 450 nm, 550 nm, and 650 nm was 50% or less, the evaluation was “◯”.

表2に示すように、試験例2−1〜2−4は純アルミニウム窒化薄膜である。膜中の窒素量が40原子%以上である試験例2−4は、反射率が50%以下であり、要求を満たした。一方、膜中の窒素量が40原子%未満である試験例2−1〜2−3は、反射率が50%超であり、要求を満たさなかった。   As shown in Table 2, Test Examples 2-1 to 2-4 are pure aluminum nitride thin films. Test Example 2-4 in which the amount of nitrogen in the film was 40 atomic% or more had a reflectance of 50% or less and satisfied the requirement. On the other hand, Test Examples 2-1 to 2-3, in which the amount of nitrogen in the film was less than 40 atomic%, had a reflectance of more than 50% and did not satisfy the requirement.

試験例2−5〜2−10はAlとCuからなるアルミニウム合金窒化薄膜である。膜中の窒素量が40原子%以上である試験例2−7〜2−10は、反射率が50%以下であり、要求を満たした。一方、膜中の窒素量が40原子%未満である試験例2−5〜2−6は、反射率が50%超であった。   Test Examples 2-5 to 2-10 are aluminum alloy nitride thin films made of Al and Cu. In Test Examples 2-7 to 2-10 in which the amount of nitrogen in the film was 40 atomic% or more, the reflectance was 50% or less, and the requirement was satisfied. On the other hand, Test Examples 2-5 to 2-6 in which the amount of nitrogen in the film was less than 40 atomic% had a reflectance of more than 50%.

試験例2−11〜2−27はAlとCuを含み、Y、Si、Ti及びNdから選ばれる少なくとも1種を含むアルミニウム合金窒化薄膜である。膜中の窒素量が40原子%以上である試験例2−12〜2−27は、反射率が50%以下であり、要求を満たした。一方、膜中の窒素量が40原子%未満である試験例2−11は、反射率が50%超であり、要求を満たさなかった。   Test Examples 2-11 to 2-27 are aluminum alloy nitride thin films containing Al and Cu and containing at least one selected from Y, Si, Ti, and Nd. In Test Examples 2-12 to 2-27 in which the amount of nitrogen in the film was 40 atomic% or more, the reflectance was 50% or less, and the requirement was satisfied. On the other hand, Test Example 2-11 in which the amount of nitrogen in the film was less than 40 atomic% had a reflectance of more than 50% and did not satisfy the requirement.

これらの結果から、アルミニウム又はアルミニウム合金の窒化膜中の窒素量を40原子%以上とすることにより、反射率が50%以下となることがわかった。   From these results, it was found that the reflectance was 50% or less when the amount of nitrogen in the nitride film of aluminum or aluminum alloy was 40 atomic% or more.

[アルミニウム合金酸化膜、窒化膜又は酸窒化膜:試験例3−1〜3−11]
アルミニウム合金酸化膜、窒化膜又は酸窒化膜の分光特性を評価するため、純アルミニウム窒化薄膜(試験例3−1〜3−3)及びアルミニウム合金窒化薄膜(試験例3−4〜3−11)を表3に示す組成となるように下記条件でスパッタリング法により成膜した。基板には厚みが0.7mmのCorning社製EAGLE XGガラスを用いた。
[Aluminum alloy oxide film, nitride film or oxynitride film: Test examples 3-1 to 11-11]
In order to evaluate the spectral characteristics of the aluminum alloy oxide film, nitride film, or oxynitride film, pure aluminum nitride thin films (Test Examples 3-1 to 3-3) and aluminum alloy nitride thin films (Test Examples 3-4 to 3-11) Was formed by sputtering under the following conditions so as to have the composition shown in Table 3. Corning EAGLE XG glass with a thickness of 0.7 mm was used for the substrate.

(スパッタリング条件)
・成膜装置:ULVAC社製 型式CS−200
・ガス圧:2mTorr
・成膜ガス:Arガス、Nガス及びOガスからなる混合ガス
・成膜パワー:DC500W
・基板温度:室温
(Sputtering conditions)
・ Film forming apparatus: Model CS-200 manufactured by ULVAC
・ Gas pressure: 2mTorr
・ Film forming gas: Mixed gas consisting of Ar gas, N 2 gas and O 2 gas ・ Film forming power: DC500W
・ Substrate temperature: Room temperature

なお、成膜ガスは表3に示す膜中窒素量(膜中N濃度)(原子%)になるように、ArガスとNガス及びOガスの混合量を変えて成膜を行った。得られた試験例3−1〜3−11の薄膜の組成及び評価結果を表3に示す。表3中、反射率が35%以下で、電気抵抗率が1.0×10μΩ・cm以上であれば、評価を「○」とした。 The film formation gas was formed by changing the mixed amount of Ar gas, N 2 gas and O 2 gas so that the nitrogen amount in the film (N concentration in the film) (atomic%) shown in Table 3 was obtained. . Table 3 shows the compositions and evaluation results of the obtained thin films of Test Examples 3-1 to 3-11. In Table 3, when the reflectance was 35% or less and the electrical resistivity was 1.0 × 10 7 μΩ · cm or more, the evaluation was “◯”.

表3に示すように、50原子%以上60原子%以下の酸素を含むアルミニウム酸化膜又はアルミニウム合金酸化膜である試験例3−1、3−4及び3−10は、反射率が35%以下、電気抵抗率が1.0×10μΩ・cm以上であり、要求を満たした。 As shown in Table 3, in Test Examples 3-1, 3-4, and 3-10, which are aluminum oxide films or aluminum alloy oxide films containing 50 atomic% or more and 60 atomic% or less of oxygen, the reflectance is 35% or less. The electrical resistivity was 1.0 × 10 7 μΩ · cm or more, satisfying the requirements.

また、50原子%以上60原子%以下の酸素、1原子%以上10原子%以下の窒素を含むアルミニウム酸窒化膜又はアルミニウム合金酸窒化膜である試験例3−2、3−5〜3−7及び3−11は、反射率が35%以下、電気抵抗率が1.0×10μΩ・cm以上であり、要求を満たした。 Further, Test Examples 3-2 and 3-5 to 3-7, which are an aluminum oxynitride film or an aluminum alloy oxynitride film containing oxygen of 50 atomic% to 60 atomic% and nitrogen of 1 atomic% to 10 atomic%. And No. 3-11 had a reflectance of 35% or less and an electric resistivity of 1.0 × 10 7 μΩ · cm or more, which satisfied the requirements.

さらに、50原子%以上60原子%以下の窒素を含むアルミニウム窒化膜又はアルミニウム合金窒化膜である試験例3−1及び3−4は、反射率が35%以下、電気抵抗率が1.0×10μΩ・cm以上であり、要求を満たした。 Furthermore, Test Examples 3-1 and 3-4, which are aluminum nitride films or aluminum alloy nitride films containing nitrogen of 50 atomic% or more and 60 atomic% or less, have a reflectance of 35% or less and an electrical resistivity of 1.0 ×. It was 10 7 μΩ · cm or more, which satisfied the requirement.

一方、膜中の窒素濃度が50原子%未満のアルミニウム合金窒化膜である試験例3−8は、反射率が35%超と高く、電気抵抗率が1.0×10μΩ・cm未満であり、要求を満たさなかった。 On the other hand, Test Example 3-8, which is an aluminum alloy nitride film having a nitrogen concentration of less than 50 atomic% in the film, has a high reflectance of more than 35% and an electrical resistivity of less than 1.0 × 10 7 μΩ · cm. Yes, did not meet the requirements.

表4に、第1層を表1で示した各金属電極薄膜として、該第1層に表4に示す第2層及び第3層を積層した場合の積層膜の例を示す。表4において、ウェットエッチング加工性は、一括ウェットエッチング加工が可能であれば「OK」とした。   Table 4 shows an example of a laminated film when the first layer is the metal electrode thin film shown in Table 1 and the second layer and the third layer shown in Table 4 are laminated on the first layer. In Table 4, the wet etching processability is set to “OK” if collective wet etching process is possible.

表4に示すように、電気抵抗率が15μΩ・cm以下である金属薄膜である第1層、40原子%以上61原子%以下の窒素を含むアルミニウム合金窒化膜である第2層、並びに50原子%以上60原子%以下の酸素及び1原子%以上10原子%以下の窒素を含むアルミニウム酸窒化膜である第3層を積層することで低反射性、導電性及びエッチング加工性を両立する積層膜が得られることがわかった。   As shown in Table 4, a first layer that is a metal thin film having an electrical resistivity of 15 μΩ · cm or less, a second layer that is an aluminum alloy nitride film containing nitrogen of 40 atomic% to 61 atomic%, and 50 atoms Laminated film that achieves both low reflectivity, electrical conductivity, and etching processability by laminating a third layer, which is an aluminum oxynitride film containing oxygen in the range of 60% to 60% by atom and nitrogen in the range of 1% to 10% by atom. Was found to be obtained.

表5に、第2層を表2で示したアルミニウム窒化膜又はアルミニウム合金窒化膜として、該第2層に表5に示す第1層及び第3層を積層した積層膜の例を示す。表5において、ウェットエッチング加工性は、一括ウェットエッチング加工が可能であれば「OK」とした。   Table 5 shows an example of a laminated film in which the second layer is the aluminum nitride film or aluminum alloy nitride film shown in Table 2 and the first layer and the third layer shown in Table 5 are laminated on the second layer. In Table 5, the wet etching processability was set to “OK” if collective wet etching process was possible.

表5に示すように、試験例5−1〜5−3、5−5、5−6及び5−11は、第2層の単膜反射率が50%以上と高いことから、第1層及び第3層を積層しても反射率が15.0%超と高く、要求する低反射性を満たすことができないことがわかった。   As shown in Table 5, in Test Examples 5-1 to 5-3, 5-5, 5-6, and 5-11, since the single-film reflectance of the second layer is as high as 50% or more, the first layer And even if the third layer was laminated, it was found that the reflectivity was as high as 15.0% and the required low reflectivity could not be satisfied.

表6には、第3層を表3で示した、アルミニウム合金酸化膜、窒化膜又は酸窒化膜とし、該第3層に表6に示す第1層及び第2層を積層した積層膜の例を示す。表6において、ウェットエッチング加工性は、ウェットエッチング法で一括加工可能であれば「OK」、一括加工できなければ「NG」とした。   Table 6 shows a laminated film in which the third layer is an aluminum alloy oxide film, nitride film, or oxynitride film shown in Table 3, and the first layer and the second layer shown in Table 6 are stacked on the third layer. An example is shown. In Table 6, the wet etching processability was set to “OK” if batch processing was possible by the wet etching method, and “NG” if batch processing was not possible.

表6において、反射率(450nm、550nm及び650nm)が15.0%以下であり且つウェットエッチング加工性が「OK」であれば「○」、反射率(450nm、550nm及び650nm)が15.0%以下であり且つウェットエッチング加工性が「NG」であれば「△」、反射率(450nm、550nm及び650nm)が15.0%超である場合は「×」と評価した。   In Table 6, if the reflectance (450 nm, 550 nm, and 650 nm) is 15.0% or less and the wet etching processability is “OK”, “◯”, and the reflectance (450 nm, 550 nm, and 650 nm) is 15.0. % When the wet etching processability is “NG”, and “X” when the reflectance (450 nm, 550 nm and 650 nm) is more than 15.0%.

表6に示すように、電気抵抗率が15μΩ・cm以下である金属薄膜である第1層、40原子%以上61原子%以下の窒素を含むアルミニウム合金窒化膜である第2層、並びに50原子%以上60原子%以下の酸素を含むアルミニウム酸化膜若しくはアルミニウム合金酸化膜、50原子%以上60原子%以下の酸素及び1原子%以上10原子%以下の窒素を含むアルミニウム酸窒化膜若しくはアルミニウム合金酸窒化膜、又は50原子%以上60原子%以下の窒素を含むアルミニウム窒化膜若しくはアルミニウム合金窒化膜である第3層を積層した試験例6−2〜6−9及び6−11〜6−22は、低反射性、導電性及びエッチング加工性を両立する積層膜が得られることがわかった。   As shown in Table 6, the first layer, which is a metal thin film having an electrical resistivity of 15 μΩ · cm or less, the second layer, which is an aluminum alloy nitride film containing 40 atomic% to 61 atomic% of nitrogen, and 50 atoms Aluminum Oxide Nitride Film or Aluminum Alloy Oxide Film Containing 50% to 60 At% Oxygen, Aluminum Oxynitride Film or Aluminum Alloy Acid Containing 50 At% to 60 At% Oxygen and 1 At% to 10 At% Nitrogen Test examples 6-2 to 6-9 and 6-11 to 6-22 in which a third layer which is a nitride film, or an aluminum nitride film or an aluminum alloy nitride film containing nitrogen of 50 atomic% to 60 atomic% is laminated, It was found that a laminated film having both low reflectivity, conductivity and etching processability can be obtained.

一方、試験例6−1は反射率が15.0%以上と高く、要求を満たさなかった。また、単膜反射率が高い試験例3−8の第3層を積層した試験例6−10は、反射率が15.0%以上と高く、要求を満たさなかった。   On the other hand, Test Example 6-1 had a high reflectance of 15.0% or more and did not satisfy the requirement. In addition, Test Example 6-10 in which the third layer of Test Example 3-8 having a high single-film reflectance was stacked had a high reflectance of 15.0% or more and did not satisfy the requirements.

1 基板
2 第1層(導電層)
3 第2層(アルミニウム窒化膜又はアルミニウム合金窒化膜)
4 第3層(アルミニウム又はアルミニウム合金の酸化膜、窒化膜又は酸窒化膜)
5 密着層又は保護層
1 Substrate 2 First layer (conductive layer)
3 Second layer (aluminum nitride film or aluminum alloy nitride film)
4 Third layer (aluminum or aluminum alloy oxide film, nitride film or oxynitride film)
5 adhesion layer or protective layer

本発明者らは、鋭意研究を重ねた結果、電気抵抗率が特定範囲以下である金属薄膜である第1層、特定の組成を有するアルミニウム又はアルミニウム合金の窒化膜である第2層、特定の組成を有するアルミニウム合金の酸化膜、又はアルミニウム若しくはアルミニウム合金の酸窒化膜である第3層がこの順に積層された積層膜を採用することにより、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive research, the inventors of the present invention have found that a first layer that is a metal thin film whose electrical resistivity is not more than a specific range, a second layer that is a nitride film of aluminum or aluminum alloy having a specific composition, a specific layer oxide film of the luer aluminum alloy having a composition, or the third layer is a oxynitride film of the aluminum or aluminum alloy by employing a laminated film laminated in this order, can solve the above problems, the present invention It came to complete.

すなわち、本発明は、以下の[1]〜[3]に係るものである。
[1]第1層、第2層及び第3層がこの順に積層された積層膜であって、
第1層が、電気抵抗率が15μΩ・cm以下である金属薄膜であり、
第2層が40原子%以上61原子%以下の窒素を含むアルミニウム窒化膜又は40原子%以上61原子%以下の窒素と、酸素(O)、銅(Cu)、イットリウム(Y)、ケイ素(Si)、チタン(Ti)、ネオジム(Nd)うち少なくとも1つを含むアルミニウム合金窒化膜であり、
第3層が50原子%以上60原子%以下の酸素と、銅(Cu)、ネオジム(Nd)、鉄(Fe)、炭素(C)の少なくとも1つを含むアルミニウム合金酸化膜、50原子%以上60原子%以下の酸素及び1原子%以上10原子%以下の窒素を含むアルミニウム酸窒化膜、又は50原子%以上60原子%以下の酸素及び1原子%以上10原子%以下の窒素と、銅(Cu)、ネオジム(Nd)、鉄(Fe)、炭素(C)の少なくとも1つを含むアルミニウム合金酸窒化膜であり、
前記第2層の膜厚が20nm〜200nm、かつ、前記第3層の膜厚が15nm〜200nmである積層膜。
[2][1]に記載の積層膜を備えた表示装置。
[3][1]に記載の積層膜を備えた入力装置。
That is, the present invention relates to the following [1] to [3].
[1] A laminated film in which a first layer, a second layer, and a third layer are laminated in this order,
The first layer is a metal thin film having an electrical resistivity of 15 μΩ · cm or less,
The second layer is an aluminum nitride film containing nitrogen of 40 atomic% to 61 atomic% or nitrogen of 40 atomic% to 61 atomic%, oxygen (O), copper (Cu), yttrium (Y), silicon (Si ), An aluminum alloy nitride film containing at least one of titanium (Ti) and neodymium (Nd) ,
An aluminum alloy oxide film in which the third layer contains oxygen of 50 atomic% to 60 atomic% and at least one of copper (Cu), neodymium (Nd), iron (Fe), and carbon (C); Aluminum oxynitride film containing oxygen of 60 atomic% or less and nitrogen of 1 atomic% or more and 10 atomic% or less , or oxygen of 50 atomic% or more and 60 atomic% or less and nitrogen of 1 atomic% or more and 10 atomic% or less, and copper ( Cu), neodymium (Nd), iron (Fe), an aluminum alloy oxynitride film containing at least one of carbon (C) ,
A laminated film in which the second layer has a thickness of 20 nm to 200 nm, and the third layer has a thickness of 15 nm to 200 nm.
[2] A display device comprising the laminated film according to [1].
[3] An input device comprising the laminated film according to [1].

本発明によれば、前記した金属薄膜である第1層、アルミニウム又はアルミニウム合金の窒化膜である第2層、及びアルミニウム合金の酸化膜、又はアルミニウム若しくはアルミニウム合金の酸窒化膜である第3層をこの順に積層することで、電気抵抗率が低く、低反射性、導電性及びエッチング加工性に優れ、かつ安価な光吸収薄膜及び低反射導電膜を得られるとともに、安定した製造が可能になる。 According to the present invention, the first layer is a metallic thin film described above, the second layer is a nitride film of aluminum or an aluminum alloy, an oxide film or oxynitride film of the aluminum or aluminum alloybeauty A aluminum alloy first By laminating three layers in this order, it is possible to obtain an inexpensive light-absorbing thin film and low-reflective conductive film with low electrical resistivity, excellent low reflectivity, conductivity and etching processability, and stable production is possible. become.

ルミニウム合金窒化膜は上記成分以外のその他の成分として酸素(O)、銅(Cu)、イットリウム(Y)、ケイ素(Si)、チタン(Ti)若しくはネオジム(Nd)等の元素又は不可避不純物が含まれていてもよい。その他の成分の含有量は、アルミニウム合金窒化膜における窒素含有量又はその他の元素組成によっても異なる。 A aluminum alloy nitride film oxygen as components other than the component (O), copper (Cu), yttrium (Y), silicon (Si), titanium (Ti) or neodymium (Nd) elements such or unavoidable impurities It may be included. The content of the other components will vary depending nitrogen content or other element compositions in A aluminum alloy nitride film.

(アルミニウム合金の酸化膜、アルミニウム若しくはアルミニウム合金の窒化膜又は酸窒化膜:第3層)
ルミニウム合金の酸化膜、アルミニウム若しくはアルミニウム合金の窒化膜又は酸窒化膜である第3層4は積層膜の低反射化を実現するために機能するための光学調整層として機能する。そのため、第3層は、アルミニウム又はアルミニウム合金の窒化膜である第2層の直上又は直下に設けることが好ましい。金属膜の低反射化を目的とするため、例えば、図1に示すように第3層を表面側に設けてもよいし、図2に示すように基板側に設けてもよく、その位置は光の入射側又は視認する側に依存する。
(Oxide film of A aluminum alloy, aluminum or a nitride film of an aluminum alloy or an oxynitride film: third layer)
Oxide film of A aluminum alloy, a third layer 4 is a nitride film or an oxynitride film of aluminum or aluminum alloy functioning as the optical adjustment layer to function in order to realize low reflection of the multilayer film. Therefore, the third layer is preferably provided directly above or directly below the second layer, which is a nitride film of aluminum or aluminum alloy. In order to reduce the reflection of the metal film, for example, the third layer may be provided on the surface side as shown in FIG. 1, or may be provided on the substrate side as shown in FIG. Depends on the light incident side or the viewing side.

第3層が単層である場合、以下の(1)〜(3)のいずれか1であることを特徴とする。
(1)50原子%以上60原子%以下の酸素を含む、アルミニウム合金酸化膜
(2)50原子%以上60原子%以下の酸素及び1原子%以上10原子%以下の窒素を含む、アルミニウム酸窒化膜又はアルミニウム合金酸窒化膜
(3)50原子%以上60原子%以下の窒素を含む、アルミニウム窒化膜又はアルミニウム合金窒化膜
When the third layer is a single layer, it is any one of the following (1) to (3).
(1) 50 to 60 atom% comprising the following oxygen, including A aluminum alloy oxide film (2) 50 atom% to 60 atom% oxygen and 1 atom% to 10 atom% of nitrogen, aluminum acid Nitride film or aluminum alloy oxynitride film (3) Aluminum nitride film or aluminum alloy nitride film containing nitrogen of 50 atomic% to 60 atomic%

前記(1)のアルミニウム合金酸化膜における酸素の含有量は、50原子%以上である。また、酸素の含有量は、60原子%以下である。酸素の含有量が50原子%以上であることにより、低反射性を実現することができる。また、酸素の含有量が60原子%以下であることにより、ウェットエッチング法での加工性を確保できる。 The oxygen content in the A aluminum alloy oxide film of the (1) is 50 atomic% or more. The oxygen content is 60 atomic% or less. Low reflectivity can be realized when the oxygen content is 50 atomic% or more. Moreover, when the oxygen content is 60 atomic% or less, workability by the wet etching method can be secured.

ルミニウム合金の酸化膜、又はアルミニウム若しくはアルミニウム合金の窒化膜又は酸窒化膜の膜厚は、その組成及び積層する金属膜の種類等によっても異なるが、反射率をより低減できることから20nm以上が好ましく、より好ましくは25nm以上である。膜厚が厚くなりすぎると、成膜プロセス時間の超過につながるため、200nm以下が好ましく、より好ましくは150nm以下である。 Oxide film of A aluminum alloy, or aluminum or thickness of the nitride film or an oxynitride film of aluminum alloy, varies depending on the type of metal film whose composition and lamination, preferably not less than 20nm because it can further reduce the reflectance More preferably, it is 25 nm or more. If the film thickness becomes too thick, the film formation process time will be exceeded, so 200 nm or less is preferable, and more preferably 150 nm or less.

ルミニウム合金の酸化膜、又はアルミニウム若しくはアルミニウム合金の窒化膜又は酸窒化膜は、スパッタリング法又は蒸着法等により成膜することができる。スパッタリング法を用いてアルミニウム合金窒化薄膜を成膜する場合、スパッタリング条件を変えることで、膜厚を調整することができる。 Oxide film, or an aluminum or a nitride film or an oxynitride film of the aluminum alloy of the A aluminum alloy can be deposited by sputtering or vapor deposition method. When an aluminum alloy nitride thin film is formed using a sputtering method, the film thickness can be adjusted by changing the sputtering conditions.

ルミニウム合金の酸化膜、アルミニウム合金の窒化膜又は酸窒化膜は上記成分以外のその他の成分として銅(Cu)、ネオジム(Nd)、鉄(Fe)、炭素(C)等の元素又は不可避不純物が含まれていてもよい。その他の成分の含有量は、アルミニウム合金の酸化膜、アルミニウム合金の窒化膜又は酸窒化膜における酸素含有量若しくは窒素含有量又はその他の元素組成によっても異なる。 Oxide film of A aluminum alloy, copper nitride film or an oxynitride film of an aluminum alloy as the other components other than the above components (Cu), neodymium (Nd), iron (Fe), elements or inevitable impurities such as carbon (C) May be included. The content of the other components will vary depending oxide film, the oxygen content in the nitride film or an oxynitride film of an aluminum alloy or nitrogen content or other elemental composition of A aluminum alloy.

ルミニウム合金の酸化膜、窒化膜又は酸窒化膜におけるCuの含有量は3原子%以上であることが好ましく、より好ましくは5原子%以上である。Cuの含有量は、20原子%以下であることが好ましく、より好ましくは15原子%以下である。 Preferably the oxide film of A aluminum alloy, the content of Cu in the nitride film or oxynitride film is 3 atomic% or more, more preferably 5 atomic% or more. The Cu content is preferably 20 atomic% or less, and more preferably 15 atomic% or less.

表6に示すように、電気抵抗率が15μΩ・cm以下である金属薄膜である第1層、40原子%以上61原子%以下の窒素を含むアルミニウム合金窒化膜である第2層、並びに50原子%以上60原子%以下の酸素を含むアルミニウム合金酸化膜、50原子%以上60原子%以下の酸素及び1原子%以上10原子%以下の窒素を含むアルミニウム酸窒化膜若しくはアルミニウム合金酸窒化膜、又は50原子%以上60原子%以下の窒素を含むアルミニウム窒化膜若しくはアルミニウム合金窒化膜である第3層を積層した試験例6−2〜6−9及び6−11〜6−22は、低反射性、導電性及びエッチング加工性を両立する積層膜が得られることがわかった。 As shown in Table 6, the first layer, which is a metal thin film having an electrical resistivity of 15 μΩ · cm or less, the second layer, which is an aluminum alloy nitride film containing 40 atomic% to 61 atomic% of nitrogen, and 50 atoms % to 60 atom% of oxygen including a aluminum alloy oxide film, an aluminum oxynitride film or an aluminum alloy oxynitride film containing 50 atom% to 60 atom% oxygen and 1 atom% to 10 atom% of nitrogen Alternatively, Test Examples 6-2 to 6-9 and 6-11 to 6-22 in which a third layer that is an aluminum nitride film or an aluminum alloy nitride film containing nitrogen of 50 atomic% or more and 60 atomic% or less is low It was found that a laminated film having both reflectivity, conductivity and etching processability can be obtained.

1 基板
2 第1層(導電層)
3 第2層(アルミニウム窒化膜又はアルミニウム合金窒化膜)
4 第3層(アルミニウム合金の酸化膜、又はアルミニウム若しくはアルミニウム合金の窒化膜又は酸窒化膜)
5 密着層又は保護層
1 Substrate 2 First layer (conductive layer)
3 Second layer (aluminum nitride film or aluminum alloy nitride film)
4 third layer (oxide film A aluminum alloy, or aluminum or a nitride film of an aluminum alloy or an oxynitride film)
5 adhesion layer or protective layer

Claims (3)

第1層、第2層及び第3層がこの順に積層された積層膜であって、
第1層が電気抵抗率が15μΩ・cm以下である金属薄膜であり、
第2層が40原子%以上61原子%以下の窒素を含むアルミニウム窒化膜又はアルミニウム合金窒化膜であり、
第3層が50原子%以上60原子%以下の酸素を含むアルミニウム酸化膜若しくはアルミニウム合金酸化膜、50原子%以上60原子%以下の酸素及び1原子%以上10原子%以下の窒素を含むアルミニウム酸窒化膜若しくはアルミニウム合金酸窒化膜、又は50原子%以上60原子%以下の窒素を含むアルミニウム窒化膜若しくはアルミニウム合金窒化膜である積層膜。
The first layer, the second layer, and the third layer are stacked films in this order,
The first layer is a metal thin film having an electrical resistivity of 15 μΩ · cm or less,
The second layer is an aluminum nitride film or an aluminum alloy nitride film containing nitrogen of 40 atomic% or more and 61 atomic% or less,
Aluminum oxide film containing aluminum oxide film or aluminum alloy oxide film in which the third layer contains oxygen of 50 atomic percent to 60 atomic percent, aluminum acid containing oxygen of 50 atomic percent to 60 atomic percent and nitrogen of 1 atomic percent to 10 atomic percent A laminated film which is a nitride film or an aluminum alloy oxynitride film, or an aluminum nitride film or an aluminum alloy nitride film containing nitrogen of 50 atomic% to 60 atomic%.
請求項1に記載の積層膜を備えた表示装置。   A display device comprising the laminated film according to claim 1. 請求項1に記載の積層膜を備えた入力装置。   An input device comprising the laminated film according to claim 1.
JP2016113599A 2016-06-07 2016-06-07 Laminated film, display device, and input device Ceased JP2017220011A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016113599A JP2017220011A (en) 2016-06-07 2016-06-07 Laminated film, display device, and input device
PCT/JP2017/019882 WO2017212970A1 (en) 2016-06-07 2017-05-29 Multilayer film, display device and input device
TW107119673A TW201833749A (en) 2016-06-07 2017-06-06 Multilayer film, display device and input device
TW106118598A TW201743178A (en) 2016-06-07 2017-06-06 Multilayer film, display device and input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113599A JP2017220011A (en) 2016-06-07 2016-06-07 Laminated film, display device, and input device

Publications (1)

Publication Number Publication Date
JP2017220011A true JP2017220011A (en) 2017-12-14

Family

ID=60578263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113599A Ceased JP2017220011A (en) 2016-06-07 2016-06-07 Laminated film, display device, and input device

Country Status (3)

Country Link
JP (1) JP2017220011A (en)
TW (2) TW201743178A (en)
WO (1) WO2017212970A1 (en)

Cited By (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170360A (en) * 2017-03-29 2018-11-01 ジオマテック株式会社 Conductive film, electrode, electronic apparatus, electrostatic capacitance type input device, and manufacturing method of electrode
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US12027365B2 (en) 2021-11-19 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513335A (en) * 2011-03-04 2014-05-29 エルジー・ケム・リミテッド Conductive structure and manufacturing method thereof
JP2016500853A (en) * 2012-08-31 2016-01-14 エルジー・ケム・リミテッド CONDUCTIVE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME {CONDUCTIVESTRUCTUREBODYANDMETHODFORMANUFACTURERINGTHESAME}
JP2016058055A (en) * 2013-11-12 2016-04-21 株式会社神戸製鋼所 Electrode, and manufacturing method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513335A (en) * 2011-03-04 2014-05-29 エルジー・ケム・リミテッド Conductive structure and manufacturing method thereof
JP2016500853A (en) * 2012-08-31 2016-01-14 エルジー・ケム・リミテッド CONDUCTIVE STRUCTURE AND METHOD FOR MANUFACTURING THE SAME {CONDUCTIVESTRUCTUREBODYANDMETHODFORMANUFACTURERINGTHESAME}
JP2016058055A (en) * 2013-11-12 2016-04-21 株式会社神戸製鋼所 Electrode, and manufacturing method for the same

Cited By (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US12000042B2 (en) 2016-12-15 2024-06-04 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
JP2018170360A (en) * 2017-03-29 2018-11-01 ジオマテック株式会社 Conductive film, electrode, electronic apparatus, electrostatic capacitance type input device, and manufacturing method of electrode
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US12020938B2 (en) 2018-03-27 2024-06-25 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US12025484B2 (en) 2019-04-29 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11996304B2 (en) 2019-07-16 2024-05-28 Asm Ip Holding B.V. Substrate processing device
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US12033885B2 (en) 2021-01-04 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US12033861B2 (en) 2021-06-07 2024-07-09 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US12027365B2 (en) 2021-11-19 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US12033849B2 (en) 2022-12-08 2024-07-09 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane

Also Published As

Publication number Publication date
TW201743178A (en) 2017-12-16
TW201833749A (en) 2018-09-16
WO2017212970A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
WO2017212970A1 (en) Multilayer film, display device and input device
JP4961786B2 (en) Transparent conductive film and transparent conductive film using the same
US9845529B2 (en) Electrode and method for producing same
KR102012210B1 (en) LAMINATED WIRING FILM, METHOD FOR MANUFACTURING THEREOF, AND Mo ALLOY SPUTTERING TARGET MATERIAL
JP6016083B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
US20160224151A1 (en) Electrode to be used in input device and method for producing same
JP5023745B2 (en) Transparent conductive film, transparent conductive substrate using this transparent conductive film, transparent conductive film, near-infrared shielding filter, and method for producing this transparent conductive film
JP4687733B2 (en) Transparent electrode, transparent conductive substrate and transparent touch panel
TW201601169A (en) Laminate, method for manufacturing same, and electronic device
TW201641699A (en) Nitrogen-containing Cu alloy film, multilayer film, method for producing nitrogen-containing Cu alloy film or multilayer film, and Cu alloy sputtering target
JP6511876B2 (en) Laminated transparent conductive film
JP2016156087A (en) Cu LAMINATED FILM AND Cu ALLOY SPUTTERING TARGET
KR20150105798A (en) Transparent electrode and manufacturing method thereof
TWI498441B (en) Laminated wiring film for electronic component and sputtering target material for forming coating layer
KR101597018B1 (en) METAL THIN FILM AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM
JP6037208B2 (en) Laminated wiring film for electronic parts and sputtering target material for coating layer formation
KR102032011B1 (en) Conductive laminate and transparent electrode comprising thereof
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
JP2017043806A (en) Light absorption thin film and low reflective conductive film
WO2021095550A1 (en) Laminated structure
JP2017068219A (en) Electrode structure
JP2021079695A (en) Laminated structure
JP2016177940A (en) Method for producing transparent conductive body
TWI550452B (en) Touch panel sensor with wiring film, and touch panel sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171207

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20171222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181105

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20190226