JP4961786B2 - Transparent conductive film and transparent conductive film using the same - Google Patents

Transparent conductive film and transparent conductive film using the same Download PDF

Info

Publication number
JP4961786B2
JP4961786B2 JP2006074449A JP2006074449A JP4961786B2 JP 4961786 B2 JP4961786 B2 JP 4961786B2 JP 2006074449 A JP2006074449 A JP 2006074449A JP 2006074449 A JP2006074449 A JP 2006074449A JP 4961786 B2 JP4961786 B2 JP 4961786B2
Authority
JP
Japan
Prior art keywords
film
transparent conductive
conductive film
zso
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006074449A
Other languages
Japanese (ja)
Other versions
JP2007250430A (en
Inventor
能之 阿部
徳行 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006074449A priority Critical patent/JP4961786B2/en
Publication of JP2007250430A publication Critical patent/JP2007250430A/en
Application granted granted Critical
Publication of JP4961786B2 publication Critical patent/JP4961786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はプラズマディスプレイの電磁波遮蔽フィルターや液晶ディスプレイの透明電極などに利用できる透明導電膜に関する。   The present invention relates to a transparent conductive film that can be used for an electromagnetic wave shielding filter of a plasma display, a transparent electrode of a liquid crystal display, and the like.

透明導電膜は、高い導電性(例えば、1×10-3Ωcm以下の比抵抗)と、可視光領域での高い透過率とを有するため、太陽電池、液晶表示素子、その他、各種の受光素子等の電極として利用されるほか、自動車窓ガラスや、建築物の窓ガラス等に用いる熱線反射膜、各種の帯電防止膜、冷凍ショーケースなどの防曇用の透明発熱体としても利用されている。 Since the transparent conductive film has high conductivity (for example, a specific resistance of 1 × 10 −3 Ωcm or less) and high transmittance in the visible light region, it is a solar cell, a liquid crystal display element, and other various light receiving elements. It is also used as a transparent heating element for anti-fogging, such as heat ray reflective films used for automobile window glass, building window glass, various antistatic films, refrigeration showcases, etc. .

透明導電膜には、アンチモンやフッ素がドーピングされた酸化錫(SnO2)膜、アルミニウムやガリウムがドーピングされた酸化亜鉛(ZnO)膜、錫がドーピングされた酸化インジウム(In23)膜などが広範に利用されている。特に、錫がドーピングされた酸化インジウム膜、すなわちIn23−Sn系膜は、ITO(Indium Tin Oxide)膜と称され、低抵抗の透明導電膜が容易に得られることから、LCDをはじめとして、種々のデバイスに広く用いられている。ITO膜は、スパッタリング法で室温で基板上に成膜すると、膜厚200nmで表面抵抗25Ω/□程度(比抵抗で約5×10-4Ωcm)の導電性を示す。 Examples of transparent conductive films include tin oxide (SnO 2 ) films doped with antimony and fluorine, zinc oxide (ZnO) films doped with aluminum and gallium, and indium oxide (In 2 O 3 ) films doped with tin. Is widely used. In particular, an indium oxide film doped with tin, that is, an In 2 O 3 —Sn-based film is called an ITO (Indium Tin Oxide) film, and a low-resistance transparent conductive film can be easily obtained. Are widely used in various devices. When an ITO film is formed on a substrate at room temperature by a sputtering method, the film has a film thickness of 200 nm and exhibits a surface resistance of about 25 Ω / □ (specific resistance is about 5 × 10 −4 Ωcm).

一方で、透明酸化物薄膜と金属薄膜の積層によって構成された透明導電膜も提案されている。一般的に、室温で成膜した膜厚100nm程度のITO膜の表面抵抗が50Ω/□前後であるのに対し、膜厚50〜100nmの上記積層膜の表面抵抗は、銀系合金薄膜の膜厚にもよるが、15Ω/□以下とすることも可能であり、場合によっては10Ω/□以下とすることも可能である。   On the other hand, a transparent conductive film composed of a laminate of a transparent oxide thin film and a metal thin film has also been proposed. In general, the surface resistance of an ITO film having a thickness of about 100 nm formed at room temperature is around 50 Ω / □, whereas the surface resistance of the laminated film having a thickness of 50 to 100 nm is a film of a silver-based alloy thin film. Although it depends on the thickness, it may be 15Ω / □ or less, and may be 10Ω / □ or less in some cases.

例えば、(1)銀層を酸化インジウム膜(IO)層で挟んだ構造(IO/Ag/IO)、(2)銀層をITO膜層で挟んだ構造(ITO/Ag/ITO)、(3)銀層をセリウム添加酸化インジウム膜(In−Ce−O、ICO)で挟んだ構造(ICO/Ag/ICO)(特開平9−176837号公報)、(4)銀層をGa添加ZnO膜(GZO)層で挟んだ構造(GZO/Ag/GZO)などが提案されている。
IO/Ag/IO、やITO/Ag/ITOは、耐薬品性に優れてはいるものの、室内放置により白色欠点が生じる。
また(1)〜(3)はIn系の薄膜を使用しており、希少金属であるIn資源の枯渇の問題が深刻となっていることと、In金属の人体に及ぼす毒性の問題があり環境に易しくないなどの問題点があるとされている。一方、GZO/Ag/GZOは、環境に優しく資源も豊富なZn系材料を利用しており、耐湿性も良好である。しかし、耐薬品性が不充分であるという欠点がある。
特開平9−176837号公報 特開平8−171824号公報 特開平2−145458号公報
For example, (1) a structure in which a silver layer is sandwiched between indium oxide films (IO) layers (IO / Ag / IO), (2) a structure in which a silver layer is sandwiched between ITO film layers (ITO / Ag / ITO), (3 ) Structure (ICO / Ag / ICO) (Japanese Patent Laid-Open No. 9-176837) in which a silver layer is sandwiched between cerium-added indium oxide films (In-Ce-O, ICO), A structure sandwiched between (GZO) layers (GZO / Ag / GZO) has been proposed.
Although IO / Ag / IO and ITO / Ag / ITO are excellent in chemical resistance, white defects occur when left indoors.
In addition, (1) to (3) use an In-based thin film, the problem of depletion of In resources, which are rare metals, is serious, and there is a problem of toxicity of In metal on the human body. It is said that there are problems such as not easy. On the other hand, GZO / Ag / GZO uses a Zn-based material that is environmentally friendly and abundant in resources, and has good moisture resistance. However, there is a drawback that the chemical resistance is insufficient.
Japanese Patent Laid-Open No. 9-176837 JP-A-8-171824 Japanese Patent Laid-Open No. 2-145458

本発明は、毒性があってしかも希少金属であるIn金属を利用せず、安価で資源的に豊富な元素で酸化物膜を構成し、耐湿性や耐薬品性にも優れた、酸化物膜と金属膜とから構成される透明導電膜と、これを用いた透明導電性フィルムの提供とを課題とする。   The present invention is an oxide film that does not use toxic and rare In metal, and is composed of an inexpensive and resource-rich element and has excellent moisture resistance and chemical resistance. It is an object to provide a transparent conductive film composed of a metal film and a transparent conductive film using the transparent conductive film.

上記課題を解決する本発明の第1の発明によれば、複数層から構成される透明導電膜であり、構成層が、銀若しくは銀を主成分とする合金からなる金属膜と、該金属膜との両面に設けられたSnとZnとOとを主成分とする非晶質のZn−Sn−O系酸化物膜を含み、かつ該Zn−Sn−O系酸化物膜、酸化物焼結体ターゲットを用いたスパッタリングにより形成され、Snの含有量が、SnとZnの総和に対して10〜90原子%であることを特徴とする透明導電膜が提供される。 According to 1st invention of this invention which solves the said subject, It is a transparent conductive film comprised from multiple layers, and a constituent layer is a metal film which consists of silver or an alloy which has silver as a main component, and this metal film comprises amorphous Zn-Sn-O-based oxide film mainly composed of Sn and Zn and O provided on both sides of the, and the Zn-Sn-O-based oxide film, the oxide sintered A transparent conductive film is provided which is formed by sputtering using a combined target and has a Sn content of 10 to 90 atomic% with respect to the total of Sn and Zn .

そして、本発明の第2の発明によれば、第1の発明において、前記透明導電膜の少なくとも片面にa−ZSO膜と異なる酸化物膜が積層されたことを特徴とする透明導電膜が提供される According to a second aspect of the present invention, there is provided the transparent conductive film according to the first aspect , wherein an oxide film different from the a-ZSO film is laminated on at least one surface of the transparent conductive film. Is done .

そして、本発明の第3の発明によれば、a−ZSO膜、銀を主成分とする金属膜、a−ZSO膜、銀を主成分とする金属膜、a−ZSO膜の順に積層されることを特徴とする透明導電膜が提供される According to the third aspect of the present invention , an a-ZSO film, a metal film containing silver as a main component, an a-ZSO film, a metal film containing silver as a main component, and an a-ZSO film are stacked in this order. A transparent conductive film is provided .

そして、本発明の第4の発明によれば、第1〜3の発明において、透明導電膜のうちの少なくとも二つを組み合わせて構成されていることを特徴とする透明導電膜が提供されるAnd according to 4th invention of this invention , in 1st-3rd invention, the transparent conductive film characterized by combining at least two of the transparent conductive films is provided .

そして、本発明の第の発明によれば、第の発明において、a−ZSO膜が、GaとAlのうちの少なくとも1種類を該酸化物膜中の全金属の総和に対して50原子%以下の割合で含有することを特徴とする透明導電膜が提供される。 According to the fifth aspect of the present invention, in the first aspect , the a-ZSO film comprises at least one of Ga and Al at 50 atoms with respect to the total of all metals in the oxide film. The transparent conductive film characterized by containing in the ratio of% or less is provided.

そして、本発明の第の発明によれば、第1〜のいずれかの発明において、合金膜が銀を主成分として、パラジウム、金、白金、銅からなる群から選ばれる1種以上の金属を、銀との合量に対して0.1〜10原子%の割合で含む合金膜であることを特徴とする透明導電膜が提供される。 And according to the sixth invention of the present invention, in any one of the first to fifth inventions, the alloy film is composed of silver as a main component, and one or more kinds selected from the group consisting of palladium, gold, platinum, and copper. A transparent conductive film is provided which is an alloy film containing a metal in a proportion of 0.1 to 10 atomic% with respect to the total amount of silver.

そして、本発明の第の発明によれば、樹脂フィルム基板の少なくとも一方の面に第1〜の発明のいずれかの透明導電膜が形成されたことを特徴とする透明導電性フィルムが提供される。 And according to 7th invention of this invention, the transparent conductive film in which the transparent conductive film in any one of 1st- 6th invention was formed in the at least one surface of the resin film board | substrate is provided. Is done.

本発明の透明導電膜は耐湿性と耐薬品性を兼ね備え、15Ω/□以下の高い導電性も実現可能である。しかも人体や環境に優しくて資源的にも豊富な材料を使用しているなどの利点もある。
本発明の透明導電膜や透明導電性フィルムは液晶ディスプレイ、エレクトロクロミックディスプレイ、エレクトロルミネッセンスディスプレイ、プラズマディスプレイ用などの透明電極以外に、熱線遮断膜、電磁波遮蔽膜、防曇ガラス用透明発熱体等に好適である。従って、本発明は産業上きわめて有用である。
The transparent conductive film of the present invention has both moisture resistance and chemical resistance, and can achieve high conductivity of 15Ω / □ or less. In addition, there are advantages such as using materials that are kind to the human body and the environment and are abundant in resources.
In addition to transparent electrodes for liquid crystal displays, electrochromic displays, electroluminescent displays, plasma displays, etc., the transparent conductive film and transparent conductive film of the present invention can be used for heat ray blocking films, electromagnetic wave shielding films, transparent heating elements for antifogging glass, etc. Is preferred. Therefore, the present invention is very useful industrially.

本発明の透明導電膜は、基本構造として、酸化物膜、金属膜、酸化物膜とがこの順に積層された透明導電膜において、酸化物膜として酸化物焼結体ターゲットを用いたスパッタリングにより形成されたa−ZSO膜を用い、金属膜としてAg若しくはAgを主成分とするものを用いるものである。そして、本発明の透明導電フィルムは、樹脂フィルム基板の少なくとも片面に本発明の透明導電膜が設けられたものである。 The transparent conductive film of the present invention is formed by sputtering using a sintered oxide target as an oxide film in a transparent conductive film in which an oxide film, a metal film, and an oxide film are laminated in this order as a basic structure. The a-ZSO film is used, and a metal film containing Ag or Ag as a main component is used. And the transparent conductive film of this invention is provided with the transparent conductive film of this invention in the at least single side | surface of the resin film board | substrate.

Zn−Sn−O系酸化物膜自体としては、特開平8−171824号公報でZn2SnO4化合物結晶、ZnSnO3化合物結晶を中心とした薄膜の技術が開示されている。しかし、これらはいずれも結晶質の薄膜であり、本発明のa−ZSO膜とは特性等において大きく異なる。
また、Zn−Sn−O酸化物膜と金属膜との組み合わせでみると、特開平2−145458号公報に、Zn−Sn−O膜の上にCrN反射膜を積層した構造の太陽エネルギー反射性製品が提案されているが、本発明は、極薄Ag若しくはAgを主成分とする金属膜をa−ZSO膜で挟み込んだ構造の透明導電膜であり、大きく異なる。
As a Zn—Sn—O-based oxide film itself, JP-A-8-171824 discloses a technique of a thin film centered on a Zn 2 SnO 4 compound crystal and a ZnSnO 3 compound crystal. However, these are all crystalline thin films and are greatly different in characteristics and the like from the a-ZSO film of the present invention.
Further, in terms of a combination of a Zn—Sn—O oxide film and a metal film, Japanese Patent Application Laid-Open No. 2-145458 discloses solar energy reflectivity having a structure in which a CrN reflection film is laminated on a Zn—Sn—O film. Although a product has been proposed, the present invention is a transparent conductive film having a structure in which an ultra-thin Ag or a metal film mainly composed of Ag is sandwiched between a-ZSO films, and is greatly different.

まず図を用いて本発明の透明導電膜の構成を説明する。
図1は請求項1記載の透明導電膜例の断面図を示したものである。図1において、1と3はa−ZSO膜であり、2は銀若しくは銀を主成分とする金属膜である。
First, the configuration of the transparent conductive film of the present invention will be described with reference to the drawings.
FIG. 1 shows a sectional view of an example of the transparent conductive film according to the first aspect. In FIG. 1, 1 and 3 are a-ZSO films, and 2 is silver or a metal film containing silver as a main component.

図2、図3は請求項2記載の透明導電膜例の断面図を示したものである。前記と同様に、1と3はa−ZSO膜であり、2は銀若しくは銀を主成分とする金属膜である。そして、4,5はa−ZSO膜と異なる酸化物膜である。   2 and 3 are sectional views of examples of the transparent conductive film according to the second aspect. Similarly to the above, 1 and 3 are a-ZSO films, and 2 is silver or a metal film containing silver as a main component. Reference numerals 4 and 5 are oxide films different from the a-ZSO film.

図4は請求項3記載の透明導電膜例の断面図を示したものである。前記と同様に、1と3と6とはa−ZSO膜であり、2と7とは銀若しくは銀を主成分とする金属膜である。   FIG. 4 shows a sectional view of an example of the transparent conductive film according to the third aspect. Similarly to the above, 1, 3 and 6 are a-ZSO films, and 2 and 7 are silver or a metal film containing silver as a main component.

図5は請求項4記載の透明導電膜例の断面図を示したものであり、図2のものの上に図3のものを積層した構成となっている。1と3と6と8とはa−ZSO膜であり、2と7とは銀若しくは銀を主成分とする金属膜であり、4と5と9とははa−ZSO膜と異なる酸化物膜である。
以上の図において、1と3と6と8、または2と7、または4と5と9とを構成する材料は、それぞれ同一であっても良く、本発明の材料の範囲内で異なっていても良い。
FIG. 5 shows a cross-sectional view of an example of the transparent conductive film according to the fourth aspect, in which the structure shown in FIG. 3 is laminated on the structure shown in FIG. 1, 3, 6 and 8 are a-ZSO films, 2 and 7 are silver or a metal film containing silver as a main component, and 4, 5 and 9 are oxides different from the a-ZSO film. It is a membrane.
In the above figures, the materials constituting 1 and 3 and 6 and 8, or 2 and 7, or 4 and 5 and 9 may be the same or different within the scope of the material of the present invention. Also good.

次に各膜等について説明する。
・a−ZSO膜(図中の1、3、6、8)
本発明でa−ZSO膜を用いるのは、該膜がAg、若しくはAgを主要成分とする金属膜との高い密着性を有するからである。金属膜とその両面に設けられた酸化物膜との密着性が悪いと、湿気の影響で銀膜と酸化物膜の界面で剥離が生じ酸化物膜が破損し、銀などの金属膜に白色斑点が発生する。本発明のように、金属膜との高い密着性を有するa−ZSO膜で金属膜を挟むことにより、得られる透明導電膜の耐湿性を向上できる。また、a−ZSO膜自体が高い耐薬品性を有するため、得られる透明導電膜の耐湿性と耐薬品性を向上させることができる。
Next, each film will be described.
A-ZSO film (1, 3, 6, 8 in the figure)
The reason why the a-ZSO film is used in the present invention is that the film has high adhesion to Ag or a metal film containing Ag as a main component. If the adhesion between the metal film and the oxide film provided on both sides of the metal film is poor, peeling will occur at the interface between the silver film and the oxide film due to moisture, and the oxide film will be damaged, and the metal film such as silver will be white. Spots appear. As in the present invention, the moisture resistance of the obtained transparent conductive film can be improved by sandwiching the metal film with an a-ZSO film having high adhesion to the metal film. In addition, since the a-ZSO film itself has high chemical resistance, the moisture resistance and chemical resistance of the obtained transparent conductive film can be improved.

本発明において、a−ZSO膜を用いるのは、例えば、ZnO結晶相、Zn2SnO4結晶相、ZnSnO3結晶相、SnO2結晶相などの結晶相が含まれていると、金属膜を覆っている酸化物膜中に粒界が存在することになり、粒界を介して大気中の水や酸素などのガスが拡散浸入して、挟み込んだ金属膜を腐食しやすくしてしまうからである。 In the present invention, the a-ZSO film is used because the metal film is covered when a crystal phase such as a ZnO crystal phase, a Zn 2 SnO 4 crystal phase, a ZnSnO 3 crystal phase, or a SnO 2 crystal phase is included. This is because there is a grain boundary in the oxide film, and gas such as water and oxygen in the atmosphere diffuses and penetrates through the grain boundary, making it easy to corrode the sandwiched metal film. .

a−ZSO膜は、SnとZnの総和に対してSnを10〜90原子%含むことが必要である。Snが10原子%未満では、耐薬品性が不充分となる。さらに5原子%以下ではZnO構造の結晶膜が得られやすくなり、非晶質構造がとりにくくなるからである。また90原子%を越えると、SnO構造の結晶膜が得やすくなり、非晶質構造が得られにくくなってしまうからである。
The a-ZSO film needs to contain 10 to 90 atomic% of Sn with respect to the total of Sn and Zn. When Sn is less than 10 atomic%, the chemical resistance becomes insufficient. Further, if it is 5 atomic% or less, a ZnO structure crystal film is easily obtained, and an amorphous structure is difficult to be formed. On the other hand, if it exceeds 90 atomic%, it becomes easy to obtain a crystal film of SnO 2 structure and it becomes difficult to obtain an amorphous structure.

また、可視域の短波長側(波長380〜400nm)の透過率を高めるために、a−ZSO膜は、GaとAlのうち少なくとも一方を該酸化物膜中の全金属の総和に対して50原子%以下の割合で含有することが好ましい。特に、GaをSn、Zn、Gaの総和に対して50原子%以下の割合だけ含むことがより好ましい。   In order to increase the transmittance on the short wavelength side (wavelength 380 to 400 nm) in the visible range, the a-ZSO film has at least one of Ga and Al with respect to the sum of all metals in the oxide film. It is preferable to contain in the ratio of atomic% or less. In particular, it is more preferable that Ga is contained in an amount of 50 atomic% or less with respect to the total of Sn, Zn, and Ga.

Gaを50原子%以下の割合で含ませることによって、a−ZSO膜の可視域短波長側(波長380〜400nm付近)の吸収端が、更に短波長側にシフトし、波長380〜400nm付近の透過率を改善することができる。しかしGaが50原子%を超えた割合で膜中に含有されると、膜の導電性が悪化して、例えば図1に示すような構造の金属膜との積層膜を作製しても、15Ω/□以下の導電性を得ることができない。   By including Ga at a ratio of 50 atomic% or less, the absorption edge of the a-ZSO film on the short wavelength side in the visible range (near wavelength 380 to 400 nm) is further shifted to the short wavelength side, and near the wavelength 380 to 400 nm. The transmittance can be improved. However, if Ga is contained in the film in a proportion exceeding 50 atomic%, the conductivity of the film deteriorates, and even if a laminated film with a metal film having a structure as shown in FIG. / □ The following conductivity cannot be obtained.

a−ZSO膜の厚さは1nm以上とすることが好ましい。1nm未満では金属膜(特にAgを主成分とする膜)との密着性が不充分となるため耐湿性が不良となる。   The thickness of the a-ZSO film is preferably 1 nm or more. If it is less than 1 nm, the adhesion to a metal film (especially a film containing Ag as a main component) becomes insufficient, resulting in poor moisture resistance.

本発明におけるa−ZSO膜は、生産性を考慮してスパッタリング法で作製する。酸化物膜の成膜法としては、酸化物焼結体ターゲットを用いてAr雰囲気中もしくは酸化性ガスを少量添加したAr雰囲気中でスパッタリングする方法と、金属ターゲットを用いて酸化性ガス・Arガス混合雰囲気中でスパッタリングする方法とがあるが、ZnとSnを含む酸化物膜は前者の方法で作製する。後者の方法では金属膜にダメージを与えるため比抵抗が上昇するので好ましくないThe a-ZSO film in the present invention is manufactured by a sputtering method in consideration of productivity. As a method for forming an oxide film, sputtering is performed in an Ar atmosphere using an oxide sintered compact target or in an Ar atmosphere to which a small amount of oxidizing gas is added, and an oxidizing gas / Ar gas using a metal target. There is a method of sputtering in a mixed atmosphere, but an oxide film containing Zn and Sn is formed by the former method. The latter method is not preferable because the specific resistance increases because the metal film is damaged.

・金属膜(図中の2、7)
本発明において金属膜を、Ag若しくはAgを主成分とする合金で構成するのは、こうすることにより安価に低比抵抗で高可視光透過率の透明導電膜が得られるからである。なお、このAgを主成分とする合金膜とは、銀にパラジウム、金、白金、銅からなる群から選ばれる1種以上の金属を添加した合金膜を意味する。
・ Metal film (2, 7 in the figure)
In the present invention, the metal film is made of Ag or an alloy containing Ag as a main component because a transparent conductive film having a low specific resistance and a high visible light transmittance can be obtained at low cost. The alloy film containing Ag as a main component means an alloy film in which one or more metals selected from the group consisting of palladium, gold, platinum, and copper are added to silver.

銀のみで金属膜を構成しても良いが、環境に対する安定性向上の観点からパラジウム、金、白金、銅からなる群から選ばれる1種以上の金属と銀との合金膜であることが好ましい。   Although the metal film may be composed of only silver, it is preferably an alloy film of one or more metals selected from the group consisting of palladium, gold, platinum, and copper from the viewpoint of improving environmental stability. .

本発明の合金膜において、パラジウム、金、白金、銅からなる群から選ばれる1種以上の金属は、銀との合量に対して0.1〜10原子%の割合で含まれることが好ましい。0.1原子%未満では耐久性が不充分となり、10原子%を超えると可視光透過率の低下および高比抵抗化をもたらす。   In the alloy film of the present invention, it is preferable that one or more metals selected from the group consisting of palladium, gold, platinum, and copper are included in a proportion of 0.1 to 10 atomic% with respect to the total amount with silver. . If it is less than 0.1 atomic%, the durability is insufficient. If it exceeds 10 atomic%, the visible light transmittance is lowered and the specific resistance is increased.

金属膜の膜厚は、3〜25nmが好ましい。3nm未満ではシート抵抗が高くなり、25nmを超えると可視光透過率が低下する。金属膜は、金属ターゲットを用いてArガス雰囲気中でスパッタリングすることで形成される。金属ターゲットは充分な導電性を有しているため、直流スパッタリングによる成膜が可能である。比抵抗調整や機械的耐久性向上の目的で雰囲気中にN2 などのガスを添加してもよい。 The thickness of the metal film is preferably 3 to 25 nm. When the thickness is less than 3 nm, the sheet resistance increases. When the thickness exceeds 25 nm, the visible light transmittance decreases. The metal film is formed by sputtering in an Ar gas atmosphere using a metal target. Since the metal target has sufficient conductivity, it can be formed by direct current sputtering. A gas such as N 2 may be added to the atmosphere for the purpose of adjusting specific resistance and improving mechanical durability.

・a−ZSO膜と異なる酸化物膜(図中の4、5、9)
機械的、化学的耐久性を向上させる目的で、a−ZSO膜の上にこれと異なる酸化物膜を設け、a−ZSO膜の保護層とすることもできる。
・ Oxide film different from a-ZSO film (4, 5, 9 in the figure)
For the purpose of improving mechanical and chemical durability, an oxide film different from this may be provided on the a-ZSO film to form a protective layer for the a-ZSO film.

この目的で用いる酸化物膜は、a−ZSO膜よりも高い導電性を有して耐薬品性に優れた酸化物膜であることが好ましい。例えば、In23 、ITO、ICO、SnO2 、TiO2 、SnとZnを含む結晶質酸化物等の材料が使用できる。このような酸化物膜を積層することで、積層体全体の導電性をさらに増加させることも可能である。 The oxide film used for this purpose is preferably an oxide film having higher conductivity than the a-ZSO film and excellent chemical resistance. For example, materials such as In 2 O 3 , ITO, ICO, SnO 2 , TiO 2 , crystalline oxide containing Sn and Zn can be used. By laminating such an oxide film, the conductivity of the entire stacked body can be further increased.

また、この酸化物膜としてa−ZSO膜と屈折率が異なる材料を用いることにより、積層体の光学効果(反射防止など)を狙うことが可能である。この様な目的で利用する場合でも、耐薬品性に優れた酸化物膜であることが好ましい。この様な用途として、ICO、TiO2 、Nb25、Ta25、SiO2、Al23などの材料が使用できる。このような酸化物膜を積層することで、積層体全体の光反射特性や光透過特性を変性することができる。 In addition, by using a material having a refractive index different from that of the a-ZSO film as the oxide film, it is possible to aim at an optical effect (antireflection, etc.) of the stacked body. Even when used for such a purpose, an oxide film having excellent chemical resistance is preferable. For such applications, materials such as ICO, TiO 2 , Nb 2 O 5 , Ta 2 O 5 , SiO 2 , and Al 2 O 3 can be used. By stacking such oxide films, the light reflection characteristics and light transmission characteristics of the entire stack can be modified.

この酸化物膜の膜厚は、光学特性の観点から、最終的な透明導電膜の膜厚が10〜150nmとなるように調整することが好ましい。最終的な透明導電膜の厚さが10nm未満および150nm超では可視光透過率が低下する。   The thickness of the oxide film is preferably adjusted so that the final transparent conductive film has a thickness of 10 to 150 nm from the viewpoint of optical characteristics. When the final thickness of the transparent conductive film is less than 10 nm and more than 150 nm, the visible light transmittance is lowered.

この酸化物膜を成膜するには、酸化物焼結体ターゲットを用いてAr雰囲気中もしくは酸化性ガスを少量添加したAr雰囲気中でスパッタリングする方法と、金属ターゲットを用いて酸化性ガス・Arガス混合雰囲気中でスパッタリングする方法とがあるが、本発明では酸化物焼結体ターゲットを用いる方法で作製し、ターゲット材料コスト、生産性、生産安定性等を考慮する。なお、いずれの酸化物膜も、用いるターゲットが導電性を有しており、直流スパッタリングによる成膜が可能な場合は、生産性の観点から直流スパッタリングで成膜することが好ましい。 In order to form this oxide film, sputtering is performed in an Ar atmosphere using an oxide sintered compact target or in an Ar atmosphere to which a small amount of oxidizing gas is added, and an oxidizing gas / Ar using a metal target. There is a method of sputtering in a gas mixed atmosphere. In the present invention, a method using an oxide sintered compact target is used, and target material cost, productivity, production stability, and the like are taken into consideration. Note that in any oxide film, when the target to be used has conductivity and can be formed by DC sputtering, it is preferably formed by DC sputtering from the viewpoint of productivity.

・透明導電性フィルム
本発明の透明導電膜は、ガラス板、樹脂製フィルム、樹脂製板などの基体上に形成することができる。また、ガラス板などの上にカラー画素となるカラーフィルタ層を形成し、該カラーフィルタ層上に、カラーフィルタを保護、平滑化するための透明樹脂層を形成し、さらに該透明樹脂層上にシリカ、SiNx などの無機中間膜層(透明導電膜との密着改善層)を順次積層したものを基体として用いてもよい。
-Transparent conductive film The transparent conductive film of this invention can be formed on base | substrates, such as a glass plate, a resin film, and a resin board. Further, a color filter layer to be a color pixel is formed on a glass plate or the like, a transparent resin layer for protecting and smoothing the color filter is formed on the color filter layer, and further on the transparent resin layer A substrate in which an inorganic intermediate film layer (adhesion improving layer with a transparent conductive film) such as silica and SiN x is sequentially laminated may be used.

本発明の透明導電性フィルムは、樹脂フィルム基板の少なくとも一方の面に本発明のa−ZSO膜を形成したものである。本発明に使用しうる樹脂フィルムは、ポリエチレンテレフタレート(PET)、ポリエーテルスルホン(PES)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリエチレンナフタレート(PEN)からなるか、もしくは、これらの材料の表面にアクリル系有機物などで代表されるハードコート層を覆った積層構造からなるのが好ましいが、これらに限定はしない。   The transparent conductive film of the present invention is obtained by forming the a-ZSO film of the present invention on at least one surface of a resin film substrate. The resin film that can be used in the present invention is made of polyethylene terephthalate (PET), polyethersulfone (PES), polyarylate (PAR), polycarbonate (PC), polyethylene naphthalate (PEN), or of these materials. It is preferable to have a laminated structure with a hard coat layer typified by an acrylic organic material on the surface, but is not limited thereto.

樹脂フィルム基板は、ガラス板と比べてガスの透過性が高く、有機EL素子の発光層、およびLCDなどの液晶層は、水分や酸素に対して劣化するため、これらの表示素子の基板として用いる場合は、ガスの通過を抑えるガスバリア膜を施すことが好ましい。   The resin film substrate has higher gas permeability than the glass plate, and the light emitting layer of the organic EL element and the liquid crystal layer of the LCD or the like deteriorate with respect to moisture and oxygen, and therefore are used as a substrate for these display elements. In this case, it is preferable to apply a gas barrier film that suppresses the passage of gas.

ガスバリア膜は、樹脂フィルムの片面に形成されていても良く、両面に形成されていれば、ガス通過の遮断性はさらに良好となる。また、ガスバリア膜を、樹脂フィルムの片面に形成し、さらに該ガスバリア膜の上に、樹脂フィルムを積層することによって、内部にガスバリア膜を挿入させた構成を得ることができる。さらに、複数回、積層を繰り返した構造とすることもできる。   The gas barrier film may be formed on one surface of the resin film, and if it is formed on both surfaces, the gas passage blocking property is further improved. Moreover, the structure which inserted the gas barrier film | membrane inside can be obtained by forming a gas barrier film | membrane on the single side | surface of a resin film, and also laminating | stacking a resin film on this gas barrier film | membrane. Furthermore, it can also be set as the structure which repeated lamination | stacking several times.

ガスバリア膜は、酸化シリコン膜、酸化窒化シリコン(SiON)膜、アルミニウム酸マグネシウム膜、酸化スズ系膜およびダイヤモンド状カーボン(DLC)膜の中から選ばれる少なくとも1種類であることが好ましい。ここで、酸化スズ系膜とは、酸化スズに、例えば、Si、Ce、Geなどから選ばれる少なくとも1種類以上の添加元素を含有した組成を有する。これらの添加元素によって、酸化スズ層を非晶質化し、緻密な膜とする。   The gas barrier film is preferably at least one selected from a silicon oxide film, a silicon oxynitride (SiON) film, a magnesium aluminate film, a tin oxide film, and a diamond-like carbon (DLC) film. Here, the tin oxide film has a composition containing at least one additional element selected from, for example, Si, Ce, Ge and the like in tin oxide. By these additive elements, the tin oxide layer is made amorphous to form a dense film.

また、酸化シリコン膜、酸化窒化シリコン膜、アルミニウム酸マグネシウム膜、酸化スズ系膜およびダイヤモンド状カーボン膜の中から選ばれる少なくとも1種類のガスバリア膜と、有機もしくは高分子の膜とが、樹脂基板もしくは樹脂フィルムの表面に交互に繰り返し積層させた構造の基板上に、前記透明導電性薄膜を施した構成でもよい。
なお、本発明の透明導電膜は成膜後、非晶質性を維持できる範囲内で、加熱処理されてもよい。加熱処理により、低抵抗化、高可視光透過率化、耐久性向上が期待できる。
Further, at least one gas barrier film selected from a silicon oxide film, a silicon oxynitride film, a magnesium aluminum oxide film, a tin oxide film, and a diamond-like carbon film, and an organic or polymer film may be a resin substrate or The structure which gave the said transparent conductive thin film on the board | substrate of the structure laminated | stacked alternately on the surface of the resin film may be sufficient.
The transparent conductive film of the present invention may be heat-treated within a range in which amorphousness can be maintained after film formation. Heat treatment can be expected to reduce resistance, increase visible light transmittance, and improve durability.

(実施例1〜20)
成膜
ガラス基板もしくは樹脂フィルム基板の透明基体上に、表1の実施例1〜20に示す構成の透明導電膜を直流スパッタリング法により形成した。ガラス基板は低アルカリガラス(コーニング社製#7059、厚み1.1mmt)、樹脂フィルム基板には東洋紡製のPETフィルム(コスモシャインA4300、厚み100μmt)を用いた。表1の膜構成欄内の下の( )内の数字は膜厚(nm)である。
In膜は、In焼結体ターゲットを用い、2体積%酸素を含んだArガス0.6Paの雰囲気中、2.2W/cmの電力密度で直流スパッタリングすることにより、室温基板上に成膜した。
ITO膜は、SnとInの総和に対してSnを10原子%含むIn焼結体ターゲットを用い、2体積%酸素を含んだArガス0.6Paの雰囲気中、2.2W/cmの電力密度で直流スパッタリングすることにより、室温基板上に成膜した。成膜後のITO膜の組成は、用いたターゲットの組成と同一であった。
a−ZSO膜は、ZnとSnの酸化物焼結体ターゲットから直流スパッタリング法で作製した。Arガス0.6Paの雰囲気中、2.2W/cmの電力密度で直流スパッタリングすることにより、室温基板上に成膜した。成膜後のa−ZSO膜の組成は、用いたターゲットの組成と同一であることをICP発光分光分析で確認した。またa−ZSO膜は非晶質構造であることをX線回折測定で確認した。なお、Zn、Snの総和に対する膜中のSn含有量をx原子%として、得られた膜をa−ZSO(x)で示す。ここで「a−」はアモルファスを意味する(その逆として、「c−」は結晶膜を意味する)。
Gaを添加したZnとSnを含む非晶質酸化物膜(以下a−GZSO膜と略す)は、Gaを添加したZnとSnの酸化物焼結体ターゲットから、室温基板上に直流スパッタリング法で作製した。Arガス0.6Paの雰囲気中、2.2W/cmの電力密度で直流スパッタリングすることにより成膜した。成膜後のa−GZSO膜の組成は、用いたターゲットの組成と同一であることをICP発光分光分析で確認した。またGSN膜は非晶質構造であることをX線回折測定で確認した。なお、Zn、Snの総和に対する膜中のSn含有量をx原子%、Zn、Sn、Gaの総和に対する膜中のGa含有量をy原子%として、得られた膜をa−GZSO(x、y)で示す。ここで「a−」はアモルファスを意味する。
Alを添加したZnとSnを含む非晶質酸化物膜(以下a−AZSO膜と略す)は、Alを添加したZnとSnの酸化物焼結体ターゲットから、室温基板上に直流スパッタリング法で作製した。Arガス0.6Paの雰囲気中、2.2W/cmの電力密度で直流スパッタリングすることにより成膜した。成膜後のa−AZSO膜の組成は、用いたターゲットの組成と同一であることをICP発光分光分析で確認した。またASN膜は非晶質構造であることをX線回折測定で確認した。なお、Zn、Snの総和に対する膜中のSn含有量をx原子%、Zn、Sn、Alの総和に対する膜中のAl含有量をy原子%として、得られた膜をa−AZSO(x、y)で示す。ここで「a−」はアモルファスを意味する。
AgPd膜は、Pd1原子%含むAg−Pd合金ターゲットを用い、Arガス2mTorrの雰囲気中、0.55W/cmの電力密度で直流スパッタリングすることにより、室温基板上に成膜した。成膜後のAgPd膜の組成は、用いたターゲットの組成と同一であった。
AgAuCu膜は、Au1原子%とCu0.5原子%含むAg−Au−Cu合金ターゲットを用い、Arガス2mTorrの雰囲気中、0.55W/cmの電力密度で直流スパッタリングすることにより、室温基板上に成膜した。成膜後のAgAuCu膜の組成は、用いたターゲットの組成と同一であった。
Ag膜は、純度4NのAgターゲットを用い、Arガス2mTorrの雰囲気中、0.55W/cmの電力密度で直流スパッタリングすることにより、室温基板上に成膜した。
(Examples 1-20)
A transparent conductive film having a structure shown in Examples 1 to 20 in Table 1 was formed on a transparent substrate of a film- forming glass substrate or a resin film substrate by a direct current sputtering method. The glass substrate was low alkali glass (# 7059 manufactured by Corning, thickness 1.1 mmt), and the resin film substrate was a Toyobo PET film (Cosmo Shine A4300, thickness 100 μmt). The number in () below the film configuration column in Table 1 is the film thickness (nm).
The In 2 O 3 film is obtained by subjecting an In 2 O 3 sintered body target to direct current sputtering at an electric power density of 2.2 W / cm 2 in an atmosphere of 0.6 Pa of Ar gas containing 2 volume% oxygen. A film was formed on a room temperature substrate.
The ITO film uses an In 2 O 3 sintered body target containing 10 atomic% of Sn with respect to the sum of Sn and In, and is 2.2 W / cm in an atmosphere of 0.6 Pa of Ar gas containing 2 volume% oxygen. The film was formed on a room temperature substrate by direct current sputtering at a power density of 2 . The composition of the ITO film after film formation was the same as the composition of the target used.
The a-ZSO film was formed by a direct current sputtering method from an oxide sintered compact target of Zn and Sn. A film was formed on a room temperature substrate by direct current sputtering at an electric power density of 2.2 W / cm 2 in an atmosphere of Ar gas of 0.6 Pa. It was confirmed by ICP emission spectroscopic analysis that the composition of the a-ZSO film after film formation was the same as the composition of the target used. The a-ZSO film was confirmed by X-ray diffraction measurement to have an amorphous structure. The obtained film is represented by a-ZSO (x), where the Sn content in the film with respect to the sum of Zn and Sn is x atomic%. Here, “a−” means amorphous (conversely, “c−” means crystal film).
An amorphous oxide film containing Zn and Sn to which Ga 2 O 3 is added (hereinafter abbreviated as a-GZSO film) is formed from a Zn and Sn oxide sintered body target to which Ga 2 O 3 is added from a room temperature substrate. It was produced by direct current sputtering. The film was formed by direct current sputtering at an electric power density of 2.2 W / cm 2 in an atmosphere of Ar gas of 0.6 Pa. It was confirmed by ICP emission spectroscopic analysis that the composition of the a-GZSO film after film formation was the same as the composition of the target used. The GSN film was confirmed by X-ray diffraction measurement to have an amorphous structure. Note that the Sn content in the film with respect to the sum of Zn and Sn is x atomic%, and the Ga content in the film with respect to the sum of Zn, Sn, and Ga is y atomic%, and the obtained film is a-GZSO (x, y). Here, “a−” means amorphous.
An amorphous oxide film containing Zn and Sn to which Al 2 O 3 is added (hereinafter abbreviated as a-AZSO film) is obtained from a Zn and Sn oxide sintered body target to which Al 2 O 3 is added from a room temperature substrate. It was produced by direct current sputtering. The film was formed by direct current sputtering at an electric power density of 2.2 W / cm 2 in an atmosphere of Ar gas of 0.6 Pa. It was confirmed by ICP emission spectroscopic analysis that the composition of the a-AZSO film after film formation was the same as the composition of the target used. The ASN film was confirmed by X-ray diffraction measurement to have an amorphous structure. Note that the Sn content in the film with respect to the sum of Zn and Sn is x atomic%, and the Al content in the film with respect to the sum of Zn, Sn, and Al is y atomic%, and the resulting film is a-AZSO (x, y). Here, “a−” means amorphous.
The AgPd film was formed on a room temperature substrate by direct current sputtering at an electric power density of 0.55 W / cm 2 in an atmosphere of Ar gas 2 mTorr using an Ag—Pd alloy target containing 1 atomic% of Pd. The composition of the AgPd film after film formation was the same as the composition of the target used.
The AgAuCu film is formed on a substrate at room temperature by direct current sputtering at an electric power density of 0.55 W / cm 2 in an atmosphere of Ar gas 2 mTorr using an Ag—Au—Cu alloy target containing 1 atomic% of Au and 0.5 atomic% of Cu. A film was formed. The composition of the AgAuCu film after film formation was the same as the composition of the target used.
The Ag film was formed on a room temperature substrate by direct current sputtering at a power density of 0.55 W / cm 2 in an Ar gas 2 mTorr atmosphere using an Ag target having a purity of 4N.

透明導電性膜の評価
耐湿性については、70℃、湿度90%の雰囲気中に1週間放置するという耐湿試験を行った後、直径0.5mm以上の白色斑点が発生しなかったサンプルを○、直径1mm以上の白色斑点が発生したサンプルを×と判定した。
耐アルカリ性については、室温の1重量%NaOH水溶液中に20分間浸けるという耐アルカリ試験を行った後、膜に変化が見られなかったサンプルを○、変色等の劣化が見られたものを×と判定した。
各構成の透明導電膜のシート抵抗は、四探針法により測定した。
表1に、各構成の透明導電膜のシート抵抗の測定結果、耐湿性および耐アルカリ性の評価結果を示す。表1中の実施例1〜14は図1の構造の透明導電膜であり、実施例15は図2の構造の透明導電膜、実施例16は図3の構造の透明導電膜、実施例17は図4の構造の透明導電膜、実施例18〜20は図5の構造の透明導電膜の一例である。また実施例11、12、16、18は樹脂フィルム基板上に透明導電膜を形成しており、本発明の透明導電性フィルムである。実施例1〜20の透明導電膜をFIB加工により薄片にして、断面構造を透過型電子顕微鏡による観察、電子線回折による膜構造の解析を行ったところ、作製したa-ZSO膜、a-AZSO膜、a-GZSO膜は全て非晶質膜になっていることを確認した。
Regarding the evaluation moisture resistance of the transparent conductive film, a sample in which white spots having a diameter of 0.5 mm or more did not occur after performing a moisture resistance test of leaving in an atmosphere of 70 ° C. and 90% humidity for 1 week A sample in which white spots with a diameter of 1 mm or more were generated was judged as x.
Regarding the alkali resistance, after performing an alkali resistance test of immersion in a 1% by weight NaOH aqueous solution at room temperature for 20 minutes, a sample in which no change was observed in the film was indicated as ◯, and deterioration such as discoloration was indicated as ×. Judged.
The sheet resistance of the transparent conductive film of each configuration was measured by a four probe method.
Table 1 shows the measurement results of the sheet resistance, the moisture resistance and the alkali resistance evaluation results of the transparent conductive film of each configuration. Examples 1 to 14 in Table 1 are transparent conductive films having the structure of FIG. 1, Example 15 is a transparent conductive film having the structure of FIG. 2, Example 16 is a transparent conductive film having the structure of FIG. 4 is an example of the transparent conductive film having the structure of FIG. 4, and Examples 18 to 20 are examples of the transparent conductive film having the structure of FIG. In Examples 11, 12, 16, and 18, a transparent conductive film is formed on a resin film substrate, and the transparent conductive film of the present invention. The transparent conductive films of Examples 1 to 20 were made into thin pieces by FIB processing, and the cross-sectional structure was observed with a transmission electron microscope and the film structure was analyzed by electron diffraction. As a result, the produced a-ZSO films and a-AZSO It was confirmed that the film and the a-GZSO film were all amorphous.

a−ZSO膜を用た実施例5と、a−GZSO膜を用いた実施例7〜9を比較すると、波長380〜400nmにおける透過率は実施例7〜9の方が10〜15%ほど改善されて高く、その改善幅はGa量が多いほど顕著であった。
表1に示すように、本発明の構造の実施例1〜20の透明導電膜は耐湿性、耐アルカリ性共に良好であり、シート抵抗も15Ω/□未満であり高い導電性を有していた。よって、プラズマディスプレイの電磁波遮蔽フィルターや液晶ディスプレイの透明電極などにも利用可能であるといえる。
Comparing Example 5 using the a-ZSO film and Examples 7 to 9 using the a-GZSO film, the transmittance at wavelengths of 380 to 400 nm is improved by 10 to 15% in Examples 7 to 9 The improvement was more remarkable as the amount of Ga increased.
As shown in Table 1, the transparent conductive films of Examples 1 to 20 having the structure of the present invention had good moisture resistance and alkali resistance, and had a sheet resistance of less than 15Ω / □ and high conductivity. Therefore, it can be said that it can be used for an electromagnetic wave shielding filter of a plasma display, a transparent electrode of a liquid crystal display, and the like.

(比較例1〜9)
ターゲット組成だけを変えて作製した、本発明の組成範囲を逸脱したZSO膜、GZSO膜、AZSO膜を用いて、表2に示す構造の透明導電膜を作製した。使用したガラス基板、樹脂フィルム基板は実施例と同じであり、In23膜、ITO膜は、実施例と同じ条件で作製した。
GZO膜は以下の手順で作製した。GaをGaとZnの総和に対して5.0原子%含むZnO焼結体ターゲットを用い、Arガス0.6Paの雰囲気中、2.2W/cm2 の電力密度で直流スパッタリングすることにより、室温基板上に成膜した。成膜後のGZO膜の組成は、用いたターゲットの組成と同一であった。各膜の結晶性は、実施例と同様に断面片の透過型電子顕微鏡による観察と電子線回折により評価した。
表2に、実施例と同じ条件による、各構成の透明導電膜のシート抵抗の測定結果、耐湿性および耐アルカリ性の評価結果を示す。
(Comparative Examples 1-9)
Using a ZSO film, a GZSO film, and an AZSO film that were manufactured by changing only the target composition and deviated from the composition range of the present invention, a transparent conductive film having a structure shown in Table 2 was prepared. The glass substrate and resin film substrate used were the same as in the example, and the In 2 O 3 film and the ITO film were produced under the same conditions as in the example.
The GZO film was produced by the following procedure. Using a ZnO sintered body target containing Ga at 5.0 atomic% with respect to the sum of Ga and Zn, DC sputtering was performed at a power density of 2.2 W / cm 2 in an Ar gas 0.6 Pa atmosphere at room temperature. A film was formed on the substrate. The composition of the GZO film after film formation was the same as the composition of the target used. The crystallinity of each film was evaluated by observation of a cross-sectional piece with a transmission electron microscope and electron diffraction as in the example.
In Table 2, the measurement result of the sheet resistance of the transparent conductive film of each structure on the same conditions as an Example, the evaluation result of moisture resistance and alkali resistance are shown.

表2に示すように、比較例1〜3の透明導電膜は耐湿性で劣っていた。これは、Ag系膜を覆っているIn23膜とITO膜の耐湿性が劣るからである。比較例4〜5の透明導電膜は、耐湿性は良好だったが、耐アルカリ性が劣っていた。これはGZO膜、a−ZSO膜自体の耐アルカリ性が劣っているからである。比較例5のa−ZSO膜はSn含有量が本発明で規定した割合よりも少ないため耐アルカリ性に劣っているのである。また比較例6、8、9は、耐湿性、耐アルカリ性共に劣っていた。
ここでAg系薄膜を挟んでいるZSO膜、GZSO膜、AZSO膜は、Sn量が本発明で規定している割合を逸脱しているため、スパッタリング法で非晶質膜が得られなかった。結晶膜には粒界があり、粒界を介して水分がAg系薄膜へ進入し腐食が起きて耐湿性を悪化させたのである。比較例6、8、9の耐アルカリ性が悪いのは、ZSO膜、GZSO膜、AZSO膜自体の耐アルカリ性が、膜中のSn含有量が少ないため劣っているからである。比較例7は、耐アルカリ性は良好だが、耐湿性が悪かった。ここで用いられているZSO膜は、Sn含有量が多すぎて結晶膜となっており、粒界を介して水分がAg系薄膜へ進入し腐食が起きて耐湿性を悪化させたのである。
比較例1〜9のような透明導電膜は、シート抵抗が低いが、耐湿性、耐アルカリ性に劣るため、プラズマディスプレイの電磁波遮蔽フィルターや液晶ディスプレイの透明電極などにも利用できない。
As shown in Table 2, the transparent conductive films of Comparative Examples 1 to 3 were inferior in moisture resistance. This is because the In 2 O 3 film and the ITO film covering the Ag-based film have poor moisture resistance. The transparent conductive films of Comparative Examples 4 to 5 had good moisture resistance but were inferior in alkali resistance. This is because the alkali resistance of the GZO film and the a-ZSO film itself is inferior. The a-ZSO film of Comparative Example 5 is inferior in alkali resistance because the Sn content is less than the ratio defined in the present invention. Further, Comparative Examples 6, 8, and 9 were inferior in both moisture resistance and alkali resistance.
Here, the ZSO film, the GZSO film, and the AZSO film sandwiching the Ag-based thin film had an amount of Sn deviating from the ratio defined in the present invention, and thus an amorphous film could not be obtained by the sputtering method. There is a grain boundary in the crystal film, and moisture enters the Ag-based thin film through the grain boundary, causing corrosion to deteriorate the moisture resistance. The reason why the alkali resistance of Comparative Examples 6, 8, and 9 is poor is that the alkali resistance of the ZSO film, the GZSO film, and the AZSO film itself is inferior because the Sn content in the film is small. In Comparative Example 7, the alkali resistance was good, but the moisture resistance was bad. The ZSO film used here is a crystalline film with too much Sn content, and moisture enters the Ag-based thin film through the grain boundary, causing corrosion and deteriorating moisture resistance.
Although the transparent conductive film like Comparative Examples 1-9 has low sheet resistance, since it is inferior to moisture resistance and alkali resistance, it cannot be utilized for the electromagnetic wave shielding filter of a plasma display, the transparent electrode of a liquid crystal display, etc.

(比較例10〜12)
表3に示すような構成の透明導電膜を作製した。ZSO膜、GZSO膜の成膜は、成膜時に基板を300℃に加熱した以外は実施例と同様の条件で作製した。各膜の結晶性は、実施例と同様に断面片の透過型電子顕微鏡による観察と電子線回折により評価した。基板を300℃に加熱して成膜して得られたZSO膜、GZSO膜は、Zn2SnO4の結晶性化合物(JCPDSカードのNo.24−1470)や、ZnSnO3(JCPDSカードのNo.52−1381)の結晶性化合物が生成されていることがX線回折測定で明らかとなった。
表3に、実施例と同じ条件による、各構成の透明導電膜のシート抵抗の測定結果、耐湿性および耐アルカリ性の評価結果を示す。
(Comparative Examples 10-12)
A transparent conductive film having a structure as shown in Table 3 was produced. The ZSO film and the GZSO film were formed under the same conditions as in the examples except that the substrate was heated to 300 ° C. during the film formation. The crystallinity of each film was evaluated by observation of a cross-sectional piece with a transmission electron microscope and electron diffraction as in the example. The ZSO film and the GZSO film obtained by heating the substrate to 300 ° C. are formed of Zn 2 SnO 4 crystalline compound (JCPDS card No. 24-1470) or ZnSnO 3 (JCPDS card No. 24). X-ray diffraction measurement revealed that a crystalline compound of 52-1381) was produced.
Table 3 shows the sheet resistance measurement results, moisture resistance, and alkali resistance evaluation results of the transparent conductive films of the respective configurations under the same conditions as in the examples.

表3に示すように、比較例10〜12の透明導電膜は耐アルカリ性は良かったが、耐湿性で劣っていた。これは、Ag系薄膜を挟んでいるZSO膜、GZSO膜は上述のように結晶膜を含んでおり、粒界を介して水分がAg系薄膜へ進入し腐食が起きて耐湿性を悪化させたのである。
比較例10〜12のような透明導電膜は、シート抵抗が低いが、耐湿性、耐アルカリ性に劣るため、プラズマディスプレイの電磁波遮蔽フィルターや液晶ディスプレイの透明電極などにも利用できない。
As shown in Table 3, the transparent conductive films of Comparative Examples 10 to 12 had good alkali resistance but were inferior in moisture resistance. This is because the ZSO film and the GZSO film sandwiching the Ag-based thin film include the crystal film as described above, and moisture enters the Ag-based thin film through the grain boundary, which causes corrosion and deteriorates moisture resistance. It is.
Although the transparent conductive film like Comparative Examples 10-12 has low sheet resistance, since it is inferior to moisture resistance and alkali resistance, it cannot be utilized for the electromagnetic wave shielding filter of a plasma display, the transparent electrode of a liquid crystal display, etc.

本請求項1の発明に係る透明導電膜例の断面図である。It is sectional drawing of the example of a transparent conductive film which concerns on invention of Claim 1. 本請求項2の発明に係る透明導電膜例の断面図である。It is sectional drawing of the example of a transparent conductive film which concerns on invention of Claim 2. 本請求項2の発明に係る透明導電膜例の断面図である。It is sectional drawing of the example of a transparent conductive film which concerns on invention of Claim 2. 本請求項3の発明に係る透明導電膜例の断面図である。It is sectional drawing of the example of a transparent conductive film which concerns on invention of Claim 3. 本請求項4の発明に係る透明導電膜例の断面図である。It is sectional drawing of the example of a transparent conductive film which concerns on invention of this Claim 4.

符号の説明Explanation of symbols

1、3、6、8:a−ZSO膜
2、7:金属膜
4、5、9:a−ZSO膜でない酸化物膜


1, 3, 6, 8: a-ZSO film 2, 7: metal film 4, 5, 9: oxide film that is not an a-ZSO film


Claims (7)

複数層から構成される透明導電膜であり、構成層が、銀若しくは銀を主成分とする合金からなる金属膜と、該金属膜との両面に設けられたSnとZnとOとを主成分とする非晶質のZn−Sn−O系酸化物膜を含み、かつ該Zn−Sn−O系酸化物膜、酸化物焼結体ターゲットを用いたスパッタリングにより形成され、Snの含有量が、SnとZnの総和に対して10〜90原子%であることを特徴とする透明導電膜。 A transparent conductive film composed of a plurality of layers, wherein the constituent layers are composed mainly of a metal film made of silver or an alloy containing silver as a main component, and Sn, Zn, and O provided on both surfaces of the metal film. The Zn-Sn-O-based oxide film is formed by sputtering using an oxide sintered body target, and the Sn content is A transparent conductive film, characterized in that it is 10 to 90 atomic% with respect to the total of Sn and Zn . 前記請求項1記載の透明導電膜の少なくとも片面に非晶質のZn−Sn−O系酸化物膜と異なる酸化物膜が積層されたことを特徴とする透明導電膜。   The transparent conductive film according to claim 1, wherein an oxide film different from an amorphous Zn-Sn-O-based oxide film is laminated on at least one surface of the transparent conductive film. 非晶質のZn−Sn−O系酸化物膜、銀を主成分とする金属膜、非晶質のZn−Sn−O系酸化物膜、銀を主成分とする金属膜、非晶質のZn−Sn−O系酸化物膜の順に積層されていることを特徴とする透明導電膜。   Amorphous Zn—Sn—O-based oxide film, silver-based metal film, amorphous Zn—Sn—O-based oxide film, silver-based metal film, amorphous A transparent conductive film, wherein a Zn—Sn—O-based oxide film is stacked in this order. 請求項1〜3のいずれかに記載の透明導電膜のうちの少なくとも二つを組み合わせて構成されることを特徴とする透明導電膜。   A transparent conductive film comprising a combination of at least two of the transparent conductive films according to claim 1. 非晶質のZn−Sn−O系酸化物膜が、GaとAlのうちの少なくとも1種類を該酸化物膜中の全金属の総和に対して50原子%以下の割合で含有することを特徴とする請求項記載の透明導電膜。 The amorphous Zn—Sn—O-based oxide film contains at least one of Ga and Al at a ratio of 50 atomic% or less with respect to the total of all metals in the oxide film. The transparent conductive film according to claim 1 . 合金膜が銀を主成分として、パラジウム、金、白金、銅からなる群から選ばれる1種以上の金属を含む合金膜であることを特徴とする請求項1〜のいずれかに記載の透明導電膜。 As the main component alloy film of silver, palladium, gold, platinum, transparent according to any one of claims 1 to 5, characterized in that an alloy film containing at least one metal selected from the group consisting of copper Conductive film. 樹脂フィルム基板の少なくとも一方の面に請求項1〜記載のいずれかの透明導電膜が形成されたことを特徴とする透明導電性フィルム。 Transparent conductive film characterized in that one of the transparent conductive film according to claim 1 to 6, wherein formed on at least one surface of the resin film substrate.
JP2006074449A 2006-03-17 2006-03-17 Transparent conductive film and transparent conductive film using the same Expired - Fee Related JP4961786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006074449A JP4961786B2 (en) 2006-03-17 2006-03-17 Transparent conductive film and transparent conductive film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006074449A JP4961786B2 (en) 2006-03-17 2006-03-17 Transparent conductive film and transparent conductive film using the same

Publications (2)

Publication Number Publication Date
JP2007250430A JP2007250430A (en) 2007-09-27
JP4961786B2 true JP4961786B2 (en) 2012-06-27

Family

ID=38594479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006074449A Expired - Fee Related JP4961786B2 (en) 2006-03-17 2006-03-17 Transparent conductive film and transparent conductive film using the same

Country Status (1)

Country Link
JP (1) JP4961786B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107267946A (en) * 2017-07-26 2017-10-20 鲁东大学 A kind of flexible low radiation fenestrated membrane and preparation method thereof
WO2021177124A1 (en) 2020-03-03 2021-09-10 デクセリアルズ株式会社 Electroconductive laminate, optical device in which same is used, and method for producing electroconductive laminate

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019994A1 (en) * 2007-04-27 2008-10-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transparent barrier film and method of making same
JP2010034032A (en) * 2008-06-25 2010-02-12 Sumitomo Chemical Co Ltd Method of manufacturing transparent conductive film
JP2010031364A (en) * 2008-06-25 2010-02-12 Sumitomo Chemical Co Ltd Transparent conductive film and method for producing the same
JP6174330B2 (en) * 2012-05-17 2017-08-02 日産自動車株式会社 Transparent dielectric film, heat reflecting structure, manufacturing method thereof, and laminated glass using the same
BR112014030056A2 (en) * 2012-05-31 2017-08-08 Bayer Materialscience Ag zinc-tin oxide coated plastic film having improved optical absorption properties.
JP5938290B2 (en) * 2012-07-31 2016-06-22 小川 倉一 Transparent conductive film and method for producing the same
JP6000991B2 (en) * 2013-01-31 2016-10-05 日東電工株式会社 Infrared reflective film
JP5859476B2 (en) 2013-04-11 2016-02-10 日東電工株式会社 Infrared reflective film
CN103730190B (en) * 2014-01-16 2016-08-17 广州新视界光电科技有限公司 Complex copper conductive film and preparation method thereof and metal line circuit
JP5861719B2 (en) 2014-01-17 2016-02-16 Tdk株式会社 Transparent conductor and touch panel
JP6282142B2 (en) 2014-03-03 2018-02-21 日東電工株式会社 Infrared reflective substrate and manufacturing method thereof
JP2015194615A (en) * 2014-03-31 2015-11-05 デクセリアルズ株式会社 Optical member and manufacturing method thereof
JP6048529B2 (en) * 2014-06-02 2016-12-21 Tdk株式会社 Transparent conductive film and touch panel
KR102225487B1 (en) * 2014-06-11 2021-03-11 한국전자통신연구원 A transparent electrode and a solar cell using the same
JP6536575B2 (en) * 2014-06-17 2019-07-03 コニカミノルタ株式会社 Transparent conductor and touch panel
TWI595507B (en) * 2014-06-18 2017-08-11 Geomatec Co Ltd Laminates, methods of making the same, and electronic machines
WO2016111202A1 (en) * 2015-01-09 2016-07-14 三菱マテリアル株式会社 Multilayer film
JP2016130010A (en) * 2015-01-09 2016-07-21 三菱マテリアル株式会社 Laminated film
JP6409588B2 (en) * 2015-01-21 2018-10-24 Tdk株式会社 Transparent conductor and touch panel
WO2016132825A1 (en) * 2015-02-18 2016-08-25 三菱マテリアル株式会社 Sputtering target and laminate film
JP6163196B2 (en) * 2015-12-16 2017-07-12 日東電工株式会社 Infrared reflective film
WO2017164209A1 (en) * 2016-03-23 2017-09-28 三菱マテリアル株式会社 Laminated transparent conductive film, laminated wiring film, and method for producing laminated wiring film
JP6686730B2 (en) * 2016-06-22 2020-04-22 三菱マテリアル株式会社 Conductive oxide film and conductive laminated film
CN110506091B (en) * 2017-04-14 2021-10-22 3M创新有限公司 Durable low emissivity window film constructions
KR101884643B1 (en) * 2017-07-06 2018-08-03 한국과학기술연구원 Zinc-doped tine oxide based transparent conducting oxide, multilayered transparent conducting film using the same and method for preparing the same
JP2019021599A (en) * 2017-07-21 2019-02-07 株式会社東芝 Transparent electrode and method for producing the same, and electronic device using the transparent electrode
JP2019163493A (en) * 2018-03-19 2019-09-26 住友金属鉱山株式会社 Transparent oxide-laminated film, method of manufacturing transparent oxide-laminated film, and transparent resin substrate
JP2019163494A (en) * 2018-03-19 2019-09-26 住友金属鉱山株式会社 Transparent oxide film, method of manufacturing transparent oxide film, oxide sintered body and transparent resin substrate
US20210129495A1 (en) * 2018-03-27 2021-05-06 Nippon Sheet Glass Company, Limited Vehicle window glass and method for manufacturing same
JP6580202B2 (en) * 2018-05-15 2019-09-25 デクセリアルズ株式会社 Optical member and manufacturing method thereof
US20230282387A1 (en) * 2020-09-04 2023-09-07 Dexerials Corporation Conductive layered product, optical device using same, and manufacturing method for conductive layered product
JP2022064724A (en) * 2020-10-14 2022-04-26 日東電工株式会社 Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer
JP2022138695A (en) * 2021-03-10 2022-09-26 日東電工株式会社 transparent oxide film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU561315B2 (en) * 1984-10-29 1987-05-07 Ppg Industries Ohio, Inc. Sputtering films of metal alloy oxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107267946A (en) * 2017-07-26 2017-10-20 鲁东大学 A kind of flexible low radiation fenestrated membrane and preparation method thereof
WO2021177124A1 (en) 2020-03-03 2021-09-10 デクセリアルズ株式会社 Electroconductive laminate, optical device in which same is used, and method for producing electroconductive laminate
KR20220131310A (en) 2020-03-03 2022-09-27 데쿠세리아루즈 가부시키가이샤 Conductive laminate, optical device using same, and method for manufacturing conductive laminate

Also Published As

Publication number Publication date
JP2007250430A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP4961786B2 (en) Transparent conductive film and transparent conductive film using the same
KR101511231B1 (en) Transparent conductive film and meethod of fabicating the same transparent conductive base material and light-emitting device
USRE37446E1 (en) Low emissivity film
JP2010034577A (en) Electromagnetic wave shielding laminate display employing the same
JPWO2007013269A1 (en) Reflective film laminate
JP5023745B2 (en) Transparent conductive film, transparent conductive substrate using this transparent conductive film, transparent conductive film, near-infrared shielding filter, and method for producing this transparent conductive film
KR20020045484A (en) Heat-resistant reflecting layer, laminate formed of the reflecting layer, and liquid crystal display device having the reflecting layer or the laminate
JP3053668B2 (en) Heat shielding film
JP3997177B2 (en) Ag alloy film for forming electromagnetic wave shield, Ag alloy film forming body for electromagnetic wave shield, and Ag alloy sputtering target for forming Ag alloy film for electromagnetic wave shield
KR20170047371A (en) Optical film including an infrared absorption layer
JP3335384B2 (en) Heat shielding film
JP2011138135A (en) Transparent conductive film and display filter including the same
KR101764053B1 (en) Ag alloy film for reflecting electrode or wiring electrode, reflecting electrode or wiring electrode, and ag alloy sputtering target
CN113299426B (en) Transparent conductive barrier film, preparation method and application thereof
JP4615701B2 (en) Laminate using high heat-resistant reflective film
JP6511876B2 (en) Laminated transparent conductive film
JP4168689B2 (en) Thin film laminate
KR101700884B1 (en) Maganese tin oxide Transparent Conducting Oxide and transparent conductive film using the same and method for fabricating transparent conductive film
CN205722840U (en) A kind of flexible copper grid base transparent conducting film
JP2002129259A (en) Highly heat-resistant reflection film and laminated body, reflection plate for liquid crystal display element and glass as building material using the film
JP3850865B2 (en) Conductive laminate
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
KR20110105048A (en) Transparent conductive thin film, display filter and potovoltaic cell containing the same
WO2015087895A1 (en) Transparent conductive body
JPH11262968A (en) Transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4961786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees