WO2015087895A1 - Transparent conductive body - Google Patents

Transparent conductive body Download PDF

Info

Publication number
WO2015087895A1
WO2015087895A1 PCT/JP2014/082621 JP2014082621W WO2015087895A1 WO 2015087895 A1 WO2015087895 A1 WO 2015087895A1 JP 2014082621 W JP2014082621 W JP 2014082621W WO 2015087895 A1 WO2015087895 A1 WO 2015087895A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
high refractive
index layer
transparent
transparent conductor
Prior art date
Application number
PCT/JP2014/082621
Other languages
French (fr)
Japanese (ja)
Inventor
仁一 粕谷
一成 多田
健一郎 平田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015552474A priority Critical patent/JPWO2015087895A1/en
Publication of WO2015087895A1 publication Critical patent/WO2015087895A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a transparent conductor including a transparent metal film.
  • electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials.
  • display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials.
  • metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , TiO 2 , SnO 2.
  • Oxide semiconductors such as ZnO and ITO (indium tin oxide) are known.
  • a transparent conductor (wiring) is disposed on the image display element.
  • the transparent conductor is required to have light transmittance, and an ITO film is frequently used for the transparent conductor.
  • a capacitive touch panel display device has been developed, and it is required to further reduce the surface electrical resistance of the transparent conductor.
  • the ITO film has a problem that it is difficult to sufficiently reduce the surface electrical resistance value.
  • the Ag film is made of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium oxide / zinc oxide), ICO (indium cerium oxide), a- It is also considered to sandwich the film between GIO (a film made of gallium, indium, and oxygen) (Patent Documents 2 to 4, Non-Patent Document 1). Furthermore, it has been studied to sandwich an Ag film with a ZnS film, or sandwich a ZnS—SiO 2 film (Non-patent Documents 2 and 3, and Patent Document 5).
  • a high refractive index for example, niobium oxide (Nb 2 O 5 ), IZO (indium oxide / zinc oxide), ICO (indium cerium oxide), a- It is also considered to sandwich the film between GIO (a film made of gallium, indium, and oxygen) (Patent Documents 2 to 4, Non-Patent Document 1). Furthermore, it has been studied to sandwich an Ag film with
  • a transparent conductor made of a transparent metal film (Ag film) alone, or a transparent conductor in which a transparent metal film is sandwiched between niobium oxide films, IZO films, etc. has insufficient moisture resistance, and humidity outside the transparent conductor As a result, there is a problem that the transparent metal film is easily corroded.
  • a transparent metal film is sandwiched between films containing ZnS, moisture resistance is likely to increase, and corrosion of the transparent metal film is suppressed.
  • a film containing ZnS has low conductivity. Therefore, the transparent conductor having such a configuration has a problem that it is difficult to take out electricity from the surface of the transparent conductor.
  • An object of this invention is to provide the transparent conductor which is excellent in moisture resistance and can take out electricity stably from the surface of a transparent conductor.
  • this invention relates to the following transparent conductors.
  • a transparent substrate a first high refractive index layer containing a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light having a wavelength of 570 nm of the transparent substrate, and a transparent metal film
  • a second high refractive index layer containing a conductive material in this order, and at least one of the first high refractive index layer or the second high refractive index layer contains ZnS.
  • the conductive material TiO 2, ITO, In 2 O 3, ZnO, Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, IGZO, ZTO, Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO
  • the transparent conductor according to [1] comprising one or more metals selected from the group consisting of metal oxides selected from the group consisting of Ag, Cu, Al, and Au.
  • a transparent conductor that is excellent in moisture resistance and that can stably take out electricity from the surface can be obtained.
  • the transparent conductor 100 of the present invention has a transparent substrate 1 / first high refractive index layer 2 / transparent metal film 3 / second high refractive index layer 4 laminated in this order. It consists of a laminate.
  • the second high refractive index layer 4 of the transparent conductor 100 contains a conductive material, and one or both of the first high refractive index layer 2 and the second high refractive index layer 4 contain ZnS. It is.
  • the insulating properties of the high refractive index layer are increased. Therefore, electricity cannot be taken out from the surface of the transparent conductor, and it is necessary to separately provide wiring for taking out electricity from the transparent metal film.
  • the second high refractive index layer 4 since the second high refractive index layer 4 includes a conductive material, the conductivity of the second high refractive index layer 4 is increased, and the transparent conductor 100 on the second high refractive index layer 4 side is increased. Electricity can be stably extracted from the surface.
  • the moisture resistance of the transparent conductor 100 is increased, and the transparent metal film 3 is corroded. Is suppressed.
  • the transparent metal film 3 may be formed on the entire surface of the transparent substrate 1 as shown in FIG. 1, and is patterned into a desired shape as shown in FIG. It may be.
  • the region a where the transparent metal film 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”).
  • the region b not including the transparent metal film 3 is an insulating region.
  • the pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 100.
  • the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. sell.
  • the transparent conductor 100 (laminated body) of the present invention may include layers other than the transparent substrate 1, the first high refractive index layer 2, the transparent metal film 3, and the second high refractive index layer 4. .
  • a sulfidation preventing layer for preventing sulfidation of the transparent metal film 3 (Not shown) may be included.
  • the layers included in the transparent conductor 100 of the present invention are all layers made of an inorganic material except for the transparent substrate 1. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 4, the laminated body from the transparent substrate 1 to the second high refractive index layer 4 is the transparent conductor 100 of the present invention. .
  • the transparent substrate 1 included in the transparent conductor 100 can be the same as the transparent substrate of various display devices.
  • the transparent substrate 1 includes a glass substrate, a cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin (for example, ZEONOR (manufactured by Nippon Zeon), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (eg polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)) Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (for example, polyethylene terephthalate), etc.
  • PPE polyphenylene
  • the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polycarbonate resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin,
  • a film made of polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
  • a hard coat layer or a smooth layer may be formed on the film.
  • the transparent substrate 1 preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more. Further, the average transmittance is more preferably 80% or more, and further preferably 85% or more. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1.
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. .
  • the refractive index of the transparent substrate 1 is usually determined by the material of the transparent substrate 1.
  • the refractive index of the transparent substrate 1 is measured with an ellipsometer.
  • the haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. When the haze value of the transparent substrate is 2.5 or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
  • the thickness of the transparent substrate 1 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent substrate 1 is 1 ⁇ m or more, the strength of the transparent substrate 1 is easily increased, and it is difficult to crack or tear the first high refractive index layer 2 during film formation.
  • the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient.
  • the thickness of the apparatus using the transparent conductor 100 can be reduced.
  • the apparatus using the transparent conductor 100 can also be reduced in weight.
  • the first high refractive index layer 2 is a layer for suppressing reflection on the surface of the transparent conductor 100.
  • the reflectance of the surface of the transparent conductor 100 greatly depends on the layer configuration of the transparent conductor 100.
  • the transparent metal film 3 is sandwiched between layers having a relatively high refractive index (the first high refractive index layer 2 and the second high refractive index layer 4), the reflectance of the surface of the transparent conductor 100 is reduced, and the transparent metal film 3 is transparent. The light transmittance of the conductor 100 is increased.
  • the first high refractive index layer 2 is preferably included at least in the conductive region a of the transparent conductor, that is, the region where the transparent metal film 3 is formed, and if necessary, the insulating region of the transparent conductor 100 Also included in b.
  • the first high refractive index layer 2 includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 described above.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the first high refractive index layer 2 tends to suppress the surface reflection of the conduction region a of the transparent conductor 100.
  • the refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material.
  • the dielectric material or the oxide semiconductor material may be a metal sulfide or metal oxide having the above refractive index.
  • Examples of the metal sulfide or metal oxide having the above refractive index include ZnS, TiO 2 , ITO (indium tin oxide), ZnO, In 2 O 3 , Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O.
  • the first high refractive index layer 2 may contain only one kind of the metal sulfide or metal oxide, or may contain two or more kinds.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably ZnS.
  • ZnS is contained in the first high refractive index layer 2, it becomes difficult for moisture to permeate from the transparent substrate 1 side to the transparent metal film 3 side, and corrosion of the transparent metal film 3 is suppressed.
  • the compound for making ZnS amorphous is preferably a compound that does not impair the light transmittance of ZnS even when mixed with ZnS, and may be, for example, a metal oxide, a metal fluoride, or a metal nitride.
  • ZnS and other compounds are contained in the first high refractive index layer 2, it is preferable that ZnS is contained in an amount of 50% by mass or more and 90% or less with respect to the mass of the first high refractive index layer 2, and more preferably. It is 70 to 90% by mass, and more preferably 80 to 90% by mass.
  • the first high refractive index layer 2 contains 50 mass% or more of ZnS, the moisture resistance of the first high refractive index layer 2 is likely to increase.
  • a layer containing ZnS is easily formed by sputtering or vapor deposition. If ZnS is contained in an amount of 50% by mass or more, the film formation rate of the first high refractive index layer 2 is likely to increase.
  • the ZnS is 90% by mass or less, the flexibility of the first high refractive index layer 2 is likely to increase.
  • the thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm.
  • the first high refractive index layer 2 suppresses surface reflection of the conduction region a of the transparent conductor 100.
  • the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease.
  • the thickness of the 1st high refractive index layer 2 is 150 nm or less, the flexibility of the 1st high refractive index layer 2 will increase easily, and the flexibility of the transparent conductor 100 will increase easily.
  • the thickness of the first high refractive index layer 2 is measured with an ellipsometer.
  • the first high refractive index layer 2 can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of increasing the refractive index (density) of the first high refractive index layer 2, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
  • IAD ion assist
  • the first high-refractive index layer 2 includes a plurality of compounds
  • a mixture obtained by previously mixing the compounds at a predetermined ratio may be used as a vapor deposition source or a sputtering target.
  • each compound may be prepared individually and used as a vapor deposition source or a sputtering target.
  • the patterning method is not particularly limited.
  • the first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the film formation surface; It may be a layer patterned by an etching method.
  • the transparent metal film 3 of the present invention is a film for conducting electricity in the transparent conductor 100.
  • the transparent metal film 3 may be formed on the entire surface of the transparent substrate 1 as described above, or may be patterned into a desired shape.
  • the metal contained in the transparent metal film 3 is not particularly limited as long as it is a highly conductive metal, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like.
  • the transparent metal film may contain only one kind of these metals or two or more kinds.
  • the transparent metal film 3 is preferably made of silver or an alloy containing 90 at% or more of silver.
  • the metal combined with silver can be germanium, bismuth, platinum group, copper, gold, molybdenum, zinc, gallium, tin, indium, aluminum, manganese, neodymium, and the like.
  • the sulfidation resistance of the transparent metal film is enhanced.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the thickness of the transparent metal film 3 is preferably 20 nm or less, more preferably 10 nm or less, further preferably 3 to 9 nm, and particularly preferably 5 to 8 nm.
  • the transparent metal film 3 has a thickness of 20 nm or less, particularly 10 nm or less, the metal inherent reflection hardly occurs in the transparent metal film 3.
  • the thickness of the transparent metal film 3 is 10 nm or less, the surface reflection of the conduction region a of the transparent conductor 100 is easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 4.
  • the thickness of the transparent metal film 3 is measured with an ellipsometer.
  • the transparent metal film 3 can be a film formed by any film forming method, but as described above, in order to make the transparent metal film 3 thin and smooth, it was formed by sputtering. It is preferable that the film is formed after growth nuclei are formed on the film formation surface of the transparent metal film 3.
  • the sputtering method since the material collides with the deposition target at high speed during film formation, a dense and smooth film is easily obtained; the light transmittance of the transparent metal film 3 is likely to increase.
  • the type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like.
  • the transparent metal film 3 is particularly preferably a film formed by a counter sputtering method.
  • the transparent metal film 3 When the transparent metal film 3 is a film formed by the facing sputtering method, the transparent metal film 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent metal film 3 becomes lower and the light transmittance is likely to increase.
  • the growth nuclei preferably contain palladium, molybdenum, zinc, germanium, niobium or indium; or alloys of these metals with other metals, oxides or sulfides of these metals (for example, ZnS).
  • the growth nucleus may contain only one kind or two or more kinds.
  • the amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the growth nucleus is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more. When the growth nucleus contains 20% by mass or more of the metal, the affinity between the growth nucleus and the transparent metal film 3 formed thereon is likely to increase.
  • the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, but may be a platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, or the like.
  • the thickness of the growth nucleus is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film.
  • the growth nucleus may also be a film in which metal atoms are attached to the first high refractive index layer 2 so as to be separated from each other. If the growth nucleus adhesion amount is 3 nm or less, the growth nucleus hardly affects the light reflectivity of the transparent conductor 100. The presence or absence of growth nuclei is confirmed by the ICP-MS method. The thickness of the growth nucleus is calculated from the product of the film formation speed and the film formation time.
  • the growth nucleus can be a layer formed by sputtering or vapor deposition.
  • the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method.
  • the sputtering time for forming the growth nuclei is appropriately selected according to the desired average thickness of the underlayer and the film formation rate.
  • the sputter deposition rate is preferably from 0.1 to 15 ⁇ / second, more preferably from 0.1 to 7 ⁇ / second.
  • examples of the vapor deposition method include vacuum vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method and the like.
  • the deposition time is appropriately selected according to the desired thickness of the underlayer and the film formation rate.
  • the deposition rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the film forming method is not particularly limited, and a general gas phase such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It may be a film forming method.
  • the patterning method is not particularly limited.
  • the transparent metal film 3 may be, for example, a film formed by arranging a mask having a desired pattern; it may be a film patterned by a known etching method.
  • the second high refractive index layer 4 is a layer for suppressing light reflection on the surface of the transparent conductor 100 together with the first high refractive index layer 2 described above.
  • the second high refractive index layer 4 may be formed in the conductive region a of the transparent conductor 100, and the second high refractive index layer 4 may be formed in the insulating region b of the transparent conductor 100.
  • the second high refractive index layer 4 includes a conductive material.
  • the conductive material here refers to a material having an effect of transmitting the conductivity of the transparent metal film 3 to the surface of the transparent conductor, and it is not essential that the material itself is conductive.
  • the conductive material contained in the second high refractive index layer 4 can be a metal oxide or a metal.
  • TiO 2 ITO (indium tin oxide), ZnO, In 2 O 3 , Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3, TiO, SnO 2, La 2 Ti 2 O 7, IZO ( indium-zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (indium cerium oxide), IGZO (indium -Gallium / zinc oxide), ZTO (zinc tin composite oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (non-comprising gallium, indium, and oxygen) A metal oxide selected from the group consisting of (crystalline oxide), particularly preferably ITO, AZO, GZO or IZO. In the second high refractive index layer 4, only one kind of the metal oxide may be
  • the metal oxide is preferably contained in an amount of 30% by mass or more based on the mass of the second high refractive index layer 4. Preferably it is 40 mass% or more, More preferably, it is 60 mass% or more. When the metal oxide is contained in an amount of 30% by mass or more, the conductivity of the second high refractive index layer 4 is likely to be sufficiently increased.
  • the metal that can be the conductive material is Ag, Cu, Al, or Au, and particularly preferably Cu or Al.
  • the second high refractive index layer 4 may contain only one kind of the metal or two or more kinds.
  • the metal is preferably contained in an amount of 5% by mass or less with respect to the mass of the second high refractive index layer 4, and more preferably It is 01 or more and less than 1% by mass, and more preferably 0.01 to 0.05% by mass.
  • the amount of the metal is 5% by mass or less, even if the transparent conductor 100 is used in a humid heat environment, it is difficult for the second high refractive index layer to have a poor appearance.
  • the amount of the conductive material contained in the second high refractive index layer 4 is 0.01% by mass or more, the conductivity of the second high refractive index layer 4 is likely to be sufficiently increased.
  • the second high refractive index layer 4 may contain both the metal oxide and the metal, but preferably contains ZnS together with the metal oxide or metal.
  • the second high refractive index layer 4 preferably contains 0.1 to 80% by mass of ZnS.
  • the amount of ZnS is more preferably 65% by mass or less, and further preferably 35% or less.
  • ZnS has relatively high crystallinity, and a film containing a large amount of ZnS has low flexibility. Therefore, when the transparent conductor 100 is required to have flexibility, a compound for making ZnS amorphous may be further included.
  • the compound for amorphizing ZnS is preferably a compound that does not impair the light transmittance of ZnS even when mixed with ZnS, and is the same as the compound for amorphizing ZnS of the first high refractive index layer. It can be.
  • the compound for amorphizing ZnS is preferably contained in an amount of 5 to 40 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of ZnS.
  • the flexibility of the second high refractive index layer 4 is likely to increase.
  • the thickness of the second high refractive index layer 4 is preferably 15 nm or more and 150 nm or less.
  • the thickness of the second high refractive index layer 4 is more preferably 15 to 150 nm, still more preferably 20 to 80 nm.
  • the thickness of the second high refractive index layer 4 is 15 nm or more, the surface reflection of the conduction region a of the transparent conductor 100 is easily suppressed by the second high refractive index layer 4.
  • the thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. Furthermore, the flexibility of the second high refractive index layer 4 is likely to increase.
  • the thickness of the second high refractive index layer 4 is measured with an ellipsometer.
  • the film formation method of the second high refractive index layer 4 is not particularly limited, and is formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. Layer. From the viewpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a film formed by sputtering.
  • a mixture in which ZnS, SiO 2 , a conductive material, and the like are mixed in advance at a desired ratio may be used as an evaporation source or a sputtering target.
  • ZnS, SiO 2 , and a conductive material may be separately prepared, and these may be used as an evaporation source and a sputtering target, respectively.
  • the patterning method is not particularly limited.
  • the second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface.
  • the layer patterned by the well-known etching method may be sufficient.
  • the transparent conductor of the present invention includes the transparent metal film 3 and the second high refractive index layer 4 between the first high refractive index layer 2 and the transparent metal film 3.
  • a sulfidation preventing layer for preventing sulfidation of the transparent metal film 3 may be included.
  • the sulfidation prevention layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b.
  • the transparent metal film 3 and the layer containing ZnS are formed adjacent to each other
  • the refractive index layer 4 is formed, the metal in the transparent metal film 3 is sulfided to produce a metal sulfide, and the light transmittance of the transparent conductor 100 may be lowered.
  • an antisulfurization layer is included between the first high refractive index layer 2 and the transparent metal film 3 or between the transparent metal film 3 and the second high refractive index layer 4, the metal sulfide Generation is suppressed.
  • the sulfidation prevention layer may be a layer containing metal oxide, metal nitride, metal fluoride, or Zn. Only one of these may be contained in the antisulfurization layer, or two or more of them may be contained.
  • metal oxides TiO 2, ITO, ZnO, In 2 O 3, Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , and the like.
  • metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like.
  • metal nitride examples include Si 3 N 4 , AlN, and the like.
  • the thickness of the sulfidation preventing layer is not particularly limited as long as the formation of the metal sulfide can be suppressed when the transparent metal film 3 is formed or when the second high refractive index layer 4 is formed.
  • ZnS contained in the first high refractive index layer 2 and the second high refractive index 4 has high affinity with the metal contained in the transparent metal film 3. Therefore, when the thickness of the antisulfurization layer is very thin and a part of the transparent metal film 3 is slightly exposed, the adhesion between the layers tends to increase.
  • the antisulfurization layer is preferably relatively thin, preferably 0.1 nm to 10 nm, more preferably 0.5 nm to 5 nm, and even more preferably 1 nm to 3 nm.
  • the thickness of the antisulfurization layer is measured with an ellipsometer.
  • the anti-sulfurization layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • the sulfidation prevention layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the film formation surface; patterned by a known etching method It may be a layer formed.
  • the surface electrical resistance of the conduction region a measured by bringing a resistivity meter into contact with the surface of the second high refractive index layer 4 is preferably 50 ⁇ / ⁇ or less. More preferably, it is 20 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value is a value measured at 24 ° C. and 30% Rh, and is a value measured within 5 seconds from the start of measurement.
  • the surface electrical resistance value of the conduction region a is measured according to, for example, JIS K7194, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
  • the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor of the present invention is preferably 80% or more, more preferably 83% or more, and further preferably 85% or more.
  • the average transmittance is preferably 80% or more in any region.
  • the transparent conductor is also applied to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. can do.
  • the average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor is preferably 83% or more, more preferably 85% or more, and even more preferably in both the conduction region a and the insulation region b. Is 88% or more.
  • the transparent conductor can be applied to applications requiring high transparency to visible light.
  • the average absorptance of light having a wavelength of 400 nm to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and still more preferably in both the conduction region a and the insulation region b. 7% or less.
  • the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 nm to 800 nm is preferably 15% or less, more preferably 10% or less, in any of the conduction region a and the insulation region b. Preferably it is 9% or less.
  • the average reflectance of light with a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less.
  • the average transmittance, average reflectance, and average reflectance are preferably the average transmittance, average reflectance, and average reflectance under the usage environment of the transparent conductor.
  • the transparent conductor when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor.
  • the transparent conductor when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air.
  • the transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor.
  • the absorptance is calculated from a calculation formula of 100 ⁇ (transmittance + reflectance).
  • the reflectance of the conductive region a and the insulating region b are approximated.
  • the difference ⁇ R between the luminous reflectance of the conductive region a and the luminous reflectance of the insulating region b is preferably 3% or less, more preferably 1% or less, and even more preferably 0. .3% or less.
  • the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
  • the luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
  • the a * value and the b * value in the L * a * b * color system are preferably within ⁇ 30 in any region. More preferably, it is within ⁇ 5, more preferably within ⁇ 3.0, and particularly preferably within ⁇ 2.0. If the a * value and the b * value in the L * a * b * color system are within ⁇ 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
  • a first high refractive index layer, a transparent metal film, and a second high refractive index layer are formed on a transparent substrate made of Kimoto's HCPET film model number 125G1SBF (refractive index of light having a wavelength of 570 nm: 1.68) by the following method. Was deposited.
  • Example 2 A transparent conductor was produced in the same manner as in Example 1 except that the ratio (mass ratio) of ZnS and ITO of the second high refractive index layer was 10:90.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.08.
  • Example 3 The transparent substrate was changed to PET (Cosmo Shine A4300 thickness 50 ⁇ m, light refractive index of wavelength 570 nm: 1.58) manufactured by Toyobo Co., Ltd., and the ratio (mass ratio) of ZnS and ITO of the second high refractive index layer was 35: A transparent conductor was produced in the same manner as in Example 1 except that 65. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.15.
  • Example 4 The transparent substrate was changed to PET made by Toyobo Co., Ltd. (Cosmo Shine A4300 thickness 50 ⁇ m, light refractive index of wavelength 570 nm: 1.58), and the ratio (mass ratio) of ZnS and ITO of the second high refractive index layer was 55: A transparent conductor was produced in the same manner as in Example 1 except that it was 45. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.215.
  • Example 5 The transparent substrate was changed to PET made by Toyobo Co., Ltd. (Cosmo Shine A4300 thickness 50 ⁇ m, light refractive index of wavelength 570 nm: 1.58), and the ratio (mass ratio) of ZnS and ITO of the second high refractive index layer was 65: A transparent conductor was produced in the same manner as in Example 1 except that 35 was used. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.225.
  • Example 6 The transparent substrate was changed to PET (Cosmo Shine A4300 thickness 50 ⁇ m, light refractive index of wavelength 570 nm: 1.58) manufactured by Toyobo Co., Ltd., and the ratio (mass ratio) of ZnS and ITO of the second high refractive index layer was 35: A transparent conductor was produced in the same manner as in Example 1 except that 65. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.155.
  • Example 7 The transparent substrate was changed to a PC film manufactured by Asahi Glass Co., Ltd. (refractive index of light with a wavelength of 570 nm: 1.59), and the second high refractive index layer was transparent in the same manner as in Example 1 except that it was formed by the following method. A conductor was produced.
  • Example 8 A transparent conductor was produced in the same manner as in Example 7 except that the ratio (mass ratio) of ZnS and ZnO in the second high refractive index layer was 55:45.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.215.
  • Example 9 A transparent conductor was produced in the same manner as in Example 7, except that the ratio (mass ratio) of ZnS and ZnO in the second high refractive index layer was 65:35.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.245.
  • Example 10 The transparent substrate was changed to a Konica Minolta TAC film (refractive index of light having a wavelength of 570 nm: 1.48), and a first high refractive index layer and a second high refractive index layer were formed by the following methods, respectively.
  • a transparent conductor was produced in the same manner as in Example 1 except for the above.
  • Example 11 A transparent conductor was produced in the same manner as in Example 10 except that the transparent substrate was changed to Kimoto HCPET film model 125G1SBF (refractive index of light having a wavelength of 570 nm: 1.68).
  • Example 12 A transparent conductor was produced in the same manner as in Example 10, except that the transparent substrate was changed to a film made of cycloolefin polymer (refractive index of light having a wavelength of 570 nm: 1.50).
  • Example 13 The transparent substrate was changed to a non-alkali glass substrate (EAGLE XG, wavelength 570 nm light refractive index: 1.52) manufactured by Corning, and the ratio (mass ratio) of ZnS-SiO 2 and ITO of the second high refractive index layer A transparent conductor was prepared in the same manner as in Example 10 except that the ratio was 35:65.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.078.
  • Example 14 The transparent substrate was changed to a non-alkali glass substrate (EAGLE XG, wavelength 570 nm light refractive index: 1.52) manufactured by Corning, and the second high refractive index layer was a film (mass ratio) made of ZnS—SiO 2 and IZO. 20:80) A transparent conductor was produced in the same manner as in Example 10 except that it was changed to 20:80).
  • the method for forming the second high refractive index layer was the same as the method for forming the second high refractive index layer in Example 10.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.11.
  • Example 15 The transparent substrate was changed to a non-alkali glass substrate (EAGLE XG, wavelength 570 nm light refractive index: 1.52) manufactured by Corning, and the second high refractive index layer was a film (mass ratio) made of ZnS—SiO 2 and IGZO. 20:80) A transparent conductor was produced in the same manner as in Example 10 except that it was changed to 20:80).
  • the method for forming the second high refractive index layer was the same as the method for forming the second high refractive index layer in Example 10.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.11.
  • Example 16 The transparent substrate was changed to a Konica Minolta TAC film (refractive index of light having a wavelength of 570 nm: 1.48), and the ratio (mass ratio) of ZnS—SiO 2 and ITO of the second high refractive index layer was changed to 55:45.
  • a transparent conductor was produced in the same manner as in Example 10 except that.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.094.
  • Example 17 The transparent substrate was changed to a Konica Minolta TAC film (refractive index of light having a wavelength of 570 nm: 1.48), and the ratio (mass ratio) of ZnS—SiO 2 and ITO of the second high refractive index layer was changed to 65:35.
  • a transparent conductor was produced in the same manner as in Example 10 except that.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.102.
  • Example 18 The transparent substrate was changed to PET made by Toyobo Co. (Cosmo Shine A4300 thickness 50 ⁇ m, wavelength 570 nm light refractive index: 1.58), and the target material at the time of forming the transparent metal film was an Ag—Bi alloy (amount of Bi: 1 at%), and a transparent conductor was produced in the same manner as in Example 10 except that the film was formed by the following method.
  • Example 19 The transparent substrate was changed to PET made by Toyobo (Cosmo Shine A4300, thickness 50 ⁇ m, light refractive index of wavelength 570 nm: 1.58), and the target material at the time of forming the transparent metal film was Ag-Pd alloy (Fluya alloy AP And a transparent conductor was prepared in the same manner as in Example 10 except that the film was formed in the same manner as the transparent metal film in Example 18.
  • Example 20 The transparent substrate was changed to PET (Cosmo Shine A4300 thickness 50 ⁇ m, wavelength 570 nm light refractive index: 1.58) manufactured by Toyobo Co., Ltd., and the target material at the time of forming the transparent metal film was Ag—Pd—Cu alloy (Fluya Metal) APC was manufactured in the same manner as in Example 10 except that the film was formed in the same manner as the transparent metal film in Example 18.
  • Example 21 The transparent substrate was changed to PET (Cosmo Shine A4300 thickness 50 ⁇ m, light refractive index of wavelength 570 nm: 1.58) manufactured by Toyobo Co., Ltd., and the target material at the time of forming the transparent metal film was an Ag—Bi—Ge—Au alloy ( Made by Kobelco Research Institute: Ag (98.35 at%) / Bi (0.35 at%) / Ge (0.3%) / Au (1.0 at%)), the same as the transparent metal film of Example 18.
  • a transparent conductor was produced in the same manner as in Example 10 except that the film was formed.
  • Example 22 The transparent substrate is changed to a PC film manufactured by Asahi Glass Co., Ltd. (refractive index of light having a wavelength of 570 nm: 1.59), the target material at the time of forming the transparent metal film is Ag, and the second high refractive index layer is formed by the following method.
  • a transparent conductor was produced in the same manner as in Example 18 except that the film was formed in the same manner as Example 18.
  • Example 23 A transparent conductor was produced in the same manner as in Example 22 except that the ratio (mass ratio) of ZnS—SiO 2 and Cu in the second high refractive index layer was 99: 1.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.13.
  • Example 24 The transparent substrate was changed to a PC film manufactured by Asahi Glass Co., Ltd. (refractive index of light having a wavelength of 570 nm: 1.59), the target material at the time of forming the transparent metal film was Ag, and the second high refractive index layer was ZnS-SiO 2.
  • a transparent conductor was prepared in the same manner as in Example 18 except that the film was made of Al and Al (mass ratio 99.97: 0.03).
  • the method for forming the second high refractive index layer was the same as the method for forming the second high refractive index layer in Example 18.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.13.
  • Example 25 A transparent conductor was produced in the same manner as in Example 24 except that the ratio (mass ratio) of ZnS—SiO 2 and Al in the second high refractive index layer was 99: 1.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.13.
  • Example 26 On a white substrate of Yamanaka Semiconductor ( ⁇ 30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), on the same substrate as in Example 1, first high refractive index layer / first antisulfide layer / transparent A metal film / second antisulfuration layer / second high refractive index layer was formed in this order.
  • the transparent metal film was formed by the same method as in Example 18 except that the target material at the time of film formation was Ag.
  • the first high refractive index layer was formed in the same manner as in Example 18.
  • the first sulfurization prevention layer, the second sulfurization prevention layer, and the second high refractive index layer were formed by the following method.
  • Example 27 The transparent substrate was changed to a white substrate of Yamanaka Semiconductor ( ⁇ 30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), the target material at the time of forming the transparent metal film was set to Ag, and the first high refractive index layer And the transparent conductor was produced similarly to Example 18 except having formed into a film with the following method the 2nd high refractive index layer.
  • IZO was sputtered with a DC pulse at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 50 W, and deposition rate 0.25 ⁇ / s.
  • the target-substrate distance was 90 mm.
  • the refractive index of light having a wavelength of 570 nm of the first high refractive index layer was 2.05.
  • Example 28 The transparent substrate was changed to a Yamanaka Semiconductor white plate substrate ( ⁇ 30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), and the first high refractive index layer was formed in the same manner as the second high refractive index of Example 27.
  • a transparent conductor was prepared in the same manner as in Example 27 except that the film was formed and the second high refractive index layer was formed in the same manner as the first high refractive index layer in Example 27.
  • Example 29 Example 22 except that the transparent substrate was changed to a Yamanaka Semiconductor white plate substrate ( ⁇ 30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), and the second high refractive index layer was formed by the following method.
  • a transparent conductor was prepared in the same manner as described above.
  • Example 30 A transparent conductor was produced in the same manner as in Example 29 except that the material of the second high refractive index layer was ZnS—SiO 2 —TiO 2 .
  • the ratio (mass ratio) between ZnS—SiO 2 and TiO 2 was 80:20, and the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.164.
  • Example 31 The target material at the time of forming the transparent metal film is Ag, the first high refractive index layer is formed by the same method as in Example 1, and the second high refractive index layer is formed by the following method.
  • a transparent conductor was produced in the same manner as in Example 18.
  • Example 32 A transparent conductor was prepared in the same manner as in Example 18 except that the target material at the time of forming the transparent metal film was Ag and the second high refractive index layer was the same as the second high refractive index layer of Example 28. .
  • Example 33 A transparent conductor as in Example 32 except that the target material at the time of forming the transparent metal film is Ag and the ratio (mass ratio) of ZnS and SiO 2 of the first high refractive index layer is 70:30. Was made.
  • the refractive index of light having a wavelength of 570 nm of the first high refractive index layer was 2.083.
  • Example 34 A transparent conductor was produced in the same manner as in Example 32 except that the ratio (mass ratio) of ZnS and SiO 2 in the first high refractive index layer was 95: 5. The refractive index of light having a wavelength of 570 nm of the first high refractive index layer was 2.305.
  • Example 35 The transparent substrate was changed to a white substrate of Yamanaka Semiconductor ( ⁇ 30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), the target material at the time of forming the transparent metal film was set to Ag, and the second high refractive index layer A transparent conductor was produced in the same manner as in Example 18 except that the film was formed by the following method.
  • Example 36 Example 18 except that the transparent substrate was changed to a Yamanaka Semiconductor white plate substrate ( ⁇ 30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), and the second high refractive index layer was formed by the following method.
  • a transparent conductor was prepared in the same manner as described above.
  • (Second high refractive index layer) AZO was sputtered with DC pulses at 20 sccm Ar, 0 sccm O 2 , sputtering pressure 0.1 Pa, room temperature, target side power 50 W, and deposition rate 0.25 ⁇ / s using an Osaka Vacuum Company magnetron sputtering apparatus.
  • the target-substrate distance was 90 mm.
  • the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.05.
  • Example 37 Example 18 except that the transparent substrate was changed to a Yamanaka Semiconductor white plate substrate ( ⁇ 30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), and the second high refractive index layer was formed by the following method.
  • a transparent conductor was prepared in the same manner as described above.
  • a first high refractive index layer (ITO) / transparent metal film (Ag) / second high refractive index layer (ITO) was laminated in this order on a transparent substrate made of quartz.
  • the transparent metal film was formed by the same method as in Example 18 using Ag as the target material when forming the transparent metal film.
  • the first high refractive index layer and the second high refractive index layer were formed by the following methods, respectively.
  • a first high refractive index layer (ZnS) / transparent metal film (Ag) / second high refractive index layer (ZnS) were laminated in this order.
  • the transparent metal film was formed by the same method as in Example 18 using Ag as the target material when forming the transparent metal film.
  • the first high refractive index layer and the second high refractive index layer were both formed in the same manner as the first high refractive index layer of Example 1.
  • the transmittance of the transparent conductor obtained in each example and comparative example was calculated as follows. About the obtained transparent conductor, measurement light was incident from a position inclined by 5 ° with respect to the normal of the surface of the transparent metal film (the surface of the second high refractive index layer). And the transmittance
  • the resistance value stability Loresta EP MCP-T360 manufactured by Mitsubishi Chemical Analytech was brought into contact with the surface (two points) of the second high refractive index layer of each transparent conductor to confirm the stability of the resistance value.
  • the temperature of the measurement environment was 24 ° C., and the humidity was 30% Rh.
  • the stability of the resistance value was evaluated according to the following criteria. ⁇ : The resistance value is stable after 5 seconds from the start of measurement and the resistance value is 20 ⁇ / ⁇ or less. ⁇ : The resistance value is not stable after 5 seconds from the start of measurement, but the resistance value is within 50 ⁇ / ⁇ . The resistance value is not stable after 5 seconds from the start of measurement, and the measured value exceeds 50 ⁇ / ⁇ .
  • the resistance value is stable when the amount of the metal oxide is 40% by mass or more with respect to the total mass of the second high refractive index layer.
  • the properties were particularly likely to increase (Examples 1 to 4, 6 to 8, 10 to 16, 18 to 21, 26 to 28, and 31 to 37).
  • the conductive material contained in the second high refractive index layer is a metal, if the amount of metal relative to the total mass of the second high refractive index layer is less than 1% by mass, the transparent conductor can be removed even in a humid heat environment. The appearance defect of the transparent conductor was not particularly likely to occur (Examples 22 and 24).

Abstract

The present invention addresses the problem of providing a transparent conductive body that has outstanding moisture resistance and that allows electricity to be stably removed from the surface of the transparent conductive body. In order to solve the problem, the present invention provides a transparent conductive body comprising, in the stated order, the following: a transparent substrate; a first high-refractive-index layer that contains an oxide semiconductor material or a dielectric material having a refractive index for light with a wavelength of 570 nm that is higher than the transparent-substrate refractive index for light with a wavelength of 570 nm; a transparent metal film; and a second high-refractive-index layer that contains zinc sulfide and a conductive material.

Description

透明導電体Transparent conductor
 本発明は、透明金属膜を含む透明導電体に関する。 The present invention relates to a transparent conductor including a transparent metal film.
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置の電極材料、無機及び有機EL素子の電極材料、タッチパネル材料、太陽電池材料等の各種装置に透明導電体が使用されている。 In recent years, transparent conductors have been used in various devices such as electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials. Has been.
 このような透明導電体の材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(酸化インジウムスズ)等の酸化物半導体が知られている。 As a material of such a transparent conductor, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , TiO 2 , SnO 2. Oxide semiconductors such as ZnO and ITO (indium tin oxide) are known.
 ここで、タッチパネル型の表示装置では、画像表示素子上に、透明導電体(配線)が配置される。そのため、透明導電体に光の透過性が求められ、当該透明導電体にITO膜が多用されている。しかし近年、静電容量方式のタッチパネル表示装置が開発され、透明導電体の表面電気抵抗をさらに低くすることが求められている。そして、ITO膜では、表面電気抵抗値を十分に下げることが難しい、との問題があった。 Here, in the touch panel type display device, a transparent conductor (wiring) is disposed on the image display element. For this reason, the transparent conductor is required to have light transmittance, and an ITO film is frequently used for the transparent conductor. However, in recent years, a capacitive touch panel display device has been developed, and it is required to further reduce the surface electrical resistance of the transparent conductor. The ITO film has a problem that it is difficult to sufficiently reduce the surface electrical resistance value.
 そこで、導電性が高く、かつ光の透過性が高いAg薄膜の開発が進められている(特許文献1)。また、透明導電体の光透過性を高めるため、Ag膜を屈折率の高い膜(例えば酸化ニオブ(Nb)、IZO(酸化インジウム・酸化亜鉛)、ICO(インジウムセリウムオキサイド)、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等からなる膜)で挟み込むことも検討されている(特許文献2~4、非特許文献1)。さらに、Ag膜をZnS膜で挟み込むことや、ZnS-SiO膜で挟み込むこと等も検討されている(非特許文献2及び3、並びに特許文献5)。 Then, development of Ag thin film with high electroconductivity and high light transmittance is advancing (patent document 1). In order to increase the light transmittance of the transparent conductor, the Ag film is made of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium oxide / zinc oxide), ICO (indium cerium oxide), a- It is also considered to sandwich the film between GIO (a film made of gallium, indium, and oxygen) (Patent Documents 2 to 4, Non-Patent Document 1). Furthermore, it has been studied to sandwich an Ag film with a ZnS film, or sandwich a ZnS—SiO 2 film (Non-patent Documents 2 and 3, and Patent Document 5).
特表2011-508400号公報Special table 2011-508400 gazette 特開2006-184849号公報JP 2006-184849 A 特開2002-15623号公報JP 2002-15623 A 特開2008-226581号公報JP 2008-226581 A 中国特許出願公開第102677012号明細書Chinese Patent Application No. 1026777012
 しかし、透明金属膜(Ag膜)単体からなる透明導電体や、透明金属膜を酸化ニオブ膜やIZO膜等で挟み込んだ透明導電体では、耐湿性が十分でなく、透明導電体の外部の湿度等によって、透明金属膜が腐食しやすい、との問題があった。一方、ZnSを含む膜で透明金属膜を挟み込んだ場合には、耐湿性が高まりやすく、透明金属膜の腐食は抑制される。しかし、ZnSを含む膜は導電性が低い。したがって、このような構成の透明導電体では、透明導電体表面から電気を取出し難い、との問題があった。 However, a transparent conductor made of a transparent metal film (Ag film) alone, or a transparent conductor in which a transparent metal film is sandwiched between niobium oxide films, IZO films, etc., has insufficient moisture resistance, and humidity outside the transparent conductor As a result, there is a problem that the transparent metal film is easily corroded. On the other hand, when a transparent metal film is sandwiched between films containing ZnS, moisture resistance is likely to increase, and corrosion of the transparent metal film is suppressed. However, a film containing ZnS has low conductivity. Therefore, the transparent conductor having such a configuration has a problem that it is difficult to take out electricity from the surface of the transparent conductor.
 本発明はこのような状況を鑑みてなされたものである。本発明は、耐湿性に優れ、かつ透明導電体の表面から安定して電気を取り出すことが可能な透明導電体を提供することを目的とする。 The present invention has been made in view of such a situation. An object of this invention is to provide the transparent conductor which is excellent in moisture resistance and can take out electricity stably from the surface of a transparent conductor.
 即ち、本発明は、以下の透明導電体に関する。
 [1]透明基板と、前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第一高屈折率層と、透明金属膜と、導電材料を含む第二高屈折率層と、をこの順に含み、前記第一高屈折率層または前記第二高屈折率層の少なくとも一方にZnSを含む、透明導電体。
 [2]前記導電材料が、TiO、ITO、In、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、IGZO、ZTO、Bi、Ga、GeO、WO、HfO、a-GIOからなる群から選ばれる金属酸化物、または、Ag、Cu、Al、及びAuからなる群から選ばれる金属を1種類以上含む、[1]に記載の透明導電体。
 [3]前記導電材料が前記金属酸化物であり、前記第二高屈折率層の質量に対する前記金属酸化物の量が30質量%以上である、[2]に記載の透明導電体。
 [4]前記導電材料が前記金属であり、前記第二高屈折率層の質量に対する前記金属の量が5質量%以下である、[2]に記載の透明導電体。
 [5]前記透明金属膜の厚みが、20nm以下である、[1]~[4]のいずれかに記載の透明導電体。
That is, this invention relates to the following transparent conductors.
[1] A transparent substrate, a first high refractive index layer containing a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light having a wavelength of 570 nm of the transparent substrate, and a transparent metal film And a second high refractive index layer containing a conductive material in this order, and at least one of the first high refractive index layer or the second high refractive index layer contains ZnS.
[2] The conductive material, TiO 2, ITO, In 2 O 3, ZnO, Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, IGZO, ZTO, Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO The transparent conductor according to [1], comprising one or more metals selected from the group consisting of metal oxides selected from the group consisting of Ag, Cu, Al, and Au.
[3] The transparent conductor according to [2], wherein the conductive material is the metal oxide, and the amount of the metal oxide with respect to the mass of the second high refractive index layer is 30% by mass or more.
[4] The transparent conductor according to [2], wherein the conductive material is the metal, and the amount of the metal with respect to the mass of the second high refractive index layer is 5% by mass or less.
[5] The transparent conductor according to any one of [1] to [4], wherein the transparent metal film has a thickness of 20 nm or less.
 本発明によれば、耐湿性に優れ、かつ表面から安定して電気を取り出すことが可能な透明導電体が得られる。 According to the present invention, a transparent conductor that is excellent in moisture resistance and that can stably take out electricity from the surface can be obtained.
本発明の透明導電体の層構成一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a laminated constitution of the transparent conductor of this invention. 本発明の透明導電体の層構成の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the laminated constitution of the transparent conductor of this invention. 本発明の透明導電体の導通領域及び絶縁領域からなるパターンの一例を示す模式図である。It is a schematic diagram which shows an example of the pattern which consists of a conduction area | region and an insulation area | region of the transparent conductor of this invention.
 本発明の透明導電体の層構成の例を図1及び図2に示す。図1及び図2に示されるように、本発明の透明導電体100は、透明基板1/第一高屈折率層2/透明金属膜3/第二高屈折率層4がこの順に積層された積層体からなる。当該透明導電体100の第二高屈折率層4には、導電材料が含まれ、第一高屈折率層2及び第二高屈折率層4のうち、いずれか一方、もしくは両方にZnSが含まれる。 Examples of the layer structure of the transparent conductor of the present invention are shown in FIGS. As shown in FIG. 1 and FIG. 2, the transparent conductor 100 of the present invention has a transparent substrate 1 / first high refractive index layer 2 / transparent metal film 3 / second high refractive index layer 4 laminated in this order. It consists of a laminate. The second high refractive index layer 4 of the transparent conductor 100 contains a conductive material, and one or both of the first high refractive index layer 2 and the second high refractive index layer 4 contain ZnS. It is.
 前述のように、ZnSやZnS-SiOからなる高屈折率層で透明金属膜を挟み込んだ従来の透明導電体では、高屈折率層の絶縁性が高くなる。したがって、透明導電体の表面から電気を取り出すことができず、透明金属膜から電気を取り出すための配線等を別途設ける必要であった。これに対し、本発明では、第二高屈折率層4に導電材料が含まれるため、第二高屈折率層4の導電性が高まり、第二高屈折率層4側の透明導電体100の表面から、安定して電気を取り出すことができる。その一方で、第一高屈折率層2及び第二高屈折率層4のうち、いずれか一方もしくは両方にZnSが含まれるため、透明導電体100の耐湿性が高まり、透明金属膜3の腐食が抑制される。 As described above, in a conventional transparent conductor in which a transparent metal film is sandwiched between high refractive index layers made of ZnS or ZnS—SiO 2 , the insulating properties of the high refractive index layer are increased. Therefore, electricity cannot be taken out from the surface of the transparent conductor, and it is necessary to separately provide wiring for taking out electricity from the transparent metal film. On the other hand, in the present invention, since the second high refractive index layer 4 includes a conductive material, the conductivity of the second high refractive index layer 4 is increased, and the transparent conductor 100 on the second high refractive index layer 4 side is increased. Electricity can be stably extracted from the surface. On the other hand, since either one or both of the first high refractive index layer 2 and the second high refractive index layer 4 contain ZnS, the moisture resistance of the transparent conductor 100 is increased, and the transparent metal film 3 is corroded. Is suppressed.
 本発明の透明導電体100において、透明金属膜3は、図1に示されるように、透明基板1の全面に形成されていてもよく、図2に示されるように、所望の形状にパターニングされていてもよい。本発明の透明導電体100において、透明金属膜3が積層されている領域aが、電気が導通する領域(以下、「導通領域」とも称する)である。一方、図2に示されるように、透明金属膜3が含まれない領域bが絶縁領域である。 In the transparent conductor 100 of the present invention, the transparent metal film 3 may be formed on the entire surface of the transparent substrate 1 as shown in FIG. 1, and is patterned into a desired shape as shown in FIG. It may be. In the transparent conductor 100 of the present invention, the region a where the transparent metal film 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, as shown in FIG. 2, the region b not including the transparent metal film 3 is an insulating region.
 導通領域a及び絶縁領域bからなるパターンは、透明導電体100の用途に応じて、適宜選択される。例えば透明導電体100が静電方式のタッチパネルに適用される場合には、図3に示されるように、複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン等でありうる。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 100. For example, when the transparent conductor 100 is applied to an electrostatic touch panel, as shown in FIG. 3, the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. sell.
 また、本発明の透明導電体100(積層体)には、透明基板1、第一高屈折率層2、透明金属膜3、及び第二高屈折率層4以外の層が含まれてもよい。例えば第一高屈折率層2と透明金属膜3との間や、透明金属膜3と第二高屈折率層4との間に、透明金属膜3の硫化を防止するための硫化防止層(図示せず)が含まれてもよい。ただし、本発明の透明導電体100に含まれる層は、透明基板1を除いて、いずれも無機材料からなる層である。例えば第二高屈折率層4上に有機樹脂からなる接着層が積層されていたとしても、透明基板1から第二高屈折率層4までの積層体が、本発明の透明導電体100である。 Further, the transparent conductor 100 (laminated body) of the present invention may include layers other than the transparent substrate 1, the first high refractive index layer 2, the transparent metal film 3, and the second high refractive index layer 4. . For example, between the first high refractive index layer 2 and the transparent metal film 3 or between the transparent metal film 3 and the second high refractive index layer 4, a sulfidation preventing layer (for preventing sulfidation of the transparent metal film 3 ( (Not shown) may be included. However, the layers included in the transparent conductor 100 of the present invention are all layers made of an inorganic material except for the transparent substrate 1. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 4, the laminated body from the transparent substrate 1 to the second high refractive index layer 4 is the transparent conductor 100 of the present invention. .
 1.透明導電体について
 1-1)透明基板
 透明導電体100に含まれる透明基板1は、各種表示デバイスの透明基板と同様でありうる。透明基板1は、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムでありうる。透明基板1が透明樹脂フィルムである場合、当該フィルムには2種以上の樹脂が含まれてもよい。
1. Regarding Transparent Conductor 1-1) Transparent Substrate The transparent substrate 1 included in the transparent conductor 100 can be the same as the transparent substrate of various display devices. The transparent substrate 1 includes a glass substrate, a cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin (for example, ZEONOR (manufactured by Nippon Zeon), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (eg polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)) Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate), polyethersulfone, ABS / AS resin, MBS resin, polystyrene Emissions, methacrylic resins, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resins), may be a transparent resin film comprising a styrene block copolymer resin. When the transparent substrate 1 is a transparent resin film, the film may contain two or more kinds of resins.
 透明性の観点から、透明基板1はガラス基板、もしくはセルロースエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、またはスチレン系ブロックコポリマー樹脂からなるフィルムであることが好ましい。フィルム上にハードコート層や平滑層が成膜されていてもよい。 From the viewpoint of transparency, the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polycarbonate resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin, A film made of polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable. A hard coat layer or a smooth layer may be formed on the film.
 透明基板1は、可視光に対する透明性が高いことが好ましく、波長450~800nmの光の平均透過率が70%以上であることが好ましく。また、当該平均透過率が80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板1の光の平均透過率が70%以上であると、透明導電体100の光透過性が高まりやすい。また、透明基板1の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent substrate 1 preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more. Further, the average transmittance is more preferably 80% or more, and further preferably 85% or more. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均透過率は、透明基板1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率を測定し;平均吸収率=100-(平均透過率+平均反射率)として算出する。平均透過率及び平均反射率は分光光度計で測定される。 The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1. On the other hand, the average absorptance is calculated as average absorptance = 100− (average transmissivity + average reflectivity) by making light incident from the same angle as the average transmissivity and measuring the average reflectivity of the transparent substrate 1; . Average transmittance and average reflectance are measured with a spectrophotometer.
 透明基板1の波長570nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明基板1の屈折率は、通常、透明基板1の材質によって定まる。透明基板1の屈折率は、エリプソメーターで測定される。 The refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. . The refractive index of the transparent substrate 1 is usually determined by the material of the transparent substrate 1. The refractive index of the transparent substrate 1 is measured with an ellipsometer.
 透明基板1のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。透明基板のヘイズ値が2.5以下であると、透明導電体のヘイズ値が抑制される。ヘイズ値は、ヘイズメーターで測定される。 The haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. When the haze value of the transparent substrate is 2.5 or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
 透明基板1の厚みは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明基板1の厚みが1μm以上であると、透明基板1の強度が高まりやすく、第一高屈折率層2の成膜時に割れたり、裂けたりし難くなる。一方、透明基板1の厚みが20mm以下であれば、透明導電体100のフレキシブル性が十分となる。さらに透明導電体100を用いた機器の厚みを薄くできる。また、透明導電体100を用いた機器を軽量化することもできる。 The thickness of the transparent substrate 1 is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the transparent substrate 1 is 1 μm or more, the strength of the transparent substrate 1 is easily increased, and it is difficult to crack or tear the first high refractive index layer 2 during film formation. On the other hand, when the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient. Furthermore, the thickness of the apparatus using the transparent conductor 100 can be reduced. Moreover, the apparatus using the transparent conductor 100 can also be reduced in weight.
 1-2)第一高屈折率層
 第一高屈折率層2は、透明導電体100の表面の反射を抑制するための層である。透明導電体100の表面の反射率は、透明導電体100の層構成に大きく依存する。そして、比較的高い屈折率を有する層(第一高屈折率層2及び第二高屈折率層4)によって透明金属膜3が挟み込まれると、透明導電体100表面の反射率が低下し、透明導電体100の光透過性が高まる。
1-2) First High Refractive Index Layer The first high refractive index layer 2 is a layer for suppressing reflection on the surface of the transparent conductor 100. The reflectance of the surface of the transparent conductor 100 greatly depends on the layer configuration of the transparent conductor 100. When the transparent metal film 3 is sandwiched between layers having a relatively high refractive index (the first high refractive index layer 2 and the second high refractive index layer 4), the reflectance of the surface of the transparent conductor 100 is reduced, and the transparent metal film 3 is transparent. The light transmittance of the conductor 100 is increased.
 そこで、第一高屈折率層2は、透明導電体の導通領域a、つまり透明金属膜3が成膜されている領域に少なくとも含まれることが好ましく、必要に応じて透明導電体100の絶縁領域bにも含まれる。 Therefore, the first high refractive index layer 2 is preferably included at least in the conductive region a of the transparent conductor, that is, the region where the transparent metal film 3 is formed, and if necessary, the insulating region of the transparent conductor 100 Also included in b.
 第一高屈折率層2には、前述の透明基板1の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料が含まれる。当該誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第一高屈折率層2に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料または酸化物半導体材料の屈折率が1.5より大きいと、第一高屈折率層2によって、透明導電体100の導通領域aの表面反射が抑制されやすい。なお、第一高屈折率層2の屈折率は、第一高屈折率層2に含まれる材料の屈折率や、第一高屈折率層2に含まれる材料の密度で調整される。 The first high refractive index layer 2 includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 described above. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable. On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the first high refractive index layer 2 tends to suppress the surface reflection of the conduction region a of the transparent conductor 100. The refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
 第一高屈折率層2に含まれる誘電性材料または酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料または酸化物半導体材料は、上記屈折率を有する金属硫化物または金属酸化物でありうる。上記屈折率を有する金属硫化物または金属酸化物の例には、ZnS、TiO、ITO(酸化インジウムスズ)、ZnO、In、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、IGZO(インジウム・ガリウム・亜鉛の酸化物)、Bi、Ga、GeO、WO、HfO、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が含まれる。第一高屈折率層2には、当該金属硫化物または金属酸化物が1種のみ含まれてもよく、2種以上含まれてもよい。 The dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material. The dielectric material or the oxide semiconductor material may be a metal sulfide or metal oxide having the above refractive index. Examples of the metal sulfide or metal oxide having the above refractive index include ZnS, TiO 2 , ITO (indium tin oxide), ZnO, In 2 O 3 , Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O. 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO) ), ATO (Sb-doped SnO), ICO (indium cerium oxide), IGZO (indium gallium zinc oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (Amorphous oxide composed of gallium, indium, and oxygen) and the like. The first high refractive index layer 2 may contain only one kind of the metal sulfide or metal oxide, or may contain two or more kinds.
 第一高屈折率層2に含まれる誘電性材料または酸化物半導体材料は、好ましくはZnSである。第一高屈折率層2にZnSが含まれると、透明基板1側から透明金属膜3側に水分が透過し難くなり、透明金属膜3の腐食が抑制される。 The dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably ZnS. When ZnS is contained in the first high refractive index layer 2, it becomes difficult for moisture to permeate from the transparent substrate 1 side to the transparent metal film 3 side, and corrosion of the transparent metal film 3 is suppressed.
 ただし、ZnSは比較的高い結晶性を有し、ZnSのみからなる膜は柔軟性が低い。そこで、透明導電体100にフレキシブル性が要求される場合には、ZnSをアモルファス化するための化合物が含まれてもよい。ZnSをアモルファス化するための化合物は、ZnSと混合してもZnSの光透過性を損なうことがない化合物であることが好ましく、例えば、金属酸化物、金属フッ化物または金属窒化物でありうる。具体的には、SiO、NaAl14、NaAlF、AlF、MgF、CaF、BaF、Al、YF、LaF、CeF、NdF、ZrO、SiO、MgO、Y、SiN、AlN等でありうる。これらは第一高屈折率層2に1種のみ含まれてもよく、2種以上含まれてもよい。これらの化合物は特に好ましくはSiOである。これらの化合物は特に好ましくはSiOである。 However, ZnS has relatively high crystallinity, and a film made only of ZnS has low flexibility. Therefore, when the transparent conductor 100 is required to have flexibility, a compound for making ZnS amorphous may be included. The compound for making ZnS amorphous is preferably a compound that does not impair the light transmittance of ZnS even when mixed with ZnS, and may be, for example, a metal oxide, a metal fluoride, or a metal nitride. Specifically, SiO 2, Na 5 Al 3 F 14, Na 3 AlF 6, AlF 3, MgF 2, CaF 2, BaF 2, Al 2 O 3, YF 3, LaF 3, CeF 3, NdF 3, ZrO 2 , SiO, MgO, Y 2 O 3 , SiN, AlN, and the like. Only one of these may be included in the first high refractive index layer 2, or two or more thereof may be included. These compounds are particularly preferably SiO 2. These compounds are particularly preferably SiO 2.
 第一高屈折率層2にZnSと他の化合物とが含まれる場合、第一高屈折率層2の質量に対して、ZnSが50質量%以上90%以下含まれることが好ましく、より好ましくは70~90質量%であり、さらに好ましくは80~90質量%である。第一高屈折率層2にZnSが50質量%以上多く含まれると、第一高屈折率層2の耐湿性が高まりやすい。またZnSが含まれる層はスパッタ法または蒸着法等によって成膜されやすく、ZnSが50質量%以上含まれると、第一高屈折率層2の成膜速度が高まりやすい。一方、ZnSが90質量%以下であると、第一高屈折率層2のフレキシブル性が高まりやすい。 When ZnS and other compounds are contained in the first high refractive index layer 2, it is preferable that ZnS is contained in an amount of 50% by mass or more and 90% or less with respect to the mass of the first high refractive index layer 2, and more preferably. It is 70 to 90% by mass, and more preferably 80 to 90% by mass. When the first high refractive index layer 2 contains 50 mass% or more of ZnS, the moisture resistance of the first high refractive index layer 2 is likely to increase. A layer containing ZnS is easily formed by sputtering or vapor deposition. If ZnS is contained in an amount of 50% by mass or more, the film formation rate of the first high refractive index layer 2 is likely to increase. On the other hand, when the ZnS is 90% by mass or less, the flexibility of the first high refractive index layer 2 is likely to increase.
 第一高屈折率層2の厚みは15~150nmであることが好ましく、より好ましくは20~80nmである。第一高屈折率層2の厚みが15nm以上であると、第一高屈折率層2によって、透明導電体100の導通領域aの表面反射が抑制される。一方、第一高屈折率層2の厚みが150nm以下であると、第一高屈折率層2が含まれる領域の光透過性が低下し難い。また、第一高屈折率層2の厚みが150nm以下であれば、第一高屈折率層2のフレキシブル性が高まりやすく、透明導電体100のフレキシブル性が高まりやすい。第一高屈折率層2の厚みは、エリプソメーターで測定される。 The thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm. When the thickness of the first high refractive index layer 2 is 15 nm or more, the first high refractive index layer 2 suppresses surface reflection of the conduction region a of the transparent conductor 100. On the other hand, when the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease. Moreover, if the thickness of the 1st high refractive index layer 2 is 150 nm or less, the flexibility of the 1st high refractive index layer 2 will increase easily, and the flexibility of the transparent conductor 100 will increase easily. The thickness of the first high refractive index layer 2 is measured with an ellipsometer.
 第一高屈折率層2は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層でありうる。第一高屈折率層2の屈折率(密度)が高まるとの観点から、第一高屈折率層2は、電子ビーム蒸着法またはスパッタ法で成膜された層であることが好ましい。電子ビーム蒸着法の場合は膜密度を高めるため、IAD(イオンアシスト)などのアシストがあることが望ましい。 The first high refractive index layer 2 can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of increasing the refractive index (density) of the first high refractive index layer 2, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
 ここで、第一高屈折率層2に複数の化合物が含まれる場合には、各化合物を予め所定の比率で混合した混合物を、蒸着源やスパッタリングターゲットにしてもよい。また、各化合物をそれぞれ個別に準備し、これらをそれぞれ蒸着源やスパッタリングターゲットにしてもよい。 Here, when the first high-refractive index layer 2 includes a plurality of compounds, a mixture obtained by previously mixing the compounds at a predetermined ratio may be used as a vapor deposition source or a sputtering target. Alternatively, each compound may be prepared individually and used as a vapor deposition source or a sputtering target.
 また、第一高屈折率層2が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第一高屈折率層2は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 Further, when the first high refractive index layer 2 is a layer patterned in a desired shape, the patterning method is not particularly limited. The first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the film formation surface; It may be a layer patterned by an etching method.
 1-3)透明金属膜
 本発明の透明金属膜3は、透明導電体100において電気を導通させるための膜である。透明金属膜3は、前述のように、透明基板1の全面に形成されていてもよく、また所望の形状にパターニングされていてもよい。
1-3) Transparent Metal Film The transparent metal film 3 of the present invention is a film for conducting electricity in the transparent conductor 100. The transparent metal film 3 may be formed on the entire surface of the transparent substrate 1 as described above, or may be patterned into a desired shape.
 透明金属膜3に含まれる金属は、導電性の高い金属であれば特に制限されず、例えば銀、銅、金、白金族、チタン、クロム等でありうる。透明金属膜には、これらの金属が1種のみ含まれてもよく、2種以上含まれてもよい。導電性が高いとの観点から、透明金属膜3は、銀または銀が90at%以上含まれる合金からなることが好ましい。銀と組み合わされる金属は、ゲルマニウム、ビスマス、白金族、銅、金、モリブデン、亜鉛、ガリウム、スズ、インジウム、アルミニウム、マンガン、ネオジム等でありうる。例えば銀と亜鉛とが組み合わされると、透明金属膜の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。 The metal contained in the transparent metal film 3 is not particularly limited as long as it is a highly conductive metal, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like. The transparent metal film may contain only one kind of these metals or two or more kinds. From the viewpoint of high conductivity, the transparent metal film 3 is preferably made of silver or an alloy containing 90 at% or more of silver. The metal combined with silver can be germanium, bismuth, platinum group, copper, gold, molybdenum, zinc, gallium, tin, indium, aluminum, manganese, neodymium, and the like. For example, when silver and zinc are combined, the sulfidation resistance of the transparent metal film is enhanced. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases.
 透明金属膜3の厚みは20nm以下であることが好ましく、10nm以下であることがより好ましく、さらに好ましくは3~9nmであり、特に好ましくは5~8nmである。透明金属膜3の厚みが20nm以下、特に10nm以下であると、透明金属膜3に金属本来の反射が生じ難い。さらに、透明金属膜3の厚みが10nm以下であると、第一高屈折率層2及び第二高屈折率層4によって、透明導電体100の導通領域aの表面反射が調整されやすい。透明金属膜3の厚みは、エリプソメーターで測定される。 The thickness of the transparent metal film 3 is preferably 20 nm or less, more preferably 10 nm or less, further preferably 3 to 9 nm, and particularly preferably 5 to 8 nm. When the transparent metal film 3 has a thickness of 20 nm or less, particularly 10 nm or less, the metal inherent reflection hardly occurs in the transparent metal film 3. Furthermore, when the thickness of the transparent metal film 3 is 10 nm or less, the surface reflection of the conduction region a of the transparent conductor 100 is easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 4. The thickness of the transparent metal film 3 is measured with an ellipsometer.
 透明金属膜3は、いずれの成膜方法で成膜された膜でありうるが、前述のように、透明金属膜3を薄くとも平滑な膜とするためには、スパッタ法で成膜された膜;もしくは透明金属膜3の被成膜面に成長核を形成してから、成膜された膜であることが好ましい。 The transparent metal film 3 can be a film formed by any film forming method, but as described above, in order to make the transparent metal film 3 thin and smooth, it was formed by sputtering. It is preferable that the film is formed after growth nuclei are formed on the film formation surface of the transparent metal film 3.
 スパッタ法では、成膜時に材料が被成膜体に高速で衝突するため、緻密かつ平滑な膜が得られやすく;透明金属膜3の光透過性が高まりやすい。スパッタ法の種類は特に制限されず、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法、対向スパッタ法等でありうる。透明金属膜3は、特に対向スパッタ法で成膜された膜であることが好ましい。透明金属膜3が、対向スパッタ法で成膜された膜であると、透明金属膜3が緻密になり、表面平滑性が高まりやすい。その結果、透明金属膜3の表面電気抵抗がより低くなり、光の透過率も高まりやすい。 In the sputtering method, since the material collides with the deposition target at high speed during film formation, a dense and smooth film is easily obtained; the light transmittance of the transparent metal film 3 is likely to increase. The type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like. The transparent metal film 3 is particularly preferably a film formed by a counter sputtering method. When the transparent metal film 3 is a film formed by the facing sputtering method, the transparent metal film 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent metal film 3 becomes lower and the light transmittance is likely to increase.
 一方、透明金属膜3の被成膜面に成長核が形成されている場合にも、緻密かつ平滑な透明金属膜3が得られやすい。第一高屈折率層2上に、成長核が形成されていると、当該成長核を基点として膜が成長するため、厚みが薄くとも平滑な透明金属膜3が得られやすくなる。 On the other hand, even when growth nuclei are formed on the film formation surface of the transparent metal film 3, it is easy to obtain a dense and smooth transparent metal film 3. If growth nuclei are formed on the first high refractive index layer 2, the film grows with the growth nuclei as a starting point, so that a smooth transparent metal film 3 can be easily obtained even if the thickness is small.
 成長核には、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウム;あるいはこれらの金属と他の金属との合金や、これらの金属の酸化物や硫化物(例えばZnS)が含まれることが好ましい。成長核には、これらが一種のみ含まれてもよく、二種以上が含まれてもよい。成長核に含まれるパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウムの量は、20質量%以上であることが好ましく、より好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。成長核に上記金属が20質量%以上含まれると、成長核と、その上に成膜される透明金属膜3との親和性が高まりやすい。 The growth nuclei preferably contain palladium, molybdenum, zinc, germanium, niobium or indium; or alloys of these metals with other metals, oxides or sulfides of these metals (for example, ZnS). The growth nucleus may contain only one kind or two or more kinds. The amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the growth nucleus is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more. When the growth nucleus contains 20% by mass or more of the metal, the affinity between the growth nucleus and the transparent metal film 3 formed thereon is likely to increase.
 一方、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウムと合金を形成する金属は特に制限されないが、例えばパラジウム以外の白金族、金、コバルト、ニッケル、チタン、アルミニウム、クロム等でありうる。 On the other hand, the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, but may be a platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, or the like.
 成長核の厚みは、3nm以下であり、好ましくは0.5nm以下であり、より好ましくは単原子膜である。成長核は、第一高屈折率層2上に金属原子が互いに離間して付着している膜でもありうる。成長核の付着量が3nm以下であれば、成長核が透明導電体100の光の反射性に影響を及ぼし難い。成長核の有無はICP-MS法で確認される。また、成長核の厚みは、成膜速度と成膜時間との積から算出される。 The thickness of the growth nucleus is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film. The growth nucleus may also be a film in which metal atoms are attached to the first high refractive index layer 2 so as to be separated from each other. If the growth nucleus adhesion amount is 3 nm or less, the growth nucleus hardly affects the light reflectivity of the transparent conductor 100. The presence or absence of growth nuclei is confirmed by the ICP-MS method. The thickness of the growth nucleus is calculated from the product of the film formation speed and the film formation time.
 成長核は、スパッタ法または蒸着法で形成された層でありうる。スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等が含まれる。成長核形成時のスパッタ時間は、所望の下地層の平均厚み、及び成膜速度に合わせて適宜選択される。スパッタ成膜速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 The growth nucleus can be a layer formed by sputtering or vapor deposition. Examples of the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method. The sputtering time for forming the growth nuclei is appropriately selected according to the desired average thickness of the underlayer and the film formation rate. The sputter deposition rate is preferably from 0.1 to 15 Å / second, more preferably from 0.1 to 7 秒 / second.
 一方、蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、所望の下地層の厚み、及び成膜速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 On the other hand, examples of the vapor deposition method include vacuum vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method and the like. The deposition time is appropriately selected according to the desired thickness of the underlayer and the film formation rate. The deposition rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 成長核上に透明金属膜3を成膜する場合、その成膜方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法でありうる。 When the transparent metal film 3 is formed on the growth nucleus, the film forming method is not particularly limited, and a general gas phase such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It may be a film forming method.
 ここで、透明金属膜3が所望の形状にパターニングされた膜である場合、パターニング方法は特に制限されない。透明金属膜3は、例えば、所望のパターンを有するマスクを配置して成膜された膜であってもよく;公知のエッチング法によってパターニングされた膜であってもよい。 Here, when the transparent metal film 3 is a film patterned into a desired shape, the patterning method is not particularly limited. The transparent metal film 3 may be, for example, a film formed by arranging a mask having a desired pattern; it may be a film patterned by a known etching method.
 1-4)第二高屈折率層
 第二高屈折率層4は、前述の第一高屈折率層2と共に、透明導電体100の表面の光の反射を抑制するための層である。第二高屈折率層4は、透明導電体100の導通領域aに形成されていればよく、第二高屈折率層4は、透明導電体100の絶縁領域bに形成されてもよい。
1-4) Second High Refractive Index Layer The second high refractive index layer 4 is a layer for suppressing light reflection on the surface of the transparent conductor 100 together with the first high refractive index layer 2 described above. The second high refractive index layer 4 may be formed in the conductive region a of the transparent conductor 100, and the second high refractive index layer 4 may be formed in the insulating region b of the transparent conductor 100.
 第二高屈折率層4には、導電材料が含まれる。ここでいう導電材料とは、透明金属膜3の導電性を透明導電体表面に伝える効果のある材料をいい、材料自体が導電性であることは必須ではない。第二高屈折率層4に含まれる導電材料は、金属酸化物または金属でありうる。TiO、ITO(酸化インジウムスズ)、ZnO、In、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、IGZO(インジウム・ガリウム・亜鉛の酸化物)、ZTO(亜鉛スズ複合酸化物)、Bi、Ga、GeO、WO、HfO、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)からなる群から選ばれる金属酸化物であり、特に好ましくはITO、AZO、GZOまたはIZOである。第二高屈折率層4中には、当該金属酸化物が1種のみ含まれてもよく、2種以上含まれてもよい。 The second high refractive index layer 4 includes a conductive material. The conductive material here refers to a material having an effect of transmitting the conductivity of the transparent metal film 3 to the surface of the transparent conductor, and it is not essential that the material itself is conductive. The conductive material contained in the second high refractive index layer 4 can be a metal oxide or a metal. TiO 2, ITO (indium tin oxide), ZnO, In 2 O 3 , Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3, TiO, SnO 2, La 2 Ti 2 O 7, IZO ( indium-zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (indium cerium oxide), IGZO (indium -Gallium / zinc oxide), ZTO (zinc tin composite oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (non-comprising gallium, indium, and oxygen) A metal oxide selected from the group consisting of (crystalline oxide), particularly preferably ITO, AZO, GZO or IZO. In the second high refractive index layer 4, only one kind of the metal oxide may be contained, or two or more kinds may be contained.
 第二高屈折率層4に含まれる導電材料が上記金属酸化物である場合、第二高屈折率層4の質量に対して、上記金属酸化物が30質量%以上含まれることが好ましく、より好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。金属酸化物が30質量%以上含まれると、第二高屈折率層4の導電性が十分に高まりやすい。 When the conductive material contained in the second high refractive index layer 4 is the metal oxide, the metal oxide is preferably contained in an amount of 30% by mass or more based on the mass of the second high refractive index layer 4. Preferably it is 40 mass% or more, More preferably, it is 60 mass% or more. When the metal oxide is contained in an amount of 30% by mass or more, the conductivity of the second high refractive index layer 4 is likely to be sufficiently increased.
 一方、導電材料でありうる金属は、Ag、Cu、Al、またはAuであり、特に好ましくはCuまたはAlである。第二高屈折率層4中には、当該金属が1種のみ含まれてもよく、2種以上含まれてもよい。 On the other hand, the metal that can be the conductive material is Ag, Cu, Al, or Au, and particularly preferably Cu or Al. The second high refractive index layer 4 may contain only one kind of the metal or two or more kinds.
 第二高屈折率層4に含まれる導電材料が上記金属である場合、第二高屈折率層4の質量に対して、上記金属が5質量%以下含まれることが好ましく、より好ましくは0.01以上1質量%未満であり、さらに好ましくは0.01~0.05質量%である。金属の量が5質量%以下であると、透明導電体100が湿熱環境下で使用されても、第二高屈折率層に外観不良が生じ難い。一方、第二高屈折率層4に含まれる導電材料の量が0.01質量%以上であると、第二高屈折率層4の導電性が十分に高まりやすい。 When the conductive material contained in the second high refractive index layer 4 is the above metal, the metal is preferably contained in an amount of 5% by mass or less with respect to the mass of the second high refractive index layer 4, and more preferably It is 01 or more and less than 1% by mass, and more preferably 0.01 to 0.05% by mass. When the amount of the metal is 5% by mass or less, even if the transparent conductor 100 is used in a humid heat environment, it is difficult for the second high refractive index layer to have a poor appearance. On the other hand, when the amount of the conductive material contained in the second high refractive index layer 4 is 0.01% by mass or more, the conductivity of the second high refractive index layer 4 is likely to be sufficiently increased.
 第二高屈折率層4には、上記金属酸化物及び金属の両方が含まれてもよいが、上記金属酸化物または金属と共に、ZnSが含まれることが好ましい。第二高屈折率層4には、ZnSが0.1~80質量%含まれることが好ましい。ZnSの量は、65質量%以下であることがより好ましく、35%以下であることがさらに好ましい。第二高屈折率層4にZnSが0.1質量%以上含まれると、第二高屈折率層4側から透明金属膜3側に水分が透過し難くなる。 The second high refractive index layer 4 may contain both the metal oxide and the metal, but preferably contains ZnS together with the metal oxide or metal. The second high refractive index layer 4 preferably contains 0.1 to 80% by mass of ZnS. The amount of ZnS is more preferably 65% by mass or less, and further preferably 35% or less. When ZnS is contained in the second high refractive index layer 4 in an amount of 0.1% by mass or more, moisture hardly penetrates from the second high refractive index layer 4 side to the transparent metal film 3 side.
 前述のように、ZnSは比較的高い結晶性を有し、ZnSが多く含まれる膜は柔軟性が低い。そこで、透明導電体100にフレキシブル性が要求される場合には、ZnSをアモルファス化するための化合物がさらに含まれてもよい。ZnSをアモルファス化するための化合物は、ZnSと混合してもZnSの光透過性を損なうことがない化合物であることが好ましく、第一高屈折率層のZnSをアモルファス化するための化合物と同様であり得る。 As described above, ZnS has relatively high crystallinity, and a film containing a large amount of ZnS has low flexibility. Therefore, when the transparent conductor 100 is required to have flexibility, a compound for making ZnS amorphous may be further included. The compound for amorphizing ZnS is preferably a compound that does not impair the light transmittance of ZnS even when mixed with ZnS, and is the same as the compound for amorphizing ZnS of the first high refractive index layer. It can be.
 ZnSをアモルファス化するための化合物は、ZnS100質量部に対して、5~40質量部含まれることが好ましく、より好ましくは10~30質量部である。ZnS100質量部に対して当該化合物が5質量部以上含まれると、第二高屈折率層4のフレキシブル性が高まりやすい。 The compound for amorphizing ZnS is preferably contained in an amount of 5 to 40 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of ZnS. When the compound is contained in an amount of 5 parts by mass or more with respect to 100 parts by mass of ZnS, the flexibility of the second high refractive index layer 4 is likely to increase.
 第二高屈折率層4の厚みは15nm以上150nm以下であることが好ましい。第二高屈折率層4の厚みは、より好ましくは15~150nmであり、さらに好ましくは20nm~80nmである。第二高屈折率層4の厚みが15nm以上であると、第二高屈折率層4によって、透明導電体100の導通領域aの表面反射が十分に抑制されやすい。一方、第二高屈折率層4の厚みが150nm以下であれば、第二高屈折率層4が含まれる領域の光透過性が低下し難い。さらに、第二高屈折率層4のフレキシブル性も高まりやすい。第二高屈折率層4の厚みは、エリプソメーターで測定される。 The thickness of the second high refractive index layer 4 is preferably 15 nm or more and 150 nm or less. The thickness of the second high refractive index layer 4 is more preferably 15 to 150 nm, still more preferably 20 to 80 nm. When the thickness of the second high refractive index layer 4 is 15 nm or more, the surface reflection of the conduction region a of the transparent conductor 100 is easily suppressed by the second high refractive index layer 4. On the other hand, if the thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. Furthermore, the flexibility of the second high refractive index layer 4 is likely to increase. The thickness of the second high refractive index layer 4 is measured with an ellipsometer.
 第二高屈折率層4の成膜方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層であり得る。第二高屈折率層4の透湿性が低くなるとの観点から、第二高屈折率層4はスパッタ法で成膜された膜であることが特に好ましい。 The film formation method of the second high refractive index layer 4 is not particularly limited, and is formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. Layer. From the viewpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a film formed by sputtering.
 ここで、第二高屈折率層4の成膜時には、ZnSやSiO、導電材料等を、予め所望の比率で混合した混合物を、蒸着源やスパッタリングターゲットとしてもよい。また、ZnSやSiO、導電材料を個別に準備し、これらをそれぞれ蒸着源やスパッタリングターゲットとしてもよい。 Here, at the time of forming the second high refractive index layer 4, a mixture in which ZnS, SiO 2 , a conductive material, and the like are mixed in advance at a desired ratio may be used as an evaporation source or a sputtering target. Alternatively, ZnS, SiO 2 , and a conductive material may be separately prepared, and these may be used as an evaporation source and a sputtering target, respectively.
 また、第二高屈折率層4が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第二高屈折率層4は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよい。また、公知のエッチング法によってパターニングされた層であってもよい。 Further, when the second high refractive index layer 4 is a layer patterned into a desired shape, the patterning method is not particularly limited. The second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface. Moreover, the layer patterned by the well-known etching method may be sufficient.
 1-5)硫化防止層
 前述のように、本発明の透明導電体には、第一高屈折率層2と透明金属膜3との間、もしくは透明金属膜3と第二高屈折率層4との間には、透明金属膜3の硫化を防止するための硫化防止層が含まれてもよい。硫化防止層は、透明導電体100の導通領域aのみに形成されてもよく、導通領域a及び絶縁領域bの両方に形成されてもよい。
1-5) Sulfidation-preventing layer As described above, the transparent conductor of the present invention includes the transparent metal film 3 and the second high refractive index layer 4 between the first high refractive index layer 2 and the transparent metal film 3. In between, a sulfidation preventing layer for preventing sulfidation of the transparent metal film 3 may be included. The sulfidation prevention layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b.
 透明金属膜3とZnSを含む層(第一高屈折率層2または第二高屈折率層4)とが隣接して成膜されると、透明金属膜3の成膜時、もしくは第二高屈折率層4の成膜時に、透明金属膜3中の金属が硫化されて金属硫化物が生成し、透明導電体100の光透過性が低下することがある。これに対し、第一高屈折率層2と透明金属膜3との間、もしくは透明金属膜3と第二高屈折率層4との間に、硫化防止層が含まれると、金属硫化物の生成が抑制される。 When the transparent metal film 3 and the layer containing ZnS (the first high-refractive index layer 2 or the second high-refractive index layer 4) are formed adjacent to each other, When the refractive index layer 4 is formed, the metal in the transparent metal film 3 is sulfided to produce a metal sulfide, and the light transmittance of the transparent conductor 100 may be lowered. On the other hand, when an antisulfurization layer is included between the first high refractive index layer 2 and the transparent metal film 3 or between the transparent metal film 3 and the second high refractive index layer 4, the metal sulfide Generation is suppressed.
 硫化防止層は、金属酸化物、金属窒化物、金属フッ化物、またはZnを含む層でありうる。硫化防止層には、これらが一種のみ含まれてもよく、二種以上含まれてもよい。 The sulfidation prevention layer may be a layer containing metal oxide, metal nitride, metal fluoride, or Zn. Only one of these may be contained in the antisulfurization layer, or two or more of them may be contained.
 金属酸化物の例には、TiO、ITO、ZnO、In、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO、等が含まれる。 Examples of metal oxides, TiO 2, ITO, ZnO, In 2 O 3, Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , and the like.
 金属フッ化物の例には、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等が含まれる。
 金属窒化物の例には、Si、AlN等が含まれる。
Examples of metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. .
Examples of the metal nitride include Si 3 N 4 , AlN, and the like.
 硫化防止層の厚みは、透明金属膜3の成膜時、もしくは第二高屈折率層4の成膜時における金属硫化物の生成が抑制可能な厚みであれば、特に制限されない。ただし、第一高屈折率層2や第二高屈折率4に含まれるZnSは、透明金属膜3に含まれる金属との親和性が高い。そのため、硫化防止層の厚みが非常に薄く、透明金属膜3の一部が僅かに露出すると、各層同士の密着性が高まりやすい。つまり、硫化防止層は比較的薄いことが好ましく、0.1nm~10nmであることが好ましく、より好ましくは0.5nm~5nmであり、さらに好ましくは1nm~3nmである。硫化防止層の厚みは、エリプソメーターで測定される。 The thickness of the sulfidation preventing layer is not particularly limited as long as the formation of the metal sulfide can be suppressed when the transparent metal film 3 is formed or when the second high refractive index layer 4 is formed. However, ZnS contained in the first high refractive index layer 2 and the second high refractive index 4 has high affinity with the metal contained in the transparent metal film 3. Therefore, when the thickness of the antisulfurization layer is very thin and a part of the transparent metal film 3 is slightly exposed, the adhesion between the layers tends to increase. That is, the antisulfurization layer is preferably relatively thin, preferably 0.1 nm to 10 nm, more preferably 0.5 nm to 5 nm, and even more preferably 1 nm to 3 nm. The thickness of the antisulfurization layer is measured with an ellipsometer.
 硫化防止層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層でありうる。 The anti-sulfurization layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
 硫化防止層が、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。硫化防止層は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 When the antisulfurization layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The sulfidation prevention layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the film formation surface; patterned by a known etching method It may be a layer formed.
 2.透明導電体の物性について
 本発明の透明導電体では、第二高屈折率層4表面に抵抗率計を接触させて測定される導通領域aの表面電気抵抗が50Ω/□以下であることが好ましく、さらに好ましくは20Ω/□以下である。導通領域の表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。上記表面電気抵抗値は、24℃、30%Rhで測定される値であって、測定開始から5秒以内に測定される値である。導通領域aの表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。
2. Regarding the physical properties of the transparent conductor In the transparent conductor of the present invention, the surface electrical resistance of the conduction region a measured by bringing a resistivity meter into contact with the surface of the second high refractive index layer 4 is preferably 50 Ω / □ or less. More preferably, it is 20 Ω / □ or less. A transparent conductor having a surface electric resistance value of 50 Ω / □ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value is a value measured at 24 ° C. and 30% Rh, and is a value measured within 5 seconds from the start of measurement. The surface electrical resistance value of the conduction region a is measured according to, for example, JIS K7194, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
 本発明の透明導電体の波長400~1000nmの光の平均透過率は80%以上であることが好ましく、より好ましくは83%以上、さらに好ましくは85%以上である。なお、透明金属膜3がパターニングされており、透明導電体100に導通領域a及び絶縁領域bが含まれる場合、いずれの領域においても、上記平均透過率は80%以上であることが好ましい。波長400~1000nmの光の平均透過率が80%以上であると、広い波長範囲の光に対して透明性が要求される用途、例えば太陽電池用の透明導電膜等にも透明導電体を適用することができる。 The average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor of the present invention is preferably 80% or more, more preferably 83% or more, and further preferably 85% or more. In addition, when the transparent metal film 3 is patterned and the transparent conductor 100 includes the conductive region a and the insulating region b, the average transmittance is preferably 80% or more in any region. When the average transmittance of light having a wavelength of 400 to 1000 nm is 80% or more, the transparent conductor is also applied to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. can do.
 また特に、透明導電体の波長450~800nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても83%以上であることが好ましく、より好ましくは85%以上であり、さらに好ましくは88%以上である。上記波長範囲における平均透過率が85%以上であると、透明導電体を、可視光に対して高い透明性が要求される用途に適用することができる。 In particular, the average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor is preferably 83% or more, more preferably 85% or more, and even more preferably in both the conduction region a and the insulation region b. Is 88% or more. When the average transmittance in the above wavelength range is 85% or more, the transparent conductor can be applied to applications requiring high transparency to visible light.
 一方、透明導電体の波長400nm~800nmの光の平均吸収率は、導通領域a及び絶縁領域bのいずれにおいても10%以下であることが好ましく、より好ましくは8%以下であり、さらに好ましくは7%以下である。また、透明導電体の波長450nm~800nmの光の吸収率の最大値は、導通領域a及び絶縁領域bのいずれにおいても15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは9%以下である。一方、透明導電体の波長500nm~700nmの光の平均反射率は、導通領域a及び絶縁領域bのいずれにおいても、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の平均吸収率及び平均反射率が低いほど、前述の平均透過率が高まる。 On the other hand, the average absorptance of light having a wavelength of 400 nm to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and still more preferably in both the conduction region a and the insulation region b. 7% or less. Further, the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 nm to 800 nm is preferably 15% or less, more preferably 10% or less, in any of the conduction region a and the insulation region b. Preferably it is 9% or less. On the other hand, the average reflectance of light with a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less. The lower the average absorptance and average reflectance of the transparent conductor, the higher the aforementioned average transmittance.
 上記平均透過率、平均反射率、及び平均反射率は、透明導電体の使用環境下での平均透過率、平均反射率、及び平均反射率であることが好ましい。具体的には、透明導電体が有機樹脂と貼り合わせて使用される場合には、透明導電体上に有機樹脂からなる層を配置して平均透過率及び平均反射率測定することが好ましい。一方、透明導電体が大気中で使用される場合には、大気中での平均透過率及び平均反射率を測定することが好ましい。透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を入射させて分光光度計で測定する。吸収率は、100-(透過率+反射率)の計算式より算出される。 The average transmittance, average reflectance, and average reflectance are preferably the average transmittance, average reflectance, and average reflectance under the usage environment of the transparent conductor. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. The transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The absorptance is calculated from a calculation formula of 100− (transmittance + reflectance).
 また透明導電体100に導通領域a及び絶縁領域bが含まれる場合、導通領域aの反射率及び絶縁領域bの反射率がそれぞれ近似することが好ましい。具体的には、導通領域aの視感反射率と、絶縁領域bの視感反射率との差ΔRが3%以下であることが好ましく、より好ましくは1%以下であり、さらに好ましくは0.3%以下である。一方、導通領域a及び絶縁領域bの視感反射率は、それぞれ5%以下であることが好ましく、より好ましくは3%以下であり、さらに好ましくは1%以下である。視感反射率は、分光光度計(U4100;日立ハイテクノロジーズ社製)で測定されるY値である。 In addition, when the conductive region a and the insulating region b are included in the transparent conductor 100, it is preferable that the reflectance of the conductive region a and the reflectance of the insulating region b are approximated. Specifically, the difference ΔR between the luminous reflectance of the conductive region a and the luminous reflectance of the insulating region b is preferably 3% or less, more preferably 1% or less, and even more preferably 0. .3% or less. On the other hand, the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less. The luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
 また透明導電体100に導通領域a及び絶縁領域bが含まれる場合、いずれの領域においても、L*a*b*表色系におけるa*値及びb*値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L*a*b*表色系におけるa*値及びb*値が±30以内であれば、導通領域a及び絶縁領域bのいずれの領域も無色透明に観察される。L*a*b*表色系におけるa*値及びb*値は、分光光度計で測定される。 In addition, when the transparent conductor 100 includes the conduction region a and the insulation region b, the a * value and the b * value in the L * a * b * color system are preferably within ± 30 in any region. More preferably, it is within ± 5, more preferably within ± 3.0, and particularly preferably within ± 2.0. If the a * value and the b * value in the L * a * b * color system are within ± 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 3.透明導電体の用途
 前述の透明導電体は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
3. Applications of transparent conductors The above-mentioned transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by this.
 [実施例1]
 きもと社製HCPETフィルム型番125G1SBF(波長570nmの光の屈折率:1.68)からなる透明基板上に、下記の方法で、第一高屈折率層、透明金属膜、及び第二高屈折率層を成膜した。
[Example 1]
A first high refractive index layer, a transparent metal film, and a second high refractive index layer are formed on a transparent substrate made of Kimoto's HCPET film model number 125G1SBF (refractive index of light having a wavelength of 570 nm: 1.68) by the following method. Was deposited.
 (第一高屈折率層)
 前記透明基板上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/sでZnSをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnSの波長570nmの光の屈折率は、2.37であり、第一高屈折率層の波長570nmの光の屈折率も2.37とした。
(First high refractive index layer)
Using a magnetron sputtering apparatus of Osaka Vacuum Co., on the transparent substrate, ZnS is RF sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 3.8 3 / s. did. The target-substrate distance was 90 mm. The refractive index of light with a wavelength of 570 nm of ZnS was 2.37, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.37.
 (透明金属膜)
 FTSコーポレーション社の対向スパッタ機を用い、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート14Å/sでAgを対向スパッタした。ターゲット-基板間距離は90mmであった。
(Transparent metal film)
Using a counter sputtering machine manufactured by FTS Corporation, Ag was counter sputtered at an Ar of 20 sccm, a sputtering pressure of 0.5 Pa, a room temperature, a target power of 150 W, and a film formation rate of 14 K / s. The target-substrate distance was 90 mm.
 (第二高屈折率層)
 前記透明金属膜上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.0Å/sでZnS-ITOをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnSとITOとの比率(質量比)は、20:80であり、第二高屈折率層の波長570nmの光の屈折率は2.11であった。
(Second high refractive index layer)
On the transparent metal film, using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., ZnS-ITO at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 3.0 Å / s. Was RF sputtered. The target-substrate distance was 90 mm. The ratio (mass ratio) of ZnS and ITO was 20:80, and the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.11.
 [実施例2]
 第二高屈折率層のZnSとITOとの比率(質量比)を10:90とした以外は、実施例1と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.08であった。
[Example 2]
A transparent conductor was produced in the same manner as in Example 1 except that the ratio (mass ratio) of ZnS and ITO of the second high refractive index layer was 10:90. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.08.
 [実施例3]
 透明基板を東洋紡社製PET(コスモシャインA4300 厚み50μm、波長570nmの光の屈折率:1.58)に変更し、第二高屈折率層のZnSとITOとの比率(質量比)を35:65とした以外は、実施例1と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.15であった。
[Example 3]
The transparent substrate was changed to PET (Cosmo Shine A4300 thickness 50 μm, light refractive index of wavelength 570 nm: 1.58) manufactured by Toyobo Co., Ltd., and the ratio (mass ratio) of ZnS and ITO of the second high refractive index layer was 35: A transparent conductor was produced in the same manner as in Example 1 except that 65. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.15.
 [実施例4]
 透明基板を東洋紡社製PET(コスモシャインA4300 厚み50μm、波長570nmの光の屈折率:1.58)に変更し、第二高屈折率層のZnSとITOとの比率(質量比)を55:45とした以外は、実施例1と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.215であった。
[Example 4]
The transparent substrate was changed to PET made by Toyobo Co., Ltd. (Cosmo Shine A4300 thickness 50 μm, light refractive index of wavelength 570 nm: 1.58), and the ratio (mass ratio) of ZnS and ITO of the second high refractive index layer was 55: A transparent conductor was produced in the same manner as in Example 1 except that it was 45. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.215.
 [実施例5]
 透明基板を東洋紡社製PET(コスモシャインA4300 厚み50μm、波長570nmの光の屈折率:1.58)に変更し、第二高屈折率層のZnSとITOとの比率(質量比)を65:35とした以外は、実施例1と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.225であった。
[Example 5]
The transparent substrate was changed to PET made by Toyobo Co., Ltd. (Cosmo Shine A4300 thickness 50 μm, light refractive index of wavelength 570 nm: 1.58), and the ratio (mass ratio) of ZnS and ITO of the second high refractive index layer was 65: A transparent conductor was produced in the same manner as in Example 1 except that 35 was used. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.225.
 [実施例6]
 透明基板を東洋紡社製PET(コスモシャインA4300 厚み50μm、波長570nmの光の屈折率:1.58)に変更し、第二高屈折率層のZnSとITOとの比率(質量比)を35:65とした以外は、実施例1と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.155であった。
[Example 6]
The transparent substrate was changed to PET (Cosmo Shine A4300 thickness 50 μm, light refractive index of wavelength 570 nm: 1.58) manufactured by Toyobo Co., Ltd., and the ratio (mass ratio) of ZnS and ITO of the second high refractive index layer was 35: A transparent conductor was produced in the same manner as in Example 1 except that 65. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.155.
 [実施例7]
 透明基板を旭硝子社製PCフィルム(波長570nmの光の屈折率:1.59)に変更し、第二高屈折率層を、以下の方法で成膜した以外は、実施例1と同様に透明導電体を作製した。
[Example 7]
The transparent substrate was changed to a PC film manufactured by Asahi Glass Co., Ltd. (refractive index of light with a wavelength of 570 nm: 1.59), and the second high refractive index layer was transparent in the same manner as in Example 1 except that it was formed by the following method. A conductor was produced.
 (第二高屈折率層)
 前記透明金属膜上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.0Å/sでZnS-ZnOをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnSとZnOとの比率(質量比)は、10:90であり、第二高屈折率層の波長570nmの光の屈折率は2.08であった。
(Second high refractive index layer)
On the transparent metal film, using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnS—ZnO at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.0 Å / s. Was RF sputtered. The target-substrate distance was 90 mm. The ratio (mass ratio) of ZnS and ZnO was 10:90, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was 2.08.
 [実施例8]
 第二高屈折率層のZnSとZnOとの比率(質量比)を55:45とした以外は、実施例7と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.215であった。
[Example 8]
A transparent conductor was produced in the same manner as in Example 7 except that the ratio (mass ratio) of ZnS and ZnO in the second high refractive index layer was 55:45. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.215.
 [実施例9]
 第二高屈折率層のZnSとZnOとの比率(質量比)を65:35とした以外は、実施例7と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.245であった。
[Example 9]
A transparent conductor was produced in the same manner as in Example 7, except that the ratio (mass ratio) of ZnS and ZnO in the second high refractive index layer was 65:35. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.245.
 [実施例10]
 透明基板を、コニカミノルタ製TACフィルム(波長570nmの光の屈折率:1.48)に変更し、第一高屈折率層、及び第二高屈折率層を、それぞれ以下の方法で成膜した以外は、実施例1と同様に透明導電体を作製した。
[Example 10]
The transparent substrate was changed to a Konica Minolta TAC film (refractive index of light having a wavelength of 570 nm: 1.48), and a first high refractive index layer and a second high refractive index layer were formed by the following methods, respectively. A transparent conductor was produced in the same manner as in Example 1 except for the above.
 (第一高屈折率層)
 透明基板上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.0Å/sでZnS-SiOをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnSとSiOとの比率(質量比)は、80:20であり、第一高屈折率層の屈折率は2.14であった。
(First high refractive index layer)
On a transparent substrate, using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnS—SiO 2 was applied at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 3.0 Å / s. RF sputtered. The target-substrate distance was 90 mm. The ratio (mass ratio) between ZnS and SiO 2 was 80:20, and the refractive index of the first high refractive index layer was 2.14.
 (第二高屈折率層)
 透明金属膜上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.0Å/sでZnS-SiO-ITOをRFスパッタした。ターゲット-基板間距離は90mmであった。
 ZnSとSiOとの比率(質量比)は80:20であり、ZnS-SiOとITOとの比率(質量比)は、20:80であった。第二高屈折率層の波長570nmの光の屈折率は2.066であった。
(Second high refractive index layer)
On the transparent metal film, using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnS-SiO 2 with Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 3.0 Å / s. -RF sputtered ITO. The target-substrate distance was 90 mm.
The ratio (mass ratio) between ZnS and SiO 2 was 80:20, and the ratio (mass ratio) between ZnS—SiO 2 and ITO was 20:80. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.066.
 [実施例11]
 透明基板を、きもと社製HCPETフィルム型番125G1SBF(波長570nmの光の屈折率:1.68)に変更した以外は、実施例10と同様に透明導電体を作製した。
[Example 11]
A transparent conductor was produced in the same manner as in Example 10 except that the transparent substrate was changed to Kimoto HCPET film model 125G1SBF (refractive index of light having a wavelength of 570 nm: 1.68).
 [実施例12]
 透明基板を、シクロオレフィンポリマーからなるフィルム(波長570nmの光の屈折率:1.50)に変更した以外は、実施例10と同様に透明導電体を作製した。
[Example 12]
A transparent conductor was produced in the same manner as in Example 10, except that the transparent substrate was changed to a film made of cycloolefin polymer (refractive index of light having a wavelength of 570 nm: 1.50).
 [実施例13]
 透明基板をコーニング社製無アルカリガラス基板(EAGLE XG、波長570nmの光の屈折率:1.52)に変更し、第二高屈折率層のZnS-SiOとITOとの比率(質量比)を35:65とした以外は、実施例10と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.078であった。
[Example 13]
The transparent substrate was changed to a non-alkali glass substrate (EAGLE XG, wavelength 570 nm light refractive index: 1.52) manufactured by Corning, and the ratio (mass ratio) of ZnS-SiO 2 and ITO of the second high refractive index layer A transparent conductor was prepared in the same manner as in Example 10 except that the ratio was 35:65. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.078.
 [実施例14]
 透明基板をコーニング社製無アルカリガラス基板(EAGLE XG、波長570nmの光の屈折率:1.52)に変更し、第二高屈折率層をZnS-SiOとIZOとからなる膜(質量比 20:80)とした以外は、実施例10と同様に透明導電体を作製した。第二高屈折率層の成膜方法は、実施例10の第二高屈折率層の成膜方法と同様とした。第二高屈折率層の波長570nmの光の屈折率は2.11であった。
[Example 14]
The transparent substrate was changed to a non-alkali glass substrate (EAGLE XG, wavelength 570 nm light refractive index: 1.52) manufactured by Corning, and the second high refractive index layer was a film (mass ratio) made of ZnS—SiO 2 and IZO. 20:80) A transparent conductor was produced in the same manner as in Example 10 except that it was changed to 20:80). The method for forming the second high refractive index layer was the same as the method for forming the second high refractive index layer in Example 10. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.11.
 [実施例15]
 透明基板をコーニング社製無アルカリガラス基板(EAGLE XG、波長570nmの光の屈折率:1.52)に変更し、第二高屈折率層をZnS-SiOとIGZOとからなる膜(質量比 20:80)とした以外は、実施例10と同様に透明導電体を作製した。第二高屈折率層の成膜方法は、実施例10の第二高屈折率層の成膜方法と同様とした。第二高屈折率層の波長570nmの光の屈折率は2.11であった。
[Example 15]
The transparent substrate was changed to a non-alkali glass substrate (EAGLE XG, wavelength 570 nm light refractive index: 1.52) manufactured by Corning, and the second high refractive index layer was a film (mass ratio) made of ZnS—SiO 2 and IGZO. 20:80) A transparent conductor was produced in the same manner as in Example 10 except that it was changed to 20:80). The method for forming the second high refractive index layer was the same as the method for forming the second high refractive index layer in Example 10. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.11.
 [実施例16]
 透明基板を、コニカミノルタ製TACフィルム(波長570nmの光の屈折率:1.48)に変更し、第二高屈折率層のZnS-SiOとITOとの比率(質量比)を55:45とした以外は、実施例10と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.094であった。
[Example 16]
The transparent substrate was changed to a Konica Minolta TAC film (refractive index of light having a wavelength of 570 nm: 1.48), and the ratio (mass ratio) of ZnS—SiO 2 and ITO of the second high refractive index layer was changed to 55:45. A transparent conductor was produced in the same manner as in Example 10 except that. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.094.
 [実施例17]
 透明基板を、コニカミノルタ製TACフィルム(波長570nmの光の屈折率:1.48)に変更し、第二高屈折率層のZnS-SiOとITOとの比率(質量比)を65:35とした以外は、実施例10と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.102であった。
[Example 17]
The transparent substrate was changed to a Konica Minolta TAC film (refractive index of light having a wavelength of 570 nm: 1.48), and the ratio (mass ratio) of ZnS—SiO 2 and ITO of the second high refractive index layer was changed to 65:35. A transparent conductor was produced in the same manner as in Example 10 except that. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.102.
 [実施例18]
 透明基板を東洋紡社製PET(コスモシャインA4300 厚み50μm、波長570nmの光の屈折率:1.58)に変更し、透明金属膜の成膜時のターゲット材料をAg-Bi合金(Biの量:1at%)とし、下記の方法で成膜した以外は、実施例10と同様に透明導電体を作製した。
[Example 18]
The transparent substrate was changed to PET made by Toyobo Co. (Cosmo Shine A4300 thickness 50 μm, wavelength 570 nm light refractive index: 1.58), and the target material at the time of forming the transparent metal film was an Ag—Bi alloy (amount of Bi: 1 at%), and a transparent conductor was produced in the same manner as in Example 10 except that the film was formed by the following method.
 (透明金属膜)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/sでAg-Bi合金をRFスパッタした。ターゲット-基板間距離は90mmであった。
(Transparent metal film)
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., an Ag—Bi alloy was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.8 Å / s. The target-substrate distance was 90 mm.
 [実施例19]
 透明基板を東洋紡社製PET(コスモシャインA4300 厚み50μm、波長570nmの光の屈折率:1.58)に変更し、透明金属膜の成膜時のターゲット材料をAg-Pd合金(フルヤ合金製AP)とし、実施例18の透明金属膜と同様に成膜した以外は、実施例10と同様に透明導電体を作製した。
[Example 19]
The transparent substrate was changed to PET made by Toyobo (Cosmo Shine A4300, thickness 50 μm, light refractive index of wavelength 570 nm: 1.58), and the target material at the time of forming the transparent metal film was Ag-Pd alloy (Fluya alloy AP And a transparent conductor was prepared in the same manner as in Example 10 except that the film was formed in the same manner as the transparent metal film in Example 18.
 [実施例20]
 透明基板を東洋紡社製PET(コスモシャインA4300 厚み50μm、波長570nmの光の屈折率:1.58)に変更し、透明金属膜の成膜時のターゲット材料をAg-Pd-Cu合金(フルヤ金属社製APC)とし、実施例18の透明金属膜と同様に成膜した以外は、実施例10と同様に透明導電体を作製した。
[Example 20]
The transparent substrate was changed to PET (Cosmo Shine A4300 thickness 50 μm, wavelength 570 nm light refractive index: 1.58) manufactured by Toyobo Co., Ltd., and the target material at the time of forming the transparent metal film was Ag—Pd—Cu alloy (Fluya Metal) APC was manufactured in the same manner as in Example 10 except that the film was formed in the same manner as the transparent metal film in Example 18.
 [実施例21]
 透明基板を東洋紡社製PET(コスモシャインA4300 厚み50μm、波長570nmの光の屈折率:1.58)に変更し、透明金属膜の成膜時のターゲット材料をAg-Bi―Ge-Au合金(コベルコ科研社製:Ag(98.35at%)/Bi(0.35at%)/Ge(0.3%)/Au(1.0at%))とし、実施例18の透明金属膜と同様に成膜した以外は、実施例10と同様に透明導電体を作製した。
[Example 21]
The transparent substrate was changed to PET (Cosmo Shine A4300 thickness 50 μm, light refractive index of wavelength 570 nm: 1.58) manufactured by Toyobo Co., Ltd., and the target material at the time of forming the transparent metal film was an Ag—Bi—Ge—Au alloy ( Made by Kobelco Research Institute: Ag (98.35 at%) / Bi (0.35 at%) / Ge (0.3%) / Au (1.0 at%)), the same as the transparent metal film of Example 18. A transparent conductor was produced in the same manner as in Example 10 except that the film was formed.
 [実施例22]
 透明基板を旭硝子社製PCフィルム(波長570nmの光の屈折率:1.59)に変更し、透明金属膜の成膜時のターゲット材料をAgとし、第二高屈折率層を、以下の方法で成膜した以外は、実施例18と同様に透明導電体を作製した。
[Example 22]
The transparent substrate is changed to a PC film manufactured by Asahi Glass Co., Ltd. (refractive index of light having a wavelength of 570 nm: 1.59), the target material at the time of forming the transparent metal film is Ag, and the second high refractive index layer is formed by the following method. A transparent conductor was produced in the same manner as in Example 18 except that the film was formed in the same manner as Example 18.
 (第二高屈折率層)
 前記透明金属膜上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.0Å/sでZnS-SiO-CuをRFスパッタした。ターゲット-基板間距離は90mmであった。
 ZnSとSiOとの比率(質量比)は80:20であり、ZnS-SiOとCuとの比率(質量比)は、99.97:0.03であった。第二高屈折率層の波長570nmの光の屈折率は2.13であった。
(Second high refractive index layer)
On the transparent metal film, using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., ZnS-SiO at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 3.0 Å / s. 2- Cu was RF sputtered. The target-substrate distance was 90 mm.
The ratio (mass ratio) between ZnS and SiO 2 was 80:20, and the ratio (mass ratio) between ZnS—SiO 2 and Cu was 99.97: 0.03. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.13.
 [実施例23]
 第二高屈折率層のZnS-SiOとCuとの比率(質量比)を99:1とした以外は、実施例22と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.13であった。
[Example 23]
A transparent conductor was produced in the same manner as in Example 22 except that the ratio (mass ratio) of ZnS—SiO 2 and Cu in the second high refractive index layer was 99: 1. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.13.
 [実施例24]
 透明基板を旭硝子社製PCフィルム(波長570nmの光の屈折率:1.59)に変更し、透明金属膜の成膜時のターゲット材料をAgとし、第二高屈折率層をZnS-SiOとAlとからなる膜(質量比 99.97:0.03)とした以外は、実施例18と同様に透明導電体を作製した。第二高屈折率層の成膜方法は、実施例18の第二高屈折率層の成膜方法と同様とした。第二高屈折率層の波長570nmの光の屈折率は2.13であった。
[Example 24]
The transparent substrate was changed to a PC film manufactured by Asahi Glass Co., Ltd. (refractive index of light having a wavelength of 570 nm: 1.59), the target material at the time of forming the transparent metal film was Ag, and the second high refractive index layer was ZnS-SiO 2. A transparent conductor was prepared in the same manner as in Example 18 except that the film was made of Al and Al (mass ratio 99.97: 0.03). The method for forming the second high refractive index layer was the same as the method for forming the second high refractive index layer in Example 18. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.13.
 [実施例25]
 第二高屈折率層のZnS-SiOとAlとの比率(質量比)を99:1とした以外は、実施例24と同様に透明導電体を作製した。第二高屈折率層の波長570nmの光の屈折率は2.13であった。
[Example 25]
A transparent conductor was produced in the same manner as in Example 24 except that the ratio (mass ratio) of ZnS—SiO 2 and Al in the second high refractive index layer was 99: 1. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.13.
 [実施例26]
 山中セミコンダクターの白板基板(φ30mm、厚み2mm、波長570nmの光の屈折率:1.52)上に、実施例1と同様の基板上に、第一高屈折率層/第一硫化防止層/透明金属膜/第二硫化防止層/第二高屈折率層を、この順に成膜した。
 透明金属膜は、成膜時のターゲット材料をAgとした以外は、実施例18と同様の方法で成膜した。
 第一高屈折率層は、実施例18と同様に成膜した。
 第一硫化防止層及び第二硫化防止層、並びに第二高屈折率層は、以下の方法で成膜した。
[Example 26]
On a white substrate of Yamanaka Semiconductor (φ30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), on the same substrate as in Example 1, first high refractive index layer / first antisulfide layer / transparent A metal film / second antisulfuration layer / second high refractive index layer was formed in this order.
The transparent metal film was formed by the same method as in Example 18 except that the target material at the time of film formation was Ag.
The first high refractive index layer was formed in the same manner as in Example 18.
The first sulfurization prevention layer, the second sulfurization prevention layer, and the second high refractive index layer were formed by the following method.
 (第一硫化防止層及び第二硫化防止層)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/sでZnOをRFスパッタした。ターゲット-基板間距離は90mmであった
(First sulfidation prevention layer and second sulfidation prevention layer)
Using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnO was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 liters / s. The target-substrate distance was 90 mm
 (第二高屈折率層)
 前記第二硫化防止層上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/sでZnS-SiO-ZnOをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnS-SiOとZnOとの比率(質量比)は、55:45であり、第二高屈折率層の波長570nmの光の屈折率は2.215であった。
(Second high refractive index layer)
On the second sulfidation prevention layer, using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnS at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 3.8 Å / s. —SiO 2 —ZnO was RF sputtered. The target-substrate distance was 90 mm. The ratio (mass ratio) between ZnS—SiO 2 and ZnO was 55:45, and the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.215.
 [実施例27]
 透明基板を山中セミコンダクターの白板基板(φ30mm、厚み2mm、波長570nmの光の屈折率:1.52)に変更し、透明金属膜の成膜時のターゲット材料をAgとし、第一高屈折率層及び第二高屈折率層を以下の方法で成膜した以外は、実施例18と同様に透明導電体を作製した。
[Example 27]
The transparent substrate was changed to a white substrate of Yamanaka Semiconductor (φ30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), the target material at the time of forming the transparent metal film was set to Ag, and the first high refractive index layer And the transparent conductor was produced similarly to Example 18 except having formed into a film with the following method the 2nd high refractive index layer.
 (第一高屈折率層)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力50W、成膜レート0.25Å/sでIZOをDCパルスにてスパッタした。ターゲット-基板間距離は90mmであった。第一高屈折率層の波長570nmの光の屈折率は2.05であった。
(First high refractive index layer)
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., IZO was sputtered with a DC pulse at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 50 W, and deposition rate 0.25 Å / s. The target-substrate distance was 90 mm. The refractive index of light having a wavelength of 570 nm of the first high refractive index layer was 2.05.
 (第二高屈折率層)
 前記透明金属膜上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.0Å/sでZnS-IZOをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnSとIZOとの比率(質量比)は、20:80であり、第二高屈折率層の波長570nmの光の屈折率は2.11であった。
(Second high refractive index layer)
On the transparent metal film, using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnS-IZO at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, film formation rate 3.0 Å / s. Was RF sputtered. The target-substrate distance was 90 mm. The ratio (mass ratio) between ZnS and IZO was 20:80, and the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.11.
 [実施例28]
 透明基板を山中セミコンダクターの白板基板(φ30mm、厚み2mm、波長570nmの光の屈折率:1.52)に変更し、第一高屈折率層を実施例27の第二高屈折率と同様に成膜し、第二高屈折率層を実施例27の第一高屈折率層と同様に成膜した以外は、実施例27と同様に透明導電体を作製した。
[Example 28]
The transparent substrate was changed to a Yamanaka Semiconductor white plate substrate (φ30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), and the first high refractive index layer was formed in the same manner as the second high refractive index of Example 27. A transparent conductor was prepared in the same manner as in Example 27 except that the film was formed and the second high refractive index layer was formed in the same manner as the first high refractive index layer in Example 27.
 [実施例29]
 透明基板を山中セミコンダクターの白板基板(φ30mm、厚み2mm、波長570nmの光の屈折率:1.52)に変更し、第二高屈折率層を以下の方法で成膜した以外は、実施例22と同様の方法に透明導電体を作製した。
[Example 29]
Example 22 except that the transparent substrate was changed to a Yamanaka Semiconductor white plate substrate (φ30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), and the second high refractive index layer was formed by the following method. A transparent conductor was prepared in the same manner as described above.
 (第二高屈折率層)
 前記第二硫化防止層上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/sでZnS-SiO-GaをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnS-SiOとGaとの比率(質量比)は、80:20であり、第二高屈折率層の波長570nmの光の屈折率は2.11であった。
(Second high refractive index layer)
On the second sulfidation prevention layer, using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnS at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 3.8 Å / s. —SiO 2 —Ga 2 O 3 was RF sputtered. The target-substrate distance was 90 mm. The ratio (mass ratio) between ZnS—SiO 2 and Ga 2 O 3 was 80:20, and the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.11.
 [実施例30]
 第二高屈折率層の材料を、ZnS-SiO-TiOとした以外は、実施例29と同様に透明導電体を作製した。ZnS-SiOとTiOとの比率(質量比)は、80:20であり、第二高屈折率層の波長570nmの光の屈折率は2.164であった。
[Example 30]
A transparent conductor was produced in the same manner as in Example 29 except that the material of the second high refractive index layer was ZnS—SiO 2 —TiO 2 . The ratio (mass ratio) between ZnS—SiO 2 and TiO 2 was 80:20, and the refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.164.
 [実施例31]
 透明金属膜の成膜時のターゲット材料をAgとし、第一高屈折率層を実施例1と同様の方法で成膜し、第二高屈折率層を以下の方法で成膜した以外は、実施例18と同様に透明導電体を作製した。
[Example 31]
The target material at the time of forming the transparent metal film is Ag, the first high refractive index layer is formed by the same method as in Example 1, and the second high refractive index layer is formed by the following method. A transparent conductor was produced in the same manner as in Example 18.
 (第二高屈折率層)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力50W、成膜レート0.25Å/sでITOをDCパルスにてスパッタした。ターゲット-基板間距離は90mmであった。第二高屈折率層の波長570nmの光の屈折率は2.12であった。
(Second high refractive index layer)
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., ITO was sputtered with DC pulses at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 50 W, and deposition rate 0.25 Å / s. The target-substrate distance was 90 mm. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.12.
 [実施例32]
 透明金属膜の成膜時のターゲット材料をAgとし、第二高屈折率層を実施例28の第二高屈折率層と同様にした以外は、実施例18と同様に透明導電体を作製した。
[Example 32]
A transparent conductor was prepared in the same manner as in Example 18 except that the target material at the time of forming the transparent metal film was Ag and the second high refractive index layer was the same as the second high refractive index layer of Example 28. .
 [実施例33]
 透明金属膜の成膜時のターゲット材料をAgとし、第一高屈折率層のZnSとSiOとの比率(質量比)を70:30とした以外は、実施例32と同様に透明導電体を作製した。第一高屈折率層の波長570nmの光の屈折率は2.083であった。
[Example 33]
A transparent conductor as in Example 32 except that the target material at the time of forming the transparent metal film is Ag and the ratio (mass ratio) of ZnS and SiO 2 of the first high refractive index layer is 70:30. Was made. The refractive index of light having a wavelength of 570 nm of the first high refractive index layer was 2.083.
 [実施例34]
 第一高屈折率層のZnSとSiOとの比率(質量比)を95:5とした以外は、実施例32と同様に透明導電体を作製した。第一高屈折率層の波長570nmの光の屈折率は2.305であった。
[Example 34]
A transparent conductor was produced in the same manner as in Example 32 except that the ratio (mass ratio) of ZnS and SiO 2 in the first high refractive index layer was 95: 5. The refractive index of light having a wavelength of 570 nm of the first high refractive index layer was 2.305.
 [実施例35]
 透明基板を山中セミコンダクターの白板基板(φ30mm、厚み2mm、波長570nmの光の屈折率:1.52)に変更し、透明金属膜の成膜時のターゲット材料をAgとし、第二高屈折率層を以下の方法で成膜した以外は、実施例18と同様に透明導電体を作製した。
[Example 35]
The transparent substrate was changed to a white substrate of Yamanaka Semiconductor (φ30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), the target material at the time of forming the transparent metal film was set to Ag, and the second high refractive index layer A transparent conductor was produced in the same manner as in Example 18 except that the film was formed by the following method.
 (第二高屈折率層)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力50W、成膜レート0.25Å/sでGZOをDCパルスにてスパッタした。ターゲット-基板間距離は90mmであった。第二高屈折率層の波長570nmの光の屈折率は2.04であった。
(Second high refractive index layer)
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., GZO was sputtered with a DC pulse at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 50 W, and deposition rate 0.25 Å / s. The target-substrate distance was 90 mm. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.04.
 [実施例36]
 透明基板を山中セミコンダクターの白板基板(φ30mm、厚み2mm、波長570nmの光の屈折率:1.52)に変更し、第二高屈折率層を以下の方法で成膜した以外は、実施例18と同様に透明導電体を作製した。
[Example 36]
Example 18 except that the transparent substrate was changed to a Yamanaka Semiconductor white plate substrate (φ30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), and the second high refractive index layer was formed by the following method. A transparent conductor was prepared in the same manner as described above.
 (第二高屈折率層)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力50W、成膜レート0.25Å/sでAZOをDCパルスにてスパッタした。ターゲット-基板間距離は90mmであった。第二高屈折率層の波長570nmの光の屈折率は2.05であった。
(Second high refractive index layer)
AZO was sputtered with DC pulses at 20 sccm Ar, 0 sccm O 2 , sputtering pressure 0.1 Pa, room temperature, target side power 50 W, and deposition rate 0.25 Å / s using an Osaka Vacuum Company magnetron sputtering apparatus. The target-substrate distance was 90 mm. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.05.
 [実施例37]
 透明基板を山中セミコンダクターの白板基板(φ30mm、厚み2mm、波長570nmの光の屈折率:1.52)に変更し、第二高屈折率層を以下の方法で成膜した以外は、実施例18と同様に透明導電体を作製した。
[Example 37]
Example 18 except that the transparent substrate was changed to a Yamanaka Semiconductor white plate substrate (φ30 mm, thickness 2 mm, wavelength 570 nm light refractive index: 1.52), and the second high refractive index layer was formed by the following method. A transparent conductor was prepared in the same manner as described above.
 (第二高屈折率層)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力50W、成膜レート0.25Å/sでIGZOをDCパルスにてスパッタした。ターゲット-基板間距離は90mmであった。第二高屈折率層の波長570nmの光の屈折率は2.09であった。
(Second high refractive index layer)
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., IGZO was sputtered with DC pulses at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 50 W, and deposition rate 0.25 Å / s. The target-substrate distance was 90 mm. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.09.
 [比較例1]
 石英からなる透明基板上に、第一高屈折率層(ITO)/透明金属膜(Ag)/第二高屈折率層(ITO)をこの順に積層した。
 透明金属膜は、実施例18と同様の方法で、透明金属膜の成膜時のターゲット材料をAgとして成膜した。
 第一高屈折率層、及び第二高屈折率層は、それぞれ以下の方法で成膜した。
[Comparative Example 1]
A first high refractive index layer (ITO) / transparent metal film (Ag) / second high refractive index layer (ITO) was laminated in this order on a transparent substrate made of quartz.
The transparent metal film was formed by the same method as in Example 18 using Ag as the target material when forming the transparent metal film.
The first high refractive index layer and the second high refractive index layer were formed by the following methods, respectively.
 (第一高屈折率層及び第二高屈折率層)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 2sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート0.5Å/sでITOをDCにてスパッタした。ターゲット-基板間距離は90mmであった。第二高屈折率層の波長570nmの光の屈折率は2.09であった。
(First high refractive index layer and second high refractive index layer)
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., ITO was sputtered with DC at 20 sccm Ar, 2 sccm O 2 , sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 0.5 Å / s. The target-substrate distance was 90 mm. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.09.
 [比較例2]
 K9ガラス基板上に、第一高屈折率層(ZnS)/透明金属膜(Ag)/第二高屈折率層(ZnS)を順に積層した。
 透明金属膜は、実施例18と同様の方法で、透明金属膜の成膜時のターゲット材料をAgとして成膜した。
 第一高屈折率層及び第二高屈折率層は、いずれも実施例1の第一高屈折率層と同様に成膜した。
[Comparative Example 2]
On the K9 glass substrate, a first high refractive index layer (ZnS) / transparent metal film (Ag) / second high refractive index layer (ZnS) were laminated in this order.
The transparent metal film was formed by the same method as in Example 18 using Ag as the target material when forming the transparent metal film.
The first high refractive index layer and the second high refractive index layer were both formed in the same manner as the first high refractive index layer of Example 1.
 [評価]
 各実施例及び比較例で得られた透明導電体について、平均透過率、抵抗値安定性、及び湿熱耐性を下記の方法で評価した。結果を表1~3に示す。
[Evaluation]
About the transparent conductor obtained by each Example and the comparative example, average transmittance | permeability, resistance value stability, and wet heat tolerance were evaluated with the following method. The results are shown in Tables 1 to 3.
 (平均透過率)
 各実施例及び比較例で得られた透明導電体の透過率を以下のように算出した。得られた透明導電体について、透明金属膜の表面(第二高屈折率層の表面)の法線に対して5°傾けた位置から測定光を入射させた。そして、透明導電体の透過率を分光光度計(日立ハイテク社製U4100)で測定した。
(Average transmittance)
The transmittance of the transparent conductor obtained in each example and comparative example was calculated as follows. About the obtained transparent conductor, measurement light was incident from a position inclined by 5 ° with respect to the normal of the surface of the transparent metal film (the surface of the second high refractive index layer). And the transmittance | permeability of the transparent conductor was measured with the spectrophotometer (H4100 by Hitachi High-Tech).
 (抵抗値安定性)
 各透明導電体の第二高屈折率層の表面(2点)に、三菱化学アナリテック製のロレスタEP MCP-T360を接触させて、抵抗値の安定性を確認した。測定環境の温度は24℃であり、湿度は30%Rhとした。抵抗値の安定性は、以下の基準で評価した。
 ○:測定開始から5秒後に抵抗値が安定し、かつ抵抗値が20Ω/□以下である
 △:測定開始から5秒後に抵抗値が安定しないものの、抵抗値が50Ω/□以下に収まる
 ×:測定開始から5秒後に抵抗値が安定せず、かつ測定値が50Ω/□超である
(Resistance value stability)
Loresta EP MCP-T360 manufactured by Mitsubishi Chemical Analytech was brought into contact with the surface (two points) of the second high refractive index layer of each transparent conductor to confirm the stability of the resistance value. The temperature of the measurement environment was 24 ° C., and the humidity was 30% Rh. The stability of the resistance value was evaluated according to the following criteria.
○: The resistance value is stable after 5 seconds from the start of measurement and the resistance value is 20Ω / □ or less. Δ: The resistance value is not stable after 5 seconds from the start of measurement, but the resistance value is within 50Ω / □. The resistance value is not stable after 5 seconds from the start of measurement, and the measured value exceeds 50Ω / □.
 (湿熱耐性)
 各透明導電体を65℃、95%Rhの湿熱環境下に100時間載置した。その後、透明導電体の外観を目視で観察し、以下の基準で評価した。
 ○:外観に異常なし
 △:1~5個の斑点が観察される
 ×:6個以上の斑点が観察される
(Heat heat resistance)
Each transparent conductor was placed in a moist heat environment of 65 ° C. and 95% Rh for 100 hours. Thereafter, the appearance of the transparent conductor was visually observed and evaluated according to the following criteria.
○: No abnormality in appearance Δ: 1 to 5 spots are observed ×: 6 or more spots are observed
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、第一高屈折率層または第二高屈折率層にZnSが含まれない比較例1では、湿熱耐性が低く、湿度や熱によって外観不良が生じた。また、第一高屈折率層及び第二高屈折率層にZnSが含まれる比較例2では、湿熱耐性は高かったものの、抵抗値安定性が低かった。
 これに対し、表1~3に示されるように、第二高屈折率層に導電材料が含まれる実施例1~37では、表面電気抵抗値が安定した。さらに、第一高屈折率層または第二高屈折率層のいずれかにZnSが含まれるため、湿熱環境下においても、外観不良が生じ難かった。
As shown in Table 3, in Comparative Example 1 in which ZnS was not contained in the first high refractive index layer or the second high refractive index layer, the wet heat resistance was low, and appearance defects were caused by humidity and heat. In Comparative Example 2 in which ZnS was contained in the first high refractive index layer and the second high refractive index layer, although resistance to wet heat was high, resistance value stability was low.
On the other hand, as shown in Tables 1 to 3, in Examples 1 to 37 in which the second high refractive index layer contains a conductive material, the surface electrical resistance value was stabilized. Furthermore, since ZnS is contained in either the first high refractive index layer or the second high refractive index layer, poor appearance hardly occurs even in a humid heat environment.
 ここで、第二高屈折率層に含まれる導電材料が金属酸化物である場合、第二高屈折率層の全質量に対して金属酸化物量が40質量%以上含まれると、抵抗値の安定性が特に高まりやすかった(実施例1~4、6~8、10~16、18~21、26~28、及び31~37)。一方、第二高屈折率層に含まれる導電材料が金属である場合、第二高屈折率層の全質量に対する金属の量が1質量%未満であると、透明導電体を湿熱環境下においても、透明導電体の外観不良が特に生じ難かった(実施例22及び24)。 Here, when the conductive material contained in the second high refractive index layer is a metal oxide, the resistance value is stable when the amount of the metal oxide is 40% by mass or more with respect to the total mass of the second high refractive index layer. The properties were particularly likely to increase (Examples 1 to 4, 6 to 8, 10 to 16, 18 to 21, 26 to 28, and 31 to 37). On the other hand, when the conductive material contained in the second high refractive index layer is a metal, if the amount of metal relative to the total mass of the second high refractive index layer is less than 1% by mass, the transparent conductor can be removed even in a humid heat environment. The appearance defect of the transparent conductor was not particularly likely to occur (Examples 22 and 24).
 本出願は、2013年12月11日出願の特願2013-256128に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2013-256128 filed on Dec. 11, 2013. The contents described in the application specification and the drawings are all incorporated herein.
 1 透明基板
 2 第一高屈折率層
 3 透明金属膜
 4 第二高屈折率層
 100 透明導電体
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 1st high refractive index layer 3 Transparent metal film 4 2nd high refractive index layer 100 Transparent conductor

Claims (5)

  1.  透明基板と、
     前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第一高屈折率層と、
     透明金属膜と、
     導電材料を含む第二高屈折率層と、をこの順に含み、
     前記第一高屈折率層または前記第二高屈折率層の少なくとも一方にZnSを含む、透明導電体。
    A transparent substrate;
    A first high refractive index layer including a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light having a wavelength of 570 nm of the transparent substrate;
    A transparent metal film,
    A second high refractive index layer containing a conductive material, and in this order,
    A transparent conductor containing ZnS in at least one of the first high refractive index layer or the second high refractive index layer.
  2.  前記導電材料が、TiO、ITO、In、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、IGZO、ZTO、Bi、Ga、GeO、WO、HfO、a-GIOからなる群から選ばれる金属酸化物、または、Ag、Cu、Al、及びAuからなる群から選ばれる金属を1種類以上含む、請求項1に記載の透明導電体。 The conductive material is TiO 2 , ITO, In 2 O 3 , ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, From the group consisting of SnO 2 , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, IGZO, ZTO, Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO The transparent conductor according to claim 1, comprising at least one metal selected from the group consisting of metal oxides selected from the group consisting of Ag, Cu, Al, and Au.
  3.  前記導電材料が前記金属酸化物であり、前記第二高屈折率層の質量に対する前記金属酸化物の量が30質量%以上である、請求項2に記載の透明導電体。 The transparent conductor according to claim 2, wherein the conductive material is the metal oxide, and the amount of the metal oxide with respect to the mass of the second high refractive index layer is 30% by mass or more.
  4.  前記導電材料が前記金属であり、前記第二高屈折率層の質量に対する前記金属の量が5質量%以下である、請求項2に記載の透明導電体。 The transparent conductor according to claim 2, wherein the conductive material is the metal, and the amount of the metal with respect to the mass of the second high refractive index layer is 5% by mass or less.
  5.  前記透明金属膜の厚みが、20nm以下である、請求項1に記載の透明導電体。 The transparent conductor according to claim 1, wherein the thickness of the transparent metal film is 20 nm or less.
PCT/JP2014/082621 2013-12-11 2014-12-10 Transparent conductive body WO2015087895A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015552474A JPWO2015087895A1 (en) 2013-12-11 2014-12-10 Transparent conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013256128 2013-12-11
JP2013-256128 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015087895A1 true WO2015087895A1 (en) 2015-06-18

Family

ID=53371197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082621 WO2015087895A1 (en) 2013-12-11 2014-12-10 Transparent conductive body

Country Status (2)

Country Link
JP (1) JPWO2015087895A1 (en)
WO (1) WO2015087895A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150940A1 (en) * 2017-02-20 2018-08-23 東洋紡株式会社 Polyester film and applications thereof
KR20200061567A (en) * 2018-11-26 2020-06-03 전남대학교산학협력단 The transparent conductive oxide electrode having high mobility and high conductivity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190030A (en) * 1996-12-27 1998-07-21 Canon Inc Photovoltaic element
JP2000106044A (en) * 1998-09-30 2000-04-11 Nitto Denko Corp Surface resistance lowering method for transparent conductive film
JP2002015623A (en) * 2000-04-27 2002-01-18 Mitsui Chemicals Inc Transparent electrode
JP2002313139A (en) * 2001-04-12 2002-10-25 Mitsui Chemicals Inc Transparent conductive thin film laminated body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190030A (en) * 1996-12-27 1998-07-21 Canon Inc Photovoltaic element
JP2000106044A (en) * 1998-09-30 2000-04-11 Nitto Denko Corp Surface resistance lowering method for transparent conductive film
JP2002015623A (en) * 2000-04-27 2002-01-18 Mitsui Chemicals Inc Transparent electrode
JP2002313139A (en) * 2001-04-12 2002-10-25 Mitsui Chemicals Inc Transparent conductive thin film laminated body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150940A1 (en) * 2017-02-20 2018-08-23 東洋紡株式会社 Polyester film and applications thereof
JPWO2018150940A1 (en) * 2017-02-20 2019-12-12 東洋紡株式会社 Polyester film and its use
TWI770121B (en) * 2017-02-20 2022-07-11 日商東洋紡股份有限公司 Polyester film and method for producing the same, hard coating film, foldable display and portable terminal
JP7180375B2 (en) 2017-02-20 2022-11-30 東洋紡株式会社 Polyester film and its uses
TWI806674B (en) * 2017-02-20 2023-06-21 日商東洋紡股份有限公司 Polyester films and hard-coated films for displays
KR20200061567A (en) * 2018-11-26 2020-06-03 전남대학교산학협력단 The transparent conductive oxide electrode having high mobility and high conductivity
KR102158792B1 (en) 2018-11-26 2020-09-22 전남대학교산학협력단 The transparent conductive oxide electrode having high mobility and high conductivity

Also Published As

Publication number Publication date
JPWO2015087895A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6314463B2 (en) Transparent conductor
JP6292225B2 (en) Transparent conductor
KR20180012730A (en) Transparent conductive film
JP6319302B2 (en) Transparent conductor and method for producing the same
WO2015068738A1 (en) Transparent conductive body
WO2015087895A1 (en) Transparent conductive body
JP6536575B2 (en) Transparent conductor and touch panel
JP6206262B2 (en) Transparent conductor, method for producing the same, and conductive paste
JP2015219690A (en) Transparent conductive device and touch panel
WO2015125558A1 (en) Method for manufacturing transparent electroconductive body and electroconductive body
JP2016018288A (en) Transparent conductor and touch panel
WO2014196460A1 (en) Transparent conductor and method for producing same
JP2016146052A (en) Transparent conductor, and touch panel including the same
WO2015053371A1 (en) Transparent conductor
WO2015025525A1 (en) Transparent conductive body
WO2014181538A1 (en) Transparent conductor and method for producing same
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
WO2015125677A1 (en) Transparent conductor
WO2015011928A1 (en) Method for producing transparent conductive body
JP2016177940A (en) Method for producing transparent conductive body
JP2016144884A (en) Transparent conductor and touch panel including the same
JP2016169420A (en) Apparatus and method for manufacturing transparent conductive member
WO2014188683A1 (en) Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel
JP2016044356A (en) Production method of transparent conductive body
WO2015111327A1 (en) Transparent conductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869644

Country of ref document: EP

Kind code of ref document: A1