WO2015068738A1 - Transparent conductive body - Google Patents

Transparent conductive body Download PDF

Info

Publication number
WO2015068738A1
WO2015068738A1 PCT/JP2014/079362 JP2014079362W WO2015068738A1 WO 2015068738 A1 WO2015068738 A1 WO 2015068738A1 JP 2014079362 W JP2014079362 W JP 2014079362W WO 2015068738 A1 WO2015068738 A1 WO 2015068738A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
index layer
high refractive
transparent
metal film
Prior art date
Application number
PCT/JP2014/079362
Other languages
French (fr)
Japanese (ja)
Inventor
一成 多田
仁一 粕谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015546664A priority Critical patent/JPWO2015068738A1/en
Publication of WO2015068738A1 publication Critical patent/WO2015068738A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a transparent conductor including a transparent metal film.
  • transparent conductive films have been used for various devices such as electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials.
  • electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials.
  • metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used.
  • SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
  • the touch panel type display device a wiring made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance. In such various display devices, a transparent conductive film made of ITO having high light transmittance is often used.
  • the Ag film is made of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium oxide / zinc oxide), ICO (indium cerium oxide), a- It has also been proposed that the film is sandwiched between GIO (a film made of gallium, indium, and oxygen) (Patent Documents 2 to 4, Non-Patent Document 1). Further, it has been proposed to sandwich an Ag film with a ZnS film, a ZnS—SiO 2 film, and the like (Non-patent Documents 2 and 3, and Patent Document 5).
  • a high refractive index for example, niobium oxide (Nb 2 O 5 ), IZO (indium oxide / zinc oxide), ICO (indium cerium oxide), a- It has also been proposed that the film is sandwiched between GIO (a film made of gallium, indium, and oxygen) (Patent Documents 2 to 4, Non-Patent Document 1). Further, it
  • Patent Documents 2 to 4 and Non-Patent Document 1 a transparent conductor in which an Ag film is sandwiched between niobium oxide, ITO, or the like has insufficient moisture resistance. As a result, when a transparent conductor is used in a humidity environment, there is a problem that the Ag film is easily corroded.
  • An object of the present invention is to provide a flexible transparent conductor that has high light transmission and reliability over a long period of time.
  • this invention relates to the following transparent conductors.
  • a transparent substrate a first high-refractive-index layer containing a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light of wavelength 570 nm of the transparent substrate, germanium, bismuth Silver, one or more metals selected from the group consisting of platinum group, copper, gold, molybdenum, zinc, gallium, tin, indium, neodymium, titanium, aluminum, tungsten, manganese, iron, nickel, yttrium, and magnesium
  • a transparent metal film made of an alloy, and a second high-refractive-index layer containing a dielectric material or an oxide semiconductor material having a higher refractive index of light at a wavelength of 570 nm than the refractive index of light at a wavelength of 570 nm of the transparent substrate.
  • FIG. 1 is a schematic sectional view showing an example of a layer structure of a transparent conductor according to the present invention.
  • FIG. 2 is a schematic sectional view showing another example of the layer structure of the transparent conductor of the present invention.
  • FIG. 3 is a schematic diagram showing an example of a pattern composed of a conductive region and an insulating region of the transparent conductor of the present invention.
  • 4A is a graph showing an admittance locus of the transparent conductor produced in Example 1 at a wavelength of 570 nm.
  • FIG. 4B is a graph showing the spectral characteristics of the transparent conductor produced in Example 1.
  • FIG. 5A is a graph showing an admittance locus at a wavelength of 570 nm of a transparent conductor having a transparent substrate / transparent metal film / high refractive index layer.
  • FIG. 5B is a graph showing admittance trajectories of a transparent conductor / transparent metal film / high refractive index layer having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm.
  • FIG. 6 is a graph showing the spectral characteristics of the transparent conductor produced in Example 2.
  • FIG. 7 is a graph showing the spectral characteristics of the transparent conductor produced in Example 3.
  • FIG. 8 is a graph showing the spectral characteristics of the transparent conductor produced in Example 4.
  • FIG. 9 is a graph showing the spectral characteristics of the transparent conductor produced in Example 5.
  • FIG. 10 is a graph showing the spectral characteristics of the transparent conductor produced in Example 6.
  • FIG. 11 is a graph showing the spectral characteristics of the transparent conductor produced in Example 7.
  • FIG. 12 is a graph showing the spectral characteristics of the transparent conductor produced in Example 8.
  • FIG. 13 is a graph showing the spectral characteristics of the transparent conductor produced in Example 9.
  • FIG. 14 is a graph showing the spectral characteristics of the transparent conductor produced in Example 10.
  • FIG. 15 is a graph showing the spectral characteristics of the transparent conductor produced in Example 11.
  • FIG. 16 is a graph showing the spectral characteristics of the transparent conductor produced in Example 12.
  • FIG. 17 is a graph showing the spectral characteristics of the transparent conductor produced in Example 13.
  • FIG. 18 is a graph showing the spectral characteristics of the transparent conductor produced in Example 14.
  • FIG. 19 is a graph showing the spectral characteristics of the transparent conductor produced in Example 15.
  • FIG. 20 is a graph showing the spectral characteristics of the transparent conductor produced in Example 16.
  • FIG. 21 is a graph showing the spectral characteristics of the transparent conductor produced in Example 17.
  • FIG. 22 is a graph showing the spectral characteristics of the transparent conductor produced in Example 18.
  • FIG. 23 is a graph showing the spectral characteristics of the transparent conductor produced in Example 19.
  • FIG. 24 is a graph showing the spectral characteristics of the transparent conductor produced in Example 20.
  • FIG. 25 is a graph showing the spectral characteristics of the transparent conductor produced in Example 21.
  • FIG. 26 is a graph showing the spectral characteristics of the transparent conductor produced in Example 22.
  • FIG. 27 is a graph showing the spectral characteristics of the transparent conductor produced in Example 23.
  • FIG. 28 is a graph showing the spectral characteristics of the transparent conductor produced in Example 24.
  • FIG. 29 is a graph showing the spectral characteristics of the transparent conductor produced in Example 25.
  • FIG. 30 is a graph showing the spectral characteristics of the transparent conductor produced in Example 26.
  • FIG. 31 is a graph showing the spectral characteristics of the transparent conductor produced in Example 27.
  • FIG. 32 is a graph showing the spectral characteristics of the transparent conductor produced in Example 28.
  • FIG. 33 is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example 1.
  • FIG. 34 is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example 3.
  • FIG. 35 is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example 7.
  • FIG. 36 is a graph showing the spectral characteristics of the transparent conductor produced in Example 33.
  • FIG. 37 is a graph showing the spectral characteristics of the transparent conductor produced in Example 34.
  • the transparent conductor 100 of the present invention has a transparent substrate 1 / first high refractive index layer 2 / transparent metal film 3 / second high refractive index layer 4 laminated in this order. It consists of a laminate.
  • the transparent conductor 100 of the present invention one or both of the first high refractive index layer 2 and the second high refractive index layer 4 are amorphous layers containing ZnS and a metal oxide or metal fluoride.
  • the transparent metal film 3 is made of an alloy of silver and another metal.
  • the moisture resistance of the first high refractive index layer 2 and the second high refractive index layer 4 is likely to increase.
  • a metal oxide or a metal fluoride is contained together with ZnS, the crystallinity of the first high refractive index layer 2 and the second high refractive index layer 4 is lowered, and the first high refractive index layer 2 and the second high refractive index layer 2 and the second high refractive index layer 2 are reduced.
  • the flexibility of the high refractive index layer 4 is likely to increase.
  • the transparent metal film 3 is made of silver and other metals. And alloy. Metals other than silver tend to localize on the surface of the transparent metal film 3. Then, an oxide film or the like is formed on the surface of the transparent metal film 3 by the metal. As a result, silver in the transparent metal film 3 is not easily sulfided, and a decrease in light transmittance of the transparent conductor is suppressed.
  • the transparent metal film is composed only of silver
  • the silver in the transparent metal film is ionized and is likely to move and precipitate (migration).
  • problems such as an electric current leaking at the time of conduction
  • the transparent metal film 3 contains a metal other than silver, migration is suppressed. Therefore, a highly reliable transparent conductor can be obtained over a long period of time.
  • the transparent metal film 3 may be formed on the entire surface of the transparent substrate 1 as shown in FIG. 1, and is patterned into a desired shape as shown in FIG. May be.
  • the region a where the transparent metal film 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”).
  • the region b not including the transparent metal film 3 is an insulating region.
  • the pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 100.
  • the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. sell.
  • the transparent conductor 100 (laminated body) of the present invention may include layers other than the transparent substrate 1, the first high refractive index layer 2, the transparent metal film 3, and the second high refractive index layer 4.
  • an underlayer (not shown) that becomes a growth nucleus when the transparent metal film 3 is formed may be included between the first high refractive index layer 2 and the transparent metal film 3; 4 may include a low refractive index layer (not shown) for adjusting the light transmittance of the transparent conductor 100.
  • a third high refractive index layer (not shown) for adjusting the transparency of the transparent conductor may be included on the low refractive index layer.
  • an anti-sulfurization layer for preventing sulfidation of the transparent metal film 3 between the first high-refractive index layer 2 and the transparent metal film 3 or between the transparent metal film 3 and the second high-refractive index layer 4. (Not shown) may be included.
  • the layers included in the transparent conductor 100 of the present invention are all layers made of an inorganic material except for the transparent substrate 1. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 4, the laminated body from the transparent substrate 1 to the second high refractive index layer 4 is the transparent conductor 100 of the present invention. .
  • the transparent substrate 1 included in the transparent conductor 100 can be the same as the transparent substrate of various display devices.
  • the transparent substrate 1 includes a glass substrate, a cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin (for example, ZEONOR (manufactured by Nippon Zeon), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (eg polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)) Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (for example, polyethylene
  • the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polycarbonate resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin,
  • a film made of polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
  • the transparent substrate 1 preferably has high transparency to visible light; the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1.
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. .
  • the refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
  • the haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. When the haze value of the transparent substrate is 2.5 or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
  • the thickness of the transparent substrate 1 is preferably 1 ⁇ m to 20 mm.
  • the thickness of the transparent substrate is 1 ⁇ m or more, the strength of the transparent substrate 1 is increased, and it is difficult to crack or tear the first high refractive index layer 2 during production.
  • the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient.
  • the thickness of the apparatus using the transparent conductor 100 can be reduced.
  • the apparatus using the transparent conductor 100 can also be reduced in weight.
  • the thickness of the transparent substrate 1 is preferably 1 ⁇ m to 20 mm, more preferably 1 ⁇ m to 500 ⁇ m. When the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent substrate 1 is likely to increase.
  • the first high refractive index layer 2 adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor, that is, the region where the transparent metal film 3 is formed. Is a layer. Accordingly, the first high refractive index layer 2 is formed in the conductive region a of the transparent conductor. Although the first high refractive index layer 2 may be formed also in the insulating region b of the transparent conductor 100, as will be described later, from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b. It is preferable that it is formed only in the conduction region a.
  • the first high refractive index layer 2 includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 described above.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2.
  • the refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material.
  • the dielectric material or the oxide semiconductor material may be a metal oxide having the above refractive index.
  • the metal oxide having the refractive index include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4 O 7.
  • the first high refractive index layer 2 may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds.
  • the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2 may be ZnS.
  • ZnS When ZnS is contained in the first high refractive index layer 2, it becomes difficult for moisture to permeate from the transparent substrate 1 side, and corrosion of the transparent metal film 3 is suppressed.
  • ZnS and silver have high affinity, even if silver is thin, it is easy to form a continuous film.
  • ZnS has a relatively high crystallinity, and a film made of only ZnS tends to be a rigid film. Therefore, the first high refractive index layer 2 is preferably an amorphous layer containing ZnS and a metal oxide or metal fluoride.
  • the metal oxide or metal fluoride contained in the amorphous layer is not particularly limited as long as it is a compound capable of amorphizing ZnS, and SiO 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2, CaF 2, BaF 2 , Al 2 O 3, YF 3, LaF 3, CeF 3, NdF 3, ZrO 2, SiO, MgO, Y 2 O 3, ZnO, In 2 O 3, Ga 2 O 3 , etc. It can be. Only one of these may be included in the first high refractive index layer 2, or two or more thereof may be included. These compounds are particularly preferably SiO 2.
  • the amorphous layer preferably contains 0.1 to 95% by volume of ZnS, more preferably 50 to 90% by volume with respect to the total volume of the amorphous layer. %, And more preferably 70 to 85% by volume.
  • ZnS the ratio of ZnS is high, the sputtering rate increases and the film formation rate of the first high refractive index layer 2 increases.
  • metal oxide the amorphousness of the first high refractive index layer 2 increases, and cracking of the first high refractive index layer 2 is suppressed.
  • the thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm.
  • the thickness of the first high refractive index layer 2 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2.
  • the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease.
  • the thickness of the 1st high refractive index layer 2 is 150 nm or less, the flexibility of the 1st high refractive index layer 2 will increase easily, and the flexibility of a transparent conductor can also be improved.
  • the thickness of the first high refractive index layer 2 is measured with an ellipsometer.
  • the first high refractive index layer 2 can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of increasing the refractive index (density) of the first high refractive index layer 2, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
  • IAD ion assist
  • the first high refractive index layer 2 is an amorphous layer containing ZnS and a metal oxide
  • a mixture obtained by mixing ZnS and a metal oxide in a desired ratio may be used as a vapor deposition source or a sputtering target. Further, ZnS and metal oxide may be co-evaporated or co-sputtered.
  • the patterning method is not particularly limited.
  • the first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the film formation surface; It may be a layer patterned by an etching method.
  • the transparent metal film 3 of the present invention is a film for conducting electricity in the transparent conductor 100.
  • the transparent metal film 3 may be formed on the entire surface of the transparent substrate 1 as described above, or may be patterned into a desired shape.
  • the transparent metal film 3 is made of an alloy of silver and a metal other than silver.
  • the metal other than silver contained in the transparent metal film 3 together with silver is an alloy with silver, the metal tends to localize on the surface of the transparent metal film 3 or the bonding strength between silver and sulfur.
  • a metal having a strong bonding force is preferred.
  • metals other than silver contained in the transparent metal film 3 together with silver are germanium, bismuth, platinum group, copper, gold, molybdenum, zinc, gallium, tin, indium, neodymium, titanium, aluminum, tungsten, manganese, Iron, nickel, yttrium, and magnesium. Germanium, bismuth, palladium, copper, gold, and neodymium are preferable.
  • the transparent metal film 3 may contain only one kind of these metals or two or more kinds.
  • the amount of metal other than silver contained in the transparent metal film 3 is preferably 0.01 to 10 at%, more preferably 0.1 to 5 at% with respect to the total amount of atoms constituting the transparent metal film 3. %, And more preferably 0.2 to 3 at%. If the transparent metal film 3 contains other metals at 0.1 at% or more, silver sulfidation is easily suppressed. On the other hand, if the amount of the other metal contained in the transparent metal film 3 is 10 at% or less, the light transmittance of the transparent metal film 3 is likely to increase.
  • the kind and content of each atom contained in the transparent metal film are specified by, for example, the XPS method.
  • the plasmon absorption rate of the transparent metal film 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 nm to 800 nm, more preferably 7% or less, and further preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 nm to 800 nm, the transmitted light of the conductive region a of the transparent conductor 100 is likely to be colored.
  • the plasmon absorption rate at a wavelength of 400 nm to 800 nm of the transparent metal film 3 is measured by the following procedure.
  • the thickness of the transparent metal film 3 is preferably 10 nm or less, preferably 3 to 9 nm, and more preferably 5 to 8 nm. If the transparent metal film 3 has a thickness of 10 nm or less, the transparent metal film 3 is less likely to reflect the original metal. Furthermore, when the thickness of the transparent metal film 3 is 10 nm or less, the optical admittance of the transparent conductor 100 is easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 4 as described later, and the conduction Reflection of light on the surface of the region a is likely to be suppressed. The thickness of the transparent metal film 3 is measured with an ellipsometer.
  • the transparent metal film 3 can be a film formed by any film forming method, but as described above, in order to make the average transmittance of light with a wavelength of 400 to 1000 nm of the transparent conductor 80% or more.
  • the sputtering method or the ion assist method since the material collides with the deposition target at high speed during film formation, it is easy to obtain a dense and smooth film; the light transmittance of the transparent metal film 3 is likely to increase.
  • the type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like.
  • the transparent metal film 3 is particularly preferably a film formed by a counter sputtering method.
  • the transparent metal film 3 When the transparent metal film 3 is a film formed by the facing sputtering method, the transparent metal film 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent metal film 3 becomes lower and the light transmittance is likely to increase.
  • an alloy in which silver and other metals are mixed in a desired ratio may be used as a sputtering target, and silver and other metals may be used as sputtering targets.
  • the method for forming the transparent metal film 3 is not particularly limited, and may be a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • the patterning method is not particularly limited.
  • the transparent metal film 3 may be, for example, a film formed by arranging a mask having a desired pattern; it may be a film patterned by a known etching method.
  • the second high refractive index layer 4 adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor 100, that is, the region where the transparent metal film 3 is formed. And is a layer for protecting the transparent metal film 3 from external moisture and the like. Therefore, the second high refractive index layer 4 is formed in the conduction region a of the transparent conductor 100.
  • the second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductor 100.
  • the second high-refractive index layer 4 is conductive from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b. It is preferably formed only in the region a.
  • the second high refractive index layer 4 includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 1 described above.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the specific refractive index of light with a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 is preferably greater than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4.
  • the refractive index of the second high refractive index layer 4 is adjusted by the refractive index of the material included in the second high refractive index layer 4 and the density of the material included in the second high refractive index layer 4.
  • the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 may be an insulating material or a conductive material.
  • the dielectric material or the oxide semiconductor material may be a metal oxide having the above refractive index.
  • the metal oxide can be the same as the metal oxide contained in the first high refractive index layer.
  • the second high refractive index layer 4 may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds.
  • the dielectric material or the oxide semiconductor material included in the second high refractive index layer 4 may be ZnS.
  • ZnS When ZnS is contained in the second high refractive index layer 4, it becomes difficult for moisture to permeate from the second high refractive index layer 4 side, and corrosion of the transparent metal film 3 is suppressed.
  • ZnS has a relatively high crystallinity, and a film made of only ZnS tends to be a rigid film. Therefore, the second high refractive index layer 4 is preferably an amorphous layer containing ZnS and a metal oxide or metal fluoride.
  • the metal oxide or metal fluoride contained in the amorphous layer is not particularly limited as long as it is a compound capable of amorphizing ZnS, and the metal oxide or metal fluoride contained in the first high refractive index layer 2 together with ZnS. It can be the same compound as the compound. These may be included in the second high refractive index layer 4 alone or in combination of two or more. Compounds included with ZnS is particularly preferably SiO 2.
  • the amorphous layer preferably contains 0.1 to 95% by volume of ZnS, more preferably 50 to 90% by volume with respect to the total volume of the amorphous layer. %, And more preferably 70 to 85% by volume.
  • the ratio of ZnS is high, the sputtering rate is increased, and the deposition rate of the second high refractive index layer 4 is increased.
  • the amorphous nature of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
  • the thickness of the second high refractive index layer 4 is preferably 15 nm or more and 150 nm or less.
  • the thickness of the second high refractive index layer 4 is more preferably 15 to 150 nm, still more preferably 20 to 80 nm.
  • the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4.
  • the thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. Furthermore, the flexibility of the second high refractive index layer 4 is likely to increase.
  • the thickness of the second high refractive index layer 4 is measured with an ellipsometer.
  • the film formation method of the second high refractive index layer 4 is not particularly limited, and is formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. Layer. From the viewpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a film formed by sputtering.
  • the second high refractive index layer 4 is an amorphous layer containing ZnS and a metal oxide
  • a mixture obtained by mixing ZnS and a metal oxide in a desired ratio may be used as a vapor deposition source or a sputtering target. Further, ZnS and metal oxide may be co-evaporated or co-sputtered.
  • the patterning method is not particularly limited.
  • the second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface.
  • the layer patterned by the well-known etching method may be sufficient.
  • an underlayer serving as a growth nucleus when the transparent metal film 3 is formed may be included between the first high refractive index layer 2 and the transparent metal film 3.
  • the underlayer is preferably formed at least in the conductive region a of the transparent conductor, and may be formed in the insulating region b of the transparent conductor 100.
  • the smoothness of the surface of the transparent metal film 3 is enhanced even if the transparent metal film 3 is thin. The reason is as follows.
  • the transparent metal film 3 grows using the base layer as a growth nucleus. That is, the material of the transparent metal film 3 is difficult to migrate, and the film grows without forming the island-like structure described above. As a result, it becomes easy to obtain a smooth transparent metal film 3 even if the thickness is small.
  • the base layer contains palladium, molybdenum, zinc, germanium, niobium, or indium; or an alloy of these metals with other metals, or an oxide or sulfide of these metals (for example, ZnS). Is preferred.
  • the underlayer may contain only one kind, or two or more kinds.
  • the amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more.
  • the metal is contained in the base layer in an amount of 20% by mass or more, the affinity between the base layer and the transparent metal film 3 is increased, and the adhesion between the base layer and the transparent metal film 3 is likely to be increased. It is particularly preferable that the underlayer contains palladium or molybdenum.
  • the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, but may be a platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, or the like.
  • the thickness of the underlayer is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film.
  • the underlayer can also be a film in which metal atoms adhere to the transparent substrate 1 with a distance therebetween. If the adhesion amount of the underlayer is 3 nm or less, the underlayer is unlikely to affect the optical admittance of the transparent conductor 100. The presence or absence of the underlayer is confirmed by the ICP-MS method. Further, the thickness of the underlayer is calculated from the product of the film formation speed and the film formation time.
  • the underlayer can be a layer formed by sputtering or vapor deposition.
  • the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method.
  • the sputtering time during the underlayer film formation is appropriately selected according to the desired average thickness of the underlayer and the film formation speed.
  • the sputter deposition rate is preferably from 0.1 to 15 ⁇ / second, more preferably from 0.1 to 7 ⁇ / second.
  • examples of the vapor deposition method include vacuum vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method and the like.
  • the deposition time is appropriately selected according to the desired thickness of the underlayer and the film formation rate.
  • the deposition rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the underlayer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface; patterned by a known etching method It may be a layer.
  • the light transmittance (optical admittance) of the conductive region a of the transparent conductor is adjusted on the second high refractive index layer 4.
  • a low refractive index layer may be included.
  • the low refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
  • the low refractive index layer includes a dielectric material or an oxide semiconductor material included in the first high refractive index layer 2 and a refractive index of light having a wavelength of 570 nm of ZnS included in the second high refractive index layer 4.
  • a dielectric material or an oxide semiconductor material having a low refractive index of light at 570 nm is included.
  • the light refractive index of the dielectric material or oxide semiconductor material included in the low refractive index layer at a wavelength of 570 nm is the light refractive index of the above material included in the first high refractive index layer 2 and the second high refractive index layer 4.
  • the refractive index is preferably 0.2 or more and more preferably 0.4 or more, respectively.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is preferably less than 1.8, more preferably 1.30 to 1.6, Particularly preferred is 1.35 to 1.5.
  • the refractive index of the low refractive index layer is mainly adjusted by the refractive index of the material included in the low refractive index layer and the density of the material included in the low refractive index layer.
  • the dielectric material or oxide semiconductor material contained in the low refractive index layer is MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, Nad, NdF 3 , YF 3 , YbF 3. , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, and ThO 2 .
  • Dielectric material or an oxide semiconductor material is inter alia, is MgF 2, SiO 2, CaF 2 , CeF 3, LaF 3, LiF, NaF, NdF 3, Na 3 AlF 6, Al 2 O 3, MgO or ThO 2,
  • MgF 2 and SiO 2 are particularly preferable. Only one of these materials may be included in the low refractive index layer, or two or more of these materials may be included.
  • the thickness of the low refractive index layer is preferably 10 to 150 nm, more preferably 20 to 100 nm.
  • the thickness of the low refractive index layer is 10 nm or more, the optical admittance on the surface of the transparent conductor is easily finely adjusted.
  • the thickness of the low refractive index layer is 150 nm or less, the thickness of the transparent conductor is reduced.
  • the thickness of the low refractive index layer is measured with an ellipsometer.
  • the low refractive index layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of easiness of film formation, the low refractive index layer is preferably a layer formed by electron beam evaporation or sputtering.
  • the low refractive index layer is a patterned layer
  • the patterning method is not particularly limited.
  • the low refractive index layer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface; It may be a patterned layer.
  • the light transmittance (optical admittance) of the conductive region a of the transparent conductor is further adjusted on the low refractive index layer.
  • a third high refractive index layer may be included.
  • the third high refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
  • the third high refractive index layer preferably contains a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 and the refractive index of the low refractive index layer.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5. Preferably, it is 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the third high refractive index layer.
  • the refractive index of the third high refractive index layer is adjusted by the refractive index of the material included in the third high refractive index layer and the density of the material included in the third high refractive index layer.
  • the dielectric material or oxide semiconductor material included in the third high refractive index layer may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material is preferably a metal oxide or metal sulfide.
  • Examples of the metal oxide or metal sulfide include the metal oxide or metal sulfide contained in the first high refractive index layer 2 or the second high refractive index layer 4 described above.
  • the third high refractive index layer may contain only one kind of the metal oxide or metal sulfide, or may contain two or more kinds.
  • the thickness of the third high refractive index layer is not particularly limited, and is preferably 1 to 40 nm, and more preferably 5 to 20 nm. When the thickness of the third high refractive index layer is within the above range, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted. The thickness of the third high refractive index layer is measured with an ellipsometer.
  • the film formation method of the third high refractive index layer is not particularly limited, and may be a layer formed by the same method as the first high refractive index layer 2 and the second high refractive index layer 4.
  • the first high refractive index layer 2 and the second high refractive index layer 4 contain ZnS. Therefore, between the layer containing ZnS and the transparent metal film, specifically, between the first high refractive index layer 2 and the transparent metal film 3, or between the transparent metal film 3 and the second high refractive index layer 4. Between them, a sulfidation preventing layer for preventing sulfidation of the transparent metal film 3 may be included.
  • the sulfidation prevention layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b.
  • the transparent metal film 3 and the layer containing ZnS are formed adjacent to each other
  • the refractive index layer 4 is formed, the metal in the transparent metal film is sulfided to form a metal sulfide, which may reduce the light transmittance of the transparent conductor.
  • an antisulfurization layer is included between the first high refractive index layer 2 and the transparent metal film 3 or between the transparent metal film 3 and the second high refractive index layer 4, the metal sulfide Generation is suppressed.
  • the sulfidation prevention layer may be a layer containing metal oxide, metal nitride, metal fluoride, or Zn. Only one of these may be contained in the antisulfurization layer, or two or more of them may be contained.
  • metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , etc. are included.
  • metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like.
  • metal nitride examples include Si 3 N 4 , AlN, and the like.
  • the thickness of the sulfidation preventing layer is not particularly limited as long as the transparent metal film 3 can be prevented from being sulfided when the transparent metal film 3 is formed or when the second high refractive index layer 4 is formed.
  • ZnS contained in the first high refractive index layer 2 and the second high refractive index 4 has high affinity with the metal contained in the transparent metal film 3. Therefore, when the thickness of the sulfidation prevention layer is very thin, a portion where the transparent metal film 3 and the first high refractive index layer 2 or the transparent metal film 3 and the second high refractive index layer 4 are in contact with each other is generated, and the adhesion between the layers Easy to increase.
  • the antisulfurization layer is preferably relatively thin, preferably 0.1 nm to 10 nm, more preferably 0.5 nm to 5 nm, and even more preferably 1 nm to 3 nm.
  • the thickness of the antisulfurization layer is measured with an ellipsometer.
  • the anti-sulfurization layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • the sulfidation prevention layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the film formation surface; patterned by a known etching method It may be a layer formed.
  • the transparent metal film 3 is sandwiched between the first high refractive index layer 2 and the second high refractive index layer 4. As a result, the reflection of the surface of the region including the transparent metal film 3; that is, the conduction region a is suppressed, and the light transmittance of the conduction region a is increased.
  • the reflectance R of the surface of the transparent conductor (conducting region a) is determined by the optical admittance Y env of the medium on which light is incident and the equivalent admittance Y of the surface of the transparent conductor. Determined from E.
  • the medium on which the light is incident refers to a member or environment through which light incident on the transparent conductor passes immediately before the incident; a member or environment made of an organic resin.
  • the relationship between the optical admittance Y env of the medium and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation. Based on the above formula, the closer the value
  • the optical admittance Y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is the same as the refractive index n env of the medium.
  • the equivalent admittance Y E is determined from the optical admittance Y of the layers constituting the transparent conductor. For example, when the transparent conductor (conductive region a) is composed of one is equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
  • the optical admittance Y x (E x H x ) of the laminate from the first layer to the x layer is the laminate from the first layer to the (x ⁇ 1) layer. It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the body and a specific matrix; specifically, it is obtained by the following formula (1) or formula (2).
  • the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
  • the optical admittance Y x (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E of the transparent conductor.
  • FIG. 4A shows a transparent conductor (transparent substrate / first high refractive index layer (ZnS—SiO 2 ) / underlayer (Mo) / transparent metal film (Ag alloy) / second high refractive index layer of Example 1 described later. shows the admittance locus of wavelength 570nm conductive region a transparent conductor) with a (ZnS-SiO 2).
  • the horizontal axis of the graph is the real part when the optical admittance Y of the region is represented by x + iy; that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance; that is, y in the equation.
  • the transparent conductor of Example 1 since the thickness of a base layer is thin enough, the optical admittance can be disregarded.
  • the final coordinates of the admittance locus is equivalent admittance Y E conductive region a.
  • the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) (not shown) of the medium on which the light is incident is the surface of the conductive region a of the transparent conductor. It is proportional to the reflectance R of
  • FIG. 5A shows an admittance locus of a transparent conductor having a transparent substrate / transparent metal film / high refractive index layer in this order
  • FIG. 5B shows an admittance locus of the transparent conductor having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm. Show the trajectory. As shown in FIG.
  • the admittance locus in the direction of the vertical axis (imaginary part) from the start point of the admittance locus (the admittance coordinates (about 1.5,0) of the transparent substrate). Moves greatly, and the absolute value of the imaginary part of the admittance coordinates becomes very large.
  • the equivalent admittance Y E approaches the admittance coordinates (n env , 0) of the medium on which light is incident even if a high refractive index layer is laminated on the transparent metal film. hard.
  • the admittance locus when a transparent metal film is directly laminated on a transparent substrate, the admittance locus is less likely to be line symmetric about the horizontal axis of the graph. If the admittance locus at a specific wavelength (570 nm in the present invention) is not line symmetric about the horizontal axis of the graph, as shown in FIG. 5B, equivalent admittance Y E at other wavelengths (for example, 450 nm and 700 nm). The coordinates of are easy to shake greatly. For this reason, a wavelength region in which the reflectance R cannot be sufficiently reduced occurs.
  • the first high refractive index layer when the transparent metal film is sandwiched between layers having a high refractive index (first high refractive index layer and second high refractive index layer), the first high refractive index layer
  • the coordinates of the imaginary part of the admittance locus greatly move in the positive direction. And even if an admittance locus
  • the equivalent admittance Y E is applied to the medium on which the light is incident. Close to admittance coordinates (n env , 0).
  • the admittance locus tends to be line symmetric about the horizontal axis of the graph.
  • the equivalent admittance Y E is close to the admittance coordinates (n env , 0) of the medium on which the light is incident.
  • it is preferable that one or both of x 1 and x 2 is 1.6 or more. either one of x 1 and x 2 are, it tends enhanced light transmission of the transparent conductor If it is 1.6 or more.
  • the following relational expression holds between the admittance Y at the interface of each layer and the electric field strength E existing in each layer. Based on the above relational expression, if the real part (x 1 and x 2 ) of the optical admittances Y1 and Y2 on the surface of the transparent metal film is increased, the electric field strength E is decreased and the electric field loss (light absorption) is suppressed. . That is, the light transmittance of the transparent conductor is sufficiently increased.
  • x 1 and x 2 are preferably 1.6 or more, more preferably 1.8 or more, and further preferably 2.0 or more.
  • x 1 is preferably 1.6 or more.
  • the x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less.
  • x 1 is the refractive index of the first high refractive index layer and is adjusted in such a thickness of the first high refractive index layer.
  • x 2 is the refractive index of the values and the transparent metal film x 1, is adjusted by the thickness or the like of the first transparent metal film.
  • ) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there.
  • the admittance trajectory is preferably line symmetric about the horizontal axis of the graph. Therefore, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, it is preferable to satisfy the y 1 ⁇ y 2 ⁇ 0. Furthermore,
  • the aforementioned y 1 is sufficiently large.
  • the optical admittance of the transparent metal film has a large imaginary part value, and the admittance locus greatly moves in the vertical axis (imaginary part) direction. Therefore, if y 1 is sufficiently large, the absolute value of the imaginary part of the admittance coordinates fit in appropriate range, the admittance locus is likely to be axisymmetric.
  • y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0.
  • y 2 described above is preferably ⁇ 0.3 to ⁇ 2.0, and more preferably ⁇ 0.6 to ⁇ 1.5.
  • Distance from equivalent admittance coordinates (n env , 0) ((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 is preferably less than 0.5, more preferably 0.3 or less It is. When the distance is less than 0.5, the reflectance Ra of the surface of the conduction region a is sufficiently small, and the light transmittance of the conduction region a is increased.
  • an equivalent admittance coordinate (x E , y E ) of light with a wavelength of 570 nm in the conduction region a and an equivalent admittance coordinate (( x ( b , y b )), ((x E ⁇ x b ) 2 + (y E ⁇ y b ) 2 ) 0.5 is preferably less than 0.5, more preferably 0 .3 or less.
  • the coordinates of the equivalent admittance Y E of the conducting areas a sufficiently close to the coordinates of the equivalent admittance Y b of the insulating region b; that is ((x E -x b) 2 + (y E -y b) 2) 0.
  • the admittance locus of the conduction region a is symmetrical with respect to the horizontal axis of the graph, and
  • the insulation region b includes only a transparent substrate. Is preferred.
  • admittance locus conductive region a is in line symmetry about the horizontal axis of the graph, the coordinate of Y E is because approaching the naturally transparent substrate 1 admittance.
  • the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor of the present invention is preferably 80% or more, more preferably 83% or more, and further preferably 85% or more.
  • the average transmittance is 80% or more in any region.
  • the transparent conductor is also applied to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. can do.
  • the average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor is preferably 83% or more, more preferably 85% or more, and even more preferably in both the conduction region a and the insulation region b. Is 88% or more.
  • the transparent conductor can be applied to applications requiring high transparency to visible light.
  • the average absorptance of light having a wavelength of 400 nm to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and still more preferably in both the conduction region a and the insulation region b. 7% or less.
  • the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 nm to 800 nm is preferably 15% or less, more preferably 10% or less, in any of the conduction region a and the insulation region b. Preferably it is 9% or less.
  • the average reflectance of light with a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less.
  • the average transmittance, average reflectance, and average reflectance are preferably the average transmittance, average reflectance, and average reflectance under the usage environment of the transparent conductor.
  • the transparent conductor when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor.
  • the transparent conductor when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air.
  • the transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor.
  • the absorptance is calculated from a calculation formula of 100 ⁇ (transmittance + reflectance).
  • the reflectance of the conductive region a and the insulating region b are approximated.
  • the difference ⁇ R between the luminous reflectance of the conductive region a and the luminous reflectance of the insulating region b is preferably 3% or less, more preferably 1% or less, and even more preferably 0. .3% or less.
  • the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
  • the luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
  • the a * value and the b * value in the L * a * b * color system are preferably within ⁇ 30 in any region. More preferably, it is within ⁇ 5, more preferably within ⁇ 3.0, and particularly preferably within ⁇ 2.0. If the a * value and the b * value in the L * a * b * color system are within ⁇ 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electric resistance of the conductive region a of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electric resistance value of the conduction region a is adjusted by the thickness of the transparent metal film.
  • the surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, or the like. It is also measured by a commercially available surface electrical resistivity meter.
  • transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
  • the surface of the transparent conductor (for example, the surface opposite to the transparent substrate) may be bonded to another member via an adhesive layer or the like.
  • the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer approximate each other. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
  • the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
  • Example 1 A first high refractive index layer (ZnS-SiO 2 ) / underlayer (Mo) / transparent metal film (APC alloy) / second high refractive index on a film made of cycloolefin polymer (thickness 100 ⁇ m) by the following method. Layers (ZnS—SiO 2 ) were stacked in this order. Thereafter, the laminate was patterned by the following method. The thickness of each layer is described in J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer. However, the average thickness of the underlayer was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. The spectral characteristic of the obtained transparent conductor is shown in FIG. 4B.
  • APC alloy Transparent metal film (APC alloy)
  • APC alloy manufactured by Furuya Metal Co., Ltd.
  • L-430S-FHS manufactured by Anerva Co.
  • Ar 20 sccm sputtering pressure 0.3 Pa
  • room temperature target-side power 100 W
  • deposition rate 2.5 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • a resist layer is formed in a pattern on the obtained laminate, and the first high-refractive index layer, the underlayer, the transparent metal film, and the second high-refractive index layer are formed in the pattern shown in FIG. a) and a line-shaped insulating region b separating the same), and patterned with an ITO etching solution (produced by Hayashi Junyaku). Only the transparent substrate was included in the insulating region. The width of the line-shaped insulating region b was 16 ⁇ m.
  • Example 2 A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC alloy) / second high refractive index layer (ZnS—SiO 2 ) were laminated in this order on a Konica Minolta TAC film (thickness 40 ⁇ m). .
  • Each layer was formed in the same manner as in Example 1 except that the base layer was not formed and the ratio (volume ratio) of ZnS and SiO 2 of the first high refractive index layer and the second high refractive index layer was 80:20.
  • a film was formed.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 6 shows the spectral characteristics of the obtained transparent conductor.
  • Example 3 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-SR alloy) / second high refractive index layer (ZnS—SiO 2) 2 ) were laminated in this order.
  • the first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 1 except that the ratio (volume ratio) of ZnS and SiO 2 was 90:10.
  • each layer was formed in the same manner as in Example 2 except that the target during film formation was changed to an APC-SR alloy (manufactured by Furuya Metal Co., Ltd.).
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 7 shows the spectral characteristics of the obtained transparent conductor.
  • Example 4 On a film made of polycarbonate (thickness 100 ⁇ m), first high refractive index layer (ZnS—SiO 2 ) / underlayer (Pd) / transparent metal film (APC-SR alloy) / second high refractive index layer (ZnS—SiO 2) 2 ) were laminated in this order.
  • the first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2.
  • the underlayer and the transparent metal film were formed by the following methods, respectively.
  • the obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the obtained transparent conductor are shown in FIG.
  • Transparent metal film (Transparent metal film (APC-SR)) Using a counter sputtering machine manufactured by FTS Corporation, Ag was counter sputtered at an Ar of 20 sccm, a sputtering pressure of 0.5 Pa, a room temperature, a target power of 150 W, and a film formation rate of 14 K / s.
  • the target-substrate distance was 90 mm.
  • Example 5 A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-SR alloy) / second high refractive index layer (ZnS—SiO 2 ) in this order on a Konica Minolta TAC film (thickness 40 ⁇ m). Laminated.
  • the transparent metal film was formed in the same manner as in Example 4.
  • the first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 1 except that the ratio (volume ratio) of ZnS and SiO 2 was 70:30.
  • the obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the obtained transparent conductor are shown in FIG.
  • a first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / second high refractive index layer (ZnS—SiO 2 ) is formed on a film (thickness 100 ⁇ m) made of cycloolefin polymer. Laminated in order. The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2. The transparent metal film was formed in the same manner as in Example 4 except that the target at the time of film formation was changed to APC-TR alloy. The obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 10 shows the spectral characteristics of the obtained transparent conductor.
  • Example 7 On a transparent substrate (thickness 50 ⁇ m) made of glass, first high refractive index layer (ZnO) / underlayer (Pd) / transparent metal film (APC-TR alloy) / second high refractive index layer (ZnS—SiO 2 ) Were stacked in this order.
  • the first high refractive index layer was formed by the following method.
  • the underlayer was formed by the same method as in Example 4.
  • the transparent metal film was formed in the same manner as in Example 4 except that the target during film formation was APC-TR (manufactured by Furuya Metal Co., Ltd.).
  • the second high refractive index layer was formed in the same manner as in Example 2.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 11 shows the spectral characteristics of the obtained transparent conductor.
  • ZnO First high refractive index layer
  • a magnetron sputtering apparatus of Osaka Vacuum Co. ZnO was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 liters / s.
  • the target-substrate distance was 90 mm.
  • the refractive index of light with a wavelength of 570 nm of ZnO was 2.01, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.01.
  • Example 8 On Konica Minolta TAC film (thickness 60 ⁇ m), first high refractive index layer (ITO) / underlayer (Pd) / transparent metal film (Ag—Bi—Ge—Au alloy) / second high refractive index layer (ZnS) -SiO 2 ) were sequentially laminated.
  • the first high refractive index layer was formed by the following method.
  • the underlayer was formed by the same method as in Example 4.
  • the target at the time of film formation was GBR15 (manufactured by Kobelco Research Institute: Ag (98.35 at%) / Bi (0.35 at%) / Ge (0.3%) / Au (1.0 at%)).
  • a film was formed in the same manner as in Example 4 except that.
  • the second high refractive index layer was formed by the same method as in Example 2.
  • the obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the obtained transparent conductor are shown in FIG.
  • ITO First high refractive index layer
  • Anelva L-430S-FHS ITO was DC sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 150 W, and deposition rate 2.0 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the refractive index of light with a wavelength of 570 nm of ITO was 2.12, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.12.
  • Example 9 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), first high refractive index layer (Nb 2 O 5 ) / underlayer (Pd) / transparent metal film (Ag—Bi—Ge—Au alloy) / A second high refractive index layer (ZnS—SiO 2 ) was laminated in order.
  • the first high refractive index layer was formed by the following method.
  • the underlayer was formed by the same method as in Example 4.
  • the transparent metal film and the second high refractive index layer were formed in the same manner as in Example 8.
  • the obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the obtained transparent conductor are shown in FIG.
  • Nb 2 O 5 (First high refractive index layer (Nb 2 O 5 )) Nb 2 O 5 was DC sputtered at 20 sccm Ar, 1 sccm O 2 , sputtering pressure 0.5 Pa, room temperature, target side power 150 W, deposition rate 1.2 ⁇ / s using L-430S-FHS manufactured by Anerva.
  • the target-substrate distance was 86 mm.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.31.
  • Example 10 On a Konica Minolta TAC film (thickness 60 ⁇ m), first high refractive index layer (ZrO 2 ) / underlayer (Pd) / transparent metal film (Ag—Bi alloy) / second high refractive index layer (ZnS—SiO 2) ) In order.
  • the first high refractive index layer was formed by the following method.
  • the underlayer was formed by the same method as in Example 4.
  • the transparent metal film was formed by the same method as in Example 1 except that the film formation target was GB100 (manufactured by Kobelco Research Institute: Ag (99.0 at%) / Bi (1.0 at%)).
  • the second high refractive index layer was formed in the same manner as in Example 2.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 14 shows the spectral characteristics of the obtained transparent conductor.
  • ZrO 2 First high refractive index layer (ZrO 2 )) Using Arnelva L-430S-FHS, ZrO 2 was RF sputtered at Ar 20 sccm, O 2 1 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power 150 W, and deposition rate 0.5 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the refractive index of light with a wavelength of 570 nm of ZrO 2 was 2.05, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.05.
  • Example 11 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), first high refractive index layer (Ta 2 O 5 ) / underlayer (Pd) / transparent metal film (Ag—Bi alloy) / second high refraction The rate layer (ZnS—SiO 2 ) was sequentially laminated.
  • the first high refractive index layer was formed by the following method.
  • the underlayer was formed by the same method as in Example 4.
  • the transparent metal film was formed in the same manner as in Example 4 except that the film formation target was GB100 (manufactured by Kobelco Research Institute: Ag (99.0 at%) / Bi (1.0 at%)).
  • the second high refractive index layer was formed in the same manner as in Example 2.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 15 shows the spectral characteristics of the obtained transparent conductor.
  • Second high refractive index layer (Ta 2 O 5 )
  • the oxygen was introduced so that the total pressure in the vapor deposition apparatus would be 2.0 ⁇ 10 ⁇ 2 Pa by Genen 1300 of Optorun, and the electron was not ion-assisted Ta 2 O 5 at 400 mA and a film formation rate of 4 ⁇ / s.
  • Beam (EB) deposition was performed.
  • the refractive index of light with a wavelength of 570 nm of Ta 2 O 5 was 2.16, and the refractive index of the first high refractive index layer was also 2.16.
  • Example 12 A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC alloy) / second high refractive index layer (ITO) was laminated in this order on a Konica Minolta TAC film (thickness 40 ⁇ m).
  • the first high refractive index layer was formed in the same manner as in Example 2.
  • the transparent metal film was formed in the same manner as in Example 1.
  • the second high refractive index layer was formed in the same manner as the first high refractive index layer of Example 8.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 16 shows the spectral characteristics of the obtained transparent conductor.
  • Example 13 A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / second high refractive index layer (IZO) were laminated in this order on a transparent substrate (thickness 50 ⁇ m) made of glass.
  • the first high refractive index layer and the transparent metal film were formed in the same manner as in Example 6.
  • the second high refractive index layer was formed by the following method.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 17 shows the spectral characteristics of the obtained transparent conductor.
  • Example 14 A first high refractive index layer (ZnS-SiO 2 ) / transparent metal film (APC-TR alloy) / second high refractive index layer (GZO) were laminated in this order on a film made of cycloolefin polymer (thickness: 100 ⁇ m). .
  • the first high refractive index layer and the transparent metal film were formed in the same manner as in Example 6.
  • the second high refractive index layer was formed by the following method.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 18 shows the spectral characteristics of the obtained transparent conductor.
  • GZO Spin high refractive index layer
  • a magnetron sputtering apparatus manufactured by Osaka Vacuum Co.
  • GZO was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 ⁇ / s.
  • the target-substrate distance was 90 mm.
  • the refractive index of light with a wavelength of 570 nm of GZO was 2.04, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.04.
  • Example 15 A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-SR alloy) / second high refractive index layer (Nb 2 O 5 ) are laminated in this order on a polycarbonate film (thickness: 100 ⁇ m). did.
  • the first high refractive index layer and the transparent metal film were formed in the same manner as in Example 4.
  • the second high refractive index layer was formed in the same manner as the first high refractive index layer of Example 9.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 19 shows the spectral characteristics of the obtained transparent conductor.
  • Example 16 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Bi—Ge—Au alloy) / second high refractive index layer (TiO 2 ) was deposited in this order.
  • the first high refractive index layer was formed in the same manner as in Example 2, and the transparent metal film was formed in the same manner as in Example 8.
  • the second high refractive index layer was formed by the following method.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 20 shows the spectral characteristics of the obtained transparent conductor.
  • the ion beam was irradiated at a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V.
  • O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced.
  • the refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.35.
  • Example 17 A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / second high refractive index layer (IGZO) were formed in this order on a Konica Minolta TAC film (thickness 40 ⁇ m). .
  • the first high refractive index layer was formed in the same manner as in Example 2, and the transparent metal film was formed in the same manner as in Example 6.
  • the second high refractive index layer was formed by the following method.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 21 shows the spectral characteristics of the obtained transparent conductor.
  • IGZO Synchronized high refractive index layer
  • IGZO RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s.
  • the target-substrate distance was 86 mm.
  • the refractive index of light with a wavelength of 570 nm of IGZO was 2.09, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.09.
  • Example 18 A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC alloy) / second high refractive index layer (ZnS—SiO 2 ) are laminated in this order on a film (thickness 100 ⁇ m) made of a cycloolefin polymer. did.
  • the first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2.
  • the transparent metal film was formed in the same manner as in Example 4 except that the film formation target was APC-SR (manufactured by Furuya Metal Co., Ltd.). The spectral characteristics of the obtained transparent conductor are shown in FIG.
  • Example 19 On a film made of polycarbonate (thickness 100 ⁇ m), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-SR alloy) / second high refractive index layer (ZnS—SiO 2 ) / low refractive index Layer (SiO 2 ) / third high refractive index layer (Bi 2 O 3 ) were laminated in this order.
  • the first high refractive index layer, the transparent metal film, and the second high refractive index layer were formed in the same manner as in Example 4.
  • the low refractive index layer and the third high refractive index layer were formed by the following method.
  • FIG. 23 shows the spectral characteristics of the obtained transparent conductor.
  • SiO 2 Low refractive index layer (SiO 2 )
  • SiO 2 RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 300 W, and deposition rate 1.6 ⁇ / s.
  • the target-substrate distance was 90 mm.
  • the refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer was also 1.46.
  • Example 20 On a film made of glass (thickness 50 ⁇ m), first high refractive index layer (ZnO) / underlayer (Pd) / transparent metal film (APC-TR alloy) / second high refractive index layer (ZnS—SiO 2 ) / A low refractive index layer (SiO 2 ) / third high refractive index layer (ZnS) were laminated in this order.
  • the first high refractive index layer, the underlayer, the transparent metal film, and the second high refractive index layer were formed in the same manner as in Example 7.
  • the low refractive index layer was formed by the same method as in Example 19.
  • the third high refractive index layer was formed by the following method. The spectral characteristics of the obtained transparent conductor are shown in FIG.
  • ZnS Thin high refractive index layer
  • a magnetron sputtering apparatus manufactured by Osaka Vacuum Co.
  • ZnS was RF sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.8 ⁇ / s.
  • the target-substrate distance was 90 mm.
  • the refractive index of light with a wavelength of 570 nm of ZnS was 2.37, and the refractive index of light with a wavelength of 570 nm of the third high refractive index layer was also 2.37.
  • Example 21 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), first high refractive index layer (ITO) / underlayer (Pd) / transparent metal film (Ag—Bi—Ge—Au alloy) / second high A refractive index layer (ZnS—SiO 2 ) was laminated in this order.
  • the first high refractive index layer, the underlayer, the transparent metal film, and the second high refractive index layer were formed in the same manner as in Example 8.
  • FIG. 25 shows the spectral characteristics of the obtained transparent conductor.
  • Example 22 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), first high refractive index layer (TiO 2 ) / transparent metal film (Ag—Bi alloy) / second high refractive index layer (ZnS—SiO 2 ) Were stacked in this order.
  • the first high refractive index layer was formed in the same manner as the second high refractive index layer of Example 16.
  • the transparent metal film was formed in the same manner as in Example 11.
  • the second high refractive index layer was formed in the same manner as in Example 2.
  • FIG. 26 shows the spectral characteristics of the obtained transparent conductor.
  • Example 23 A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Bi alloy) / second high refractive index layer (ITO) were laminated in this order on a Konica Minolta TAC film (thickness 40 ⁇ m). The first high refractive index layer and the transparent metal film were formed in the same manner as in Example 17. The second high refractive index layer was formed in the same manner as in Example 12.
  • FIG. 27 shows the spectral characteristics of the obtained transparent conductor.
  • Example 24 A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Ge alloy) / second high refractive index layer (IZO) were laminated in this order on a glass film (thickness 50 ⁇ m).
  • the first high refractive index layer was formed in the same manner as in Example 2.
  • the transparent metal film was formed in the same manner as in Example 4 except that the film formation target was an Ag (99.0 at%)-Ge (1.0 at%) alloy.
  • the second high refractive index layer was formed in the same manner as in Example 13. The spectral characteristics of the obtained transparent conductor are shown in FIG.
  • Example 25 A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Pd alloy) / second high refractive index layer (GZO) were laminated in this order on a film (thickness 100 ⁇ m) made of cycloolefin polymer. .
  • the first high refractive index layer was formed in the same manner as in Example 2.
  • the transparent metal film was formed by the same method as in Example 1 except that the deposition target was an Ag (99.0 at%)-Pd (1.0 at%) alloy.
  • the second high refractive index layer was formed in the same manner as in Example 14. The spectral characteristic of the obtained transparent conductor is shown in FIG.
  • Example 26 On a film made of polycarbonate (thickness 100 ⁇ m), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Cu alloy) / second high refractive index layer (Nb 2 O 5 ) / low refractive index Layer (SiO 2 ) / third high refractive index layer (ZnS) were laminated in this order.
  • the first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 15.
  • the transparent metal film was formed in the same manner as in Example 4 except that the film formation target was an Ag (95.0 at%)-Cu (5.0 at%) alloy.
  • the low refractive index layer and the third high refractive index layer were formed in the same manner as in Example 20.
  • FIG. 30 shows the spectral characteristics of the obtained transparent conductor.
  • Example 27 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Nd alloy) / second high refractive index layer (TiO 2 ) Were stacked in this order.
  • the first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 16.
  • the transparent metal film was formed in the same manner as in Example 4 except that the deposition target was an Ag (99.0 at%)-Nd (1.0 at%) alloy.
  • FIG. 31 shows the spectral characteristics of the obtained transparent conductor.
  • Example 28 A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / second high refractive index layer (IGZO) was laminated in this order on a Konica Minolta TAC film (thickness 40 ⁇ m). The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 17. The transparent metal film was formed in the same manner as in Example 6. The spectral characteristics of the obtained transparent conductor are shown in FIG.
  • Example 29 On a film made of polycarbonate (thickness 100 ⁇ m), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Au alloy) / second high refractive index layer (Nb 2 O 5 ) / low refractive index Layer (SiO 2 ) / third high refractive index layer (ZnS) were laminated in this order.
  • the first high refractive index layer, the second high refractive index layer, the low refractive index layer, and the third high refractive index layer were formed in the same manner as the respective layers of Example 26.
  • the transparent metal film was formed in the same manner as in Example 4 except that the film formation target was an Ag (98.0 at%)-Au (2.0 at%) alloy.
  • Example 30 On a film made of cycloolefin polymer (thickness 100 ⁇ m), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / sulfurization preventive layer (ZnO) / second high refractive index layer ( ZnS—SiO 2 ) were laminated in this order. The obtained laminate was patterned in the same manner as in Example 1. The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2. The transparent metal film was formed in the same manner as in Example 6. The sulfidation preventing layer was formed in the same manner as the first high refractive index layer of Example 7.
  • Example 31 On Konica Minolta TAC film (thickness 40 ⁇ m), first high refractive index layer (ZnS—SiO 2 ) / sulfurization preventive layer (ZnO) / transparent metal film (APC alloy) / second high refractive index layer (ZnS—SiO 2) 2 ) were laminated in this order. The obtained laminate was patterned in the same manner as in Example 1. The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2. The transparent metal film was formed in the same manner as in Example 6. The sulfidation preventing layer was formed in the same manner as the first high refractive index layer of Example 7.
  • Example 32 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (ZnO) / transparent metal film (APC-TR alloy) / A disulfide prevention layer (ZnO) / second high refractive index layer (ZnS—SiO 2 ) were laminated in this order. The obtained laminate was patterned in the same manner as in Example 1. The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2. The transparent metal film was formed in the same manner as in Example 6. The sulfidation preventing layer was formed in the same manner as the first high refractive index layer of Example 7.
  • Example 33 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), first high refractive index layer (ZnS compound) / first antisulfuration layer (GZO) / transparent metal film (APC-TR alloy) / second An antisulfurization layer (GZO) / second high refractive index layer (SGZO) / third high refractive index layer (ITO) were laminated in this order. The obtained laminate was patterned in the same manner as in Example 1.
  • a film was formed in the same manner as the first high refractive index layer in Example 1.
  • the sulfidation preventing layer was formed in the same manner as the second high refractive index layer of Example 14.
  • the transparent metal film was formed in the same manner as in Example 6.
  • the third high refractive index layer was formed in the same manner as the first high refractive index layer of Example 8.
  • the spectral characteristic of the obtained transparent conductor is shown in FIG.
  • Example 34 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), first high refractive index layer (ZnS compound) / first antisulfuration layer (IGZO) / transparent metal film (APC-TR alloy) / second Antisulfuration layer (IGZO) / second high refractive index layer (TIZO) / third high refractive index layer (ITO) were laminated in this order. The obtained laminate was patterned in the same manner as in Example 1.
  • the sulfidation preventing layer was formed in the same manner as the second high refractive index layer of Example 17.
  • the transparent metal film was formed in the same manner as in Example 6.
  • the third high refractive index layer was formed in the same manner as the first high refractive index layer of Example 8.
  • FIG. 37 shows the spectral characteristics of the obtained transparent conductor.
  • a first high refractive index layer (ZnS) / transparent metal film (Ag) / second high refractive index layer (ZnS) was laminated in this order on a transparent substrate made of quartz.
  • the first high refractive index layer, the transparent metal film, and the second high refractive index layer were formed by the following methods, respectively.
  • the spectral characteristic of the obtained transparent conductor is shown in FIG.
  • First high refractive index layer and second high refractive index layer As the first high refractive index layer and the second high refractive index layer, films made of ZnS were formed by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON, respectively.
  • the input current value at this time was 210 A, and the film formation rate was 5 ⁇ / s.
  • Transparent metal film (Ag) On the first high refractive index layer, a silver film having a thickness of 12 nm was formed by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The input current value at this time was 210 A, and the film formation rate was 5 ⁇ / s.
  • a first high refractive index layer (ZnS) / transparent metal film (Ag) / second high refractive index layer (ZnS) were laminated in this order.
  • the first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 1.
  • the transparent metal film was formed in the same manner as in Comparative Example 1.
  • a first high refractive index layer (Nb 2 O 5 ) / transparent metal film (Ag) / second high refractive index layer (IZO) were laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m). .
  • Each layer was formed by the following method. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
  • Nb 2 O 5 (First high refractive index layer (Nb 2 O 5 )) Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 ⁇ / s.
  • the target-substrate distance was 86 mm.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 is 2.31, but the refractive index of light with a wavelength of 570 nm of the high refractive index layer is 2.35.
  • IZO Spin high refractive index layer
  • Anelva L-430S-FHS Using an Anelva L-430S-FHS, IZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s.
  • the target-substrate distance was 86 mm.
  • the refractive index of light with a wavelength of 570 nm of IZO is 2.05, but the refractive index of light with a wavelength of 570 nm of the second high refractive index layer is 1.98.
  • the target was formed in the same manner as the second high refractive index layer of Comparative Example 3 except that the target was made of a material (ICO) containing 10 atomic% of cerium in indium.
  • the refractive index of light with a wavelength of 570 nm of ICO was 2.2, and the refractive indexes of light with a wavelength of 570 nm of the first high refractive index layer and the second high refractive index layer were also 2.2.
  • Fluorine material layer (KP801M) Fluorine-based material (manufactured by Shin-Etsu Chemical Co., Ltd .: KP801M) was vapor-deposited by resistance heating with a Gener 1300 manufactured by Optorun at 190 mA and a film formation rate of 10 kg / s.
  • a first high refractive index layer (ITO) / transparent metal film (APC) / second high refractive index layer (ITO) were laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 ⁇ m).
  • the first high refractive index layer and the second high refractive index layer were formed in the same manner as the first high refractive index layer of Example 17, respectively.
  • the transparent metal film was formed by the following method.
  • First high refractive index layer and second high refractive index layer (ZnS—SiO 2 )
  • the first high refractive index layer and the second high refractive index layer were formed in the same manner as the method described in Patent Document 5 described above. Specifically, ZnS—SiO 2 was RF sputtered by magnetron sputtering. The ratio (mass ratio) between ZnS and SiO 2 was 80:20, and the refractive index of the first high refractive index layer was 2.14.
  • Corrosion evaluation The corrosion resistance of the transparent conductors obtained in Examples and Comparative Examples was evaluated. Corrosion resistance was evaluated by the appearance after storing the transparent conductors obtained in Examples or Comparative Examples two by two in 65 ° C. and 95% Rh for 100 hours. Evaluation was based on the following criteria. ⁇ : In the area of 30 mm ⁇ 30 mm, 0 corrosion sites with a size of 20 ⁇ m or more ⁇ : In the region of 30 mm ⁇ 30 mm, 1 or more and less than 10 corrosion sites with a size of 20 ⁇ m or more ⁇ : Size in the region of 30 mm ⁇ 30 mm 10 or more corrosion spots of 20 ⁇ m or more
  • measurement light for example, light having a wavelength of 450 nm to 800 nm
  • the light transmittance and reflectance were measured at U4100.
  • the absorptance was calculated from a formula of 100 ⁇ (transmittance + reflectance).
  • the value obtained by subtracting the reflection at the interface between the alkali-free glass substrate and the atmosphere (4%) and the reflection at the interface between the transparent substrate and the atmosphere (4%) from the measured value of the reflectance The reflectance of the transparent conductor was used. Also, the transmittance was added to the measured value of transmittance by 8% in consideration of the reflection at the interface between the alkali-free glass substrate and the atmosphere and the reflection of the transparent conductor at the interface between the transparent substrate and the atmosphere. The value was the transmittance of the transparent conductor.
  • the transparent conductors of Examples 6, 18 to 21, 23 to 29, and Comparative Examples 1, 3, and 7 were used in contact with air. Therefore, measurement light (for example, light having a wavelength of 450 nm to 800 nm) is incident on the conductive region without bonding an alkali-free glass substrate on the transparent conductor, and light is emitted by Hitachi, Ltd .: spectrophotometer U4100. The transmittance and reflectance were measured. The absorptance was calculated from a formula of 100 ⁇ (transmittance + reflectance). The measurement light was incident from the second high refractive index layer side.
  • measurement light for example, light having a wavelength of 450 nm to 800 nm
  • the transmittance and reflectance were measured.
  • the absorptance was calculated from a formula of 100 ⁇ (transmittance + reflectance).
  • the measurement light was incident from the second high refractive index layer side.
  • the value obtained by subtracting the reflection (4%) at the interface between the transparent substrate of the transparent conductor and the atmosphere from the measured value of the reflectance was taken as the reflectance of the transparent conductor.
  • the transmittance of the transparent conductor was determined by adding 4% to the measured value of the transmittance in consideration of the reflection of the transparent conductor at the interface between the transparent substrate and the atmosphere.
  • ⁇ R in the table represents the absolute value of the difference between the luminous efficiency of the conductive area and the luminous efficiency of the insulating area.
  • optical admittance The optical admittance of the transparent conductor obtained by the Example and the comparative example was specified.
  • the optical admittance of wavelength 570nm of the first high refractive index layer side of the surface of the transparent metal Y1 x 1 + iy 1
  • the optical admittance of wavelength 570nm of the second high refractive index layer side of the surface of the transparent metal film Y2 x
  • the values of (x 1 , y 1 ) and (x 2 , y 2 ) when 2 + iy 2 are shown in the table.
  • Y sub x sub + iy sub
  • the optical admittance of the layer included in the transparent conductor is the thin film design software Essential Mac OS Ver. It calculated in 9.4.375. Note that the thickness d, refractive index n, and absorption coefficient k of each layer necessary for the calculation are as follows. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • the transparent metal film is made of only Ag (Comparative Examples 1 and 7).
  • the average transmittance of light having a wavelength of 400 to 800 nm was 84.2 or 86.8%, and the average transmittance of light having a wavelength of 400 to 1000 nm was 80% or less. It is presumed that the transparent metal film was sulfided by the sulfur component contained in the first high refractive index layer or the second high refractive index layer, and the light transmittance was lowered.
  • Comparative Example 2 in which a transparent metal film was produced by vapor deposition, a continuous film was not obtained and electricity was not conducted. Further, although the film became a continuous film when the thickness was 12 nm (Comparative Example 1), the average reflectance of light having a wavelength of 400 to 1000 nm was less than 80%. It is inferred that the transmittance was not sufficiently increased because of the inherent reflection of metal.
  • the transparent metal film was corroded (Comparative Examples 3 to 6).
  • the flexibility of the transparent conductor is enhanced when SiO 2 is contained together with ZnS.
  • the first high refractive index layer or the second high refractive index layer contains 10% by volume or more of SiO 2 , the flexibility of the transparent conductor was good.
  • the transparent conductor obtained by the present invention has a high light transmittance and a low surface electric resistance because the transparent metal film is not easily sulfided. Therefore, it is preferably used in various optoelectronic devices such as various types of displays, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescence light control elements, and the like.

Abstract

The invention of the present application addresses the problem of providing a transparent conductive body which is flexible, and which exhibits excellent optical transparency and reliability over an extended period of time. This transparent conductive body has, stacked therein in the given order: a transparent substrate; a first high refractive index layer including an oxide semiconductor material or a dielectric material having a refractive index with respect to light with a wavelength of 570 nm which is higher than that of the transparent substrate; a transparent metal film comprising an alloy of silver and a specific metal; and a second high refractive index layer including an oxide semiconductor material or a dielectric material having a refractive index with respect to light with wavelength of 570 nm which is higher than that of the transparent substrate. The first high refractive index layer and/or the second high refractive index layer is an amorphous layer which includes: ZnS; and a metal oxide or a metal fluoride.

Description

透明導電体Transparent conductor
 本発明は、透明金属膜を含む透明導電体に関する。 The present invention relates to a transparent conductor including a transparent metal film.
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置の電極材料、無機及び有機EL素子の電極材料、タッチパネル材料、太陽電池材料等の各種装置に透明導電膜が使用されている。 In recent years, transparent conductive films have been used for various devices such as electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials. Has been.
 このような透明導電膜を構成する材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(酸化インジウムスズ)等の酸化物半導体が知られている。 As a material constituting such a transparent conductive film, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used. , SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
 ここで、タッチパネル型の表示装置では、表示素子の画像表示面上に、透明導電膜等からなる配線が配置される。したがって、透明導電膜には、光の透過性が高いことが求められる。このような各種表示装置には、光透過性の高いITOからなる透明導電膜が多用されている。 Here, in the touch panel type display device, a wiring made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance. In such various display devices, a transparent conductive film made of ITO having high light transmittance is often used.
 近年、静電容量方式のタッチパネル表示装置が開発され、透明導電膜の表面電気抵抗をさらに低くすることが求められている。しかし、従来のITO膜では、表面電気抵抗を十分に下げられない、との問題があった。 In recent years, a capacitive touch panel display device has been developed, and it is required to further reduce the surface electrical resistance of the transparent conductive film. However, the conventional ITO film has a problem that the surface electrical resistance cannot be lowered sufficiently.
 そこで、Agの蒸着膜を透明導電膜とすることが検討されている(特許文献1)。また、透明導電体の光透過性を高めるため、Ag膜を屈折率の高い膜(例えば酸化ニオブ(Nb)、IZO(酸化インジウム・酸化亜鉛)、ICO(インジウムセリウムオキサイド)、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等からなる膜)で挟み込むことも提案されている(特許文献2~4、非特許文献1)。さらに、Ag膜をZnS膜で挟み込むことや、ZnS-SiO膜で挟み込むこと等が提案されている(非特許文献2及び3、並びに特許文献5)。 Thus, it has been studied to use a vapor-deposited Ag film as a transparent conductive film (Patent Document 1). In order to increase the light transmittance of the transparent conductor, the Ag film is made of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium oxide / zinc oxide), ICO (indium cerium oxide), a- It has also been proposed that the film is sandwiched between GIO (a film made of gallium, indium, and oxygen) (Patent Documents 2 to 4, Non-Patent Document 1). Further, it has been proposed to sandwich an Ag film with a ZnS film, a ZnS—SiO 2 film, and the like ( Non-patent Documents 2 and 3, and Patent Document 5).
特表2011-508400号公報Special table 2011-508400 gazette 特開2006-184849号公報JP 2006-184849 A 特開2002-15623号公報JP 2002-15623 A 特開2008-226581号公報JP 2008-226581 A 中国特許出願公開第102677012号明細書Chinese Patent Application No. 1026777012
 しかし、特許文献2~4や、非特許文献1に示されるように、酸化ニオブやITO等でAg膜が挟み込まれた透明導電体では、耐湿性が十分でなかった。その結果、湿度環境下で透明導電体を使用すると、Ag膜が腐食しやすい等の問題があった。 However, as shown in Patent Documents 2 to 4 and Non-Patent Document 1, a transparent conductor in which an Ag film is sandwiched between niobium oxide, ITO, or the like has insufficient moisture resistance. As a result, when a transparent conductor is used in a humidity environment, there is a problem that the Ag film is easily corroded.
 一方、Ag層がZnS層やZnS-SiO層に挟み込まれた透明導電体では、Agが硫化されて硫化銀が生じやすい。その結果、透明導電体の光透過性が低くなったり、透明導電体の表面電気抵抗値が高まりやすい、との問題が生じやすかった。 On the other hand, in the transparent conductor in which the Ag layer is sandwiched between the ZnS layer and the ZnS—SiO 2 layer, Ag is sulfided and silver sulfide is easily generated. As a result, problems such as low light transmittance of the transparent conductor and high surface electrical resistance of the transparent conductor are likely to occur.
 さらに、Ag層がパターニングされている場合には、Ag層から溶出したAgイオンが移動・析出(マイグレーション)することがあった。このようなマイグレーションが生じると、透明導電体の光透過性が低下するだけでなく、電流がリークする等の問題があった。 Furthermore, when the Ag layer is patterned, Ag ions eluted from the Ag layer may move and precipitate (migration). When such migration occurs, there is a problem that not only the light transmittance of the transparent conductor is lowered but also current leaks.
 本発明はこのような状況を鑑みてなされたものである。本発明は、長期間に亘って光透過性や信頼性が高く、かつフレキシブルな透明導電体を提供することを目的とする。 The present invention has been made in view of such a situation. An object of the present invention is to provide a flexible transparent conductor that has high light transmission and reliability over a long period of time.
 即ち、本発明は、以下の透明導電体に関する。
 [1]透明基板と、前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第一高屈折率層と、ゲルマニウム、ビスマス、白金族、銅、金、モリブデン、亜鉛、ガリウム、スズ、インジウム、ネオジム、チタン、アルミニウム、タングステン、マンガン、鉄、ニッケル、イットリウム、及びマグネシウムからなる群から選ばれる一種以上の金属と銀との合金からなる透明金属膜と、前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第二高屈折率層と、がこの順に積層された透明導電体であって、前記第一高屈折率層または前記第二高屈折率層のうち、少なくとも一方の層が、ZnSと金属酸化物または金属フッ化物とを含むアモルファス層である、透明導電体。
 [2]前記アモルファス層が含む金属酸化物が、SiOである、[1]に記載の透明導電体。
 [3]前記透明金属膜が、所定の形状にパターニングされた金属パターンである、[1]または[2]に記載の透明導電体。
That is, this invention relates to the following transparent conductors.
[1] A transparent substrate, a first high-refractive-index layer containing a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light of wavelength 570 nm of the transparent substrate, germanium, bismuth Silver, one or more metals selected from the group consisting of platinum group, copper, gold, molybdenum, zinc, gallium, tin, indium, neodymium, titanium, aluminum, tungsten, manganese, iron, nickel, yttrium, and magnesium A transparent metal film made of an alloy, and a second high-refractive-index layer containing a dielectric material or an oxide semiconductor material having a higher refractive index of light at a wavelength of 570 nm than the refractive index of light at a wavelength of 570 nm of the transparent substrate. A transparent conductor laminated in order, wherein at least one of the first high refractive index layer or the second high refractive index layer is made of ZnS and metal An amorphous layer containing a compound or a metal fluoride, a transparent conductor.
[2] The transparent conductor according to [1], wherein the metal oxide included in the amorphous layer is SiO 2 .
[3] The transparent conductor according to [1] or [2], wherein the transparent metal film is a metal pattern patterned into a predetermined shape.
 本発明によれば、長期間に亘って劣化が少なく、光透過性が高く、かつフレキシブルな透明導電体が得られる。 According to the present invention, it is possible to obtain a flexible transparent conductor that is less deteriorated over a long period of time and has a high light transmittance.
図1は本発明の透明導電体の層構成一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of a layer structure of a transparent conductor according to the present invention. 図2は本発明の透明導電体の層構成の他の例を示す概略断面図である。FIG. 2 is a schematic sectional view showing another example of the layer structure of the transparent conductor of the present invention. 図3は本発明の透明導電体の導通領域及び絶縁領域からなるパターンの一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a pattern composed of a conductive region and an insulating region of the transparent conductor of the present invention. 図4Aは実施例1で作製した透明導電体の波長570nmのアドミッタンス軌跡を示すグラフである。4A is a graph showing an admittance locus of the transparent conductor produced in Example 1 at a wavelength of 570 nm. FIG. 図4Bは実施例1で作製した透明導電体の分光特性を示すグラフである。4B is a graph showing the spectral characteristics of the transparent conductor produced in Example 1. FIG. 図5Aは、透明基板/透明金属膜/高屈折率層を備える透明導電体の波長570nmのアドミッタンス軌跡を示すグラフである。FIG. 5A is a graph showing an admittance locus at a wavelength of 570 nm of a transparent conductor having a transparent substrate / transparent metal film / high refractive index layer. 図5Bは、透明基板/透明金属膜/高屈折率層を備える透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示すグラフである。FIG. 5B is a graph showing admittance trajectories of a transparent conductor / transparent metal film / high refractive index layer having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm. 図6は実施例2で作製した透明導電体の分光特性を示すグラフである。FIG. 6 is a graph showing the spectral characteristics of the transparent conductor produced in Example 2. 図7は実施例3で作製した透明導電体の分光特性を示すグラフである。FIG. 7 is a graph showing the spectral characteristics of the transparent conductor produced in Example 3. 図8は実施例4で作製した透明導電体の分光特性を示すグラフである。FIG. 8 is a graph showing the spectral characteristics of the transparent conductor produced in Example 4. 図9は実施例5で作製した透明導電体の分光特性を示すグラフである。FIG. 9 is a graph showing the spectral characteristics of the transparent conductor produced in Example 5. 図10は実施例6で作製した透明導電体の分光特性を示すグラフである。FIG. 10 is a graph showing the spectral characteristics of the transparent conductor produced in Example 6. 図11は実施例7で作製した透明導電体の分光特性を示すグラフである。FIG. 11 is a graph showing the spectral characteristics of the transparent conductor produced in Example 7. 図12は実施例8で作製した透明導電体の分光特性を示すグラフである。FIG. 12 is a graph showing the spectral characteristics of the transparent conductor produced in Example 8. 図13は実施例9で作製した透明導電体の分光特性を示すグラフである。FIG. 13 is a graph showing the spectral characteristics of the transparent conductor produced in Example 9. 図14は実施例10で作製した透明導電体の分光特性を示すグラフである。FIG. 14 is a graph showing the spectral characteristics of the transparent conductor produced in Example 10. 図15は実施例11で作製した透明導電体の分光特性を示すグラフである。FIG. 15 is a graph showing the spectral characteristics of the transparent conductor produced in Example 11. 図16は実施例12で作製した透明導電体の分光特性を示すグラフである。FIG. 16 is a graph showing the spectral characteristics of the transparent conductor produced in Example 12. 図17は実施例13で作製した透明導電体の分光特性を示すグラフである。FIG. 17 is a graph showing the spectral characteristics of the transparent conductor produced in Example 13. 図18は実施例14で作製した透明導電体の分光特性を示すグラフである。FIG. 18 is a graph showing the spectral characteristics of the transparent conductor produced in Example 14. 図19は実施例15で作製した透明導電体の分光特性を示すグラフである。FIG. 19 is a graph showing the spectral characteristics of the transparent conductor produced in Example 15. 図20は実施例16で作製した透明導電体の分光特性を示すグラフである。FIG. 20 is a graph showing the spectral characteristics of the transparent conductor produced in Example 16. 図21は実施例17で作製した透明導電体の分光特性を示すグラフである。FIG. 21 is a graph showing the spectral characteristics of the transparent conductor produced in Example 17. 図22は実施例18で作製した透明導電体の分光特性を示すグラフである。FIG. 22 is a graph showing the spectral characteristics of the transparent conductor produced in Example 18. 図23は実施例19で作製した透明導電体の分光特性を示すグラフである。FIG. 23 is a graph showing the spectral characteristics of the transparent conductor produced in Example 19. 図24は実施例20で作製した透明導電体の分光特性を示すグラフである。FIG. 24 is a graph showing the spectral characteristics of the transparent conductor produced in Example 20. 図25は実施例21で作製した透明導電体の分光特性を示すグラフである。FIG. 25 is a graph showing the spectral characteristics of the transparent conductor produced in Example 21. 図26は実施例22で作製した透明導電体の分光特性を示すグラフである。FIG. 26 is a graph showing the spectral characteristics of the transparent conductor produced in Example 22. 図27は実施例23で作製した透明導電体の分光特性を示すグラフである。FIG. 27 is a graph showing the spectral characteristics of the transparent conductor produced in Example 23. 図28は実施例24で作製した透明導電体の分光特性を示すグラフである。FIG. 28 is a graph showing the spectral characteristics of the transparent conductor produced in Example 24. 図29は実施例25で作製した透明導電体の分光特性を示すグラフである。FIG. 29 is a graph showing the spectral characteristics of the transparent conductor produced in Example 25. 図30は実施例26で作製した透明導電体の分光特性を示すグラフである。FIG. 30 is a graph showing the spectral characteristics of the transparent conductor produced in Example 26. 図31は実施例27で作製した透明導電体の分光特性を示すグラフである。FIG. 31 is a graph showing the spectral characteristics of the transparent conductor produced in Example 27. 図32は実施例28で作製した透明導電体の分光特性を示すグラフである。FIG. 32 is a graph showing the spectral characteristics of the transparent conductor produced in Example 28. 図33は比較例1で作製した透明導電体の分光特性を示すグラフである。FIG. 33 is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example 1. 図34は比較例3で作製した透明導電体の分光特性を示すグラフである。FIG. 34 is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example 3. 図35は比較例7で作製した透明導電体の分光特性を示すグラフである。FIG. 35 is a graph showing the spectral characteristics of the transparent conductor produced in Comparative Example 7. 図36は実施例33で作製した透明導電体の分光特性を示すグラフである。FIG. 36 is a graph showing the spectral characteristics of the transparent conductor produced in Example 33. 図37は実施例34で作製した透明導電体の分光特性を示すグラフである。FIG. 37 is a graph showing the spectral characteristics of the transparent conductor produced in Example 34.
 本発明の透明導電体の層構成の例を図1及び図2に示す。図1及び図2に示されるように、本発明の透明導電体100は、透明基板1/第一高屈折率層2/透明金属膜3/第二高屈折率層4がこの順に積層された積層体からなる。本発明の透明導電体100では、第一高屈折率層2または第二高屈折率層4のいずれか一方、もしくは両方が、ZnSと金属酸化物または金属フッ化物とを含むアモルファス層である。さらに、透明金属膜3は、銀と他の金属との合金からなる。 Examples of the layer structure of the transparent conductor of the present invention are shown in FIGS. As shown in FIG. 1 and FIG. 2, the transparent conductor 100 of the present invention has a transparent substrate 1 / first high refractive index layer 2 / transparent metal film 3 / second high refractive index layer 4 laminated in this order. It consists of a laminate. In the transparent conductor 100 of the present invention, one or both of the first high refractive index layer 2 and the second high refractive index layer 4 are amorphous layers containing ZnS and a metal oxide or metal fluoride. Further, the transparent metal film 3 is made of an alloy of silver and another metal.
 前述のように、第一高屈折率層2または第二高屈折率層4にZnSが含まれると、第一高屈折率層2及び第二高屈折率層4の耐湿性が高まりやすい。また特に、ZnSと共に、金属酸化物や金属フッ化物が含まれると、第一高屈折率層2及び第二高屈折率層4の結晶性が低くなり、第一高屈折率層2及び第二高屈折率層4のフレキシブル性が高まりやすい。しかし、第一高屈折率層2または第二高屈折率層4にZnSが含まれると、銀からなる透明金属膜が硫化されやすく、透明導電体の光透過性が低下しやすいとの問題があった。 As described above, when the first high refractive index layer 2 or the second high refractive index layer 4 contains ZnS, the moisture resistance of the first high refractive index layer 2 and the second high refractive index layer 4 is likely to increase. In particular, when a metal oxide or a metal fluoride is contained together with ZnS, the crystallinity of the first high refractive index layer 2 and the second high refractive index layer 4 is lowered, and the first high refractive index layer 2 and the second high refractive index layer 2 and the second high refractive index layer 2 are reduced. The flexibility of the high refractive index layer 4 is likely to increase. However, when ZnS is contained in the first high-refractive index layer 2 or the second high-refractive index layer 4, there is a problem that the transparent metal film made of silver is easily sulfided and the light transmittance of the transparent conductor is likely to be lowered. there were.
 これに対し、本発明の透明導電体では、第一高屈折率層2または第二高屈折率層4のいずれか一方もしくは両方にZnSが含まれるものの、透明金属膜3が銀と他の金属との合金からなる。銀以外の他の金属は、透明金属膜3の表面に局在しやすい。そして、当該金属によって透明金属膜3の表面に酸化皮膜等が形成される。その結果、透明金属膜3中の銀が硫化され難くなり、透明導電体の光透過性の低下が抑制される。 On the other hand, in the transparent conductor of the present invention, although either or both of the first high refractive index layer 2 and the second high refractive index layer 4 contain ZnS, the transparent metal film 3 is made of silver and other metals. And alloy. Metals other than silver tend to localize on the surface of the transparent metal film 3. Then, an oxide film or the like is formed on the surface of the transparent metal film 3 by the metal. As a result, silver in the transparent metal film 3 is not easily sulfided, and a decrease in light transmittance of the transparent conductor is suppressed.
 一方、透明金属膜が銀のみからなる場合、透明導電体に電流を流すと、透明金属膜中の銀がイオン化し、移動・析出(マイグレーション)しやすい。そして、導通時に電流がリークしたり、透明導電体の光透過性が低下する等の問題もあった。これに対し、透明金属膜3に、銀以外の金属が含まれると、マイグレーションが抑制される。したがって、長期に亘って信頼性の高い透明導電体が得られる。 On the other hand, when the transparent metal film is composed only of silver, when the current is passed through the transparent conductor, the silver in the transparent metal film is ionized and is likely to move and precipitate (migration). And there also existed problems, such as an electric current leaking at the time of conduction | electrical_connection, or the light transmittance of a transparent conductor falling. On the other hand, when the transparent metal film 3 contains a metal other than silver, migration is suppressed. Therefore, a highly reliable transparent conductor can be obtained over a long period of time.
 本発明の透明導電体において、透明金属膜3は、図1に示されるように、透明基板1の全面に形成されていてもよく、図2に示されるように、所望の形状にパターニングされていてもよい。本発明の透明導電体において、透明金属膜3が積層されている領域aが、電気が導通する領域(以下、「導通領域」とも称する)である。一方、図2に示されるように、透明金属膜3が含まれない領域bが絶縁領域である。 In the transparent conductor of the present invention, the transparent metal film 3 may be formed on the entire surface of the transparent substrate 1 as shown in FIG. 1, and is patterned into a desired shape as shown in FIG. May be. In the transparent conductor of the present invention, the region a where the transparent metal film 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, as shown in FIG. 2, the region b not including the transparent metal film 3 is an insulating region.
 導通領域a及び絶縁領域bからなるパターンは、透明導電体100の用途に応じて、適宜選択される。例えば透明導電体100が静電方式のタッチパネルに適用される場合には、図3に示されるように、複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン等でありうる。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 100. For example, when the transparent conductor 100 is applied to an electrostatic touch panel, as shown in FIG. 3, the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. sell.
 また、本発明の透明導電体100(積層体)には、透明基板1、第一高屈折率層2、透明金属膜3、及び第二高屈折率層4以外の層が含まれてもよい。例えば第一高屈折率層2と透明金属膜3との間に、透明金属膜3の成膜時に成長核となる下地層(図示せず)が含まれてもよく;第二高屈折率層4上に、透明導電体100の光透過性を調整するための低屈折率層(図示せず)が含まれてもよい。さらに、低屈折率層上に、透明導電体の透明性を調整するための第三高屈折率層(図示せず)等が含まれてもよい。また、第一高屈折率層2と透明金属膜3との間や、透明金属膜3と第二高屈折率層4との間に、透明金属膜3の硫化を防止するための硫化防止層(図示せず)が含まれてもよい。ただし、本発明の透明導電体100に含まれる層は、透明基板1を除いて、いずれも無機材料からなる層である。例えば第二高屈折率層4上に有機樹脂からなる接着層が積層されていたとしても、透明基板1から第二高屈折率層4までの積層体が、本発明の透明導電体100である。 Further, the transparent conductor 100 (laminated body) of the present invention may include layers other than the transparent substrate 1, the first high refractive index layer 2, the transparent metal film 3, and the second high refractive index layer 4. . For example, an underlayer (not shown) that becomes a growth nucleus when the transparent metal film 3 is formed may be included between the first high refractive index layer 2 and the transparent metal film 3; 4 may include a low refractive index layer (not shown) for adjusting the light transmittance of the transparent conductor 100. Furthermore, a third high refractive index layer (not shown) for adjusting the transparency of the transparent conductor may be included on the low refractive index layer. Further, an anti-sulfurization layer for preventing sulfidation of the transparent metal film 3 between the first high-refractive index layer 2 and the transparent metal film 3 or between the transparent metal film 3 and the second high-refractive index layer 4. (Not shown) may be included. However, the layers included in the transparent conductor 100 of the present invention are all layers made of an inorganic material except for the transparent substrate 1. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 4, the laminated body from the transparent substrate 1 to the second high refractive index layer 4 is the transparent conductor 100 of the present invention. .
 1.透明導電体の層構成について
 1-1)透明基板
 透明導電体100に含まれる透明基板1は、各種表示デバイスの透明基板と同様でありうる。透明基板1は、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムでありうる。透明基板1が透明樹脂フィルムである場合、当該フィルムには2種以上の樹脂が含まれてもよい。
1. 1. Layer Configuration of Transparent Conductor 1-1) Transparent Substrate The transparent substrate 1 included in the transparent conductor 100 can be the same as the transparent substrate of various display devices. The transparent substrate 1 includes a glass substrate, a cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin (for example, ZEONOR (manufactured by Nippon Zeon), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (eg polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)) Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate), polyethersulfone, ABS / AS resin, MBS resin, polystyrene Emissions, methacrylic resins, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resins), may be a transparent resin film comprising a styrene block copolymer resin. When the transparent substrate 1 is a transparent resin film, the film may contain two or more kinds of resins.
 透明性の観点から、透明基板1はガラス基板、もしくはセルロースエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、またはスチレン系ブロックコポリマー樹脂からなるフィルムであることが好ましい。 From the viewpoint of transparency, the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polycarbonate resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin, A film made of polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
 透明基板1は、可視光に対する透明性が高いことが好ましく;波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板1の光の平均透過率が70%以上であると、透明導電体100の光透過性が高まりやすい。また、透明基板1の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent substrate 1 preferably has high transparency to visible light; the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均透過率は、透明基板1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率を測定し;平均吸収率=100-(平均透過率+平均反射率)として算出する。平均透過率及び平均反射率は分光光度計で測定される。 The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1. On the other hand, the average absorptance is calculated as average absorptance = 100− (average transmissivity + average reflectivity) by making light incident from the same angle as the average transmissivity and measuring the average reflectivity of the transparent substrate 1; . Average transmittance and average reflectance are measured with a spectrophotometer.
 透明基板1の波長570nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明基板の屈折率は、通常、透明基板の材質によって定まる。透明基板の屈折率は、エリプソメーターで測定される。 The refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. . The refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
 透明基板1のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。透明基板のヘイズ値が2.5以下であると、透明導電体のヘイズ値が抑制される。ヘイズ値は、ヘイズメーターで測定される。 The haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. When the haze value of the transparent substrate is 2.5 or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
 透明基板1の厚みは、1μm~20mmであることが好ましい。透明基板の厚みが1μm以上であると、透明基板1の強度が高まり、第一高屈折率層2の作製時に割れたり、裂けたりし難くなる。一方、透明基板1の厚みが20mm以下であれば、透明導電体100のフレキシブル性が十分となる。さらに透明導電体100を用いた機器の厚みを薄くできる。また、透明導電体100を用いた機器を軽量化することもできる。 The thickness of the transparent substrate 1 is preferably 1 μm to 20 mm. When the thickness of the transparent substrate is 1 μm or more, the strength of the transparent substrate 1 is increased, and it is difficult to crack or tear the first high refractive index layer 2 during production. On the other hand, when the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient. Furthermore, the thickness of the apparatus using the transparent conductor 100 can be reduced. Moreover, the apparatus using the transparent conductor 100 can also be reduced in weight.
 透明導電体に特に高いフレキシブル性が要求される場合には、透明基板1の厚みが1μm~20mmであることが好ましく、より好ましくは1μm~500μmである。透明基板1の厚みが20mm以下であると、透明基板1のフレキシブル性が高まりやすい。 When particularly high flexibility is required for the transparent conductor, the thickness of the transparent substrate 1 is preferably 1 μm to 20 mm, more preferably 1 μm to 500 μm. When the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent substrate 1 is likely to increase.
 1-2)第一高屈折率層
 第一高屈折率層2は、透明導電体の導通領域a、つまり透明金属膜3が成膜されている領域の光透過性(光学アドミッタンス)を調整する層である。したがって、第一高屈折率層2は、透明導電体の導通領域aに形成される。第一高屈折率層2は、透明導電体100の絶縁領域bにも形成されていてもよいが、後述するように、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
1-2) First High Refractive Index Layer The first high refractive index layer 2 adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor, that is, the region where the transparent metal film 3 is formed. Is a layer. Accordingly, the first high refractive index layer 2 is formed in the conductive region a of the transparent conductor. Although the first high refractive index layer 2 may be formed also in the insulating region b of the transparent conductor 100, as will be described later, from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b. It is preferable that it is formed only in the conduction region a.
 第一高屈折率層2には、前述の透明基板1の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料が含まれる。当該誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第一高屈折率層2に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料または酸化物半導体材料の屈折率が1.5より大きいと、第一高屈折率層2によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。なお、第一高屈折率層2の屈折率は、第一高屈折率層2に含まれる材料の屈折率や、第一高屈折率層2に含まれる材料の密度で調整される。 The first high refractive index layer 2 includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 described above. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable. On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2. The refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
 第一高屈折率層2に含まれる誘電性材料または酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料または酸化物半導体材料は、上記屈折率を有する金属酸化物でありうる。上記屈折率を有する金属酸化物の例には、TiO、ITO(酸化インジウムスズ)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、IGZO(インジウム・ガリウム・亜鉛の酸化物)、SGZO(スズ・ガリウム・亜鉛の酸化物)、TIZO(インジウム・亜鉛、スズの酸化物)、Bi、Ga、GeO、WO、HfO、In、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が含まれる。第一高屈折率層2は、当該金属酸化物が1種のみ含まれる層であってもよく、2種以上が含まれる層であってもよい。 The dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material. The dielectric material or the oxide semiconductor material may be a metal oxide having the above refractive index. Examples of the metal oxide having the refractive index include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4 O 7. , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO ( Indium cerium oxide), IGZO (indium / gallium / zinc oxide), SGZO (tin / gallium / zinc oxide), TIZO (indium / zinc, tin oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , In 2 O 3 , a-GIO (amorphous oxide composed of gallium, indium and oxygen), etc. It is. The first high refractive index layer 2 may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds.
 また、第一高屈折率層2に含まれる誘電性材料または酸化物半導体材料は、ZnSでもありうる。第一高屈折率層2にZnSが含まれると、透明基板1側から水分が透過し難くなり、透明金属膜3の腐食が抑制される。またZnSと銀の親和性が高いため、銀が薄くても連続膜になり易い。ただし、ZnSは比較的高い結晶性を有し、ZnSのみからなる膜は剛直な膜になりやすい。そこで、第一高屈折率層2は、ZnSと金属酸化物または金属フッ化物とを含むアモルファス層であることが好ましい。アモルファス層に含まれる金属酸化物または金属フッ化物は、ZnSをアモルファス化することが可能な化合物であれば特に制限されず、SiO、NaAl14、NaAlF、AlF、MgF、CaF、BaF、Al、YF、LaF、CeF、NdF、ZrO、SiO、MgO、Y、ZnO、In、Ga等でありうる。これらは第一高屈折率層2に1種のみ含まれてもよく、2種以上含まれてもよい。これらの化合物は特に好ましくはSiOである。 In addition, the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2 may be ZnS. When ZnS is contained in the first high refractive index layer 2, it becomes difficult for moisture to permeate from the transparent substrate 1 side, and corrosion of the transparent metal film 3 is suppressed. Moreover, since ZnS and silver have high affinity, even if silver is thin, it is easy to form a continuous film. However, ZnS has a relatively high crystallinity, and a film made of only ZnS tends to be a rigid film. Therefore, the first high refractive index layer 2 is preferably an amorphous layer containing ZnS and a metal oxide or metal fluoride. The metal oxide or metal fluoride contained in the amorphous layer is not particularly limited as long as it is a compound capable of amorphizing ZnS, and SiO 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2, CaF 2, BaF 2 , Al 2 O 3, YF 3, LaF 3, CeF 3, NdF 3, ZrO 2, SiO, MgO, Y 2 O 3, ZnO, In 2 O 3, Ga 2 O 3 , etc. It can be. Only one of these may be included in the first high refractive index layer 2, or two or more thereof may be included. These compounds are particularly preferably SiO 2.
 第一高屈折率層2がアモルファス層である場合、当該アモルファス層には、アモルファス層の総体積に対してZnSが0.1~95体積%含まれることが好ましく、より好ましくは50~90体積%であり、さらに好ましくは70~85体積%である。ZnSの比率が高いと、スパッタ速度が速くなり、第一高屈折率層2の成膜速度が速くなる。一方、金属酸化物が多く含まれると、第一高屈折率層2の非晶質性が高まり、第一高屈折率層2の割れが抑制される。 When the first high refractive index layer 2 is an amorphous layer, the amorphous layer preferably contains 0.1 to 95% by volume of ZnS, more preferably 50 to 90% by volume with respect to the total volume of the amorphous layer. %, And more preferably 70 to 85% by volume. When the ratio of ZnS is high, the sputtering rate increases and the film formation rate of the first high refractive index layer 2 increases. On the other hand, when a large amount of metal oxide is contained, the amorphousness of the first high refractive index layer 2 increases, and cracking of the first high refractive index layer 2 is suppressed.
 第一高屈折率層2の厚みは15~150nmであることが好ましく、より好ましくは20~80nmである。第一高屈折率層2の厚みが15nm以上であると、第一高屈折率層2によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。一方、第一高屈折率層2の厚みが150nm以下であれば、第一高屈折率層2が含まれる領域の光透過性が低下し難い。また、第一高屈折率層2の厚みが150nm以下であれば、第一高屈折率層2のフレキシブル性が高まりやすく、透明導電体のフレキシブル性を高めることもできる。第一高屈折率層2の厚みは、エリプソメーターで測定される。 The thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm. When the thickness of the first high refractive index layer 2 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2. On the other hand, if the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease. Moreover, if the thickness of the 1st high refractive index layer 2 is 150 nm or less, the flexibility of the 1st high refractive index layer 2 will increase easily, and the flexibility of a transparent conductor can also be improved. The thickness of the first high refractive index layer 2 is measured with an ellipsometer.
 第一高屈折率層2は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層でありうる。第一高屈折率層2の屈折率(密度)が高まるとの観点から、第一高屈折率層2は、電子ビーム蒸着法またはスパッタ法で成膜された層であることが好ましい。電子ビーム蒸着法の場合は膜密度を高めるため、IAD(イオンアシスト)などのアシストがあることが望ましい。 The first high refractive index layer 2 can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of increasing the refractive index (density) of the first high refractive index layer 2, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
 ここで、第一高屈折率層2がZnSと金属酸化物とを含むアモルファス層である場合、ZnS及び金属酸化物を所望の比率で混合した混合物を、蒸着源やスパッタリングターゲットとしてもよい。また、ZnS及び金属酸化物を共蒸着または共スパッタしてもよい。 Here, when the first high refractive index layer 2 is an amorphous layer containing ZnS and a metal oxide, a mixture obtained by mixing ZnS and a metal oxide in a desired ratio may be used as a vapor deposition source or a sputtering target. Further, ZnS and metal oxide may be co-evaporated or co-sputtered.
 また、第一高屈折率層2が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第一高屈折率層2は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 Further, when the first high refractive index layer 2 is a layer patterned in a desired shape, the patterning method is not particularly limited. The first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the film formation surface; It may be a layer patterned by an etching method.
 1-3)透明金属膜
 本発明の透明金属膜3は、透明導電体100において電気を導通させるための膜である。透明金属膜3は、前述のように、透明基板1の全面に形成されていてもよく、また所望の形状にパターニングされていてもよい。
1-3) Transparent Metal Film The transparent metal film 3 of the present invention is a film for conducting electricity in the transparent conductor 100. The transparent metal film 3 may be formed on the entire surface of the transparent substrate 1 as described above, or may be patterned into a desired shape.
 透明金属膜3は、銀と銀以外の金属との合金からなる。透明金属膜3に銀と共に含まれる銀以外の金属は、銀との合金としたときに、透明金属膜3の表面に局在しやすい金属、もしくは銀と硫黄との結合力より、銀との結合力が強い金属であることが好ましい。透明金属膜3に銀と共に含まれる銀以外の金属は、具体的にはゲルマニウム、ビスマス、白金族、銅、金、モリブデン、亜鉛、ガリウム、スズ、インジウム、ネオジム、チタン、アルミニウム、タングステン、マンガン、鉄、ニッケル、イットリウム、及びマグネシウムである。好ましくはゲルマニウム、ビスマス、パラジウム、銅、金、及びネオジムである。透明金属膜3には、これらの金属が一種のみ含まれてもよく、二種以上含まれてもよい。 The transparent metal film 3 is made of an alloy of silver and a metal other than silver. When the metal other than silver contained in the transparent metal film 3 together with silver is an alloy with silver, the metal tends to localize on the surface of the transparent metal film 3 or the bonding strength between silver and sulfur. A metal having a strong bonding force is preferred. Specifically, metals other than silver contained in the transparent metal film 3 together with silver are germanium, bismuth, platinum group, copper, gold, molybdenum, zinc, gallium, tin, indium, neodymium, titanium, aluminum, tungsten, manganese, Iron, nickel, yttrium, and magnesium. Germanium, bismuth, palladium, copper, gold, and neodymium are preferable. The transparent metal film 3 may contain only one kind of these metals or two or more kinds.
 透明金属膜3に含まれる銀以外の金属の量は、透明金属膜3を構成する全原子の量に対して、0.01~10at%であることが好ましく、より好ましくは0.1~5at%であり、さらに好ましくは0.2~3at%である。透明金属膜3に他の金属が0.1at%以上含まれると、銀の硫化が抑制されやすい。一方、透明金属膜3に含まれる他の金属の量が10at%以下であると、透明金属膜3の光透過性が高まりやすい。透明金属膜に含まれる各原子の種類や、その含有量は、例えばXPS法等で特定される。 The amount of metal other than silver contained in the transparent metal film 3 is preferably 0.01 to 10 at%, more preferably 0.1 to 5 at% with respect to the total amount of atoms constituting the transparent metal film 3. %, And more preferably 0.2 to 3 at%. If the transparent metal film 3 contains other metals at 0.1 at% or more, silver sulfidation is easily suppressed. On the other hand, if the amount of the other metal contained in the transparent metal film 3 is 10 at% or less, the light transmittance of the transparent metal film 3 is likely to increase. The kind and content of each atom contained in the transparent metal film are specified by, for example, the XPS method.
 透明金属膜3のプラズモン吸収率は、波長400nm~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、さらに好ましくは5%以下である。波長400nm~800nmの一部にプラズモン吸収率が大きい領域があると、透明導電体100の導通領域aの透過光が着色しやすくなる。 The plasmon absorption rate of the transparent metal film 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 nm to 800 nm, more preferably 7% or less, and further preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 nm to 800 nm, the transmitted light of the conductive region a of the transparent conductor 100 is likely to be colored.
 透明金属膜3の波長400nm~800nmにおけるプラズモン吸収率は、以下の手順で測定される。
 (i)ガラス基板上に、白金パラジウムをマグネトロンスパッタ装置にて0.1nm成膜する。白金パラジウムの平均厚みは、スパッタ装置のメーカー公称値の成膜速度等から算出する。その後、白金パラジウムが付着した基板上にスパッタ法にて金属からなる膜を20nm成膜する。
The plasmon absorption rate at a wavelength of 400 nm to 800 nm of the transparent metal film 3 is measured by the following procedure.
(I) A platinum palladium film is formed to a thickness of 0.1 nm on a glass substrate using a magnetron sputtering apparatus. The average thickness of platinum palladium is calculated from the film forming speed and the like of the manufacturer's nominal value of the sputtering apparatus. Thereafter, a film made of metal is formed to a thickness of 20 nm on the substrate to which platinum palladium is adhered by sputtering.
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の透過率及び反射率を測定する。そして各波長における透過率及び反射率から、吸収率=100-(透過率+反射率)を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。 (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the transmittance and the reflectance of the metal film are measured. Then, from the transmittance and reflectance at each wavelength, absorption rate = 100− (transmittance + reflectance) is calculated and used as reference data. The transmittance and reflectance are measured with a spectrophotometer.
 (iii)続いて、測定対象の透明金属膜について、同様に透過率及び反射率を測定する。そして、得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 (Iii) Subsequently, the transmittance and reflectance of the transparent metal film to be measured are measured in the same manner. Then, the reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
 透明金属膜3の厚みは10nm以下であることが好ましく、好ましくは3~9nmであり、さらに好ましくは5~8nmである。透明金属膜3の厚みが10nm以下であると、透明金属膜3に金属本来の反射が生じ難い。さらに、透明金属膜3の厚みが10nm以下であると、後述するように、第一高屈折率層2及び第二高屈折率層4によって、透明導電体100の光学アドミッタンスが調整されやすく、導通領域a表面での光の反射が抑制されやすい。透明金属膜3の厚みは、エリプソメーターで測定される。 The thickness of the transparent metal film 3 is preferably 10 nm or less, preferably 3 to 9 nm, and more preferably 5 to 8 nm. If the transparent metal film 3 has a thickness of 10 nm or less, the transparent metal film 3 is less likely to reflect the original metal. Furthermore, when the thickness of the transparent metal film 3 is 10 nm or less, the optical admittance of the transparent conductor 100 is easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 4 as described later, and the conduction Reflection of light on the surface of the region a is likely to be suppressed. The thickness of the transparent metal film 3 is measured with an ellipsometer.
 透明金属膜3は、いずれの成膜方法で成膜された膜でありうるが、前述のように、透明導電体の波長400~1000nmの光の平均透過率を80%以上とするためには、スパッタ法で成膜された膜;イオンアシスト法等で成膜された膜;もしくは後述する下地層上に成膜された膜であることが好ましい。 The transparent metal film 3 can be a film formed by any film forming method, but as described above, in order to make the average transmittance of light with a wavelength of 400 to 1000 nm of the transparent conductor 80% or more. A film formed by a sputtering method; a film formed by an ion assist method or the like; or a film formed on an underlayer described later.
 スパッタ法やイオンアシスト法では、成膜時に材料が被成膜体に高速で衝突するため、緻密かつ平滑な膜が得られやすく;透明金属膜3の光透過性が高まりやすい。スパッタ法の種類は特に制限されず、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法、対向スパッタ法等でありうる。透明金属膜3は、特に対向スパッタ法で成膜された膜であることが好ましい。透明金属膜3が、対向スパッタ法で成膜された膜であると、透明金属膜3が緻密になり、表面平滑性が高まりやすい。その結果、透明金属膜3の表面電気抵抗がより低くなり、光の透過率も高まりやすい。 In the sputtering method or the ion assist method, since the material collides with the deposition target at high speed during film formation, it is easy to obtain a dense and smooth film; the light transmittance of the transparent metal film 3 is likely to increase. The type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like. The transparent metal film 3 is particularly preferably a film formed by a counter sputtering method. When the transparent metal film 3 is a film formed by the facing sputtering method, the transparent metal film 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent metal film 3 becomes lower and the light transmittance is likely to increase.
 スパッタ法で透明金属膜3を成膜する場合、銀及び他の金属を所望の比率で混合した合金をスパッタリングターゲットにしてもよく、銀及び他の金属をそれぞれスパッタリングターゲットにしてもよい。 When the transparent metal film 3 is formed by sputtering, an alloy in which silver and other metals are mixed in a desired ratio may be used as a sputtering target, and silver and other metals may be used as sputtering targets.
 一方、透明金属膜3が後述する下地層上に成膜された膜である場合、透明金属膜3の成膜時に下地層が成長核となるため、透明金属膜3が平滑な膜になりやすい。その結果、透明金属膜3が薄くとも、プラズモン吸収が生じ難くなる。この場合、透明金属膜3の成膜方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法でありうる。 On the other hand, when the transparent metal film 3 is a film formed on an underlayer described later, the underlayer becomes a growth nucleus when the transparent metal film 3 is formed, so that the transparent metal film 3 tends to be a smooth film. . As a result, even if the transparent metal film 3 is thin, plasmon absorption hardly occurs. In this case, the method for forming the transparent metal film 3 is not particularly limited, and may be a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
 また、透明金属膜3が所望の形状にパターニングされた膜である場合、パターニング方法は特に制限されない。透明金属膜3は、例えば、所望のパターンを有するマスクを配置して成膜された膜であってもよく;公知のエッチング法によってパターニングされた膜であってもよい。 Further, when the transparent metal film 3 is a film patterned into a desired shape, the patterning method is not particularly limited. The transparent metal film 3 may be, for example, a film formed by arranging a mask having a desired pattern; it may be a film patterned by a known etching method.
 1-4)第二高屈折率層
 第二高屈折率層4は、透明導電体100の導通領域a、つまり透明金属膜3が成膜されている領域の光透過性(光学アドミッタンス)を調整し、かつ透明金属膜3を外部の水分等から保護するための層である。したがって、第二高屈折率層4は、透明導電体100の導通領域aに形成される。第二高屈折率層4は、透明導電体100の絶縁領域bに形成されてもよいが、後述するように、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
1-4) Second High Refractive Index Layer The second high refractive index layer 4 adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor 100, that is, the region where the transparent metal film 3 is formed. And is a layer for protecting the transparent metal film 3 from external moisture and the like. Therefore, the second high refractive index layer 4 is formed in the conduction region a of the transparent conductor 100. The second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductor 100. However, as will be described later, the second high-refractive index layer 4 is conductive from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b. It is preferably formed only in the region a.
 第二高屈折率層4には、前述の透明基板1の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料が含まれる。当該誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第二高屈折率層4に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料または酸化物半導体材料の屈折率が1.5より大きいと、第二高屈折率層4によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。なお、第二高屈折率層4の屈折率は、第二高屈折率層4に含まれる材料の屈折率や、第二高屈折率層4に含まれる材料の密度で調整される。 The second high refractive index layer 4 includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 1 described above. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable. On the other hand, the specific refractive index of light with a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 is preferably greater than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4. The refractive index of the second high refractive index layer 4 is adjusted by the refractive index of the material included in the second high refractive index layer 4 and the density of the material included in the second high refractive index layer 4.
 第二高屈折率層4に含まれる誘電性材料または酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料または酸化物半導体材料は、上記屈折率を有する金属酸化物でありうる。当該金属酸化物は、第一高屈折率層に含まれる金属酸化物と同様でありうる。第二高屈折率層4は、当該金属酸化物が1種のみ含まれる層であってもよく、2種以上含まれる層であってもよい。 The dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 may be an insulating material or a conductive material. The dielectric material or the oxide semiconductor material may be a metal oxide having the above refractive index. The metal oxide can be the same as the metal oxide contained in the first high refractive index layer. The second high refractive index layer 4 may be a layer containing only one kind of the metal oxide or a layer containing two or more kinds.
 第二高屈折率層4に含まれる誘電性材料または酸化物半導体材料は、ZnSでもありうる。第二高屈折率層4にZnSが含まれると、第二高屈折率層4側から水分が透過し難くなり、透明金属膜3の腐食が抑制される。ただし、ZnSは比較的高い結晶性を有し、ZnSのみからなる膜は剛直な膜になりやすい。そこで、第二高屈折率層4は、ZnSと金属酸化物または金属フッ化物とを含むアモルファス層であることが好ましい。アモルファス層に含まれる金属酸化物や金属フッ化物は、ZnSをアモルファス化することが可能な化合物であれば特に制限されず、第一高屈折率層2にZnSと共に含まれる金属酸化物や金属フッ化物等と同様の化合物でありうる。これらは第二高屈折率層4に一種のみ含まれてもよく、二種以上含まれてもよい。ZnSと共に含まれる化合物は、特に好ましくはSiOである。 The dielectric material or the oxide semiconductor material included in the second high refractive index layer 4 may be ZnS. When ZnS is contained in the second high refractive index layer 4, it becomes difficult for moisture to permeate from the second high refractive index layer 4 side, and corrosion of the transparent metal film 3 is suppressed. However, ZnS has a relatively high crystallinity, and a film made of only ZnS tends to be a rigid film. Therefore, the second high refractive index layer 4 is preferably an amorphous layer containing ZnS and a metal oxide or metal fluoride. The metal oxide or metal fluoride contained in the amorphous layer is not particularly limited as long as it is a compound capable of amorphizing ZnS, and the metal oxide or metal fluoride contained in the first high refractive index layer 2 together with ZnS. It can be the same compound as the compound. These may be included in the second high refractive index layer 4 alone or in combination of two or more. Compounds included with ZnS is particularly preferably SiO 2.
 第二高屈折率層4がアモルファス層である場合、当該アモルファス層には、アモルファス層の総体積に対してZnSが0.1~95体積%含まれることが好ましく、より好ましくは50~90体積%であり、さらに好ましくは70~85体積%である。ZnSの比率が高いとスパッタ速度が速くなり、第二高屈折率層4の成膜速度が速くなる。一方、ZnS以外の成分が多く含まれると、第二高屈折率層4の非晶質性が高まり、第二高屈折率層4の割れが抑制される。 When the second high refractive index layer 4 is an amorphous layer, the amorphous layer preferably contains 0.1 to 95% by volume of ZnS, more preferably 50 to 90% by volume with respect to the total volume of the amorphous layer. %, And more preferably 70 to 85% by volume. When the ratio of ZnS is high, the sputtering rate is increased, and the deposition rate of the second high refractive index layer 4 is increased. On the other hand, when many components other than ZnS are contained, the amorphous nature of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
 第二高屈折率層4の厚みは15nm以上150nm以下であることが好ましい。第二高屈折率層4の厚みは、より好ましくは15~150nmであり、さらに好ましくは20nm~80nmである。第二高屈折率層4の厚みが15nm以上であると、第二高屈折率層4によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。一方、第二高屈折率層4の厚みが150nm以下であれば、第二高屈折率層4が含まれる領域の光透過性が低下し難い。さらに、第二高屈折率層4のフレキシブル性も高まりやすい。第二高屈折率層4の厚みは、エリプソメーターで測定される。 The thickness of the second high refractive index layer 4 is preferably 15 nm or more and 150 nm or less. The thickness of the second high refractive index layer 4 is more preferably 15 to 150 nm, still more preferably 20 to 80 nm. When the thickness of the second high refractive index layer 4 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4. On the other hand, if the thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. Furthermore, the flexibility of the second high refractive index layer 4 is likely to increase. The thickness of the second high refractive index layer 4 is measured with an ellipsometer.
 第二高屈折率層4の成膜方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層であり得る。第二高屈折率層4の透湿性が低くなるとの観点から、第二高屈折率層4はスパッタ法で成膜された膜であることが特に好ましい。 The film formation method of the second high refractive index layer 4 is not particularly limited, and is formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. Layer. From the viewpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a film formed by sputtering.
 ここで、第二高屈折率層4がZnSと金属酸化物とを含むアモルファス層である場合、ZnS及び金属酸化物を所望の比率で混合した混合物を、蒸着源やスパッタリングターゲットとしてもよい。また、ZnS及び金属酸化物を共蒸着または共スパッタしてもよい。 Here, when the second high refractive index layer 4 is an amorphous layer containing ZnS and a metal oxide, a mixture obtained by mixing ZnS and a metal oxide in a desired ratio may be used as a vapor deposition source or a sputtering target. Further, ZnS and metal oxide may be co-evaporated or co-sputtered.
 また、第二高屈折率層4が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第二高屈折率層4は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよい。また、公知のエッチング法によってパターニングされた層であってもよい。 Further, when the second high refractive index layer 4 is a layer patterned into a desired shape, the patterning method is not particularly limited. The second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface. Moreover, the layer patterned by the well-known etching method may be sufficient.
 1-5)下地層
 前述のように、第一高屈折率層2と透明金属膜3との間に、透明金属膜3の成膜時に成長核となる下地層が含まれてもよい。下地層は、少なくとも透明導電体の導通領域aに成膜されていることが好ましく、透明導電体100の絶縁領域bに成膜されていてもよい。
1-5) Underlayer As described above, an underlayer serving as a growth nucleus when the transparent metal film 3 is formed may be included between the first high refractive index layer 2 and the transparent metal film 3. The underlayer is preferably formed at least in the conductive region a of the transparent conductor, and may be formed in the insulating region b of the transparent conductor 100.
 前述のように、透明導電体100に下地層が含まれると、透明金属膜3の厚みが薄くとも、透明金属膜3の表面の平滑性が高まる。その理由は以下の通りである。 As described above, when the transparent conductor 100 includes an underlayer, the smoothness of the surface of the transparent metal film 3 is enhanced even if the transparent metal film 3 is thin. The reason is as follows.
 一般的な気相成膜法で透明金属膜3の材料を第一高屈折率層2上に堆積させると、成膜初期には、第一高屈折率層2上に付着した原子がマイグレート(移動)し、原子が寄り集まって塊(島状構造)を形成する。そして、この塊にまとわりつきながら膜が成長する。そのため、成膜初期の膜では、塊同士の間に隙間があり、導通しない。この状態からさらに塊が成長すると、塊同士の一部が繋がり、かろうじて導通する。しかし、塊同士の間に未だ隙間があるため、プラズモン吸収が生じる。そして、さらに成膜が進むと、塊同士が完全に繋がって、プラズモン吸収が少なくなる。しかしその一方で、金属本来の反射が生じ、膜の光透過性が低下する。 When the material of the transparent metal film 3 is deposited on the first high refractive index layer 2 by a general vapor deposition method, atoms attached on the first high refractive index layer 2 are migrated at the initial stage of film formation. (Move) and atoms gather together to form a lump (island structure). And a film grows clinging to this lump. Therefore, in the film at the initial stage of film formation, there is a gap between the lumps and it is not conductive. When a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption occurs. As the film formation proceeds further, the lumps are completely connected and plasmon absorption is reduced. However, on the other hand, the intrinsic reflection of the metal occurs, and the light transmittance of the film decreases.
 これに対し、第一高屈折率層2上をマイグレートし難い金属からなる下地層が成膜されていると、当該下地層を成長核として、透明金属膜3が成長する。つまり、透明金属膜3の材料がマイグレートし難くなり、前述の島状構造を形成せずに膜が成長する。その結果、厚みが薄くとも平滑な透明金属膜3が得られやすくなる。 On the other hand, when a base layer made of a metal that is difficult to migrate is formed on the first high refractive index layer 2, the transparent metal film 3 grows using the base layer as a growth nucleus. That is, the material of the transparent metal film 3 is difficult to migrate, and the film grows without forming the island-like structure described above. As a result, it becomes easy to obtain a smooth transparent metal film 3 even if the thickness is small.
 ここで、下地層には、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウム;あるいはこれらの金属と他の金属との合金や、これらの金属の酸化物や硫化物(例えばZnS)が含まれることが好ましい。下地層には、これらが一種のみ含まれてもよく、二種以上が含まれてもよい。 Here, the base layer contains palladium, molybdenum, zinc, germanium, niobium, or indium; or an alloy of these metals with other metals, or an oxide or sulfide of these metals (for example, ZnS). Is preferred. The underlayer may contain only one kind, or two or more kinds.
 下地層に含まれるパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウムの量は、20質量%以上であることが好ましく、より好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。下地層に上記金属が20質量%以上含まれると、下地層と透明金属膜3との親和性が高まり、下地層と透明金属膜3との密着性が高まりやすい。下地層にはパラジウムまたはモリブデンが含まれることが特に好ましい。 The amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more. When the metal is contained in the base layer in an amount of 20% by mass or more, the affinity between the base layer and the transparent metal film 3 is increased, and the adhesion between the base layer and the transparent metal film 3 is likely to be increased. It is particularly preferable that the underlayer contains palladium or molybdenum.
 一方、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウムと合金を形成する金属は特に制限されないが、例えばパラジウム以外の白金族、金、コバルト、ニッケル、チタン、アルミニウム、クロム等でありうる。 On the other hand, the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, but may be a platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, or the like.
 下地層の厚みは、3nm以下であり、好ましくは0.5nm以下であり、より好ましくは単原子膜である。下地層は、透明基板1上に金属原子が互いに離間して付着している膜でもありうる。下地層の付着量が3nm以下であれば、下地層が透明導電体100の光学アドミッタンスに影響を及ぼし難い。下地層の有無はICP-MS法で確認される。また、下地層の厚みは、成膜速度と成膜時間との積から算出される。 The thickness of the underlayer is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film. The underlayer can also be a film in which metal atoms adhere to the transparent substrate 1 with a distance therebetween. If the adhesion amount of the underlayer is 3 nm or less, the underlayer is unlikely to affect the optical admittance of the transparent conductor 100. The presence or absence of the underlayer is confirmed by the ICP-MS method. Further, the thickness of the underlayer is calculated from the product of the film formation speed and the film formation time.
 下地層は、スパッタ法または蒸着法で成膜された層でありうる。スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等が含まれる。下地層成膜時のスパッタ時間は、所望の下地層の平均厚み、及び成膜速度に合わせて適宜選択される。スパッタ成膜速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 The underlayer can be a layer formed by sputtering or vapor deposition. Examples of the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method. The sputtering time during the underlayer film formation is appropriately selected according to the desired average thickness of the underlayer and the film formation speed. The sputter deposition rate is preferably from 0.1 to 15 Å / second, more preferably from 0.1 to 7 秒 / second.
 一方、蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、所望の下地層の厚み、及び成膜速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 On the other hand, examples of the vapor deposition method include vacuum vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method and the like. The deposition time is appropriately selected according to the desired thickness of the underlayer and the film formation rate. The deposition rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 下地層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。下地層は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 When the ground layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The underlayer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface; patterned by a known etching method It may be a layer.
 1-6)低屈折率層
 前述のように、本発明の透明導電体100には、第二高屈折率層4上に、透明導電体の導通領域aの光透過性(光学アドミッタンス)を調整する低屈折率層が含まれてもよい。低屈折率層は、透明導電体100の導通領域aにのみ成膜されていてもよく、透明導電体100の導通領域a及び絶縁領域bの両方に成膜されていてもよい。
1-6) Low Refractive Index Layer As described above, in the transparent conductor 100 of the present invention, the light transmittance (optical admittance) of the conductive region a of the transparent conductor is adjusted on the second high refractive index layer 4. A low refractive index layer may be included. The low refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
 低屈折率層には、第一高屈折率層2に含まれる誘電性材料または酸化物半導材料、及び第二高屈折率層4に含まれるZnSの波長570nmの光の屈折率より、波長570nmの光の屈折率が低い誘電性材料または酸化物半導体材料が含まれる。低屈折率層に含まれる誘電性材料または酸化物半導体材料の波長570nmの光屈折率は、第一高屈折率層2及び第二高屈折率層4に含まれる上記材料の波長570nmの光の屈折率より、それぞれ0.2以上低いことが好ましく、0.4以上低いことがより好ましい。 The low refractive index layer includes a dielectric material or an oxide semiconductor material included in the first high refractive index layer 2 and a refractive index of light having a wavelength of 570 nm of ZnS included in the second high refractive index layer 4. A dielectric material or an oxide semiconductor material having a low refractive index of light at 570 nm is included. The light refractive index of the dielectric material or oxide semiconductor material included in the low refractive index layer at a wavelength of 570 nm is the light refractive index of the above material included in the first high refractive index layer 2 and the second high refractive index layer 4. The refractive index is preferably 0.2 or more and more preferably 0.4 or more, respectively.
 低屈折率層に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の具体的な屈折率は1.8未満であることが好ましく、より好ましくは1.30~1.6であり、特に好ましくは1.35~1.5である。なお、低屈折率層の屈折率は主に、低屈折率層に含まれる材料の屈折率や、低屈折率層に含まれる材料の密度で調整される。 The specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is preferably less than 1.8, more preferably 1.30 to 1.6, Particularly preferred is 1.35 to 1.5. The refractive index of the low refractive index layer is mainly adjusted by the refractive index of the material included in the low refractive index layer and the density of the material included in the low refractive index layer.
 低屈折率層に含まれる誘電性材料または酸化物半導体材料は、MgF、SiO、AlF、CaF、CeF、CdF、LaF、LiF、NaF、NdF、YF、YbF、Ga、LaAlO、NaAlF、Al、MgO、及びThO等でありうる。誘電性材料または酸化物半導体材料は中でも、MgF、SiO、CaF、CeF、LaF、LiF、NaF、NdF、NaAlF、Al、MgO、またはThOであることが好ましく、屈折率が低いとの観点から、MgF及びSiOが特に好ましい。低屈折率層には、これらの材料が1種のみ含まれてもよく、2種以上含まれてもよい。 The dielectric material or oxide semiconductor material contained in the low refractive index layer is MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, Nad, NdF 3 , YF 3 , YbF 3. , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, and ThO 2 . Dielectric material or an oxide semiconductor material is inter alia, is MgF 2, SiO 2, CaF 2 , CeF 3, LaF 3, LiF, NaF, NdF 3, Na 3 AlF 6, Al 2 O 3, MgO or ThO 2, In view of low refractive index, MgF 2 and SiO 2 are particularly preferable. Only one of these materials may be included in the low refractive index layer, or two or more of these materials may be included.
 低屈折率層の厚みは、10~150nmであることが好ましく、より好ましくは20~100nmである。低屈折率層の厚みが10nm以上であると、透明導電体表面の光学アドミッタンスが微調整されやすい。一方、低屈折率層の厚みが150nm以下であれば、透明導電体の厚みが薄くなる。低屈折率層の厚みは、エリプソメーターで測定される。 The thickness of the low refractive index layer is preferably 10 to 150 nm, more preferably 20 to 100 nm. When the thickness of the low refractive index layer is 10 nm or more, the optical admittance on the surface of the transparent conductor is easily finely adjusted. On the other hand, if the thickness of the low refractive index layer is 150 nm or less, the thickness of the transparent conductor is reduced. The thickness of the low refractive index layer is measured with an ellipsometer.
 低屈折率層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層であり得る。成膜の容易性等の観点から、低屈折率層は、電子ビーム蒸着法またはスパッタ法で成膜された層であることが好ましい。 The low refractive index layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of easiness of film formation, the low refractive index layer is preferably a layer formed by electron beam evaporation or sputtering.
 また、低屈折率層がパターニングされた層である場合、パターニング方法は特に制限されない。低屈折率層は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法でパターニングされた層であってもよい。 Further, when the low refractive index layer is a patterned layer, the patterning method is not particularly limited. The low refractive index layer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface; It may be a patterned layer.
 1-7)第三高屈折率層
 前述のように、本発明の透明導電体100には、低屈折率層上にさらに、透明導電体の導通領域aの光透過性(光学アドミッタンス)を調整する第三高屈折率層が含まれてもよい。第三高屈折率層は、透明導電体100の導通領域aにのみ成膜されていてもよく、透明導電体100の導通領域a及び絶縁領域bの両方に成膜されていてもよい。
1-7) Third High Refractive Index Layer As described above, in the transparent conductor 100 of the present invention, the light transmittance (optical admittance) of the conductive region a of the transparent conductor is further adjusted on the low refractive index layer. A third high refractive index layer may be included. The third high refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
 第三高屈折率層には、前述の透明基板1の屈折率及び前記低屈折率層の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料が含まれることが好ましい。
 第三高屈折率層に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料または酸化物半導体材料の屈折率が1.5より大きいと、第三高屈折率層によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。なお、第三高屈折率層の屈折率は、第三高屈折率層に含まれる材料の屈折率や、第三高屈折率層に含まれる材料の密度で調整される。
The third high refractive index layer preferably contains a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 and the refractive index of the low refractive index layer.
The specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5. Preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the third high refractive index layer. The refractive index of the third high refractive index layer is adjusted by the refractive index of the material included in the third high refractive index layer and the density of the material included in the third high refractive index layer.
 第三高屈折率層に含まれる誘電性材料または酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料または酸化物半導体材料は、金属酸化物または金属硫化物であることが好ましい。金属酸化物または金属硫化物の例には、前述の第一高屈折率層2または第二高屈折率層4に含まれる金属酸化物または金属硫化物等が含まれる。第三高屈折率層には、当該金属酸化物または金属硫化物が1種のみ含まれてもよく、2種以上が含まれてもよい。 The dielectric material or oxide semiconductor material included in the third high refractive index layer may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material is preferably a metal oxide or metal sulfide. Examples of the metal oxide or metal sulfide include the metal oxide or metal sulfide contained in the first high refractive index layer 2 or the second high refractive index layer 4 described above. The third high refractive index layer may contain only one kind of the metal oxide or metal sulfide, or may contain two or more kinds.
 第三高屈折率層の厚みは特に制限されず、好ましくは1~40nmであり、さらに好ましくは5~20nmである。第三高屈折率層の厚みが上記範囲であると、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。第三高屈折率層の厚みは、エリプソメーターで測定される。 The thickness of the third high refractive index layer is not particularly limited, and is preferably 1 to 40 nm, and more preferably 5 to 20 nm. When the thickness of the third high refractive index layer is within the above range, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted. The thickness of the third high refractive index layer is measured with an ellipsometer.
 第三高屈折率層の成膜方法は特に制限されず、第一高屈折率層2や第二高屈折率層4と同様の方法で成膜された層でありうる。 The film formation method of the third high refractive index layer is not particularly limited, and may be a layer formed by the same method as the first high refractive index layer 2 and the second high refractive index layer 4.
 1-8)硫化防止層
 前述のように、本発明の透明導電体では、第一高屈折率層2及び第二高屈折率層4のいずれか一方、もしくは両方にZnSが含まれる。そこで、ZnSが含まれる層と透明金属膜との間、具体的には第一高屈折率層2と透明金属膜3との間、もしくは透明金属膜3と第二高屈折率層4との間に、透明金属膜3の硫化を防止するための硫化防止層が含まれてもよい。第一高屈折率層2と透明金属膜3との間に前述の下地層が含まれる場合には、第一高屈折率層2と下地層との間に硫化防止層が含まれることが好ましい。硫化防止層は、透明導電体100の導通領域aのみに形成されてもよく、導通領域a及び絶縁領域bの両方に形成されてもよい。
1-8) Antisulfurization layer As described above, in the transparent conductor of the present invention, one or both of the first high refractive index layer 2 and the second high refractive index layer 4 contain ZnS. Therefore, between the layer containing ZnS and the transparent metal film, specifically, between the first high refractive index layer 2 and the transparent metal film 3, or between the transparent metal film 3 and the second high refractive index layer 4. Between them, a sulfidation preventing layer for preventing sulfidation of the transparent metal film 3 may be included. When the above-mentioned underlayer is included between the first high refractive index layer 2 and the transparent metal film 3, it is preferable that an antisulfurization layer is included between the first high refractive index layer 2 and the underlayer. . The sulfidation prevention layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b.
 透明金属膜3とZnSを含む層(第一高屈折率層2または第二高屈折率層4)とが隣接して成膜されると、透明金属膜3の成膜時、もしくは第二高屈折率層4の成膜時に、透明金属膜中の金属が硫化されて金属硫化物が生成し、透明導電体の光透過性が低下することがある。これに対し、第一高屈折率層2と透明金属膜3との間、もしくは透明金属膜3と第二高屈折率層4との間に、硫化防止層が含まれると、金属硫化物の生成が抑制される。 When the transparent metal film 3 and the layer containing ZnS (the first high-refractive index layer 2 or the second high-refractive index layer 4) are formed adjacent to each other, When the refractive index layer 4 is formed, the metal in the transparent metal film is sulfided to form a metal sulfide, which may reduce the light transmittance of the transparent conductor. On the other hand, when an antisulfurization layer is included between the first high refractive index layer 2 and the transparent metal film 3 or between the transparent metal film 3 and the second high refractive index layer 4, the metal sulfide Generation is suppressed.
 硫化防止層は、金属酸化物、金属窒化物、金属フッ化物、またはZnを含む層でありうる。硫化防止層には、これらが一種のみ含まれてもよく、二種以上含まれてもよい。 The sulfidation prevention layer may be a layer containing metal oxide, metal nitride, metal fluoride, or Zn. Only one of these may be contained in the antisulfurization layer, or two or more of them may be contained.
 金属酸化物の例には、TiO、ITO、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO、等が含まれる。
 金属フッ化物の例には、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等が含まれる。
 金属窒化物の例には、Si、AlN等が含まれる。
Examples of metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , etc. are included.
Examples of metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. .
Examples of the metal nitride include Si 3 N 4 , AlN, and the like.
 硫化防止層の厚みは、透明金属膜3の成膜時、もしくは第二高屈折率層4の成膜時に、透明金属膜3が硫化されることを防止可能な厚みであれば、特に制限されない。ただし、第一高屈折率層2や第二高屈折率4に含まれるZnSは、透明金属膜3に含まれる金属との親和性が高い。そのため、硫化防止層の厚みが非常に薄いと、透明金属膜3と第一高屈折率層2、または透明金属膜3と第二高屈折率層4とが接する部分が生じ、各層同士の密着性が高まりやすい。つまり、硫化防止層は比較的薄いことが好ましく、0.1nm~10nmであることが好ましく、より好ましくは0.5nm~5nmであり、さらに好ましくは1nm~3nmである。硫化防止層の厚みは、エリプソメーターで測定される。 The thickness of the sulfidation preventing layer is not particularly limited as long as the transparent metal film 3 can be prevented from being sulfided when the transparent metal film 3 is formed or when the second high refractive index layer 4 is formed. . However, ZnS contained in the first high refractive index layer 2 and the second high refractive index 4 has high affinity with the metal contained in the transparent metal film 3. Therefore, when the thickness of the sulfidation prevention layer is very thin, a portion where the transparent metal film 3 and the first high refractive index layer 2 or the transparent metal film 3 and the second high refractive index layer 4 are in contact with each other is generated, and the adhesion between the layers Easy to increase. That is, the antisulfurization layer is preferably relatively thin, preferably 0.1 nm to 10 nm, more preferably 0.5 nm to 5 nm, and even more preferably 1 nm to 3 nm. The thickness of the antisulfurization layer is measured with an ellipsometer.
 硫化防止層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層でありうる。 The anti-sulfurization layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
 硫化防止層が、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。硫化防止層は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 When the antisulfurization layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The sulfidation prevention layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the film formation surface; patterned by a known etching method It may be a layer formed.
 2.透明導電体の光学アドミッタンスについて
 本発明の透明導電体100では、透明金属膜3が、第一高屈折率層2及び第二高屈折率層4に挟み込まれている。その結果、透明金属膜3が含まれる領域;つまり導通領域aの表面の反射が抑制され、導通領域aの光の透過性が高まる。
2. Optical Admittance of Transparent Conductor In the transparent conductor 100 of the present invention, the transparent metal film 3 is sandwiched between the first high refractive index layer 2 and the second high refractive index layer 4. As a result, the reflection of the surface of the region including the transparent metal film 3; that is, the conduction region a is suppressed, and the light transmittance of the conduction region a is increased.
 透明導電体(導通領域a)の表面(透明導電体における透明基板と反対側の表面)の反射率Rは、光が入射する媒質の光学アドミッタンスYenvと、透明導電体の表面の等価アドミッタンスYとから定まる。ここで光が入射する媒質とは、透明導電体に入射する光が、その入射直前に通過する部材または環境であって;有機樹脂からなる部材、もしくは環境をいう。媒質の光学アドミッタンスYenvと、透明導電体の表面の等価アドミッタンスYとの関係は以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
 上記の式に基づけば、|Yenv-Y|が0に近い程、透明導電体(導通領域a)の表面の反射率Rが低くなる。
The reflectance R of the surface of the transparent conductor (conducting region a) (the surface of the transparent conductor opposite to the transparent substrate) is determined by the optical admittance Y env of the medium on which light is incident and the equivalent admittance Y of the surface of the transparent conductor. Determined from E. Here, the medium on which the light is incident refers to a member or environment through which light incident on the transparent conductor passes immediately before the incident; a member or environment made of an organic resin. The relationship between the optical admittance Y env of the medium and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Based on the above formula, the closer the value | Y env −Y E | is to 0, the lower the reflectance R of the surface of the transparent conductor (conduction region a).
 前記媒質の光学アドミッタンスYenvは、電場強度と磁場強度との比(H/E)から求められ、媒質の屈折率nenvと同一である。一方、等価アドミッタンスYは、透明導電体を構成する層の光学アドミッタンスYから求められる。例えば透明導電体(導通領域a)が一層からなる場合には、透明導電体の等価アドミッタンスYは、当該層の光学アドミッタンスY(屈折率)と等しくなる。 The optical admittance Y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is the same as the refractive index n env of the medium. On the other hand, the equivalent admittance Y E is determined from the optical admittance Y of the layers constituting the transparent conductor. For example, when the transparent conductor (conductive region a) is composed of one is equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
 一方、透明導電体が積層体である場合、1層目からx層目までの積層体の光学アドミッタンスY(E H)は、1層目から(x-1)層目までの積層体の光学アドミッタンスYx-1(Ex-1 Hx-1)と、特定のマトリクスとの積で表され;具体的には以下の式(1)または式(2)にて求められる。 On the other hand, when the transparent conductor is a laminate, the optical admittance Y x (E x H x ) of the laminate from the first layer to the x layer is the laminate from the first layer to the (x−1) layer. It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the body and a specific matrix; specifically, it is obtained by the following formula (1) or formula (2).
・x層目が誘電性材料または酸化物半導体材料からなる層である場合
Figure JPOXMLDOC01-appb-M000002
When the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
Figure JPOXMLDOC01-appb-M000002
・x層目が理想金属層である場合
Figure JPOXMLDOC01-appb-M000003
・ When the xth layer is an ideal metal layer
Figure JPOXMLDOC01-appb-M000003
 そして、x層目が最表層であるときの、透明基板から最表層までの積層物の光学アドミッタンスY(E H)が、当該透明導電体の等価アドミッタンスYとなる。 When the x-th layer is the outermost layer, the optical admittance Y x (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E of the transparent conductor.
 図4Aに、後述する実施例1の透明導電体(透明基板/第一高屈折率層(ZnS-SiO)/下地層(Mo)/透明金属膜(Ag合金)/第二高屈折率層(ZnS-SiO)を備える透明導電体)の導通領域aの波長570nmのアドミッタンス軌跡を示す。グラフの横軸は、当該領域の光学アドミッタンスYをx+iyで表したときの実部;つまり当該式におけるxであり、縦軸は光学アドミッタンスの虚部;つまり当該式におけるyである。なお、実施例1の透明導電体では、下地層の厚みが十分に薄いため、その光学アドミッタンスは無視できる。 FIG. 4A shows a transparent conductor (transparent substrate / first high refractive index layer (ZnS—SiO 2 ) / underlayer (Mo) / transparent metal film (Ag alloy) / second high refractive index layer of Example 1 described later. shows the admittance locus of wavelength 570nm conductive region a transparent conductor) with a (ZnS-SiO 2). The horizontal axis of the graph is the real part when the optical admittance Y of the region is represented by x + iy; that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance; that is, y in the equation. In addition, in the transparent conductor of Example 1, since the thickness of a base layer is thin enough, the optical admittance can be disregarded.
 図4Aにおいて、アドミッタンス軌跡の最終座標が、導通領域aの等価アドミッタンスYである。そして、等価アドミッタンスYの座標(x,y)と、光が入射する媒質のアドミッタンス座標(nenv,0)(図示せず)との距離が、透明導電体の導通領域aの表面の反射率Rに比例する。 In Figure 4A, the final coordinates of the admittance locus is equivalent admittance Y E conductive region a. The distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) (not shown) of the medium on which the light is incident is the surface of the conductive region a of the transparent conductor. It is proportional to the reflectance R of
 透明金属膜は、一般的に光学アドミッタンスの虚部の値が大きい。そのため、透明基板上に直接透明金属膜を積層すると、アドミッタンス軌跡が縦軸(虚部)方向に大きく移動する。図5Aに、透明基板/透明金属膜/高屈折率層をこの順に備える透明導電体の波長570nmのアドミッタンス軌跡を示し、図5Bに当該透明導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示す。図5Aに示されるように、透明基板上に直接透明金属膜を積層すると、アドミッタンス軌跡の始点(透明基板のアドミッタンス座標(約1.5,0))から縦軸(虚部)方向にアドミッタンス軌跡が大きく移動し、アドミッタンス座標の虚部の絶対値が非常に大きくなる。そしてアドミッタンス座標の虚部の絶対値が大きくなると、透明金属膜上に高屈折率層を積層しても、等価アドミッタンスYが、光が入射する媒質のアドミッタンス座標(nenv,0)に近づき難い。 A transparent metal film generally has a large imaginary value of optical admittance. Therefore, when a transparent metal film is laminated directly on a transparent substrate, the admittance locus greatly moves in the vertical axis (imaginary part) direction. FIG. 5A shows an admittance locus of a transparent conductor having a transparent substrate / transparent metal film / high refractive index layer in this order, and FIG. 5B shows an admittance locus of the transparent conductor having a wavelength of 450 nm, a wavelength of 570 nm, and a wavelength of 700 nm. Show the trajectory. As shown in FIG. 5A, when a transparent metal film is laminated directly on a transparent substrate, the admittance locus in the direction of the vertical axis (imaginary part) from the start point of the admittance locus (the admittance coordinates (about 1.5,0) of the transparent substrate). Moves greatly, and the absolute value of the imaginary part of the admittance coordinates becomes very large. When the absolute value of the imaginary part of the admittance coordinates increases, the equivalent admittance Y E approaches the admittance coordinates (n env , 0) of the medium on which light is incident even if a high refractive index layer is laminated on the transparent metal film. hard.
 また、図5Aに示されるように、透明基板上に直接透明金属膜を積層すると、アドミッタンス軌跡が、グラフの横軸を中心に線対称になり難い。そして、特定波長(本発明では570nm)におけるアドミッタンス軌跡が、グラフの横軸を中心に線対称にならないと、図5Bに示されるように、他の波長(例えば450nmや700nm)における等価アドミッタンスYの座標が、大きくぶれやすい。そのため、反射率Rを十分に小さくできない波長領域が生じる。 Further, as shown in FIG. 5A, when a transparent metal film is directly laminated on a transparent substrate, the admittance locus is less likely to be line symmetric about the horizontal axis of the graph. If the admittance locus at a specific wavelength (570 nm in the present invention) is not line symmetric about the horizontal axis of the graph, as shown in FIG. 5B, equivalent admittance Y E at other wavelengths (for example, 450 nm and 700 nm). The coordinates of are easy to shake greatly. For this reason, a wavelength region in which the reflectance R cannot be sufficiently reduced occurs.
 これに対し、図4Aに示されるように、透明金属膜が、高い屈折率を有する層(第一高屈折率層及び第二高屈折率層)で挟み込まれると、第一高屈折率層によって、アドミッタンス軌跡の虚部の座標が正方向に大きく移動する。そして、透明金属膜によって、アドミッタンス軌跡が虚部の負方向に大きく移動しても、虚部の絶対値が大きくなり難くなる。また、透明金属膜の他方に配設された第二高屈折率層によって、アドミッタンス軌跡の虚部の座標が、再度正方向に大きく移動するため、等価アドミッタンスYが、光が入射する媒質のアドミッタンス座標(nenv,0)に近くなる。 On the other hand, as shown in FIG. 4A, when the transparent metal film is sandwiched between layers having a high refractive index (first high refractive index layer and second high refractive index layer), the first high refractive index layer The coordinates of the imaginary part of the admittance locus greatly move in the positive direction. And even if an admittance locus | trajectory largely moves to the negative direction of an imaginary part by a transparent metal film, the absolute value of an imaginary part becomes difficult to become large. In addition, since the coordinates of the imaginary part of the admittance locus are largely moved again in the positive direction by the second high refractive index layer disposed on the other side of the transparent metal film, the equivalent admittance Y E is applied to the medium on which the light is incident. Close to admittance coordinates (n env , 0).
 さらに、透明金属膜が高い屈折率を有する層(第一高屈折率層及び第二高屈折率層)で挟み込まれると、アドミッタンス軌跡がグラフの横軸を中心に線対称になりやすくなる。その結果、いずれの波長においても、等価アドミッタンスYが、光が入射する媒質のアドミッタンス座標(nenv,0)に近くなる。 Furthermore, when the transparent metal film is sandwiched between layers having a high refractive index (the first high refractive index layer and the second high refractive index layer), the admittance locus tends to be line symmetric about the horizontal axis of the graph. As a result, at any wavelength, the equivalent admittance Y E is close to the admittance coordinates (n env , 0) of the medium on which the light is incident.
 ここで、本発明の透明導電体では、透明金属膜の高屈折率層側の表面の波長570nmにおける光学アドミッタンスをY1(=x+iy)とし、透明金属膜の中間層側の表面の波長570nmにおける光学アドミッタンスをY2(=x+iy)とした場合に、x及びxのうちいずれか一方、もしくは両方が1.6以上であることが好ましい。xまたはxのうちいずれか一方が、1.6以上であると透明導電体の光透過性が高まりやすい。 Here, in the transparent conductor of the present invention, the optical admittance at a wavelength of 570 nm on the surface of the transparent metal film on the high refractive index layer side is Y1 (= x 1 + ii 1 ), and the wavelength on the surface of the transparent metal film on the intermediate layer side When the optical admittance at 570 nm is Y2 (= x 2 + iy 2 ), it is preferable that one or both of x 1 and x 2 is 1.6 or more. either one of x 1 and x 2 are, it tends enhanced light transmission of the transparent conductor If it is 1.6 or more.
 各層界面のアドミッタンスYと、各層に存在する電場強度Eとの間には、下記関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000004
 上記関係式に基づけば、透明金属膜表面の光学アドミッタンスY1及びY2の実数部(x及びx)が大きくなれば、電場強度Eが小さくなり、電場損失(光の吸収)が抑制される。すなわち、透明導電体の光透過性が十分に高まる。
The following relational expression holds between the admittance Y at the interface of each layer and the electric field strength E existing in each layer.
Figure JPOXMLDOC01-appb-M000004
Based on the above relational expression, if the real part (x 1 and x 2 ) of the optical admittances Y1 and Y2 on the surface of the transparent metal film is increased, the electric field strength E is decreased and the electric field loss (light absorption) is suppressed. . That is, the light transmittance of the transparent conductor is sufficiently increased.
 したがって、上記x及びxのうち、いずれか一方、もしくは両方が1.6以上であることが好ましく、より好ましくは1.8以上であり、さらに好ましくは2.0以上である。特にxが1.6以上であることが好ましい。またx及びxは、7.0以下であることが好ましく、より好ましくは5.5以下である。xは、第一高屈折率層の屈折率や、第一高屈折率層の厚み等で調整される。xは、xの値や透明金属膜の屈折率、第一透明金属膜の厚み等によって調整される。例えば、第一高屈折率層の屈折率が高い場合や、第一高屈折率層の厚みがある程度厚い場合には、x及びxの値が大きくなりやすい。またxとxとの差の絶対値(|x-x|)は1.5以下であることが好ましく、より好ましくは1.0以下であり、さらに好ましくは0.8以下である。 Accordingly, either one or both of x 1 and x 2 are preferably 1.6 or more, more preferably 1.8 or more, and further preferably 2.0 or more. In particular, x 1 is preferably 1.6 or more. The x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less. x 1 is the refractive index of the first high refractive index layer and is adjusted in such a thickness of the first high refractive index layer. x 2 is the refractive index of the values and the transparent metal film x 1, is adjusted by the thickness or the like of the first transparent metal film. For example, if and refractive index of the first high refractive index layer is high, when the thickness of the first high refractive index layer is somewhat thicker, the value of x 1 and x 2 tends to increase. The absolute value (| x 1 −x 2 |) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there.
 また、アドミッタンス軌跡は前述のように、グラフの横軸を中心に線対称であることが好ましい。したがって、上記Y1の虚部の座標yと、Y2の虚部の座標yが、y×y≦0を満たすことが好ましい。さらに、|y+y|が0.8未満であることが好ましく、より好ましくは0.5以下、さらに好ましくは0.3以下である。 Further, as described above, the admittance trajectory is preferably line symmetric about the horizontal axis of the graph. Therefore, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, it is preferable to satisfy the y 1 × y 2 ≦ 0. Furthermore, | y 1 + y 2 | is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less.
 さらに、前述のyが十分に大きいことが好ましい。前述のように、透明金属膜の光学アドミッタンスは虚部の値が大きく、アドミッタンス軌跡が縦軸(虚部)方向に大きく移動する。そのため、yが十分に大きければ、アドミッタンス座標の虚部の絶対値が適切な範囲に収まり、アドミッタンス軌跡が線対称になりやすい。yは0.2以上であることが好ましく、より好ましくは0.3~1.5であり、さらに好ましくは0.3~1.0である。一方、前述のyは、-0.3~-2.0であることが好ましく、より好ましくは-0.6~-1.5である。 Furthermore, it is preferable that the aforementioned y 1 is sufficiently large. As described above, the optical admittance of the transparent metal film has a large imaginary part value, and the admittance locus greatly moves in the vertical axis (imaginary part) direction. Therefore, if y 1 is sufficiently large, the absolute value of the imaginary part of the admittance coordinates fit in appropriate range, the admittance locus is likely to be axisymmetric. y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0. On the other hand, y 2 described above is preferably −0.3 to −2.0, and more preferably −0.6 to −1.5.
 一方、導通領域aの波長570nmの光の等価アドミッタンス座標(x,y)と、透明導電体の第二高屈折率層側の表面と接する部材もしくは環境(媒質)の波長570nmの光の等価アドミッタンス座標(nenv,0)との距離((x-nenv+(y0.5は、0.5未満であることが好ましく、さらに好ましくは0.3以下である。上記距離が0.5未満であれば、導通領域aの表面の反射率Rが十分に小さくなり、導通領域aの光の透過性が高まる。 On the other hand, the equivalent admittance coordinates (x E , y E ) of light having a wavelength of 570 nm in the conduction region a and the light of wavelength 570 nm in the member or environment (medium) in contact with the surface on the second high refractive index layer side of the transparent conductor. Distance from equivalent admittance coordinates (n env , 0) ((x E −n env ) 2 + (y E ) 2 ) 0.5 is preferably less than 0.5, more preferably 0.3 or less It is. When the distance is less than 0.5, the reflectance Ra of the surface of the conduction region a is sufficiently small, and the light transmittance of the conduction region a is increased.
 さらに、透明金属膜3がパターニングされている場合には、導通領域aの波長570nmの光の等価アドミッタンス座標(x,y)と、絶縁領域bの波長570nmの光の等価アドミッタンス座標((x,y)で表す)との距離、((x-x+(y-y0.5が0.5未満であることが好ましく、より好ましくは0.3以下である。導通領域aの等価アドミッタンス座標と、絶縁領域bの等価アドミッタンス座標との距離が近くなると、導通領域a及び絶縁領域bからなるパターンが視認され難くなる。また、|(xenv-x+(yenv-y-(xenv-x-(yenv-y|が0.01以下であることが好ましい。当該値が0.01以下であると、導通領域a及び絶縁領域bがいずれも視認され難くなる。 Further, when the transparent metal film 3 is patterned, an equivalent admittance coordinate (x E , y E ) of light with a wavelength of 570 nm in the conduction region a and an equivalent admittance coordinate (( x ( b , y b )), ((x E −x b ) 2 + (y E −y b ) 2 ) 0.5 is preferably less than 0.5, more preferably 0 .3 or less. When the distance between the equivalent admittance coordinates of the conduction region a and the equivalent admittance coordinates of the insulation region b is short, the pattern composed of the conduction region a and the insulation region b is difficult to be visually recognized. In addition, it is preferable that | (x env −x b ) 2 + (y env −y b ) 2 − (x env −x E ) 2 − (y env −y E ) 2 | When the value is 0.01 or less, it is difficult to visually recognize both the conduction region a and the insulation region b.
 導通領域aの等価アドミッタンスYの座標と、絶縁領域bの等価アドミッタンスYの座標とを十分に近づける;つまり((x-x+(y-y0.5を小さくするためには、(i)導通領域aのアドミッタンス軌跡がグラフの横軸を中心に線対称になるようにし、(ii)絶縁領域bには透明基板のみが含まれる構成とすることが好ましい。導通領域aのアドミッタンス軌跡がグラフの横軸を中心に線対称になると、Yの座標は、自ずと透明基板1のアドミッタンスに近づくからである。 The coordinates of the equivalent admittance Y E of the conducting areas a, sufficiently close to the coordinates of the equivalent admittance Y b of the insulating region b; that is ((x E -x b) 2 + (y E -y b) 2) 0. In order to make 5 smaller, (i) the admittance locus of the conduction region a is symmetrical with respect to the horizontal axis of the graph, and (ii) the insulation region b includes only a transparent substrate. Is preferred. When admittance locus conductive region a is in line symmetry about the horizontal axis of the graph, the coordinate of Y E is because approaching the naturally transparent substrate 1 admittance.
 3.透明導電体の物性について
 本発明の透明導電体の波長400~1000nmの光の平均透過率は80%以上であることが好ましく、より好ましくは83%以上、さらに好ましくは85%以上である。なお、透明金属膜3がパターニングされており、透明導電体100に導通領域a及び絶縁領域bが含まれる場合、いずれの領域においても、上記平均透過率は80%以上である。波長400~1000nmの光の平均透過率が80%以上であると、広い波長範囲の光に対して透明性が要求される用途、例えば太陽電池用の透明導電膜等にも透明導電体を適用することができる。
3. Regarding physical properties of transparent conductor The average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor of the present invention is preferably 80% or more, more preferably 83% or more, and further preferably 85% or more. When the transparent metal film 3 is patterned and the transparent conductor 100 includes the conductive region a and the insulating region b, the average transmittance is 80% or more in any region. When the average transmittance of light having a wavelength of 400 to 1000 nm is 80% or more, the transparent conductor is also applied to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. can do.
 また特に、透明導電体の波長450~800nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても83%以上であることが好ましく、より好ましくは85%以上であり、さらに好ましくは88%以上である。上記波長範囲における平均透過率が85%以上であると、透明導電体を、可視光に対して高い透明性が要求される用途に適用することができる。 In particular, the average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor is preferably 83% or more, more preferably 85% or more, and even more preferably in both the conduction region a and the insulation region b. Is 88% or more. When the average transmittance in the above wavelength range is 85% or more, the transparent conductor can be applied to applications requiring high transparency to visible light.
 一方、透明導電体の波長400nm~800nmの光の平均吸収率は、導通領域a及び絶縁領域bのいずれにおいても10%以下であることが好ましく、より好ましくは8%以下であり、さらに好ましくは7%以下である。また、透明導電体の波長450nm~800nmの光の吸収率の最大値は、導通領域a及び絶縁領域bのいずれにおいても15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは9%以下である。一方、透明導電体の波長500nm~700nmの光の平均反射率は、導通領域a及び絶縁領域bのいずれにおいても、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の平均吸収率及び平均反射率が低いほど、前述の平均透過率が高まる。 On the other hand, the average absorptance of light having a wavelength of 400 nm to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and still more preferably in both the conduction region a and the insulation region b. 7% or less. Further, the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 nm to 800 nm is preferably 15% or less, more preferably 10% or less, in any of the conduction region a and the insulation region b. Preferably it is 9% or less. On the other hand, the average reflectance of light with a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less. The lower the average absorptance and average reflectance of the transparent conductor, the higher the aforementioned average transmittance.
 上記平均透過率、平均反射率、及び平均反射率は、透明導電体の使用環境下での平均透過率、平均反射率、及び平均反射率であることが好ましい。具体的には、透明導電体が有機樹脂と貼り合わせて使用される場合には、透明導電体上に有機樹脂からなる層を配置して平均透過率及び平均反射率測定することが好ましい。一方、透明導電体が大気中で使用される場合には、大気中での平均透過率及び平均反射率を測定することが好ましい。透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を入射させて分光光度計で測定する。吸収率は、100-(透過率+反射率)の計算式より算出される。 The average transmittance, average reflectance, and average reflectance are preferably the average transmittance, average reflectance, and average reflectance under the usage environment of the transparent conductor. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. The transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The absorptance is calculated from a calculation formula of 100− (transmittance + reflectance).
 また透明導電体100に導通領域a及び絶縁領域bが含まれる場合、導通領域aの反射率及び絶縁領域bの反射率がそれぞれ近似することが好ましい。具体的には、導通領域aの視感反射率と、絶縁領域bの視感反射率との差ΔRが3%以下であることが好ましく、より好ましくは1%以下であり、さらに好ましくは0.3%以下である。一方、導通領域a及び絶縁領域bの視感反射率は、それぞれ5%以下であることが好ましく、より好ましくは3%以下であり、さらに好ましくは1%以下である。視感反射率は、分光光度計(U4100;日立ハイテクノロジーズ社製)で測定されるY値である。 In addition, when the conductive region a and the insulating region b are included in the transparent conductor 100, it is preferable that the reflectance of the conductive region a and the reflectance of the insulating region b are approximated. Specifically, the difference ΔR between the luminous reflectance of the conductive region a and the luminous reflectance of the insulating region b is preferably 3% or less, more preferably 1% or less, and even more preferably 0. .3% or less. On the other hand, the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less. The luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
 また透明導電体100に導通領域a及び絶縁領域bが含まれる場合、いずれの領域においても、L*a*b*表色系におけるa*値及びb*値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L*a*b*表色系におけるa*値及びb*値が±30以内であれば、導通領域a及び絶縁領域bのいずれの領域も無色透明に観察される。L*a*b*表色系におけるa*値及びb*値は、分光光度計で測定される。 In addition, when the transparent conductor 100 includes the conduction region a and the insulation region b, the a * value and the b * value in the L * a * b * color system are preferably within ± 30 in any region. More preferably, it is within ± 5, more preferably within ± 3.0, and particularly preferably within ± 2.0. If the a * value and the b * value in the L * a * b * color system are within ± 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の導通領域aの表面電気抵抗は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。導通領域の表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。導通領域aの表面電気抵抗値は、透明金属膜の厚み等によって調整される。導通領域aの表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。 The surface electric resistance of the conductive region a of the transparent conductor is preferably 50Ω / □ or less, more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50 Ω / □ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel. The surface electric resistance value of the conduction region a is adjusted by the thickness of the transparent metal film. The surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, or the like. It is also measured by a commercially available surface electrical resistivity meter.
 4.透明導電体の用途
 前述の透明導電体は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
4). Applications of transparent conductors The above-mentioned transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
 このとき、透明導電体の表面(例えば、透明基板と反対側の表面)は、接着層等を介して、他の部材と貼り合わせられてもよい。この場合には、前述のように、透明導電体の表面の等価アドミッタンス座標と、接着層のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と接着層との界面での反射が抑制される。 At this time, the surface of the transparent conductor (for example, the surface opposite to the transparent substrate) may be bonded to another member via an adhesive layer or the like. In this case, as described above, it is preferable that the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer approximate each other. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
 一方、透明導電体の表面が空気と接するような構成で使用される場合には、透明導電体の表面のアドミッタンス座標と、空気のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と空気との界面での光の反射が抑制される。 On the other hand, when used in a configuration in which the surface of the transparent conductor is in contact with air, it is preferable that the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by this.
 [実施例1]
 シクロオレフィンポリマーからなるフィルム(厚み100μm)上に、下記の方法で、第一高屈折率層(ZnS-SiO)/下地層(Mo)/透明金属膜(APC合金)/第二高屈折率層(ZnS-SiO)をこの順に積層した。その後、当該積層体を下記の方法でパターニングした。各層の厚みは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。ただし、下地層の平均厚みはスパッタ装置のメーカー公称値の成膜速度から算出した。得られた透明導電体の分光特性を図4Bに示す。
[Example 1]
A first high refractive index layer (ZnS-SiO 2 ) / underlayer (Mo) / transparent metal film (APC alloy) / second high refractive index on a film made of cycloolefin polymer (thickness 100 μm) by the following method. Layers (ZnS—SiO 2 ) were stacked in this order. Thereafter, the laminate was patterned by the following method. The thickness of each layer is described in J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer. However, the average thickness of the underlayer was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. The spectral characteristic of the obtained transparent conductor is shown in FIG. 4B.
 (第一高屈折率層(ZnS-SiO))
 前記透明基板上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.0Å/sでZnS-SiOをRFスパッタした。ターゲット-基板間距離は90mmであった。
 ZnSとSiOとの比率(体積比)は、95:5であり、第一高屈折率層の屈折率は2.14であった。
(First high refractive index layer (ZnS—SiO 2 ))
On the transparent substrate, using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnS—SiO 2 at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, film formation rate 3.0 Å / s. Was RF sputtered. The target-substrate distance was 90 mm.
The ratio (volume ratio) between ZnS and SiO 2 was 95: 5, and the refractive index of the first high refractive index layer was 2.14.
 (下地層(Mo))
 前記第一高屈折率層上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力50W、成膜レート0.4Å/sでMoをDCスパッタした。ターゲット-基板間距離は86mmであった。
(Underlayer (Mo))
On the first high-refractive index layer, L-430S-FHS manufactured by Anelva is used, and Ar is 20 sccm, sputtering pressure is 0.5 Pa, room temperature, target-side power is 50 W, and deposition rate is 0.4 Å / s. Sputtered. The target-substrate distance was 86 mm.
(透明金属膜(APC合金))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAPC合金(フルヤ金属社製)をRFスパッタした。ターゲット-基板間距離は86mmであった。
(Transparent metal film (APC alloy))
APC alloy (manufactured by Furuya Metal Co., Ltd.) was RF-sputtered using L-430S-FHS manufactured by Anerva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 Å / s. The target-substrate distance was 86 mm.
 (第二高屈折率層(ZnS-SiO))
 前記透明金属膜上に、第一高屈折率層と同様に、第二高屈折率層を成膜した。ZnSとSiOとの比率(体積比)は、95:5であり、第一高屈折率層の屈折率は2.14であった。
(Second high refractive index layer (ZnS-SiO 2 ))
Similar to the first high refractive index layer, a second high refractive index layer was formed on the transparent metal film. The ratio (volume ratio) between ZnS and SiO 2 was 95: 5, and the refractive index of the first high refractive index layer was 2.14.
 (積層体のパターニング)
 得られた積層体上にレジスト層をパターン状に成膜し、第一高屈折率層、下地層、透明金属膜、及び第二高屈折率層を図3に示されるパターン(複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン)状にITOエッチング液(林純薬製)でパターニングした。絶縁領域には、透明基板のみが含まれるものとした。また、ライン状の絶縁領域bの幅は16μmとした。
(Layer patterning)
A resist layer is formed in a pattern on the obtained laminate, and the first high-refractive index layer, the underlayer, the transparent metal film, and the second high-refractive index layer are formed in the pattern shown in FIG. a) and a line-shaped insulating region b separating the same), and patterned with an ITO etching solution (produced by Hayashi Junyaku). Only the transparent substrate was included in the insulating region. The width of the line-shaped insulating region b was 16 μm.
 [実施例2]
 コニカミノルタ製TACフィルム(厚み40μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC合金)/第二高屈折率層(ZnS-SiO)をこの順に積層した。
 下地層を成膜せず、第一高屈折率層及び第二高屈折率層のZnSとSiOとの比率(体積比)を80:20とした以外は、実施例1と同様に各層を成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図6に示す。
[Example 2]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC alloy) / second high refractive index layer (ZnS—SiO 2 ) were laminated in this order on a Konica Minolta TAC film (thickness 40 μm). .
Each layer was formed in the same manner as in Example 1 except that the base layer was not formed and the ratio (volume ratio) of ZnS and SiO 2 of the first high refractive index layer and the second high refractive index layer was 80:20. A film was formed.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 6 shows the spectral characteristics of the obtained transparent conductor.
 [実施例3]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC-SR合金)/第二高屈折率層(ZnS-SiO)をこの順に積層した。
 第一高屈折率層及び第二高屈折率層は、ZnSとSiOとの比率(体積比)を90:10とした以外は実施例1と同様に成膜した。
 透明金属膜は、成膜時のターゲットをAPC-SR合金(フルヤ金属社製)変更した以外は、実施例2と同様に各層を成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図7に示す。
[Example 3]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-SR alloy) / second high refractive index layer (ZnS—SiO 2) 2 ) were laminated in this order.
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 1 except that the ratio (volume ratio) of ZnS and SiO 2 was 90:10.
As the transparent metal film, each layer was formed in the same manner as in Example 2 except that the target during film formation was changed to an APC-SR alloy (manufactured by Furuya Metal Co., Ltd.).
The obtained laminate was patterned in the same manner as in Example 1. FIG. 7 shows the spectral characteristics of the obtained transparent conductor.
 [実施例4]
 ポリカーボネートからなるフィルム(厚み100μm)上に、第一高屈折率層(ZnS-SiO)/下地層(Pd)/透明金属膜(APC-SR合金)/第二高屈折率層(ZnS-SiO)をこの順に積層した。
 第一高屈折率層、及び第二高屈折率層は、それぞれ実施例2と同様に成膜した。
 下地層及び透明金属膜は、それぞれ以下の方法で成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図8に示す。
[Example 4]
On a film made of polycarbonate (thickness 100 μm), first high refractive index layer (ZnS—SiO 2 ) / underlayer (Pd) / transparent metal film (APC-SR alloy) / second high refractive index layer (ZnS—SiO 2) 2 ) were laminated in this order.
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2.
The underlayer and the transparent metal film were formed by the following methods, respectively.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the obtained transparent conductor are shown in FIG.
 (下地層(Pd))
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、パラジウムを0.4秒間成膜し、平均厚み0.2nmの成長核を形成した。
(Underlayer (Pd))
Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., palladium was deposited for 0.4 seconds to form growth nuclei with an average thickness of 0.2 nm.
(透明金属膜(APC-SR))
 FTSコーポレーション社の対向スパッタ機を用い、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート14Å/sでAgを対向スパッタした。ターゲット-基板間距離は90mmであった。
(Transparent metal film (APC-SR))
Using a counter sputtering machine manufactured by FTS Corporation, Ag was counter sputtered at an Ar of 20 sccm, a sputtering pressure of 0.5 Pa, a room temperature, a target power of 150 W, and a film formation rate of 14 K / s. The target-substrate distance was 90 mm.
 [実施例5]
 コニカミノルタ製TACフィルム(厚み40μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC-SR合金)/第二高屈折率層(ZnS-SiO)をこの順に積層した。
 透明金属膜は、実施例4と同様に成膜した。
 第一高屈折率層及び第二高屈折率層は、それぞれZnSとSiOとの比率(体積比)を70:30とした以外は実施例1と同様に成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図9に示す。
[Example 5]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-SR alloy) / second high refractive index layer (ZnS—SiO 2 ) in this order on a Konica Minolta TAC film (thickness 40 μm). Laminated.
The transparent metal film was formed in the same manner as in Example 4.
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 1 except that the ratio (volume ratio) of ZnS and SiO 2 was 70:30.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the obtained transparent conductor are shown in FIG.
 [実施例6]
 シクロオレフィンポリマーからなるフィルム(厚み100μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC-TR合金)/第二高屈折率層(ZnS-SiO)をこの順に積層した。
 第一高屈折率層及び第二高屈折率層は、それぞれ実施例2と同様に成膜した。
 透明金属膜は、成膜時のターゲットをAPC-TR合金に変更した以外は、実施例4と同様に成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図10に示す。
[Example 6]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / second high refractive index layer (ZnS—SiO 2 ) is formed on a film (thickness 100 μm) made of cycloolefin polymer. Laminated in order.
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2.
The transparent metal film was formed in the same manner as in Example 4 except that the target at the time of film formation was changed to APC-TR alloy.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 10 shows the spectral characteristics of the obtained transparent conductor.
 [実施例7]
 ガラスからなる透明基板(厚み50μm)上に、第一高屈折率層(ZnO)/下地層(Pd)/透明金属膜(APC-TR合金)/第二高屈折率層(ZnS-SiO)をこの順に積層した。
 第一高屈折率層は以下の方法で成膜した。
 下地層は実施例4と同様の方法で成膜した。
 透明金属膜は成膜時のターゲットをAPC-TR(フルヤ金属社製)とした以外は、実施例4と同様に成膜した。
 第二高屈折率層は、実施例2と同様に成膜した。得られた積層体を実施例1と同様にパターニングした。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図11に示す。
[Example 7]
On a transparent substrate (thickness 50 μm) made of glass, first high refractive index layer (ZnO) / underlayer (Pd) / transparent metal film (APC-TR alloy) / second high refractive index layer (ZnS—SiO 2 ) Were stacked in this order.
The first high refractive index layer was formed by the following method.
The underlayer was formed by the same method as in Example 4.
The transparent metal film was formed in the same manner as in Example 4 except that the target during film formation was APC-TR (manufactured by Furuya Metal Co., Ltd.).
The second high refractive index layer was formed in the same manner as in Example 2. The obtained laminate was patterned in the same manner as in Example 1.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 11 shows the spectral characteristics of the obtained transparent conductor.
 (第一高屈折率層(ZnO))
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/sでZnOをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnOの波長570nmの光の屈折率は、2.01であり、第一高屈折率層の波長570nmの光の屈折率も2.01とした。
(First high refractive index layer (ZnO))
Using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnO was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 liters / s. The target-substrate distance was 90 mm. The refractive index of light with a wavelength of 570 nm of ZnO was 2.01, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.01.
 [実施例8]
 コニカミノルタ製TACフィルム(厚み60μm)上に、第一高屈折率層(ITO)/下地層(Pd)/透明金属膜(Ag-Bi-Ge-Au合金)/第二高屈折率層(ZnS-SiO)を順に積層した。
 第一高屈折率層は以下の方法で成膜した。
 下地層は実施例4と同様の方法で成膜した。
 透明金属膜は成膜時のターゲットをGBR15(コベルコ科研社製:Ag(98.35at%)/Bi(0.35at%)/Ge(0.3%)/Au(1.0at%))とした以外は、実施例4と同様に成膜した。
 第二高屈折率層は、実施例2と同様の方法で成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図12に示す。
[Example 8]
On Konica Minolta TAC film (thickness 60 μm), first high refractive index layer (ITO) / underlayer (Pd) / transparent metal film (Ag—Bi—Ge—Au alloy) / second high refractive index layer (ZnS) -SiO 2 ) were sequentially laminated.
The first high refractive index layer was formed by the following method.
The underlayer was formed by the same method as in Example 4.
For the transparent metal film, the target at the time of film formation was GBR15 (manufactured by Kobelco Research Institute: Ag (98.35 at%) / Bi (0.35 at%) / Ge (0.3%) / Au (1.0 at%)). A film was formed in the same manner as in Example 4 except that.
The second high refractive index layer was formed by the same method as in Example 2.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the obtained transparent conductor are shown in FIG.
 (第一高屈折率層(ITO))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力150W、成膜レート2.0Å/sでITOをDCスパッタした。ターゲット-基板間距離は86mmであった。ITOの波長570nmの光の屈折率は、2.12であり、第一高屈折率層の波長570nmの光の屈折率も2.12とした。ITOは、In:SnO=90:10(質量%比)とした。
(First high refractive index layer (ITO))
Using Anelva L-430S-FHS, ITO was DC sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 150 W, and deposition rate 2.0 Å / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of ITO was 2.12, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.12. ITO is, In 2 O 3: SnO 2 = 90: was 10 (weight% ratio).
 [実施例9]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(Nb)/下地層(Pd)/透明金属膜(Ag-Bi-Ge-Au合金)/第二高屈折率層(ZnS-SiO)を順に積層した。
 第一高屈折率層は以下の方法で成膜した。
 下地層は実施例4と同様の方法で成膜した。
 透明金属膜、及び第二高屈折率層は、それぞれ実施例8と同様の方法で成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図13に示す。
[Example 9]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), first high refractive index layer (Nb 2 O 5 ) / underlayer (Pd) / transparent metal film (Ag—Bi—Ge—Au alloy) / A second high refractive index layer (ZnS—SiO 2 ) was laminated in order.
The first high refractive index layer was formed by the following method.
The underlayer was formed by the same method as in Example 4.
The transparent metal film and the second high refractive index layer were formed in the same manner as in Example 8.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the obtained transparent conductor are shown in FIG.
 (第一高屈折率層(Nb))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 1sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート1.2Å/sでNbをDCスパッタした。ターゲット-基板間距離は86mmであった。Nbの波長570nmの光の屈折率は、2.31であり、第一高屈折率層の波長570nmの光の屈折率も2.31とした。
(First high refractive index layer (Nb 2 O 5 ))
Nb 2 O 5 was DC sputtered at 20 sccm Ar, 1 sccm O 2 , sputtering pressure 0.5 Pa, room temperature, target side power 150 W, deposition rate 1.2 Å / s using L-430S-FHS manufactured by Anerva. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.31.
 [実施例10]
 コニカミノルタ製TACフィルム(厚み60μm)上に、第一高屈折率層(ZrO)/下地層(Pd)/透明金属膜(Ag-Bi合金)/第二高屈折率層(ZnS-SiO)を順に積層した。
 第一高屈折率層は以下の方法で成膜した。
 下地層は実施例4と同様の方法で成膜した。
 透明金属膜は、成膜ターゲットをGB100(コベルコ科研社製:Ag(99.0at%)/Bi(1.0at%))とした以外は、実施例1と同様の方法で成膜した。
 第二高屈折率層は、実施例2と同様に成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図14に示す。
[Example 10]
On a Konica Minolta TAC film (thickness 60 μm), first high refractive index layer (ZrO 2 ) / underlayer (Pd) / transparent metal film (Ag—Bi alloy) / second high refractive index layer (ZnS—SiO 2) ) In order.
The first high refractive index layer was formed by the following method.
The underlayer was formed by the same method as in Example 4.
The transparent metal film was formed by the same method as in Example 1 except that the film formation target was GB100 (manufactured by Kobelco Research Institute: Ag (99.0 at%) / Bi (1.0 at%)).
The second high refractive index layer was formed in the same manner as in Example 2.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 14 shows the spectral characteristics of the obtained transparent conductor.
 (第一高屈折率層(ZrO))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 1sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート0.5Å/sでZrOをRFスパッタした。ターゲット-基板間距離は86mmであった。ZrOの波長570nmの光の屈折率は、2.05であり、第一高屈折率層の波長570nmの光の屈折率も2.05とした。
(First high refractive index layer (ZrO 2 ))
Using Arnelva L-430S-FHS, ZrO 2 was RF sputtered at Ar 20 sccm, O 2 1 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power 150 W, and deposition rate 0.5 Å / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of ZrO 2 was 2.05, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.05.
 [実施例11]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(Ta)/下地層(Pd)/透明金属膜(Ag-Bi合金)/第二高屈折率層(ZnS-SiO)を順に積層した。
 第一高屈折率層は以下の方法で成膜した。
 下地層は実施例4と同様の方法で成膜した。
 透明金属膜は、成膜ターゲットをGB100(コベルコ科研社製:Ag(99.0at%)/Bi(1.0at%))とした以外は、実施例4と同様の方法で成膜した。
 第二高屈折率層は、実施例2と同様に成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図15に示す。
[Example 11]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), first high refractive index layer (Ta 2 O 5 ) / underlayer (Pd) / transparent metal film (Ag—Bi alloy) / second high refraction The rate layer (ZnS—SiO 2 ) was sequentially laminated.
The first high refractive index layer was formed by the following method.
The underlayer was formed by the same method as in Example 4.
The transparent metal film was formed in the same manner as in Example 4 except that the film formation target was GB100 (manufactured by Kobelco Research Institute: Ag (99.0 at%) / Bi (1.0 at%)).
The second high refractive index layer was formed in the same manner as in Example 2.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 15 shows the spectral characteristics of the obtained transparent conductor.
 (第一高屈折率層(Ta))
 Optorun社のGener 1300により、蒸着装置内の全圧が2.0×10-2Paとなるように酸素導入し、400mA、成膜レート4Å/sでTaをイオンアシストせずに電子ビーム(EB)蒸着した。Taの波長570nmの光の屈折率は2.16であり、第一高屈折率層の屈折率も2.16とした。
(First high refractive index layer (Ta 2 O 5 ))
The oxygen was introduced so that the total pressure in the vapor deposition apparatus would be 2.0 × 10 −2 Pa by Genen 1300 of Optorun, and the electron was not ion-assisted Ta 2 O 5 at 400 mA and a film formation rate of 4 Å / s. Beam (EB) deposition was performed. The refractive index of light with a wavelength of 570 nm of Ta 2 O 5 was 2.16, and the refractive index of the first high refractive index layer was also 2.16.
 [実施例12]
 コニカミノルタ製TACフィルム(厚み40μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC合金)/第二高屈折率層(ITO)をこの順に積層した。
 第一高屈折率層は、実施例2と同様に成膜した。
 透明金属膜は、実施例1と同様に成膜した。
 第二高屈折率層は、実施例8の第一高屈折率層と同様に成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図16に示す。
[Example 12]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC alloy) / second high refractive index layer (ITO) was laminated in this order on a Konica Minolta TAC film (thickness 40 μm).
The first high refractive index layer was formed in the same manner as in Example 2.
The transparent metal film was formed in the same manner as in Example 1.
The second high refractive index layer was formed in the same manner as the first high refractive index layer of Example 8.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 16 shows the spectral characteristics of the obtained transparent conductor.
 [実施例13]
 ガラスからなる透明基板(厚み50μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC-TR合金)/第二高屈折率層(IZO)を順に積層した。
 第一高屈折率層及び透明金属膜は、それぞれ実施例6と同様に成膜した。
 第二高屈折率層は、以下の方法で成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図17に示す。
[Example 13]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / second high refractive index layer (IZO) were laminated in this order on a transparent substrate (thickness 50 μm) made of glass.
The first high refractive index layer and the transparent metal film were formed in the same manner as in Example 6.
The second high refractive index layer was formed by the following method.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 17 shows the spectral characteristics of the obtained transparent conductor.
 (第二高屈折率層(IZO))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでIZOをRFスパッタした。ターゲット-基板間距離は86mmであった。IZOの波長570nmの光の屈折率は2.05であり、第二高屈折率層の波長570nmの光の屈折率も2.05とした。IZOは、In:ZnO=90:10とした。
(Second high refractive index layer (IZO))
Using an Anelva L-430S-FHS, IZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of IZO was 2.05, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.05. IZO was In 2 O 3 : ZnO = 90: 10.
 [実施例14]
 シクロオレフィンポリマーからなるフィルム(厚み100μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC-TR合金)/第二高屈折率層(GZO)をこの順に積層した。
 第一高屈折率層及び透明金属膜は、それぞれ実施例6と同様に成膜した。
 第二高屈折率層は、以下の方法で成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図18に示す。
[Example 14]
A first high refractive index layer (ZnS-SiO 2 ) / transparent metal film (APC-TR alloy) / second high refractive index layer (GZO) were laminated in this order on a film made of cycloolefin polymer (thickness: 100 μm). .
The first high refractive index layer and the transparent metal film were formed in the same manner as in Example 6.
The second high refractive index layer was formed by the following method.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 18 shows the spectral characteristics of the obtained transparent conductor.
 (第二高屈折率層(GZO))
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/sでGZOをRFスパッタした。ターゲット-基板間距離は90mmであった。
 GZOの波長570nmの光の屈折率は、2.04であり、第二高屈折率層の波長570nmの光の屈折率も2.04とした。GZOは、Ga:ZnO=5:95とした。
(Second high refractive index layer (GZO))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., GZO was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 Å / s. The target-substrate distance was 90 mm.
The refractive index of light with a wavelength of 570 nm of GZO was 2.04, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.04. GZO is, Ga 2 O 3: ZnO = 5: was 95.
 [実施例15]
 ポリカーボネートからなるフィルム(厚み100μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC-SR合金)/第二高屈折率層(Nb)をこの順に積層した。
 第一高屈折率層及び透明金属膜は、それぞれ実施例4と同様に成膜した。
 第二高屈折率層は、実施例9の第一高屈折率層と同様に成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図19に示す。
[Example 15]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-SR alloy) / second high refractive index layer (Nb 2 O 5 ) are laminated in this order on a polycarbonate film (thickness: 100 μm). did.
The first high refractive index layer and the transparent metal film were formed in the same manner as in Example 4.
The second high refractive index layer was formed in the same manner as the first high refractive index layer of Example 9.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 19 shows the spectral characteristics of the obtained transparent conductor.
 [実施例16]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ZnS-SiO)/透明金属膜(Ag-Bi-Ge-Au合金)/第二高屈折率層(TiO)をこの順に成膜した。
 第一高屈折率層は実施例2と同様に成膜し、透明金属膜は実施例8と同様に成膜した。
 第二高屈折率層は、以下の方法で成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図20に示す。
[Example 16]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Bi—Ge—Au alloy) / second high refractive index layer (TiO 2 ) was deposited in this order.
The first high refractive index layer was formed in the same manner as in Example 2, and the transparent metal film was formed in the same manner as in Example 8.
The second high refractive index layer was formed by the following method.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 20 shows the spectral characteristics of the obtained transparent conductor.
 (第二高屈折率層(TiO))
 Optorun社のGener 1300により、320mA、成膜レート3Å/sでTiOを、イオンアシストしながら電子ビーム(EB)蒸着した。イオンビームは電流500mA、電圧500V、加速電圧400Vで照射した。イオンビーム装置内には、Oガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35であり、第二高屈折率層の波長570nmの光の屈折率も2.35とした。
(Second high refractive index layer (TiO 2 ))
The Optorun's Gener 1300, 320 mA, the TiO 2 at a deposition rate of 3 Å / s, and electron beam (EB) vapor deposition with ion assist. The ion beam was irradiated at a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V. In the ion beam apparatus, O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced. The refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.35.
 [実施例17]
 コニカミノルタ製TACフィルム(厚み40μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC-TR合金)/第二高屈折率層(IGZO)をこの順に成膜した。
 第一高屈折率層は実施例2と同様に成膜し、透明金属膜は実施例6と同様に成膜した。
 第二高屈折率層は、以下の方法で成膜した。
 得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の分光特性を図21に示す。
[Example 17]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / second high refractive index layer (IGZO) were formed in this order on a Konica Minolta TAC film (thickness 40 μm). .
The first high refractive index layer was formed in the same manner as in Example 2, and the transparent metal film was formed in the same manner as in Example 6.
The second high refractive index layer was formed by the following method.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 21 shows the spectral characteristics of the obtained transparent conductor.
 (第二高屈折率層(IGZO))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでIGZOをRFスパッタした。ターゲット-基板間距離は86mmであった。IGZOの波長570nmの光の屈折率は、2.09であり、第二高屈折率層の波長570nmの光の屈折率も2.09とした。IGZOは、O:Zn:Ga:In=48.4:13.2:24.9:13.6(at%比)とした。
(Second high refractive index layer (IGZO))
Using Anelva L-430S-FHS, IGZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of IGZO was 2.09, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.09. IGZO was set to O: Zn: Ga: In = 48.4: 13.2: 24.9: 13.6 (at% ratio).
 [実施例18]
 シクロオレフィンポリマーからなるフィルム(厚み100μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC合金)/第二高屈折率層(ZnS-SiO)をこの順に積層した。
 第一高屈折率層及び第二高屈折率層は、実施例2と同様に成膜した。
 透明金属膜は、成膜ターゲットをAPC-SR(フルヤ金属社製)とした以外は、実施例4と同様の方法で成膜した。
 得られた透明導電体の分光特性を図22に示す。
[Example 18]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC alloy) / second high refractive index layer (ZnS—SiO 2 ) are laminated in this order on a film (thickness 100 μm) made of a cycloolefin polymer. did.
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2.
The transparent metal film was formed in the same manner as in Example 4 except that the film formation target was APC-SR (manufactured by Furuya Metal Co., Ltd.).
The spectral characteristics of the obtained transparent conductor are shown in FIG.
 [実施例19]
 ポリカーボネートからなるフィルム(厚み100μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC-SR合金)/第二高屈折率層(ZnS-SiO)/低屈折率層(SiO)/第三高屈折率層(Bi)をこの順に積層した。
 第一高屈折率層、透明金属膜、及び第二高屈折率層は、それぞれ実施例4と同様に成膜した。
 低屈折率層及び第三高屈折率層は、以下の方法で成膜した。
 得られた透明導電体の分光特性を図23に示す。
[Example 19]
On a film made of polycarbonate (thickness 100 μm), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-SR alloy) / second high refractive index layer (ZnS—SiO 2 ) / low refractive index Layer (SiO 2 ) / third high refractive index layer (Bi 2 O 3 ) were laminated in this order.
The first high refractive index layer, the transparent metal film, and the second high refractive index layer were formed in the same manner as in Example 4.
The low refractive index layer and the third high refractive index layer were formed by the following method.
FIG. 23 shows the spectral characteristics of the obtained transparent conductor.
 (低屈折率層(SiO))
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力300W、成膜レート1.6Å/sでSiOをRFスパッタした。ターゲット-基板間距離は90mmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層の波長570nmの光の屈折率も1.46とした。
(Low refractive index layer (SiO 2 ))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., SiO 2 was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 300 W, and deposition rate 1.6 Å / s. The target-substrate distance was 90 mm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer was also 1.46.
 (第三高屈折率層(Bi))
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、BiをRFスパッタした。ターゲット-基板間距離は90mmであった。Biの波長570nmの光の屈折率は1.95であり、第三高屈折率層の波長570nmの光の屈折率も1.95とした。
(Third high refractive index layer (Bi 2 O 3 ))
Using a magnetron sputtering apparatus of Osaka Vacuum Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, Bi 2 O 3 was RF sputtered. The target-substrate distance was 90 mm. Bi 2 O 3 had a refractive index of light of 570 nm wavelength of 1.95, and the third high refractive index layer also had a refractive index of light of wavelength 570 nm of 1.95.
 [実施例20]
 ガラスからなるフィルム(厚み50μm)上に、第一高屈折率層(ZnO)/下地層(Pd)/透明金属膜(APC-TR合金)/第二高屈折率層(ZnS-SiO)/低屈折率層(SiO)/第三高屈折率層(ZnS)をこの順に積層した。
 第一高屈折率層、下地層、透明金属膜、及び第二高屈折率層は、それぞれ実施例7と同様に成膜した。
 低屈折率層は、実施例19と同様の方法で成膜した。
 第三高屈折率層は、以下の方法で成膜した。
 得られた透明導電体の分光特性を図24に示す。
[Example 20]
On a film made of glass (thickness 50 μm), first high refractive index layer (ZnO) / underlayer (Pd) / transparent metal film (APC-TR alloy) / second high refractive index layer (ZnS—SiO 2 ) / A low refractive index layer (SiO 2 ) / third high refractive index layer (ZnS) were laminated in this order.
The first high refractive index layer, the underlayer, the transparent metal film, and the second high refractive index layer were formed in the same manner as in Example 7.
The low refractive index layer was formed by the same method as in Example 19.
The third high refractive index layer was formed by the following method.
The spectral characteristics of the obtained transparent conductor are shown in FIG.
 (第三高屈折率層(ZnS))
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/sでZnSをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnSの波長570nmの光の屈折率は、2.37であり、第三高屈折率層の波長570nmの光の屈折率も2.37とした。
(Third high refractive index layer (ZnS))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., ZnS was RF sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.8 Å / s. The target-substrate distance was 90 mm. The refractive index of light with a wavelength of 570 nm of ZnS was 2.37, and the refractive index of light with a wavelength of 570 nm of the third high refractive index layer was also 2.37.
 [実施例21]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ITO)/下地層(Pd)/透明金属膜(Ag-Bi-Ge-Au合金)/第二高屈折率層(ZnS-SiO)をこの順に積層した。
 第一高屈折率層、下地層、透明金属膜、及び第二高屈折率層は、それぞれ実施例8と同様に成膜した。
 得られた透明導電体の分光特性を図25に示す。
[Example 21]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), first high refractive index layer (ITO) / underlayer (Pd) / transparent metal film (Ag—Bi—Ge—Au alloy) / second high A refractive index layer (ZnS—SiO 2 ) was laminated in this order.
The first high refractive index layer, the underlayer, the transparent metal film, and the second high refractive index layer were formed in the same manner as in Example 8.
FIG. 25 shows the spectral characteristics of the obtained transparent conductor.
 [実施例22]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(TiO)/透明金属膜(Ag-Bi合金)/第二高屈折率層(ZnS-SiO)をこの順に積層した。
 第一高屈折率層は、実施例16の第二高屈折率層と同様に成膜した。
 透明金属膜は、実施例11と同様に成膜した。
 第二高屈折率層は、実施例2と同様に成膜した。
 得られた透明導電体の分光特性を図26に示す。
[Example 22]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), first high refractive index layer (TiO 2 ) / transparent metal film (Ag—Bi alloy) / second high refractive index layer (ZnS—SiO 2 ) Were stacked in this order.
The first high refractive index layer was formed in the same manner as the second high refractive index layer of Example 16.
The transparent metal film was formed in the same manner as in Example 11.
The second high refractive index layer was formed in the same manner as in Example 2.
FIG. 26 shows the spectral characteristics of the obtained transparent conductor.
 [実施例23]
 コニカミノルタ製TACフィルム(厚み40μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(Ag-Bi合金)/第二高屈折率層(ITO)をこの順に積層した。
 第一高屈折率層及び透明金属膜は、実施例17とそれぞれ同様に成膜した。
 第二高屈折率層は、実施例12と同様に成膜した。
 得られた透明導電体の分光特性を図27に示す。
[Example 23]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Bi alloy) / second high refractive index layer (ITO) were laminated in this order on a Konica Minolta TAC film (thickness 40 μm).
The first high refractive index layer and the transparent metal film were formed in the same manner as in Example 17.
The second high refractive index layer was formed in the same manner as in Example 12.
FIG. 27 shows the spectral characteristics of the obtained transparent conductor.
 [実施例24]
 ガラスからなるフィルム(厚み50μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(Ag-Ge合金)/第二高屈折率層(IZO)をこの順に積層した。
 第一高屈折率層は実施例2と同様に成膜した。
 透明金属膜は、成膜ターゲットをAg(99.0at%)-Ge(1.0at%)合金とした以外は、実施例4と同様の方法で成膜した。
 第二高屈折率層は実施例13と同様に成膜した。
 得られた透明導電体の分光特性を図28に示す。
[Example 24]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Ge alloy) / second high refractive index layer (IZO) were laminated in this order on a glass film (thickness 50 μm).
The first high refractive index layer was formed in the same manner as in Example 2.
The transparent metal film was formed in the same manner as in Example 4 except that the film formation target was an Ag (99.0 at%)-Ge (1.0 at%) alloy.
The second high refractive index layer was formed in the same manner as in Example 13.
The spectral characteristics of the obtained transparent conductor are shown in FIG.
 [実施例25]
 シクロオレフィンポリマーからなるフィルム(厚み100μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(Ag-Pd合金)/第二高屈折率層(GZO)をこの順に積層した。
 第一高屈折率層は実施例2と同様に成膜した。
 透明金属膜は、成膜ターゲットをAg(99.0at%)-Pd(1.0at%)合金とした以外は、実施例1と同様の方法で成膜した。
 第二高屈折率層は実施例14と同様に成膜した。
 得られた透明導電体の分光特性を図29に示す。
[Example 25]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Pd alloy) / second high refractive index layer (GZO) were laminated in this order on a film (thickness 100 μm) made of cycloolefin polymer. .
The first high refractive index layer was formed in the same manner as in Example 2.
The transparent metal film was formed by the same method as in Example 1 except that the deposition target was an Ag (99.0 at%)-Pd (1.0 at%) alloy.
The second high refractive index layer was formed in the same manner as in Example 14.
The spectral characteristic of the obtained transparent conductor is shown in FIG.
 [実施例26]
 ポリカーボネートからなるフィルム(厚み100μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(Ag-Cu合金)/第二高屈折率層(Nb)/低屈折率層(SiO)/第三高屈折率層(ZnS)をこの順に積層した。
 第一高屈折率層及び第二高屈折率層は実施例15と同様に成膜した。
 透明金属膜は、成膜ターゲットをAg(95.0at%)-Cu(5.0at%)合金とした以外は、実施例4と同様の方法で成膜した。
 低屈折率層及び第三高屈折率層は実施例20と同様に成膜した。
 得られた透明導電体の分光特性を図30に示す。
[Example 26]
On a film made of polycarbonate (thickness 100 μm), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Cu alloy) / second high refractive index layer (Nb 2 O 5 ) / low refractive index Layer (SiO 2 ) / third high refractive index layer (ZnS) were laminated in this order.
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 15.
The transparent metal film was formed in the same manner as in Example 4 except that the film formation target was an Ag (95.0 at%)-Cu (5.0 at%) alloy.
The low refractive index layer and the third high refractive index layer were formed in the same manner as in Example 20.
FIG. 30 shows the spectral characteristics of the obtained transparent conductor.
 [実施例27]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ZnS-SiO)/透明金属膜(Ag-Nd合金)/第二高屈折率層(TiO)をこの順に積層した。
 第一高屈折率層及び第二高屈折率層は実施例16と同様に成膜した。
 透明金属膜は、成膜ターゲットをAg(99.0at%)-Nd(1.0at%)合金とした以外は、実施例4と同様の方法で成膜した。
 得られた透明導電体の分光特性を図31に示す。
[Example 27]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Nd alloy) / second high refractive index layer (TiO 2 ) Were stacked in this order.
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 16.
The transparent metal film was formed in the same manner as in Example 4 except that the deposition target was an Ag (99.0 at%)-Nd (1.0 at%) alloy.
FIG. 31 shows the spectral characteristics of the obtained transparent conductor.
 [実施例28]
 コニカミノルタ製TACフィルム(厚み40μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC-TR合金)/第二高屈折率層(IGZO)をこの順に積層した。
 第一高屈折率層及び第二高屈折率層は実施例17と同様に成膜した。
 透明金属膜は実施例6と同様に成膜した。
 得られた透明導電体の分光特性を図32に示す。
[Example 28]
A first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / second high refractive index layer (IGZO) was laminated in this order on a Konica Minolta TAC film (thickness 40 μm).
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 17.
The transparent metal film was formed in the same manner as in Example 6.
The spectral characteristics of the obtained transparent conductor are shown in FIG.
 [実施例29]
 ポリカーボネートからなるフィルム(厚み100μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(Ag-Au合金)/第二高屈折率層(Nb)/低屈折率層(SiO)/第三高屈折率層(ZnS)をこの順に積層した。
 第一高屈折率層、第二高屈折率層、低屈折率層、第三高屈折率層は、それぞれ実施例26の各層と同様に成膜した。
 透明金属膜は成膜ターゲットをAg(98.0at%)-Au(2.0at%)合金とした以外は、実施例4と同様の方法で成膜した。
[Example 29]
On a film made of polycarbonate (thickness 100 μm), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag—Au alloy) / second high refractive index layer (Nb 2 O 5 ) / low refractive index Layer (SiO 2 ) / third high refractive index layer (ZnS) were laminated in this order.
The first high refractive index layer, the second high refractive index layer, the low refractive index layer, and the third high refractive index layer were formed in the same manner as the respective layers of Example 26.
The transparent metal film was formed in the same manner as in Example 4 except that the film formation target was an Ag (98.0 at%)-Au (2.0 at%) alloy.
 [実施例30]
 シクロオレフィンポリマーからなるフィルム(厚み100μm)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC-TR合金)/硫化防止層(ZnO)/第二高屈折率層(ZnS-SiO)をこの順に積層した。そして、得られた積層体を実施例1と同様にパターニングした。
 第一高屈折率層及び第二高屈折率層は、それぞれ実施例2と同様に成膜した。
 透明金属膜は実施例6と同様に成膜した。
 硫化防止層は、実施例7の第一高屈折率層と同様に成膜した。
[Example 30]
On a film made of cycloolefin polymer (thickness 100 μm), first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / sulfurization preventive layer (ZnO) / second high refractive index layer ( ZnS—SiO 2 ) were laminated in this order. The obtained laminate was patterned in the same manner as in Example 1.
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2.
The transparent metal film was formed in the same manner as in Example 6.
The sulfidation preventing layer was formed in the same manner as the first high refractive index layer of Example 7.
 [実施例31]
 コニカミノルタ製TACフィルム(厚み40μm)上に、第一高屈折率層(ZnS-SiO)/硫化防止層(ZnO)/透明金属膜(APC合金)/第二高屈折率層(ZnS-SiO)をこの順に積層した。そして、得られた積層体を実施例1と同様にパターニングした。
 第一高屈折率層及び第二高屈折率層は、それぞれ実施例2と同様に成膜した。
 透明金属膜は実施例6と同様に成膜した。
 硫化防止層は、実施例7の第一高屈折率層と同様に成膜した。
[Example 31]
On Konica Minolta TAC film (thickness 40 μm), first high refractive index layer (ZnS—SiO 2 ) / sulfurization preventive layer (ZnO) / transparent metal film (APC alloy) / second high refractive index layer (ZnS—SiO 2) 2 ) were laminated in this order. The obtained laminate was patterned in the same manner as in Example 1.
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2.
The transparent metal film was formed in the same manner as in Example 6.
The sulfidation preventing layer was formed in the same manner as the first high refractive index layer of Example 7.
 [実施例32]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ZnS-SiO)/第一硫化防止層(ZnO)/透明金属膜(APC-TR合金)/第二硫化防止層(ZnO)/第二高屈折率層(ZnS-SiO)をこの順に積層した。そして、得られた積層体を実施例1と同様にパターニングした。
 第一高屈折率層及び第二高屈折率層は、それぞれ実施例2と同様に成膜した。
 透明金属膜は実施例6と同様に成膜した。
 硫化防止層は、実施例7の第一高屈折率層と同様に成膜した。
[Example 32]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (ZnO) / transparent metal film (APC-TR alloy) / A disulfide prevention layer (ZnO) / second high refractive index layer (ZnS—SiO 2 ) were laminated in this order. The obtained laminate was patterned in the same manner as in Example 1.
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 2.
The transparent metal film was formed in the same manner as in Example 6.
The sulfidation preventing layer was formed in the same manner as the first high refractive index layer of Example 7.
 [実施例33]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ZnS系化合物)/第一硫化防止層(GZO)/透明金属膜(APC-TR合金)/第二硫化防止層(GZO)/第二高屈折率層(SGZO)/第三高屈折率層(ITO)をこの順に積層した。そして、得られた積層体を実施例1と同様にパターニングした。
[Example 33]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), first high refractive index layer (ZnS compound) / first antisulfuration layer (GZO) / transparent metal film (APC-TR alloy) / second An antisulfurization layer (GZO) / second high refractive index layer (SGZO) / third high refractive index layer (ITO) were laminated in this order. The obtained laminate was patterned in the same manner as in Example 1.
 第一高屈折率層及び第二高屈折率層は、成膜時のターゲットを、それぞれ、ZnS化合物(ZnS・ZnO・In・Ga・SiO(O:Zn:In:Ga:S:Si(at%比)=35:33:5:9:17:1))及びSGZO(O:S:Zn:Ga(at%比)=48.4:0.8:45.2:5.6)とした以外は、実施例1の第一高屈折率層と同様に成膜した。
 硫化防止層は、実施例14の第二高屈折率層と同様に成膜した。
 透明金属膜は実施例6と同様に成膜した。
 第三高屈折率層は、実施例8の第一高屈折率層と同様に成膜した。
 得られた透明導電体の分光特性を図36に示す。
The first high-refractive index layer and the second high-refractive index layer each have a ZnS compound (ZnS.ZnO.In 2 O 3 .Ga 2 O 3 .SiO 2 (O: Zn: In: Ga: S: Si (at% ratio) = 35: 33: 5: 9: 17: 1)) and SGZO (O: S: Zn: Ga (at% ratio)) = 48.4: 0.8: 45. 2: 5.6) A film was formed in the same manner as the first high refractive index layer in Example 1.
The sulfidation preventing layer was formed in the same manner as the second high refractive index layer of Example 14.
The transparent metal film was formed in the same manner as in Example 6.
The third high refractive index layer was formed in the same manner as the first high refractive index layer of Example 8.
The spectral characteristic of the obtained transparent conductor is shown in FIG.
 [実施例34]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ZnS系化合物)/第一硫化防止層(IGZO)/透明金属膜(APC-TR合金)/第二硫化防止層(IGZO)/第二高屈折率層(TIZO)/第三高屈折率層(ITO)をこの順に積層した。そして、得られた積層体を実施例1と同様にパターニングした。
[Example 34]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), first high refractive index layer (ZnS compound) / first antisulfuration layer (IGZO) / transparent metal film (APC-TR alloy) / second Antisulfuration layer (IGZO) / second high refractive index layer (TIZO) / third high refractive index layer (ITO) were laminated in this order. The obtained laminate was patterned in the same manner as in Example 1.
 第一高屈折率層及び第二高屈折率層は、成膜時のターゲットを、それぞれ、ZnS・ZnO・Ga(O:Zn:Ga:S(at%比)=29:51:4:16)及びTIZO(O:Zn:In:Sn(at%比)=48:32:16:4)とした以外は、実施例1の第一高屈折率層と同様に成膜した。
 硫化防止層は、実施例17の第二高屈折率層と同様に成膜した。
 透明金属膜は実施例6と同様に成膜した。
 第三高屈折率層は、実施例8の第一高屈折率層と同様に成膜した。
 得られた透明導電体の分光特性を図37に示す。
The first high-refractive index layer and the second high-refractive index layer are targets for film formation, ZnS.ZnO.Ga 2 O 3 (O: Zn: Ga: S (at% ratio) = 29: 51: 4:16) and TIZO (O: Zn: In: Sn (at% ratio) = 48: 32: 16: 4) were formed in the same manner as the first high refractive index layer of Example 1.
The sulfidation preventing layer was formed in the same manner as the second high refractive index layer of Example 17.
The transparent metal film was formed in the same manner as in Example 6.
The third high refractive index layer was formed in the same manner as the first high refractive index layer of Example 8.
FIG. 37 shows the spectral characteristics of the obtained transparent conductor.
 [比較例1]
 石英からなる透明基板上に、第一高屈折率層(ZnS)/透明金属膜(Ag)/第二高屈折率層(ZnS)をこの順に積層した。
 第一高屈折率層、透明金属膜、及び第二高屈折率層は、それぞれ以下の方法で成膜した。
 得られた透明導電体の分光特性を図33に示す。
[Comparative Example 1]
A first high refractive index layer (ZnS) / transparent metal film (Ag) / second high refractive index layer (ZnS) was laminated in this order on a transparent substrate made of quartz.
The first high refractive index layer, the transparent metal film, and the second high refractive index layer were formed by the following methods, respectively.
The spectral characteristic of the obtained transparent conductor is shown in FIG.
(第一高屈折率層及び第二高屈折率層(ZnS))
 第一高屈折率層及び第二高屈折率層は、それぞれシンクロン製のBMC-800T蒸着機を用いて、抵抗加熱でZnSからなる膜を成膜した。このときの投入電流値は210A、成膜レートは5Å/sとした。
(First high refractive index layer and second high refractive index layer (ZnS))
As the first high refractive index layer and the second high refractive index layer, films made of ZnS were formed by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON, respectively. The input current value at this time was 210 A, and the film formation rate was 5 Å / s.
 (透明金属膜(Ag))
 第一高屈折率層上に、シンクロン製のBMC-800T蒸着機を用いて、抵抗加熱で銀を12nm成膜した。このときの投入電流値は210A、成膜レートは5Å/sとした。
(Transparent metal film (Ag))
On the first high refractive index layer, a silver film having a thickness of 12 nm was formed by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The input current value at this time was 210 A, and the film formation rate was 5 Å / s.
 [比較例2]
 EAGLE Glassからなる透明基板上に、第一高屈折率層(ZnS)/透明金属膜(Ag)/第二高屈折率層(ZnS)を順に積層した。
 第一高屈折率層、及び第二高屈折率層の成膜方法は、実施例1と同様とした。
 透明金属膜は、比較例1と同様に成膜した。
[Comparative Example 2]
On a transparent substrate made of EAGLE Glass, a first high refractive index layer (ZnS) / transparent metal film (Ag) / second high refractive index layer (ZnS) were laminated in this order.
The first high refractive index layer and the second high refractive index layer were formed in the same manner as in Example 1.
The transparent metal film was formed in the same manner as in Comparative Example 1.
 [比較例3]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(Nb)/透明金属膜(Ag)/第二高屈折率層(IZO)を順に積層した。
 各層はそれぞれ下記の方法で成膜した。
 得られた透明導電体の導通領域の分光特性を図34に示す。
[Comparative Example 3]
A first high refractive index layer (Nb 2 O 5 ) / transparent metal film (Ag) / second high refractive index layer (IZO) were laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm). .
Each layer was formed by the following method.
The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
 (第一高屈折率層(Nb))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。Nbの波長570nmの光の屈折率は2.31であるが、高屈折率層の波長570nmの光の屈折率は2.35とした。
(First high refractive index layer (Nb 2 O 5 ))
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 is 2.31, but the refractive index of light with a wavelength of 570 nm of the high refractive index layer is 2.35.
 (透明金属膜(Ag))
 日本真空技術株式会社の小型スパッタ装置(BC4279)でDCスパッタした。このとき、ターゲット側電力200Wとした。
(Transparent metal film (Ag))
DC sputtering was performed with a small sputtering apparatus (BC4279) manufactured by Nippon Vacuum Technology Co., Ltd. At this time, the target side power was set to 200 W.
 (第二高屈折率層(IZO))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでIZOをRFスパッタした。ターゲット-基板間距離は86mmであった。IZOの波長570nmの光の屈折率は2.05であるが、第二高屈折率層の波長570nmの光の屈折率は1.98とした。
(Second high refractive index layer (IZO))
Using an Anelva L-430S-FHS, IZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of IZO is 2.05, but the refractive index of light with a wavelength of 570 nm of the second high refractive index layer is 1.98.
 [比較例4]
 コニカミノルタ製TACフィルム(透明基板)上に、第一高屈折率層(ICO)/下地層(NiCr)/透明金属膜(AgAu)/密着層(NiCr)/第二高屈折率層(ICO)/低屈折率層(SiO)/フッ素系材料層(KP801M)を順に積層した。
 低屈折率層は、実施例12の低屈折率層と同様に成膜した。それ以外の各層は、それぞれ下記の方法で成膜した。
[Comparative Example 4]
On Konica Minolta TAC film (transparent substrate), first high refractive index layer (ICO) / underlayer (NiCr) / transparent metal film (AgAu) / adhesion layer (NiCr) / second high refractive index layer (ICO) / Low refractive index layer (SiO 2 ) / Fluorine-based material layer (KP801M) were laminated in this order.
The low refractive index layer was formed in the same manner as the low refractive index layer of Example 12. The other layers were formed by the following methods.
 (第一高屈折率層及び第二高屈折率層(ICO))
 ターゲットをインジウム中にセリウムが10原子%含まれる材料(ICO)とした以外は、比較例3の第二高屈折率層と同様に成膜した。ICOの波長570nmの光の屈折率は2.2であり、第一高屈折率層及び第二高屈折率層の波長570nmの光の屈折率も2.2とした。
(First high refractive index layer and second high refractive index layer (ICO))
The target was formed in the same manner as the second high refractive index layer of Comparative Example 3 except that the target was made of a material (ICO) containing 10 atomic% of cerium in indium. The refractive index of light with a wavelength of 570 nm of ICO was 2.2, and the refractive indexes of light with a wavelength of 570 nm of the first high refractive index layer and the second high refractive index layer were also 2.2.
 (下地層及び密着層(NiCr))
 ターゲットをNiCrとした以外は、実施例5の下地層(Pd)と同様に成膜した。
(Underlayer and adhesion layer (NiCr))
A film was formed in the same manner as the base layer (Pd) of Example 5 except that the target was NiCr.
 (透明金属膜(AgAu))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAg合金(Ag中にAuが1.5原子%、Cuが0.5原子%含まれる合金)をRFスパッタした。ターゲット-基板間距離は86mmであった。
(Transparent metal film (AgAu))
An alloy alloy L-430S-FHS, Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 100 W, film formation rate 2.5 kg / s, Ag alloy (1.5 atomic% of Au in Ag) An alloy containing 0.5 atomic% of Cu) was RF sputtered. The target-substrate distance was 86 mm.
 (フッ素系材料層(KP801M))
 Optorun社のGener 1300によって、190mA、成膜レート10Å/sでフッ素系材料(信越化学工業社製:KP801M)を抵抗加熱蒸着した。
(Fluorine material layer (KP801M))
Fluorine-based material (manufactured by Shin-Etsu Chemical Co., Ltd .: KP801M) was vapor-deposited by resistance heating with a Gener 1300 manufactured by Optorun at 190 mA and a film formation rate of 10 kg / s.
 [比較例5]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ITO)/透明金属膜(APC)/第二高屈折率層(ITO)を順に積層した。
 第一高屈折率層、及び第二高屈折率層はそれぞれ実施例17の第一高屈折率層と同様の方法で成膜した。
 透明金属膜は、下記の方法で成膜した。
[Comparative Example 5]
A first high refractive index layer (ITO) / transparent metal film (APC) / second high refractive index layer (ITO) were laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 μm).
The first high refractive index layer and the second high refractive index layer were formed in the same manner as the first high refractive index layer of Example 17, respectively.
The transparent metal film was formed by the following method.
 (透明金属膜(APC))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgとPdとCuとの合金(Ag:Pd:Cu=99:1:1(質量比))をRFスパッタした。ターゲット-基板間距離は86mmであった。
(Transparent metal film (APC))
An alloy of L-430S-FHS manufactured by Anelva, an alloy of Ag, Pd, and Cu (Ag: Pd :) at Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 100 W, and deposition rate 2.5 Å / s. RF sputtering was performed on Cu = 99: 1: 1 (mass ratio). The target-substrate distance was 86 mm.
 [比較例6]
 コーニング社製ガラス基板(#7059、厚み1.1mm)からなる透明基板上に、第一高屈折率層(a-GIO)/透明金属膜(Ag)/第二高屈折率層(a-GIO)を順に積層した。
 各層はそれぞれ下記の方法で成膜した。
[Comparative Example 6]
On a transparent substrate made of Corning glass substrate (# 7059, thickness 1.1 mm), first high refractive index layer (a-GIO) / transparent metal film (Ag) / second high refractive index layer (a-GIO) ) In order.
Each layer was formed by the following method.
 (第一高屈折率層及び第二高屈折率層(a-GIO))
 Oガスを混入したArガス0.6Paの雰囲気中、2.2W/cmの電力密度で、GaとInの酸化物焼結体を直流スパッタした。導入するOガスの割合は、8~12体積%とした。
(First high refractive index layer and second high refractive index layer (a-GIO))
An oxide sintered body of Ga and In was DC sputtered at an electric power density of 2.2 W / cm 2 in an atmosphere of 0.6 Pa of Ar gas mixed with O 2 gas. The ratio of O 2 gas to be introduced was 8 to 12% by volume.
 (透明金属膜(Ag))
 Arガス0.6Paの雰囲気中、0.55W/cmの電力密度で純度4NのAgターゲットを直流スパッタした。
(Transparent metal film (Ag))
A 4N purity Ag target was DC sputtered at an electric power density of 0.55 W / cm 2 in an atmosphere of Ar gas of 0.6 Pa.
[比較例7]
 K9ガラス基板上に、第一高屈折率層(ZnS-SiO)/透明金属膜(Ag)/第二高屈折率層(ZnS-SiO)を順に積層した。
 各層はそれぞれ下記の方法で成膜した。
 得られた透明導電体の導通領域の分光特性を図35に示す。
[Comparative Example 7]
On the K9 glass substrate, a first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (Ag) / second high refractive index layer (ZnS—SiO 2 ) were laminated in this order.
Each layer was formed by the following method.
The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
 (第一高屈折率層及び第二高屈折率層(ZnS-SiO))
 第一高屈折率層及び第二高屈折率層は、前述の特許文献5に記載の方法と同様に成膜した。具体的には、マグネトロンスパッタにより、ZnS-SiOをRFスパッタした。ZnSとSiOとの比率(質量比)は、80:20であり、第一高屈折率層の屈折率は2.14であった。
(First high refractive index layer and second high refractive index layer (ZnS—SiO 2 ))
The first high refractive index layer and the second high refractive index layer were formed in the same manner as the method described in Patent Document 5 described above. Specifically, ZnS—SiO 2 was RF sputtered by magnetron sputtering. The ratio (mass ratio) between ZnS and SiO 2 was 80:20, and the refractive index of the first high refractive index layer was 2.14.
 (透明金属膜(Ag))
 第一高屈折率層上に、前述の特許文献5に記載の方法と同様に、Agターゲットを直流スパッタした。
(Transparent metal film (Ag))
On the first high refractive index layer, an Ag target was DC sputtered in the same manner as the method described in Patent Document 5 described above.
 [評価]
 各実施例及び比較例で得られた透明導電体について、腐食性、フレキシブル性、光の透過率、光の反射率、光の吸収率、視感反射率、a*値及びb*値、並びに表面電気抵抗を測定した。結果を表1~4に示す。さらに、透明導電体の光学アドミッタンスを算出した。値を表5~8に示す。
[Evaluation]
About the transparent conductor obtained in each Example and Comparative Example, corrosivity, flexibility, light transmittance, light reflectance, light absorption rate, luminous reflectance, a * value and b * value, and The surface electrical resistance was measured. The results are shown in Tables 1 to 4. Furthermore, the optical admittance of the transparent conductor was calculated. Values are shown in Tables 5-8.
 (腐食評価)
 実施例及び比較例で得られた透明導電体の腐食耐性を評価した。腐食耐性は、実施例または比較例で得られた透明導電体を、2個ずつ、65℃、95%Rh中に100時間保存した後の外観で評価した。評価は、以下の基準とした。
 ○:30mm×30mmの領域において、サイズ20μm以上の腐食箇所が0個
 △:30mm×30mmの領域において、サイズ20μm以上の腐食箇所が1個以上10個未満
 ×:30mm×30mmの領域において、サイズ20μm以上の腐食箇所が10個以上
(Corrosion evaluation)
The corrosion resistance of the transparent conductors obtained in Examples and Comparative Examples was evaluated. Corrosion resistance was evaluated by the appearance after storing the transparent conductors obtained in Examples or Comparative Examples two by two in 65 ° C. and 95% Rh for 100 hours. Evaluation was based on the following criteria.
○: In the area of 30 mm × 30 mm, 0 corrosion sites with a size of 20 μm or more Δ: In the region of 30 mm × 30 mm, 1 or more and less than 10 corrosion sites with a size of 20 μm or more ×: Size in the region of 30 mm × 30 mm 10 or more corrosion spots of 20μm or more
 (フレキシブル性評価)
 実施例及び比較例で得られた透明導電体を平板状の支持部材に載置し、一端を固定した。当該透明導電体をU字状に屈曲させた。屈曲部の曲率半径は5mmとした。そして、支持部材と平行に配置した摺動板に、透明導電体の他端を固定した。摺動板と支持部材とを平行に保ったまま、透明導電体の長さ方向に摺動板を1000回往復移動させた。その後、透明導電体の各層にクラック等が生じたかを目視で確認した。フレキシブル性は以下のように評価した。
 ○:屈曲部位を含む30mm×30mmの領域に、クラックが一つも生じなかった
 △:屈曲部位を含む30mm×30mmの領域に、1個以上50個以下のクラックが生じた
 ×:屈曲部位を含む30mm×30mmの領域に、50個超のクラックが生じた
(Flexibility evaluation)
The transparent conductors obtained in Examples and Comparative Examples were placed on a flat support member, and one end was fixed. The transparent conductor was bent into a U shape. The curvature radius of the bent portion was 5 mm. And the other end of the transparent conductor was fixed to the sliding plate arrange | positioned in parallel with the supporting member. The sliding plate was reciprocated 1000 times in the length direction of the transparent conductor while keeping the sliding plate and the support member in parallel. Thereafter, it was visually confirmed whether cracks or the like occurred in each layer of the transparent conductor. The flexibility was evaluated as follows.
○: No crack was generated in a 30 mm × 30 mm region including the bent portion. Δ: One to 50 cracks were generated in the 30 mm × 30 mm region including the bent portion. X: The bent portion was included. Over 50 cracks occurred in a 30mm x 30mm area
 (光の透過率、反射率、及び吸収率の測定)
 実施例1~5、7~17、22、30~34の透明導電体表面については、以下のように光の透過率、反射率、及び吸収率を測定した。
 各実施例で得られた透明導電体の第二高屈折率層上に、マッチングオイル(ニコン社製 屈折率=1.515)を塗布した。そして、透明導電体とコーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))とを貼り合わせた。そして、無アルカリガラス基板側から、透明導電体の透過率及び反射率を測定した。このとき、無アルカリガラス基板の表面の法線に対して、5°傾けた角度から、導通領域に測定光(例えば、波長450nm~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、光の透過率及び反射率を測定した。そして、吸収率は、100-(透過率+反射率)の計算式より算出した。
(Measurement of light transmittance, reflectance and absorptance)
The transparent conductor surfaces of Examples 1 to 5, 7 to 17, 22, and 30 to 34 were measured for light transmittance, reflectance, and absorptance as follows.
Matching oil (refractive index = 1.515 manufactured by Nikon Corporation) was applied on the second high refractive index layer of the transparent conductor obtained in each example. Then, the transparent conductor and a non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) manufactured by Corning were bonded together. And the transmittance | permeability and reflectance of the transparent conductor were measured from the alkali free glass substrate side. At this time, measurement light (for example, light having a wavelength of 450 nm to 800 nm) is incident on the conduction region from an angle inclined by 5 ° with respect to the normal line of the surface of the alkali-free glass substrate. The light transmittance and reflectance were measured at U4100. The absorptance was calculated from a formula of 100− (transmittance + reflectance).
 なお、反射率の測定値から、無アルカリガラス基板と大気との界面での反射(4%)、及び透明導電体の透明基板と大気との界面での反射(4%)を差し引いた値を、透明導電体の反射率とした。また、透過率についても、上記無アルカリガラス基板と大気との界面での反射、及び透明導電体の透明基板と大気との界面での反射を考慮し、透過率の測定値に8%足した値を透明導電体の透過率とした。 The value obtained by subtracting the reflection at the interface between the alkali-free glass substrate and the atmosphere (4%) and the reflection at the interface between the transparent substrate and the atmosphere (4%) from the measured value of the reflectance The reflectance of the transparent conductor was used. Also, the transmittance was added to the measured value of transmittance by 8% in consideration of the reflection at the interface between the alkali-free glass substrate and the atmosphere and the reflection of the transparent conductor at the interface between the transparent substrate and the atmosphere. The value was the transmittance of the transparent conductor.
 一方、実施例6、18~21、23~29、比較例1、3、及び7の透明導電体は、空気と接触して使用されるものとした。したがって、透明導電体上に、無アルカリガラス基板を貼り合わせずに、導通領域に測定光(例えば、波長450nm~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、光の透過率及び反射率を測定した。そして、吸収率は、100-(透過率+反射率)の計算式より算出した。なお、測定光は、第二高屈折率層側から入射させた。 On the other hand, the transparent conductors of Examples 6, 18 to 21, 23 to 29, and Comparative Examples 1, 3, and 7 were used in contact with air. Therefore, measurement light (for example, light having a wavelength of 450 nm to 800 nm) is incident on the conductive region without bonding an alkali-free glass substrate on the transparent conductor, and light is emitted by Hitachi, Ltd .: spectrophotometer U4100. The transmittance and reflectance were measured. The absorptance was calculated from a formula of 100− (transmittance + reflectance). The measurement light was incident from the second high refractive index layer side.
 なお、反射率の測定値から、透明導電体の透明基板と大気との界面での反射(4%)を差し引いた値を、透明導電体の反射率とした。また、透過率についても、上記透明導電体の透明基板と大気との界面での反射を考慮し、透過率の測定値に4%足した値を透明導電体の透過率とした。 The value obtained by subtracting the reflection (4%) at the interface between the transparent substrate of the transparent conductor and the atmosphere from the measured value of the reflectance was taken as the reflectance of the transparent conductor. Also, the transmittance of the transparent conductor was determined by adding 4% to the measured value of the transmittance in consideration of the reflection of the transparent conductor at the interface between the transparent substrate and the atmosphere.
 (視感反射率の測定方法)
 各透明導電体の視感反射率は、分光光度計(U4100;日立ハイテクノロジーズ社製)で測定した。表中のΔRは、導通領域の視感率と絶縁領域の視感率との差の絶対値を表す。
(Measuring method of luminous reflectance)
The luminous reflectance of each transparent conductor was measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation). ΔR in the table represents the absolute value of the difference between the luminous efficiency of the conductive area and the luminous efficiency of the insulating area.
 (導通領域のa*値及びb*値の測定方法)
 各透明導電体のL*a*b*表色系におけるa*値及びb*値は、日立株式会社製:分光光度計 U4100で測定した。実施例1~17、及び30~34については、導通領域のa*値及びb*値をそれぞれ測定した。
(Measurement method of a * value and b * value of conduction region)
The a * value and b * value in the L * a * b * color system of each transparent conductor were measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd. For Examples 1 to 17 and 30 to 34, the a * value and b * value of the conduction region were measured, respectively.
 (導通領域の表面電気抵抗の測定方法)
 各透明導電体の導通領域に三菱化学アナリテック製のロレスタEP MCP-T360を接触させて、導通領域の表面電気抵抗を測定した。
(Measurement method of surface electrical resistance of conduction region)
Loresta EP MCP-T360 manufactured by Mitsubishi Chemical Analytech was brought into contact with the conduction region of each transparent conductor, and the surface electrical resistance of the conduction region was measured.
 (光学アドミッタンス)
 実施例及び比較例で得られた透明導電体の光学アドミッタンスを特定した。透明金属の第一高屈折率層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、透明金属膜の前記第二高屈折率層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの(x,y)、及び(x,y)の値を表に示す。
 また、第一高屈折率層、透明金属膜、及び第二高屈折率層をパターニングした透明導電体については、前記透明金属膜を含む積層体(導通領域)表面の波長570nmの光の等価アドミッタンスをY=x+iyで表し、前記透明金属膜を含まない積層体(絶縁領域)表面;つまり透明基板表面の波長570nmの光の等価アドミッタンスをYsub=xsub+iysubで表したときの(x,y)、及び(xsub,ysub)の値をそれぞれ表に示す。さらに、((x-xsub+(y0.5の値、積層体の第二高屈折率層側の表面に接する部材の屈折率をnenvとしたときの|((xsub-xenv)/(xsub+xenv))-((x-xenv)/(x+xenv))|の値を、それぞれ表に示す。
(Optical admittance)
The optical admittance of the transparent conductor obtained by the Example and the comparative example was specified. The optical admittance of wavelength 570nm of the first high refractive index layer side of the surface of the transparent metal Y1 = x 1 + iy 1, the optical admittance of wavelength 570nm of the second high refractive index layer side of the surface of the transparent metal film Y2 = x The values of (x 1 , y 1 ) and (x 2 , y 2 ) when 2 + iy 2 are shown in the table.
For the transparent conductor obtained by patterning the first high-refractive index layer, the transparent metal film, and the second high-refractive index layer, the equivalent admittance of light having a wavelength of 570 nm on the surface of the laminate (conduction region) including the transparent metal film Is expressed as Y E = x E + iy E , and the equivalent admittance of light with a wavelength of 570 nm on the surface of the laminate (insulating region) that does not include the transparent metal film; that is, Y sub = x sub + iy sub The values of (x E , y E ) and (x sub , y sub ) are respectively shown in the table. Furthermore, when the value of ((x E −x sub ) 2 + (y E ) 2 ) 0.5 and the refractive index of the member in contact with the surface on the second high refractive index layer side of the laminate is n env | The values of ((x sub -x env ) / (x sub + x env )) 2 -((x E -x env ) / (x E + x env )) 2 | are shown in the table.
 透明導電体に含まれる層の光学アドミッタンスは、薄膜設計ソフトEssential Macleod Ver.9.4.375で算出した。なお、算出に必要な各層の厚みd、屈折率n、及び吸収係数kは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。 The optical admittance of the layer included in the transparent conductor is the thin film design software Essential Mac OS Ver. It calculated in 9.4.375. Note that the thickness d, refractive index n, and absorption coefficient k of each layer necessary for the calculation are as follows. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1~表3に示されるように、第一高屈折率層または第二高屈折率層がZnS-SiOからなるアモルファス層であったとしても、透明金属膜がAg合金である場合には、波長400~800nmの光の平均透過率が86.6%以上であり、波長400~1000nmの光の平均透過率が80.7%以上であった(実施例1~34)。 As shown in Tables 1 to 3, even when the first high refractive index layer or the second high refractive index layer is an amorphous layer made of ZnS—SiO 2 , when the transparent metal film is an Ag alloy, The average transmittance of light having a wavelength of 400 to 800 nm was 86.6% or more, and the average transmittance of light having a wavelength of 400 to 1000 nm was 80.7% or more (Examples 1 to 34).
 これに対し、表4に示されるように、第一高屈折率層または第二高屈折率層にZnSが含まれており、さらに透明金属膜がAgのみからなる場合(比較例1及び7)には、波長400~800nmの光の平均透過率が84.2もしくは86.8%であり、波長400~1000nmの光の平均透過率は80%以下であった。第一高屈折率層または第二高屈折率層に含まれる硫黄成分によって、透明金属膜が硫化されて、光の透過性が低下したと推察される。 On the other hand, as shown in Table 4, when the first high refractive index layer or the second high refractive index layer contains ZnS, and the transparent metal film is made of only Ag (Comparative Examples 1 and 7). The average transmittance of light having a wavelength of 400 to 800 nm was 84.2 or 86.8%, and the average transmittance of light having a wavelength of 400 to 1000 nm was 80% or less. It is presumed that the transparent metal film was sulfided by the sulfur component contained in the first high refractive index layer or the second high refractive index layer, and the light transmittance was lowered.
 なお、蒸着法で透明金属膜を作製した比較例2では、連続膜が得られず、電気が導通しなかった。また、厚みが12nmになると連続膜になったものの(比較例1)、波長400~1000nmの光の平均反射率が80%を下回った。金属本来の反射が生じたため、透過率が十分に高まらなかったと推察される。 In Comparative Example 2 in which a transparent metal film was produced by vapor deposition, a continuous film was not obtained and electricity was not conducted. Further, although the film became a continuous film when the thickness was 12 nm (Comparative Example 1), the average reflectance of light having a wavelength of 400 to 1000 nm was less than 80%. It is inferred that the transmittance was not sufficiently increased because of the inherent reflection of metal.
 一方、第二高屈折率層がIZOやICO、ITO、a-GIOからなる膜では、透明金属膜が腐食した(比較例3~6)。 On the other hand, in the case where the second high refractive index layer was made of IZO, ICO, ITO, or a-GIO, the transparent metal film was corroded (Comparative Examples 3 to 6).
 また、第一高屈折率層または第二高屈折率層にZnSが含まれる場合、ZnSと共にSiOが含まれると、透明導電体のフレキシブル性が高まった。特に、第一高屈折率層または第二高屈折率層にSiOが10体積%以上含まれると、透明導電体のフレキシブル性が良好であった。 Further, when ZnS is contained in the first high refractive index layer or the second high refractive index layer, the flexibility of the transparent conductor is enhanced when SiO 2 is contained together with ZnS. In particular, when the first high refractive index layer or the second high refractive index layer contains 10% by volume or more of SiO 2 , the flexibility of the transparent conductor was good.
 本出願は、2013年11月5日出願の特願2013-229256に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2013-229256 filed on Nov. 5, 2013. The contents described in the application specification and the drawings are all incorporated herein.
 本発明で得られる透明導電体は、透明金属膜が硫化し難いため、光透過性が高く、さらに表面電気抵抗値が低い。したがって、各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスに好ましく用いられる。 The transparent conductor obtained by the present invention has a high light transmittance and a low surface electric resistance because the transparent metal film is not easily sulfided. Therefore, it is preferably used in various optoelectronic devices such as various types of displays, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescence light control elements, and the like.
 1 透明基板
 2 第一高屈折率層
 3 透明金属膜
 4 第二高屈折率層
 100 透明導電体
 
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 1st high refractive index layer 3 Transparent metal film 4 2nd high refractive index layer 100 Transparent conductor

Claims (3)

  1.  透明基板と、
     前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第一高屈折率層と、
     ゲルマニウム、ビスマス、白金族、銅、金、モリブデン、亜鉛、ガリウム、スズ、インジウム、ネオジム、チタン、アルミニウム、タングステン、マンガン、鉄、ニッケル、イットリウム、及びマグネシウムからなる群から選ばれる一種以上の金属と銀との合金からなる透明金属膜と、
     前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第二高屈折率層と、
     がこの順に積層された透明導電体であって、
     前記第一高屈折率層または前記第二高屈折率層のうち、少なくとも一方の層が、ZnSと金属酸化物または金属フッ化物とを含むアモルファス層である、透明導電体。
    A transparent substrate;
    A first high refractive index layer including a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light having a wavelength of 570 nm of the transparent substrate;
    One or more metals selected from the group consisting of germanium, bismuth, platinum group, copper, gold, molybdenum, zinc, gallium, tin, indium, neodymium, titanium, aluminum, tungsten, manganese, iron, nickel, yttrium, and magnesium A transparent metal film made of an alloy with silver;
    A second high-refractive-index layer comprising a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light having a wavelength of 570 nm of the transparent substrate
    Is a transparent conductor laminated in this order,
    A transparent conductor in which at least one of the first high refractive index layer and the second high refractive index layer is an amorphous layer containing ZnS and a metal oxide or metal fluoride.
  2.  前記アモルファス層が含む前記金属酸化物が、SiOである、請求項1に記載の透明導電体。 The transparent conductor according to claim 1, wherein the metal oxide included in the amorphous layer is SiO 2 .
  3.  前記透明金属膜が、所定の形状にパターニングされた金属パターンである、請求項1に記載の透明導電体。
     
    The transparent conductor according to claim 1, wherein the transparent metal film is a metal pattern patterned into a predetermined shape.
PCT/JP2014/079362 2013-11-05 2014-11-05 Transparent conductive body WO2015068738A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015546664A JPWO2015068738A1 (en) 2013-11-05 2014-11-05 Transparent conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013229256 2013-11-05
JP2013-229256 2013-11-05

Publications (1)

Publication Number Publication Date
WO2015068738A1 true WO2015068738A1 (en) 2015-05-14

Family

ID=53041515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079362 WO2015068738A1 (en) 2013-11-05 2014-11-05 Transparent conductive body

Country Status (2)

Country Link
JP (1) JPWO2015068738A1 (en)
WO (1) WO2015068738A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044896A1 (en) * 2017-08-29 2019-03-07 Tdk株式会社 Transparent conductor and organic device
KR20220085645A (en) * 2020-12-15 2022-06-22 엠에스웨이 주식회사 Flexible transparent conductive film, transparent electrode and transparent infrared radiation-cutting film comprising the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111253086A (en) * 2020-03-25 2020-06-09 四川猛犸半导体科技有限公司 Thin film device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313139A (en) * 2001-04-12 2002-10-25 Mitsui Chemicals Inc Transparent conductive thin film laminated body
JP2002319183A (en) * 2000-12-28 2002-10-31 Ricoh Co Ltd Optical recording medium
JP2005138363A (en) * 2003-11-05 2005-06-02 Ricoh Co Ltd Phase change-type optical recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319183A (en) * 2000-12-28 2002-10-31 Ricoh Co Ltd Optical recording medium
JP2002313139A (en) * 2001-04-12 2002-10-25 Mitsui Chemicals Inc Transparent conductive thin film laminated body
JP2005138363A (en) * 2003-11-05 2005-06-02 Ricoh Co Ltd Phase change-type optical recording medium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUOYUN LONG ET AL.: "Investigation of ZnS-SiO2/Ag/ZnS-SiO2 as high stable transparent and conductive multilayer films", APPLIED SURFACE SCIENCE, vol. 263, pages 546 - 552 *
JIN HUI SHI ET AL.: "Design and analysis of metal-dielectric nonpolarizing beam splitters in a glass cube", APPLIED OPTICS, vol. 48, no. 18, 20 June 2009 (2009-06-20), pages 3385 - 3390 *
TAKASHI ONISHI ET AL.: "Adding Metal Elements to Improve the Corrosion Resistance of silver- based Thin Films", R&D KOBE STEEL ENGINEERING REPORTS, vol. 52, no. 2, September 2002 (2002-09-01), pages 17 - 22 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044896A1 (en) * 2017-08-29 2019-03-07 Tdk株式会社 Transparent conductor and organic device
CN111066100A (en) * 2017-08-29 2020-04-24 Tdk株式会社 Transparent conductor and organic device
US11510292B2 (en) 2017-08-29 2022-11-22 Tdk Corporation Transparent conductor and organic device
KR20220085645A (en) * 2020-12-15 2022-06-22 엠에스웨이 주식회사 Flexible transparent conductive film, transparent electrode and transparent infrared radiation-cutting film comprising the same
KR102542171B1 (en) 2020-12-15 2023-06-13 엠에스웨이 주식회사 Flexible transparent conductive film, transparent electrode and transparent infrared radiation-cutting film comprising the same

Also Published As

Publication number Publication date
JPWO2015068738A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6314463B2 (en) Transparent conductor
JP6292225B2 (en) Transparent conductor
JP6319302B2 (en) Transparent conductor and method for producing the same
WO2015068738A1 (en) Transparent conductive body
WO2015087895A1 (en) Transparent conductive body
JP6344095B2 (en) Transparent conductor and touch panel
JP2015219690A (en) Transparent conductive device and touch panel
JP6206262B2 (en) Transparent conductor, method for producing the same, and conductive paste
WO2015053371A1 (en) Transparent conductor
JPWO2015194320A1 (en) Transparent conductor and touch panel
WO2015025525A1 (en) Transparent conductive body
WO2015125558A1 (en) Method for manufacturing transparent electroconductive body and electroconductive body
WO2014196460A1 (en) Transparent conductor and method for producing same
JP2016146052A (en) Transparent conductor, and touch panel including the same
WO2015011928A1 (en) Method for producing transparent conductive body
WO2014181538A1 (en) Transparent conductor and method for producing same
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
JP2016177940A (en) Method for producing transparent conductive body
WO2014188683A1 (en) Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel
WO2015125677A1 (en) Transparent conductor
JP2016044356A (en) Production method of transparent conductive body
JP2016169420A (en) Apparatus and method for manufacturing transparent conductive member
JP2016144884A (en) Transparent conductor and touch panel including the same
WO2015111327A1 (en) Transparent conductor
JP6586738B2 (en) Transparent conductive member and method for manufacturing transparent conductive member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860509

Country of ref document: EP

Kind code of ref document: A1