WO2015125558A1 - Method for manufacturing transparent electroconductive body and electroconductive body - Google Patents

Method for manufacturing transparent electroconductive body and electroconductive body Download PDF

Info

Publication number
WO2015125558A1
WO2015125558A1 PCT/JP2015/051985 JP2015051985W WO2015125558A1 WO 2015125558 A1 WO2015125558 A1 WO 2015125558A1 JP 2015051985 W JP2015051985 W JP 2015051985W WO 2015125558 A1 WO2015125558 A1 WO 2015125558A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
transparent
high refractive
index layer
Prior art date
Application number
PCT/JP2015/051985
Other languages
French (fr)
Japanese (ja)
Inventor
智一 田口
一成 多田
仁一 粕谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016504012A priority Critical patent/JPWO2015125558A1/en
Publication of WO2015125558A1 publication Critical patent/WO2015125558A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Definitions

  • the present invention relates to a method for producing a transparent conductor and a transparent conductor. More specifically, the present invention relates to a method of manufacturing a transparent conductor with reduced light absorption, which prevents reflection of light in the visible light region, and has low resistance.
  • transparent conductive films have been used in various devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
  • gold As a material constituting such a transparent conductive film, gold (Au), silver (Ag), platinum (Pt), copper (Cu), rhodium (Rh), palladium (Pd), aluminum (Al), chromium (Cr ) And other oxide semiconductors such as In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , TiO 2 , SnO 2 , ZnO, and ITO (Indium Tin Oxide) are known.
  • a wiring made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance.
  • a transparent conductive film made of ITO having high light transmittance is often used.
  • an Ag layer made of an Ag film is formed of a layer having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (Indium Zinc Oxide), ICO (Indium Cerium Oxide)). Further, it is also proposed to sandwich the layer between a-GIO (amorphous Gallium Indium Oxide), a layer made of zinc oxide, ITO, or the like (see Patent Documents 2 to 6 and Non-Patent Document 3). Further, it has also been proposed to sandwich the Ag layer with a zinc sulfide (ZnS) layer (see Non-Patent Documents 1 and 2).
  • ZnS zinc sulfide
  • Patent Documents 2 to 4 a transparent conductor in which an Ag layer is sandwiched between dielectric layers such as niobium oxide and IZO has insufficient moisture resistance. As a result, when a transparent conductor is used in a high humidity environment, there is a problem that the Ag layer is easily corroded.
  • the moisture resistance of the transparent conductor is sufficiently high, but Ag is sulfided to form silver sulfide when the Ag layer is formed or when the ZnS layer is formed.
  • Cheap As a result, there is a problem that the light transmittance of the transparent conductor is lowered.
  • the transparent conductive films described in Patent Documents 5 and 6 have a problem that the light absorption (film absorption) by the transparent metal layer is large, and as a result, the light transmittance is insufficient.
  • the present invention has been made in view of the above problems and situations, and a solution to that problem is a method of manufacturing a low-resistance transparent conductor in which light absorption is reduced and reflection of light in the visible light region is prevented. And providing a transparent conductor.
  • a transparent metal layer is formed while keeping the temperature of the transparent substrate at a low temperature, and the high refractive index layer contains a dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate.
  • One layer is formed as a zinc sulfide-containing layer containing zinc sulfide (ZnS), and a layer containing at least a specific metal compound or metal is formed between the transparent metal layer and the zinc sulfide-containing layer. Therefore, the uppermost layer (the layer opposite to the transparent substrate) can be made conductive to prevent sulfidation of the transparent metal layer while ensuring low resistance and moisture resistance. Furthermore, the transparent metal layer absorbs light. It has been found that a method for producing a transparent conductor capable of reducing (film absorption) can be obtained, and the present invention has been achieved. That is, the said subject which concerns on this invention is solved by the following means.
  • a transparent conductor manufacturing method for manufacturing a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order by a roll-to-roll method A method for producing a transparent conductor, comprising the step of forming the transparent metal layer while maintaining the temperature of the transparent substrate at 65 ° C. or lower.
  • ZnS zinc sulfide
  • the method further includes the step of forming an anti-sulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer.
  • an anti-sulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer.
  • the step of forming the sulfidation preventive layer comprises the step of forming the sulfidation layer containing the metal oxide under a vacuum and an atmospheric condition in which oxygen gas is not introduced on the surface of the transparent metal layer opposite to the transparent substrate. 4.
  • the first high refractive index layer and the second high refractive index layer contain a dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm, and
  • One of the high refractive index layer and the second high refractive index layer is a zinc sulfide-containing layer containing zinc sulfide (ZnS), and Between the transparent metal layer and the zinc sulfide-containing layer, an antisulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) is provided.
  • Transparent conductor is provided between the transparent metal layer and the zinc sulfide-containing layer.
  • a transparent metal layer here, metal particles such as silver particles
  • a sulfidation prevention layer has a high thermal energy, and is easy to move on the surface of the sulfidation prevention layer.
  • the metal particles easily aggregate with each other, form a surface of a so-called island structure (island state), and easily induce plasmon absorption, thereby exhibiting large light absorption.
  • Schematic sectional view showing an example of the layer structure of a transparent conductor Schematic sectional view showing another example of layer structure of transparent conductor Schematic diagram showing an example of a pattern composed of a conductive region and an insulating region of a transparent conductor
  • Schematic configuration diagram showing a transparent conductor manufacturing device Schematic configuration diagram showing an example of a forming chamber constituting a transparent conductor manufacturing apparatus
  • Schematic showing a part of transparent substrate Graph showing admittance locus in an example of transparent conductor
  • the transparent conductor manufacturing method of the present invention is a transparent conductor that has at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order by a roll-to-roll method.
  • a method for producing a conductor comprising a step of forming a transparent metal layer while maintaining a temperature of the transparent substrate at 65 ° C. or lower. This feature is a technical feature common to the inventions according to claims 1 to 8.
  • the present invention contains a dielectric material or an oxide semiconductor material having a refractive index larger than that of a transparent substrate with respect to light having a wavelength of 570 nm,
  • a step of forming an antisulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer is preferable that the transparent metal layer can be prevented from being sulfided and, consequently, the light transmittance can be improved.
  • the formation speed (film formation speed) when forming the transparent metal layer is 0.3 nm / s (3 ⁇ / s) or more.
  • the formation speed (film formation speed) when forming the transparent metal layer is 0.3 nm / s (3 ⁇ / s) or more.
  • the step of forming the anti-sulfurization layer comprises the step of forming the metal oxide under a vacuum and an atmospheric condition in which oxygen gas is not introduced on the surface of the transparent metal layer opposite to the transparent substrate. It is preferable to be a step of forming the sulfidation preventive layer containing matter. Thereby, it can suppress that oxygen plasma reacts with a transparent metal layer, the said transparent metal layer surface is roughened, and can reduce light absorption by extension.
  • a heavy rare gas such as krypton or xenon as the sputtering gas in the step of forming the transparent metal layer because a transparent conductor with less light absorption can be obtained.
  • the first high-refractive index layer and the second high-refractive index layer have a higher refractive index than that of the transparent substrate with respect to light having a wavelength of 570 nm, or an oxidation material.
  • the sulfidation prevention layer contains at least zinc oxide (ZnO) as the metal oxide. Thereby, the sulfidation of the transparent metal layer can be prevented, and the light transmittance can be improved.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the transparent conductor 10 according to the present invention includes a transparent substrate 1 / first high refractive index layer 2 / transparent metal layer 3 / second high refractive index layer 4.
  • the transparent conductor 10 according to the present invention either or both of the first high refractive index layer 2 and the second high refractive index layer 4 are zinc sulfide-containing layers containing zinc sulfide (ZnS). .
  • ZnS zinc sulfide-containing layers containing zinc sulfide
  • an antisulfurization layer 5 (5a and 5b) is included.
  • the first high refractive index layer 2 and the second high refractive index layer 4 when one of the first high refractive index layer 2 and the second high refractive index layer 4 is a zinc sulfide-containing layer, the first high refractive index layer 2 or the second high refractive index layer 2 that is a zinc sulfide-containing layer. Between the refractive index layer 4 (hereinafter also referred to as “zinc sulfide-containing layer 2 or 4”) and the transparent metal layer 3, an antisulfurization layer 5 is included. On the other hand, when both the first high-refractive index layer 2 and the second high-refractive index layer 4 are zinc sulfide-containing layers, the sulfide is interposed between any one of the zinc sulfide-containing layers 2 or 4 and the transparent metal layer 3.
  • the prevention layer 5 may be included, but from the viewpoint of sufficiently increasing the light transmittance of the transparent conductor 10, the sulfide prevention layer 5 is provided between each of the zinc sulfide-containing layers 2 and 4 and the transparent metal layer 3. Is preferably included. That is, it is preferable that the antisulfurization layer 5 is included between the first high refractive index layer 2 and the transparent metal layer 3 and between the transparent metal layer 3 and the second high refractive index layer 4.
  • the metal sulfide is presumed to be produced as follows.
  • the unreacted sulfur component in the zinc sulfide-containing layer is a material of the transparent metal layer. Repelled into the forming atmosphere by (metal material). Then, the ejected sulfur component reacts with the metal derived from the transparent metal layer, and metal sulfide is deposited on the zinc sulfide-containing layer. Further, when the zinc sulfide-containing layer and the transparent metal layer are continuously formed, the sulfur component contained in the atmosphere in which the zinc sulfide-containing layer is formed remains in the transparent metal layer atmosphere. And this sulfur component and the metal derived from a transparent metal layer react, and metal sulfide deposits on a zinc sulfide content layer.
  • the zinc sulfide-containing layer (second high refractive index layer) is formed on the transparent metal layer
  • the metal in the transparent metal layer is expelled into the forming atmosphere by the material of the zinc sulfide-containing layer.
  • the ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer.
  • a metal sulfide is generated on the surface of the transparent metal layer also when the surface of the transparent metal layer comes into contact with the sulfur component in the forming atmosphere.
  • the first antisulfurization layer 5 a is laminated on the first high refractive index layer 2.
  • the first high refractive index layer 2 is protected by the first antisulfurization layer 5a, it is possible to prevent the sulfur component in the first high refractive index layer 2 from being ejected when the transparent metal layer 3 is formed. it can.
  • the transparent metal layer 3 is continuously formed (deposited) from the first high refractive index layer 2, the sulfur component contained in the atmosphere in which the first high refractive index layer 2 is formed becomes the first antisulfurization layer 5 a. Or adsorbed to the constituents of the first antisulfurization layer 5a. Therefore, it can suppress that sulfur is contained in the formation atmosphere of the transparent metal layer 3, and the production
  • the second antisulfurization layer 5 b is laminated on the transparent metal layer 3.
  • the transparent metal layer 3 is protected by the second antisulfurization layer 5b, it is possible to suppress the metal in the transparent metal layer 3 from being ejected when the second high refractive index layer 4 is formed. Further, it is possible to prevent the sulfur component in the atmosphere in which the second high refractive index layer 4 is formed from coming into contact with the surface of the transparent metal layer 3. Therefore, generation of metal sulfide on the surface of the transparent metal layer 3 can be avoided.
  • the transparent metal layer 3 may be laminated on the entire surface of the transparent substrate 1 as shown in FIG. 1, and the transparent metal layer 3 as shown in FIG. 2. May be patterned into a desired shape.
  • the region a where the transparent metal layer 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”).
  • the region b where the transparent metal layer 3 is not included is an insulating region.
  • the pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 10.
  • the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. sell.
  • the transparent conductor 10 according to the present invention may include layers other than the transparent substrate 1, the first high refractive index layer 2, the transparent metal layer 3, the second high refractive index layer 4, and the antisulfurization layer 5.
  • an underlayer that can be a growth nucleus when forming the transparent metal layer 3 may be included between the transparent metal layer 3 and the first high refractive index layer 2 adjacent to the transparent metal layer 3.
  • the layers included in the transparent conductor 10 according to the present invention are all layers made of an inorganic material except for the transparent substrate 1. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 4, the laminated body from the transparent substrate 1 to the second high refractive index layer 4 is the transparent conductor 10 according to the present invention. is there.
  • the method for producing a transparent electrode according to the present invention includes a transparent conductive material comprising a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order by a roll-to-roll method. It is a manufacturing method of a body, Comprising: It has the process of forming a transparent metal layer, keeping the temperature of a transparent substrate at 65 degrees C or less.
  • the manufacturing method of the transparent conductor of this invention embodiment is a manufacturing method of the aspect mainly including the process shown below.
  • each component used for each process is explained in full detail later.
  • the transparent conductor manufactured by the method of manufacturing a transparent conductor according to the embodiment of the present invention includes a first high refractive index layer / first antisulfuration layer / transparent metal layer / second antisulfuration layer / second on a transparent substrate. It is set as the laminated body which laminates
  • the thickness of each layer is J. A. Woollam Co. Inc. It is measured with a VB-250 type VASE ellipsometer manufactured by the manufacturer. However, the average thickness of the underlayer is calculated from the formation speed of the manufacturer's nominal value of the sputtering apparatus.
  • the first high refractive index layer is formed on the transparent substrate.
  • a sputtering method can be employed.
  • a dielectric such as a SPW-060 sputtering apparatus manufactured by Anelva Corporation has a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm.
  • Sputtering is performed using an active material or an oxide semiconductor material.
  • the sputtering gas is not particularly limited, and may be, for example, argon (Ar), krypton (Kr), oxygen (O 2 ), or the like.
  • the first high refractive index layer contains zinc sulfide (ZnS)
  • this step contains a dielectric material or oxide semiconductor material having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm.
  • any one of the first high refractive index layer and the second high refractive index layer is a zinc sulfide-containing layer containing zinc sulfide (ZnS), and the first high refractive index layer and the second high refractive index layer are used. Is a step of forming.
  • the method for forming the first high refractive index layer in this step is not particularly limited.
  • general vapor deposition methods, ion plating methods, plasma CVD methods, thermal CVD methods, and the like can be used.
  • a phase film formation method also referred to as “deposition method”, “evaporation method”, or “synthesis method”
  • the first high refractive index layer 2 is a layer (film) formed by an electron beam evaporation method or a sputtering method. preferable.
  • IAD ion assist
  • a first antisulfurization layer is formed on the first high refractive index layer.
  • This step is a step of forming an anti-sulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer. is there.
  • a sputtering method can be employed.
  • a sputtering apparatus such as SPW-060 sputtering apparatus manufactured by Anelva is used, and metal oxide, metal fluoride, metal nitride, and zinc (Zn) are used. At least one selected is sputtered.
  • the sputtering gas is not particularly limited, and may be, for example, argon, krypton, oxygen, or the like.
  • the formation method of the 1st sulfurization prevention layer in this process is not specifically limited, In addition to the above-mentioned sputtering method, a general vapor phase such as a vacuum deposition method, an ion plating method, a plasma CVD method, and a thermal CVD method is used. A film forming method can be employed.
  • a transparent metal layer is formed on the first sulfurization prevention layer.
  • the transparent metal layer is formed while keeping the temperature of the transparent substrate at 65 ° C. or lower.
  • the step of forming a layer adjacent to the transparent metal layer is preferably performed while keeping the temperature of the transparent substrate at 65 ° C. or lower. Thereby, it becomes easy to keep the temperature of the transparent substrate at 65 ° C. or lower when forming the transparent metal layer, and after forming the transparent metal layer, it is possible to suppress the movement of the particles constituting the transparent metal layer, As a result, the quality of the transparent metal layer can be further maintained.
  • a sputtering method can be employed.
  • a transparent metal layer is formed by opposing sputtering of metal.
  • the sputtering gas is not particularly limited, but a heavy rare gas such as krypton or xenon is preferable because a transparent metal layer with higher smoothness can be obtained and a transparent conductor with less light absorption can be obtained.
  • the forming gas pressure is preferably 1 Pa or less. When the gas pressure is high, the surface roughness Ra of the first high refractive index layer and the transparent metal layer is increased.
  • the transparent metal layer according to the present invention preferably has a surface roughness Ra of 3 nm or less because a high-quality transparent metal layer (smooth transparent metal layer) can be secured.
  • a commercially available atomic force microscope (AFM) can be used for measurement of Ra. For example, it can be measured by the following method.
  • AFM SPI3800N probe station and SPA400 multifunctional unit as the AFM, set the sample cut to a size of about 1 cm square on a horizontal sample stage on the piezo scanner, and place the cantilever on the sample surface.
  • scanning is performed in the XY direction, and the unevenness of the sample at that time is captured by the displacement of the piezo in the Z direction.
  • a piezo scanner that can scan XY 20 ⁇ m and Z 2 ⁇ m is used.
  • the cantilever is a silicon cantilever SI-DF20 manufactured by Hitachi High-Tech Science Co., which has a resonance frequency of 120 to 150 kHz and a spring constant of 12 to 20 N / m, and is measured in a DFM mode (Dynamic Force Mode). A measurement area of 80 ⁇ 80 ⁇ m is measured at a scanning frequency of 1 Hz.
  • the formation method of the transparent metal layer in this process is not specifically limited, In addition to the above-described sputtering method, a general vapor deposition method such as a vacuum deposition method, an ion plating method, a plasma CVD method, and a thermal CVD method is used. The law can be adopted.
  • the formation speed at the time of forming the transparent metal layer is not particularly limited, but if it is 0.3 nm / s (3 ⁇ / s) or more, light absorption (film absorption) by the transparent metal layer can be reduced. Therefore, it is preferable.
  • the formation speed at the time of forming a transparent metal layer uses a quartz-type film thickness meter etc. beforehand, calibrates the relationship between the formation time and the thickness of the formed transparent metal layer, and forms the transparent metal layer. It can be calculated by dividing the layer thickness by the formation time.
  • the method for adjusting the temperature of the transparent substrate is not particularly limited.
  • a thermo label manufactured by NOF Corporation
  • NOF Corporation the temperature under the conditions for forming each layer is confirmed and set in advance. Is mentioned.
  • Step of forming the second sulfurization prevention layer the second sulfurization preventing layer is formed on the transparent metal layer.
  • This step is a step of forming an anti-sulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer. is there.
  • a sputtering method can be employed.
  • a sputtering apparatus such as SPW-060 sputtering apparatus manufactured by Anelva is used, and metal oxide, metal fluoride, metal nitride, and zinc (Zn) are used. At least one selected is sputtered.
  • sputtering gas is not specifically limited, It is preferable not to contain oxygen gas.
  • the method for forming the second antisulfurization layer in this step is not particularly limited.
  • a general gas deposition method such as a vacuum evaporation method, an ion plating method, a plasma CVD method, or a thermal CVD method can be used.
  • Phase deposition method can be adopted, but prevention of sulfidation containing metal oxide, especially under vacuum and atmospheric conditions where oxygen gas is not introduced on the surface of the transparent metal layer opposite to the transparent substrate
  • a formation method having a step of forming a layer is preferable. Thereby, it can suppress that oxygen plasma reacts with a transparent metal layer, the said transparent metal layer surface is roughened, and can reduce light absorption by extension.
  • the thickness of the second anti-sulfurization layer formed without introducing oxygen gas is preferably 5 nm or more when an oxide is further stacked on the second anti-sulfur layer. In the case where no object is laminated, the thickness is desirably 20 nm or less. Thereby, it can suppress more that oxygen plasma reacts with a transparent metal layer, and the said transparent metal layer surface becomes rough, and can further reduce light absorption further.
  • under the vacuum which concerns on this invention means the atmospheric pressure of 10 Pa or less.
  • a second high refractive index layer is formed on the second sulfurization prevention layer.
  • a sputtering method can be employed.
  • a dielectric such as a SPW-060 sputtering apparatus manufactured by Anelva Corporation has a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm.
  • Sputtering is performed using an active material or an oxide semiconductor material.
  • sputtering gas is not specifically limited, It is preferable not to contain oxygen gas.
  • the second high refractive index layer contains zinc sulfide (ZnS)
  • this step contains a dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm.
  • any one of the first high refractive index layer and the second high refractive index layer is a zinc sulfide-containing layer containing zinc sulfide (ZnS), and the first high refractive index layer and the second high refractive index layer are used. Is a step of forming.
  • the method for forming the second high refractive index layer in this step is not particularly limited, and other than the above-described sputtering method, general vapor deposition methods, ion plating methods, plasma CVD methods, thermal CVD methods, and the like can be used.
  • a phase film forming method may be used.
  • the second high refractive index layer 4 is a layer (film) formed by an electron beam evaporation method or a sputtering method. preferable.
  • the second high refractive index layer 4 is particularly preferably a film formed by a sputtering method.
  • the manufacturing apparatus for producing the transparent conductor of the present invention includes at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order.
  • the transparent conductor is manufactured by the roll-to-roll method, and the method may be characterized by having a step of forming a transparent metal layer while keeping the temperature of the transparent substrate at 65 ° C. or less.
  • the manufacturing apparatus 100 may not be used.
  • FIG. 4 is a schematic view showing an example of a manufacturing apparatus 100 having a manufacturing method for manufacturing the transparent conductor of the present invention.
  • a manufacturing apparatus 100 shown in FIG. 4 is an apparatus that continuously manufactures the transparent conductor 10 using a roll-shaped transparent substrate 21.
  • the transparent substrate 21 unwound from the unwinding portion 101 placed in a reduced-pressure atmosphere enters the front chamber R1 through the guide rolls 102 and 103, and further passes through the slit roll 104 to perform surface treatment under a vacuum atmosphere. It is carried into the accumulation chamber R10 and the surface is subjected to dry cleaning and dehydration.
  • the pressure in the surface treatment / accumulation chamber R10 is preferably set to 1 ⁇ 10 ⁇ 5 to 10 Pa.
  • the transparent substrate 21 is continuously transferred from the surface treatment / accumulation chamber R10 to the formation chamber R20.
  • a gate valve or a pressure adjusting chamber is provided between the surface treatment / accumulation chamber R10 and the formation chamber R20, and adjusts the differential pressure between the surface treatment / accumulation chamber R10 and the formation chamber R20.
  • any layer constituting the transparent conductor of the present invention is formed on the formation surface of the transparent substrate 21 being transferred in the forming chamber R20.
  • the forming chamber R20 includes a plurality of forming chambers R21 to R24, and an accumulator mechanism that absorbs the processing speed is provided between the forming chambers R21 to R24.
  • the forming chambers R21 to R24 are evacuated independently and kept in a vacuum or a reduced pressure state, and the forming pressure varies depending on the forming method, and may be set to about 1 ⁇ 10 ⁇ 6 to 10 Pa. preferable.
  • the first formation chamber R21 performs a step of forming the first high refractive index layer. That is, the first forming chamber R21 is formed on the transparent substrate 21 by the above-described forming method using a dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate as a forming material for light having a wavelength of 570 nm. 1 A high refractive index layer is formed.
  • ZnS zinc sulfide
  • the first high-refractive-index layer and the first high-refractive-index layer and the second high-refractive-index layer are made of a zinc sulfide-containing layer containing zinc sulfide (ZnS). 2
  • ZnS zinc sulfide
  • a step of forming a high refractive index layer is performed.
  • the first formation chamber R21 will be described below with reference to FIG.
  • FIG. 5 is a schematic configuration diagram in the first forming chamber R21.
  • the first forming chamber R21 includes a plurality of transport rollers 51 to 56 that transport the transparent substrate 21 along a predetermined transport path, a raw material supply unit 57 that faces the stacked surface of the transparent substrate 21 to be transported, and a stacked surface of the transparent substrate 21.
  • the back surface cooling roller 58 etc. which are in contact with the opposite surface and cool the transparent substrate 21 and adjust the temperature of the transparent substrate 21 are provided inside.
  • the transparent substrate 21 has a plurality of first guide holes 211 opened at equal intervals in the conveyance direction (movement direction) at both ends in the width direction. Yes.
  • the transport rollers 51 to 56 have a plurality of protrusions projecting in the radial direction on the peripheral surface thereof.
  • the raw material supply unit 57 has a formation mechanism corresponding to each method such as a vacuum deposition method, a sputtering method, or an ion plating method, and is provided to face the formation surface of the transparent substrate 21 to be conveyed. Thereby, formation of each layer can be performed with respect to a predetermined area
  • the back surface cooling roller 58 is a roller member that is rotatably supported and includes a predetermined cooling mechanism.
  • the back surface cooling roller 58 is provided on the opposite side of the raw material supply unit 57 with the transparent substrate 21 interposed therebetween, and comes into contact with the surface opposite to the formation surface of the transparent substrate 21, so that the raw material supply unit 57 of the transparent substrate 21 The region where the formation is performed is cooled, and the temperature of the transparent substrate 21 is adjusted.
  • the time and area where the rear cooling roller 58 and the transparent substrate 21 are in contact with each other are not particularly limited, but it is preferable that the temperature of the transparent substrate 21 be maintained at 65 ° C. or lower.
  • the transparent substrate 21 is stretched around the transport rollers 51 to 56, and the plurality of transport rollers 51 to 56 are rotationally driven to transport the transparent substrate 21 from the transport roller 51 toward the transport roller 52.
  • the inside of the first forming chamber R21 is configured as described above.
  • the second formation chamber R22 to the fourth formation chamber R24 have substantially the same configuration as the first formation chamber R21 described above, and the formation materials used are different.
  • the second forming chamber R22 is selected from a step of forming the first antisulfurization layer, that is, a metal oxide, a metal fluoride, a metal nitride, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer.
  • the step of forming an antisulfurization layer containing at least one selected from the above is performed.
  • the first sulfidation preventing layer is formed by the above-described forming method using at least one selected from the above-described metal oxide, metal fluoride, metal nitride, and zinc (Zn) as a forming material. .
  • 3rd formation chamber R23 performs the process of forming a transparent metal layer, ie, the process of forming a transparent metal layer, keeping the temperature of a transparent substrate at 65 degrees C or less.
  • a transparent metal layer is formed by the above-described forming method using a conductive material such as metal or metal oxide as a forming material. In the case of the example of FIG. 4, this process is performed while the temperature of the transparent substrate 21 is kept at 65 ° C. or less by the rear cooling roller 58.
  • the fourth formation chamber R24 performs a step of forming the second high refractive index layer.
  • the second high-refractive-index layer is formed by the above-described forming method using a dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate for light having a wavelength of 570 nm.
  • the transparent substrate 21 in which the transparent substrate, the first high-refractive index layer, the first anti-sulfurization layer, the transparent metal layer, and the second high-refractive index layer are laminated on one surface is disposed in the winding chamber R60. And is wound up in the winding chamber R60.
  • the transparent conductor has a transparent substrate, a first high refractive index layer, a first antisulfurization layer, a transparent metal layer, and a second high refractive index layer in this order.
  • the present invention is not limited to this, and, for example, a configuration in which a plurality of first formation chambers R21 or fourth formation chambers R24 are provided and the third high refractive index layer may be formed.
  • the raw material supply part 57 of the fourth formation chamber R24 contains zinc sulfide (ZnS), and even in the fourth formation chamber R24, a dielectric material having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm or A first high refractive index layer containing an oxide semiconductor material and one of the first high refractive index layer and the second high refractive index layer being a zinc sulfide-containing layer containing zinc sulfide (ZnS)
  • the step of forming the second high refractive index layer may be performed.
  • a second formation chamber R22 is further provided between the third formation chamber R23 and the fourth formation chamber R24 to form the second antisulfurization layer.
  • the forming chamber R20 has substantially the same configuration as the first forming chamber R21, in addition to the first forming chamber R21 to the fourth forming chamber R24 described above, and forms a base layer and a low refractive index layer, which will be described later, as the forming material. Depending on the material to be formed, a formation chamber for forming these layers may be provided as appropriate.
  • the transparent substrate 1 can be the same as the transparent substrate of various display devices.
  • the transparent substrate 1 is a glass substrate, cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate (PC) resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), cycloolefin Polymer (COP, such as ZEONOR (manufactured by ZEON CORPORATION), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, "acrylite (manufactured by Mitsubishi Rayon), Sumipex (Sumitomo) Chemical)), polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PET), polyethylene naphthalate), poly
  • the transparent substrate 1 is made of glass film or cellulose ester resin, polycarbonate resin, polyester resin (especially polyethylene terephthalate), triacetyl cellulose, cycloolefin resin, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, poly A film made of ether sulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin) or styrene block copolymer resin is preferable.
  • cellulose ester resin polycarbonate resin, polyester resin (especially polyethylene terephthalate), triacetyl cellulose, cycloolefin resin, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, poly A film made of ether sulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin) or st
  • the transparent substrate 1 is preferably highly transparent to visible light.
  • the average transmittance of light within the wavelength range of 400 to 800 nm (hereinafter also simply referred to as “transmittance”) is preferably 70% or more, more preferably 80% or more, More preferably, it is 85% or more.
  • the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance (transparency) of the transparent conductor 10 is likely to increase.
  • the average absorption rate of light within the wavelength range of 400 to 800 nm of the transparent substrate 1 (hereinafter also simply referred to as “absorption rate”) is preferably 10% or less, more preferably 5% or less, even more preferably. Is 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1.
  • the average absorptance can be calculated by making light incident from the same angle as the average transmittance and measuring the average reflectance (hereinafter also simply referred to as “reflectance”) of the transparent substrate 1.
  • the average absorption rate (%) is calculated as (100 ⁇ (average transmittance + average reflectance)).
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of the transparent substrate 1 with respect to light having a wavelength of 570 nm is preferably in the range of 1.40 to 1.95, more preferably 1.45 to 1.75, even more preferably at a measurement temperature of 25 ° C. Is in the range of 1.45 to 1.70.
  • the refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
  • the haze value of the transparent substrate 1 is preferably in the range of 0.01 to 2.5, more preferably in the range of 0.1 to 1.2. When the haze value of the transparent substrate is 2.5 or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
  • the thickness of the transparent substrate 1 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent substrate 1 is 1 ⁇ m or more, the strength of the transparent substrate 1 is increased, and the first high refractive index layer 2 is hardly cracked or broken.
  • the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 10 is sufficient.
  • the thickness of the apparatus using the transparent conductor 10 can be reduced.
  • the apparatus using the transparent conductor 10 can also be reduced in weight.
  • the surface roughness Ra of the transparent substrate 1 is rough, the surface roughness is also transferred for each layer laminated thereon. That is, if the surface of the transparent substrate 1 is rough, a smooth transparent metal layer or the like cannot be formed.
  • the first high-refractive index layer 2 is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor, that is, the region where the transparent metal layer 3 is formed. It is formed in the conduction region a of the body 10.
  • the first high-refractive index layer 2 may be formed also in the insulating region b of the transparent conductor 10, but only the conductive region a is used from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b. It is preferable to be formed.
  • the first high refractive index layer 2 contains a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 described above with respect to light having a wavelength of 570 nm.
  • the refractive index of the dielectric material or oxide semiconductor material with respect to light with a wavelength of 570 nm is preferably 0.1 to 1.1 higher than the refractive index with respect to light with a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the specific refractive index of the dielectric material or oxide semiconductor material included in the first high refractive index layer 2 with respect to light having a wavelength of 570 nm is preferably greater than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted by the first high refractive index layer 2.
  • the refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material can be a metal oxide.
  • TiO 2 Examples of metal oxides, ITO, ZnO, Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3, TiO, SnO 2, la 2 Ti 2 O 7, IZO , IGZO (Indium gallium Zinc oxide), AZO (Aluminum doped Zinc oxide), GZO (gallium-doped Zinc oxide), ATO (Antimony Tin oxide), ICO, Bi 2 O 3, gallium oxide (Ga 2 O 3 ), GeO 2 , WO 3 , HfO 2 , a-GIO and the like are included.
  • the first high refractive index layer 2 may contain only one kind of the metal oxide or two or more kinds.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 can also be zinc sulfide (ZnS).
  • ZnS zinc sulfide
  • the first high refractive index layer is a zinc sulfide-containing layer according to the present invention.
  • ZnS is contained in the first high refractive index layer 2
  • moisture hardly penetrates from the transparent substrate 1 side, and corrosion of the transparent metal layer 3 is suppressed.
  • the first high refractive index layer 2 may contain only ZnS, and may contain other materials together with ZnS.
  • the material contained together with ZnS is a metal oxide or silicon dioxide (SiO 2 ), which can be the dielectric material or the oxide semiconductor material, and is particularly preferably SiO 2 .
  • SiO 2 is contained together with ZnS, the first high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
  • the amount of ZnS is 0.1 to 95% by mass with respect to the total number of moles of the materials constituting the first high refractive index layer 2. It is preferably 50 to 90% by mass, more preferably 60 to 85% by mass.
  • ZnS zinc sulfide
  • the sputtering rate increases and the formation rate of the first high refractive index layer 2 increases.
  • the amorphous nature of the first high refractive index layer 2 is increased, and cracking of the first high refractive index layer 2 is suppressed.
  • the thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm.
  • the thickness of the first high refractive index layer 2 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted by the first high refractive index layer 2.
  • the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease.
  • the thickness of the first high refractive index layer 2 is measured with an ellipsometer.
  • the patterning method is not particularly limited.
  • the first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed; a known etching method It may be a layer patterned by.
  • the second high refractive index layer 4 is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor 10, that is, the region where the transparent metal layer 3 is formed, At least the conductive region a of the transparent conductor 10 is formed.
  • the second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductor 10, but is formed only in the conductive region a from the viewpoint of making it difficult to visually recognize the pattern formed of the conductive region a and the insulating region b. It is preferable that
  • the second high refractive index layer 4 includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 1 described above.
  • the refractive index of the dielectric material or oxide semiconductor material with respect to light with a wavelength of 570 nm is preferably 0.1 to 1.1 higher than the refractive index with respect to light with a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the specific refractive index of the dielectric material or oxide semiconductor material included in the second high refractive index layer 4 with respect to light having a wavelength of 570 nm is preferably greater than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted by the second high refractive index layer 4.
  • the refractive index of the second high refractive index layer 4 is adjusted by the refractive index of the material included in the second high refractive index layer 4 and the density of the material included in the second high refractive index layer 4.
  • the dielectric material or oxide semiconductor material included in the second high refractive index layer 4 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material can be a metal oxide.
  • the metal oxide may be the same as the metal oxide included in the first high refractive index layer.
  • the second high refractive index layer 4 may contain only one kind of the metal oxide or two or more kinds.
  • the dielectric material or the oxide semiconductor material included in the second high refractive index layer 4 may be ZnS.
  • the second high refractive index layer 2 contains zinc sulfide
  • the second high refractive index layer is a zinc sulfide-containing layer according to the present invention.
  • ZnS is contained in the second high refractive index layer 4
  • the second high refractive index layer 4 may contain only ZnS or may contain other materials together with ZnS.
  • the material included together with ZnS is a metal oxide or SiO 2 which can be the dielectric material or the oxide semiconductor material, particularly preferably SiO 2 .
  • SiO 2 is contained together with ZnS
  • the second high refractive index layer 4 is likely to be amorphous, and the flexibility of the transparent conductor 10 is likely to be enhanced.
  • the amount of ZnS is 0.1 to 95 mass% with respect to the total number of moles of the components constituting the second high refractive index layer 4. It is preferably 50 to 90% by mass, more preferably 60 to 85% by mass.
  • the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases.
  • the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
  • the thickness of the second high refractive index layer 4 is 15 nm or more, and usually 150 nm or less.
  • the thickness of the second high refractive index layer 4 is more preferably 15 to 150 nm, and further preferably 20 to 80 nm.
  • the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted by the second high refractive index layer 4.
  • the thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease.
  • the thickness of the second high refractive index layer 4 is measured with an ellipsometer.
  • the patterning method is not particularly limited.
  • the second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed.
  • the layer patterned by the well-known etching method may be sufficient.
  • the transparent metal layer 3 is a layer for conducting electricity in the transparent conductor 10.
  • the transparent metal layer 3 may be formed on the entire surface of the transparent substrate 1 or may be patterned into a desired shape.
  • the metal contained in the transparent metal layer 3 is not particularly limited as long as it is a highly conductive metal, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like.
  • the transparent metal layer 3 may contain only one kind of these metals or two or more kinds.
  • the transparent metal layer is preferably made of silver or an alloy containing 90 at% or more of silver.
  • the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, and the like.
  • the sulfide resistance of the transparent metal layer is increased.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the plasmon absorption rate of the transparent metal layer 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 10 is likely to be colored.
  • the plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 3 is measured by the following procedure.
  • the thickness of the transparent metal layer 3 is 3 to 20 nm, preferably 5 to 9 nm, and more preferably 5 to 8 nm.
  • the transparent conductor 10 of the present invention if the thickness of the transparent metal layer 3 is 10 nm or less, the metal inherent reflection hardly occurs in the transparent metal layer 3. Furthermore, when the thickness of the transparent metal layer 3 is 10 nm or less, the optical admittance of the transparent conductor 10 is easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 4, and the surface of the conductive region a The reflection of light is easy to be suppressed.
  • the thickness of the transparent metal layer 3 is measured with an ellipsometer.
  • the transparent metal layer 3 can be formed by any of the forming methods, but in order to change the average transmittance of the transparent metal layer, it is a film formed by sputtering or a film formed on an underlayer described later. Is preferred.
  • the sputtering method since the material collides with the object to be formed at a high speed at the time of formation, a dense and smooth film is easily obtained, so that the light transmittance of the transparent metal layer 3 is likely to be increased. Moreover, when the transparent metal layer 3 is a film formed by sputtering, the transparent metal layer 3 is hardly corroded even in an environment of high temperature and low humidity.
  • the type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like.
  • the transparent metal layer 3 is particularly preferably formed by a counter sputtering method.
  • the transparent metal layer 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent metal layer 3 becomes lower, and the light transmittance can be improved.
  • the method for forming the transparent metal layer 3 is not particularly limited as described above, and a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, and a thermal CVD method is used. It can be.
  • the patterning method is not particularly limited.
  • the transparent metal layer 3 may be, for example, a layer formed by arranging a mask having a desired pattern; it may be a layer patterned by a known etching method.
  • the sulfidation prevention layer 5 will be described below assuming that the sulfidation prevention layer 5 includes the first sulfidation prevention layer 5a or the second sulfidation prevention layer 5b described above.
  • first sulfurization prevention layer 5 a is provided between the first high refractive index layer 2 and the transparent metal layer 3. It is preferred that The first sulfidation preventing layer 5a may be formed also in the insulating region b of the transparent conductor 10, but from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b, the first sulfidation preventing layer 5a is formed only in the conductive region a. Preferably it is formed.
  • the first antisulfurization layer 5a is a layer containing at least one selected from metal oxide, metal fluoride, metal nitride, and zinc (Zn). Only one of these may be included in the first sulfurization prevention layer 5a, or two or more thereof may be included. However, when the first high refractive index layer 2, the first sulfidation preventing layer 5a, and the transparent metal layer 3 are continuously formed, the metal oxide can react with sulfur or adsorb sulfur. Preferably. When the metal oxide is a compound that reacts with sulfur, the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
  • metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, IGZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 and WO 3 are included.
  • metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 and YF 3.
  • metal nitride examples include Si 3 N 4 and AlN.
  • the thickness of the first sulfidation preventing layer 5a is preferably a thickness capable of protecting the surface of the first high refractive index layer 2 from an impact when forming the transparent metal layer 3 described later.
  • ZnS that can be contained in the first high refractive index layer has a high affinity with the metal contained in the transparent metal layer 3. Therefore, if the thickness of the first antisulfurization layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal layer grows around the exposed part, and the transparent metal Layer 3 tends to be dense.
  • the first antisulfurization layer 5a is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm.
  • the thickness of the first sulfurization preventing layer 5a is measured with an ellipsometer.
  • the first antisulfurization layer 5a is a layer patterned into a desired shape
  • the patterning method is not particularly limited.
  • the first sulfidation preventing layer 5a may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, by a known etching method. It may be a patterned layer.
  • a second anti-sulfurization layer 5b may be provided between the transparent metal layer 3 and the second high-refractive index layer 4 as shown in FIG. preferable.
  • the second sulfidation preventing layer 5b may be formed also in the insulating region b of the transparent conductor 10, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a. Preferably it is formed.
  • the second antisulfurization layer 5b is a layer containing at least one selected from metal oxide, metal fluoride, metal nitride, and zinc (Zn). Only one of these may be included in the second sulfurization prevention layer 5b, or two or more thereof may be included.
  • the metal oxide, metal nitride, and metal fluoride may be the same as the metal oxide, metal nitride, and metal fluoride contained in the first high refractive index layer 2 described above.
  • the thickness of the second antisulfurization layer 5b is preferably a thickness capable of protecting the surface of the transparent metal layer 3 from an impact when the second high refractive index layer 4 is formed.
  • the metal contained in the transparent metal layer 3 and the ZnS contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second antisulfuration layer 5b is very thin and a part of the transparent metal layer 3 is slightly exposed, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. Adhesion with 4 tends to increase.
  • the specific thickness of the second antisulfurization layer 5b is preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm.
  • the thickness of the second sulfurization preventing layer 5b is measured with an ellipsometer.
  • the second antisulfurization layer 5b may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • the patterning method is not particularly limited.
  • the second antisulfurization layer 5b may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, and by a known etching method. It may be a patterned layer.
  • the transparent conductor 10 may include an underlayer that becomes a growth nucleus when the transparent metal layer 3 is formed.
  • the underlayer is a layer formed on the substrate 1 side of the transparent metal layer 3 and adjacent to the transparent metal layer 3. That is, it may be a layer formed between the first high refractive index layer 2 and the transparent metal layer 3 or between the first antisulfurization layer 5 a and the transparent metal layer 3.
  • the underlayer is preferably formed at least in the conductive region a of the transparent conductor, and may be formed in the insulating region b of the transparent conductor 10.
  • the transparent conductor 10 includes a base layer, the smoothness of the surface of the transparent metal layer 3 is increased even if the transparent metal layer 3 is thin. The reason is as follows.
  • the material of the transparent metal layer 3 is deposited, for example, on the first high refractive index layer 2 by a general vapor deposition method
  • atoms attached to the first high refractive index layer 2 are initially deposited at the initial stage of formation. It moves (move) and atoms gather together to form a lump (island structure). And a layer (film
  • a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption occurs. As the formation proceeds further, the lumps are completely connected and plasmon absorption is reduced.
  • the original reflection of the metal occurs, and the light transmittance of the transparent metal layer decreases.
  • the transparent metal layer 3 grows using the base layer as a growth nucleus. That is, the material of the transparent metal layer 3 can suppress migration, and the layer grows without forming the aforementioned island-like structure. As a result, a smooth transparent metal layer 3 can be obtained even if the thickness is small.
  • the base layer may contain palladium, molybdenum, zinc, germanium, niobium, indium, alloys of these metals with other metals, oxides or sulfides of these metals (for example, ZnS). preferable.
  • the underlayer may contain only one kind or two or more kinds.
  • the amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more.
  • the metal is contained in the base layer in an amount of 20% by mass or more, the affinity between the base layer and the transparent metal layer 3 is increased, and the adhesion between the base layer and the transparent metal layer 3 is likely to be increased. It is particularly preferable that the underlayer contains palladium or molybdenum.
  • the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, but may be a platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, and the like.
  • the thickness of the underlayer is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film.
  • the underlayer can also be a layer in which metal atoms are adhered to the transparent substrate 1 while being separated from each other. If the adhesion amount of the underlayer is 3 nm or less, the underlayer can be prevented from affecting the light transmittance and optical admittance of the transparent conductor 10. The presence or absence of the underlayer is confirmed by the ICP-MS method. Further, the thickness of the underlayer is calculated from the product of the formation speed and the formation time.
  • the formation method of the underlayer is not particularly limited, and may be a known method, for example, a sputtering method or a vapor deposition method can be applied.
  • the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method.
  • the sputtering time for forming the underlayer is appropriately selected according to the desired average thickness and formation rate of the underlayer.
  • the formation rate by sputtering is preferably 0.01 to 1.5 nm / s (0.1 to 15 ⁇ / s), more preferably 0.01 to 0.7 nm / s (0.1 to 7 ⁇ / s). ).
  • examples of the vapor deposition method include a vacuum vapor deposition method, an electron beam vapor deposition method, an ion plating method, and an ion beam vapor deposition method.
  • the deposition time is appropriately selected according to the desired thickness and formation rate of the underlayer.
  • the deposition rate is preferably 0.01 to 1.5 nm / s (0.1 to 15 ⁇ / s), more preferably 0.01 to 0.7 nm / s (0.1 to 7 ⁇ / s). .
  • the underlayer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, or patterned by a known etching method. It may be a layer.
  • the surface roughness of the underlayer is approximately 3 nm or less in terms of Ra because a high-quality transparent metal layer (smooth transparent metal layer) can be formed.
  • the transparent conductor 10 of the present invention has a low refractive index layer (not shown) for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor on the second high refractive index layer 4. May be provided.
  • the low refractive index layer may be formed only in the conductive region a of the transparent conductor 10, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 10.
  • the low refractive index layer has a refractive index with respect to light with a wavelength of 570 nm, which is higher than the refractive index with respect to light with a wavelength of 570 nm of the dielectric material or oxide semiconductor material included in the first high refractive index layer 2 and the second high refractive index layer 4.
  • a dielectric material or oxide semiconductor material having a low rate is included.
  • the refractive index with respect to light having a wavelength of 570 nm in the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the material contained in the first high refractive index layer 2 and the second high refractive index layer 4.
  • the refractive index is preferably 0.2 or more lower than the refractive index, more preferably 0.4 or more lower.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is preferably less than 1.8, more preferably 1.30 to 1.6, Particularly preferred is 1.35 to 1.5.
  • the refractive index of the low refractive index layer is mainly adjusted by the refractive index of the material included in the low refractive index layer and the density of the material included in the low refractive index layer.
  • the dielectric material or the oxide semiconductor material included in the low refractive index layer is MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, NdF 3 , YF 3 , YbF 3. , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO and ThO 2 .
  • MgF 2 and SiO 2 are particularly preferable. Only one of these materials may be included in the low refractive index layer, or two or more of these materials may be included.
  • the thickness of the low refractive index layer is preferably 10 to 150 nm, more preferably 20 to 100 nm.
  • the thickness of the low refractive index layer is 10 nm or more, the optical admittance on the surface of the transparent conductor is easily finely adjusted.
  • the thickness of the low refractive index layer is 150 nm or less, the thickness of the transparent conductor is reduced.
  • the thickness of the low refractive index layer is measured with an ellipsometer.
  • the low refractive index layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method and a thermal CVD method. From the viewpoint of ease of formation and the like, the low refractive index layer is preferably a layer formed by electron beam evaporation or sputtering.
  • the patterning method is not particularly limited.
  • the low refractive index layer may be, for example, a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed; patterned by a known etching method It may be a layer.
  • a third high refractive index layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor may be further provided on the low refractive index layer.
  • the third high refractive index layer may be formed only in the conductive region a of the transparent conductor 10, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 10.
  • the third high refractive index layer preferably includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 and the refractive index of the low refractive index layer.
  • the specific refractive index with respect to light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5. Preferably, it is 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted by the third high refractive index layer.
  • the refractive index of the third high refractive index layer is adjusted by the refractive index of the material included in the third high refractive index layer and the density of the material included in the third high refractive index layer.
  • the dielectric material or oxide semiconductor material contained in the third high refractive index layer may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material is preferably a metal oxide or ZnS.
  • the metal oxide include the metal oxide contained in the first high refractive index layer 2 or the second high refractive index layer 4 described above.
  • the third high refractive index layer may contain only one kind of the metal oxide or ZnS, or may contain two or more kinds.
  • a dielectric material such as SiO 2 may be included together with the metal oxide and ZnS.
  • the thickness of the third high refractive index layer is not particularly limited, and is preferably 1 to 40 nm, and more preferably 5 to 20 nm. When the thickness of the third high refractive index layer is in the above range, the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted. The thickness of the third high refractive index layer is measured with an ellipsometer.
  • the formation method of the third high refractive index layer is not particularly limited, and may be a layer formed by the same method as the first high refractive index layer 2 and the second high refractive index layer 4.
  • the reflectance R of the surface of the transparent conductor transmission region a (the surface of the transparent conductor opposite to the transparent substrate) is determined by the optical admittance Y env of the medium on which light is incident and the surface of the transparent conductor transmission region a. determined from the equivalent admittance Y E.
  • the medium on which the light is incident refers to a member or environment through which light incident on the transparent conductor passes immediately before the incident; a member or environment made of an organic resin.
  • the relationship between the optical admittance Y env of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation. Based on the above formula, the closer the value of
  • the optical admittance Y env of the medium is obtained from the value (H / E) of the ratio between the electric field strength and the magnetic field strength, and is usually the same as the refractive index n env of the medium.
  • the equivalent admittance Y E of the surface of the transparent region a of the transparent conductor is determined from the optical admittance Y of the layers constituting the transparent region a. For example, when the transparent conductor (transmission region a) consists of one layer, the equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
  • the optical admittance Y x (E x H x ) of the laminate from the first layer to the x-th layer is from the first layer to (x ⁇ 1) It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate up to the layer and a specific matrix; specifically, the following formula (1) or formula (2) Is required.
  • the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
  • the optical admittance Y x (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E of the transparent conductor.
  • region a of a transparent conductor provided with was shown.
  • the horizontal axis of the graph is the real part when the optical admittance Y of the region is represented by x + iy; that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance; that is, y in the equation.
  • the first sulfidation preventing layer is sufficiently thin, and thus its optical admittance can be ignored.
  • the last coordinate in the admittance locus is equivalent admittance Y E conductive region a.
  • the distance between the coordinate (x E , y E ) of the equivalent admittance Y E and the admittance coordinate Y env (n env , 0) (not shown) of the medium on which the light is incident is determined by the conduction region a of the transparent conductor. It is proportional to the surface reflectance R.
  • it is preferable that one or both of x 1 and x 2 is 1.6 or more. either one of x 1 and x 2 are, it tends enhanced light transmission of the transparent conductor If it is 1.6 or more. The reason will be described below.
  • the following relational expression is established between the admittance Y at the interface between the layers constituting the transparent conductor and the electric field strength E existing in each layer. Based on the above relational expression, if the real part (x 1 and x 2 ) of the optical admittances Y1 and Y2 on the surface of the transparent metal layer is increased, the electric field strength E of the transparent metal layer is decreased and the electric field loss (light absorption) is reduced. Is suppressed. That is, the light transmittance of the transparent conductor is sufficiently increased.
  • either one or both of x 1 and x 2 is preferably 1.6 or more, more preferably 1.8 or more, and further preferably 2.0 or more. Any one of x 1 and x 2 may be 1.6 or more, but x 1 is particularly preferably 1.6 or more.
  • the x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less.
  • x 1 is the refractive index of the first high refractive index layer and is adjusted by the thickness and the like of the first high refractive index layer.
  • x 2 is the refractive index of x 1 values and transparent metal layer is adjusted by the thickness or the like of the first transparent metal layer.
  • ) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there.
  • the admittance locus at a specific wavelength is preferably line symmetric with respect to the horizontal axis of the graph.
  • the coordinates of the equivalent admittance Y E is at a wavelength other than the specific wavelength (e.g. 450nm or 700 nm), likely to be constant, at any wavelength, reflectance R becomes smaller. Therefore, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, it is preferable to satisfy the y 1 ⁇ y 2 ⁇ 0.
  • y 1 is sufficiently large.
  • the value of the imaginary part of the optical admittance of the transparent metal layer is large, and the admittance locus greatly moves in the direction of the vertical axis (imaginary part). Therefore, if y 1 is sufficiently large, the absolute value of the imaginary part of the admittance coordinates is likely to be within an appropriate range, and the admittance locus is likely to be line symmetric.
  • y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0.
  • y 2 described above is preferably ⁇ 0.3 to ⁇ 2.0, and more preferably ⁇ 0.6 to ⁇ 1.5.
  • the distance from the equivalent admittance coordinate (n env , 0) ((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) is preferably less than 0.5, more preferably 0.3. It is as follows. If the said distance is less than 0.5, the reflectance Ra of the surface of the conduction
  • an equivalent admittance coordinate (x E , y E ) of light with a wavelength of 570 nm in the conduction region a and an equivalent admittance coordinate (( x ( b , y b ))), ((x E ⁇ x b ) 2 + (y E ⁇ y b ) 2 ) 0.5 ) is preferably less than 0.5, more preferably 0.3 or less.
  • the coordinates of the equivalent admittance Y E conductive region a, the coordinate of the equivalent admittance Y b of the insulating region b is sufficiently close, so these patterns are hardly visually recognized.
  • the average transmittance of light having a wavelength of 400 to 800 nm of the transparent conductor of the present invention is preferably 83% or more, more preferably 85% or more, and still more preferably in both the conduction region a and the insulation region b. Is 88% or more.
  • the transparent conductor can be applied to applications requiring high transparency to visible light.
  • the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor is preferably 80% or more in both the conduction region a and the insulation region b, more preferably 83% or more, and still more preferably 85%. That's it.
  • the transparent conductor is also applied to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. can do.
  • the average absorptance of light having a wavelength of 400 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and even more preferably in both the conduction region a and the insulation region b. 7% or less.
  • the maximum value of the light absorptance of the transparent conductor having a wavelength of 400 to 800 nm is preferably 15% or less, more preferably 10% or less, both in the conduction region a and the insulation region b. Preferably it is 9% or less.
  • the average reflectance of light having a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less.
  • the average transmittance and the average reflectance are preferably the transmittance and the reflectance under the usage environment of the transparent conductor. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the transmittance and the reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the transmittance and reflectance in the air. The transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The absorptance is calculated from a calculation formula of 100 ⁇ (transmittance + reflectance).
  • the reflectance of the conduction region a and the reflectance of the insulation region b are approximated.
  • the difference ⁇ R between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less.
  • the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
  • the luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
  • the a * value and the b * value in the L * a * b * color system are preferably within ⁇ 30 in any region. More preferably, it is within ⁇ 5, more preferably within ⁇ 3.0, and particularly preferably within ⁇ 2.0. If the a * value and the b * value in the L * a * b * color system are within ⁇ 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electric resistance of the conductive region a of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like.
  • the surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, or the like. It is also measured by a commercially available surface electrical resistivity meter.
  • the transparent conductors described above are used in various optoelectronic devices such as liquid crystal, plasma, organic electroluminescence, field emission, and other types of displays, as well as touch panels, mobile phones, electronic paper, various solar cells, and various electroluminescence dimming elements. It can be preferably used for a substrate or the like.
  • the surface of the transparent conductor (for example, the surface opposite to the transparent substrate) may be bonded to another member via an adhesive layer or the like.
  • the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer approximate each other. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
  • the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
  • a high refractive index material (with a refractive index of 1.8 or more for light having a wavelength of 570 nm) may be used for at least one of the upper and lower layers of the transparent metal layer.
  • the visible light (450 to 700 nm) range can be kept substantially uniform and the transmittance can be maintained at 80% or more.
  • the thickness of the transparent metal layer in this case is preferably 5 to 20 nm. When the thickness of the transparent metal layer is 5 nm or more, it is possible to avoid a significant increase in plasmon absorption, and after forming an initial growth nucleus artificially, the transparent metal layer is formed at a low temperature.
  • Example 1 A transparent conductor of Example 1 was produced by laminating the following layers on a cycloolefin polymer (COP) (transparent substrate, refractive index with respect to light having a wavelength of 570 nm: 1.52). Each layer was formed by keeping the temperature of the transparent substrate at 30 to 35 ° C.
  • COP cycloolefin polymer
  • a first high refractive index layer made of ZnS—SiO 2 was formed to a thickness of 40 nm on one side of a COP having a thickness of 70 ⁇ m by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON.
  • the input current value at this time was 210 A, and the formation rate was 0.5 nm / s (5 ⁇ / s).
  • the ratio (molar ratio) between ZnS and SiO 2 was 80:20, and the refractive index of the first high refractive index layer with respect to light having a wavelength of 570 nm was 2.14.
  • first anti-sulfurization layer On the first high refractive index layer, a first anti-sulfurization layer made of ZnO was formed to a thickness of 1 nm by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON.
  • the input current value at this time was 210 A, and the formation rate was 0.5 nm / s (5 ⁇ / s).
  • a transparent metal layer made of Ag was formed to a thickness of 7 nm by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON.
  • the input current value at this time was 210 A, and the formation rate was 1.2 nm / s (12 ⁇ / s).
  • a second anti-sulfurization layer made of ZnO was formed to a thickness of 1 nm by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON.
  • the input current value at this time was 210 A, and the formation rate was 0.5 nm / s (5 ⁇ / s).
  • Second high refractive index layer On the second sulfurization preventive layer, a second high refractive index layer made of ZnS—SiO 2 was formed to a thickness of 40 nm by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON.
  • the input current value at this time was 210 A, and the formation rate was 0.5 nm / s (5 ⁇ / s).
  • the refractive index with respect to the light of wavelength 570nm is the same value as a 1st high refractive index layer.
  • Example 2 and Example 3 The transparent conductors of Example 2 and Example 3 were produced in the same manner as the transparent conductor of Example 1, except that the temperature of the transparent substrate when forming each layer was as shown in Table 1.
  • the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1.
  • Example 4 Polyethylene terephthalate (PET, refractive index with respect to light having a wavelength of 570 nm was 1.64) was used as a transparent substrate, and the following layers were laminated on this PET to produce a transparent conductor of Example 4. Each layer was formed on one side of PET having a thickness of 70 ⁇ m using SPW-060 manufactured by Anerva Co., Ltd. while maintaining the temperature of the transparent substrate at 35 to 40 ° C.
  • PET polyethylene terephthalate
  • the vacuum chamber of the sputtering apparatus was evacuated to a high vacuum of 1 ⁇ 10 ⁇ 3 Pa. Thereafter, the sputtering pressure using Ar as a sputtering gas was 0.3 Pa, at room temperature, the target-side power 1.85 W / cm 2, the formation rate of 0.2nm / s (2.0 ⁇ / s) the ZnS-SiO 2 DC Sputtering was performed to form a first high refractive index layer with a thickness of 40 nm. The target-substrate distance was 86 mm. Note that the refractive index of the first high-refractive-index layer with respect to light having a wavelength of 570 nm is the same value as in Example 1.
  • Second sulfurization prevention layer On the transparent metal layer, Ar is used as the sputtering gas and the sputtering pressure is 0.1 Pa. At room temperature, ZnO is formed at a target side power of 1.85 W / cm 2 and a formation rate of 0.11 nm / s (1.1 ⁇ / s). DC sputtering was performed to form a second antisulfurization layer with a thickness of 0.5 nm. The target-substrate distance was 90 mm.
  • Second high refractive index layer On the second sulfidation prevention layer, Ar is used as a sputtering gas, the sputtering pressure is 0.3 Pa, the target side power is 1.85 W / cm 2 , and the formation rate is 0.2 nm / s (2.0 ⁇ / s) at room temperature. ZnS—SiO 2 was DC sputtered to form a second high refractive index layer with a thickness of 40 nm. The target-substrate distance was 86 mm. Note that the refractive index of the second high-refractive-index layer with respect to light having a wavelength of 570 nm is the same value as in Example 1.
  • Example 5 and Example 6 Transparent conductors of Examples 5 and 6 were produced in the same manner as in Example 4 except that the target-side power was adjusted so that the formation speed of the transparent metal layer was as shown in Table 2.
  • the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1.
  • Example 7 The first sulfidation prevention layer is not formed, and a glass film (transparent substrate with a refractive index of 1.52 for light having a wavelength of 570 nm) as a transparent substrate, ZnS—TiO 2 as a first high refractive index layer and a second high refractive index layer.
  • a glass film transparent substrate with a refractive index of 1.52 for light having a wavelength of 570 nm
  • ZnS—TiO 2 as a first high refractive index layer and a second high refractive index layer.
  • Ag alloy alloy (alloy containing 1.5 atomic% of Au and 0.5 atomic% of Cu in Ag) as the transparent metal layer
  • IGZO as the second anti-sulfurization layer
  • Example 8 The second antisulfurizing layer is not formed, and the first antisulfurizing layer is formed as follows, and a cellulose triacetate having a thickness of 70 ⁇ m (TAC, refractive index with respect to light having a wavelength of 570 nm is 1.49) as a transparent substrate, ZnS—ZnO is used as the high refractive index layer, Ag alloy (alloy containing 1.5 atomic% of Au and 0.5 atomic% of Cu in Ag) is used as the transparent metal layer, and IGZO is used as the second high refractive index layer.
  • a transparent conductor of Example 8 was produced in the same manner as in Example 4 except that the thickness of each layer and the temperature of the transparent substrate when forming each layer were as shown in Table 1.
  • the ratio (molar ratio) between ZnS and ZnO in ZnS—ZnO was 80:20, and the refractive index of the first high refractive index layer with respect to light having a wavelength of 570 nm was 2.16.
  • the refractive index of the second high refractive index layer with respect to light having a wavelength of 570 nm was 2.09.
  • first antisulfurization layer On the first high refractive index layer, Ar is used as the sputtering gas, the sputtering pressure is 0.1 Pa, the target side power is 1.85 W / cm 2 , and the formation speed is 0.11 nm / s (1.1 ⁇ / s) at room temperature. Then, ZnO was DC sputtered to form a first sulfidation preventing layer with a thickness of 1 nm on one side of the TAC. The target-substrate distance was 90 mm.
  • Example 9 Polycarbonate film having a thickness of 70 ⁇ m as a transparent substrate (PC, refractive index of 1.59 with respect to light having a wavelength of 570 nm), ZnS—Ga 2 O 3 as a first high refractive index layer, a first antisulfurization layer, and a second high refractive index
  • a transparent conductor of Example 9 was produced in the same manner as Example 8 except that GZO was used as a layer and the thickness of each layer was as shown in Table 1.
  • the refractive index for light of wavelength 570nm of the first high refractive index layer is 2.17 met It was.
  • the refractive index of the second high refractive index layer with respect to light having a wavelength of 570 nm was 2.08.
  • Example 10 A transparent conductor of Example 10 was produced in the same manner as in Example 4 except that the sputtering gas for forming the transparent metal layer was krypton (Kr).
  • the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1.
  • Example 11 A transparent conductor of Example 11 was produced in the same manner as in Example 4 except that the target-side power was adjusted so that the formation speed when forming the transparent metal layer was 0.1 nm / s (1 ⁇ / s). .
  • the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1.
  • a transparent conductor of Example 12 was produced in the same manner as Example 4 except that ITO was DC sputtered instead of ZnO to form a 10 nm thick layer.
  • the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1.
  • Example 13 A transparent conductor of Example 13 was produced in the same manner as the transparent conductor of Example 1, except that the temperature of the transparent substrate when forming each layer was as shown in Table 1.
  • the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1.
  • Example 14 A transparent conductor of Example 14 was produced in the same manner as Example 4 except that the target-side power was adjusted so that the formation speed of the transparent metal layer was as shown in Table 1.
  • the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1.
  • Example 15 A transparent conductor of Example 15 was produced in the same manner as in Example 4 except that PET was used as the transparent substrate and each layer was formed using an opposed target sputtering apparatus manufactured by FTS Corporation.
  • the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1.
  • Example 16 The first anti-sulfurization layer is not formed, and a transparent hard-coated polyethylene terephthalate film G1SBF manufactured by Kimoto Co., Ltd. (referred to as “PET / CHC” in Table 1.
  • the refractive index for light having a wavelength of 570 nm is 1.59).
  • 70 ⁇ m thick, ZnS as the first high refractive index layer and the second high refractive index layer, and GZO as the second antisulfurization layer, and the thickness of each layer and the temperature of the transparent substrate when forming each layer are shown in Table 1.
  • a transparent conductor of Example 16 was produced in the same manner as in Example 1 except that the above was performed.
  • the refractive index of the first high refractive index layer and the second high refractive index layer was 2.34.
  • Example 17 The first anti-sulfurization layer is not formed, the above PET / CHC having a thickness of 70 ⁇ m is used as the transparent substrate, and GZO is used as the second anti-sulfur layer, and the thickness of each layer and the temperature of the transparent substrate when forming each layer are expressed.
  • a transparent conductor of Example 17 was produced in the same manner as in Example 1 except that the procedure was as described in Example 1.
  • the refractive indexes of the first high refractive index layer and the second high refractive index layer are the same as those in Example 1.
  • the first anti-sulfurization layer is formed as follows, the above PET / CHC having a thickness of 70 ⁇ m as a transparent substrate, ZnS as the first high-refractive index layer, GZO as the second anti-sulfur layer, and the second high-refractive index layer
  • a transparent conductor of Example 18 was produced in the same manner as in Example 4 except that ITO was used and the thickness of each layer and the temperature of the transparent substrate when forming each layer were as shown in Table 1.
  • the refractive index with respect to the light of wavelength 570nm of a 2nd high refractive index layer was 2.10.
  • first antisulfurization layer On the first high refractive index layer, Ar is used as the sputtering gas, the sputtering pressure is 0.1 Pa, the target side power is 1.85 W / cm 2 , and the formation speed is 0.11 nm / s (1.1 ⁇ / s) at room temperature. GZO was DC sputtered to form a first anti-sulfuration layer with a thickness of 1 nm. The target-substrate distance was 90 mm.
  • the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1.
  • the measurement light (for example, light having a wavelength of 400 to 800 nm) was incident on the conduction region from an angle inclined by 5 ° with respect to the normal of the surface of the alkali-free glass substrate, and Hitachi High Technologies
  • the light transmittance and reflectance were measured with a spectrophotometer U4100, and the light absorptance was calculated from the calculation formula of 100 ⁇ (transmittance + reflectance). Show.
  • the transmittance in Table 2 is the transmittance obtained by subtracting the surface reflectance lost at the air-alkali glass interface and the surface reflectance lost at the transparent conductor substrate-air interface (corresponding to the internal transmittance). .) Values are listed.
  • the transparent conductor of each example has a transmittance of 80% or more, a light absorption of 15% or less, and a sheet resistance value of 25 ⁇ / ⁇ or less. It is better than the transparent conductor.
  • Examples 1 to 10 and Examples 12 to 18 in which the formation rate of the transparent metal layer is 0.3 nm / s (3 ⁇ / s) or more have a light absorption rate of 10% or less, a sheet resistance The value was 20 ⁇ / ⁇ or less, which was further improved as compared with Example 11.
  • FIG. 8 and 9 show the relationship between the temperature or the formation speed of the transparent substrate and the light absorption rate.
  • FIG. 8 is a graph showing the relationship between the temperature of the transparent substrate and the light absorption rate when forming the transparent metal layer.
  • FIG. 9 is a graph showing the formation speed and the light absorption rate when forming the transparent metal layer. From the above results, it was shown that the transparent conductor of the present invention can obtain a good light absorption rate. Moreover, from the result of FIG. 8, in the method for producing a transparent conductor according to the present invention, if the transparent metal layer is formed while keeping the temperature of the transparent substrate at 65 ° C. or lower, the lower the temperature of the transparent substrate, the lower the temperature of the transparent substrate.
  • the light absorption rate of the transparent conductor is improved. Furthermore, from the result of FIG. 9, it is surmised that in the method for producing a transparent conductor of the present invention, the light absorption rate of the transparent conductor becomes better as the formation speed when forming the transparent metal layer is larger.
  • the present invention is suitable for providing a method and a transparent conductor for manufacturing a low-resistance transparent conductor in which light absorption is reduced and reflection of light in the visible light region is prevented.
  • SYMBOLS 1 Transparent substrate 2 1st high refractive index layer (zinc sulfide content layer) 3 Transparent metal layer 4 Second high refractive index layer (zinc sulfide-containing layer) DESCRIPTION OF SYMBOLS 5 Antisulfation layer 5a 1st antisulfation layer 5b 2nd antisulfation layer 10 Transparent conductor

Abstract

 The purpose of the present invention is to provide a method for manufacturing a transparent electroconductive body, and an electroconductive body in which light absorption is reduced, reflection of light in the visible light region is prevented, and resistivity is low. A method for manufacturing a transparent electroconductive body (10) having at least, in this order, a transparent substrate (1), a first high-refractive-index layer (2), a transparent metal layer (3), and a second high-refractive-index layer (4) by the roll-to-roll method, the method for manufacturing a transparent electroconductive body being characterized in having a step for forming the transparent metal layer (3) while the temperature of the transparent substrate (1) is kept at 65°C or less.

Description

透明導電体の製造方法及び透明導電体Method for producing transparent conductor and transparent conductor
 本発明は、透明導電体の製造方法及び透明導電体に関する。より詳しくは、光の吸収が低減し、可視光領域の光の反射が防止され、低抵抗な透明導電体の製造方法及び透明導電体に関する。 The present invention relates to a method for producing a transparent conductor and a transparent conductor. More specifically, the present invention relates to a method of manufacturing a transparent conductor with reduced light absorption, which prevents reflection of light in the visible light region, and has low resistance.
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ、タッチパネル、太陽電池等の各種装置に透明導電膜が使用されている。 In recent years, transparent conductive films have been used in various devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
 このような透明導電膜を構成する材料として、金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、ロジウム(Rh)、パラジウム(Pd)、アルミニウム(Al)、クロム(Cr)等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(Indium Tin Oxide)等の酸化物半導体が知られている。 As a material constituting such a transparent conductive film, gold (Au), silver (Ag), platinum (Pt), copper (Cu), rhodium (Rh), palladium (Pd), aluminum (Al), chromium (Cr ) And other oxide semiconductors such as In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , TiO 2 , SnO 2 , ZnO, and ITO (Indium Tin Oxide) are known.
 ここで、タッチパネル型の表示装置等では、表示素子の画像表示面上に、透明導電膜等からなる配線が配置される。したがって、透明導電膜には、光の透過性が高いことが求められる。このような各種表示装置には、光透過性の高いITOからなる透明導電膜が多用されている。 Here, in a touch panel type display device or the like, a wiring made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance. In such various display devices, a transparent conductive film made of ITO having high light transmittance is often used.
 近年、静電容量方式のタッチパネル表示装置が開発され、透明導電膜の表面電気抵抗をさらに低くすることが求められている。しかし、従来のITO膜では、表面電気抵抗を十分に下げられない、との問題があった。 In recent years, a capacitive touch panel display device has been developed, and it is required to further reduce the surface electrical resistance of the transparent conductive film. However, the conventional ITO film has a problem that the surface electrical resistance cannot be lowered sufficiently.
 そこで、Agの蒸着膜を透明導電膜とすることが検討されている(特許文献1参照。)。また、透明導電体の光透過性を高めるため、Agの膜からなるAg層を屈折率の高い層(例えば酸化ニオブ(Nb)、IZO(Indium Zinc Oxide)、ICO(Indium Cerium Oxide)、a-GIO(amorphous Gallium Indium Oxide)、酸化亜鉛又はITO等からなる層)で挟み込むことも提案されている(特許文献2~6及び非特許文献3参照。)。さらに、Ag層を硫化亜鉛(ZnS)層で挟み込むことも提案されている(非特許文献1及び2参照。)。 Therefore, it has been studied to use a vapor-deposited film of Ag as a transparent conductive film (see Patent Document 1). In order to increase the light transmittance of the transparent conductor, an Ag layer made of an Ag film is formed of a layer having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (Indium Zinc Oxide), ICO (Indium Cerium Oxide)). Further, it is also proposed to sandwich the layer between a-GIO (amorphous Gallium Indium Oxide), a layer made of zinc oxide, ITO, or the like (see Patent Documents 2 to 6 and Non-Patent Document 3). Further, it has also been proposed to sandwich the Ag layer with a zinc sulfide (ZnS) layer (see Non-Patent Documents 1 and 2).
 しかし、特許文献2~4に示されるように、酸化ニオブやIZO等の誘電体層でAg層が挟み込まれた透明導電体では、耐湿性が十分でなかった。その結果、高湿度環境下で透明導電体を使用すると、Ag層が腐食しやすい等の問題があった。 However, as shown in Patent Documents 2 to 4, a transparent conductor in which an Ag layer is sandwiched between dielectric layers such as niobium oxide and IZO has insufficient moisture resistance. As a result, when a transparent conductor is used in a high humidity environment, there is a problem that the Ag layer is easily corroded.
 また、Ag層がZnS層に挟み込まれた透明導電体では、透明導電体の耐湿性が十分に高いものの、Ag層の形成時、若しくはZnS層の形成時に、Agが硫化されて硫化銀が生じやすい。その結果、透明導電体の光透過性が低くなる、との問題がある。 Further, in the transparent conductor in which the Ag layer is sandwiched between the ZnS layers, the moisture resistance of the transparent conductor is sufficiently high, but Ag is sulfided to form silver sulfide when the Ag layer is formed or when the ZnS layer is formed. Cheap. As a result, there is a problem that the light transmittance of the transparent conductor is lowered.
 また、特許文献5及び6に記載された透明導電膜も、透明金属層による光の吸収(膜吸収)の影響が大きく、その結果、光透過性が不十分である、との問題がある。 Also, the transparent conductive films described in Patent Documents 5 and 6 have a problem that the light absorption (film absorption) by the transparent metal layer is large, and as a result, the light transmittance is insufficient.
特表2011-508400号公報Special table 2011-508400 gazette 特開2006-184849号公報JP 2006-184849 A 特開2002-15623号公報JP 2002-15623 A 特開2008-226581号公報JP 2008-226581 A 特開2010-157497号公報JP 2010-157497 A 特開2001-249221号公報JP 2001-249221 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、光の吸収が低減し、可視光領域の光の反射が防止され、低抵抗な透明導電体を製造する方法及び透明導電体を提供することである。 The present invention has been made in view of the above problems and situations, and a solution to that problem is a method of manufacturing a low-resistance transparent conductor in which light absorption is reduced and reflection of light in the visible light region is prevented. And providing a transparent conductor.
 透明基板の温度を低温に保ちながら透明金属層を形成し、高屈折率層を、透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を含有させ、当該高屈折率層のいずれか一方の層を硫化亜鉛(ZnS)を含有する硫化亜鉛含有層として形成し、さらに、透明金属層と硫化亜鉛含有層との間に、少なくとも特定の金属化合物又は金属を含有する層を形成することで、最上層(透明基板と反対側の層)に導電性を持たせ、低抵抗でかつ耐湿性も確保しつつ、透明金属層の硫化を防止でき、さらには、透明金属層による光の吸収(膜吸収)を低減できる透明導電体の製造方法を得ることができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
A transparent metal layer is formed while keeping the temperature of the transparent substrate at a low temperature, and the high refractive index layer contains a dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate. One layer is formed as a zinc sulfide-containing layer containing zinc sulfide (ZnS), and a layer containing at least a specific metal compound or metal is formed between the transparent metal layer and the zinc sulfide-containing layer. Therefore, the uppermost layer (the layer opposite to the transparent substrate) can be made conductive to prevent sulfidation of the transparent metal layer while ensuring low resistance and moisture resistance. Furthermore, the transparent metal layer absorbs light. It has been found that a method for producing a transparent conductor capable of reducing (film absorption) can be obtained, and the present invention has been achieved.
That is, the said subject which concerns on this invention is solved by the following means.
 1.少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層とをこの順に有する透明導電体をロールtoロール法により製造する透明導電体の製造方法であって、
 前記透明基板の温度を65℃以下に保ちながら、前記透明金属層を形成する工程を有することを特徴とする透明導電体の製造方法。
1. A transparent conductor manufacturing method for manufacturing a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order by a roll-to-roll method,
A method for producing a transparent conductor, comprising the step of forming the transparent metal layer while maintaining the temperature of the transparent substrate at 65 ° C. or lower.
 2.波長570nmの光に対して、前記透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を含有し、かつ、前記第1高屈折率層及び前記第2高屈折率層のいずれか一方の層を硫化亜鉛(ZnS)を含有する硫化亜鉛含有層として、前記第1高屈折率層及び前記第2高屈折率層を形成する工程をさらに有することを特徴とする第1項に記載の透明導電体の製造方法。 2. A dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm, and one of the first high refractive index layer and the second high refractive index layer The method of claim 1, further comprising the step of forming the first high refractive index layer and the second high refractive index layer as a zinc sulfide-containing layer containing zinc sulfide (ZnS). A method for producing a transparent conductor.
 3.前記透明金属層と前記硫化亜鉛含有層との間に、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を含有する硫化防止層を形成する工程をさらに有することを特徴とする第2項に記載の透明導電体の製造方法。 3. The method further includes the step of forming an anti-sulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer. The method for producing a transparent conductor according to item 2, wherein:
 4.前記硫化防止層を形成する工程が、前記透明金属層の前記透明基板とは反対側の表面に、真空下、かつ酸素ガスを導入しない雰囲気条件下において、前記金属酸化物を含有する前記硫化防止層を形成する工程であることを特徴とする第3項に記載の透明導電体の製造方法。 4. The step of forming the sulfidation preventive layer comprises the step of forming the sulfidation layer containing the metal oxide under a vacuum and an atmospheric condition in which oxygen gas is not introduced on the surface of the transparent metal layer opposite to the transparent substrate. 4. The method for producing a transparent conductor according to item 3, which is a step of forming a layer.
 5.前記透明金属層を形成する際の、形成速度が0.3nm/s(3Å/s)以上であることを特徴とする第1項から第4項までのいずれか一項に記載の透明導電体の製造方法。 5. 5. The transparent conductor according to any one of items 1 to 4, wherein a formation rate when forming the transparent metal layer is 0.3 nm / s (3 Å / s) or more. Manufacturing method.
 6.前記透明金属層を形成する工程において、スパッタガスとして、クリプトン又はキセノンを使用することを特徴とする第1項から第5項までのいずれか一項に記載の透明導電体の製造方法。 6. The method for producing a transparent conductor according to any one of items 1 to 5, wherein krypton or xenon is used as a sputtering gas in the step of forming the transparent metal layer.
 7.第1項から第6項までのいずれか一項に記載の透明導電体の製造方法により製造された透明導電体であって、
 前記第1高屈折率層及び前記第2高屈折率層が、波長570nmの光に対して、前記透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を含有し、かつ、前記第1高屈折率層及び前記第2高屈折率層のいずれか一方の層が硫化亜鉛(ZnS)を含有する硫化亜鉛含有層であり、さらに、
 前記透明金属層と前記硫化亜鉛含有層との間に、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を含有する硫化防止層を有することを特徴とする透明導電体。
7). A transparent conductor manufactured by the method for manufacturing a transparent conductor according to any one of items 1 to 6,
The first high refractive index layer and the second high refractive index layer contain a dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm, and One of the high refractive index layer and the second high refractive index layer is a zinc sulfide-containing layer containing zinc sulfide (ZnS), and
Between the transparent metal layer and the zinc sulfide-containing layer, an antisulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) is provided. Transparent conductor.
 8.前記硫化防止層が、少なくとも前記金属酸化物として酸化亜鉛(ZnO)を含有することを特徴とする第7項に記載の透明導電体。 8. 8. The transparent conductor according to item 7, wherein the anti-sulfurization layer contains zinc oxide (ZnO) as at least the metal oxide.
 本発明の上記手段により、光の吸収が低減し、可視光領域の光の反射が防止され、低抵抗な透明導電体を製造する方法及び透明導電体を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
By the above means of the present invention, it is possible to provide a method and a transparent conductor for producing a low-resistance transparent conductor in which light absorption is reduced and reflection of light in the visible light region is prevented.
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 透明基板が高温であると、透明基板と反対側の層(ここでは、硫化防止層とする。)に到達した透明金属層を構成する粒子(ここでは、銀粒子などの金属粒子とする。)は熱エネルギーが高いため、硫化防止層の表面を移動しやすい。その結果、各々の金属粒子は互いに凝集しやすく、いわゆる島状構造(アイランド状態)の表面を形成し、プラズモン吸収を誘発しやすいため大きな光の吸収を呈する。
 一方、透明基板が低温の場合、硫化防止層に到達した金属粒子は、熱エネルギーが低いため、硫化防止層の表面を余り移動しないと推察される。その結果、各々の金属粒子はそれぞれ移動しないため、凝集せず、したがって、島状の構造をとらず連続した膜状の表面を形成し、ひいては、プラズモン吸収を誘発しないため少ない光の吸収を呈する。
When the transparent substrate is at a high temperature, particles constituting a transparent metal layer (here, metal particles such as silver particles) that have reached the layer opposite to the transparent substrate (here, referred to as a sulfidation prevention layer) are used. Has a high thermal energy, and is easy to move on the surface of the sulfidation prevention layer. As a result, the metal particles easily aggregate with each other, form a surface of a so-called island structure (island state), and easily induce plasmon absorption, thereby exhibiting large light absorption.
On the other hand, when the transparent substrate is at a low temperature, it is presumed that the metal particles that have reached the anti-sulfurization layer do not move much on the surface of the anti-sulfurization layer because of low thermal energy. As a result, since each metal particle does not move, it does not aggregate, thus forming a continuous film-like surface without taking an island-like structure, and thus exhibiting less light absorption because it does not induce plasmon absorption. .
透明導電体の層構成の一例を示す概略断面図Schematic sectional view showing an example of the layer structure of a transparent conductor 透明導電体の層構成の他の例を示す概略断面図Schematic sectional view showing another example of layer structure of transparent conductor 透明導電体の導通領域及び絶縁領域からなるパターンの一例を示す模式図Schematic diagram showing an example of a pattern composed of a conductive region and an insulating region of a transparent conductor 透明導電体の製造装置を示す概略構成図Schematic configuration diagram showing a transparent conductor manufacturing device 透明導電体の製造装置を構成する形成室の一例を示す概略構成図Schematic configuration diagram showing an example of a forming chamber constituting a transparent conductor manufacturing apparatus 透明基板の一部を示す概略図Schematic showing a part of transparent substrate 透明導電体の一例におけるアドミッタンス軌跡を示すグラフGraph showing admittance locus in an example of transparent conductor 透明金属層を形成する際の透明基板の温度と光の吸収率との関係を示すグラフA graph showing the relationship between the temperature of the transparent substrate and the light absorption rate when forming the transparent metal layer 透明金属層を形成する際の形成速度と光の吸収率とを示すグラフA graph showing the formation rate and light absorption rate when forming a transparent metal layer
 本発明の透明導電体の製造方法は、少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層とをこの順に有する透明導電体をロールtoロール法により製造する透明導電体の製造方法であって、前記透明基板の温度を65℃以下に保ちながら、透明金属層を形成する工程を有することを特徴とする。この特徴は、請求項1から請求項8までの請求項に係る発明に共通する技術的特徴である。 The transparent conductor manufacturing method of the present invention is a transparent conductor that has at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order by a roll-to-roll method. A method for producing a conductor, comprising a step of forming a transparent metal layer while maintaining a temperature of the transparent substrate at 65 ° C. or lower. This feature is a technical feature common to the inventions according to claims 1 to 8.
 本発明の実施態様としては、本発明の効果発現の観点から、波長570nmの光に対して、透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を含有し、かつ、第1高屈折率層及び第2高屈折率層のいずれか一方の層を硫化亜鉛(ZnS)を含有する硫化亜鉛含有層として、第1高屈折率層及び第2高屈折率層を形成する工程をさらに有することが、透明基板側から水分が透過することを抑制でき、ひいては、透明金属層の腐食を抑制できるため好ましい。 As an embodiment of the present invention, from the viewpoint of manifestation of the effect of the present invention, it contains a dielectric material or an oxide semiconductor material having a refractive index larger than that of a transparent substrate with respect to light having a wavelength of 570 nm, A step of forming the first high refractive index layer and the second high refractive index layer by using any one of the refractive index layer and the second high refractive index layer as a zinc sulfide-containing layer containing zinc sulfide (ZnS); It is preferable to have it because moisture can be prevented from permeating from the transparent substrate side, and thus corrosion of the transparent metal layer can be suppressed.
 本発明においては、透明金属層と硫化亜鉛含有層との間に、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を含有する硫化防止層を形成する工程をさらに有することが、透明金属層の硫化を防止でき、ひいては、光透過率を向上できるため好ましい。 In the present invention, a step of forming an antisulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer. Further, it is preferable that the transparent metal layer can be prevented from being sulfided and, consequently, the light transmittance can be improved.
 また、本発明においては、透明金属層を形成する際の、形成速度(成膜速度)が0.3nm/s(3Å/s)以上であることが好ましい。このように、高い形成速度を確保することで、透明金属層による光の吸収(膜吸収)を低減でき、さらに、シート抵抗値も低減することができる。 In the present invention, it is preferable that the formation speed (film formation speed) when forming the transparent metal layer is 0.3 nm / s (3 Å / s) or more. Thus, by ensuring a high formation rate, light absorption (film absorption) by the transparent metal layer can be reduced, and further, the sheet resistance value can be reduced.
 さらに、本発明においては、前記硫化防止層を形成する工程が、前記透明金属層の前記透明基板とは反対側の表面に、真空下、かつ酸素ガスを導入しない雰囲気条件下において、前記金属酸化物を含有する前記硫化防止層を形成する工程であることが好ましい。これにより、酸素プラズマが透明金属層と反応し、当該透明金属層表面が荒れることを抑制し、ひいては、光の吸収を低減することができる。 Further, in the present invention, the step of forming the anti-sulfurization layer comprises the step of forming the metal oxide under a vacuum and an atmospheric condition in which oxygen gas is not introduced on the surface of the transparent metal layer opposite to the transparent substrate. It is preferable to be a step of forming the sulfidation preventive layer containing matter. Thereby, it can suppress that oxygen plasma reacts with a transparent metal layer, the said transparent metal layer surface is roughened, and can reduce light absorption by extension.
 本発明においては、前記透明金属層を形成する工程において、スパッタガスとして、クリプトン又はキセノンなど、重い希ガスを使用すると、より光の吸収の少ない透明導電体が得られるため好ましい。 In the present invention, it is preferable to use a heavy rare gas such as krypton or xenon as the sputtering gas in the step of forming the transparent metal layer because a transparent conductor with less light absorption can be obtained.
 さらに、本発明の透明導電体としては、前記第1高屈折率層及び前記第2高屈折率層が、波長570nmの光に対して、前記透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を含有し、かつ、前記第1高屈折率層及び前記第2高屈折率層のいずれか一方の層が硫化亜鉛(ZnS)を含有する硫化亜鉛含有層であり、さらに、前記透明金属層と前記硫化亜鉛含有層との間に、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を含有する硫化防止層を有することを特徴とすることが好ましい。これにより、光の吸収が低減し、可視光領域の光の反射が防止され、低抵抗な透明導電体を提供できる。 Furthermore, as the transparent conductor of the present invention, the first high-refractive index layer and the second high-refractive index layer have a higher refractive index than that of the transparent substrate with respect to light having a wavelength of 570 nm, or an oxidation material. A zinc sulfide-containing layer containing zinc sulfide (ZnS), wherein one of the first high-refractive index layer and the second high-refractive index layer is a zinc sulfide-containing layer. It is characterized by having an antisulfurization layer containing at least one selected from metal oxide, metal fluoride, metal nitride and zinc (Zn) between the metal layer and the zinc sulfide-containing layer. preferable. Thereby, light absorption is reduced, reflection of light in the visible light region is prevented, and a low-resistance transparent conductor can be provided.
 さらに、本発明の透明導電体としては、硫化防止層が、少なくとも前記金属酸化物として酸化亜鉛(ZnO)を含有することが好ましい。これにより、透明金属層の硫化を防止でき、ひいては、光透過率を向上できるため好ましい。 Furthermore, as the transparent conductor of the present invention, it is preferable that the sulfidation prevention layer contains at least zinc oxide (ZnO) as the metal oxide. Thereby, the sulfidation of the transparent metal layer can be prevented, and the light transmittance can be improved.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 [透明導電体の概要]
 本発明に係る透明導電体の層構成の例を図1及び図2に示す。図1及び図2に示されるように、本発明に係る透明導電体10には、透明基板1/第1高屈折率層2/透明金属層3/第2高屈折率層4が含まれる。そして、本発明に係る透明導電体10では、当該第1高屈折率層2又は第2高屈折率層4のいずれか一方、若しくは両方が、硫化亜鉛(ZnS)を含む硫化亜鉛含有層である。そして、当該硫化亜鉛含有層2及び4と透明金属層3との間には、硫化防止層5(5a及び5b)が含まれる。
[Outline of transparent conductor]
Examples of the layer structure of the transparent conductor according to the present invention are shown in FIGS. As shown in FIGS. 1 and 2, the transparent conductor 10 according to the present invention includes a transparent substrate 1 / first high refractive index layer 2 / transparent metal layer 3 / second high refractive index layer 4. In the transparent conductor 10 according to the present invention, either or both of the first high refractive index layer 2 and the second high refractive index layer 4 are zinc sulfide-containing layers containing zinc sulfide (ZnS). . Between the zinc sulfide-containing layers 2 and 4 and the transparent metal layer 3, an antisulfurization layer 5 (5a and 5b) is included.
 ここで、第1高屈折率層2及び第2高屈折率層4のいずれか一方が硫化亜鉛含有層である場合には、硫化亜鉛含有層である第1高屈折率層2又は第2高屈折率層4(以下、「硫化亜鉛含有層2又は4」ともいう。)と透明金属層3との間に、硫化防止層5が含まれる。一方、第1高屈折率層2及び第2高屈折率層4の両方が硫化亜鉛含有層である場合、いずれか一方の硫化亜鉛含有層2又は4と透明金属層3との間に、硫化防止層5が含まれればよいが、透明導電体10の光透過性を十分に高めるとの観点から、各硫化亜鉛含有層2及び4と透明金属層3との間に、それぞれ硫化防止層5が含まれることが好ましい。つまり、第1高屈折率層2と透明金属層3との間、及び透明金属層3と第2高屈折率層4との間に、それぞれ硫化防止層5が含まれることが好ましい。 Here, when one of the first high refractive index layer 2 and the second high refractive index layer 4 is a zinc sulfide-containing layer, the first high refractive index layer 2 or the second high refractive index layer 2 that is a zinc sulfide-containing layer. Between the refractive index layer 4 (hereinafter also referred to as “zinc sulfide-containing layer 2 or 4”) and the transparent metal layer 3, an antisulfurization layer 5 is included. On the other hand, when both the first high-refractive index layer 2 and the second high-refractive index layer 4 are zinc sulfide-containing layers, the sulfide is interposed between any one of the zinc sulfide-containing layers 2 or 4 and the transparent metal layer 3. The prevention layer 5 may be included, but from the viewpoint of sufficiently increasing the light transmittance of the transparent conductor 10, the sulfide prevention layer 5 is provided between each of the zinc sulfide-containing layers 2 and 4 and the transparent metal layer 3. Is preferably included. That is, it is preferable that the antisulfurization layer 5 is included between the first high refractive index layer 2 and the transparent metal layer 3 and between the transparent metal layer 3 and the second high refractive index layer 4.
 透明金属層と硫化亜鉛(ZnS)を含む層とが隣接して形成されると、金属硫化物が生成されやすく、透明導電体の光透過性が低減しやすいとの問題があった。金属硫化物は、以下のように生成されると推察される。 When the transparent metal layer and the layer containing zinc sulfide (ZnS) are formed adjacent to each other, there is a problem that metal sulfide is easily generated and the light transmittance of the transparent conductor is easily reduced. The metal sulfide is presumed to be produced as follows.
 硫化亜鉛含有層(第1高屈折率層)上にスパッタ法等の気相成膜法で透明金属層を形成する場合、硫化亜鉛含有層中の未反応の硫黄成分が、透明金属層の材料(金属材料)によって形成雰囲気中に弾き出される。そして、弾き出された硫黄成分と透明金属層由来の金属とが反応し、金属硫化物が硫化亜鉛含有層上に堆積する。また、硫化亜鉛含有層と透明金属層とを連続的に形成する場合、硫化亜鉛含有層の形成雰囲気に含まれる硫黄成分が透明金属層雰囲気内に残存する。そして、この硫黄成分と透明金属層由来の金属とが反応し、金属硫化物が硫化亜鉛含有層上に堆積する。 When a transparent metal layer is formed on a zinc sulfide-containing layer (first high refractive index layer) by a vapor deposition method such as sputtering, the unreacted sulfur component in the zinc sulfide-containing layer is a material of the transparent metal layer. Repelled into the forming atmosphere by (metal material). Then, the ejected sulfur component reacts with the metal derived from the transparent metal layer, and metal sulfide is deposited on the zinc sulfide-containing layer. Further, when the zinc sulfide-containing layer and the transparent metal layer are continuously formed, the sulfur component contained in the atmosphere in which the zinc sulfide-containing layer is formed remains in the transparent metal layer atmosphere. And this sulfur component and the metal derived from a transparent metal layer react, and metal sulfide deposits on a zinc sulfide content layer.
 一方、透明金属層上に硫化亜鉛含有層(第2高屈折率層)を形成する場合、透明金属層中の金属が、硫化亜鉛含有層の材料によって、形成雰囲気中に弾き出される。そして、弾き出された金属と硫黄成分とが反応し、金属硫化物が透明金属層表面に堆積する。さらに、透明金属層の表面と、形成雰囲気中の硫黄成分とが接触することでも、透明金属層表面に金属硫化物が生成する。 On the other hand, when the zinc sulfide-containing layer (second high refractive index layer) is formed on the transparent metal layer, the metal in the transparent metal layer is expelled into the forming atmosphere by the material of the zinc sulfide-containing layer. The ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer. Furthermore, a metal sulfide is generated on the surface of the transparent metal layer also when the surface of the transparent metal layer comes into contact with the sulfur component in the forming atmosphere.
 これに対し、本発明実施形態に係る透明導電体10では、例えば図1に示されるように、第1高屈折率層2上に、第1硫化防止層5aが積層される。このような構成では、第1高屈折率層2が第1硫化防止層5aで保護されるため、透明金属層3の形成時に第1高屈折率層2中の硫黄成分が弾き出されることを抑制できる。また、第1高屈折率層2から透明金属層3を連続的に形成(成膜)したとしても、第1高屈折率層2の形成雰囲気に含まれる硫黄成分が、第1硫化防止層5aの構成成分と反応する、又は第1硫化防止層5aの構成成分に吸着される。したがって、透明金属層3の形成雰囲気に硫黄が含まれることを抑制でき、金属硫化物の生成を回避できる。 On the other hand, in the transparent conductor 10 according to the embodiment of the present invention, for example, as shown in FIG. 1, the first antisulfurization layer 5 a is laminated on the first high refractive index layer 2. In such a configuration, since the first high refractive index layer 2 is protected by the first antisulfurization layer 5a, it is possible to prevent the sulfur component in the first high refractive index layer 2 from being ejected when the transparent metal layer 3 is formed. it can. Even if the transparent metal layer 3 is continuously formed (deposited) from the first high refractive index layer 2, the sulfur component contained in the atmosphere in which the first high refractive index layer 2 is formed becomes the first antisulfurization layer 5 a. Or adsorbed to the constituents of the first antisulfurization layer 5a. Therefore, it can suppress that sulfur is contained in the formation atmosphere of the transparent metal layer 3, and the production | generation of a metal sulfide can be avoided.
 また本発明実施形態に係る透明導電体10では、例えば図1に示されるように、透明金属層3上に第2硫化防止層5bが積層される。このような構成では、透明金属層3が第2硫化防止層5bで保護されるため、第2高屈折率層4の形成時に透明金属層3中の金属が弾き出されることを抑制できる。また、第2高屈折率層4の形成雰囲気中の硫黄成分が、透明金属層3の表面と接触することを防止できる。したがって、透明金属層3の表面に金属硫化物が生成することを回避できる。 In the transparent conductor 10 according to the embodiment of the present invention, for example, as shown in FIG. 1, the second antisulfurization layer 5 b is laminated on the transparent metal layer 3. In such a configuration, since the transparent metal layer 3 is protected by the second antisulfurization layer 5b, it is possible to suppress the metal in the transparent metal layer 3 from being ejected when the second high refractive index layer 4 is formed. Further, it is possible to prevent the sulfur component in the atmosphere in which the second high refractive index layer 4 is formed from coming into contact with the surface of the transparent metal layer 3. Therefore, generation of metal sulfide on the surface of the transparent metal layer 3 can be avoided.
 本発明実施形態に係る透明導電体10では、図1に示されるように、透明金属層3が透明基板1の全面に積層されていてもよく、図2に示されるように、透明金属層3が所望の形状にパターニングされていてもよい。本発明実施形態に係る透明導電体において、透明金属層3が積層されている領域aが、電気が導通する領域(以下、「導通領域」とも称する)である。一方、図2に示されるように、透明金属層3が含まれない領域bが絶縁領域である。 In the transparent conductor 10 according to the embodiment of the present invention, the transparent metal layer 3 may be laminated on the entire surface of the transparent substrate 1 as shown in FIG. 1, and the transparent metal layer 3 as shown in FIG. 2. May be patterned into a desired shape. In the transparent conductor according to the embodiment of the present invention, the region a where the transparent metal layer 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, as shown in FIG. 2, the region b where the transparent metal layer 3 is not included is an insulating region.
 導通領域a及び絶縁領域bからなるパターンは、透明導電体10の用途に応じて、適宜選択される。例えば透明導電体10が静電方式のタッチパネルに適用される場合には、図3に示されるように、複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン等でありうる。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 10. For example, when the transparent conductor 10 is applied to an electrostatic touch panel, as shown in FIG. 3, the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. sell.
 また、本発明に係る透明導電体10には、透明基板1、第1高屈折率層2、透明金属層3、第2高屈折率層4及び硫化防止層5以外の層が含まれてもよい。例えば透明金属層3の形成時に成長核になり得る下地層が、透明金属層3と第1高屈折率層2との間に、透明金属層3に隣接して含まれてもよい。ただし、本発明に係る透明導電体10に含まれる層は、透明基板1を除いて、いずれも無機材料からなる層である。例えば第2高屈折率層4上に有機樹脂からなる接着層が積層されていたとしても、透明基板1から第2高屈折率層4までの積層体が、本発明に係る透明導電体10である。 Further, the transparent conductor 10 according to the present invention may include layers other than the transparent substrate 1, the first high refractive index layer 2, the transparent metal layer 3, the second high refractive index layer 4, and the antisulfurization layer 5. Good. For example, an underlayer that can be a growth nucleus when forming the transparent metal layer 3 may be included between the transparent metal layer 3 and the first high refractive index layer 2 adjacent to the transparent metal layer 3. However, the layers included in the transparent conductor 10 according to the present invention are all layers made of an inorganic material except for the transparent substrate 1. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 4, the laminated body from the transparent substrate 1 to the second high refractive index layer 4 is the transparent conductor 10 according to the present invention. is there.
 (本発明の透明導電体の製造方法)
 本発明の透明電極の製造方法は、少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層とをこの順に有する透明導電体をロールtoロール法により製造する透明導電体の製造方法であって、透明基板の温度を65℃以下に保ちながら、透明金属層を形成する工程を有することを特徴とする。
(Method for producing transparent conductor of the present invention)
The method for producing a transparent electrode according to the present invention includes a transparent conductive material comprising a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order by a roll-to-roll method. It is a manufacturing method of a body, Comprising: It has the process of forming a transparent metal layer, keeping the temperature of a transparent substrate at 65 degrees C or less.
 以下において、本発明実施形態の透明導電体の製造方法の典型的例について説明をする。
 本発明実施形態の透明導電体の製造方法は、主に下記に示す工程を含む態様の製造方法であることが好ましい。なお、各工程に用いられる各構成要素については、後に詳述する。
Below, the typical example of the manufacturing method of the transparent conductor of this invention embodiment is demonstrated.
It is preferable that the manufacturing method of the transparent conductor of this embodiment is a manufacturing method of the aspect mainly including the process shown below. In addition, each component used for each process is explained in full detail later.
 本発明実施形態の透明導電体の製造方法によって製造される透明導電体は、透明基板上に、第1高屈折率層/第1硫化防止層/透明金属層/第2硫化防止層/第2高屈折率層を順に積層する積層体とする。なお、各層の厚さは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定される。ただし、下地層の平均厚さはスパッタ装置のメーカー公称値の形成速度から算出される。 The transparent conductor manufactured by the method of manufacturing a transparent conductor according to the embodiment of the present invention includes a first high refractive index layer / first antisulfuration layer / transparent metal layer / second antisulfuration layer / second on a transparent substrate. It is set as the laminated body which laminates | stacks a high refractive index layer in order. The thickness of each layer is J. A. Woollam Co. Inc. It is measured with a VB-250 type VASE ellipsometer manufactured by the manufacturer. However, the average thickness of the underlayer is calculated from the formation speed of the manufacturer's nominal value of the sputtering apparatus.
 (第1高屈折率層を形成する工程)
 当該工程では、透明基板上に、第1高屈折率層を形成する。
 本工程では、スパッタ法を採用することができ、この場合、例えば、アネルバ社製SPW-060スパッタ装置等のスパッタ装置を用い、波長570nmの光に対して、透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料をスパッタする。なお、スパッタガスは、特に限定されず、例えば、アルゴン(Ar)、クリプトン(Kr)及び酸素(O)などでよい。
 また、第1高屈折率層が硫化亜鉛(ZnS)を含有する場合、本工程は、波長570nmの光に対して、透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を含有し、かつ、第1高屈折率層及び第2高屈折率層のいずれか一方の層を硫化亜鉛(ZnS)を含有する硫化亜鉛含有層として、第1高屈折率層及び第2高屈折率層を形成する工程である。
(Step of forming the first high refractive index layer)
In this step, the first high refractive index layer is formed on the transparent substrate.
In this step, a sputtering method can be employed. In this case, for example, a dielectric such as a SPW-060 sputtering apparatus manufactured by Anelva Corporation has a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm. Sputtering is performed using an active material or an oxide semiconductor material. Note that the sputtering gas is not particularly limited, and may be, for example, argon (Ar), krypton (Kr), oxygen (O 2 ), or the like.
Further, when the first high refractive index layer contains zinc sulfide (ZnS), this step contains a dielectric material or oxide semiconductor material having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm. And any one of the first high refractive index layer and the second high refractive index layer is a zinc sulfide-containing layer containing zinc sulfide (ZnS), and the first high refractive index layer and the second high refractive index layer are used. Is a step of forming.
 なお、本工程における第1高屈折率層の形成方法は、特に限定されず、上述のスパッタ法の他、真空蒸着法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法(「堆積法」、「蒸着法」又は「合成法」ともいう。)でよい。また、第1高屈折率層2の屈折率(密度)が高まるとの観点から、第1高屈折率層2は、電子ビーム蒸着法又はスパッタ法で形成された層(膜)であることが好ましい。電子ビーム蒸着法の場合は膜密度を高めるため、IAD(イオンアシスト)などのアシストがあることが望ましい。 Note that the method for forming the first high refractive index layer in this step is not particularly limited. In addition to the above-described sputtering method, general vapor deposition methods, ion plating methods, plasma CVD methods, thermal CVD methods, and the like can be used. A phase film formation method (also referred to as “deposition method”, “evaporation method”, or “synthesis method”) may be used. From the viewpoint of increasing the refractive index (density) of the first high refractive index layer 2, the first high refractive index layer 2 is a layer (film) formed by an electron beam evaporation method or a sputtering method. preferable. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
 (第1硫化防止層を形成する工程)
 当該工程では、第1高屈折率層上に、第1硫化防止層を形成する。
 本工程は、透明金属層と硫化亜鉛含有層との間に、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を含有する硫化防止層を形成する工程である。
 本工程では、スパッタ法を採用することができ、この場合、例えば、アネルバ社製SPW-060スパッタ装置等のスパッタ装置を用い、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種をスパッタする。なお、スパッタガスは、特に限定されず、例えば、アルゴン、クリプトン及び酸素などでよい。
(Step of forming first sulfidation prevention layer)
In this step, a first antisulfurization layer is formed on the first high refractive index layer.
This step is a step of forming an anti-sulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer. is there.
In this step, a sputtering method can be employed. In this case, for example, a sputtering apparatus such as SPW-060 sputtering apparatus manufactured by Anelva is used, and metal oxide, metal fluoride, metal nitride, and zinc (Zn) are used. At least one selected is sputtered. The sputtering gas is not particularly limited, and may be, for example, argon, krypton, oxygen, or the like.
 なお、本工程における第1硫化防止層の形成方法は、特に限定されず、上述のスパッタ法の他、真空蒸着法、イオンプレーティング法、プラズマCVD法及び熱CVD法等、一般的な気相成膜法を採用することができる。 In addition, the formation method of the 1st sulfurization prevention layer in this process is not specifically limited, In addition to the above-mentioned sputtering method, a general vapor phase such as a vacuum deposition method, an ion plating method, a plasma CVD method, and a thermal CVD method is used. A film forming method can be employed.
 (透明金属層を形成する工程)
 当該工程では、第1硫化防止層上に、透明金属層を形成する。
 本工程では、透明基板の温度を65℃以下に保ちながら、透明金属層を形成する。
 なお、当該透明金属層に隣接する層を形成する工程においても、透明基板の温度を65℃以下に保ちながら行われることが好ましい。これにより、透明金属層を形成する際に透明基板の温度を65℃以下に保ちやすくなり、また、透明金属層を形成した後に、当該透明金属層を構成する粒子が移動することを抑制でき、この結果、透明金属層の質をより維持することができる。
 また、本工程では、スパッタ法を採用することができ、この場合、例えば、FTSコーポレーション社の対向ターゲット式スパッタ装置を用い、銀、銅、金、白金族、チタン、クロム等の導電性の高い金属を対向スパッタすることで、透明金属層を形成する。なお、スパッタガスは特に限定されないが、クリプトン又はキセノンなど、重い希ガスを使用すると、平滑性の高い透明金属層が得られるため、より光の吸収の少ない透明導電体が得られるため好ましい。
 なお、形成ガス圧は1Pa以下が好ましい。ガス圧が高いと第1高屈折率層や透明金属層の表面粗さRaが高くなる。
(Process of forming a transparent metal layer)
In this step, a transparent metal layer is formed on the first sulfurization prevention layer.
In this step, the transparent metal layer is formed while keeping the temperature of the transparent substrate at 65 ° C. or lower.
Note that the step of forming a layer adjacent to the transparent metal layer is preferably performed while keeping the temperature of the transparent substrate at 65 ° C. or lower. Thereby, it becomes easy to keep the temperature of the transparent substrate at 65 ° C. or lower when forming the transparent metal layer, and after forming the transparent metal layer, it is possible to suppress the movement of the particles constituting the transparent metal layer, As a result, the quality of the transparent metal layer can be further maintained.
Moreover, in this process, a sputtering method can be employed. In this case, for example, using an FTS Corporation facing target type sputtering apparatus, silver, copper, gold, platinum group, titanium, chromium, etc. have high conductivity. A transparent metal layer is formed by opposing sputtering of metal. The sputtering gas is not particularly limited, but a heavy rare gas such as krypton or xenon is preferable because a transparent metal layer with higher smoothness can be obtained and a transparent conductor with less light absorption can be obtained.
The forming gas pressure is preferably 1 Pa or less. When the gas pressure is high, the surface roughness Ra of the first high refractive index layer and the transparent metal layer is increased.
 この表面粗さRaとは、Ra=算術平均粗さ(以下、「表面粗さ」ともいう。)を意味し、JIS B601(2001)に規定される表面粗さに準ずる値である。本発明に係る透明金属層は、表面粗さがRaでおおむね3nm以下であると、良質な透明金属層(平滑な透明金属層)が確保できることから好ましい。本発明において、Raの測定には、市販の原子間力顕微鏡(Atomic Force Microscopy:AFM)を用いることができ、例えば、以下の手法で測定可能である。 The surface roughness Ra means Ra = arithmetic average roughness (hereinafter also referred to as “surface roughness”), and is a value according to the surface roughness specified in JIS B601 (2001). The transparent metal layer according to the present invention preferably has a surface roughness Ra of 3 nm or less because a high-quality transparent metal layer (smooth transparent metal layer) can be secured. In the present invention, for measurement of Ra, a commercially available atomic force microscope (AFM) can be used. For example, it can be measured by the following method.
 AFMとして、日立ハイテクサイエンス社製SPI3800Nプローブステーション及びSPA400多機能型ユニットを使用し、約1cm角の大きさに切り取った試料を、ピエゾスキャナー上の水平な試料台上にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際の試料の凹凸をZ方向のピエゾの変位で捉える。ピエゾスキャナーは、XY20μm、Z2μmが走査可能なものを使用する。カンチレバーは、日立ハイテクサイエンス社製シリコンカンチレバーSI-DF20で、共振周波数120~150kHz、バネ定数12~20N/mのものを用い、DFMモード(Dynamic Force Mode)で測定する。測定領域80×80μmを、走査周波数1Hzで測定する。 Using an AFM SPI3800N probe station and SPA400 multifunctional unit as the AFM, set the sample cut to a size of about 1 cm square on a horizontal sample stage on the piezo scanner, and place the cantilever on the sample surface. When the region where the atomic force works is reached, scanning is performed in the XY direction, and the unevenness of the sample at that time is captured by the displacement of the piezo in the Z direction. A piezo scanner that can scan XY 20 μm and Z 2 μm is used. The cantilever is a silicon cantilever SI-DF20 manufactured by Hitachi High-Tech Science Co., which has a resonance frequency of 120 to 150 kHz and a spring constant of 12 to 20 N / m, and is measured in a DFM mode (Dynamic Force Mode). A measurement area of 80 × 80 μm is measured at a scanning frequency of 1 Hz.
 なお、本工程における透明金属層の形成方法は、特に限定されず、上述のスパッタ法の他、真空蒸着法、イオンプレーティング法、プラズマCVD法及び熱CVD法等、一般的な気相成膜法を採用できる。 In addition, the formation method of the transparent metal layer in this process is not specifically limited, In addition to the above-described sputtering method, a general vapor deposition method such as a vacuum deposition method, an ion plating method, a plasma CVD method, and a thermal CVD method is used. The law can be adopted.
 本発明において、透明金属層を形成する際の形成速度は、特に限定されないが、0.3nm/s(3Å/s)以上であると、透明金属層による光の吸収(膜吸収)を低減できるため、好ましい。
 なお、透明金属層を形成する際の形成速度は、あらかじめ水晶式膜厚計などを使用し、形成時間と形成された透明金属層の厚さとの関係を検量しておき、形成された透明金属層の厚さを形成時間で割ることで計算できる。
In the present invention, the formation speed at the time of forming the transparent metal layer is not particularly limited, but if it is 0.3 nm / s (3 Å / s) or more, light absorption (film absorption) by the transparent metal layer can be reduced. Therefore, it is preferable.
In addition, the formation speed at the time of forming a transparent metal layer uses a quartz-type film thickness meter etc. beforehand, calibrates the relationship between the formation time and the thickness of the formed transparent metal layer, and forms the transparent metal layer. It can be calculated by dividing the layer thickness by the formation time.
 また、透明基板の温度の調節方法は、特に限定されないが、例えば、透明基板にサーモラベル(日油技研製)を貼って、事前に各層を形成する条件での温度を確認し、設定する方法が挙げられる。 The method for adjusting the temperature of the transparent substrate is not particularly limited. For example, a thermo label (manufactured by NOF Corporation) is pasted on the transparent substrate, and the temperature under the conditions for forming each layer is confirmed and set in advance. Is mentioned.
 (第2硫化防止層を形成する工程)
 当該工程では、透明金属層上に、第2硫化防止層を形成する。
 本工程は、透明金属層と硫化亜鉛含有層との間に、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を含有する硫化防止層を形成する工程である。
 本工程では、スパッタ法を採用することができ、この場合、例えば、アネルバ社製SPW-060スパッタ装置等のスパッタ装置を用い、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種をスパッタする。なお、スパッタガスは特に限定されないが、酸素ガスを含有しないことが好ましい。
(Step of forming the second sulfurization prevention layer)
In this step, the second sulfurization preventing layer is formed on the transparent metal layer.
This step is a step of forming an anti-sulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer. is there.
In this step, a sputtering method can be employed. In this case, for example, a sputtering apparatus such as SPW-060 sputtering apparatus manufactured by Anelva is used, and metal oxide, metal fluoride, metal nitride, and zinc (Zn) are used. At least one selected is sputtered. In addition, although sputtering gas is not specifically limited, It is preferable not to contain oxygen gas.
 なお、本工程における第2硫化防止層の形成方法については、特に限定されず、上述のスパッタ法の他、真空蒸着法、イオンプレーティング法、プラズマCVD法及び熱CVD法等、一般的な気相成膜法を採用することができるが、特に、透明金属層の透明基板とは反対側の表面に、真空下、かつ酸素ガスを導入しない雰囲気条件下において、金属酸化物を含有する硫化防止層を形成する工程を有する形成方法であることが好ましい。これにより、酸素プラズマが透明金属層と反応し、当該透明金属層表面が荒れることを抑制し、ひいては、光の吸収を低減することができる。なお、このような酸素ガスを導入しないで形成される第2硫化防止層の厚さは、当該第2硫化防止層上に、さらに酸化物が積層される場合5nm以上であることが望ましく、酸化物を積層しない場合は20nm以下であることが望ましい。これにより、酸素プラズマが透明金属層と反応し、当該透明金属層表面が荒れることをより抑制でき、ひいては、光の吸収をさらに低減することができる。
 なお、本発明に係る真空下とは、10Pa以下の気圧をいう。
The method for forming the second antisulfurization layer in this step is not particularly limited. In addition to the above-described sputtering method, a general gas deposition method such as a vacuum evaporation method, an ion plating method, a plasma CVD method, or a thermal CVD method can be used. Phase deposition method can be adopted, but prevention of sulfidation containing metal oxide, especially under vacuum and atmospheric conditions where oxygen gas is not introduced on the surface of the transparent metal layer opposite to the transparent substrate A formation method having a step of forming a layer is preferable. Thereby, it can suppress that oxygen plasma reacts with a transparent metal layer, the said transparent metal layer surface is roughened, and can reduce light absorption by extension. Note that the thickness of the second anti-sulfurization layer formed without introducing oxygen gas is preferably 5 nm or more when an oxide is further stacked on the second anti-sulfur layer. In the case where no object is laminated, the thickness is desirably 20 nm or less. Thereby, it can suppress more that oxygen plasma reacts with a transparent metal layer, and the said transparent metal layer surface becomes rough, and can further reduce light absorption further.
In addition, under the vacuum which concerns on this invention means the atmospheric pressure of 10 Pa or less.
 (第2高屈折率層を形成する工程)
 当該工程では、第2硫化防止層上に、第2高屈折率層を形成する。
 本工程では、スパッタ法を採用することができ、この場合、例えば、アネルバ社製SPW-060スパッタ装置等のスパッタ装置を用い、波長570nmの光に対して、透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料をスパッタする。なお、スパッタガスは特に限定されないが、酸素ガスを含有しないことが好ましい。
 また、第2高屈折率層が硫化亜鉛(ZnS)を含有する場合、本工程は、波長570nmの光に対して、透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を含有し、かつ、第1高屈折率層及び第2高屈折率層のいずれか一方の層を硫化亜鉛(ZnS)を含有する硫化亜鉛含有層として、第1高屈折率層及び第2高屈折率層を形成する工程である。
(Step of forming the second high refractive index layer)
In this step, a second high refractive index layer is formed on the second sulfurization prevention layer.
In this step, a sputtering method can be employed. In this case, for example, a dielectric such as a SPW-060 sputtering apparatus manufactured by Anelva Corporation has a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm. Sputtering is performed using an active material or an oxide semiconductor material. In addition, although sputtering gas is not specifically limited, It is preferable not to contain oxygen gas.
In addition, when the second high refractive index layer contains zinc sulfide (ZnS), this step contains a dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm. And any one of the first high refractive index layer and the second high refractive index layer is a zinc sulfide-containing layer containing zinc sulfide (ZnS), and the first high refractive index layer and the second high refractive index layer are used. Is a step of forming.
 なお、本工程における第2高屈折率層の形成方法は、特に限定されず、上述のスパッタ法の他、真空蒸着法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法でよい。なお、第2高屈折率層4の屈折率(密度)が高まるとの観点から、第2高屈折率層4は、電子ビーム蒸着法又はスパッタ法で形成された層(膜)であることが好ましい。第2高屈折率層の透湿性が低くなるとの観点から、第2高屈折率層4はスパッタ法で形成された膜であることが特に好ましい。 Note that the method for forming the second high refractive index layer in this step is not particularly limited, and other than the above-described sputtering method, general vapor deposition methods, ion plating methods, plasma CVD methods, thermal CVD methods, and the like can be used. A phase film forming method may be used. From the viewpoint of increasing the refractive index (density) of the second high refractive index layer 4, the second high refractive index layer 4 is a layer (film) formed by an electron beam evaporation method or a sputtering method. preferable. From the viewpoint that the moisture permeability of the second high refractive index layer is lowered, the second high refractive index layer 4 is particularly preferably a film formed by a sputtering method.
 本発明の透明導電体の製造方法を有する製造装置の例を、図4~図6を参照して以下説明する。
 なお、上述のように、本発明の透明導電体を製造する製造装置は、少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層とをこの順に有する透明導電体をロールtoロール法により製造する透明導電体の製造方法であって、透明基板の温度を65℃以下に保ちながら、透明金属層を形成する工程を有することを特徴としていればよく、以下に説明する製造装置100を用いて行われるものでなくともよい。
An example of a manufacturing apparatus having the transparent conductor manufacturing method of the present invention will be described below with reference to FIGS.
As described above, the manufacturing apparatus for producing the transparent conductor of the present invention includes at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order. The transparent conductor is manufactured by the roll-to-roll method, and the method may be characterized by having a step of forming a transparent metal layer while keeping the temperature of the transparent substrate at 65 ° C. or less. The manufacturing apparatus 100 may not be used.
 図4は、本発明の透明導電体を製造する製造方法を有する製造装置100の一例を示す概略図である。図4に示す製造装置100は、ロール状の透明基板21を用いて、連続的に透明導電体10を製造する装置である。 FIG. 4 is a schematic view showing an example of a manufacturing apparatus 100 having a manufacturing method for manufacturing the transparent conductor of the present invention. A manufacturing apparatus 100 shown in FIG. 4 is an apparatus that continuously manufactures the transparent conductor 10 using a roll-shaped transparent substrate 21.
 減圧雰囲気下に置かれた巻出部101から巻き出された透明基板21は、各ガイドロール102、103を通って前室R1に入り、更にスリットロール104を介して真空雰囲気下の表面処理兼アキューム室R10に搬入され、表面のドライクリーニング及び脱水処理が行われる。表面処理兼アキューム室R10内の圧力は、1×10-5~10Paに設定されていることが好ましい。 The transparent substrate 21 unwound from the unwinding portion 101 placed in a reduced-pressure atmosphere enters the front chamber R1 through the guide rolls 102 and 103, and further passes through the slit roll 104 to perform surface treatment under a vacuum atmosphere. It is carried into the accumulation chamber R10 and the surface is subjected to dry cleaning and dehydration. The pressure in the surface treatment / accumulation chamber R10 is preferably set to 1 × 10 −5 to 10 Pa.
 次いで、透明基板21は、表面処理兼アキューム室R10から形成室R20へ連続的に搬送される。表面処理兼アキューム室R10と形成室R20との間はゲートバルブ又は圧力調整室が備えられ、表面処理兼アキューム室R10と形成室R20との差圧を調整する。 Next, the transparent substrate 21 is continuously transferred from the surface treatment / accumulation chamber R10 to the formation chamber R20. A gate valve or a pressure adjusting chamber is provided between the surface treatment / accumulation chamber R10 and the formation chamber R20, and adjusts the differential pressure between the surface treatment / accumulation chamber R10 and the formation chamber R20.
 本発明の製造方法では、まず、形成室R20により、搬送中の透明基板21の形成面に対し、本発明の透明導電体を構成するいずれかの層を形成する。 In the manufacturing method of the present invention, first, any layer constituting the transparent conductor of the present invention is formed on the formation surface of the transparent substrate 21 being transferred in the forming chamber R20.
 形成室R20は、複数の形成室R21~R24からなり、各形成室R21~R24の間には処理スピードを吸収するアキュームレーター機構が設けられる。形成室R21~R24は、それぞれ独立に排気されて、真空又は減圧状態に保たれており、その形成圧力は、形成方法により異なるが、1×10-6~10Pa程度に設定されていることが好ましい。 The forming chamber R20 includes a plurality of forming chambers R21 to R24, and an accumulator mechanism that absorbs the processing speed is provided between the forming chambers R21 to R24. The forming chambers R21 to R24 are evacuated independently and kept in a vacuum or a reduced pressure state, and the forming pressure varies depending on the forming method, and may be set to about 1 × 10 −6 to 10 Pa. preferable.
 第1形成室R21は、第1高屈折率層を形成する工程を行う。
 すなわち、第1形成室R21は、波長570nmの光に対して、透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を形成材料として、上述の形成方法により、透明基板21上に第1高屈折率層の形成を行う。
 なお、図4の例では、第1形成室R21では、形成材料として、硫化亜鉛(ZnS)を含有させ、波長570nmの光に対して、透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を含有し、かつ、第1高屈折率層及び第2高屈折率層のいずれか一方の層を硫化亜鉛(ZnS)を含有する硫化亜鉛含有層として、第1高屈折率層及び第2高屈折率層を形成する工程が行われるものとする。
 ここで、第1形成室R21について、図5を参照して以下説明する。図5は、第1形成室R21内の概略構成図である。
The first formation chamber R21 performs a step of forming the first high refractive index layer.
That is, the first forming chamber R21 is formed on the transparent substrate 21 by the above-described forming method using a dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate as a forming material for light having a wavelength of 570 nm. 1 A high refractive index layer is formed.
In the example of FIG. 4, in the first forming chamber R21, a dielectric material or oxide containing zinc sulfide (ZnS) as a forming material and having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm. The first high-refractive-index layer and the first high-refractive-index layer and the second high-refractive-index layer are made of a zinc sulfide-containing layer containing zinc sulfide (ZnS). 2 A step of forming a high refractive index layer is performed.
Here, the first formation chamber R21 will be described below with reference to FIG. FIG. 5 is a schematic configuration diagram in the first forming chamber R21.
 第1形成室R21は、透明基板21を所定の搬送経路で搬送する複数の搬送ローラー51~56、搬送される透明基板21の積層面に対向する原料供給部57及び透明基板21の積層面と反対側の面に当接して透明基板21を冷却し、透明基板21の温度を調節する背面冷却ローラー58等を内部に備えて構成されている。 The first forming chamber R21 includes a plurality of transport rollers 51 to 56 that transport the transparent substrate 21 along a predetermined transport path, a raw material supply unit 57 that faces the stacked surface of the transparent substrate 21 to be transported, and a stacked surface of the transparent substrate 21. The back surface cooling roller 58 etc. which are in contact with the opposite surface and cool the transparent substrate 21 and adjust the temperature of the transparent substrate 21 are provided inside.
 ここで、本発明において、透明基板21は、図6に示すように、その幅方向両端部に、搬送方向(移動方向)において等間隔で開口された複数の第1ガイド孔211を有している。
 搬送ローラー51~56は、その周面上に、径方向に突設された複数の突起部を有している。透明基板21の搬送時に、当該突起部が透明基板21の第1ガイド孔211内に挿通されることで、透明基板21が円滑に搬送される。
Here, in the present invention, as shown in FIG. 6, the transparent substrate 21 has a plurality of first guide holes 211 opened at equal intervals in the conveyance direction (movement direction) at both ends in the width direction. Yes.
The transport rollers 51 to 56 have a plurality of protrusions projecting in the radial direction on the peripheral surface thereof. When the transparent substrate 21 is transported, the projection is inserted into the first guide hole 211 of the transparent substrate 21 so that the transparent substrate 21 is transported smoothly.
 原料供給部57は、真空蒸着法、スパッタ法又はイオンプレーティング法等の各方法に対応した形成機構を有し、搬送される透明基板21の形成面に対向して設けられている。これにより、第1形成室R21内を搬送される透明基板21の形成面のうち所定領域に対して、各層の形成を行うことができる。 The raw material supply unit 57 has a formation mechanism corresponding to each method such as a vacuum deposition method, a sputtering method, or an ion plating method, and is provided to face the formation surface of the transparent substrate 21 to be conveyed. Thereby, formation of each layer can be performed with respect to a predetermined area | region among the formation surfaces of the transparent substrate 21 conveyed in the inside of 1st formation chamber R21.
 背面冷却ローラー58は、回転可能に支持され、所定の冷却機構を備えるローラー部材である。背面冷却ローラー58は、透明基板21を挟んで原料供給部57の反対側に設けられ、透明基板21の形成面の反対側の面に当接することで、透明基板21のうち原料供給部57により形成が行われる領域を冷却し、透明基板21の温度を調節する。
 なお、背面冷却ローラー58と透明基板21とが接触する時間や面積は、特に限定されないが、透明基板21の温度を65℃以下に保てる態様であることが好ましい。
The back surface cooling roller 58 is a roller member that is rotatably supported and includes a predetermined cooling mechanism. The back surface cooling roller 58 is provided on the opposite side of the raw material supply unit 57 with the transparent substrate 21 interposed therebetween, and comes into contact with the surface opposite to the formation surface of the transparent substrate 21, so that the raw material supply unit 57 of the transparent substrate 21 The region where the formation is performed is cooled, and the temperature of the transparent substrate 21 is adjusted.
The time and area where the rear cooling roller 58 and the transparent substrate 21 are in contact with each other are not particularly limited, but it is preferable that the temperature of the transparent substrate 21 be maintained at 65 ° C. or lower.
 搬送ローラー51~56には、透明基板21が張架されており、複数の搬送ローラー51~56が回転駆動することにより、透明基板21を搬送ローラー51から搬送ローラー52の方向に搬送する。 The transparent substrate 21 is stretched around the transport rollers 51 to 56, and the plurality of transport rollers 51 to 56 are rotationally driven to transport the transparent substrate 21 from the transport roller 51 toward the transport roller 52.
 第1形成室R21内は以上のように構成されている。 The inside of the first forming chamber R21 is configured as described above.
 続いて、再び図4を参照して、形成室R22~R24について以下説明する。なお、第2形成室R22~第4形成室R24は、上記した第1形成室R21とほぼ同じ構成であり、用いられる形成材料が異なっている。 Subsequently, the formation chambers R22 to R24 will be described below with reference to FIG. 4 again. The second formation chamber R22 to the fourth formation chamber R24 have substantially the same configuration as the first formation chamber R21 described above, and the formation materials used are different.
 第2形成室R22は、第1硫化防止層を形成する工程、すなわち、透明金属層と硫化亜鉛含有層との間に、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を含有する硫化防止層を形成する工程を行う。
 第2形成室R22では、上述の金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を形成材料として、上述の形成方法によって第1硫化防止層が形成される。
The second forming chamber R22 is selected from a step of forming the first antisulfurization layer, that is, a metal oxide, a metal fluoride, a metal nitride, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer. The step of forming an antisulfurization layer containing at least one selected from the above is performed.
In the second forming chamber R22, the first sulfidation preventing layer is formed by the above-described forming method using at least one selected from the above-described metal oxide, metal fluoride, metal nitride, and zinc (Zn) as a forming material. .
 第3形成室R23は、透明金属層を形成する工程、すなわち、透明基板の温度を65℃以下に保ちながら、透明金属層を形成する工程を行う。第3形成室R23では、金属や金属酸化物等の導電性材料を形成材料として、上述の形成方法によって透明金属層が形成される。なお、図4の例の場合、当該工程は、背面冷却ローラー58によって、透明基板21の温度を65℃以下に保ちながら行われる。 3rd formation chamber R23 performs the process of forming a transparent metal layer, ie, the process of forming a transparent metal layer, keeping the temperature of a transparent substrate at 65 degrees C or less. In the third forming chamber R23, a transparent metal layer is formed by the above-described forming method using a conductive material such as metal or metal oxide as a forming material. In the case of the example of FIG. 4, this process is performed while the temperature of the transparent substrate 21 is kept at 65 ° C. or less by the rear cooling roller 58.
 第4形成室R24は、第2高屈折率層を形成する工程を行う。第4形成室R24では、波長570nmの光に対して、透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を形成材料として、上述の形成方法で第2高屈折率層が形成される。 The fourth formation chamber R24 performs a step of forming the second high refractive index layer. In the fourth forming chamber R24, the second high-refractive-index layer is formed by the above-described forming method using a dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate for light having a wavelength of 570 nm. The
 最後に、一方の面上に、透明基板、第1高屈折率層、第1硫化防止層、透明金属層及び第2高屈折率層が積層形成された透明基板21は、巻取室R60内に連続的に搬送され、当該巻取室R60にて巻き取られる。 Finally, the transparent substrate 21 in which the transparent substrate, the first high-refractive index layer, the first anti-sulfurization layer, the transparent metal layer, and the second high-refractive index layer are laminated on one surface is disposed in the winding chamber R60. And is wound up in the winding chamber R60.
 なお、図4に示す製造装置では、透明導電体が、透明基板、第1高屈折率層、第1硫化防止層、透明金属層及び第2高屈折率層とをこの順に有する形態を説明したが、これに限定されず、例えば、第1形成室R21又は第4形成室R24を複数有する構成とし、第3高屈折率層を形成することとしてもよい。 In the manufacturing apparatus shown in FIG. 4, the transparent conductor has a transparent substrate, a first high refractive index layer, a first antisulfurization layer, a transparent metal layer, and a second high refractive index layer in this order. However, the present invention is not limited to this, and, for example, a configuration in which a plurality of first formation chambers R21 or fourth formation chambers R24 are provided and the third high refractive index layer may be formed.
 さらに、第4形成室R24の原料供給部57に硫化亜鉛(ZnS)を含有させ、当該第4形成室R24でも、波長570nmの光に対して、透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を含有し、かつ、第1高屈折率層及び第2高屈折率層のいずれか一方の層を硫化亜鉛(ZnS)を含有する硫化亜鉛含有層として、第1高屈折率層及び第2高屈折率層を形成する工程が行われるものとしてもよい。
 この場合、第3形成室R23と第4形成室R24との間に、第2形成室R22をさらに設け、第2硫化防止層の形成を行うものとする。
Furthermore, the raw material supply part 57 of the fourth formation chamber R24 contains zinc sulfide (ZnS), and even in the fourth formation chamber R24, a dielectric material having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm or A first high refractive index layer containing an oxide semiconductor material and one of the first high refractive index layer and the second high refractive index layer being a zinc sulfide-containing layer containing zinc sulfide (ZnS) The step of forming the second high refractive index layer may be performed.
In this case, a second formation chamber R22 is further provided between the third formation chamber R23 and the fourth formation chamber R24 to form the second antisulfurization layer.
 なお、形成室R20には、上述の第1形成室R21~第4形成室R24のほか、第1形成室R21とほぼ同じ構成であり、形成材料を後述の下地層や低屈折率層を形成する材料にして、これらの層を形成する形成室を適宜設けてもよい。 The forming chamber R20 has substantially the same configuration as the first forming chamber R21, in addition to the first forming chamber R21 to the fourth forming chamber R24 described above, and forms a base layer and a low refractive index layer, which will be described later, as the forming material. Depending on the material to be formed, a formation chamber for forming these layers may be provided as appropriate.
 次に、本発明の透明導電体の製造方法に用いられる各構成要素について詳述する。 Next, each component used in the method for producing a transparent conductor of the present invention will be described in detail.
 [透明基板]
 本発明に係る透明基板1は、各種表示デバイスの透明基板と同様でありうる。透明基板1は、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート(PC)樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィンポリマー(COP、例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、「アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)及びスチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムでありうる。透明基板1が透明樹脂フィルムである場合、当該フィルムには2種以上の樹脂が含まれてもよい。
[Transparent substrate]
The transparent substrate 1 according to the present invention can be the same as the transparent substrate of various display devices. The transparent substrate 1 is a glass substrate, cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate (PC) resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), cycloolefin Polymer (COP, such as ZEONOR (manufactured by ZEON CORPORATION), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, "acrylite (manufactured by Mitsubishi Rayon), Sumipex (Sumitomo) Chemical)), polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PET), polyethylene naphthalate), polyether sulfone, ABS / AS resin It can be a transparent resin film made of MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, etc. When the transparent substrate 1 is a transparent resin film, the film has 2 More than one resin may be included.
 透明性の観点から、透明基板1はガラスフィルム若しくはセルロースエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)又はスチレン系ブロックコポリマー樹脂からなるフィルムであることが好ましい。 From the viewpoint of transparency, the transparent substrate 1 is made of glass film or cellulose ester resin, polycarbonate resin, polyester resin (especially polyethylene terephthalate), triacetyl cellulose, cycloolefin resin, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, poly A film made of ether sulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin) or styrene block copolymer resin is preferable.
 透明基板1は、可視光に対する透明性が高いことが好ましい。具体的には、波長400~800nmの範囲内の光の平均透過率(以下、単に「透過率」ともいう。)が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板1の光の平均透過率が70%以上であると、透明導電体10の光透過性(透明性)が高まりやすい。また、透明基板1の波長400~800nmの範囲内の光の平均吸収率(以下、単に「吸収率」ともいう。)は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent substrate 1 is preferably highly transparent to visible light. Specifically, the average transmittance of light within the wavelength range of 400 to 800 nm (hereinafter also simply referred to as “transmittance”) is preferably 70% or more, more preferably 80% or more, More preferably, it is 85% or more. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance (transparency) of the transparent conductor 10 is likely to increase. The average absorption rate of light within the wavelength range of 400 to 800 nm of the transparent substrate 1 (hereinafter also simply referred to as “absorption rate”) is preferably 10% or less, more preferably 5% or less, even more preferably. Is 3% or less.
 上記平均透過率は、透明基板1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率(以下、単に「反射率」ともいう。)を測定し算出できる。本発明実施形態では、具体的には、平均吸収率(%)は、(100-(平均透過率+平均反射率))として計算される。平均透過率及び平均反射率は分光光度計で測定される。 The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1. On the other hand, the average absorptance can be calculated by making light incident from the same angle as the average transmittance and measuring the average reflectance (hereinafter also simply referred to as “reflectance”) of the transparent substrate 1. In the embodiment of the present invention, specifically, the average absorption rate (%) is calculated as (100− (average transmittance + average reflectance)). Average transmittance and average reflectance are measured with a spectrophotometer.
 透明基板1の波長570nmの光に対する屈折率は、測定温度25℃において、1.40~1.95の範囲内であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70の範囲内である。透明基板の屈折率は、通常、透明基板の材質によって定まる。透明基板の屈折率は、エリプソメーターで測定される。 The refractive index of the transparent substrate 1 with respect to light having a wavelength of 570 nm is preferably in the range of 1.40 to 1.95, more preferably 1.45 to 1.75, even more preferably at a measurement temperature of 25 ° C. Is in the range of 1.45 to 1.70. The refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
 透明基板1のヘイズ値は0.01~2.5の範囲内であることが好ましく、より好ましくは0.1~1.2の範囲内である。透明基板のヘイズ値が2.5以下であると、透明導電体のヘイズ値が抑制される。ヘイズ値は、ヘイズメーターで測定される。 The haze value of the transparent substrate 1 is preferably in the range of 0.01 to 2.5, more preferably in the range of 0.1 to 1.2. When the haze value of the transparent substrate is 2.5 or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
 透明基板1の厚さは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明基板1の厚さが1μm以上であると、透明基板1の強度が高まり、第一高屈折率層2を形成する際に割れたり、裂けたりし難くなる。一方、透明基板1の厚さが20mm以下であれば、透明導電体10のフレキシブル性が十分となる。さらに透明導電体10を用いた機器の厚さを薄くできる。また、透明導電体10を用いた機器を軽量化することもできる。 The thickness of the transparent substrate 1 is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the transparent substrate 1 is 1 μm or more, the strength of the transparent substrate 1 is increased, and the first high refractive index layer 2 is hardly cracked or broken. On the other hand, if the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 10 is sufficient. Furthermore, the thickness of the apparatus using the transparent conductor 10 can be reduced. Moreover, the apparatus using the transparent conductor 10 can also be reduced in weight.
 また、透明基板1の表面粗さRaが粗い場合、その上に積層される各層についても表面粗さが転写される。すなわち、透明基板1の表面が粗いと平滑な透明金属層等を形成できない。 Further, when the surface roughness Ra of the transparent substrate 1 is rough, the surface roughness is also transferred for each layer laminated thereon. That is, if the surface of the transparent substrate 1 is rough, a smooth transparent metal layer or the like cannot be formed.
 [第1高屈折率層]
 本発明に係る第1高屈折率層2は、透明導電体の導通領域a、つまり透明金属層3が形成されている領域の光透過性(光学アドミッタンス)を調整する層であり、少なくとも透明導電体10の導通領域aに形成される。第1高屈折率層2は、透明導電体10の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
[First high refractive index layer]
The first high-refractive index layer 2 according to the present invention is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor, that is, the region where the transparent metal layer 3 is formed. It is formed in the conduction region a of the body 10. The first high-refractive index layer 2 may be formed also in the insulating region b of the transparent conductor 10, but only the conductive region a is used from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b. It is preferable to be formed.
 第1高屈折率層2には、波長570nmの光に対して、前述の透明基板1の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含有される。当該誘電性材料又は酸化物半導体材料の波長570nmの光に対する屈折率は、透明基板1の波長570nmの光に対する屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第1高屈折率層2に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光に対する具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第1高屈折率層2によって、透明導電体10の導通領域aの光学アドミッタンスが十分に調整される。なお、第1高屈折率層2の屈折率は、第1高屈折率層2に含まれる材料の屈折率や、第1高屈折率層2に含まれる材料の密度で調整される。 The first high refractive index layer 2 contains a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 described above with respect to light having a wavelength of 570 nm. The refractive index of the dielectric material or oxide semiconductor material with respect to light with a wavelength of 570 nm is preferably 0.1 to 1.1 higher than the refractive index with respect to light with a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable. On the other hand, the specific refractive index of the dielectric material or oxide semiconductor material included in the first high refractive index layer 2 with respect to light having a wavelength of 570 nm is preferably greater than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted by the first high refractive index layer 2. The refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
 第1高屈折率層2に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、金属酸化物でありうる。金属酸化物の例にはTiO、ITO、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、IGZO(Indium Gallium Zinc Oxide)、AZO(Aluminum doped Zinc Oxide)、GZO(Gallium-doped Zinc Oxide)、ATO(Antimony Tin Oxide)、ICO、Bi、酸化ガリウム(Ga)、GeO、WO、HfO、a-GIO等が含まれる。第1高屈折率層2には、当該金属酸化物が1種のみ含まれてもよく、2種以上が含まれてもよい。 The dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material can be a metal oxide. TiO 2 Examples of metal oxides, ITO, ZnO, Nb 2 O 5, ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3, TiO, SnO 2, la 2 Ti 2 O 7, IZO , IGZO (Indium gallium Zinc oxide), AZO (Aluminum doped Zinc oxide), GZO (gallium-doped Zinc oxide), ATO (Antimony Tin oxide), ICO, Bi 2 O 3, gallium oxide (Ga 2 O 3 ), GeO 2 , WO 3 , HfO 2 , a-GIO and the like are included. The first high refractive index layer 2 may contain only one kind of the metal oxide or two or more kinds.
 また、第1高屈折率層2に含有される誘電性材料又は酸化物半導体材料は、硫化亜鉛(ZnS)でもありうる。なお、第1高屈折率層2に硫化亜鉛が含有される場合、当該第1高屈折率層は、本発明に係る硫化亜鉛含有層である。
 第1高屈折率層2にZnSが含まれると、透明基板1側から水分が透過し難くなり、透明金属層3の腐食が抑制される。第1高屈折率層2には、ZnSのみが含まれてもよく、ZnSとともに他の材料が含まれてもよい。ZnSとともに含まれる材料は、上記誘電性材料又は酸化物半導体材料でありうる金属酸化物や二酸化ケイ素(SiO)等であり、特に好ましくはSiOである。ZnSとともにSiOが含まれると、第1高屈折率層が非晶質になりやすく、透明導電体のフレキシブル性が高まりやすい。
The dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 can also be zinc sulfide (ZnS). When the first high refractive index layer 2 contains zinc sulfide, the first high refractive index layer is a zinc sulfide-containing layer according to the present invention.
When ZnS is contained in the first high refractive index layer 2, moisture hardly penetrates from the transparent substrate 1 side, and corrosion of the transparent metal layer 3 is suppressed. The first high refractive index layer 2 may contain only ZnS, and may contain other materials together with ZnS. The material contained together with ZnS is a metal oxide or silicon dioxide (SiO 2 ), which can be the dielectric material or the oxide semiconductor material, and is particularly preferably SiO 2 . When SiO 2 is contained together with ZnS, the first high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
 第1高屈折率層2にZnSとともに他の材料が含まれる場合、ZnSの量は、第1高屈折率層2を構成する材料の総モル数に対して、0.1~95質量%であることが好ましく、50~90質量%であることがより好ましく、さらに好ましくは60~85質量%である。硫化亜鉛(ZnS)の比率が高いとスパッタ速度が速くなり、第1高屈折率層2の形成速度が速くなる。一方、ZnS以外の成分が多く含まれると、第1高屈折率層2の非晶質性が高まり、第1高屈折率層2の割れが抑制される。 When the first high refractive index layer 2 contains other materials together with ZnS, the amount of ZnS is 0.1 to 95% by mass with respect to the total number of moles of the materials constituting the first high refractive index layer 2. It is preferably 50 to 90% by mass, more preferably 60 to 85% by mass. When the ratio of zinc sulfide (ZnS) is high, the sputtering rate increases and the formation rate of the first high refractive index layer 2 increases. On the other hand, when many components other than ZnS are contained, the amorphous nature of the first high refractive index layer 2 is increased, and cracking of the first high refractive index layer 2 is suppressed.
 第1高屈折率層2の厚さは、15~150nmであることが好ましく、より好ましくは20~80nmである。第1高屈折率層2の厚さが15nm以上であると、第1高屈折率層2によって、透明導電体10の導通領域aの光学アドミッタンスが十分に調整される。一方、第1高屈折率層2の厚さが150nm以下であれば、第1高屈折率層2が含まれる領域の光透過性が低下し難い。第1高屈折率層2の厚さは、エリプソメーターで測定される。 The thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm. When the thickness of the first high refractive index layer 2 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted by the first high refractive index layer 2. On the other hand, if the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease. The thickness of the first high refractive index layer 2 is measured with an ellipsometer.
 また、第1高屈折率層2が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第1高屈折率層2は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 Further, when the first high refractive index layer 2 is a layer patterned into a desired shape, the patterning method is not particularly limited. The first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed; a known etching method It may be a layer patterned by.
 [第2高屈折率層]
 本発明に係る第2高屈折率層4は、透明導電体10の導通領域a、つまり透明金属層3が形成されている領域の光透過性(光学アドミッタンス)を調整するための層であり、少なくとも透明導電体10の導通領域aに形成される。第2高屈折率層4は、透明導電体10の絶縁領域bに形成されてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
[Second high refractive index layer]
The second high refractive index layer 4 according to the present invention is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor 10, that is, the region where the transparent metal layer 3 is formed, At least the conductive region a of the transparent conductor 10 is formed. The second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductor 10, but is formed only in the conductive region a from the viewpoint of making it difficult to visually recognize the pattern formed of the conductive region a and the insulating region b. It is preferable that
 第2高屈折率層4には前述の透明基板1の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれる。当該誘電性材料又は酸化物半導体材料の波長570nmの光に対する屈折率は、透明基板1の波長570nmの光に対する屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光に対する具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第2高屈折率層4によって、透明導電体10の導通領域aの光学アドミッタンスが十分に調整される。なお、第2高屈折率層4の屈折率は、第2高屈折率層4に含まれる材料の屈折率や、第2高屈折率層4に含まれる材料の密度で調整される。 The second high refractive index layer 4 includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 1 described above. The refractive index of the dielectric material or oxide semiconductor material with respect to light with a wavelength of 570 nm is preferably 0.1 to 1.1 higher than the refractive index with respect to light with a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable. On the other hand, the specific refractive index of the dielectric material or oxide semiconductor material included in the second high refractive index layer 4 with respect to light having a wavelength of 570 nm is preferably greater than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted by the second high refractive index layer 4. The refractive index of the second high refractive index layer 4 is adjusted by the refractive index of the material included in the second high refractive index layer 4 and the density of the material included in the second high refractive index layer 4.
 第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、金属酸化物でありうる。当該金属酸化物は、第1高屈折率層に含まれる金属酸化物と同様でありうる。第2高屈折率層4には、当該金属酸化物が1種のみ含まれてもよく、2種以上が含まれてもよい。 The dielectric material or oxide semiconductor material included in the second high refractive index layer 4 may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material can be a metal oxide. The metal oxide may be the same as the metal oxide included in the first high refractive index layer. The second high refractive index layer 4 may contain only one kind of the metal oxide or two or more kinds.
 また、第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料は、ZnSであってもよい。なお、第2高屈折率層2に硫化亜鉛が含有される場合、当該第2高屈折率層は、本発明に係る硫化亜鉛含有層である。
 第2高屈折率層4にZnSが含まれると、第2高屈折率層4側から水分が透過することを抑制でき、透明金属層3の腐食を防止できる。第2高屈折率層4には、ZnSのみが含まれてもよく、ZnSとともに他の材料が含まれてもよい。ZnSとともに含まれる材料は、上記誘電性材料又は酸化物半導体材料でありうる金属酸化物又はSiOであり、特に好ましくはSiOである。ZnSとともにSiOが含まれると、第2高屈折率層4が非晶質になりやすく、透明導電体10のフレキシブル性が高まりやすい。
The dielectric material or the oxide semiconductor material included in the second high refractive index layer 4 may be ZnS. When the second high refractive index layer 2 contains zinc sulfide, the second high refractive index layer is a zinc sulfide-containing layer according to the present invention.
When ZnS is contained in the second high refractive index layer 4, it is possible to suppress moisture from being transmitted from the second high refractive index layer 4 side and to prevent the transparent metal layer 3 from corroding. The second high refractive index layer 4 may contain only ZnS or may contain other materials together with ZnS. The material included together with ZnS is a metal oxide or SiO 2 which can be the dielectric material or the oxide semiconductor material, particularly preferably SiO 2 . When SiO 2 is contained together with ZnS, the second high refractive index layer 4 is likely to be amorphous, and the flexibility of the transparent conductor 10 is likely to be enhanced.
 第2高屈折率層4にZnSとともに他の材料が含まれる場合、ZnSの量は、第2高屈折率層4を構成する成分の総モル数に対して、0.1~95質量%であることが好ましく、50~90質量%であることがより好ましく、さらに好ましくは60~85質量%である。ZnSの比率が高いとスパッタ速度が速くなり、第2高屈折率層4の形成速度が早くなる。一方、ZnS以外の成分が多くなると、第2高屈折率層4の非晶質性が高まり、第2高屈折率層4の割れが抑制される。 When the second high refractive index layer 4 contains other materials together with ZnS, the amount of ZnS is 0.1 to 95 mass% with respect to the total number of moles of the components constituting the second high refractive index layer 4. It is preferably 50 to 90% by mass, more preferably 60 to 85% by mass. When the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases. On the other hand, when the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
 第2高屈折率層4の厚さは15nm以上であり、通常150nm以下である。第2高屈折率層4の厚さは、より好ましくは15~150nmであり、さらに好ましくは20~80nmである。第2高屈折率層4の厚さが15nm以上であると、第2高屈折率層4によって、透明導電体10の導通領域aの光学アドミッタンスが十分に調整される。一方、第2高屈折率層4の厚さが150nm以下であれば、第2高屈折率層4が含まれる領域の光透過性が低下し難い。第2高屈折率層4の厚さは、エリプソメーターで測定される。 The thickness of the second high refractive index layer 4 is 15 nm or more, and usually 150 nm or less. The thickness of the second high refractive index layer 4 is more preferably 15 to 150 nm, and further preferably 20 to 80 nm. When the thickness of the second high refractive index layer 4 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted by the second high refractive index layer 4. On the other hand, if the thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. The thickness of the second high refractive index layer 4 is measured with an ellipsometer.
 また、第2高屈折率層4が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第2高屈折率層4は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよい。また、公知のエッチング法によってパターニングされた層であってもよい。 Further, when the second high refractive index layer 4 is a layer patterned into a desired shape, the patterning method is not particularly limited. The second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed. Moreover, the layer patterned by the well-known etching method may be sufficient.
 [透明金属層]
 透明金属層3は、透明導電体10において電気を導通させるための層である。透明金属層3は、透明基板1の全面に形成されていてもよく、また所望の形状にパターニングされていてもよい。
[Transparent metal layer]
The transparent metal layer 3 is a layer for conducting electricity in the transparent conductor 10. The transparent metal layer 3 may be formed on the entire surface of the transparent substrate 1 or may be patterned into a desired shape.
 透明金属層3に含まれる金属は、導電性の高い金属であれば特に制限されず、例えば銀、銅、金、白金族、チタン、クロム等であってもよい。透明金属層3には、これらの金属が1種のみ含まれてもよく、2種以上含まれてもよい。導電性が高いとの観点から、透明金属層は銀、又は銀が90at%以上含まれる合金からなることが好ましい。銀と組み合わされる金属は、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム、モリブデン等でありうる。例えば、銀と亜鉛とが組み合わされると、透明金属層の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。 The metal contained in the transparent metal layer 3 is not particularly limited as long as it is a highly conductive metal, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like. The transparent metal layer 3 may contain only one kind of these metals or two or more kinds. From the viewpoint of high conductivity, the transparent metal layer is preferably made of silver or an alloy containing 90 at% or more of silver. The metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, and the like. For example, when silver and zinc are combined, the sulfide resistance of the transparent metal layer is increased. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases.
 透明金属層3のプラズモン吸収率は、波長400~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、さらに好ましくは5%以下である。波長400~800nmの一部にプラズモン吸収率が大きい領域があると、透明導電体10の導通領域aの透過光が着色しやすくなる。 The plasmon absorption rate of the transparent metal layer 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 10 is likely to be colored.
 透明金属層3の波長400~800nmにおけるプラズモン吸収率は、以下の手順で測定される。
 (i)ガラス基板上に、白金パラジウムをマグネトロンスパッタ装置にて0.1nm形成する。白金パラジウムの平均厚さは、スパッタ装置のメーカー公称値の形成速度等から算出する。その後、白金パラジウムが付着した基板上にスパッタ法にて金属からなる膜を20nm形成する。
The plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 3 is measured by the following procedure.
(I) Platinum palladium is formed to 0.1 nm on a glass substrate by a magnetron sputtering apparatus. The average thickness of platinum palladium is calculated from the formation rate of the manufacturer's nominal value of the sputtering apparatus. After that, a 20 nm thick metal film is formed by sputtering on the substrate to which platinum palladium is attached.
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の透過率及び反射率を測定する。そして各波長における透過率及び反射率から、吸収率(100-(透過率+反射率))を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。 (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the transmittance and reflectance of the metal film are measured. Then, an absorptance (100− (transmittance + reflectance)) is calculated from the transmittance and reflectance at each wavelength, and this is used as reference data. The transmittance and reflectance are measured with a spectrophotometer.
 (iii)続いて、測定対象の透明金属層を同様のガラス基板上に形成する。そして、当該透明金属層について、同様に透過率及び反射率を測定する。得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 (Iii) Subsequently, a transparent metal layer to be measured is formed on the same glass substrate. And about the said transparent metal layer, the transmittance | permeability and a reflectance are measured similarly. The reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
 透明金属層3の厚さは3~20nmであり、好ましくは5~9nmであり、さらに好ましくは5~8nmである。本発明の透明導電体10では、透明金属層3の厚さが10nm以下であれば、透明金属層3に金属本来の反射が生じ難い。さらに、透明金属層3の厚さが10nm以下であると、第1高屈折率層2及び第2高屈折率層4によって、透明導電体10の光学アドミッタンスが調整されやすく、導通領域a表面での光の反射が抑制されやすい。透明金属層3の厚さは、エリプソメーターで測定される。 The thickness of the transparent metal layer 3 is 3 to 20 nm, preferably 5 to 9 nm, and more preferably 5 to 8 nm. In the transparent conductor 10 of the present invention, if the thickness of the transparent metal layer 3 is 10 nm or less, the metal inherent reflection hardly occurs in the transparent metal layer 3. Furthermore, when the thickness of the transparent metal layer 3 is 10 nm or less, the optical admittance of the transparent conductor 10 is easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 4, and the surface of the conductive region a The reflection of light is easy to be suppressed. The thickness of the transparent metal layer 3 is measured with an ellipsometer.
 透明金属層3は、いずれの形成方法によっても形成できるが、透明金属層の平均透過率を変えるためには、スパッタ法で形成された膜又は後述する下地層上に形成された膜であることが好ましい。 The transparent metal layer 3 can be formed by any of the forming methods, but in order to change the average transmittance of the transparent metal layer, it is a film formed by sputtering or a film formed on an underlayer described later. Is preferred.
 スパッタ法では、形成時に材料が被形成体に高速で衝突するため、緻密かつ平滑な膜が得られやすいため、透明金属層3の光透過性が高まりやすい。また、透明金属層3がスパッタ法により形成された膜であると、透明金属層3が高温かつ低湿度な環境においても腐食し難くなる。スパッタ法の種類は特に制限されず、イオンビームスパッタ法、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法及び対向スパッタ法等でありうる。透明金属層3は、特に対向スパッタ法で形成されることが好ましい。透明金属層3が、対向スパッタ法で形成されると、透明金属層3が緻密になり、表面平滑性が高まりやすい。その結果、透明金属層3の表面電気抵抗がより低くなり、光透過率を向上できる。 In the sputtering method, since the material collides with the object to be formed at a high speed at the time of formation, a dense and smooth film is easily obtained, so that the light transmittance of the transparent metal layer 3 is likely to be increased. Moreover, when the transparent metal layer 3 is a film formed by sputtering, the transparent metal layer 3 is hardly corroded even in an environment of high temperature and low humidity. The type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like. The transparent metal layer 3 is particularly preferably formed by a counter sputtering method. When the transparent metal layer 3 is formed by the facing sputtering method, the transparent metal layer 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent metal layer 3 becomes lower, and the light transmittance can be improved.
 一方、透明金属層3を下地層上に形成する場合、透明金属層3を形成する際に下地層が成長核となるため、透明金属層3を平滑な層として形成きる。その結果、透明金属層3が薄くとも、プラズモン吸収が生じ難くなる。この場合、透明金属層3の形成方法は、上述のように特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法及び熱CVD法等、一般的な気相成膜法でありうる。 On the other hand, when the transparent metal layer 3 is formed on the underlayer, the underlayer becomes a growth nucleus when the transparent metal layer 3 is formed, so that the transparent metal layer 3 can be formed as a smooth layer. As a result, even if the transparent metal layer 3 is thin, plasmon absorption hardly occurs. In this case, the method for forming the transparent metal layer 3 is not particularly limited as described above, and a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, and a thermal CVD method is used. It can be.
 また、透明金属層3が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。透明金属層3は、例えば、所望のパターンを有するマスクを配置して形成された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 Further, when the transparent metal layer 3 is a layer patterned into a desired shape, the patterning method is not particularly limited. The transparent metal layer 3 may be, for example, a layer formed by arranging a mask having a desired pattern; it may be a layer patterned by a known etching method.
 [硫化防止層]
 本発明実施形態では、硫化防止層5として、上述の第1硫化防止層5a又は第2硫化防止層5bを有するものとして、以下、硫化防止層5について説明する。
[Sulfurization prevention layer]
In the embodiment of the present invention, the sulfidation prevention layer 5 will be described below assuming that the sulfidation prevention layer 5 includes the first sulfidation prevention layer 5a or the second sulfidation prevention layer 5b described above.
 (第1硫化防止層)
 前述の第1高屈折率層2が硫化亜鉛含有層である場合、図1に示されるように、第1高屈折率層2と透明金属層3との間に第1硫化防止層5aが設けられることが好ましい。第1硫化防止層5aは、透明導電体10の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
(First sulfurization prevention layer)
When the above-described first high refractive index layer 2 is a zinc sulfide-containing layer, as shown in FIG. 1, a first sulfurization prevention layer 5 a is provided between the first high refractive index layer 2 and the transparent metal layer 3. It is preferred that The first sulfidation preventing layer 5a may be formed also in the insulating region b of the transparent conductor 10, but from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b, the first sulfidation preventing layer 5a is formed only in the conductive region a. Preferably it is formed.
 当該第1硫化防止層5aは、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を含有する層である。第1硫化防止層5aには、これらが1種のみ含まれてもよく、2種以上含まれてもよい。ただし、第1高屈折率層2と、第1硫化防止層5aと、透明金属層3とが連続的に形成される場合には、上記金属酸化物が硫黄と反応可能、又は硫黄を吸着可能な化合物であることが好ましい。上記金属酸化物が、硫黄と反応する化合物である場合、金属酸化物と硫黄との反応物は、可視光の透過性が高いことが好ましい。 The first antisulfurization layer 5a is a layer containing at least one selected from metal oxide, metal fluoride, metal nitride, and zinc (Zn). Only one of these may be included in the first sulfurization prevention layer 5a, or two or more thereof may be included. However, when the first high refractive index layer 2, the first sulfidation preventing layer 5a, and the transparent metal layer 3 are continuously formed, the metal oxide can react with sulfur or adsorb sulfur. Preferably. When the metal oxide is a compound that reacts with sulfur, the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
 金属酸化物の例には、TiO、ITO、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、IGZO、AZO、GZO、ATO、ICO、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y及びWO等が含まれる。
 金属フッ化物の例には、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF及びYF等が含まれる。
 金属窒化物の例には、Si及びAlN等が含まれる。
Examples of metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, IGZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 and WO 3 are included.
Examples of metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 and YF 3. .
Examples of the metal nitride include Si 3 N 4 and AlN.
 ここで、第1硫化防止層5aの厚さは、後述する透明金属層3の形成する際の衝撃から、第1高屈折率層2の表面を保護可能な厚さであることが好ましい。一方で、第1高屈折率層に含まれ得るZnSは、透明金属層3に含まれる金属との親和性が高い。そのため、第1硫化防止層5aの厚さが非常に薄く、第1高屈折率層2の一部が僅かに露出していると、当該露出部分を中心に透明金属層が成長し、透明金属層3が緻密になりやすい。つまり、第1硫化防止層5aは比較的薄いことが好ましく、0.1~10nmであることが好ましく、より好ましくは0.5~5nmであり、さらに好ましくは1~3nmである。第1硫化防止層5aの厚さは、エリプソメーターで測定される。 Here, the thickness of the first sulfidation preventing layer 5a is preferably a thickness capable of protecting the surface of the first high refractive index layer 2 from an impact when forming the transparent metal layer 3 described later. On the other hand, ZnS that can be contained in the first high refractive index layer has a high affinity with the metal contained in the transparent metal layer 3. Therefore, if the thickness of the first antisulfurization layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal layer grows around the exposed part, and the transparent metal Layer 3 tends to be dense. That is, the first antisulfurization layer 5a is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm. The thickness of the first sulfurization preventing layer 5a is measured with an ellipsometer.
 第1硫化防止層5aが、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第1硫化防止層5aは、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 When the first antisulfurization layer 5a is a layer patterned into a desired shape, the patterning method is not particularly limited. The first sulfidation preventing layer 5a may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, by a known etching method. It may be a patterned layer.
 (第2硫化防止層5b)
 第2高屈折率層が硫化亜鉛含有層である場合、図1に示されるように、透明金属層3と第2高屈折率層4との間に第2硫化防止層5bが設けられることが好ましい。第2硫化防止層5bは、透明導電体10の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
(Second antisulfurization layer 5b)
When the second high-refractive index layer is a zinc sulfide-containing layer, a second anti-sulfurization layer 5b may be provided between the transparent metal layer 3 and the second high-refractive index layer 4 as shown in FIG. preferable. The second sulfidation preventing layer 5b may be formed also in the insulating region b of the transparent conductor 10, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a. Preferably it is formed.
 当該第2硫化防止層5bは、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を含有する層である。第2硫化防止層5bには、これらが1種のみ含まれてもよく、2種以上が含まれてもよい。金属酸化物、金属窒化物、金属フッ化物は、前述の第1高屈折率層2に含まれる金属酸化物、金属窒化物、金属フッ化物と同様であってもよい。 The second antisulfurization layer 5b is a layer containing at least one selected from metal oxide, metal fluoride, metal nitride, and zinc (Zn). Only one of these may be included in the second sulfurization prevention layer 5b, or two or more thereof may be included. The metal oxide, metal nitride, and metal fluoride may be the same as the metal oxide, metal nitride, and metal fluoride contained in the first high refractive index layer 2 described above.
 一方、第2硫化防止層5bの厚さは、第2高屈折率層4の形成時の衝撃から、透明金属層3の表面を保護可能な厚さであることが好ましい。一方で、透明金属層3に含まれる金属と、第2高屈折率層4に含まれるZnSは、親和性が高い。そのため、第2硫化防止層5bの厚さが非常に薄く、透明金属層3の一部が僅かに露出していると、透明金属層3や第2硫化防止層5bと第2高屈折率層4との密着性が高まりやすい。したがって、第2硫化防止層5bの具体的な厚さは0.1~10nmであることが好ましく、より好ましくは0.5~5nmであり、さらに好ましくは1~3nmである。第2硫化防止層5bの厚さは、エリプソメーターで測定される。 On the other hand, the thickness of the second antisulfurization layer 5b is preferably a thickness capable of protecting the surface of the transparent metal layer 3 from an impact when the second high refractive index layer 4 is formed. On the other hand, the metal contained in the transparent metal layer 3 and the ZnS contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second antisulfuration layer 5b is very thin and a part of the transparent metal layer 3 is slightly exposed, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. Adhesion with 4 tends to increase. Accordingly, the specific thickness of the second antisulfurization layer 5b is preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm. The thickness of the second sulfurization preventing layer 5b is measured with an ellipsometer.
 第2硫化防止層5bは、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層でありうる。 The second antisulfurization layer 5b may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
 第2硫化防止層5bが、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第2硫化防止層5bは、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 When the second antisulfurization layer 5b is a layer patterned into a desired shape, the patterning method is not particularly limited. The second antisulfurization layer 5b may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, and by a known etching method. It may be a patterned layer.
 [下地層]
 前述のように、透明導電体10には、透明金属層3の形成時に成長核となる下地層が含まれてもよい。下地層は、透明金属層3より基板1側、かつ透明金属層3に隣接して形成された層である。すなわち、第1高屈折率層2と透明金属層3との間又は第1硫化防止層5aと透明金属層3との間に形成された層でありうる。下地層は、少なくとも透明導電体の導通領域aに形成されていることが好ましく、透明導電体10の絶縁領域bに形成されていてもよい。
[Underlayer]
As described above, the transparent conductor 10 may include an underlayer that becomes a growth nucleus when the transparent metal layer 3 is formed. The underlayer is a layer formed on the substrate 1 side of the transparent metal layer 3 and adjacent to the transparent metal layer 3. That is, it may be a layer formed between the first high refractive index layer 2 and the transparent metal layer 3 or between the first antisulfurization layer 5 a and the transparent metal layer 3. The underlayer is preferably formed at least in the conductive region a of the transparent conductor, and may be formed in the insulating region b of the transparent conductor 10.
 透明導電体10に下地層が含まれると、透明金属層3の厚さが薄くとも、透明金属層3の表面の平滑性が高まる。その理由は以下のとおりである。 If the transparent conductor 10 includes a base layer, the smoothness of the surface of the transparent metal layer 3 is increased even if the transparent metal layer 3 is thin. The reason is as follows.
 一般的な気相成膜法で透明金属層3の材料を、例えば第1高屈折率層2上に堆積させると、形成初期には、第1高屈折率層2上に付着した原子がマイグレート(移動)し、原子が寄り集まって塊(島状構造)を形成する。そして、この塊にまとわりつきながら層(膜)が成長する。そのため、形成初期の膜では、塊同士の間に隙間があり、導通しない。この状態からさらに塊が成長すると、塊同士の一部が繋がり、辛うじて導通する。しかし、塊同士の間にいまだ隙間があるため、プラズモン吸収が生じる。そして、さらに形成が進むと、塊同士が完全に繋がって、プラズモン吸収が少なくなる。しかしその一方で、金属本来の反射が生じ、透明金属層の光透過性が低下する。 When the material of the transparent metal layer 3 is deposited, for example, on the first high refractive index layer 2 by a general vapor deposition method, atoms attached to the first high refractive index layer 2 are initially deposited at the initial stage of formation. It moves (move) and atoms gather together to form a lump (island structure). And a layer (film | membrane) grows clinging to this lump. Therefore, in the film at the initial stage of formation, there is a gap between the lumps, and the film is not conductive. When a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption occurs. As the formation proceeds further, the lumps are completely connected and plasmon absorption is reduced. However, on the other hand, the original reflection of the metal occurs, and the light transmittance of the transparent metal layer decreases.
 これに対し、第1高屈折率層2上をマイグレートを抑制できる金属からなる下地層が形成されていると、当該下地層を成長核として、透明金属層3が成長する。つまり、透明金属層3の材料がマイグレートを抑制でき、前述の島状構造を形成せずに層が成長する。その結果、厚さが薄くとも平滑な透明金属層3が得られる。 On the other hand, when a base layer made of a metal capable of suppressing migration is formed on the first high refractive index layer 2, the transparent metal layer 3 grows using the base layer as a growth nucleus. That is, the material of the transparent metal layer 3 can suppress migration, and the layer grows without forming the aforementioned island-like structure. As a result, a smooth transparent metal layer 3 can be obtained even if the thickness is small.
 ここで、下地層には、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ若しくはインジウム又はこれらの金属と他の金属との合金や、これらの金属の酸化物や硫化物(例えばZnS)が含まれることが好ましい。下地層には、これらが1種のみ含まれてもよく、2種以上が含まれてもよい。 Here, the base layer may contain palladium, molybdenum, zinc, germanium, niobium, indium, alloys of these metals with other metals, oxides or sulfides of these metals (for example, ZnS). preferable. The underlayer may contain only one kind or two or more kinds.
 下地層に含まれるパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウムの量は、20質量%以上であることが好ましく、より好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。下地層に上記金属が20質量%以上含まれると、下地層と透明金属層3との親和性が高まり、下地層と透明金属層3との密着性が高まりやすい。下地層にはパラジウム又はモリブデンが含まれることが特に好ましい。 The amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more. When the metal is contained in the base layer in an amount of 20% by mass or more, the affinity between the base layer and the transparent metal layer 3 is increased, and the adhesion between the base layer and the transparent metal layer 3 is likely to be increased. It is particularly preferable that the underlayer contains palladium or molybdenum.
 一方、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウムと合金を形成する金属は特に制限されないが、例えばパラジウム以外の白金族、金、コバルト、ニッケル、チタン、アルミニウム及びクロム等でありうる。 On the other hand, the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, but may be a platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, and the like.
 下地層の厚さは、3nm以下であり、好ましくは0.5nm以下であり、より好ましくは単原子膜である。下地層は、透明基板1上に金属原子が互いに離間して付着している層でもありうる。下地層の付着量が3nm以下であれば、下地層が透明導電体10の光透過性や光学アドミッタンスに影響を及ぼすことを防止できる。下地層の有無はICP-MS法で確認される。また、下地層の厚さは、形成速度と形成時間との積から算出される。 The thickness of the underlayer is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film. The underlayer can also be a layer in which metal atoms are adhered to the transparent substrate 1 while being separated from each other. If the adhesion amount of the underlayer is 3 nm or less, the underlayer can be prevented from affecting the light transmittance and optical admittance of the transparent conductor 10. The presence or absence of the underlayer is confirmed by the ICP-MS method. Further, the thickness of the underlayer is calculated from the product of the formation speed and the formation time.
 下地層の形成方法は特に限定されず、公知の方法であってもよく、例えば、スパッタ法又は蒸着法を適用できる。スパッタ法としては、例えば、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法及びバイアススパッタ法等が挙げられる。下地層を形成する際のスパッタ時間は、所望の下地層の平均厚さ及び形成速度に合わせて適宜選択される。スパッタ法による形成速度は、好ましくは0.01~1.5nm/s(0.1~15Å/s)であり、より好ましくは0.01~0.7nm/s(0.1~7Å/s)である。 The formation method of the underlayer is not particularly limited, and may be a known method, for example, a sputtering method or a vapor deposition method can be applied. Examples of the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method. The sputtering time for forming the underlayer is appropriately selected according to the desired average thickness and formation rate of the underlayer. The formation rate by sputtering is preferably 0.01 to 1.5 nm / s (0.1 to 15 Å / s), more preferably 0.01 to 0.7 nm / s (0.1 to 7 Å / s). ).
 一方、蒸着法の例としては、真空蒸着法、電子線蒸着法、イオンプレーティング法及びイオンビーム蒸着法等が挙げられる。蒸着時間は、所望の下地層の厚さ及び形成速度に合わせて適宜選択される。蒸着速度は、好ましくは0.01~1.5nm/s(0.1~15Å/s)であり、より好ましくは0.01~0.7nm/s(0.1~7Å/s)である。 On the other hand, examples of the vapor deposition method include a vacuum vapor deposition method, an electron beam vapor deposition method, an ion plating method, and an ion beam vapor deposition method. The deposition time is appropriately selected according to the desired thickness and formation rate of the underlayer. The deposition rate is preferably 0.01 to 1.5 nm / s (0.1 to 15 Å / s), more preferably 0.01 to 0.7 nm / s (0.1 to 7 Å / s). .
 下地層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。下地層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、また、公知のエッチング法によってパターニングされた層であってもよい。 When the ground layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The underlayer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, or patterned by a known etching method. It may be a layer.
 なお、下地層の表面粗さがRaでおおむね3nm以下であると、良質な透明金属層(平滑な透明金属層)を形成できるため好ましい。 In addition, it is preferable that the surface roughness of the underlayer is approximately 3 nm or less in terms of Ra because a high-quality transparent metal layer (smooth transparent metal layer) can be formed.
 [低屈折率層]
 前述のように、本発明の透明導電体10には、第2高屈折率層4上に、透明導電体の導通領域aの光透過性(光学アドミッタンス)を調整する低屈折率層(図示せず)を設けてもよい。低屈折率層は、透明導電体10の導通領域aにのみ形成されていてもよく、透明導電体10の導通領域a及び絶縁領域bの両方に形成されていてもよい。
[Low refractive index layer]
As described above, the transparent conductor 10 of the present invention has a low refractive index layer (not shown) for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor on the second high refractive index layer 4. May be provided. The low refractive index layer may be formed only in the conductive region a of the transparent conductor 10, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 10.
 低屈折率層には、第1高屈折率層2及び第2高屈折率層4に含まれる誘電性材料又は酸化物半導材料の波長570nmの光に対する屈折率より、波長570nmの光に対する屈折率が低い誘電性材料又は酸化物半導体材料が含まれる。低屈折率層に含まれる誘電性材料又は酸化物半導体材料における波長570nmの光に対する屈折率は、第1高屈折率層2及び第2高屈折率層4に含まれる上記材料の波長570nmの光に対する屈折率より、それぞれ0.2以上低いことが好ましく、0.4以上低いことがより好ましい。 The low refractive index layer has a refractive index with respect to light with a wavelength of 570 nm, which is higher than the refractive index with respect to light with a wavelength of 570 nm of the dielectric material or oxide semiconductor material included in the first high refractive index layer 2 and the second high refractive index layer 4. A dielectric material or oxide semiconductor material having a low rate is included. The refractive index with respect to light having a wavelength of 570 nm in the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the material contained in the first high refractive index layer 2 and the second high refractive index layer 4. The refractive index is preferably 0.2 or more lower than the refractive index, more preferably 0.4 or more lower.
 低屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.8未満であることが好ましく、より好ましくは1.30~1.6であり、特に好ましくは1.35~1.5である。なお、低屈折率層の屈折率は主に、低屈折率層に含まれる材料の屈折率や、低屈折率層に含まれる材料の密度で調整される。 The specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is preferably less than 1.8, more preferably 1.30 to 1.6, Particularly preferred is 1.35 to 1.5. The refractive index of the low refractive index layer is mainly adjusted by the refractive index of the material included in the low refractive index layer and the density of the material included in the low refractive index layer.
 低屈折率層に含まれる誘電性材料又は酸化物半導体材料は、MgF、SiO、AlF、CaF、CeF、CdF、LaF、LiF、NaF、NdF、YF、YbF、Ga、LaAlO、NaAlF、Al、MgO及びThO等でありうる。誘電性材料又は酸化物半導体材料は中でも、MgF、SiO、CaF、CeF、LaF、LiF、NaF、NdF、NaAlF、Al、MgO、又はThOであることが好ましく、屈折率が低いとの観点から、MgF及びSiOが特に好ましい。低屈折率層には、これらの材料が1種のみ含まれてもよく、2種以上含まれてもよい。 The dielectric material or the oxide semiconductor material included in the low refractive index layer is MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, NdF 3 , YF 3 , YbF 3. , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO and ThO 2 . Dielectric material or oxide semiconductor materials among others, MgF 2, SiO 2, CaF 2, CeF 3, LaF 3, LiF, NaF, NdF 3, Na 3 AlF 6, Al 2 O 3, MgO, or is ThO 2 In view of low refractive index, MgF 2 and SiO 2 are particularly preferable. Only one of these materials may be included in the low refractive index layer, or two or more of these materials may be included.
 低屈折率層の厚さは、10~150nmであることが好ましく、より好ましくは20~100nmである。低屈折率層の厚さが10nm以上であると、透明導電体表面の光学アドミッタンスが微調整されやすい。一方、低屈折率層の厚さが150nm以下であれば、透明導電体の厚さが薄くなる。低屈折率層の厚さは、エリプソメーターで測定される。 The thickness of the low refractive index layer is preferably 10 to 150 nm, more preferably 20 to 100 nm. When the thickness of the low refractive index layer is 10 nm or more, the optical admittance on the surface of the transparent conductor is easily finely adjusted. On the other hand, if the thickness of the low refractive index layer is 150 nm or less, the thickness of the transparent conductor is reduced. The thickness of the low refractive index layer is measured with an ellipsometer.
 低屈折率層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法及び熱CVD法等、一般的な気相成膜法で形成された層であり得る。形成の容易性等の観点から、低屈折率層は、電子ビーム蒸着法又はスパッタ法で形成された層であることが好ましい。 The low refractive index layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method and a thermal CVD method. From the viewpoint of ease of formation and the like, the low refractive index layer is preferably a layer formed by electron beam evaporation or sputtering.
 また、低屈折率層がパターニングされた層である場合、パターニング方法は特に制限されない。低屈折率層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相形成法でパターン状に形成された層であってもよく;公知のエッチング法でパターニングされた層であってもよい。 Further, when the low refractive index layer is a patterned layer, the patterning method is not particularly limited. The low refractive index layer may be, for example, a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed; patterned by a known etching method It may be a layer.
 [第3高屈折率層]
 本発明の透明導電体10には、低屈折率層上にさらに、透明導電体の導通領域aの光透過性(光学アドミッタンス)を調整する第3高屈折率層を設けてもよい。第3高屈折率層は、透明導電体10の導通領域aにのみ形成されていてもよく、透明導電体10の導通領域a及び絶縁領域bの両方に形成されていてもよい。
[Third high refractive index layer]
In the transparent conductor 10 of the present invention, a third high refractive index layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor may be further provided on the low refractive index layer. The third high refractive index layer may be formed only in the conductive region a of the transparent conductor 10, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 10.
 第3高屈折率層には、前述の透明基板1の屈折率及び前記低屈折率層の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれることが好ましい。
 第3高屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光に対する具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第3高屈折率層によって、透明導電体10の導通領域aの光学アドミッタンスが十分に調整される。なお、第3高屈折率層の屈折率は、第3高屈折率層に含まれる材料の屈折率や、第3高屈折率層に含まれる材料の密度で調整される。
The third high refractive index layer preferably includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 and the refractive index of the low refractive index layer.
The specific refractive index with respect to light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5. Preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted by the third high refractive index layer. The refractive index of the third high refractive index layer is adjusted by the refractive index of the material included in the third high refractive index layer and the density of the material included in the third high refractive index layer.
 第3高屈折率層に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、金属酸化物又はZnSであることが好ましい。金属酸化物の例には、前述の第1高屈折率層2又は第2高屈折率層4に含まれる金属酸化物が含まれる。第3高屈折率層には、当該金属酸化物又はZnSが1種のみ含まれてもよく、2種以上が含まれてもよい。また、金属酸化物やZnSとともに、SiO等の誘電性材料が含まれてもよい。 The dielectric material or oxide semiconductor material contained in the third high refractive index layer may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material is preferably a metal oxide or ZnS. Examples of the metal oxide include the metal oxide contained in the first high refractive index layer 2 or the second high refractive index layer 4 described above. The third high refractive index layer may contain only one kind of the metal oxide or ZnS, or may contain two or more kinds. A dielectric material such as SiO 2 may be included together with the metal oxide and ZnS.
 第3高屈折率層の厚さは特に制限されず、好ましくは1~40nmであり、さらに好ましくは5~20nmである。第3高屈折率層の厚さが上記範囲であると、透明導電体10の導通領域aの光学アドミッタンスが十分に調整される。第3高屈折率層の厚さは、エリプソメーターで測定される。 The thickness of the third high refractive index layer is not particularly limited, and is preferably 1 to 40 nm, and more preferably 5 to 20 nm. When the thickness of the third high refractive index layer is in the above range, the optical admittance of the conductive region a of the transparent conductor 10 is sufficiently adjusted. The thickness of the third high refractive index layer is measured with an ellipsometer.
 第3高屈折率層の形成方法は特に制限されず、第1高屈折率層2や第2高屈折率層4と同様の方法で形成された層でありうる。 The formation method of the third high refractive index layer is not particularly limited, and may be a layer formed by the same method as the first high refractive index layer 2 and the second high refractive index layer 4.
 ≪透明導電体の光学アドミッタンスについて≫
 透明導電体の透過領域aの表面(透明導電体において透明基板とは反対側の表面)の反射率Rは、光が入射する媒質の光学アドミッタンスYenvと、透明導電体の透過領域aの表面の等価アドミッタンスYとから定まる。ここで光が入射する媒質とは、透明導電体に入射する光が、その入射直前に通過する部材又は環境であって;有機樹脂からなる部材、若しくは環境をいう。光が入射する媒質の光学アドミッタンスYenvと、透明導電体の表面の等価アドミッタンスYとの関係は以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
 上記の式に基づけば、|Yenv-Y|が0に近い程、透明導電体(透過領域a)の表面の反射率Rが低くなる。
≪About optical admittance of transparent conductor≫
The reflectance R of the surface of the transparent conductor transmission region a (the surface of the transparent conductor opposite to the transparent substrate) is determined by the optical admittance Y env of the medium on which light is incident and the surface of the transparent conductor transmission region a. determined from the equivalent admittance Y E. Here, the medium on which the light is incident refers to a member or environment through which light incident on the transparent conductor passes immediately before the incident; a member or environment made of an organic resin. The relationship between the optical admittance Y env of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Based on the above formula, the closer the value of | Y env −Y E | is to 0, the lower the reflectance R of the surface of the transparent conductor (transmission region a).
 前記媒質の光学アドミッタンスYenvは、電場強度と磁場強度との比の値(H/E)から求められ、通常、媒質の屈折率nenvと同一である。一方、透明導電体の透過領域aの表面の等価アドミッタンスYは、透過領域aを構成する層の光学アドミッタンスYから求められる。例えば透明導電体(透過領域a)が1層からなる場合には、透明導電体の等価アドミッタンスYは、当該層の光学アドミッタンスY(屈折率)と等しくなる。 The optical admittance Y env of the medium is obtained from the value (H / E) of the ratio between the electric field strength and the magnetic field strength, and is usually the same as the refractive index n env of the medium. On the other hand, the equivalent admittance Y E of the surface of the transparent region a of the transparent conductor is determined from the optical admittance Y of the layers constituting the transparent region a. For example, when the transparent conductor (transmission region a) consists of one layer, the equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
 一方、透明導電体(透過領域a)が積層体からなる場合、1層目からx層目までの積層体の光学アドミッタンスY(E H)は、1層目から(x-1)層目までの積層体の光学アドミッタンスYx-1(Ex-1 Hx-1)と、特定のマトリクスとの積で表され;具体的には以下の式(1)又は式(2)にて求められる。 On the other hand, when the transparent conductor (transmission region a) is composed of a laminate, the optical admittance Y x (E x H x ) of the laminate from the first layer to the x-th layer is from the first layer to (x−1) It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate up to the layer and a specific matrix; specifically, the following formula (1) or formula (2) Is required.
 ・x層目が誘電性材料又は酸化物半導体材料からなる層である場合
Figure JPOXMLDOC01-appb-M000002
・ When the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
Figure JPOXMLDOC01-appb-M000002
 ・x層目が理想金属層である場合
Figure JPOXMLDOC01-appb-M000003
・ When the xth layer is an ideal metal layer
Figure JPOXMLDOC01-appb-M000003
 そして、x層目が最表層であるときの、透明基板から最表層までの積層物の光学アドミッタンスY(E H)が、当該透明導電体の等価アドミッタンスYとなる。 When the x-th layer is the outermost layer, the optical admittance Y x (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E of the transparent conductor.
 図7に、例えば、透明基板/第1高屈折率層(ZnS-SiO)/第1硫化防止層(ITO)/透明金属層(Ag)/第2高屈折率層(ZnS-SiO)を備える透明導電体の導通領域aの波長570nmのアドミッタンス軌跡を示した。グラフの横軸は、当該領域の光学アドミッタンスYをx+iyで表したときの実部;つまり当該式におけるxであり、縦軸は光学アドミッタンスの虚部;つまり当該式におけるyである。なお、上記例の透明導電体では、第1硫化防止層は厚さが十分に薄いため、その光学アドミッタンスは無視できる。 In FIG. 7, for example, transparent substrate / first high refractive index layer (ZnS—SiO 2 ) / first antisulfurization layer (ITO) / transparent metal layer (Ag) / second high refractive index layer (ZnS—SiO 2 ) The admittance locus | trajectory of wavelength 570nm of the conduction | electrical_connection area | region a of a transparent conductor provided with was shown. The horizontal axis of the graph is the real part when the optical admittance Y of the region is represented by x + iy; that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance; that is, y in the equation. In the transparent conductor of the above example, the first sulfidation preventing layer is sufficiently thin, and thus its optical admittance can be ignored.
 図7において、アドミッタンス軌跡の最終座標が、導通領域aの等価アドミッタンスYである。そして、等価アドミッタンスYの座標(x,y)と、光が入射する媒質のアドミッタンス座標Yenv(nenv,0)(図示せず)との距離が、透明導電体の導通領域aの表面の反射率Rに比例する。 7, the last coordinate in the admittance locus is equivalent admittance Y E conductive region a. The distance between the coordinate (x E , y E ) of the equivalent admittance Y E and the admittance coordinate Y env (n env , 0) (not shown) of the medium on which the light is incident is determined by the conduction region a of the transparent conductor. It is proportional to the surface reflectance R.
 ここで、本発明の透明導電体では、透明金属層の高屈折率層側の表面の波長570nmにおける光学アドミッタンスをY1(=x+iy)とし、透明金属層の中間層側の表面の波長570nmにおける光学アドミッタンスをY2(=x+iy)とした場合に、x及びxのうちいずれか一方、又は両方が1.6以上であることが好ましい。x又はxのうちいずれか一方が、1.6以上であると透明導電体の光透過性が高まりやすい。その理由を以下に説明する。 Here, in the transparent conductor of the present invention, the optical admittance at a wavelength of 570 nm of the surface of the transparent metal layer on the high refractive index layer side is Y1 (= x 1 + ii 1 ), and the wavelength of the surface on the intermediate layer side of the transparent metal layer is When the optical admittance at 570 nm is Y2 (= x 2 + iy 2 ), it is preferable that one or both of x 1 and x 2 is 1.6 or more. either one of x 1 and x 2 are, it tends enhanced light transmission of the transparent conductor If it is 1.6 or more. The reason will be described below.
 透明導電体を構成する各層どうしの界面のアドミッタンスYと、各層に存在する電場強度Eとの間には、下記関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000004
 上記関係式に基づけば、透明金属層表面の光学アドミッタンスY1及びY2の実数部(x及びx)が大きくなれば、透明金属層の電場強度Eが小さくなり、電場損失(光の吸収)が抑制される。すなわち、透明導電体の光透過性が十分に高まる。
The following relational expression is established between the admittance Y at the interface between the layers constituting the transparent conductor and the electric field strength E existing in each layer.
Figure JPOXMLDOC01-appb-M000004
Based on the above relational expression, if the real part (x 1 and x 2 ) of the optical admittances Y1 and Y2 on the surface of the transparent metal layer is increased, the electric field strength E of the transparent metal layer is decreased and the electric field loss (light absorption) is reduced. Is suppressed. That is, the light transmittance of the transparent conductor is sufficiently increased.
 したがって、上記x及びxのうち、いずれか一方、又は両方が1.6以上であることが好ましく、より好ましくは1.8以上であり、さらに好ましくは2.0以上である。x及びxのうち、いずれか一方が1.6以上であればよいが、特にxが1.6以上であることが好ましい。またx及びxは、7.0以下であることが好ましく、より好ましくは5.5以下である。xは、第1高屈折率層の屈折率や、第1高屈折率層の厚さ等で調整される。xは、xの値や透明金属層の屈折率、第一透明金属層の厚さ等によって調整される。例えば、第1高屈折率層の屈折率が高い場合や、第1高屈折率層の厚さがある程度厚い場合には、x及びxの値が大きくなりやすい。またxとxとの差の絶対値(|x-x|)は1.5以下であることが好ましく、より好ましくは1.0以下であり、さらに好ましくは0.8以下である。 Accordingly, either one or both of x 1 and x 2 is preferably 1.6 or more, more preferably 1.8 or more, and further preferably 2.0 or more. Any one of x 1 and x 2 may be 1.6 or more, but x 1 is particularly preferably 1.6 or more. The x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less. x 1 is the refractive index of the first high refractive index layer and is adjusted by the thickness and the like of the first high refractive index layer. x 2 is the refractive index of x 1 values and transparent metal layer is adjusted by the thickness or the like of the first transparent metal layer. For example, if and refractive index of the first high refractive index layer is high, when the thickness of the first high refractive index layer is somewhat thicker, the value of x 1 and x 2 tends to increase. The absolute value (| x 1 −x 2 |) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there.
 また、特定波長(本発明では570nm)におけるアドミッタンス軌跡は、グラフの横軸を中心に線対称であることが好ましい。アドミッタンス軌跡が、グラフの横軸を中心に線対称であると、特定波長以外の波長(例えば450nmや700nm)における等価アドミッタンスYの座標が、一定になりやすく、いずれの波長においても、反射率Rが小さくなる。したがって、上記Y1の虚部の座標yと、Y2の虚部の座標yが、y×y≦0を満たすことが好ましい。さらに、|y+y|が0.8未満であることが好ましく、より好ましくは0.5以下、さらに好ましくは0.3以下である。 In addition, the admittance locus at a specific wavelength (570 nm in the present invention) is preferably line symmetric with respect to the horizontal axis of the graph. Admittance locus and is centered symmetrically on the horizontal axis of the graph, the coordinates of the equivalent admittance Y E is at a wavelength other than the specific wavelength (e.g. 450nm or 700 nm), likely to be constant, at any wavelength, reflectance R becomes smaller. Therefore, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, it is preferable to satisfy the y 1 × y 2 ≦ 0. Furthermore, | y 1 + y 2 | is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less.
 さらに、前述のyが十分に大きいことが好ましい。前述のように、透明金属層の光学アドミッタンスは虚部の値が大きく、アドミッタンス軌跡が縦軸(虚部)方向に大きく移動する。そのため、yが十分に大きければ、アドミッタンス座標の虚部の絶対値が適切な範囲に収まりやすく、アドミッタンス軌跡が線対称になりやすい。yは0.2以上であることが好ましく、より好ましくは0.3~1.5であり、さらに好ましくは0.3~1.0である。一方、前述のyは、-0.3~-2.0であることが好ましく、より好ましくは-0.6~-1.5である。 Furthermore, it is preferable that the aforementioned y 1 is sufficiently large. As described above, the value of the imaginary part of the optical admittance of the transparent metal layer is large, and the admittance locus greatly moves in the direction of the vertical axis (imaginary part). Therefore, if y 1 is sufficiently large, the absolute value of the imaginary part of the admittance coordinates is likely to be within an appropriate range, and the admittance locus is likely to be line symmetric. y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0. On the other hand, y 2 described above is preferably −0.3 to −2.0, and more preferably −0.6 to −1.5.
 一方、導通領域aの波長570nmの光の等価アドミッタンス座標(x,y)と、透明導電体の第2高屈折率層側の表面と接する部材若しくは環境(媒質)の波長570nmの光の等価アドミッタンス座標(nenv,0)との距離((x-nenv+(y0.5)は、0.5未満であることが好ましく、さらに好ましくは0.3以下である。上記距離が0.5未満であれば、導通領域aの表面の反射率Raが十分に小さくなり、導通領域aの光の透過性が高まる。 On the other hand, the equivalent admittance coordinates (x E , y E ) of light having a wavelength of 570 nm in the conduction region a and the light of wavelength 570 nm of the member or environment (medium) in contact with the surface on the second high refractive index layer side of the transparent conductor. The distance from the equivalent admittance coordinate (n env , 0) ((x E −n env ) 2 + (y E ) 2 ) 0.5 ) is preferably less than 0.5, more preferably 0.3. It is as follows. If the said distance is less than 0.5, the reflectance Ra of the surface of the conduction | electrical_connection area | region a will become small enough, and the light transmittance of the conduction | electrical_connection area | region a will increase.
 さらに、透明金属層3がパターニングされている場合には、導通領域aの波長570nmの光の等価アドミッタンス座標(x,y)と、絶縁領域bの波長570nmの光の等価アドミッタンス座標((x,y)で表す)との距離、((x-x+(y-y0.5)が0.5未満であることが好ましく、より好ましくは0.3以下である。導通領域aの等価アドミッタンスYの座標と、絶縁領域bの等価アドミッタンスYの座標とが十分に近くなると、これらのパターンが視認され難くなる。またさらに、|(xenv-x+(Yenv-y-(xenv-x+(Yenv-yE)|が0.1以下であることが好ましい。当該値を満たすと、導通領域a及び絶縁領域bがいずれも視認され難くなる。 Further, when the transparent metal layer 3 is patterned, an equivalent admittance coordinate (x E , y E ) of light with a wavelength of 570 nm in the conduction region a and an equivalent admittance coordinate (( x ( b , y b ))), ((x E −x b ) 2 + (y E −y b ) 2 ) 0.5 ) is preferably less than 0.5, more preferably 0.3 or less. The coordinates of the equivalent admittance Y E conductive region a, the coordinate of the equivalent admittance Y b of the insulating region b is sufficiently close, so these patterns are hardly visually recognized. Furthermore, it is preferable that | (x env −x b ) 2 + (Y env −y b ) 2 − (x env −x E ) 2 + (Y env −yE) 2 | If the said value is satisfy | filled, both the conduction | electrical_connection area | region a and the insulation area | region b will become difficult to visually recognize.
 ≪透明導電体の物性について≫
 本発明の透明導電体の波長400~800nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても83%以上であることが好ましく、より好ましくは85%以上であり、さらに好ましくは88%以上である。上記波長範囲における平均透過率が83%以上であると、透明導電体を、可視光に対して高い透明性が要求される用途に適用することができる。
≪Physical properties of transparent conductor≫
The average transmittance of light having a wavelength of 400 to 800 nm of the transparent conductor of the present invention is preferably 83% or more, more preferably 85% or more, and still more preferably in both the conduction region a and the insulation region b. Is 88% or more. When the average transmittance in the above wavelength range is 83% or more, the transparent conductor can be applied to applications requiring high transparency to visible light.
 一方、透明導電体の波長400~1000nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても80%以上であることが好ましく、より好ましくは83%以上、さらに好ましくは85%以上である。波長400~1000nmの光の平均透過率が80%以上であると、広い波長範囲の光に対して透明性が要求される用途、例えば太陽電池用の透明導電膜等にも透明導電体を適用することができる。 On the other hand, the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor is preferably 80% or more in both the conduction region a and the insulation region b, more preferably 83% or more, and still more preferably 85%. That's it. When the average transmittance of light having a wavelength of 400 to 1000 nm is 80% or more, the transparent conductor is also applied to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. can do.
 一方、透明導電体の波長400~800nmの光の平均吸収率は、導通領域a及び絶縁領域bのいずれにおいても10%以下であることが好ましく、より好ましくは8%以下であり、さらに好ましくは7%以下である。また、透明導電体の波長400~800nmの光の吸収率の最大値は、導通領域a及び絶縁領域bのいずれにおいても15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは9%以下である。一方、透明導電体の波長500~700nmの光の平均反射率は、導通領域a及び絶縁領域bのいずれにおいても、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の平均吸収率及び平均反射率が低いほど、前述の平均透過率が高まる。 On the other hand, the average absorptance of light having a wavelength of 400 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and even more preferably in both the conduction region a and the insulation region b. 7% or less. In addition, the maximum value of the light absorptance of the transparent conductor having a wavelength of 400 to 800 nm is preferably 15% or less, more preferably 10% or less, both in the conduction region a and the insulation region b. Preferably it is 9% or less. On the other hand, the average reflectance of light having a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less. The lower the average absorptance and average reflectance of the transparent conductor, the higher the aforementioned average transmittance.
 上記平均透過率及び平均反射率は、透明導電体の使用環境下での透過率及び反射率であることが好ましい。具体的には、透明導電体が有機樹脂と貼り合わせて使用される場合には、透明導電体上に有機樹脂からなる層を配置して透過率及び反射率を測定することが好ましい。一方、透明導電体が大気中で使用される場合には、大気中での透過率及び反射率を測定することが好ましい。透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を入射させて分光光度計で測定する。吸収率は、100-(透過率+反射率)の計算式より算出される。 The average transmittance and the average reflectance are preferably the transmittance and the reflectance under the usage environment of the transparent conductor. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the transmittance and the reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the transmittance and reflectance in the air. The transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The absorptance is calculated from a calculation formula of 100− (transmittance + reflectance).
 また透明導電体10に導通領域a及び絶縁領域bが含まれる場合、導通領域aの反射率及び絶縁領域bの反射率がそれぞれ近似することが好ましい。具体的には、導通領域aの視感反射率と、絶縁領域bの視感反射率との差ΔRが5%以下であることが好ましく、3%以下であることがより好ましく、さらに好ましくは1%以下であり、特に好ましくは0.3%以下である。一方、導通領域a及び絶縁領域bの視感反射率は、それぞれ5%以下であることが好ましく、より好ましくは3%以下であり、さらに好ましくは1%以下である。視感反射率は、分光光度計(U4100;日立ハイテクノロジーズ社製)で測定されるY値である。 When the transparent conductor 10 includes the conduction region a and the insulation region b, it is preferable that the reflectance of the conduction region a and the reflectance of the insulation region b are approximated. Specifically, the difference ΔR between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less. On the other hand, the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less. The luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
 また透明導電体10に導通領域a及び絶縁領域bが含まれる場合、いずれの領域においても、L表色系におけるa値及びb値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L表色系におけるa値及びb値が±30以内であれば、導通領域a及び絶縁領域bのいずれの領域も無色透明に観察される。L表色系におけるa値及びb値は、分光光度計で測定される。 When the transparent conductor 10 includes the conduction region a and the insulation region b, the a * value and the b * value in the L * a * b * color system are preferably within ± 30 in any region. More preferably, it is within ± 5, more preferably within ± 3.0, and particularly preferably within ± 2.0. If the a * value and the b * value in the L * a * b * color system are within ± 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の導通領域aの表面電気抵抗は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。導通領域の表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。導通領域aの表面電気抵抗値は、透明金属層の厚さ等によって調整される。導通領域aの表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。 The surface electric resistance of the conductive region a of the transparent conductor is preferably 50Ω / □ or less, more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50 Ω / □ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like. The surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, or the like. It is also measured by a commercially available surface electrical resistivity meter.
 ≪透明導電体の用途≫
 前述の透明導電体は、液晶、プラズマ、有機エレクトロルミネッセンス及びフィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池及び各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
≪Use of transparent conductor≫
The transparent conductors described above are used in various optoelectronic devices such as liquid crystal, plasma, organic electroluminescence, field emission, and other types of displays, as well as touch panels, mobile phones, electronic paper, various solar cells, and various electroluminescence dimming elements. It can be preferably used for a substrate or the like.
 このとき、透明導電体の表面(例えば、透明基板と反対側の表面)は、接着層等を介して、他の部材と貼り合わせられてもよい。この場合には、前述のように、透明導電体の表面の等価アドミッタンス座標と、接着層のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と接着層との界面での反射が抑制される。 At this time, the surface of the transparent conductor (for example, the surface opposite to the transparent substrate) may be bonded to another member via an adhesive layer or the like. In this case, as described above, it is preferable that the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer approximate each other. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
 一方、透明導電体の表面が空気と接するような構成で使用される場合には、透明導電体の表面のアドミッタンス座標と、空気のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と空気との界面での光の反射が抑制される。 On the other hand, when used in a configuration in which the surface of the transparent conductor is in contact with air, it is preferable that the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
 なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 Note that embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.
 例えば、広帯域反射防止する目的で、透明金属層の上下層の少なくとも一方に高屈折率材料(波長570nmの光に対する屈折率が1.8以上)を用いてもよい。これにより、可視光(450~700nm)の範囲をほぼ均一で、かつ80%以上の透過率に保つことができる。ただし、この場合の透明金属層の厚さは5~20nmであることが望ましい。
 透明金属層の厚さが5nm以上であると、プラズモン吸収が顕著に増大することを回避でき、人工的に初期成長核を施した上で透明金属層の形成を行い、かつ低温で透明金属層を形成しても充分な透過率を得ることが容易となる。また、透明金属層の厚さが20nm以下であると、実用的な反射率の低減が可能であり、充分な反射防止機能を保つことが容易となる。
 望ましくは波長570nmの光に対する屈折率が1.8以上であることであるが、低屈折率、高屈折率を交互に組み合わせることで、どちらか一方の透明金属層の界面におけるアドミッタンス(Y=x+iy、Y=x+iy)を、x>1.5又はx>1.5になるように調整してもよい。
るように調整してもよい。
For example, for the purpose of preventing broadband reflection, a high refractive index material (with a refractive index of 1.8 or more for light having a wavelength of 570 nm) may be used for at least one of the upper and lower layers of the transparent metal layer. As a result, the visible light (450 to 700 nm) range can be kept substantially uniform and the transmittance can be maintained at 80% or more. However, the thickness of the transparent metal layer in this case is preferably 5 to 20 nm.
When the thickness of the transparent metal layer is 5 nm or more, it is possible to avoid a significant increase in plasmon absorption, and after forming an initial growth nucleus artificially, the transparent metal layer is formed at a low temperature. Even if it is formed, it becomes easy to obtain a sufficient transmittance. Further, when the thickness of the transparent metal layer is 20 nm or less, practical reflectance can be reduced, and it becomes easy to maintain a sufficient antireflection function.
Desirably, the refractive index for light having a wavelength of 570 nm is 1.8 or more, but by alternately combining a low refractive index and a high refractive index, the admittance (Y = x at the interface of one of the transparent metal layers). 1 + iy 1 , Y = x 2 + iy 2 ) may be adjusted so that x 1 > 1.5 or x 2 > 1.5.
You may adjust so that.
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
 本実施例では、図4に示す様なロールtoロール法によって実施例1~18及び比較例1の透明導電体を作製した。なお、各透明導電体の作製において、積層構成、透明金属層を形成するときの速度及び透明基板の温度、形成方式(蒸着法又はスパッタ法)は、表1に記載のとおりである。
 なお、各層を形成する際における透明基板の温度は、事前にサーモラベルで確認し、調節した。また、透明金属層を形成する際の形成速度については、あらかじめ形成時間と透明金属層の厚さとの関係を検量することで算出した。
 また、以下に示す屈折率は、全て温度25℃における値である。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
In this example, transparent conductors of Examples 1 to 18 and Comparative Example 1 were produced by a roll-to-roll method as shown in FIG. In the production of each transparent conductor, the laminated structure, the speed when forming the transparent metal layer, the temperature of the transparent substrate, and the formation method (evaporation method or sputtering method) are as shown in Table 1.
In addition, the temperature of the transparent substrate at the time of forming each layer was confirmed and adjusted in advance with a thermo label. Moreover, the formation speed when forming the transparent metal layer was calculated by calibrating the relationship between the formation time and the thickness of the transparent metal layer in advance.
Further, the refractive indexes shown below are all values at a temperature of 25 ° C.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [実施例1]
 シクロオレフィンポリマー(COP)上(透明基板、波長570nmの光に対する屈折率は1.52)に、下記の層を積層して実施例1の透明導電体を作製した。
 なお、各層の形成は、透明基板の温度を30~35℃に保って行った。
[Example 1]
A transparent conductor of Example 1 was produced by laminating the following layers on a cycloolefin polymer (COP) (transparent substrate, refractive index with respect to light having a wavelength of 570 nm: 1.52).
Each layer was formed by keeping the temperature of the transparent substrate at 30 to 35 ° C.
 (第1高屈折率層の形成)
 厚さ70μmのCOPの片面に、シンクロン製BMC-800T蒸着機を用いて、抵抗加熱でZnS-SiOからなる第1高屈折率層を40nmの厚さに形成した。このときの投入電流値は210A、形成速度は0.5nm/s(5Å/s)とした。
 なお、ZnSとSiOとの比率(モル比)は、80:20であり、第1高屈折率層の波長570nmの光に対する屈折率は2.14であった。
(Formation of the first high refractive index layer)
A first high refractive index layer made of ZnS—SiO 2 was formed to a thickness of 40 nm on one side of a COP having a thickness of 70 μm by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The input current value at this time was 210 A, and the formation rate was 0.5 nm / s (5 Å / s).
The ratio (molar ratio) between ZnS and SiO 2 was 80:20, and the refractive index of the first high refractive index layer with respect to light having a wavelength of 570 nm was 2.14.
 (第1硫化防止層の形成)
 第1高屈折率層上に、シンクロン製BMC-800T蒸着機を用いて、抵抗加熱でZnOからなる第1硫化防止層を1nmの厚さに形成した。このときの投入電流値は210A、形成速度は0.5nm/s(5Å/s)とした。
(Formation of first antisulfurization layer)
On the first high refractive index layer, a first anti-sulfurization layer made of ZnO was formed to a thickness of 1 nm by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The input current value at this time was 210 A, and the formation rate was 0.5 nm / s (5 Å / s).
 (透明金属層の形成)
 第1硫化防止層上に、シンクロン製BMC-800T蒸着機を用いて、抵抗加熱でAgからなる透明金属層を7nmの厚さに形成した。このときの投入電流値は210A、形成速度は1.2nm/s(12Å/s)とした。
(Formation of transparent metal layer)
On the first sulfidation prevention layer, a transparent metal layer made of Ag was formed to a thickness of 7 nm by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The input current value at this time was 210 A, and the formation rate was 1.2 nm / s (12 Å / s).
 (第2硫化防止層の形成)
 透明金属層上に、シンクロン製BMC-800T蒸着機を用いて、抵抗加熱でZnOからなる第2硫化防止層を1nmの厚さに形成した。このときの投入電流値は210A、形成速度は0.5nm/s(5Å/s)とした。
(Formation of second sulfurization prevention layer)
On the transparent metal layer, a second anti-sulfurization layer made of ZnO was formed to a thickness of 1 nm by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The input current value at this time was 210 A, and the formation rate was 0.5 nm / s (5 Å / s).
 (第2高屈折率層の形成)
 第2硫化防止層上に、シンクロン製BMC-800T蒸着機を用いて、抵抗加熱でZnS-SiOからなる第2高屈折率層を40nmの厚さに形成した。このときの投入電流値は210A、形成速度は0.5nm/s(5Å/s)とした。なお、波長570nmの光に対する屈折率は、第1高屈折率層と同値である。
(Formation of second high refractive index layer)
On the second sulfurization preventive layer, a second high refractive index layer made of ZnS—SiO 2 was formed to a thickness of 40 nm by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The input current value at this time was 210 A, and the formation rate was 0.5 nm / s (5 Å / s). In addition, the refractive index with respect to the light of wavelength 570nm is the same value as a 1st high refractive index layer.
 [実施例2及び実施例3]
 各層を形成する際の透明基板の温度を表1に記載のようにしたほかは、実施例1の透明導電体と同様にして、実施例2及び実施例3の透明導電体を作製した。なお、第1高屈折率層及び第2高屈折率層の波長570nmの光に対する屈折率は、実施例1と同値である。
[Example 2 and Example 3]
The transparent conductors of Example 2 and Example 3 were produced in the same manner as the transparent conductor of Example 1, except that the temperature of the transparent substrate when forming each layer was as shown in Table 1. In addition, the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1. FIG.
 [実施例4]
 透明基板としてポリエチレンテレフタレート(PET、波長570nmの光に対する屈折率は1.64)を使用し、このPET上に、下記の層を積層して実施例4の透明導電体を作製した。
 なお、各層の形成は、アネルバ社製のSPW-060を用い、透明基板の温度を35~40℃に保って、厚さ70μmのPETの片面に行った。
[Example 4]
Polyethylene terephthalate (PET, refractive index with respect to light having a wavelength of 570 nm was 1.64) was used as a transparent substrate, and the following layers were laminated on this PET to produce a transparent conductor of Example 4.
Each layer was formed on one side of PET having a thickness of 70 μm using SPW-060 manufactured by Anerva Co., Ltd. while maintaining the temperature of the transparent substrate at 35 to 40 ° C.
 (第1高屈折率層の形成)
 まず、スパッタ装置の真空チャンバーを1×10-3Paの高真空まで排気した。その後、スパッタガスとしてArを用いスパッタ圧を0.3Paとし、室温下、ターゲット側電力1.85W/cm、形成速度0.2nm/s(2.0Å/s)でZnS-SiOをDCスパッタし、第1高屈折率層を厚さ40nmで形成した。ターゲット-基板間距離は86mmであった。なお、第1高屈折率層の波長570nmの光に対する屈折率は、実施例1と同値である。
(Formation of the first high refractive index layer)
First, the vacuum chamber of the sputtering apparatus was evacuated to a high vacuum of 1 × 10 −3 Pa. Thereafter, the sputtering pressure using Ar as a sputtering gas was 0.3 Pa, at room temperature, the target-side power 1.85 W / cm 2, the formation rate of 0.2nm / s (2.0Å / s) the ZnS-SiO 2 DC Sputtering was performed to form a first high refractive index layer with a thickness of 40 nm. The target-substrate distance was 86 mm. Note that the refractive index of the first high-refractive-index layer with respect to light having a wavelength of 570 nm is the same value as in Example 1.
 (透明金属層の形成)
 次に、第1高屈折率層上に、スパッタガスとしてArを用いスパッタ圧を0.5Paとし、室温下、ターゲット側電力1.85W/cm、形成速度1.2nm/s(12Å/s)でAgをDCスパッタし、透明金属層を厚さ7nmで形成した。ターゲット-基板間距離は90mmであった。
(Formation of transparent metal layer)
Next, on the first high refractive index layer, Ar is used as the sputtering gas, the sputtering pressure is 0.5 Pa, the target side power is 1.85 W / cm 2 , and the formation rate is 1.2 nm / s (12 Å / s) at room temperature. ) Ag was DC sputtered to form a transparent metal layer with a thickness of 7 nm. The target-substrate distance was 90 mm.
 (第2硫化防止層の形成)
 透明金属層上に、スパッタガスとしてArを用いスパッタ圧を0.1Paとし、室温下、ターゲット側電力1.85W/cm、形成速度0.11nm/s(1.1Å/s)でZnOをDCスパッタし、第2硫化防止層を厚さ0.5nmで形成した。ターゲット-基板間距離は90mmであった。
(Formation of second sulfurization prevention layer)
On the transparent metal layer, Ar is used as the sputtering gas and the sputtering pressure is 0.1 Pa. At room temperature, ZnO is formed at a target side power of 1.85 W / cm 2 and a formation rate of 0.11 nm / s (1.1 Å / s). DC sputtering was performed to form a second antisulfurization layer with a thickness of 0.5 nm. The target-substrate distance was 90 mm.
 (第2高屈折率層の形成)
 第2硫化防止層上に、スパッタガスとしてArを用いスパッタ圧を0.3Paとし、室温下、ターゲット側電力1.85W/cm、形成速度0.2nm/s(2.0Å/s)でZnS-SiOをDCスパッタし、第2高屈折率層を厚さ40nmで形成した。ターゲット-基板間距離は86mmであった。なお、第2高屈折率層の波長570nmの光に対する屈折率は、実施例1と同値である。
(Formation of second high refractive index layer)
On the second sulfidation prevention layer, Ar is used as a sputtering gas, the sputtering pressure is 0.3 Pa, the target side power is 1.85 W / cm 2 , and the formation rate is 0.2 nm / s (2.0 Å / s) at room temperature. ZnS—SiO 2 was DC sputtered to form a second high refractive index layer with a thickness of 40 nm. The target-substrate distance was 86 mm. Note that the refractive index of the second high-refractive-index layer with respect to light having a wavelength of 570 nm is the same value as in Example 1.
 [実施例5及び実施例6]
 透明金属層の形成速度を表2に記載のようになるようターゲット側電力を調整したほかは、実施例4と同様にして、実施例5及び実施例6の透明導電体を作製した。なお、第1高屈折率層及び第2高屈折率層の波長570nmの光に対する屈折率は、実施例1と同値である。
[Example 5 and Example 6]
Transparent conductors of Examples 5 and 6 were produced in the same manner as in Example 4 except that the target-side power was adjusted so that the formation speed of the transparent metal layer was as shown in Table 2. In addition, the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1. FIG.
 [実施例7]
 第1硫化防止層は形成せず、透明基板としてガラスフィルム(透明基板、波長570nmの光に対する屈折率は1.52)、第1高屈折率層及び第2高屈折率層としてZnS-TiO、透明金属層としてAg合金(Ag中にAuが1.5原子%、Cuが0.5原子%含まれる合金)、第2硫化防止層としてIGZOを使用し、各層の厚さ及び各層を形成する際の透明基板の温度を表1のようにしたほかは、実施例1と同様にして実施例7の透明導電体を作製した。
 なお、ZnS-TiOにおけるZnSとTiOとの比率(モル比)は、80:20であり、第1高屈折率層及び第2高屈折率層の屈折率は2.18であった。
[Example 7]
The first sulfidation prevention layer is not formed, and a glass film (transparent substrate with a refractive index of 1.52 for light having a wavelength of 570 nm) as a transparent substrate, ZnS—TiO 2 as a first high refractive index layer and a second high refractive index layer. , Ag alloy (alloy containing 1.5 atomic% of Au and 0.5 atomic% of Cu in Ag) as the transparent metal layer, and IGZO as the second anti-sulfurization layer, forming the thickness and each layer A transparent conductor of Example 7 was produced in the same manner as in Example 1 except that the temperature of the transparent substrate was changed as shown in Table 1.
The ratio of ZnS and TiO 2 in the ZnS-TiO 2 (molar ratio), 80: a 20, the refractive index of the first high refractive index layer and the second high refractive index layer was 2.18.
 [実施例8]
 第2硫化防止層は形成せず第1硫化防止層を下記のようにして形成し、透明基板として厚さ70μmのセルローストリアセテート(TAC、波長570nmの光に対する屈折率は1.49)、第1高屈折率層としてZnS-ZnO、透明金属層としてAg合金(Ag中にAuが1.5原子%、Cuが0.5原子%含まれる合金)及び第2高屈折率層としてIGZOを使用し、各層の厚さ及び各層を形成する際の透明基板の温度を表1のようにしたほかは、実施例4と同様にして実施例8の透明導電体を作製した。
 なお、ZnS-ZnOにおけるZnSとZnOとの比率(モル比)は、80:20であり、第1高屈折率層の波長570nmの光に対する屈折率は2.16であった。また、第2高屈折率層の波長570nmの光に対する屈折率は2.09であった。
[Example 8]
The second antisulfurizing layer is not formed, and the first antisulfurizing layer is formed as follows, and a cellulose triacetate having a thickness of 70 μm (TAC, refractive index with respect to light having a wavelength of 570 nm is 1.49) as a transparent substrate, ZnS—ZnO is used as the high refractive index layer, Ag alloy (alloy containing 1.5 atomic% of Au and 0.5 atomic% of Cu in Ag) is used as the transparent metal layer, and IGZO is used as the second high refractive index layer. A transparent conductor of Example 8 was produced in the same manner as in Example 4 except that the thickness of each layer and the temperature of the transparent substrate when forming each layer were as shown in Table 1.
The ratio (molar ratio) between ZnS and ZnO in ZnS—ZnO was 80:20, and the refractive index of the first high refractive index layer with respect to light having a wavelength of 570 nm was 2.16. The refractive index of the second high refractive index layer with respect to light having a wavelength of 570 nm was 2.09.
 (第1硫化防止層の形成)
 第1高屈折率層上に、スパッタガスとしてArを用いスパッタ圧を0.1Paとし、室温下、ターゲット側電力1.85W/cm、形成速度0.11nm/s(1.1Å/s)でZnOをDCスパッタすることで、TACの片面に、第1硫化防止層を厚さ1nmで形成した。ターゲット-基板間距離は90mmであった。
(Formation of first antisulfurization layer)
On the first high refractive index layer, Ar is used as the sputtering gas, the sputtering pressure is 0.1 Pa, the target side power is 1.85 W / cm 2 , and the formation speed is 0.11 nm / s (1.1 Å / s) at room temperature. Then, ZnO was DC sputtered to form a first sulfidation preventing layer with a thickness of 1 nm on one side of the TAC. The target-substrate distance was 90 mm.
 [実施例9]
 透明基板として厚さ70μmのポリカーボネートフィルム(PC、波長570nmの光に対する屈折率は1.59)、第1高屈折率層としてZnS-Ga並びに第1硫化防止層及び第2高屈折率層としてGZOを使用し、各層の厚さを表1のようにしたほかは、実施例8と同様にして実施例9の透明導電体を作製した。
 なお、ZnS-GaにおけるZnSとGaとの比率(モル比)は、80:20であり、第1高屈折率層の波長570nmの光に対する屈折率は2.17であった。また、第2高屈折率層の波長570nmの光に対する屈折率は2.08であった。
[Example 9]
Polycarbonate film having a thickness of 70 μm as a transparent substrate (PC, refractive index of 1.59 with respect to light having a wavelength of 570 nm), ZnS—Ga 2 O 3 as a first high refractive index layer, a first antisulfurization layer, and a second high refractive index A transparent conductor of Example 9 was produced in the same manner as Example 8 except that GZO was used as a layer and the thickness of each layer was as shown in Table 1.
The ratio of ZnS and Ga 2 O 3 in the ZnS-Ga 2 O 3 (molar ratio), 80: a 20, the refractive index for light of wavelength 570nm of the first high refractive index layer is 2.17 met It was. The refractive index of the second high refractive index layer with respect to light having a wavelength of 570 nm was 2.08.
 [実施例10]
 透明金属層を形成する際のスパッタガスをクリプトン(Kr)としたほかは、実施例4と同様にして実施例10の透明導電体を作製した。なお、第1高屈折率層及び第2高屈折率層の波長570nmの光に対する屈折率は、実施例1と同値である。
[Example 10]
A transparent conductor of Example 10 was produced in the same manner as in Example 4 except that the sputtering gas for forming the transparent metal layer was krypton (Kr). In addition, the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1. FIG.
 [実施例11]
 透明金属層を形成する際の形成速度が0.1nm/s(1Å/s)になるようターゲット側電力を調整したほかは、実施例4と同様にして実施例11の透明導電体を作製した。なお、第1高屈折率層及び第2高屈折率層の波長570nmの光に対する屈折率は、実施例1と同値である。
[Example 11]
A transparent conductor of Example 11 was produced in the same manner as in Example 4 except that the target-side power was adjusted so that the formation speed when forming the transparent metal layer was 0.1 nm / s (1 Å / s). . In addition, the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1. FIG.
 [実施例12]
 第2硫化防止層を、酸素ガスを導入した雰囲気条件の下で形成した。具体的には、当該第2硫化防止層を形成する際のスパッタガスとしてAr及びO(流量比Ar:O=10:1)を投入しスパッタ圧を0.1Paとし、第2硫化防止層としてZnOのかわりにITOをDCスパッタして10nmの厚さの層を形成したほかは、実施例4と同様にして実施例12の透明導電体を作製した。なお、第1高屈折率層及び第2高屈折率層の波長570nmの光に対する屈折率は、実施例1と同値である。
[Example 12]
The second antisulfurization layer was formed under atmospheric conditions into which oxygen gas was introduced. Specifically, Ar and O 2 (flow rate ratio: Ar: O 2 = 10: 1) are used as the sputtering gas for forming the second sulfidation prevention layer, the sputtering pressure is set to 0.1 Pa, and the second sulfidation prevention is performed. A transparent conductor of Example 12 was produced in the same manner as Example 4 except that ITO was DC sputtered instead of ZnO to form a 10 nm thick layer. In addition, the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1. FIG.
 [実施例13]
 各層を形成する際の透明基板の温度を表1に記載のようにしたほかは、実施例1の透明導電体と同様にして、実施例13の透明導電体を作製した。なお、第1高屈折率層及び第2高屈折率層の波長570nmの光に対する屈折率は、実施例1と同値である。
[Example 13]
A transparent conductor of Example 13 was produced in the same manner as the transparent conductor of Example 1, except that the temperature of the transparent substrate when forming each layer was as shown in Table 1. In addition, the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1. FIG.
 [実施例14]
 透明金属層の形成速度を表1に記載のようになるようターゲット側電力を調整したほかは、実施例4と同様にして、実施例14の透明導電体を作製した。なお、第1高屈折率層及び第2高屈折率層の波長570nmの光に対する屈折率は、実施例1と同値である。
[Example 14]
A transparent conductor of Example 14 was produced in the same manner as Example 4 except that the target-side power was adjusted so that the formation speed of the transparent metal layer was as shown in Table 1. In addition, the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1. FIG.
 [実施例15]
 透明基板としてPETを使用し、各層の形成をFTSコーポレーション社の対向ターゲット式スパッタ装置を用いて形成したほかは、実施例4と同様にして、実施例15の透明導電体を作製した。なお、第1高屈折率層及び第2高屈折率層の波長570nmの光に対する屈折率は、実施例1と同値である。
[Example 15]
A transparent conductor of Example 15 was produced in the same manner as in Example 4 except that PET was used as the transparent substrate and each layer was formed using an opposed target sputtering apparatus manufactured by FTS Corporation. In addition, the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1. FIG.
 [実施例16]
 第1硫化防止層は形成せず、透明基板として株式会社きもと製のクリアハードコート付きポリエチレンテレフタレートフィルムG1SBF(表1では「PET/CHC」と称する。波長570nmの光に対する屈折率は1.59)を厚さ70μm、第1高屈折率層及び第2高屈折率層としてZnS、第2硫化防止層としてGZOを使用し、各層の厚さ及び各層を形成する際の透明基板の温度を表1のようにしたほかは、実施例1と同様にして実施例16の透明導電体を作製した。
 なお、第1高屈折率層及び第2高屈折率層の屈折率は2.34であった。
[Example 16]
The first anti-sulfurization layer is not formed, and a transparent hard-coated polyethylene terephthalate film G1SBF manufactured by Kimoto Co., Ltd. (referred to as “PET / CHC” in Table 1. The refractive index for light having a wavelength of 570 nm is 1.59). 70 μm thick, ZnS as the first high refractive index layer and the second high refractive index layer, and GZO as the second antisulfurization layer, and the thickness of each layer and the temperature of the transparent substrate when forming each layer are shown in Table 1. A transparent conductor of Example 16 was produced in the same manner as in Example 1 except that the above was performed.
The refractive index of the first high refractive index layer and the second high refractive index layer was 2.34.
 [実施例17]
 第1硫化防止層は形成せず、透明基板として厚さ70μmの上記PET/CHC、第2硫化防止層としてGZOを使用し、各層の厚さ及び各層を形成する際の透明基板の温度を表1のようにしたほかは、実施例1と同様にして実施例17の透明導電体を作製した。
 なお、第1高屈折率層及び第2高屈折率層の屈折率は、実施例1と同値である。
[Example 17]
The first anti-sulfurization layer is not formed, the above PET / CHC having a thickness of 70 μm is used as the transparent substrate, and GZO is used as the second anti-sulfur layer, and the thickness of each layer and the temperature of the transparent substrate when forming each layer are expressed. A transparent conductor of Example 17 was produced in the same manner as in Example 1 except that the procedure was as described in Example 1.
The refractive indexes of the first high refractive index layer and the second high refractive index layer are the same as those in Example 1.
 [実施例18]
 第1硫化防止層を下記のようにして形成し、透明基板として厚さ70μmの上記PET/CHC、第1高屈折率層としてZnS、第2硫化防止層としてGZO及び第2高屈折率層としてITOを使用し、各層の厚さ及び各層を形成する際の透明基板の温度を表1のようにしたほかは、実施例4と同様にして実施例18の透明導電体を作製した。
 なお、第2高屈折率層の波長570nmの光に対する屈折率は2.10であった。
[Example 18]
The first anti-sulfurization layer is formed as follows, the above PET / CHC having a thickness of 70 μm as a transparent substrate, ZnS as the first high-refractive index layer, GZO as the second anti-sulfur layer, and the second high-refractive index layer A transparent conductor of Example 18 was produced in the same manner as in Example 4 except that ITO was used and the thickness of each layer and the temperature of the transparent substrate when forming each layer were as shown in Table 1.
In addition, the refractive index with respect to the light of wavelength 570nm of a 2nd high refractive index layer was 2.10.
 (第1硫化防止層の形成)
 第1高屈折率層上に、スパッタガスとしてArを用いスパッタ圧を0.1Paとし、室温下、ターゲット側電力1.85W/cm、形成速度0.11nm/s(1.1Å/s)でGZOをDCスパッタし、第1硫化防止層を厚さ1nmで形成した。ターゲット-基板間距離は90mmであった。
(Formation of first antisulfurization layer)
On the first high refractive index layer, Ar is used as the sputtering gas, the sputtering pressure is 0.1 Pa, the target side power is 1.85 W / cm 2 , and the formation speed is 0.11 nm / s (1.1 Å / s) at room temperature. GZO was DC sputtered to form a first anti-sulfuration layer with a thickness of 1 nm. The target-substrate distance was 90 mm.
 [比較例1]
 各層を形成する際の透明基板の温度を表1に記載のようにしたほかは、実施例1と同様にして比較例1の透明導電体を作製した。なお、第1高屈折率層及び第2高屈折率層の波長570nmの光に対する屈折率は、実施例1と同値である。
[Comparative Example 1]
A transparent conductor of Comparative Example 1 was produced in the same manner as in Example 1 except that the temperature of the transparent substrate when forming each layer was as shown in Table 1. In addition, the refractive index with respect to the light of wavelength 570nm of a 1st high refractive index layer and a 2nd high refractive index layer is the same value as Example 1. FIG.
 (光の透過率、光の吸収率の測定)
 上記作製した各透明導電体について、以下のように光の透過率及び光の吸収率を測定した。
 各実施例で得られた透明導電体の第2高屈折率層側の表面に、マッチングオイル(ニコン社製 屈折率=1.52)を塗布した。そして、透明導電体とコーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm)とを貼り合わせた。そして、無アルカリガラス基板側から、透明導電体の透過率及び反射率を測定した。このとき、無アルカリガラス基板の表面の法線に対して、5°傾けた角度から、導通領域に測定光(例えば、波長400~800nmの光)を入射させ、日立ハイテクノロジーズ社製:分光光度計 U4100にて、光の透過率及び反射率を測定した。そして、光の吸収率は、100-(透過率+反射率)の計算式より算出した。結果を表2に示す。
 なお、表2の透過率は空気-無アルカリガラスの界面で損失する表面反射率、及び透明導電体基材-空気の界面で損失する表面反射率を差し引いた透過率(内部透過率に相当する。)の値を記載した。
(Measurement of light transmittance and light absorption)
About each produced said transparent conductor, the light transmittance and the light absorptivity were measured as follows.
Matching oil (refractive index = 1.52 manufactured by Nikon Corporation) was applied to the surface of the transparent conductor obtained in each example on the second high refractive index layer side. Then, a transparent conductor and a non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm) manufactured by Corning) were bonded together, and the transmittance and reflection of the transparent conductor from the alkali-free glass substrate side. At this time, the measurement light (for example, light having a wavelength of 400 to 800 nm) was incident on the conduction region from an angle inclined by 5 ° with respect to the normal of the surface of the alkali-free glass substrate, and Hitachi High Technologies The light transmittance and reflectance were measured with a spectrophotometer U4100, and the light absorptance was calculated from the calculation formula of 100− (transmittance + reflectance). Show.
The transmittance in Table 2 is the transmittance obtained by subtracting the surface reflectance lost at the air-alkali glass interface and the surface reflectance lost at the transparent conductor substrate-air interface (corresponding to the internal transmittance). .) Values are listed.
 (シート抵抗値の測定)
 上記作製した各透明導電体について、抵抗率計(三菱化学アナリテック社製ロレスタEP MCP-T360)を用い、4端子4探針法定電流印加方式でシート抵抗値(Ω/□)の測定を行った。結果を表2に示す。
(Measurement of sheet resistance)
Using the resistivity meter (Loresta EP MCP-T360, manufactured by Mitsubishi Chemical Analytech Co., Ltd.), the sheet resistance value (Ω / □) was measured for each of the produced transparent conductors using the 4-terminal 4-probe method constant current application method. It was. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (まとめ)
 表2に示されるように、各実施例の透明導電体は、透過率が80%以上、光の吸収率が15%以下、シート抵抗値は、25Ω/□以下であり、いずれも比較例1の透明導電体よりも良好である。
 特に、透明金属層の形成速度が0.3nm/s(3Å/s)以上である実施例1~実施例10及び実施例12~実施例18は、光の吸収率が10%以下、シート抵抗値は20Ω/□以下であり、実施例11に比べ、さらに良好になることが示された。
(Summary)
As shown in Table 2, the transparent conductor of each example has a transmittance of 80% or more, a light absorption of 15% or less, and a sheet resistance value of 25Ω / □ or less. It is better than the transparent conductor.
In particular, Examples 1 to 10 and Examples 12 to 18 in which the formation rate of the transparent metal layer is 0.3 nm / s (3 Å / s) or more have a light absorption rate of 10% or less, a sheet resistance The value was 20Ω / □ or less, which was further improved as compared with Example 11.
 また、透明基板の温度又は形成速度と光の吸収率との関係を図8及び図9に示した。
 図8は、透明金属層を形成する際の透明基板の温度と光の吸収率との関係を示すグラフである。
 図9は、透明金属層を形成する際の形成速度と光の吸収率とを示すグラフである。
 上述の結果より、本発明の透明導電体は、良好な光の吸収率を得られることが示された。
 また、図8の結果から、本発明の透明導電体の製造方法において、透明基板の温度は、65℃以下に保ちながら、透明金属層を形成するのであれば、当該透明基板の温度は低いほど透明導電体の光の吸収率が良好になることが推察される。
 さらに、図9の結果から、本発明の透明導電体の製造方法において、透明金属層を形成する際の形成速度は、大きいほど、透明導電体の光の吸収率が良好になることが推察される。
8 and 9 show the relationship between the temperature or the formation speed of the transparent substrate and the light absorption rate.
FIG. 8 is a graph showing the relationship between the temperature of the transparent substrate and the light absorption rate when forming the transparent metal layer.
FIG. 9 is a graph showing the formation speed and the light absorption rate when forming the transparent metal layer.
From the above results, it was shown that the transparent conductor of the present invention can obtain a good light absorption rate.
Moreover, from the result of FIG. 8, in the method for producing a transparent conductor according to the present invention, if the transparent metal layer is formed while keeping the temperature of the transparent substrate at 65 ° C. or lower, the lower the temperature of the transparent substrate, the lower the temperature of the transparent substrate. It is assumed that the light absorption rate of the transparent conductor is improved.
Furthermore, from the result of FIG. 9, it is surmised that in the method for producing a transparent conductor of the present invention, the light absorption rate of the transparent conductor becomes better as the formation speed when forming the transparent metal layer is larger. The
 以上のように、本発明は、光の吸収が低減し、可視光領域の光の反射が防止され、低抵抗な透明導電体を製造する方法及び透明導電体を提供することに適している。 As described above, the present invention is suitable for providing a method and a transparent conductor for manufacturing a low-resistance transparent conductor in which light absorption is reduced and reflection of light in the visible light region is prevented.
 1 透明基板
 2 第1高屈折率層(硫化亜鉛含有層)
 3 透明金属層
 4 第2高屈折率層(硫化亜鉛含有層)
 5 硫化防止層
 5a 第1硫化防止層
 5b 第2硫化防止層
 10 透明導電体
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 1st high refractive index layer (zinc sulfide content layer)
3 Transparent metal layer 4 Second high refractive index layer (zinc sulfide-containing layer)
DESCRIPTION OF SYMBOLS 5 Antisulfation layer 5a 1st antisulfation layer 5b 2nd antisulfation layer 10 Transparent conductor

Claims (8)

  1.  少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層とをこの順に有する透明導電体をロールtoロール法により製造する透明導電体の製造方法であって、
     前記透明基板の温度を65℃以下に保ちながら、前記透明金属層を形成する工程を有することを特徴とする透明導電体の製造方法。
    A transparent conductor manufacturing method for manufacturing a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order by a roll-to-roll method,
    A method for producing a transparent conductor, comprising the step of forming the transparent metal layer while maintaining the temperature of the transparent substrate at 65 ° C. or lower.
  2.  波長570nmの光に対して、前記透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を含有し、かつ、前記第1高屈折率層及び前記第2高屈折率層のいずれか一方の層を硫化亜鉛(ZnS)を含有する硫化亜鉛含有層として、前記第1高屈折率層及び前記第2高屈折率層を形成する工程をさらに有することを特徴とする請求項1に記載の透明導電体の製造方法。 A dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm, and one of the first high refractive index layer and the second high refractive index layer 2. The method according to claim 1, further comprising forming the first high refractive index layer and the second high refractive index layer as a zinc sulfide-containing layer containing zinc sulfide (ZnS). A method for producing a transparent conductor.
  3.  前記透明金属層と前記硫化亜鉛含有層との間に、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を含有する硫化防止層を形成する工程をさらに有することを特徴とする請求項2に記載の透明導電体の製造方法。 The method further includes the step of forming an anti-sulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) between the transparent metal layer and the zinc sulfide-containing layer. The manufacturing method of the transparent conductor of Claim 2 characterized by the above-mentioned.
  4.  前記硫化防止層を形成する工程が、前記透明金属層の前記透明基板とは反対側の表面に、真空下、かつ酸素ガスを導入しない雰囲気条件下において、前記金属酸化物を含有する前記硫化防止層を形成する工程であることを特徴とする請求項3に記載の透明導電体の製造方法。 The step of forming the sulfidation preventive layer comprises the step of forming the sulfidation layer containing the metal oxide under a vacuum and an atmospheric condition in which oxygen gas is not introduced on the surface of the transparent metal layer opposite to the transparent substrate. The method for producing a transparent conductor according to claim 3, wherein the method is a step of forming a layer.
  5.  前記透明金属層を形成する際の、形成速度が0.3nm/s(3Å/s)以上であることを特徴とする請求項1から請求項4までのいずれか一項に記載の透明導電体の製造方法。 The transparent conductor according to any one of claims 1 to 4, wherein a formation speed when forming the transparent metal layer is 0.3 nm / s (3 Å / s) or more. Manufacturing method.
  6.  前記透明金属層を形成する工程において、スパッタガスとして、クリプトン又はキセノンを使用することを特徴とする請求項1から請求項5までのいずれか一項に記載の透明導電体の製造方法。 The method for producing a transparent conductor according to any one of claims 1 to 5, wherein krypton or xenon is used as a sputtering gas in the step of forming the transparent metal layer.
  7.  請求項1から請求項6までのいずれか一項に記載の透明導電体の製造方法により製造された透明導電体であって、
     前記第1高屈折率層及び前記第2高屈折率層が、波長570nmの光に対して、前記透明基板より大きい屈折率を有する誘電性材料又は酸化物半導体材料を含有し、かつ、前記第1高屈折率層及び前記第2高屈折率層のいずれか一方の層が硫化亜鉛(ZnS)を含有する硫化亜鉛含有層であり、さらに、
     前記透明金属層と前記硫化亜鉛含有層との間に、金属酸化物、金属フッ化物、金属窒化物及び亜鉛(Zn)から選ばれる少なくとも1種を含有する硫化防止層を有することを特徴とする透明導電体。
    A transparent conductor manufactured by the method for manufacturing a transparent conductor according to any one of claims 1 to 6,
    The first high refractive index layer and the second high refractive index layer contain a dielectric material or an oxide semiconductor material having a refractive index larger than that of the transparent substrate with respect to light having a wavelength of 570 nm, and One of the high refractive index layer and the second high refractive index layer is a zinc sulfide-containing layer containing zinc sulfide (ZnS), and
    Between the transparent metal layer and the zinc sulfide-containing layer, an antisulfurization layer containing at least one selected from metal oxides, metal fluorides, metal nitrides, and zinc (Zn) is provided. Transparent conductor.
  8.  前記硫化防止層が、少なくとも前記金属酸化物として酸化亜鉛(ZnO)を含有することを特徴とする請求項7に記載の透明導電体。 The transparent conductor according to claim 7, wherein the antisulfurization layer contains at least zinc oxide (ZnO) as the metal oxide.
PCT/JP2015/051985 2014-02-20 2015-01-26 Method for manufacturing transparent electroconductive body and electroconductive body WO2015125558A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016504012A JPWO2015125558A1 (en) 2014-02-20 2015-01-26 Method for producing transparent conductor and transparent conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-030754 2014-02-20
JP2014030754 2014-02-20

Publications (1)

Publication Number Publication Date
WO2015125558A1 true WO2015125558A1 (en) 2015-08-27

Family

ID=53878072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051985 WO2015125558A1 (en) 2014-02-20 2015-01-26 Method for manufacturing transparent electroconductive body and electroconductive body

Country Status (2)

Country Link
JP (1) JPWO2015125558A1 (en)
WO (1) WO2015125558A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021102791A (en) * 2019-12-24 2021-07-15 日立造船株式会社 Vapor deposition device, and method for producing base material having vapor deposition film formed thereon
WO2022080011A1 (en) * 2020-10-14 2022-04-21 日東電工株式会社 Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117735A (en) * 2000-10-10 2002-04-19 Nitto Denko Corp Method for manufacturing transparent laminate
JP2009092913A (en) * 2007-10-09 2009-04-30 Toppan Printing Co Ltd Optical thin film laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117735A (en) * 2000-10-10 2002-04-19 Nitto Denko Corp Method for manufacturing transparent laminate
JP2009092913A (en) * 2007-10-09 2009-04-30 Toppan Printing Co Ltd Optical thin film laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021102791A (en) * 2019-12-24 2021-07-15 日立造船株式会社 Vapor deposition device, and method for producing base material having vapor deposition film formed thereon
WO2022080011A1 (en) * 2020-10-14 2022-04-21 日東電工株式会社 Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer

Also Published As

Publication number Publication date
JPWO2015125558A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6314463B2 (en) Transparent conductor
EP2831707B1 (en) Transparent body for use in a touch screen panel manufacturing method and system
JP6292225B2 (en) Transparent conductor
JP6319302B2 (en) Transparent conductor and method for producing the same
WO2015068738A1 (en) Transparent conductive body
WO2015125558A1 (en) Method for manufacturing transparent electroconductive body and electroconductive body
WO2015087895A1 (en) Transparent conductive body
JP4894279B2 (en) Transparent conductive laminate
JP2015219690A (en) Transparent conductive device and touch panel
EP2973728A1 (en) Transparent electrode and substrate for optoelectronic or plasmonic applications comprising silver
WO2014196460A1 (en) Transparent conductor and method for producing same
WO2015125512A1 (en) Transparent conductor manufacturing method and transparent conductor manufacturing apparatus
WO2015025525A1 (en) Transparent conductive body
WO2015053371A1 (en) Transparent conductor
WO2014181538A1 (en) Transparent conductor and method for producing same
WO2015011928A1 (en) Method for producing transparent conductive body
JP2016169420A (en) Apparatus and method for manufacturing transparent conductive member
WO2023054420A1 (en) Optical laminate and anti-reflection film
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
WO2015133007A1 (en) Method for producing transparent conductor
KR102116392B1 (en) Polymer substrates comprising antireflective layer and thin metal layer and fabrication method for the same
JP2016177940A (en) Method for producing transparent conductive body
WO2015111327A1 (en) Transparent conductor
KR20160111226A (en) Conductive structure body and electronic device comprising the same
JP2016144884A (en) Transparent conductor and touch panel including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504012

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752554

Country of ref document: EP

Kind code of ref document: A1