WO2015111327A1 - Transparent conductor - Google Patents

Transparent conductor Download PDF

Info

Publication number
WO2015111327A1
WO2015111327A1 PCT/JP2014/083199 JP2014083199W WO2015111327A1 WO 2015111327 A1 WO2015111327 A1 WO 2015111327A1 JP 2014083199 W JP2014083199 W JP 2014083199W WO 2015111327 A1 WO2015111327 A1 WO 2015111327A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent
refractive index
transparent conductor
high refractive
Prior art date
Application number
PCT/JP2014/083199
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 平田
仁一 粕谷
一成 多田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015558755A priority Critical patent/JPWO2015111327A1/en
Publication of WO2015111327A1 publication Critical patent/WO2015111327A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to a transparent conductor including a transparent metal layer.
  • the present invention relates to a transparent conductor that has excellent moisture resistance and can suppress the occurrence of warpage.
  • transparent conductors are used in various devices such as liquid crystal displays, plasma displays, display devices such as inorganic and organic electroluminescence displays, touch panels, solar cells, and the like.
  • metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, Cr, and In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , TiO 2 , SnO 2 are used.
  • oxide semiconductors such as ZnO and indium tin oxide (ITO).
  • a transparent conductor for example, a metal oxide layer and a metal layer are laminated on a transparent polymer film, and a transparent ion that suppresses intrusion of halogen ions or moisture existing in the environment is further formed thereon.
  • a structure in which resin layers are laminated see, for example, Patent Document 1).
  • the present invention has been made in view of the above problems and situations, and a solution to that problem is to provide a transparent conductor that has excellent moisture resistance and can suppress the occurrence of warpage.
  • a transparent substrate A conductive layer provided on both sides of the transparent substrate, A transparent conductor, wherein at least one of the conductive layers is a laminate including a transparent metal layer and a zinc sulfide-containing layer.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in moisture resistance and can provide the transparent conductor which can suppress generation
  • the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows. Since at least one of the conductive layers provided on both surfaces of the transparent substrate includes a zinc sulfide-containing layer, the zinc sulfide-containing layer suppresses moisture permeation and improves the moisture resistance of the transparent conductor. be able to. Thereby, corrosion of a transparent metal layer can be suppressed and it can suppress that the external appearance of a transparent conductor is impaired, the transmittance
  • the transparent conductor of the present invention comprises a transparent substrate and conductive layers provided on both sides of the transparent substrate, and at least one of the conductive layers is a laminate including a transparent metal layer and a zinc sulfide-containing layer. It is characterized by being.
  • This feature is a technical feature common to or corresponding to each of claims 1 to 4.
  • the conductive layer or the transparent metal layer is preferably patterned. Thereby, a transparent conductor can be used for various optoelectronic devices.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the transparent conductor 100 of the present invention includes a first high refractive index layer 2 / a transparent metal layer 3 / a second high height on both sides of the transparent substrate 1 from the transparent substrate 1 side.
  • a refractive index layer 4 is provided.
  • either one or both of the first high refractive index layer 2 and the second high refractive index layer 4 constitute a zinc sulfide-containing layer containing zinc sulfide. .
  • the sulfide prevention layer 5 is provided between the first high refractive index layer 2 or the second high refractive index layer 4 containing zinc sulfide and the transparent metal layer 3. .
  • the first high refractive index layer 2 and the second high refractive index layer 4 both contain zinc sulfide, and the first high refractive index layer 2 and the transparent metal layer 3.
  • the first sulfidation preventing layer 5 a is provided between the transparent metal layer 3 and the second high refractive index layer 4.
  • the first high refractive index layer 2, the first antisulfurization layer 5a, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. 4 constitutes the conductive layer 6.
  • the metal sulfide is presumed to be produced as follows.
  • the unreacted sulfur component in the zinc sulfide-containing layer is a transparent metal. It is sputtered into the film forming atmosphere by the material of the layer (metal material). Then, the ejected sulfur component reacts with the metal, and metal sulfide is deposited on the zinc sulfide-containing layer. Moreover, when forming a zinc sulfide content layer and a transparent metal layer continuously, the sulfur component contained in the film-forming atmosphere of a zinc sulfide content layer remains in a transparent metal layer atmosphere. And this sulfur component and a metal react, and a metal sulfide deposits on a zinc sulfide content layer.
  • the zinc sulfide-containing layer (second high refractive index layer) is formed on the transparent metal layer
  • the metal in the transparent metal layer is expelled into the film forming atmosphere by the material of the zinc sulfide-containing layer.
  • the ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer.
  • a metal sulfide is also generated on the surface of the transparent metal layer when the surface of the transparent metal layer comes into contact with the sulfur component in the film formation atmosphere.
  • the first antisulfurization layer 5 a is laminated on the first high refractive index layer 2.
  • the sulfur component in the first high refractive index layer 2 is not easily ejected when the transparent metal layer 3 is formed.
  • the sulfur component contained in the film formation atmosphere of the first high-refractive index layer 2 is the configuration of the first antisulfurization layer 5a. It reacts with the component or is adsorbed by the component of the first antisulfurization layer 5a. Therefore, the film forming atmosphere of the transparent metal layer 3 hardly contains sulfur, and the generation of metal sulfide is suppressed.
  • the second antisulfurization layer 5 b is laminated on the transparent metal layer 3.
  • the metal in the transparent metal layer 3 is not easily ejected when the second high refractive index layer 4 is formed.
  • the sulfur component in the film formation atmosphere of the second high refractive index layer 4 is difficult to come into contact with the surface of the transparent metal layer 3. Accordingly, it is difficult for metal sulfides to be generated on the surface of the transparent metal layer 3.
  • the transparent metal layer 3 may be laminated on the entire surface of the transparent substrate 1 as shown in FIG. 1, or the transparent metal layer 3 has a desired shape as shown in FIG. It may be patterned.
  • the region a where the transparent metal layer 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”).
  • the region b where the transparent metal layer 3 is not included is an insulating region.
  • the pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 100.
  • the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. possible.
  • the transparent conductor 100 of the present invention may be provided with a layer other than the transparent substrate 1, the first high refractive index layer 2, the transparent metal layer 3, the second high refractive index layer 4, and the antisulfurization layer 5.
  • an underlayer that can be a growth nucleus when forming the transparent metal layer 3 may be provided adjacent to the transparent metal layer 3 between the transparent metal layer 3 and the first high refractive index layer 2. .
  • the transparent substrate 1 may be a transparent substrate and may be the same as the transparent substrate of various conventionally known display devices.
  • transparent means that the average transmittance of light having a wavelength of 550 nm is 50% or more.
  • the transparent substrate for example, a glass substrate, a cellulose ester resin (for example, triacetyl cellulose, diacetyl cellulose, acetyl propionyl cellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Ltd.)), cyclo Olefin resins (for example, ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resins (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (Sumitomo) Chemical)), polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PET), polyethylene naphthalate), polyether sulfone, ABS / AS resin MBS resins, polys
  • examples of the material of the transparent substrate 1 include a glass substrate, cellulose ester resin, polycarbonate resin, polyester resin (particularly polyethylene terephthalate), triacetyl cellulose, cycloolefin resin, phenol resin, epoxy resin, and polyphenylene.
  • a transparent resin film made of ether (PPE) resin, polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, or the like is preferable. .
  • the transparent substrate 1 preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and still more preferably 85% or more. is there.
  • the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased.
  • the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1.
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. .
  • the refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
  • the haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. When the haze value of the transparent substrate is 2.5 or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
  • the thickness of the transparent substrate 1 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent substrate is 1 ⁇ m or more, the strength of the transparent substrate 1 is increased, and it is possible to prevent the first high refractive index layer 2 from being cracked or torn.
  • the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient.
  • the thickness of the apparatus using the transparent conductor 100 can be reduced.
  • the apparatus using the transparent conductor 100 can also be reduced in weight.
  • the first high refractive index layer 2 is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor 100, that is, the region where the transparent metal layer 3 is formed. It is formed in the conduction region a.
  • the first high refractive index layer 2 may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of ensuring the visibility of the pattern composed of the conductive region a and the insulating region b, only the conductive region a. It is preferable to be formed.
  • the first high refractive index layer 2 includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 described above.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2.
  • the refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
  • the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2 may be an insulating material or a conductive material.
  • a metal oxide can be used as the dielectric material or the oxide semiconductor material. Examples of metal oxides, TiO 2, ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2, La 2 Ti 2 O 7, IZO ( indium zinc oxide), AZO (aluminum oxide zinc), GZO (gallium oxide, zinc), ATO (antimony tin oxide), ICO (indium cerium oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (amorphous oxide composed of gallium, indium, and oxygen), IGZO (InGaZnO), and the like can be given.
  • the first high refractive index layer 2 may contain only one
  • zinc sulfide can be used as the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2.
  • the first high refractive index layer 2 may contain only zinc sulfide, or may contain other materials together with zinc sulfide.
  • SiO 2 is contained together with zinc sulfide, the first high refractive index layer 2 is likely to be amorphous, and the flexibility of the transparent conductor 100 is likely to be enhanced.
  • the content of zinc sulfide is 0. 0 relative to the total number of moles of all materials constituting the first high refractive index layer 2.
  • the content is preferably 1 to 95% by mass, more preferably 50 to 90% by mass, and still more preferably 60 to 85% by mass.
  • the sputtering rate is increased and the formation rate of the first high refractive index layer 2 is increased.
  • the amorphous nature of the first high refractive index layer 2 is increased, and cracking of the first high refractive index layer 2 is suppressed.
  • the layer thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm.
  • the layer thickness of the first high refractive index layer 2 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2.
  • the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease.
  • the layer thickness of the first high refractive index layer 2 is measured with an ellipsometer.
  • the first high refractive index layer 2 can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. From the viewpoint that the refractive index (density) of the first high refractive index layer 2 is increased, the first high refractive index layer 2 is preferably formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
  • IAD ion assist
  • the patterning method is not particularly limited.
  • the first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the film formation surface, It may be a layer patterned by an etching method.
  • the first high refractive index layer 2 preferably contains zinc sulfide, but more preferably contains amorphous zinc sulfide. Since the amorphous zinc sulfide is contained in the first high refractive index layer 2, stress generated in the transparent conductor 100 can be reduced, and warpage of the transparent conductor 100 can be suppressed. It is possible to suppress the generation of cracks when the transparent conductor 100 is bent. Furthermore, since the first high refractive index layer 2 contains amorphous zinc sulfide, the light transmittance of the first high refractive index layer 2 can be improved.
  • the zinc sulfide can be made amorphous.
  • the amorphized metal material it is possible to achieve amorphization of zinc sulfide by mixing 1 to 50% by mass with respect to zinc sulfide, and it is preferable to mix 5 to 20% by mass.
  • the refractive index of light can be changed by appropriately adjusting the content of the amorphized metal material. Therefore, the light transmittance can be set as desired.
  • the first high refractive index layer 2 is not made amorphous by including, for example, TiO 2 or Nb 2 O 5 which is a transparent material having a higher refractive index than zinc sulfide as an amorphized metal material. That is, the reflection band can be expanded as compared with the first high refractive index layer made of crystalline zinc sulfide alone. This facilitates adjustment of the optical characteristics of the transparent conductor 100.
  • the transparent metal layer 3 can be protected more reliably. Therefore, for example, by containing Si 3 N 4 or Al 2 O 3 as an amorphized metal material together with zinc sulfide in the first high refractive index layer 2, it is possible to improve the scratch resistance of the transparent conductor 100. Become.
  • amorphized metal material for example, a metal oxide, a metal fluoride, a metal nitride, or the like can be used.
  • Examples of the metal oxide used as the amorphized metal material include TiO 2 , In 2 O 5 , ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4 O 7.
  • Ti 2 O 3 TiO, SnO 2 , La 2 Ti 2 O 7 , ITO (InSnO), IGZO (InGaZnO), IZO (InZnO), AZO (AlZnO), GZO (GaZnO), ATO (AlSnO), ICO ( InCeO), Bi 2 O 3 , a-GIO (GaInO), Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 and the like.
  • SiO 2 and TiO 2 are preferable.
  • SiO 2 zinc sulfide can be made amorphous even if its content is small. Therefore, by incorporating the SiO 2, it is possible to after amorphization of zinc sulfide, particularly well exhibited a high adhesion (peeling resistance) and high durability (such as against moisture, etc.).
  • TiO 2 exhibits a particularly high refractive index among transparent materials, by using TiO 2 , the reflection band can be widened to increase the reflectance, and the reflection characteristics can be improved.
  • Examples of the metal fluoride used as the amorphized metal material include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3, YF 3, and the like.
  • examples of the metal nitride used as the amorphized metal material include Si 3 N 4 and AlN. Among these, Si 3 N 4 is preferable. Since Si 3 N 4 has high hardness, it is possible to improve the scratch resistance of the first high refractive index layer 2 by using Si 3 N 4 .
  • amorphized metal materials may be used alone, or two or more of them may be used in any ratio and combination.
  • the amount of the amorphized metal material contained with respect to the crystalline zinc sulfide there is no particular limitation on the amount of the amorphized metal material contained with respect to the crystalline zinc sulfide.
  • SiO 2 when SiO 2 is used as the amorphized metal material, it is usually 1% by mass or more, more preferably 5% by mass with respect to crystalline zinc sulfide. % Or more and usually 99% by mass or less, and more preferably 95% by mass or less of SiO 2 can be used to make amorphous zinc sulfide.
  • first antisulfuration layer When the first high refractive index layer 2 contains zinc sulfide, it is preferable that a first sulfidation preventing layer 5a is provided between the first high refractive index layer 2 and the transparent metal layer 3, as shown in FIG. .
  • the first sulfidation preventing layer 5a may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of ensuring the visibility of the pattern made up of the conductive region a and the insulating region b, only the conductive region a is provided. Preferably it is formed.
  • the material of the first antisulfurization layer 5a for example, metal oxide, metal nitride, metal fluoride, or Zn can be used.
  • the first sulfidation preventing layer 5a may contain only one kind or two or more kinds.
  • the first antisulfurization layer is composed of a compound capable of reacting with sulfur, It preferably contains a compound capable of adsorbing sulfur.
  • the reaction product with sulfur preferably has a high visible light transmittance.
  • metal oxide examples include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2.
  • Examples of the metal fluoride include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. Can do.
  • Examples of the metal nitride include Si 3 N 4 and AlN.
  • a metal oxide in particular, ZnO, ITO, IGZO, Ga 2 O 3, Nb 2 O 5, SnO 2, Y 2 O 3 , and M3 are preferably .
  • adhesiveness with the zinc sulfide contained in the 1st high refractive index layer 2 or the 2nd high refractive index layer 4 can be improved, and durability can be improved more.
  • the layer thickness of the first antisulfurization layer 5a is preferably a layer thickness that can protect the surface of the first high refractive index layer 2 from an impact during the formation of the transparent metal layer 3 described later.
  • zinc sulfide that can be contained in the first high refractive index layer has high affinity with the metal contained in the transparent metal layer 3. Therefore, if the thickness of the first anti-sulfurization layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal layer grows around the exposed part, and the transparent metal Layer 3 tends to be dense.
  • the first antisulfurization layer 5a is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm.
  • the layer thickness of the first sulfurization preventing layer 5a is measured with an ellipsometer.
  • the first sulfidation preventing layer 5a can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
  • the first antisulfurization layer 5a is a layer patterned into a desired shape
  • the patterning method is not particularly limited.
  • the first sulfidation preventing layer 5a may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the film formation surface, or a known etching method. It may be a layer patterned by a method.
  • the transparent metal layer 3 is a layer for conducting electricity in the transparent conductor 100. As described above, the transparent metal layer 3 may be formed on the entire surface of the transparent substrate 1 or may be patterned into a desired shape.
  • the metal contained in the transparent metal layer 3 is not particularly limited as long as it is a highly conductive metal.
  • silver, copper, gold, platinum group, titanium, chromium, palladium, ruthenium, bismuth, tantalum, or the like is used. Can do.
  • the transparent metal layer 3 may contain only one kind of these metals or two or more kinds.
  • the transparent metal layer is preferably made of silver or an alloy containing 90 at% or more of silver.
  • a metal combined with silver for example, zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, nickel, iron, cobalt, tungsten, tantalum, chromium, indium, titanium, or the like can be used.
  • bismuth, palladium or copper is preferable.
  • the transparent metal layer 3 may contain a simple substance or compound of silver and a simple substance or compound of bismuth, palladium, or copper, or is included in the form of an alloy of silver and at least one of these metals.
  • the transparent metal layer 3 is preferably included in the form of an alloy. Moreover, it is preferable that all of the materials constituting the transparent metal layer 3 are an alloy of silver and at least one of these metals. By including at least one of these metals in the transparent metal layer 3, the durability, peel resistance, etc. of the transparent conductor 100 can be further improved. For example, when the transparent metal layer 3 contains an alloy of silver and zinc, the sulfidation resistance of the transparent metal layer 3 can be improved. For example, when the transparent metal layer 3 contains an alloy of silver and gold, the salt resistance (NaCl) resistance of the transparent metal layer 3 can be improved. Furthermore, for example, when the transparent metal layer 3 contains an alloy of silver and copper, the oxidation resistance of the transparent metal layer 3 can be improved.
  • the plasmon absorptivity of the transparent metal layer 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 100 is likely to be colored.
  • the plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 3 is measured by the following procedure.
  • Platinum palladium is formed to 0.1 nm on a glass substrate by a magnetron sputtering apparatus. The average thickness of platinum palladium is calculated from the formation rate of the manufacturer's nominal value of the sputtering apparatus. After that, a 20 nm thick metal film is formed by sputtering on the substrate to which platinum palladium is attached.
  • measurement light is incident from an angle inclined by 5 ° with respect to the normal line of the surface of the obtained metal film, and the transmittance and reflectance of the metal film are measured.
  • absorption rate 100 ⁇ (transmittance + reflectance) is calculated from the transmittance and reflectance at each wavelength, and this is used as reference data.
  • the transmittance and reflectance are measured with a spectrophotometer.
  • a transparent metal layer to be measured is formed on the same glass substrate. And about the said transparent metal layer, the transmittance
  • the reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
  • the layer thickness of the transparent metal layer 3 is 10 nm or less, preferably 3 to 9 nm, and more preferably 5 to 8 nm.
  • the optical admittance of the transparent conductor 100 can be easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 4, and light on the surface of the conduction region a can be adjusted. The reflection of is easy to be suppressed.
  • the layer thickness of the transparent metal layer 3 is measured with an ellipsometer.
  • the transparent metal layer 3 may be formed by any method, but is preferably a layer formed by a sputtering method from the viewpoint of increasing the average transmittance of the transparent metal layer.
  • the layer is formed on the underlying layer.
  • the sputtering method since the material collides with the deposition target at high speed during formation, a dense and smooth film can be easily obtained, and the light transmittance of the transparent metal layer 3 can be improved. Further, when the transparent metal layer 3 is a layer formed by sputtering, the transparent metal layer 3 is hardly corroded even in a high temperature and low humidity environment.
  • the type of the sputtering method is not particularly limited, and an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like can be used.
  • the transparent metal layer 3 is particularly preferably a layer formed by a counter sputtering method.
  • the transparent metal layer 3 becomes dense and the surface smoothness is likely to be increased. As a result, the surface electrical resistance of the transparent metal layer 3 can be further reduced, and the light transmittance can be improved.
  • the transparent metal layer 3 is a layer formed on an underlayer to be described later, the underlayer becomes a growth nucleus when the transparent metal layer 3 is formed, or wettability with respect to the transparent metal is increased.
  • the transparent metal layer 3 tends to be a smooth layer. As a result, even if the transparent metal layer 3 is thin, plasmon absorption is less likely to occur.
  • the method for forming the transparent metal layer 3 is not particularly limited. For example, a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method is used. Can do.
  • the patterning method is not particularly limited.
  • the transparent metal layer 3 may be, for example, a film formed by arranging a mask having a desired pattern, or may be a layer patterned by a known etching method.
  • the second high refractive index layer 4 contains zinc sulfide
  • the layer thickness of the second antisulfurization layer 5b is preferably a layer thickness that can protect the surface of the transparent metal layer 3 from an impact when the second high refractive index layer 4 is formed.
  • the metal contained in the transparent metal layer 3 and the zinc sulfide that can be contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second antisulfurization layer 5b is very thin and a part of the transparent metal layer 3 is slightly exposed, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. Adhesion with 4 tends to increase.
  • the specific layer thickness of the second sulfidation preventing layer 5b is preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and still more preferably 1 to 3 nm.
  • the layer thickness of the second sulfurization preventing layer 5b is measured with an ellipsometer.
  • the second high refractive index layer 4 is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor 100, that is, the region where the transparent metal layer 3 is formed, and at least the transparent conductor 100 conductive regions a are formed. Since the second high-refractive index layer 4 is configured in the same manner as the first high-refractive index layer 2, description of common points is omitted, and only differences from the first high-refractive index layer 2 are described below. Explained.
  • the second high-refractive index layer 4 may contain zinc sulfide. If the second high-refractive index layer 4 contains zinc sulfide, moisture permeation into the transparent metal layer 3 is prevented. It is possible to suppress the corrosion of the transparent metal layer 3.
  • the second high refractive index layer 4 can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, etc. From the viewpoint of reducing the moisture permeability of the high refractive index layer 4, the second high refractive index layer 4 is particularly preferably formed by a sputtering method.
  • the transparent conductor 100 is provided on at least one surface of both surfaces of the transparent conductor 100, thereby adjusting the stress on the surface and reducing the stress difference between both surfaces of the transparent conductor 100 (not shown). ) May be further provided.
  • the stress adjustment layer is preferably configured such that the difference in refractive index between adjacent layers is low. For example, the difference in refractive index between the stress adjustment layer and adjacent layers is within 20%. It is preferable that
  • the stress adjustment layer may be any material as long as the stress of the transparent conductor 100 can be adjusted.
  • Molecular materials can be used.
  • polyethylene terephthalate, polycarbonate, polymethyl methacrylate, cycloolefin polymer, and the like are preferable from the viewpoints of transparency, durability, workability, and the like. Only one of these may be included in the stress adjusting layer, or two or more thereof may be included.
  • the stress adjusting layer may be a deposited film or a sputtered film such as SiO 2 , ITO, IGZO, ZnO or ZnS, or may be a hard coat layer or a layer coated with a polymer.
  • the stress adjustment layer is preferably a deposited film or a sputtered film.
  • the layer thickness of the stress adjusting layer may be set as long as the stress of the transparent conductor 100 can be adjusted, and is appropriately set according to the material and the forming method.
  • the stress adjustment layer may be provided on the outermost surface of the transparent conductor 100, or may be provided between any layers of each layer within a range not impairing the function of each layer constituting the transparent conductor 100. good.
  • the stress adjustment layer may be provided on both surfaces of the transparent substrate, and in that case, the layer thickness and the material may be different from each other.
  • the transparent conductor 100 may further include an underlayer (not shown) that becomes a growth nucleus when the transparent metal layer 3 is formed.
  • the underlayer is provided adjacent to the transparent metal layer 3 on the transparent substrate 1 side, specifically, between the first high refractive index layer 2 and the transparent metal layer 3 or the first antisulfurization layer 5a. It is provided between the transparent metal layer 3.
  • the underlayer is preferably formed at least in the conductive region a of the transparent conductor 100, but may be formed in the insulating region b of the transparent conductor 100.
  • the smoothness of the surface of the transparent metal layer 3 can be enhanced even if the thickness of the transparent metal layer 3 is thin.
  • the underlayer includes palladium, molybdenum, zinc, germanium, niobium, indium, alloys of these metals with other metals, oxides or sulfides of these metals (for example, zinc sulfide). It is preferable that Among these, it is particularly preferable that palladium or molybdenum is contained. Further, the underlayer may contain a nitrogen-containing organic compound or the like. The underlayer may contain only one kind or two or more kinds.
  • the base layer contains an alloy of palladium, molybdenum, zinc, germanium, niobium, or indium and another metal
  • the other metal is not particularly limited.
  • a platinum group other than palladium, gold Cobalt, nickel, titanium, aluminum, chromium, etc. can be used.
  • the patterning method is not particularly limited.
  • the underlayer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface, or patterned by a known etching method. It may be a layer formed.
  • the transparent conductor 100 may further include a low refractive index layer (not shown) that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor on the second high refractive index layer 4.
  • the low refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
  • the refractive index of light having a wavelength of 570 nm is higher than the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2 and the second high refractive index layer 4.
  • a dielectric material or oxide semiconductor material having a low rate is included.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material included in the low refractive index layer is the wavelength of 570 nm of the material included in the first high refractive index layer 2 and the second high refractive index layer 4.
  • the refractive index of each light is preferably 0.2 or more lower, more preferably 0.4 or more lower.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is preferably less than 1.8, more preferably 1.30 to 1.6, Particularly preferred is 1.35 to 1.5.
  • the refractive index of the low refractive index layer is mainly adjusted by the refractive index of the material included in the low refractive index layer and the density of the material included in the low refractive index layer.
  • Examples of the dielectric material or oxide semiconductor material included in the low refractive index layer include MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, NdF 3 , and YF 3. , YbF 3 , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, or ThO 2 .
  • MgF 2 , SiO 2 , CaF 2 , CeF 3 , LaF 3 , LiF, NaF, NdF 3 , Na 3 AlF 6 , Al 2 O 3 , MgO or ThO 2 are preferable, and a viewpoint that the refractive index is low.
  • MgF 2 or SiO 2 is particularly preferred. Only one of these materials may be included in the low refractive index layer, or two or more of these materials may be included.
  • the layer thickness of the low refractive index layer is preferably 10 to 150 nm, more preferably 20 to 100 nm.
  • the layer thickness of the low refractive index layer is measured with an ellipsometer.
  • the low refractive index layer can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. From the viewpoint of easiness of layer formation, etc., the low refractive index layer is preferably formed by electron beam evaporation or sputtering.
  • the low refractive index layer is a patterned layer
  • the patterning method is not particularly limited.
  • the low refractive index layer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface, or by a known etching method. It may be a patterned layer.
  • the transparent conductor 100 may further include a third high-refractive index layer (not shown) that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor 100 on the low refractive index layer.
  • the third high refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
  • the third high refractive index layer preferably includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 and the refractive index of the low refractive index layer.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably greater than 1.5, more preferably 1.7 to 2.5, It is preferably 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the third high refractive index layer.
  • the refractive index of the third high refractive index layer is adjusted by the refractive index of the material included in the third high refractive index layer and the density of the material included in the third high refractive index layer.
  • the dielectric material or oxide semiconductor material contained in the third high refractive index layer may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably a metal oxide or ZnS.
  • a metal oxide the metal oxide contained in the above-mentioned 1st high refractive index layer 2 or the 2nd high refractive index layer 4 is mentioned, for example.
  • the third high refractive index layer may contain only one kind of the metal oxide or ZnS, or may contain two or more kinds. Further, a dielectric material such as SiO 2 may be contained together with the metal oxide or ZnS.
  • the layer thickness of the third high refractive index layer is not particularly limited, and is preferably 1 to 40 nm, and more preferably 5 to 20 nm. When the layer thickness of the third high refractive index layer is within the above range, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted. The layer thickness of the third high refractive index layer is measured with an ellipsometer.
  • the method for forming the third high refractive index layer is not particularly limited, and the third high refractive index layer can be formed by the same method as that for the first high refractive index layer 2 and the second high refractive index layer 4.
  • the transparent conductor 100 may include a low refractive index layer and a third high refractive index layer, but an optical adjustment layer in which a plurality of high refractive index layers and low refractive index layers are stacked. It is good also as what is equipped with.
  • the reflectance R of the surface of the conductive region a of the transparent conductor is the optical admittance Y env of the medium on which light is incident, determined from the equivalent admittance Y E of the surface of the conductive region a transparent conductor.
  • the medium on which light is incident refers to a member or environment through which light incident on the transparent conductor passes immediately before the incident, and is a member or environment made of an organic resin.
  • the relationship between the optical admittance Y env of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation.
  • the optical admittance Y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is usually the same as the refractive index n env of the medium.
  • the equivalent admittance Y E of the surface of the conductive region a of the transparent conductor is determined from the optical admittance Y of the layers constituting the conductive region a. For example, when a transparent conductor (conductive region a) is composed of one is equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
  • the optical admittance Y x (E x H x ) of the laminate from the first layer to the x-th layer is from the first layer to (x ⁇ 1) It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate up to the layer and a specific matrix, and specifically, the following formula (1) or formula (2) Is required.
  • the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
  • 2 ⁇ nd / ⁇
  • y n (admittance of the x-th layer film)
  • d is the layer thickness of the x-th layer.
  • (2 ⁇ / ⁇ ) kd
  • d is the layer thickness of the x-th layer
  • k is the refractive index (imaginary part) of the layer.
  • the optical admittance Yx (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E of the transparent conductor.
  • FIG. 4 includes a transparent substrate / first high refractive index layer (ZnS—SiO 2 ) / first antisulfurization layer (ITO) / transparent metal layer (Ag) / second high refractive index layer (ZnS—SiO 2 ).
  • region a of a transparent conductor is shown.
  • the horizontal axis of the graph is the real part when the optical admittance Y of the region is expressed by x + iy, that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance, that is, y in the equation.
  • the first anti-sulfurization layer (ITO) has a sufficiently thin layer thickness, and its optical admittance is ignored.
  • the last coordinate in the admittance locus is equivalent admittance Y E conductive region a.
  • the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates Y env (n env , 0) (not shown) of the medium on which the light is incident is equal to the conduction region a of the transparent conductor. It is proportional to the reflectance R of the surface.
  • it is preferable that one or both of x 1 and x 2 is 1.6 or more. either one of x 1 and x 2 are, it tends enhanced light transmission of the transparent conductor If it is 1.6 or more. The reason will be described below.
  • either one or both of x 1 and x 2 is preferably 1.6 or more, more preferably 1.8 or more, and further preferably 2.0 or more. Any one of x 1 and x 2 may be 1.6 or more, but x 1 is particularly preferably 1.6 or more. Further, x 1 and x 2 are preferably 7.0 or less, and more preferably 5.5 or less.
  • x 1 is the refractive index of the first high refractive index layer and is adjusted by the layer thickness of the first high refractive index layer or the like.
  • x 2 is the refractive index of x 1 values and transparent metal layer is adjusted by the layer thickness and the like of the transparent metal layer.
  • ) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and further preferably 0.8 or less. It is.
  • the admittance locus at a specific wavelength is preferably line symmetric with respect to the horizontal axis of the graph.
  • the wavelength other than the specific wavelength e.g., 450 nm and 700 nm
  • the wavelength other than the specific wavelength is the coordinates of the equivalent admittance Y E in, it tends to be constant, at any wavelength, reflection The rate R becomes small. Therefore, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, it is preferable to satisfy the y 1 ⁇ y 2 ⁇ 0.
  • is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less.
  • y 1 is sufficiently large.
  • the value of the imaginary part of the optical admittance of the transparent metal layer is large, and the admittance locus greatly moves in the direction of the vertical axis (imaginary part). Therefore, if y 1 is sufficiently large, the absolute value of the imaginary part of the admittance coordinates is likely to be within an appropriate range, and the admittance locus is likely to be line symmetric.
  • y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0.
  • y 2 described above is preferably ⁇ 0.3 to ⁇ 2.0, and more preferably ⁇ 0.6 to ⁇ 1.5.
  • the distance ((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) from the equivalent admittance coordinate (n env , 0) is preferably less than 0.5, more preferably 0.3. It is as follows. When the distance is less than 0.5, the reflectance Ra of the surface of the conduction region a is sufficiently small, and the light transmittance of the conduction region a is increased.
  • an equivalent admittance coordinate (x E , y E ) of light having a wavelength of 570 nm in the conduction region a and an equivalent admittance coordinate of light having a wavelength of 570 nm in the insulation region b are preferably less than 0.5, more preferably (expressed by (x b , y b )) Is 0.3 or less.
  • the coordinates of the equivalent admittance Y E conductive region a, the coordinate of the equivalent admittance Y b of the insulating region b is sufficiently close, so these patterns less visible.
  • the average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor of the present invention is preferably 75% or more, more preferably 80% in both the conduction region a and the insulation region b. More preferably, it is 85% or more.
  • the transparent conductor can be applied to applications requiring high transparency to visible light.
  • the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor is preferably 70% or more in both the conduction region a and the insulation region b, more preferably 75% or more, and still more preferably 80%. That's it.
  • the transparent conductor is also used in applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. Can be applied.
  • the average absorptance of light having a wavelength of 400 to 800 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and still more preferably 10% in both the conduction region a and the insulation region b. It is as follows.
  • the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 25% or less, more preferably 20% or less, and still more preferably in both the conduction region a and the insulation region b. 15% or less.
  • the average reflectance of light having a wavelength of 500 to 700 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and still more preferably 5 in both the conduction region a and the insulation region b. % Or less.
  • the average transmittance and the average reflectance are preferably the average transmittance and the average reflectance under the usage environment of the transparent conductor. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. Further, in order to measure the substantial transmittance of the transparent conductor, a correction for removing the reflection on the outermost surface by calculation may be performed.
  • the transmittance and the reflectance can be measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor.
  • the absorptance is calculated from a calculation formula of 100 ⁇ (transmittance + reflectance).
  • the reflectance of the conductive region a and the insulating region b are approximated.
  • the difference ⁇ R between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less. Especially preferably, it is 0.3% or less.
  • the luminous reflectance of the conduction region a and the insulation region b is preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less.
  • the luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
  • the a * value and the b * value in the L * a * b * color system may be within ⁇ 30 in any region. Preferably, it is within ⁇ 5, more preferably within ⁇ 3.0, and particularly preferably within ⁇ 2.0. If the a * value and the b * value in the L * a * b * color system are within ⁇ 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electrical resistance of the conductive region a of the transparent conductor is preferably 50 ⁇ / ⁇ or less, and more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electric resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like.
  • the surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
  • transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
  • the surface of the transparent conductor may be bonded to another member via an adhesive layer or the like.
  • the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer approximate each other. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
  • the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
  • a first high refractive index layer (ZnS) / transparent metal layer (Ag) / second high refractive index layer (ZnS) is formed on the front side and back side of a film made of cycloolefin polymer as a transparent substrate by the following method.
  • the layers were laminated in the following order. Thereafter, the laminate was patterned by the following method.
  • the layer thickness of each layer is J.I. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • first high refractive index layer (ZnS)) Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., ZnS was RF sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.8 ⁇ / s. The target-substrate distance was 90 mm.
  • the refractive index of light with a wavelength of 570 nm of ZnS was 2.37, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.37.
  • the thickness of the formed first high refractive index layer was 40 nm.
  • Formation of transparent metal layer (Ag) Using a counter sputtering machine manufactured by FTS Corporation, Ag was counter sputtered at an Ar of 20 sccm, a sputtering pressure of 0.5 Pa, a room temperature, a target power of 150 W, and a film formation rate of 14 K / s.
  • the target-substrate distance was 90 mm.
  • the thickness of the formed transparent metal layer was 7 nm.
  • the second high refractive index layer was formed by the same method as the first high refractive index layer.
  • a resist layer is formed in a pattern on the obtained laminate, and each layer other than the transparent substrate is patterned as shown in FIG. 3 (a pattern including a plurality of conductive regions a and line-shaped insulating regions b separating the conductive regions a). Patterned with an ITO etching solution (manufactured by Hayashi Junyaku). Only the transparent substrate was included in the insulating region. The width of the line-shaped insulating region b was 16 ⁇ m. Such patterning was performed on both surfaces of the transparent substrate.
  • a transparent conductor 2 was prepared in the same manner as in the production of the transparent conductor 1, except that the thickness of the transparent metal layer was changed as shown in Table 1.
  • IGZO second high refractive index layer
  • ⁇ Preparation of transparent conductor 5 In the production of the transparent conductor 1, a transparent conductor 5 was produced in the same manner except that the formation method of the first high refractive index layer and the second high refractive index layer was changed to the following formation method.
  • first high refractive index layer ZnS + SiO 2
  • ZnS—SiO 2 Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., ZnS—SiO 2 was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.0 ⁇ / s.
  • the target-substrate distance was 90 mm.
  • the ratio (molar ratio) between ZnS and SiO 2 was 80:20, and the refractive index of the first high refractive index layer was 2.14.
  • the second high refractive index layer was formed by the same method as the first high refractive index layer.
  • ⁇ Preparation of transparent conductor 6 In the production of the transparent conductor 5, a first sulfidation prevention layer is provided between the first high refractive index layer and the transparent metal layer, and a second sulfidation prevention layer is provided between the transparent metal layer and the second high refractive index layer.
  • a transparent conductor 6 was produced in the same manner except that.
  • the first sulfidation prevention layer and the second sulfidation prevention layer were formed as follows.
  • ZnO first antisulfurization layer
  • the second sulfidation preventing layer was formed in the same manner as the first sulfidation preventing layer.
  • ⁇ Preparation of transparent conductor 7 In the production of the transparent conductor 6, a transparent conductor 7 was produced in the same manner except that a stress adjusting layer was further provided on the second high refractive index layer laminated on the surface side of the transparent substrate.
  • the stress adjustment layer was formed as follows.
  • Preparation of transparent conductor 8 In the production of the transparent conductor 1, a method for forming the first high refractive index layer and the second high refractive index layer laminated on the back side of the transparent substrate, a method for forming the second high refractive index layer of the transparent conductor 4, and A transparent conductor 8 was produced in the same manner except that the method was changed to the same method.
  • the transparent conductor 9 was produced in the same manner except that the material of the transparent metal layer was changed to APC (an alloy obtained by adding Pd and Cu to Ag).
  • Transparent Conductor 11 A transparent metal layer (ITO) / stress adjusting layer (SiO 2 ) was sequentially laminated by the following method on the front side and the back side of the film made of cycloolefin polymer as the transparent substrate. Thereafter, the laminate was patterned in the same manner as the transparent conductor 1.
  • the layer thickness of each layer is J.I. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • ITO transparent metal layer
  • SiO 2 stress adjustment layer
  • a magnetron sputtering apparatus manufactured by Osaka Vacuum Co.
  • SiO 2 was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 300 W, and deposition rate 3.1 L / s.
  • the target-substrate distance was 90 mm.
  • the “TiO 2 layer” in the transparent conductor 13 represents that the layer mainly contains titanium oxide (TiO 2 ) and does not contain alcohol-soluble polyamide.
  • TiO 2 + PA layer indicates that the layer mainly contains titanium oxide (TiO 2 ) and contains alcohol-soluble polyamide.
  • Ag layer indicates that the layer mainly contains silver.
  • An Ag layer was formed using direct current sputtering.
  • the sputtering conditions were an input power of 1.7 W / cm 2 , a vacuum ultimate pressure of 5 ⁇ 10 ⁇ 6 torr, and a gas pressure of 2.5 ⁇ 10 ⁇ 3 torr.
  • the material of each layer provided on both sides of the transparent substrate is indicated by “/”, and “/” indicates the boundary between the layers,
  • the numerical value indicates the layer thickness (nm) of each layer.
  • the above transparent conductors 1 to 13 were produced using a Matsunami glass sheet glass (50 mm ⁇ 10 mm ⁇ thickness 0.1 mm) as a transparent base material, and warpage was performed using a laser displacement meter LA2010 manufactured by KEYENCE. The amount was measured. The warp angles at two points 5 cm apart were evaluated according to the following criteria. ⁇ : Less than 1 mrad ⁇ : 1 mrad or more and less than 5 mrad ⁇ : 5 mrad or more and less than 10 mrad ⁇ : 10 mrad or more and less than 20 mrad ⁇ : 20 mrad or more
  • Transparent conductors 1 to 13 were placed on a flat support member, and one end was fixed. Next, the transparent conductors 1 to 13 were bent in a U shape in the forward direction and the reverse direction with respect to the warp. The curvature radius of the bent portion was 5 mm. Then, the other ends of the transparent conductors 1 to 13 were fixed to a sliding plate arranged in parallel with the support member. The sliding plate was reciprocated 1000 times in the length direction of the transparent conductors 1 to 13 while keeping the sliding plate and the support member in parallel. Thereafter, whether or not cracks or the like occurred in each layer of the transparent conductors 1 to 13 was visually confirmed. The confirmation result was evaluated according to the following criteria.
  • A No crack was generated in the 30 mm ⁇ 30 mm region including the bent portion.
  • One or more cracks were generated in the 30 mm ⁇ 30 mm region including the bent portion.
  • the bent portion was included. 10 or more and less than 50 cracks occurred in an area of 30 mm ⁇ 30 mm ⁇ : 50 or more cracks occurred in an area of 30 mm ⁇ 30 mm including the bent portion
  • the transparent layer of the present invention is a laminate in which conductive layers are provided on both surfaces of a transparent substrate, and at least one of the conductive layers includes a transparent metal layer and a zinc sulfide-containing layer. It can be seen that the conductors 1 to 10 are excellent in moisture resistance and the effect of suppressing the occurrence of warping as compared with the transparent conductors 11 to 13 of the comparative example. In other functions as well, it can be seen that the transparent conductors 1 to 10 of the present invention are superior to the transparent conductors 11 to 13 of the comparative example.
  • the transparent conductors 6, 7, and 10 of the present invention in which the first sulfidation prevention layer and the second sulfidation prevention layer are provided are more transparent than the transparent conductors 1 to 5, 8, and 9 of the present invention. It turns out that it is excellent. It is considered that the formation of metal sulfide was suppressed by providing the first antisulfurization layer and the second antisulfurization layer.
  • the transparent conductor 11 of the comparative example has a large thickness and a low transmittance. In the transparent conductor 11 of the comparative example, it is considered that the transmittance can be improved if the thickness of the transparent metal layer is reduced. However, it is predicted that the conductivity is deteriorated when the thickness of the transparent metal layer is reduced. The In addition, the transparent conductor 11 of the comparative example has low crack resistance at the time of bending, which is considered because the layer thickness of the transparent metal layer is large and has crystallinity. Further, the transparent conductor 12 of the comparative example has a low warpage suppressing effect. This is presumably because the conductive layer is formed only on one surface of the transparent substrate, so that stress is generated in the transparent conductor and warpage occurs.
  • the transparent conductor 12 is greatly warped, it is considered that a large stress is applied when the transparent conductor 12 is bent in a direction opposite to the warp, so that cracks are likely to be generated. It is thought that. Since the transparent conductor 13 of the comparative example has a large thickness, the transmittance is low. Moreover, since the transparent conductor 13 does not include the zinc sulfide-containing layer, the moisture resistance is low. In addition, TiO 2 has a higher hardness than ZnS and easily generates cracks, and is a film material having a large stress. Therefore, when used as a material for a transparent conductor, cracks and warpage are likely to occur. For this reason, the transparent conductor 13 is greatly warped and has low crack resistance during bending.
  • the present invention is suitable for providing a transparent conductor excellent in moisture resistance and capable of suppressing the occurrence of warpage.

Abstract

The objective of the present invention is to provide a transparent conductor which has excellent moisture resistance and is capable of suppressing the occurrence of warp. This transparent conductive is provided with a transparent substrate (1) and conductive layers (6) which are provided on both surfaces of the transparent substrate (1). This transparent conductor is characterized in that at least one of the conductive layers (6) is a laminate that comprises a transparent metal layer (3) and a first high-refractive-index layer (2) or a second high-refractive-index layer (4), each of which contains zinc sulfide.

Description

透明導電体Transparent conductor
 本発明は、透明金属層を含む透明導電体に関する。特に、耐湿性に優れ、反りの発生を抑制できる透明導電体に関する。 The present invention relates to a transparent conductor including a transparent metal layer. In particular, the present invention relates to a transparent conductor that has excellent moisture resistance and can suppress the occurrence of warpage.
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機エレクトロルミネッセンスディスプレイ等の表示装置、タッチパネル、太陽電池等の各種装置に透明導電体が使用されている。 In recent years, transparent conductors are used in various devices such as liquid crystal displays, plasma displays, display devices such as inorganic and organic electroluminescence displays, touch panels, solar cells, and the like.
 透明導電体を構成する材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、酸化インジウムスズ(ITO;Indium Tin Oxide)等の酸化物半導体が知られている。 As a material constituting the transparent conductor, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, Cr, and In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , TiO 2 , SnO 2 are used. There are known oxide semiconductors such as ZnO and indium tin oxide (ITO).
 このような透明導電体としては、例えば、透明高分子フィルム上に、金属酸化物層及び金属層が積層され、更にその上に、環境中に存在するハロゲンイオンや水分等の侵入を抑制する透明樹脂層が積層されて構成されたものが提供されている(例えば、特許文献1参照。)。 As such a transparent conductor, for example, a metal oxide layer and a metal layer are laminated on a transparent polymer film, and a transparent ion that suppresses intrusion of halogen ions or moisture existing in the environment is further formed thereon. There is provided a structure in which resin layers are laminated (see, for example, Patent Document 1).
 しかしながら、上記従来の技術によれば、水分等の侵入を抑制する機能が十分ではなく、金属層等の腐食が発生することで、透明導電体の外観が損なわれたり、光透過率が低減したりするという問題がある。また、透明高分子フィルムの片面側のみに各層が設けられた場合には、当該透明導電体に応力が生じて反りが発生するという問題もある。 However, according to the above-described conventional technology, the function of suppressing the intrusion of moisture and the like is not sufficient, and the corrosion of the metal layer or the like occurs, so that the appearance of the transparent conductor is impaired or the light transmittance is reduced. There is a problem that. In addition, when each layer is provided only on one side of the transparent polymer film, there is a problem that stress is generated in the transparent conductor and warpage occurs.
特開2007-196552号公報JP 2007-196552 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、耐湿性に優れ、反りの発生を抑制できる透明導電体を提供することである。 The present invention has been made in view of the above problems and situations, and a solution to that problem is to provide a transparent conductor that has excellent moisture resistance and can suppress the occurrence of warpage.
 本発明に係る上記課題を解決すべく、上記問題の原因等について検討した結果、透明基板と、前記透明基板の両面に設けられた導電層と、を備え、前記導電層のうち少なくとも一方が、透明金属層及び硫化亜鉛含有層を含む積層体であることで、耐湿性に優れ、反りの発生を抑制できる透明導電体が得られることを見いだした。
 すなわち、本発明に係る課題は、以下の手段により解決される。
As a result of examining the cause of the above-mentioned problem in order to solve the above-mentioned problem according to the present invention, it comprises a transparent substrate and a conductive layer provided on both surfaces of the transparent substrate, and at least one of the conductive layers is: It has been found that a transparent conductor that has excellent moisture resistance and can suppress the occurrence of warpage is obtained by being a laminate including a transparent metal layer and a zinc sulfide-containing layer.
That is, the subject concerning this invention is solved by the following means.
 1.透明基板と、
 前記透明基板の両面に設けられた導電層と、を備え、
 前記導電層のうち少なくとも一方が、透明金属層及び硫化亜鉛含有層を含む積層体であることを特徴とする透明導電体。
1. A transparent substrate;
A conductive layer provided on both sides of the transparent substrate,
A transparent conductor, wherein at least one of the conductive layers is a laminate including a transparent metal layer and a zinc sulfide-containing layer.
 2.前記透明金属層と前記硫化亜鉛含有層との間に、硫化防止層が設けられていることを特徴とする第1項に記載の透明導電体。 2. 2. The transparent conductor according to item 1, wherein an anti-sulfurization layer is provided between the transparent metal layer and the zinc sulfide-containing layer.
 3.前記導電層又は前記透明金属層がパターン化されていることを特徴とする第1項又は第2項に記載の透明導電体。 3. The transparent conductor according to item 1 or 2, wherein the conductive layer or the transparent metal layer is patterned.
 本発明によれば、耐湿性に優れ、反りの発生を抑制できる透明導電体を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 透明基板の両面に設けられた導電層のうち少なくとも一方が、硫化亜鉛含有層を含んで構成されているので、硫化亜鉛含有層が水分の透過を抑制し、透明導電体の耐湿性を向上させることができる。これにより、透明金属層の腐食を抑制することができ、透明導電体の外観が損なわれたり透過率が低下したり抵抗値が上昇することを抑制できる。
 また、導電層が透明基板の両面に設けられているので、透明導電体の両面に生じる応力を相殺でき、反りの発生を抑制することができる。
ADVANTAGE OF THE INVENTION According to this invention, it is excellent in moisture resistance and can provide the transparent conductor which can suppress generation | occurrence | production of curvature.
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
Since at least one of the conductive layers provided on both surfaces of the transparent substrate includes a zinc sulfide-containing layer, the zinc sulfide-containing layer suppresses moisture permeation and improves the moisture resistance of the transparent conductor. be able to. Thereby, corrosion of a transparent metal layer can be suppressed and it can suppress that the external appearance of a transparent conductor is impaired, the transmittance | permeability falls, or resistance value rises.
Moreover, since the conductive layer is provided on both surfaces of the transparent substrate, the stress generated on both surfaces of the transparent conductor can be offset, and the occurrence of warpage can be suppressed.
本発明の透明導電体の層構成の一例を示す概略断面図Schematic sectional view showing an example of the layer structure of the transparent conductor of the present invention 本発明の透明導電体の層構成の他の例を示す概略断面図Schematic sectional view showing another example of the layer structure of the transparent conductor of the present invention 本発明の透明導電体の導通領域及び絶縁領域からなるパターンの一例を示す模式図The schematic diagram which shows an example of the pattern which consists of a conduction | electrical_connection area | region and an insulation area | region of the transparent conductor of this invention. 透明導電体の波長570nmのアドミッタンス軌跡を示すグラフGraph showing admittance locus of wavelength 570nm of transparent conductor
 本発明の透明導電体は、透明基板と、前記透明基板の両面に設けられた導電層と、を備え、前記導電層のうち少なくとも一方が、透明金属層及び硫化亜鉛含有層を含む積層体であることを特徴とする。この特徴は、請求項1から請求項4までの各請求項に共通する又は対応する技術的特徴である。
 また、本発明は、前記透明金属層と前記硫化亜鉛含有層との間に、硫化防止層が設けられていることが好ましい。これにより、金属硫化物が生成されることを抑制でき、透明導電体の光透過性を向上させることができる。
 また、本発明は、前記導電層又は前記透明金属層がパターン化されていることが好ましい。これにより、透明導電体を各種オプトエレクトロニクスデバイスに使用することができる。
The transparent conductor of the present invention comprises a transparent substrate and conductive layers provided on both sides of the transparent substrate, and at least one of the conductive layers is a laminate including a transparent metal layer and a zinc sulfide-containing layer. It is characterized by being. This feature is a technical feature common to or corresponding to each of claims 1 to 4.
In the present invention, it is preferable that a sulfidation prevention layer is provided between the transparent metal layer and the zinc sulfide-containing layer. Thereby, it can suppress that a metal sulfide is produced | generated and can improve the light transmittance of a transparent conductor.
In the present invention, the conductive layer or the transparent metal layer is preferably patterned. Thereby, a transparent conductor can be used for various optoelectronic devices.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
1.透明導電体の層構成
 本発明の透明導電体の層構成の例を図1及び図2に示す。図1及び図2に示されるように、本発明の透明導電体100には、透明基板1の両面に、透明基板1側から、第1高屈折率層2/透明金属層3/第2高屈折率層4が設けられている。そして、本発明の透明導電体100では、当該第1高屈折率層2及び第2高屈折率層4のうちいずれか一方又は両方が、硫化亜鉛を含有する硫化亜鉛含有層を構成している。そして、硫化亜鉛を含有する第1高屈折率層2又は第2高屈折率層4と透明金属層3との間には、硫化防止層5(5a及び5b)が設けられていることが好ましい。
 図1及び図2に示される透明導電体100においては、第1高屈折率層2及び第2高屈折率層4がともに硫化亜鉛を含有し、第1高屈折率層2と透明金属層3との間に第1硫化防止層5aが設けられ、透明金属層3と第2高屈折率層4との間に第2硫化防止層5bが設けられている例を示している。
 また、図1及び図2に示される透明導電体100においては、第1高屈折率層2、第1硫化防止層5a、透明金属層3、第2硫化防止層5b及び第2高屈折率層4が導電層6を構成している。
1. Layer configuration of transparent conductor An example of the layer configuration of the transparent conductor of the present invention is shown in FIGS. 1 and 2. As shown in FIGS. 1 and 2, the transparent conductor 100 of the present invention includes a first high refractive index layer 2 / a transparent metal layer 3 / a second high height on both sides of the transparent substrate 1 from the transparent substrate 1 side. A refractive index layer 4 is provided. In the transparent conductor 100 of the present invention, either one or both of the first high refractive index layer 2 and the second high refractive index layer 4 constitute a zinc sulfide-containing layer containing zinc sulfide. . And it is preferable that the sulfide prevention layer 5 (5a and 5b) is provided between the first high refractive index layer 2 or the second high refractive index layer 4 containing zinc sulfide and the transparent metal layer 3. .
In the transparent conductor 100 shown in FIGS. 1 and 2, the first high refractive index layer 2 and the second high refractive index layer 4 both contain zinc sulfide, and the first high refractive index layer 2 and the transparent metal layer 3. In this example, the first sulfidation preventing layer 5 a is provided between the transparent metal layer 3 and the second high refractive index layer 4.
Further, in the transparent conductor 100 shown in FIGS. 1 and 2, the first high refractive index layer 2, the first antisulfurization layer 5a, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. 4 constitutes the conductive layer 6.
 透明金属層と硫化亜鉛を含有する層とが隣接して形成されると、透明金属層を構成する金属由来の金属硫化物が生成されやすく、透明導電体の光透過性が低下しやすい。金属硫化物は、以下のように生成されると推察される。 When the transparent metal layer and the layer containing zinc sulfide are formed adjacent to each other, a metal sulfide derived from a metal constituting the transparent metal layer is likely to be generated, and the light transmittance of the transparent conductor is likely to be lowered. The metal sulfide is presumed to be produced as follows.
 硫化亜鉛含有層(第1高屈折率層)上にスパッタ法又は蒸着法等の気相成膜法で透明金属層を形成する場合、硫化亜鉛含有層中の未反応の硫黄成分が、透明金属層の材料(金属材料)によって成膜雰囲気中に弾き出される。そして、弾き出された硫黄成分と金属とが反応し、金属硫化物が硫化亜鉛含有層上に堆積する。また、硫化亜鉛含有層と透明金属層とを連続的に形成する場合、硫化亜鉛含有層の成膜雰囲気に含まれる硫黄成分が透明金属層雰囲気内に残存する。そして、この硫黄成分と金属とが反応し、金属硫化物が硫化亜鉛含有層上に堆積する。 When a transparent metal layer is formed on a zinc sulfide-containing layer (first high refractive index layer) by a vapor deposition method such as sputtering or vapor deposition, the unreacted sulfur component in the zinc sulfide-containing layer is a transparent metal. It is sputtered into the film forming atmosphere by the material of the layer (metal material). Then, the ejected sulfur component reacts with the metal, and metal sulfide is deposited on the zinc sulfide-containing layer. Moreover, when forming a zinc sulfide content layer and a transparent metal layer continuously, the sulfur component contained in the film-forming atmosphere of a zinc sulfide content layer remains in a transparent metal layer atmosphere. And this sulfur component and a metal react, and a metal sulfide deposits on a zinc sulfide content layer.
 一方、透明金属層上に硫化亜鉛含有層(第2高屈折率層)を形成する場合、透明金属層中の金属が、硫化亜鉛含有層の材料によって、成膜雰囲気中に弾き出される。そして、弾き出された金属と硫黄成分とが反応し、金属硫化物が透明金属層表面に堆積する。更に、透明金属層の表面と、成膜雰囲気中の硫黄成分とが接触することによっても、透明金属層表面に金属硫化物が生成する。 On the other hand, when the zinc sulfide-containing layer (second high refractive index layer) is formed on the transparent metal layer, the metal in the transparent metal layer is expelled into the film forming atmosphere by the material of the zinc sulfide-containing layer. The ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer. Furthermore, a metal sulfide is also generated on the surface of the transparent metal layer when the surface of the transparent metal layer comes into contact with the sulfur component in the film formation atmosphere.
 これに対し、本発明の透明導電体100では、例えば、図1に示すように、第1高屈折率層2上に、第1硫化防止層5aが積層される。当該構成では、第1高屈折率層2が第1硫化防止層5aで保護されるため、透明金属層3の形成時に第1高屈折率層2中の硫黄成分が弾き出されにくい。また、第1高屈折率層2と透明金属層3とを連続的に形成したとしても、第1高屈折率層2の成膜雰囲気に含まれる硫黄成分が、第1硫化防止層5aの構成成分と反応したり、第1硫化防止層5aの構成成分に吸着されたりする。したがって、透明金属層3の成膜雰囲気には硫黄が含まれにくく、金属硫化物の生成が抑制される。 On the other hand, in the transparent conductor 100 of the present invention, for example, as shown in FIG. 1, the first antisulfurization layer 5 a is laminated on the first high refractive index layer 2. In this configuration, since the first high refractive index layer 2 is protected by the first antisulfurization layer 5a, the sulfur component in the first high refractive index layer 2 is not easily ejected when the transparent metal layer 3 is formed. Even if the first high-refractive index layer 2 and the transparent metal layer 3 are continuously formed, the sulfur component contained in the film formation atmosphere of the first high-refractive index layer 2 is the configuration of the first antisulfurization layer 5a. It reacts with the component or is adsorbed by the component of the first antisulfurization layer 5a. Therefore, the film forming atmosphere of the transparent metal layer 3 hardly contains sulfur, and the generation of metal sulfide is suppressed.
 また、本発明の透明導電体100では、例えば、図1に示すように、透明金属層3上に第2硫化防止層5bが積層される。当該構成では、透明金属層3が第2硫化防止層5bで保護されるため、第2高屈折率層4の形成時に透明金属層3中の金属が弾き出されにくい。また、第2高屈折率層4の成膜雰囲気中の硫黄成分が、透明金属層3の表面と接触しにくい。したがって、透明金属層3表面に金属硫化物が生成しにくい。 Moreover, in the transparent conductor 100 of the present invention, for example, as shown in FIG. 1, the second antisulfurization layer 5 b is laminated on the transparent metal layer 3. In this configuration, since the transparent metal layer 3 is protected by the second antisulfurization layer 5b, the metal in the transparent metal layer 3 is not easily ejected when the second high refractive index layer 4 is formed. Further, the sulfur component in the film formation atmosphere of the second high refractive index layer 4 is difficult to come into contact with the surface of the transparent metal layer 3. Accordingly, it is difficult for metal sulfides to be generated on the surface of the transparent metal layer 3.
 本発明の透明導電体では、図1に示すように、透明金属層3が透明基板1の全面に積層されていても良いし、図2に示されるように、透明金属層3が所望の形状にパターン化されていても良い。本発明の透明導電体において、透明金属層3が積層されている領域aが、電気が導通する領域(以下、「導通領域」ともいう。)である。一方、図2に示されるように、透明金属層3が含まれない領域bが絶縁領域である。 In the transparent conductor of the present invention, the transparent metal layer 3 may be laminated on the entire surface of the transparent substrate 1 as shown in FIG. 1, or the transparent metal layer 3 has a desired shape as shown in FIG. It may be patterned. In the transparent conductor of the present invention, the region a where the transparent metal layer 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, as shown in FIG. 2, the region b where the transparent metal layer 3 is not included is an insulating region.
 導通領域a及び絶縁領域bからなるパターンは、透明導電体100の用途に応じて、適宜選択される。例えば、透明導電体100が静電方式のタッチパネルに適用される場合には、図3に示されるように、複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン等であり得る。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 100. For example, when the transparent conductor 100 is applied to an electrostatic touch panel, as shown in FIG. 3, the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. possible.
 また、本発明の透明導電体100には、透明基板1、第1高屈折率層2、透明金属層3、第2高屈折率層4及び硫化防止層5以外の層が設けられていても良い。例えば、透明金属層3の形成時に成長核になり得る、下地層が、透明金属層3と第1高屈折率層2との間において、透明金属層3に隣接して設けられていても良い。 Further, the transparent conductor 100 of the present invention may be provided with a layer other than the transparent substrate 1, the first high refractive index layer 2, the transparent metal layer 3, the second high refractive index layer 4, and the antisulfurization layer 5. good. For example, an underlayer that can be a growth nucleus when forming the transparent metal layer 3 may be provided adjacent to the transparent metal layer 3 between the transparent metal layer 3 and the first high refractive index layer 2. .
 以下、本発明の透明導電体100を構成する各層及びその材料等について説明する。 Hereinafter, each layer and its material constituting the transparent conductor 100 of the present invention will be described.
《透明基板》
 透明基板1としては、透明な基板であれば良く、従来公知の各種表示デバイスの透明基板と同様のものを用いることができる。
 ここで、本発明において、透明とは、波長550nmの光の平均透過率が50%以上であることをいう。
<Transparent substrate>
The transparent substrate 1 may be a transparent substrate and may be the same as the transparent substrate of various conventionally known display devices.
Here, in the present invention, “transparent” means that the average transmittance of light having a wavelength of 550 nm is 50% or more.
 透明基板1としては、例えば、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えば、パンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えば、ゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えば、ポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルム等が挙げられる。透明基板1が透明樹脂フィルムである場合、当該透明樹脂フィルムには2種以上の樹脂が含まれていても良い。 As the transparent substrate 1, for example, a glass substrate, a cellulose ester resin (for example, triacetyl cellulose, diacetyl cellulose, acetyl propionyl cellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Ltd.)), cyclo Olefin resins (for example, ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resins (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (Sumitomo) Chemical)), polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PET), polyethylene naphthalate), polyether sulfone, ABS / AS resin MBS resins, polystyrene, methacrylic resins, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resins), such as a transparent resin film comprising a styrene block copolymer resins. When the transparent substrate 1 is a transparent resin film, the transparent resin film may contain two or more kinds of resins.
 透明性の観点から、透明基板1の材料としては、例えば、ガラス基板や、セルロースエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムであることが好ましい。 From the viewpoint of transparency, examples of the material of the transparent substrate 1 include a glass substrate, cellulose ester resin, polycarbonate resin, polyester resin (particularly polyethylene terephthalate), triacetyl cellulose, cycloolefin resin, phenol resin, epoxy resin, and polyphenylene. A transparent resin film made of ether (PPE) resin, polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, or the like is preferable. .
 透明基板1は、可視光に対する透明性が高いことが好ましく、波長450~800nmの光の平均透過率が70%以上であることが好ましく、より好ましくは80%以上、更に好ましくは85%以上である。透明基板1の光の平均透過率が70%以上であると、透明導電体100の光透過性が高まりやすい。また、透明基板1の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは3%以下である。 The transparent substrate 1 preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and still more preferably 85% or more. is there. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均透過率は、透明基板1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率を測定し;平均吸収率=100-(平均透過率+平均反射率)として算出する。平均透過率及び平均反射率は分光光度計で測定される。 The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1. On the other hand, the average absorptance is calculated as average absorptance = 100− (average transmissivity + average reflectivity) by making light incident from the same angle as the average transmissivity and measuring the average reflectivity of the transparent substrate 1; . Average transmittance and average reflectance are measured with a spectrophotometer.
 透明基板1の波長570nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、更に好ましくは1.45~1.70である。透明基板の屈折率は、通常、透明基板の材質によって定まる。透明基板の屈折率は、エリプソメーターで測定される。 The refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. . The refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
 透明基板1のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。透明基板のヘイズ値が2.5以下であると、透明導電体のヘイズ値が抑制される。ヘイズ値は、ヘイズメーターで測定される。 The haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. When the haze value of the transparent substrate is 2.5 or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
 透明基板1の厚さは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明基板の厚さが1μm以上であると、透明基板1の強度が高まり、第1高屈折率層2の作製時に割れたり裂けたりすることを抑制できる。一方、透明基板1の厚さが20mm以下であれば、透明導電体100のフレキシブル性が十分となる。更に、透明導電体100を用いた機器の厚さを薄くすることができる。また、透明導電体100を用いた機器を軽量化することもできる。 The thickness of the transparent substrate 1 is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the transparent substrate is 1 μm or more, the strength of the transparent substrate 1 is increased, and it is possible to prevent the first high refractive index layer 2 from being cracked or torn. On the other hand, if the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient. Furthermore, the thickness of the apparatus using the transparent conductor 100 can be reduced. Moreover, the apparatus using the transparent conductor 100 can also be reduced in weight.
《第1高屈折率層》
 第1高屈折率層2は、透明導電体100の導通領域a、つまり透明金属層3が形成されている領域の光透過性(光学アドミッタンス)を調整する層であり、少なくとも透明導電体100の導通領域aに形成される。第1高屈折率層2は、透明導電体100の絶縁領域bにも形成されていても良いが、導通領域a及び絶縁領域bからなるパターンの視認性を確保する観点から、導通領域aのみに形成されていることが好ましい。
<< First high refractive index layer >>
The first high refractive index layer 2 is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor 100, that is, the region where the transparent metal layer 3 is formed. It is formed in the conduction region a. The first high refractive index layer 2 may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of ensuring the visibility of the pattern composed of the conductive region a and the insulating region b, only the conductive region a. It is preferable to be formed.
 第1高屈折率層2には、前述の透明基板1の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれる。当該誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第1高屈折率層2に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、更に好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第1高屈折率層2によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。なお、第1高屈折率層2の屈折率は、第1高屈折率層2に含まれる材料の屈折率や、第1高屈折率層2に含まれる材料の密度で調整される。 The first high refractive index layer 2 includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 described above. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable. On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2. The refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
 第1高屈折率層2に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であっても良く、導電性の材料であっても良い。誘電性材料又は酸化物半導体材料としては、金属酸化物を用いることができる。金属酸化物の例には、TiO、ITO(酸化インジウムスズ)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム亜鉛)、AZO(酸化アルミニウム亜鉛)、GZO(酸化ガリウム亜鉛)、ATO(酸化アンチモンスズ)、ICO(酸化インジウムセリウム)、Bi、Ga、GeO、WO、HfO、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)、IGZO(InGaZnO)等が挙げられる。第1高屈折率層2には、当該金属酸化物が1種のみ含まれていても良く、2種以上が含まれていても良い。 The dielectric material or the oxide semiconductor material included in the first high refractive index layer 2 may be an insulating material or a conductive material. A metal oxide can be used as the dielectric material or the oxide semiconductor material. Examples of metal oxides, TiO 2, ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2, La 2 Ti 2 O 7, IZO ( indium zinc oxide), AZO (aluminum oxide zinc), GZO (gallium oxide, zinc), ATO (antimony tin oxide), ICO (indium cerium oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (amorphous oxide composed of gallium, indium, and oxygen), IGZO (InGaZnO), and the like can be given. The first high refractive index layer 2 may contain only one kind of the metal oxide or two or more kinds.
 また、第1高屈折率層2に含まれる誘電性材料又は酸化物半導体材料としては、上記したとおり、硫化亜鉛を用いることができる。第1高屈折率層2に硫化亜鉛が含有されていると、透明金属層3への水分の透過を抑制し、透明金属層3の腐食を抑制することができる。第1高屈折率層2には、硫化亜鉛のみが含有されていても良いし、硫化亜鉛とともに他の材料が含有されていても良い。硫化亜鉛とともに含有される材料は、上記誘電性材料又は酸化物半導体材料として用いることができる金属酸化物やSiO等であり、後述するように、特に好ましくはSiOである。硫化亜鉛とともにSiOが含有されていると、第1高屈折率層2が非晶質になりやすく、透明導電体100のフレキシブル性が高まりやすい。 As described above, zinc sulfide can be used as the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2. When zinc sulfide is contained in the first high refractive index layer 2, moisture permeation to the transparent metal layer 3 can be suppressed and corrosion of the transparent metal layer 3 can be suppressed. The first high refractive index layer 2 may contain only zinc sulfide, or may contain other materials together with zinc sulfide. Material contained together with zinc sulphide, a metal oxide or SiO 2 or the like which can be used as the dielectric material or an oxide semiconductor material, as will be described later, particularly preferably SiO 2. When SiO 2 is contained together with zinc sulfide, the first high refractive index layer 2 is likely to be amorphous, and the flexibility of the transparent conductor 100 is likely to be enhanced.
 第1高屈折率層2に硫化亜鉛とともに他の材料が含有されている場合、硫化亜鉛の含有量は、第1高屈折率層2を構成する全材料の総モル数に対して、0.1~95質量%であることが好ましく、より好ましくは50~90質量%、更に好ましくは60~85質量%である。硫化亜鉛の含有量が大きいとスパッタ速度が速くなり、第1高屈折率層2の形成速度が速くなる。一方、硫化亜鉛以外の成分が多く含有されていると、第1高屈折率層2の非晶質性が高まり、第1高屈折率層2の割れが抑制される。 When the first high refractive index layer 2 contains other materials together with zinc sulfide, the content of zinc sulfide is 0. 0 relative to the total number of moles of all materials constituting the first high refractive index layer 2. The content is preferably 1 to 95% by mass, more preferably 50 to 90% by mass, and still more preferably 60 to 85% by mass. When the content of zinc sulfide is large, the sputtering rate is increased and the formation rate of the first high refractive index layer 2 is increased. On the other hand, when many components other than zinc sulfide are contained, the amorphous nature of the first high refractive index layer 2 is increased, and cracking of the first high refractive index layer 2 is suppressed.
 第1高屈折率層2の層厚は、15~150nmであることが好ましく、より好ましくは20~80nmである。第1高屈折率層2の層厚が15nm以上であると、第1高屈折率層2によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。一方、第1高屈折率層2の層厚が150nm以下であれば、第1高屈折率層2が含まれる領域の光透過性が低下しにくい。第1高屈折率層2の層厚は、エリプソメーターで測定される。 The layer thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm. When the layer thickness of the first high refractive index layer 2 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2. On the other hand, if the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease. The layer thickness of the first high refractive index layer 2 is measured with an ellipsometer.
 第1高屈折率層2は、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等の一般的な気相成膜法で形成することができる。第1高屈折率層2の屈折率(密度)が高まるとの観点から、第1高屈折率層2は、電子ビーム蒸着法又はスパッタ法で形成されることが好ましい。電子ビーム蒸着法の場合は膜密度を高めるため、IAD(イオンアシスト)などのアシストがあることが望ましい。 The first high refractive index layer 2 can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. From the viewpoint that the refractive index (density) of the first high refractive index layer 2 is increased, the first high refractive index layer 2 is preferably formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
 また、第1高屈折率層2が所望の形状にパターン化された層である場合、パターニング方法は特に制限されない。第1高屈折率層2は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であっても良いし、公知のエッチング法によってパターン化された層であっても良い。 Further, when the first high refractive index layer 2 is a layer patterned into a desired shape, the patterning method is not particularly limited. The first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the film formation surface, It may be a layer patterned by an etching method.
(アモルファス化金属材料)
 第1高屈折率層2には、硫化亜鉛を含有させることが好ましいが、アモルファス化硫化亜鉛を含有させることがより好ましい。第1高屈折率層2にアモルファス化した硫化亜鉛が含有されていることで、透明導電体100に発生する応力を低減することができ、透明導電体100に反りが発生することを抑制できるとともに、透明導電体100を折り曲げた時にクラックが発生することを抑制できる。更に、第1高屈折率層2にアモルファス化硫化亜鉛が含有されていることで、第1高屈折率層2の光透過性を向上させることができる。
(Amorphized metal material)
The first high refractive index layer 2 preferably contains zinc sulfide, but more preferably contains amorphous zinc sulfide. Since the amorphous zinc sulfide is contained in the first high refractive index layer 2, stress generated in the transparent conductor 100 can be reduced, and warpage of the transparent conductor 100 can be suppressed. It is possible to suppress the generation of cracks when the transparent conductor 100 is bent. Furthermore, since the first high refractive index layer 2 contains amorphous zinc sulfide, the light transmittance of the first high refractive index layer 2 can be improved.
 第1高屈折率層2に硫化亜鉛とともに、金属酸化物、金属窒化物又は金属フッ化物等のアモルファス化金属材料を含有させることで、硫化亜鉛をアモルファス化することができる。アモルファス化金属材料としては、硫化亜鉛に対して1~50質量%混合させることで硫化亜鉛のアモルファス化を達成することができ、5~20質量%混合させることが好ましい。また、アモルファス化金属材料の含有量を適宜調整することで、光の屈折率が変更可能である。そのため、光の透過度を所望のものにすることができる。具体的には、第1高屈折率層2に、例えば、硫化亜鉛よりも屈折率の高い透明材料であるTiOやNbをアモルファス化金属材料として含有させることで、アモルファス化していない、すなわち結晶性の硫化亜鉛単体からなる第1高屈折率層と比べて、反射帯域を拡げることができる。これにより、透明導電体100の光学特性の調整が容易になる。 By making the first high refractive index layer 2 contain an amorphous metal material such as metal oxide, metal nitride or metal fluoride together with zinc sulfide, the zinc sulfide can be made amorphous. As the amorphized metal material, it is possible to achieve amorphization of zinc sulfide by mixing 1 to 50% by mass with respect to zinc sulfide, and it is preferable to mix 5 to 20% by mass. Further, the refractive index of light can be changed by appropriately adjusting the content of the amorphized metal material. Therefore, the light transmittance can be set as desired. Specifically, the first high refractive index layer 2 is not made amorphous by including, for example, TiO 2 or Nb 2 O 5 which is a transparent material having a higher refractive index than zinc sulfide as an amorphized metal material. That is, the reflection band can be expanded as compared with the first high refractive index layer made of crystalline zinc sulfide alone. This facilitates adjustment of the optical characteristics of the transparent conductor 100.
 また、アモルファス化金属材料を用いてアモルファス化した硫化亜鉛は、より良好な耐久性を有する。そのため、透明金属層3の保護をより確実に行うことができる。したがって、例えば、第1高屈折率層2に硫化亜鉛とともにアモルファス化金属材料としてSiやAl等を含有させることで、透明導電体100の擦傷性を改善させることが可能になる。 In addition, zinc sulfide that has been amorphized using an amorphized metal material has better durability. Therefore, the transparent metal layer 3 can be protected more reliably. Therefore, for example, by containing Si 3 N 4 or Al 2 O 3 as an amorphized metal material together with zinc sulfide in the first high refractive index layer 2, it is possible to improve the scratch resistance of the transparent conductor 100. Become.
 アモルファス化金属材料としては、例えば、金属酸化物、金属フッ化物、金属窒化物等を用いることができる。 As the amorphized metal material, for example, a metal oxide, a metal fluoride, a metal nitride, or the like can be used.
 アモルファス化金属材料として用いられる金属酸化物としては、例えば、TiO、In、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、ITO(InSnO)、IGZO(InGaZnO)、IZO(InZnO)、AZO(AlZnO)、GZO(GaZnO)、ATO(AlSnO)、ICO(InCeO)、Bi、a-GIO(GaInO)、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO等が挙げられる。 Examples of the metal oxide used as the amorphized metal material include TiO 2 , In 2 O 5 , ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , and Ti 4 O 7. , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , ITO (InSnO), IGZO (InGaZnO), IZO (InZnO), AZO (AlZnO), GZO (GaZnO), ATO (AlSnO), ICO ( InCeO), Bi 2 O 3 , a-GIO (GaInO), Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 and the like.
 これらの中でも、SiO及びTiOが好ましい。SiOを用いる場合、その含有量が少量でも、硫化亜鉛のアモルファス化が可能である。そのため、SiOを含有させることで、硫化亜鉛のアモルファス化後に、高い密着性(耐剥離性)や高い耐久性(例えば耐湿性等)を特に良好に奏させることができる。また、TiOは透明材料の中でも特に高屈折率を示すため、TiOを用いることで、反射帯域を広くして反射率を高め、反射特性を向上させることができる。 Among these, SiO 2 and TiO 2 are preferable. When SiO 2 is used, zinc sulfide can be made amorphous even if its content is small. Therefore, by incorporating the SiO 2, it is possible to after amorphization of zinc sulfide, particularly well exhibited a high adhesion (peeling resistance) and high durability (such as against moisture, etc.). In addition, since TiO 2 exhibits a particularly high refractive index among transparent materials, by using TiO 2 , the reflection band can be widened to increase the reflectance, and the reflection characteristics can be improved.
 また、アモルファス化金属材料として用いられる金属フッ化物としては、例えば、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等が挙げられる。 Examples of the metal fluoride used as the amorphized metal material include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3, YF 3, and the like.
 更に、アモルファス化金属材料として用いられる金属窒化物としては、例えば、Si、AlN等が挙げられる。これらの中でも、Siが好ましい。Siは硬度が高いため、Siを用いることで、第1高屈折率層2の耐擦傷性を向上させることができる。 Furthermore, examples of the metal nitride used as the amorphized metal material include Si 3 N 4 and AlN. Among these, Si 3 N 4 is preferable. Since Si 3 N 4 has high hardness, it is possible to improve the scratch resistance of the first high refractive index layer 2 by using Si 3 N 4 .
 なお、これらのアモルファス化金属材料は単独で用いられても良いし、二種以上が任意の比率及び組み合わせで用いられても良い。 Note that these amorphized metal materials may be used alone, or two or more of them may be used in any ratio and combination.
 アモルファス化硫化亜鉛を得るために、結晶性の硫化亜鉛に対して含有させるアモルファス化金属材料の量に特に制限はない。例えば、アモルファス化金属材料の種類によっても異なるため一概にはいえないものの、アモルファス化金属材料としてSiOを用いる場合、結晶性の硫化亜鉛に対して、通常1質量%以上、より好ましくは5質量%以上であって、通常99質量%以下、より好ましくは95質量%以下のSiOを含有させることで、アモルファス化硫化亜鉛とすることができる。 In order to obtain the amorphized zinc sulfide, there is no particular limitation on the amount of the amorphized metal material contained with respect to the crystalline zinc sulfide. For example, although it cannot be generally described because it varies depending on the type of amorphized metal material, when SiO 2 is used as the amorphized metal material, it is usually 1% by mass or more, more preferably 5% by mass with respect to crystalline zinc sulfide. % Or more and usually 99% by mass or less, and more preferably 95% by mass or less of SiO 2 can be used to make amorphous zinc sulfide.
《第1硫化防止層》
 第1高屈折率層2が硫化亜鉛を含有する場合、図1に示すように、第1高屈折率層2と透明金属層3との間に第1硫化防止層5aが設けられることが好ましい。第1硫化防止層5aは、透明導電体100の絶縁領域bにも形成されていても良いが、導通領域a及び絶縁領域bからなるパターンの視認性を確保する観点から、導通領域aのみに形成されていることが好ましい。
<First antisulfuration layer>
When the first high refractive index layer 2 contains zinc sulfide, it is preferable that a first sulfidation preventing layer 5a is provided between the first high refractive index layer 2 and the transparent metal layer 3, as shown in FIG. . The first sulfidation preventing layer 5a may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of ensuring the visibility of the pattern made up of the conductive region a and the insulating region b, only the conductive region a is provided. Preferably it is formed.
 当該第1硫化防止層5aの材料としては、例えば、金属酸化物、金属窒化物、金属フッ化物等又はZnを用いることができる。第1硫化防止層5aには、これらが一種のみ含まれていても良いし、二種以上含まれていても良い。ただし、第1高屈折率層2と、第1硫化防止層5aと、透明金属層3とが連続的に形成される場合には、第1硫化防止層は、硫黄と反応可能な化合物や、硫黄を吸着可能な化合物を含有していることが好ましい。第1硫化防止層に含有されている材料が、硫黄と反応する化合物である場合、当該硫黄との反応生成物は可視光透過率が高いことが好ましい。 As the material of the first antisulfurization layer 5a, for example, metal oxide, metal nitride, metal fluoride, or Zn can be used. The first sulfidation preventing layer 5a may contain only one kind or two or more kinds. However, when the first high refractive index layer 2, the first antisulfurization layer 5a, and the transparent metal layer 3 are continuously formed, the first antisulfurization layer is composed of a compound capable of reacting with sulfur, It preferably contains a compound capable of adsorbing sulfur. When the material contained in the first sulfurization prevention layer is a compound that reacts with sulfur, the reaction product with sulfur preferably has a high visible light transmittance.
 金属酸化物としては、例えば、TiO、ITO、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO、IGZO、M3(登録商標、メルクジャパン社製、酸化アルミニウムと酸化ランタンとの混合物)、In等を挙げることができる。
 金属フッ化物としては、例えば、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等を挙げることができる。
 金属窒化物としては、例えば、Si、AlN等を挙げることができる。
 中でも、第1硫化防止層5aを構成する材料としては、金属酸化物が好ましく、特に、ZnO、ITO、IGZO、Ga、Nb、SnO、Y及びM3が好ましい。これにより、第1高屈折率層2又は第2高屈折率層4に含まれる硫化亜鉛との密着性を高めることができ、耐久性をより向上させることができる。
Examples of the metal oxide include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , IGZO, M3 (registered trademark, manufactured by Merck Japan, a mixture of aluminum oxide and lanthanum oxide), In 2 O 5 and the like can be mentioned.
Examples of the metal fluoride include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. Can do.
Examples of the metal nitride include Si 3 N 4 and AlN.
Among them, as the material constituting the first anti-sulfuration layer 5a, preferably a metal oxide, in particular, ZnO, ITO, IGZO, Ga 2 O 3, Nb 2 O 5, SnO 2, Y 2 O 3 , and M3 are preferably . Thereby, adhesiveness with the zinc sulfide contained in the 1st high refractive index layer 2 or the 2nd high refractive index layer 4 can be improved, and durability can be improved more.
 ここで、第1硫化防止層5aの層厚は、後述する透明金属層3の形成時の衝撃から、第1高屈折率層2の表面を保護可能な層厚であることが好ましい。一方で、第1高屈折率層に含有され得る硫化亜鉛は、透明金属層3に含有される金属との親和性が高い。そのため、第1硫化防止層5aの層厚が非常に薄く、第1高屈折率層2の一部が僅かに露出していると、当該露出部分を中心に透明金属層が成長し、透明金属層3が緻密になりやすい。つまり、第1硫化防止層5aは比較的薄いことが好ましく、0.1~10nmであることが好ましく、より好ましくは0.5~5nmであり、更に好ましくは1~3nmである。第1硫化防止層5aの層厚は、エリプソメーターで測定される。 Here, the layer thickness of the first antisulfurization layer 5a is preferably a layer thickness that can protect the surface of the first high refractive index layer 2 from an impact during the formation of the transparent metal layer 3 described later. On the other hand, zinc sulfide that can be contained in the first high refractive index layer has high affinity with the metal contained in the transparent metal layer 3. Therefore, if the thickness of the first anti-sulfurization layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal layer grows around the exposed part, and the transparent metal Layer 3 tends to be dense. That is, the first antisulfurization layer 5a is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm. The layer thickness of the first sulfurization preventing layer 5a is measured with an ellipsometer.
 第1硫化防止層5aは、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等の一般的な気相成膜法で形成することができる。 The first sulfidation preventing layer 5a can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
 第1硫化防止層5aが、所望の形状にパターン化された層である場合、パターニング方法は特に制限されない。第1硫化防止層5aは、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であっても良いし、公知のエッチング法によってパターン化された層であっても良い。 When the first antisulfurization layer 5a is a layer patterned into a desired shape, the patterning method is not particularly limited. The first sulfidation preventing layer 5a may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the film formation surface, or a known etching method. It may be a layer patterned by a method.
《透明金属層》
 透明金属層3は、透明導電体100において電気を導通させるための層である。透明金属層3は、前述のように、透明基板1の全面に形成されていても良いし、所望の形状にパターン化されていても良い。
《Transparent metal layer》
The transparent metal layer 3 is a layer for conducting electricity in the transparent conductor 100. As described above, the transparent metal layer 3 may be formed on the entire surface of the transparent substrate 1 or may be patterned into a desired shape.
 透明金属層3に含有される金属は、導電性の高い金属であれば特に制限されず、例えば、銀、銅、金、白金族、チタン、クロム、パラジウム、ルテニウム、ビスマス、タンタル等を用いることができる。透明金属層3には、これらの金属が1種のみ含有されていても良いし、2種以上含有されていても良い。 The metal contained in the transparent metal layer 3 is not particularly limited as long as it is a highly conductive metal. For example, silver, copper, gold, platinum group, titanium, chromium, palladium, ruthenium, bismuth, tantalum, or the like is used. Can do. The transparent metal layer 3 may contain only one kind of these metals or two or more kinds.
 高い導電性を得る観点から、透明金属層は、銀、又は、銀が90at%以上含まれる合金からなることが好ましい。
 銀と組み合わされる金属としては、例えば、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム、モリブデン、ニッケル、鉄、コバルト、タングステン、タンタル、クロム、インジウム、チタン等を用いることができる。中でも、ビスマス、パラジウム又は銅が好ましい。透明金属層3には、銀の単体又は化合物と、ビスマス、パラジウム又は銅の単体又は化合物とが併存していても良いし、銀とこれらの金属のうち少なくとも一つとの合金の形態で含まれていても良いが、合金の形態で含まれていることが好ましい。また、透明金属層3を構成する材料の全てが、銀とこれらの金属のうち少なくとも一つとの合金であることが好ましい。透明金属層3にこれらの金属のうち少なくとも一つが含まれることで、透明導電体100の耐久性や耐剥離性等をより向上させることができる。
 また、例えば、透明金属層3が銀と亜鉛との合金を含有する場合、透明金属層3の耐硫化性を向上させることができる。また、例えば、透明金属層3が銀と金との合金を含有する場合、透明金属層3の耐塩(NaCl)性を向上させることができる。更に、例えば、透明金属層3が銀と銅との合金を含有する場合、透明金属層3の耐酸化性を向上させることができる。
From the viewpoint of obtaining high conductivity, the transparent metal layer is preferably made of silver or an alloy containing 90 at% or more of silver.
As a metal combined with silver, for example, zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, nickel, iron, cobalt, tungsten, tantalum, chromium, indium, titanium, or the like can be used. Among these, bismuth, palladium or copper is preferable. The transparent metal layer 3 may contain a simple substance or compound of silver and a simple substance or compound of bismuth, palladium, or copper, or is included in the form of an alloy of silver and at least one of these metals. However, it is preferably included in the form of an alloy. Moreover, it is preferable that all of the materials constituting the transparent metal layer 3 are an alloy of silver and at least one of these metals. By including at least one of these metals in the transparent metal layer 3, the durability, peel resistance, etc. of the transparent conductor 100 can be further improved.
For example, when the transparent metal layer 3 contains an alloy of silver and zinc, the sulfidation resistance of the transparent metal layer 3 can be improved. For example, when the transparent metal layer 3 contains an alloy of silver and gold, the salt resistance (NaCl) resistance of the transparent metal layer 3 can be improved. Furthermore, for example, when the transparent metal layer 3 contains an alloy of silver and copper, the oxidation resistance of the transparent metal layer 3 can be improved.
 透明金属層3のプラズモン吸収率は、波長400~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、5%以下であることが更に好ましい。波長400~800nmの一部にプラズモン吸収率が大きい領域があると、透明導電体100の導通領域aの透過光が着色しやすくなる。 The plasmon absorptivity of the transparent metal layer 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 100 is likely to be colored.
 透明金属層3の波長400~800nmにおけるプラズモン吸収率は、以下の手順で測定される。
 (i)ガラス基板上に、白金パラジウムをマグネトロンスパッタ装置にて0.1nm形成する。白金パラジウムの平均厚さは、スパッタ装置のメーカー公称値の形成速度等から算出する。その後、白金パラジウムが付着した基板上にスパッタ法にて金属からなる膜を20nm形成する。
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の透過率及び反射率を測定する。そして、各波長における透過率及び反射率から、吸収率=100-(透過率+反射率)を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。
 (iii)続いて、測定対象の透明金属層を同様のガラス基板上に形成する。そして、当該透明金属層について、同様に透過率及び反射率を測定する。得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。
The plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 3 is measured by the following procedure.
(I) Platinum palladium is formed to 0.1 nm on a glass substrate by a magnetron sputtering apparatus. The average thickness of platinum palladium is calculated from the formation rate of the manufacturer's nominal value of the sputtering apparatus. After that, a 20 nm thick metal film is formed by sputtering on the substrate to which platinum palladium is attached.
(Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal line of the surface of the obtained metal film, and the transmittance and reflectance of the metal film are measured. Then, absorption rate = 100− (transmittance + reflectance) is calculated from the transmittance and reflectance at each wavelength, and this is used as reference data. The transmittance and reflectance are measured with a spectrophotometer.
(Iii) Subsequently, a transparent metal layer to be measured is formed on the same glass substrate. And about the said transparent metal layer, the transmittance | permeability and a reflectance are measured similarly. The reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
 透明金属層3の層厚は、10nm以下であり、好ましくは3~9nmであり、更に好ましくは5~8nmである。透明金属層3の層厚が10nm以下であると、第1高屈折率層2及び第2高屈折率層4によって、透明導電体100の光学アドミッタンスが調整されやすく、導通領域a表面での光の反射が抑制されやすい。透明金属層3の層厚は、エリプソメーターで測定される。 The layer thickness of the transparent metal layer 3 is 10 nm or less, preferably 3 to 9 nm, and more preferably 5 to 8 nm. When the thickness of the transparent metal layer 3 is 10 nm or less, the optical admittance of the transparent conductor 100 can be easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 4, and light on the surface of the conduction region a can be adjusted. The reflection of is easy to be suppressed. The layer thickness of the transparent metal layer 3 is measured with an ellipsometer.
 透明金属層3は、いずれの形成方法で形成されたものであっても良いが、透明金属層の平均透過率を高める観点から、スパッタ法で形成された層であることが好ましく、また、後述する下地層上に形成された層であることが好ましい。 The transparent metal layer 3 may be formed by any method, but is preferably a layer formed by a sputtering method from the viewpoint of increasing the average transmittance of the transparent metal layer. Preferably, the layer is formed on the underlying layer.
 スパッタ法では、形成時に材料が被成膜体に高速で衝突するため、緻密かつ平滑な膜が得られやすく、透明金属層3の光透過性を向上させることができる。また、透明金属層3がスパッタ法により形成された層であると、透明金属層3が高温かつ低湿度な環境においても腐食しにくくなる。スパッタ法の種類は特に制限されず、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法、対向スパッタ法等を用いることができる。透明金属層3は、特に、対向スパッタ法で形成された層であることが好ましい。透明金属層3が、対向スパッタ法で形成された層であると、透明金属層3が緻密になり、表面平滑性が高まりやすい。その結果、透明金属層3の表面電気抵抗をより低減させることができ、光の透過率も向上させることができる。 In the sputtering method, since the material collides with the deposition target at high speed during formation, a dense and smooth film can be easily obtained, and the light transmittance of the transparent metal layer 3 can be improved. Further, when the transparent metal layer 3 is a layer formed by sputtering, the transparent metal layer 3 is hardly corroded even in a high temperature and low humidity environment. The type of the sputtering method is not particularly limited, and an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like can be used. The transparent metal layer 3 is particularly preferably a layer formed by a counter sputtering method. When the transparent metal layer 3 is a layer formed by a counter sputtering method, the transparent metal layer 3 becomes dense and the surface smoothness is likely to be increased. As a result, the surface electrical resistance of the transparent metal layer 3 can be further reduced, and the light transmittance can be improved.
 一方、透明金属層3が後述する下地層上に形成された層である場合、透明金属層3の形成時に下地層が成長核となるか、又は透明金属に対して濡れ性が高くなるため、透明金属層3が平滑な層になりやすい。その結果、透明金属層3が薄くとも、プラズモン吸収が生じにくくなる。この場合、透明金属層3の形成方法は特に制限されず、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等の一般的な気相成膜法を用いることができる。 On the other hand, when the transparent metal layer 3 is a layer formed on an underlayer to be described later, the underlayer becomes a growth nucleus when the transparent metal layer 3 is formed, or wettability with respect to the transparent metal is increased. The transparent metal layer 3 tends to be a smooth layer. As a result, even if the transparent metal layer 3 is thin, plasmon absorption is less likely to occur. In this case, the method for forming the transparent metal layer 3 is not particularly limited. For example, a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method is used. Can do.
 また、透明金属層3が所望の形状にパターン化された層である場合、パターニング方法は特に制限されない。透明金属層3は、例えば、所望のパターンを有するマスクを配置して形成された膜であっても良いし、公知のエッチング法によってパターン化された層であっても良い。 Further, when the transparent metal layer 3 is a layer patterned in a desired shape, the patterning method is not particularly limited. The transparent metal layer 3 may be, for example, a film formed by arranging a mask having a desired pattern, or may be a layer patterned by a known etching method.
《第2硫化防止層》
 第2高屈折率層4が硫化亜鉛を含有する場合、図1に示すように、透明金属層3と第2高屈折率層4との間に第2硫化防止層5bが設けられることが好ましい。
 第2硫化防止層5bは、上記第1硫化防止層5aと同様に構成されているため、共通する点について説明を省略し、第1硫化防止層5aと異なっている点についてのみ以下に説明する。
<Second anti-sulfur layer>
When the second high refractive index layer 4 contains zinc sulfide, it is preferable to provide a second antisulfurization layer 5b between the transparent metal layer 3 and the second high refractive index layer 4 as shown in FIG. .
Since the second sulfidation preventing layer 5b is configured in the same manner as the first sulfidation preventing layer 5a, the description of common points will be omitted, and only the points different from the first sulfidation preventing layer 5a will be described below. .
 第2硫化防止層5bの層厚は、第2高屈折率層4の形成時の衝撃から、透明金属層3の表面を保護可能な層厚であることが好ましい。透明金属層3に含有される金属と、第2高屈折率層4に含有され得る硫化亜鉛は、親和性が高い。そのため、第2硫化防止層5bの層厚が非常に薄く、透明金属層3の一部が僅かに露出していると、透明金属層3や第2硫化防止層5bと第2高屈折率層4との密着性が高まりやすい。したがって、第2硫化防止層5bの具体的な層厚は0.1~10nmであることが好ましく、より好ましくは0.5~5nmであり、更に好ましくは1~3nmである。第2硫化防止層5bの層厚は、エリプソメーターで測定される。 The layer thickness of the second antisulfurization layer 5b is preferably a layer thickness that can protect the surface of the transparent metal layer 3 from an impact when the second high refractive index layer 4 is formed. The metal contained in the transparent metal layer 3 and the zinc sulfide that can be contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second antisulfurization layer 5b is very thin and a part of the transparent metal layer 3 is slightly exposed, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. Adhesion with 4 tends to increase. Therefore, the specific layer thickness of the second sulfidation preventing layer 5b is preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and still more preferably 1 to 3 nm. The layer thickness of the second sulfurization preventing layer 5b is measured with an ellipsometer.
《第2高屈折率層》
 第2高屈折率層4は、透明導電体100の導通領域a、つまり透明金属層3が形成されている領域の光透過性(光学アドミッタンス)を調整するための層であり、少なくとも透明導電体100の導通領域aに形成される。
 第2高屈折率層4は、上記第1高屈折率層2と同様に構成されているため、共通する点について説明を省略し、第1高屈折率層2と異なっている点についてのみ以下に説明する。
<< Second high refractive index layer >>
The second high refractive index layer 4 is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor 100, that is, the region where the transparent metal layer 3 is formed, and at least the transparent conductor 100 conductive regions a are formed.
Since the second high-refractive index layer 4 is configured in the same manner as the first high-refractive index layer 2, description of common points is omitted, and only differences from the first high-refractive index layer 2 are described below. Explained.
 上記したとおり、第2高屈折率層4には硫化亜鉛が含有されていても良く、第2高屈折率層4に硫化亜鉛が含有されていると、透明金属層3への水分の透過を抑制し、透明金属層3の腐食を抑制することができる。 As described above, the second high-refractive index layer 4 may contain zinc sulfide. If the second high-refractive index layer 4 contains zinc sulfide, moisture permeation into the transparent metal layer 3 is prevented. It is possible to suppress the corrosion of the transparent metal layer 3.
 第2高屈折率層4は、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等の一般的な気相成膜法で形成することができるが、第2高屈折率層4の透湿性を低減する観点から、第2高屈折率層4はスパッタ法で形成されることが特に好ましい。 The second high refractive index layer 4 can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, etc. From the viewpoint of reducing the moisture permeability of the high refractive index layer 4, the second high refractive index layer 4 is particularly preferably formed by a sputtering method.
《応力調整層》
 透明導電体100は、透明導電体100の両面のうち少なくとも一方の面に設けられることで、当該面の応力を調整し、透明導電体100の両面の応力差を低減する応力調整層(図示略)を更に備えていても良い。応力調整層としては、隣接する層との屈折率差が低くなるように構成されていることが好ましく、例えば、応力調整層と隣接する層との屈折率差が20%以内となるように構成されていることが好ましい。
《Stress adjustment layer》
The transparent conductor 100 is provided on at least one surface of both surfaces of the transparent conductor 100, thereby adjusting the stress on the surface and reducing the stress difference between both surfaces of the transparent conductor 100 (not shown). ) May be further provided. The stress adjustment layer is preferably configured such that the difference in refractive index between adjacent layers is low. For example, the difference in refractive index between the stress adjustment layer and adjacent layers is within 20%. It is preferable that
 応力調整層は、透明導電体100の応力を調整することができれば、いずれの材料であっても良いが、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリイミド、ポリアミド、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、トリアセチルセルロース、ポリウレタン、シクロオレフィンポリマー等の高分子材料を用いることができる。中でも、透明性、耐久性、加工性等の観点から、ポリエチレンテレフタレート、ポリカーボネート、ポリメタクリル酸メチル、シクロオレフィンポリマー等であることが好ましい。応力調整層には、これらのうち1種のみ含まれていても良いし、2種以上が含まれていても良い。 The stress adjustment layer may be any material as long as the stress of the transparent conductor 100 can be adjusted. For example, polyethylene terephthalate, polycarbonate, polymethyl methacrylate, polyethylene, polypropylene, ethylene-vinyl acetate copolymer High polymer, polystyrene, polyimide, polyamide, polybutylene terephthalate, polyethylene naphthalate, polysulfone, polyethersulfone, polyetheretherketone, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, triacetyl cellulose, polyurethane, cycloolefin polymer, etc. Molecular materials can be used. Among these, polyethylene terephthalate, polycarbonate, polymethyl methacrylate, cycloolefin polymer, and the like are preferable from the viewpoints of transparency, durability, workability, and the like. Only one of these may be included in the stress adjusting layer, or two or more thereof may be included.
 また、応力調整層は、例えばSiO、ITO、IGZO、ZnO又はZnS等の蒸着膜又はスパッタ膜であっても良いし、ハードコート層やポリマーを塗布した層であっても良い。特に、光学調整の観点から、応力調整層は蒸着膜又はスパッタ膜であることが好ましい。 Further, the stress adjusting layer may be a deposited film or a sputtered film such as SiO 2 , ITO, IGZO, ZnO or ZnS, or may be a hard coat layer or a layer coated with a polymer. In particular, from the viewpoint of optical adjustment, the stress adjustment layer is preferably a deposited film or a sputtered film.
 応力調整層の層厚は、透明導電体100の応力を調整できるように設定されていれば良く、その材料や形成方法に応じて適宜設定されるものである。
 また、応力調整層は、透明導電体100の最表面に設けられていても良いし、透明導電体100を構成する各層の機能を損なわない範囲内で各層のいずれの層間に設けられていても良い。また、応力調整層は、透明基板の両面に設けられていても良く、その場合には、互いに異なる層厚や材料であっても良い。
The layer thickness of the stress adjusting layer may be set as long as the stress of the transparent conductor 100 can be adjusted, and is appropriately set according to the material and the forming method.
In addition, the stress adjustment layer may be provided on the outermost surface of the transparent conductor 100, or may be provided between any layers of each layer within a range not impairing the function of each layer constituting the transparent conductor 100. good. Moreover, the stress adjustment layer may be provided on both surfaces of the transparent substrate, and in that case, the layer thickness and the material may be different from each other.
《下地層》
 前述のように、透明導電体100は、透明金属層3の形成時に成長核となる下地層(図示略)を更に備えていても良い。下地層は、透明金属層3の透明基板1側に隣接して設けられ、具体的には、第1高屈折率層2と透明金属層3との間、又は、第1硫化防止層5aと透明金属層3との間に設けられる。下地層は、少なくとも透明導電体100の導通領域aに形成されていることが好ましいが、透明導電体100の絶縁領域bに形成されていても良い。
<Underlayer>
As described above, the transparent conductor 100 may further include an underlayer (not shown) that becomes a growth nucleus when the transparent metal layer 3 is formed. The underlayer is provided adjacent to the transparent metal layer 3 on the transparent substrate 1 side, specifically, between the first high refractive index layer 2 and the transparent metal layer 3 or the first antisulfurization layer 5a. It is provided between the transparent metal layer 3. The underlayer is preferably formed at least in the conductive region a of the transparent conductor 100, but may be formed in the insulating region b of the transparent conductor 100.
 透明導電体100が下地層を備えていると、透明金属層3の層厚が薄くとも、透明金属層3の表面の平滑性を高めることができる。 If the transparent conductor 100 is provided with a base layer, the smoothness of the surface of the transparent metal layer 3 can be enhanced even if the thickness of the transparent metal layer 3 is thin.
 ここで、下地層には、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ、インジウム、又はこれらの金属と他の金属との合金や、これらの金属の酸化物や硫化物(例えば、硫化亜鉛)が含まれていることが好ましい。中でも、パラジウム又はモリブデンが含まれていることが特に好ましい。また、下地層には、窒素含有有機化合物等が含まれていても良い。下地層には、これらが一種のみ含まれていても良いし、二種以上が含まれていても良い。 Here, the underlayer includes palladium, molybdenum, zinc, germanium, niobium, indium, alloys of these metals with other metals, oxides or sulfides of these metals (for example, zinc sulfide). It is preferable that Among these, it is particularly preferable that palladium or molybdenum is contained. Further, the underlayer may contain a nitrogen-containing organic compound or the like. The underlayer may contain only one kind or two or more kinds.
 下地層に、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウムと他の金属との合金が含まれている場合、当該他の金属としては、特に制限されないが、例えば、パラジウム以外の白金族、金、コバルト、ニッケル、チタン、アルミニウム、クロム等を用いることができる。 When the base layer contains an alloy of palladium, molybdenum, zinc, germanium, niobium, or indium and another metal, the other metal is not particularly limited. For example, a platinum group other than palladium, gold Cobalt, nickel, titanium, aluminum, chromium, etc. can be used.
 下地層が所望の形状にパターン化された層である場合、パターニング方法は特に制限されない。下地層は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であっても良いし、公知のエッチング法によってパターン化された層であっても良い。 When the underlayer is a layer patterned in a desired shape, the patterning method is not particularly limited. The underlayer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface, or patterned by a known etching method. It may be a layer formed.
《低屈折率層》
 透明導電体100は、第2高屈折率層4上に、透明導電体の導通領域aの光透過性(光学アドミッタンス)を調整する低屈折率層(図示略)を更に備えていても良い。低屈折率層は、透明導電体100の導通領域aにのみ形成されていても良いし、透明導電体100の導通領域a及び絶縁領域bの両方に形成されていても良い。
<Low refractive index layer>
The transparent conductor 100 may further include a low refractive index layer (not shown) that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor on the second high refractive index layer 4. The low refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
 低屈折率層には、第1高屈折率層2及び第2高屈折率層4に含まれる誘電性材料又は酸化物半導材料の波長570nmの光の屈折率より、波長570nmの光の屈折率が低い誘電性材料又は酸化物半導体材料が含まれている。低屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、第1高屈折率層2及び第2高屈折率層4に含まれている上記材料の波長570nmの光の屈折率より、それぞれ0.2以上低いことが好ましく、0.4以上低いことがより好ましい。 In the low refractive index layer, the refractive index of light having a wavelength of 570 nm is higher than the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2 and the second high refractive index layer 4. A dielectric material or oxide semiconductor material having a low rate is included. The refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material included in the low refractive index layer is the wavelength of 570 nm of the material included in the first high refractive index layer 2 and the second high refractive index layer 4. The refractive index of each light is preferably 0.2 or more lower, more preferably 0.4 or more lower.
 低屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.8未満であることが好ましく、より好ましくは1.30~1.6であり、特に好ましくは1.35~1.5である。なお、低屈折率層の屈折率は主に、低屈折率層に含まれる材料の屈折率や、低屈折率層に含まれる材料の密度で調整される。 The specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is preferably less than 1.8, more preferably 1.30 to 1.6, Particularly preferred is 1.35 to 1.5. The refractive index of the low refractive index layer is mainly adjusted by the refractive index of the material included in the low refractive index layer and the density of the material included in the low refractive index layer.
 低屈折率層に含まれる誘電性材料又は酸化物半導体材料としては、例えば、MgF、SiO、AlF、CaF、CeF、CdF、LaF、LiF、NaF、NdF、YF、YbF、Ga、LaAlO、NaAlF、Al、MgO、又はThO等を挙げることができる。中でも、MgF、SiO、CaF、CeF、LaF、LiF、NaF、NdF、NaAlF、Al、MgO又はThOであることが好ましく、屈折率が低いという観点からMgF又はSiOであることが特に好ましい。低屈折率層には、これらの材料が1種のみ含まれていても良いし、2種以上含まれていても良い。 Examples of the dielectric material or oxide semiconductor material included in the low refractive index layer include MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, NdF 3 , and YF 3. , YbF 3 , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, or ThO 2 . Among them, MgF 2 , SiO 2 , CaF 2 , CeF 3 , LaF 3 , LiF, NaF, NdF 3 , Na 3 AlF 6 , Al 2 O 3 , MgO or ThO 2 are preferable, and a viewpoint that the refractive index is low. To MgF 2 or SiO 2 is particularly preferred. Only one of these materials may be included in the low refractive index layer, or two or more of these materials may be included.
 低屈折率層の層厚は、10~150nmであることが好ましく、より好ましくは20~100nmである。低屈折率層の層厚が10nm以上であると、透明導電体100表面の光学アドミッタンスが微調整されやすい。一方、低屈折率層の層厚が150nm以下であれば、透明導電体100の厚さが薄くなる。低屈折率層の層厚は、エリプソメーターで測定される。 The layer thickness of the low refractive index layer is preferably 10 to 150 nm, more preferably 20 to 100 nm. When the thickness of the low refractive index layer is 10 nm or more, the optical admittance on the surface of the transparent conductor 100 is easily finely adjusted. On the other hand, if the thickness of the low refractive index layer is 150 nm or less, the thickness of the transparent conductor 100 is reduced. The layer thickness of the low refractive index layer is measured with an ellipsometer.
 低屈折率層は、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等の一般的な気相成膜法で形成することができる。層形成の容易性等の観点から、低屈折率層は、電子ビーム蒸着法又はスパッタ法で形成されることが好ましい。 The low refractive index layer can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. From the viewpoint of easiness of layer formation, etc., the low refractive index layer is preferably formed by electron beam evaporation or sputtering.
 また、低屈折率層がパターン化された層である場合、パターニング方法は特に制限されない。低屈折率層は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であっても良いし、公知のエッチング法でパターン化された層であっても良い。 Further, when the low refractive index layer is a patterned layer, the patterning method is not particularly limited. The low refractive index layer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface, or by a known etching method. It may be a patterned layer.
《第3高屈折率層》
 透明導電体100は、上記低屈折率層上に更に、透明導電体100の導通領域aの光透過性(光学アドミッタンス)を調整する第3高屈折率層(図示略)を備えていても良い。第3高屈折率層は、透明導電体100の導通領域aにのみ形成されていても良いし、透明導電体100の導通領域a及び絶縁領域bの両方に形成されていても良い。
<< 3rd high refractive index layer >>
The transparent conductor 100 may further include a third high-refractive index layer (not shown) that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor 100 on the low refractive index layer. . The third high refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
 第3高屈折率層には、前述の透明基板1の屈折率及び前記低屈折率層の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれることが好ましい。
 第3高屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、より好ましくは1.7~2.5、更に好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第3高屈折率層によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。なお、第3高屈折率層の屈折率は、第3高屈折率層に含まれる材料の屈折率や、第3高屈折率層に含まれる材料の密度で調整される。
The third high refractive index layer preferably includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 and the refractive index of the low refractive index layer.
The specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably greater than 1.5, more preferably 1.7 to 2.5, It is preferably 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the third high refractive index layer. The refractive index of the third high refractive index layer is adjusted by the refractive index of the material included in the third high refractive index layer and the density of the material included in the third high refractive index layer.
 第3高屈折率層に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であっても良いし、導電性の材料であっても良い。第3高屈折率層に含まれる誘電性材料又は酸化物半導体材料としては、金属酸化物又はZnSであることが好ましい。金属酸化物としては、例えば、前述の第1高屈折率層2又は第2高屈折率層4に含まれる金属酸化物が挙げられる。第3高屈折率層には、当該金属酸化物又はZnSが1種のみ含まれても良いし、2種以上が含まれても良い。また、金属酸化物やZnSとともに、SiO等の誘電性材料が含まれていても良い。 The dielectric material or oxide semiconductor material contained in the third high refractive index layer may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably a metal oxide or ZnS. As a metal oxide, the metal oxide contained in the above-mentioned 1st high refractive index layer 2 or the 2nd high refractive index layer 4 is mentioned, for example. The third high refractive index layer may contain only one kind of the metal oxide or ZnS, or may contain two or more kinds. Further, a dielectric material such as SiO 2 may be contained together with the metal oxide or ZnS.
 第3高屈折率層の層厚は特に制限されず、好ましくは1~40nmであり、更に好ましくは5~20nmである。第3高屈折率層の層厚が上記範囲であると、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。第3高屈折率層の層厚は、エリプソメーターで測定される。 The layer thickness of the third high refractive index layer is not particularly limited, and is preferably 1 to 40 nm, and more preferably 5 to 20 nm. When the layer thickness of the third high refractive index layer is within the above range, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted. The layer thickness of the third high refractive index layer is measured with an ellipsometer.
 第3高屈折率層の形成方法は特に制限されず、第1高屈折率層2や第2高屈折率層4と同様の方法で形成することができる。 The method for forming the third high refractive index layer is not particularly limited, and the third high refractive index layer can be formed by the same method as that for the first high refractive index layer 2 and the second high refractive index layer 4.
 なお、上記したように、透明導電体100は、低屈折率層や第3高屈折率層を備えていても良いが、高屈折率層及び低屈折率層が複数積層されてなる光学調整層を備えているものとしても良い。 As described above, the transparent conductor 100 may include a low refractive index layer and a third high refractive index layer, but an optical adjustment layer in which a plurality of high refractive index layers and low refractive index layers are stacked. It is good also as what is equipped with.
2.透明導電体の光学アドミッタンスについて
 透明導電体の導通領域aの表面(透明導電体100において透明基板1とは反対側の表面)の反射率Rは、光が入射する媒質の光学アドミッタンスYenvと、透明導電体の導通領域aの表面の等価アドミッタンスYとから定まる。ここで、光が入射する媒質とは、透明導電体に入射する光が、その入射直前に通過する部材又は環境であって、有機樹脂からなる部材、又は環境をいう。光が入射する媒質の光学アドミッタンスYenvと、透明導電体の表面の等価アドミッタンスYとの関係は以下の式で表される。
2. About the optical admittance of the transparent conductor The reflectance R of the surface of the conductive region a of the transparent conductor (the surface opposite to the transparent substrate 1 in the transparent conductor 100) is the optical admittance Y env of the medium on which light is incident, determined from the equivalent admittance Y E of the surface of the conductive region a transparent conductor. Here, the medium on which light is incident refers to a member or environment through which light incident on the transparent conductor passes immediately before the incident, and is a member or environment made of an organic resin. The relationship between the optical admittance Y env of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記の式に基づけば、|Yenv-Y|が0に近い程、透明導電体(導通領域a)の表面の反射率Rが低くなる。 Based on the above formula, the closer the value | Y env −Y E | is to 0, the lower the reflectance R of the surface of the transparent conductor (conduction region a).
 前記媒質の光学アドミッタンスYenvは、電場強度と磁場強度との比(H/E)から求められ、通常、媒質の屈折率nenvと同一である。一方、透明導電体の導通領域aの表面の等価アドミッタンスYは、導通領域aを構成する層の光学アドミッタンスYから求められる。例えば、透明導電体(導通領域a)が一層からなる場合には、透明導電体の等価アドミッタンスYは、当該層の光学アドミッタンスY(屈折率)と等しくなる。 The optical admittance Y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is usually the same as the refractive index n env of the medium. On the other hand, the equivalent admittance Y E of the surface of the conductive region a of the transparent conductor is determined from the optical admittance Y of the layers constituting the conductive region a. For example, when a transparent conductor (conductive region a) is composed of one is equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
 一方、透明導電体(導通領域a)が積層体からなる場合、1層目からx層目までの積層体の光学アドミッタンスY(E H)は、1層目から(x-1)層目までの積層体の光学アドミッタンスYx-1(Ex-1 Hx-1)と、特定のマトリクスとの積で表され、具体的には以下の式(1)又は式(2)にて求められる。 On the other hand, when the transparent conductor (conducting region a) is a laminate, the optical admittance Y x (E x H x ) of the laminate from the first layer to the x-th layer is from the first layer to (x−1) It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate up to the layer and a specific matrix, and specifically, the following formula (1) or formula (2) Is required.
・x層目が誘電性材料又は酸化物半導体材料からなる層である場合 ・ When the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式において、δ=2πnd/λであり、y=n(x層目の膜のアドミッタンス)、dはx層目の層の層厚である。 In the above formula, δ = 2πnd / λ, y = n (admittance of the x-th layer film), and d is the layer thickness of the x-th layer.
・x層目が理想金属層である場合 ・ When the xth layer is an ideal metal layer
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記式において、γ=(2π/λ)kd、dはx層目の層の層厚、kは層の屈折率(虚部)である。 In the above formula, γ = (2π / λ) kd, d is the layer thickness of the x-th layer, and k is the refractive index (imaginary part) of the layer.
 そして、x層目が最表層であるときの、透明基板から最表層までの積層物の光学アドミッタンスYx(E H)が、当該透明導電体の等価アドミッタンスYとなる。 When the x-th layer is the outermost layer, the optical admittance Yx (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E of the transparent conductor.
 図4に、透明基板/第1高屈折率層(ZnS-SiO)/第1硫化防止層(ITO)/透明金属層(Ag)/第2高屈折率層(ZnS-SiO)を備える透明導電体の導通領域aの波長570nmのアドミッタンス軌跡を示す。グラフの横軸は、当該領域の光学アドミッタンスYをx+iyで表したときの実部、つまり当該式におけるxであり、縦軸は光学アドミッタンスの虚部、つまり当該式におけるyである。なお、第1硫化防止層(ITO)は層厚が十分に薄いため、その光学アドミッタンスは無視するものとする。 FIG. 4 includes a transparent substrate / first high refractive index layer (ZnS—SiO 2 ) / first antisulfurization layer (ITO) / transparent metal layer (Ag) / second high refractive index layer (ZnS—SiO 2 ). The admittance locus | trajectory of wavelength 570nm of the conduction area | region a of a transparent conductor is shown. The horizontal axis of the graph is the real part when the optical admittance Y of the region is expressed by x + iy, that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance, that is, y in the equation. The first anti-sulfurization layer (ITO) has a sufficiently thin layer thickness, and its optical admittance is ignored.
 図4において、アドミッタンス軌跡の最終座標が、導通領域aの等価アドミッタンスYである。そして、等価アドミッタンスYの座標(x,y)と、光が入射する媒質のアドミッタンス座標Yenv(nenv,0)(図示略)との距離が、透明導電体の導通領域aの表面の反射率Rに比例する。 4, the last coordinate in the admittance locus is equivalent admittance Y E conductive region a. The distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates Y env (n env , 0) (not shown) of the medium on which the light is incident is equal to the conduction region a of the transparent conductor. It is proportional to the reflectance R of the surface.
 ここで、本発明の透明導電体では、透明金属層の高屈折率層側の表面の波長570nmにおける光学アドミッタンスをY1(=x+iy)とし、透明金属層の中間層側の表面の波長570nmにおける光学アドミッタンスをY2(=x+iy)とした場合に、x及びxのうちいずれか一方、又は両方が1.6以上であることが好ましい。x又はxのうちいずれか一方が、1.6以上であると透明導電体の光透過性が高まりやすい。その理由を以下に説明する。 Here, in the transparent conductor of the present invention, the optical admittance at a wavelength of 570 nm of the surface of the transparent metal layer on the high refractive index layer side is Y1 (= x 1 + ii 1 ), and the wavelength of the surface on the intermediate layer side of the transparent metal layer is When the optical admittance at 570 nm is Y2 (= x 2 + iy 2 ), it is preferable that one or both of x 1 and x 2 is 1.6 or more. either one of x 1 and x 2 are, it tends enhanced light transmission of the transparent conductor If it is 1.6 or more. The reason will be described below.
 透明導電体を構成する各層どうしの界面のアドミッタンスYと、各層に存在する電場強度Eとの間には、下記関係式が成り立つ。 The following relational expression holds between the admittance Y at the interface between layers constituting the transparent conductor and the electric field strength E existing in each layer.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記関係式に基づけば、透明金属層表面の光学アドミッタンスY1及びY2の実数部(x及びx)が大きくなれば、透明金属層の電場強度Eが小さくなり、電場損失(光の吸収)が抑制される。すなわち、透明導電体の光透過性が十分に高まる。 Based on the above relational expression, if the real part (x 1 and x 2 ) of the optical admittances Y1 and Y2 on the surface of the transparent metal layer is increased, the electric field strength E of the transparent metal layer is decreased and the electric field loss (light absorption) is reduced. Is suppressed. That is, the light transmittance of the transparent conductor is sufficiently increased.
 したがって、上記x及びxのうち、いずれか一方、又は両方が1.6以上であることが好ましく、より好ましくは1.8以上であり、更に好ましくは2.0以上である。x及びxのうち、いずれか一方が1.6以上であれば良いが、特にxが1.6以上であることが好ましい。また、x及びxは、7.0以下であることが好ましく、5.5以下であることがより好ましい。xは、第1高屈折率層の屈折率や、第1高屈折率層の層厚等で調整される。xは、xの値や透明金属層の屈折率、透明金属層の層厚等によって調整される。例えば、第1高屈折率層の屈折率が高い場合や、第1高屈折率層の層厚がある程度厚い場合には、x及びxの値が大きくなりやすい。また、xとxとの差の絶対値(|x-x|)は1.5以下であることが好ましく、より好ましくは1.0以下であり、更に好ましくは0.8以下である。 Accordingly, either one or both of x 1 and x 2 is preferably 1.6 or more, more preferably 1.8 or more, and further preferably 2.0 or more. Any one of x 1 and x 2 may be 1.6 or more, but x 1 is particularly preferably 1.6 or more. Further, x 1 and x 2 are preferably 7.0 or less, and more preferably 5.5 or less. x 1 is the refractive index of the first high refractive index layer and is adjusted by the layer thickness of the first high refractive index layer or the like. x 2 is the refractive index of x 1 values and transparent metal layer is adjusted by the layer thickness and the like of the transparent metal layer. For example, if and refractive index of the first high refractive index layer is high, when the layer thickness of the first high refractive index layer is somewhat thicker, the value of x 1 and x 2 tends to increase. Further, the absolute value (| x 1 −x 2 |) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and further preferably 0.8 or less. It is.
 また、特定波長(本発明では570nm)におけるアドミッタンス軌跡は、グラフの横軸を中心に線対称であることが好ましい。アドミッタンス軌跡が、グラフの横軸を中心に線対称であると、特定波長以外の波長(例えば、450nmや700nm)における等価アドミッタンスYの座標が、一定になりやすく、いずれの波長においても、反射率Rが小さくなる。したがって、上記Y1の虚部の座標yと、Y2の虚部の座標yが、y×y≦0を満たすことが好ましい。更に、|y+y|が0.8未満であることが好ましく、より好ましくは0.5以下、更に好ましくは0.3以下である。 In addition, the admittance locus at a specific wavelength (570 nm in the present invention) is preferably line symmetric with respect to the horizontal axis of the graph. Admittance locus and is line symmetry about the horizontal axis of the graph, the wavelength other than the specific wavelength (e.g., 450 nm and 700 nm) is the coordinates of the equivalent admittance Y E in, it tends to be constant, at any wavelength, reflection The rate R becomes small. Therefore, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, it is preferable to satisfy the y 1 × y 2 ≦ 0. Furthermore, | y 1 + y 2 | is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less.
 更に、前述のyが十分に大きいことが好ましい。前述のように、透明金属層の光学アドミッタンスは虚部の値が大きく、アドミッタンス軌跡が縦軸(虚部)方向に大きく移動する。そのため、yが十分に大きければ、アドミッタンス座標の虚部の絶対値が適切な範囲に収まりやすく、アドミッタンス軌跡が線対称になりやすい。yは0.2以上であることが好ましく、より好ましくは0.3~1.5であり、更に好ましくは0.3~1.0である。一方、前述のyは、-0.3~-2.0であることが好ましく、より好ましくは-0.6~-1.5である。 Furthermore, it is preferable that the aforementioned y 1 is sufficiently large. As described above, the value of the imaginary part of the optical admittance of the transparent metal layer is large, and the admittance locus greatly moves in the direction of the vertical axis (imaginary part). Therefore, if y 1 is sufficiently large, the absolute value of the imaginary part of the admittance coordinates is likely to be within an appropriate range, and the admittance locus is likely to be line symmetric. y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0. On the other hand, y 2 described above is preferably −0.3 to −2.0, and more preferably −0.6 to −1.5.
 一方、導通領域aの波長570nmの光の等価アドミッタンス座標(x,y)と、透明導電体の第2高屈折率層側の表面と接する部材又は環境(媒質)の波長570nmの光の等価アドミッタンス座標(nenv,0)との距離((x-nenv+(y0.5)は、0.5未満であることが好ましく、更に好ましくは0.3以下である。上記距離が0.5未満であれば、導通領域aの表面の反射率Rが十分に小さくなり、導通領域aの光の透過性が高まる。 On the other hand, the equivalent admittance coordinates (x E , y E ) of light having a wavelength of 570 nm in the conduction region a and the light of wavelength 570 nm of the member or environment (medium) in contact with the surface on the second high refractive index layer side of the transparent conductor. The distance ((x E −n env ) 2 + (y E ) 2 ) 0.5 ) from the equivalent admittance coordinate (n env , 0) is preferably less than 0.5, more preferably 0.3. It is as follows. When the distance is less than 0.5, the reflectance Ra of the surface of the conduction region a is sufficiently small, and the light transmittance of the conduction region a is increased.
 更に、透明金属層3がパターン化されている場合には、導通領域aの波長570nmの光の等価アドミッタンス座標(x,y)と、絶縁領域bの波長570nmの光の等価アドミッタンス座標((x,y)で表す)との距離、((x-x+(y-y0.5)が0.5未満であることが好ましく、より好ましくは0.3以下である。導通領域aの等価アドミッタンスYの座標と、絶縁領域bの等価アドミッタンスYの座標とが十分に近くなると、これらのパターンが視認されにくくなる。また更に、|(xenv-x+(yenv-y-(xenv-x+(yenv-y|が0.1以下であることが好ましい。当該値を満たすと、導通領域a及び絶縁領域bがいずれも視認されにくくなる。 Further, when the transparent metal layer 3 is patterned, an equivalent admittance coordinate (x E , y E ) of light having a wavelength of 570 nm in the conduction region a and an equivalent admittance coordinate of light having a wavelength of 570 nm in the insulation region b ( And ((x E −x b ) 2 + (y E −y b ) 2 ) 0.5 ) are preferably less than 0.5, more preferably (expressed by (x b , y b )) Is 0.3 or less. The coordinates of the equivalent admittance Y E conductive region a, the coordinate of the equivalent admittance Y b of the insulating region b is sufficiently close, so these patterns less visible. Furthermore, it is preferable that | (x env −x b ) 2 + (y env −y b ) 2 − (x env −x E ) 2 + (y env −y E ) 2 | . If the said value is satisfy | filled, both the conduction | electrical_connection area | region a and the insulation area | region b will become difficult to visually recognize.
3.透明導電体の物性について
 本発明の透明導電体の波長450~800nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても75%以上であることが好ましく、より好ましくは80%以上、更に好ましくは85%以上である。上記波長範囲における平均透過率が75%以上であると、透明導電体を、可視光に対して高い透明性が要求される用途に適用することができる。
3. Regarding the physical properties of the transparent conductor The average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor of the present invention is preferably 75% or more, more preferably 80% in both the conduction region a and the insulation region b. More preferably, it is 85% or more. When the average transmittance in the above wavelength range is 75% or more, the transparent conductor can be applied to applications requiring high transparency to visible light.
 一方、透明導電体の波長400~1000nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても70%以上であることが好ましく、より好ましくは75%以上、更に好ましくは80%以上である。波長400~1000nmの光の平均透過率が70%以上であると、広い波長範囲の光に対して透明性が要求される用途、例えば、太陽電池用の透明導電膜等にも透明導電体を適用することができる。 On the other hand, the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor is preferably 70% or more in both the conduction region a and the insulation region b, more preferably 75% or more, and still more preferably 80%. That's it. When the average transmittance of light having a wavelength of 400 to 1000 nm is 70% or more, the transparent conductor is also used in applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. Can be applied.
 一方、透明導電体の波長400~800nmの光の平均吸収率は、導通領域a及び絶縁領域bのいずれにおいても20%以下であることが好ましく、より好ましくは15%以下、更に好ましくは10%以下である。また、透明導電体の波長450~800nmの光の吸収率の最大値は、導通領域a及び絶縁領域bのいずれにおいても25%以下であることが好ましく、より好ましくは20%以下、更に好ましくは15%以下である。一方、透明導電体の波長500~700nmの光の平均反射率は、導通領域a及び絶縁領域bのいずれにおいても、10%以下であることが好ましく、より好ましくは8%以下、更に好ましくは5%以下である。透明導電体の平均吸収率及び平均反射率が低いほど、前述の平均透過率が高まる。 On the other hand, the average absorptance of light having a wavelength of 400 to 800 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and still more preferably 10% in both the conduction region a and the insulation region b. It is as follows. In addition, the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 25% or less, more preferably 20% or less, and still more preferably in both the conduction region a and the insulation region b. 15% or less. On the other hand, the average reflectance of light having a wavelength of 500 to 700 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and still more preferably 5 in both the conduction region a and the insulation region b. % Or less. The lower the average absorptance and average reflectance of the transparent conductor, the higher the aforementioned average transmittance.
 上記平均透過率及び平均反射率は、透明導電体の使用環境下での平均透過率及び平均反射率であることが好ましい。具体的には、透明導電体が有機樹脂と貼り合わされて使用される場合には、透明導電体上に有機樹脂からなる層を配置して平均透過率及び平均反射率を測定することが好ましい。一方、透明導電体が大気中で使用される場合には、大気中での平均透過率及び平均反射率を測定することが好ましい。また、透明導電体の実質の透過率を測定するために、最表面での反射を計算上で除去する補正を行っても良い。必要に応じて透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を入射させて分光光度計で測定することができる。吸収率は、100-(透過率+反射率)の計算式より算出される。 The average transmittance and the average reflectance are preferably the average transmittance and the average reflectance under the usage environment of the transparent conductor. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. Further, in order to measure the substantial transmittance of the transparent conductor, a correction for removing the reflection on the outermost surface by calculation may be performed. If necessary, the transmittance and the reflectance can be measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The absorptance is calculated from a calculation formula of 100− (transmittance + reflectance).
 また、透明導電体100に導通領域a及び絶縁領域bが含まれる場合、導通領域aの反射率及び絶縁領域bの反射率がそれぞれ近似することが好ましい。具体的には、導通領域aの視感反射率と、絶縁領域bの視感反射率との差ΔRが5%以下であることが好ましく、より好ましくは3%以下、更に好ましくは1%以下、特に好ましくは0.3%以下である。一方、導通領域a及び絶縁領域bの視感反射率は、それぞれ5%以下であることが好ましく、より好ましくは3%以下、更に好ましくは1%以下である。視感反射率は、分光光度計(U4100;日立ハイテクノロジーズ社製)で測定されるY値である。 In addition, when the conductive region a and the insulating region b are included in the transparent conductor 100, it is preferable that the reflectance of the conductive region a and the reflectance of the insulating region b are approximated. Specifically, the difference ΔR between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less. Especially preferably, it is 0.3% or less. On the other hand, the luminous reflectance of the conduction region a and the insulation region b is preferably 5% or less, more preferably 3% or less, and still more preferably 1% or less. The luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
 また、透明導電体100に導通領域a及び絶縁領域bが含まれる場合、いずれの領域においても、L表色系におけるa値及びb値は±30以内であることが好ましく、±5以内であることがより好ましく、±3.0以内であることが更に好ましく、±2.0以内であることが特に好ましい。L表色系におけるa値及びb値が±30以内であれば、導通領域a及び絶縁領域bのいずれの領域も無色透明に観察される。L表色系におけるa値及びb値は、分光光度計で測定される。 In addition, when the transparent conductor 100 includes the conduction region a and the insulation region b, the a * value and the b * value in the L * a * b * color system may be within ± 30 in any region. Preferably, it is within ± 5, more preferably within ± 3.0, and particularly preferably within ± 2.0. If the a * value and the b * value in the L * a * b * color system are within ± 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の導通領域aの表面電気抵抗は、50Ω/□以下であることが好ましく、30Ω/□以下であることが更に好ましい。導通領域の表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。導通領域aの表面電気抵抗値は、透明金属層の層厚等によって調整される。導通領域aの表面電気抵抗値は、例えば、JIS K7194、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。 The surface electrical resistance of the conductive region a of the transparent conductor is preferably 50Ω / □ or less, and more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50 Ω / □ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel. The surface electric resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like. The surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
4.透明導電体の用途
 前述の透明導電体は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
4). Applications of transparent conductors The above-mentioned transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
 このとき、透明導電体の表面は、接着層等を介して、他の部材と貼り合わせられていても良い。この場合には、前述のように、透明導電体の表面の等価アドミッタンス座標と、接着層のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と接着層との界面での反射が抑制される。 At this time, the surface of the transparent conductor may be bonded to another member via an adhesive layer or the like. In this case, as described above, it is preferable that the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer approximate each other. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
 一方、透明導電体の表面が空気と接するような構成で使用される場合には、透明導電体の表面のアドミッタンス座標と、空気のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と空気との界面での光の反射が抑制される。 On the other hand, when used in a configuration in which the surface of the transparent conductor is in contact with air, it is preferable that the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the following examples.
《透明導電体1の作製》
 透明基板としてのシクロオレフィンポリマーからなるフィルムの表面側及び裏面側に、下記の方法で、第1高屈折率層(ZnS)/透明金属層(Ag)/第2高屈折率層(ZnS)を順に下記の方法で積層した。その後、当該積層体を下記の方法でパターン化した。各層の層厚は、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
<< Preparation of transparent conductor 1 >>
A first high refractive index layer (ZnS) / transparent metal layer (Ag) / second high refractive index layer (ZnS) is formed on the front side and back side of a film made of cycloolefin polymer as a transparent substrate by the following method. The layers were laminated in the following order. Thereafter, the laminate was patterned by the following method. The layer thickness of each layer is J.I. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
(第1高屈折率層(ZnS)の形成)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/sでZnSをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnSの波長570nmの光の屈折率は、2.37であり、第1高屈折率層の波長570nmの光の屈折率も2.37とした。形成された第1高屈折率層の層厚は40nmであった。
(Formation of first high refractive index layer (ZnS))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., ZnS was RF sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.8 Å / s. The target-substrate distance was 90 mm. The refractive index of light with a wavelength of 570 nm of ZnS was 2.37, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.37. The thickness of the formed first high refractive index layer was 40 nm.
(透明金属層(Ag)の形成)
 FTSコーポレーション社の対向スパッタ機を用い、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート14Å/sでAgを対向スパッタした。ターゲット-基板間距離は90mmであった。形成された透明金属層の層厚は7nmであった。
(Formation of transparent metal layer (Ag))
Using a counter sputtering machine manufactured by FTS Corporation, Ag was counter sputtered at an Ar of 20 sccm, a sputtering pressure of 0.5 Pa, a room temperature, a target power of 150 W, and a film formation rate of 14 K / s. The target-substrate distance was 90 mm. The thickness of the formed transparent metal layer was 7 nm.
(第2高屈折率層(ZnS)の形成)
 第2高屈折率層は、上記第1高屈折率層と同様の方法で形成した。
(Formation of Second High Refractive Index Layer (ZnS))
The second high refractive index layer was formed by the same method as the first high refractive index layer.
(積層体のパターン化)
 得られた積層体上にレジスト層をパターン状に形成し、透明基板以外の各層を図3に示されるパターン(複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン)状にITOエッチング液(林純薬製)でパターン化した。絶縁領域には、透明基板のみが含まれるものとした。また、ライン状の絶縁領域bの幅は16μmとした。このようなパターン化を透明基板の両面に対して施した。
(Laminate patterning)
A resist layer is formed in a pattern on the obtained laminate, and each layer other than the transparent substrate is patterned as shown in FIG. 3 (a pattern including a plurality of conductive regions a and line-shaped insulating regions b separating the conductive regions a). Patterned with an ITO etching solution (manufactured by Hayashi Junyaku). Only the transparent substrate was included in the insulating region. The width of the line-shaped insulating region b was 16 μm. Such patterning was performed on both surfaces of the transparent substrate.
《透明導電体2の作製》
 透明導電体1の作製において、透明金属層の層厚を表1に記載のとおりに変更した以外は同様にして、透明導電体2を作製した。
<< Preparation of transparent conductor 2 >>
A transparent conductor 2 was prepared in the same manner as in the production of the transparent conductor 1, except that the thickness of the transparent metal layer was changed as shown in Table 1.
《透明導電体3の作製》
 透明導電体1の作製において、透明基板の裏面側に積層される第1高屈折率層及び第2高屈折率層の層厚を表1に記載のとおりに変更した以外は同様にして、透明導電体3を作製した。
<< Preparation of transparent conductor 3 >>
In the production of the transparent conductor 1, the transparent conductor 1 was transparent except that the thicknesses of the first high refractive index layer and the second high refractive index layer laminated on the back side of the transparent substrate were changed as shown in Table 1. The conductor 3 was produced.
《透明導電体4の作製》
 透明導電体1の作製において、第2高屈折率層の形成方法を下記の形成方法に変更した以外は同様にして、透明導電体4を作製した。
<< Preparation of transparent conductor 4 >>
In the production of the transparent conductor 1, the transparent conductor 4 was produced in the same manner except that the formation method of the second high refractive index layer was changed to the following formation method.
(第2高屈折率層(IGZO)の形成)
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでIGZOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Formation of second high refractive index layer (IGZO))
Using Anelva L-430S-FHS, IGZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm.
《透明導電体5の作製》
 透明導電体1の作製において、第1高屈折率層及び第2高屈折率層の形成方法を下記の形成方法に変更した以外は同様にして、透明導電体5を作製した。
<< Preparation of transparent conductor 5 >>
In the production of the transparent conductor 1, a transparent conductor 5 was produced in the same manner except that the formation method of the first high refractive index layer and the second high refractive index layer was changed to the following formation method.
(第1高屈折率層(ZnS+SiO)の形成)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.0Å/sでZnS-SiOをRFスパッタした。ターゲット-基板間距離は90mmであった。
 ZnSとSiOとの比率(モル比)は、80:20であり、第1高屈折率層の屈折率は2.14であった。
(Formation of first high refractive index layer (ZnS + SiO 2 ))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., ZnS—SiO 2 was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.0 Å / s. The target-substrate distance was 90 mm.
The ratio (molar ratio) between ZnS and SiO 2 was 80:20, and the refractive index of the first high refractive index layer was 2.14.
(第2高屈折率層(ZnS+SiO)の形成)
 第2高屈折率層は、上記第1高屈折率層と同様の方法で形成した。
(Formation of second high refractive index layer (ZnS + SiO 2 ))
The second high refractive index layer was formed by the same method as the first high refractive index layer.
《透明導電体6の作製》
 透明導電体5の作製において、第1高屈折率層と透明金属層の間に第1硫化防止層を設け、透明金属層と第2高屈折率層との間に第2硫化防止層を設けた以外は同様にして、透明導電体6を作製した。第1硫化防止層及び第2硫化防止層は以下のように形成した。
<< Preparation of transparent conductor 6 >>
In the production of the transparent conductor 5, a first sulfidation prevention layer is provided between the first high refractive index layer and the transparent metal layer, and a second sulfidation prevention layer is provided between the transparent metal layer and the second high refractive index layer. A transparent conductor 6 was produced in the same manner except that. The first sulfidation prevention layer and the second sulfidation prevention layer were formed as follows.
(第1硫化防止層(ZnO)の形成)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/sでZnOをRFスパッタした。ターゲット-基板間距離は90mmであった。
(Formation of first antisulfurization layer (ZnO))
Using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnO was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 liters / s. The target-substrate distance was 90 mm.
(第2硫化防止層(ZnO)の形成)
 第2硫化防止層は、上記第1硫化防止層と同様の方法で形成した。
(Formation of second anti-sulfurization layer (ZnO))
The second sulfidation preventing layer was formed in the same manner as the first sulfidation preventing layer.
《透明導電体7の作製》
 透明導電体6の作製において、透明基板の表面側に積層される第2高屈折率層上に、更に応力調整層を設けた以外は同様にして、透明導電体7を作製した。応力調整層は以下のようにして形成した。
<< Preparation of transparent conductor 7 >>
In the production of the transparent conductor 6, a transparent conductor 7 was produced in the same manner except that a stress adjusting layer was further provided on the second high refractive index layer laminated on the surface side of the transparent substrate. The stress adjustment layer was formed as follows.
(応力調整層の形成)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力300W、成膜レート3.1Å/sでSiOをRFスパッタした。ターゲット-基板間距離は90mmであった。
(Formation of stress adjustment layer)
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., SiO 2 was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 300 W, and deposition rate 3.1 L / s. The target-substrate distance was 90 mm.
《透明導電体8の作製》
 透明導電体1の作製において、透明基板の裏面側に積層される第1高屈折率層及び第2高屈折率層の形成方法を、透明導電体4の第2高屈折率層の形成方法と同様の方法に変更した以外は同様にして、透明導電体8を作製した。
<< Preparation of transparent conductor 8 >>
In the production of the transparent conductor 1, a method for forming the first high refractive index layer and the second high refractive index layer laminated on the back side of the transparent substrate, a method for forming the second high refractive index layer of the transparent conductor 4, and A transparent conductor 8 was produced in the same manner except that the method was changed to the same method.
《透明導電体9の作製》
 透明導電体1の作製において、透明金属層の材料を、APC(AgにPd及びCuを添加した合金)に変更した以外は同様にして、透明導電体9を作製した。
<< Preparation of transparent conductor 9 >>
In the production of the transparent conductor 1, the transparent conductor 9 was produced in the same manner except that the material of the transparent metal layer was changed to APC (an alloy obtained by adding Pd and Cu to Ag).
《透明導電体10の作製》
 透明導電体6の作製において、透明金属層の材料をAPCに変更した以外は同様にして、透明導電体10を作製した。
<< Preparation of Transparent Conductor 10 >>
In the production of the transparent conductor 6, the transparent conductor 10 was produced in the same manner except that the material of the transparent metal layer was changed to APC.
《透明導電体11の作製》
 透明基板としてのシクロオレフィンポリマーからなるフィルムの表面側及び裏面側に、下記の方法で、透明金属層(ITO)/応力調整層(SiO)を順に下記の方法で積層した。その後、当該積層体を上記透明導電体1と同様の方法でパターン化した。各層の層厚は、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
<< Preparation of Transparent Conductor 11 >>
A transparent metal layer (ITO) / stress adjusting layer (SiO 2 ) was sequentially laminated by the following method on the front side and the back side of the film made of cycloolefin polymer as the transparent substrate. Thereafter, the laminate was patterned in the same manner as the transparent conductor 1. The layer thickness of each layer is J.I. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
(透明金属層(ITO)の形成)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力50W、成膜レート2.5Å/sでITOを350KHzのDCパルススパッタした。ターゲット-基板間距離は90mmであった。
(Formation of transparent metal layer (ITO))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., ITO was subjected to DC pulse sputtering at 350 KHz with Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 50 W, and deposition rate 2.5 Å / s. The target-substrate distance was 90 mm.
(応力調整層(SiO)の形成)
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力300W、成膜レート3.1Å/sでSiOをRFスパッタした。ターゲット-基板間距離は90mmであった。
(Formation of stress adjustment layer (SiO 2 ))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., SiO 2 was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 300 W, and deposition rate 3.1 L / s. The target-substrate distance was 90 mm.
《透明導電体12の作製》
 透明導電体1の作製において、第1高屈折率層(ZnS)/透明金属層(Ag)/第2高屈折率層(ZnS)を、透明基板の表面側のみに積層した以外は同様にして、透明導電体12を作製した。
<< Preparation of transparent conductor 12 >>
In the production of the transparent conductor 1, the first high refractive index layer (ZnS) / transparent metal layer (Ag) / second high refractive index layer (ZnS) were formed in the same manner except that they were laminated only on the surface side of the transparent substrate. A transparent conductor 12 was produced.
《透明導電体13の作製》
 透明基板としてのシクロオレフィンポリマーからなるフィルムの表面側及び裏面側に、下記の方法で、TiO層/Ag層/TiO+PA層/TiO層/Ag層/TiO+PA層/TiO層/Ag層/TiO+PA層を順に下記の方法で積層した。その後、当該積層体を上記透明導電体1と同様の方法でパターン化した。各層の層厚は、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
 ここで、透明導電体13における「TiO層」は、当該層が、チタン酸化物(TiO)を主に含み、かつ、アルコール可溶性ポリアミドを含有していないことを表している。また、「TiO+PA層」は、当該層が、チタン酸化物(TiO)を主に含み、かつ、アルコール可溶性ポリアミドを含有していることを表している。また、「Ag層」は、当該層が銀を主に含んでいることを表している。
<< Preparation of transparent conductor 13 >>
TiO 2 layer / Ag layer / TiO 2 + PA layer / TiO 2 layer / Ag layer / TiO 2 + PA layer / TiO 2 layer on the front side and back side of the film made of cycloolefin polymer as a transparent substrate by the following method / Ag layer / TiO 2 + PA layer was sequentially laminated by the following method. Thereafter, the laminate was patterned in the same manner as the transparent conductor 1. The layer thickness of each layer is J.I. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
Here, the “TiO 2 layer” in the transparent conductor 13 represents that the layer mainly contains titanium oxide (TiO 2 ) and does not contain alcohol-soluble polyamide. “TiO 2 + PA layer” indicates that the layer mainly contains titanium oxide (TiO 2 ) and contains alcohol-soluble polyamide. Further, “Ag layer” indicates that the layer mainly contains silver.
(TiO層又はTiO+PA層の形成)
 ダイレクトグラビアコーターを用いて、各層の原料を成膜レート3m/minで透明基板上に塗工した後、この塗工膜を100℃で80秒間乾燥し、前駆体層を形成し、次いで、78℃に加温した状態で、UVランプ〔高圧水銀ランプ(240W/cm)、出力100%〕を用いて、上記前駆体層に対して紫外線を1回照射し、チタン酸化物層を形成した。
 この際、TiO層は紫外線照射速度を3m/minとし、TiO+PA層は、紫外線照射速度を2m/minとした。
(Formation of TiO 2 layer or TiO 2 + PA layer)
Using a direct gravure coater, the raw material of each layer was applied onto a transparent substrate at a film formation rate of 3 m / min, and then this coated film was dried at 100 ° C. for 80 seconds to form a precursor layer. In the state heated to ° C., a UV lamp [high pressure mercury lamp (240 W / cm), output 100%] was used to irradiate the precursor layer with ultraviolet rays once to form a titanium oxide layer.
At this time, the ultraviolet irradiation rate of the TiO 2 layer was 3 m / min, and the ultraviolet irradiation rate of the TiO 2 + PA layer was 2 m / min.
(Ag層の形成)
 直流スパッタを用いてAg層を形成した。スパッタ条件は、投入電力1.7W/cm、真空到達圧5×10-6torr、ガス圧2.5×10-3torrとした。
(Formation of Ag layer)
An Ag layer was formed using direct current sputtering. The sputtering conditions were an input power of 1.7 W / cm 2 , a vacuum ultimate pressure of 5 × 10 −6 torr, and a gas pressure of 2.5 × 10 −3 torr.
 なお、表1中の透明導電体13の欄においては、透明基板の両面に設けられる各層の材料を「/」で区切って示しており、「/」は、各層の境界を示し、括弧内の数値は、各層の層厚(nm)を示している。 In the column of the transparent conductor 13 in Table 1, the material of each layer provided on both sides of the transparent substrate is indicated by “/”, and “/” indicates the boundary between the layers, The numerical value indicates the layer thickness (nm) of each layer.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
《透明導電体1~13の評価》
 上記のようにして作製した透明導電体1~13について下記の評価を行った。評価結果を表2に示す。
<< Evaluation of Transparent Conductors 1-13 >>
The transparent conductors 1 to 13 produced as described above were evaluated as follows. The evaluation results are shown in Table 2.
(1)耐湿性の評価
 透明導電体1~13の耐久性を評価するために、耐久性の一種である耐湿性(透明導電体がどの程度の湿度に耐えられるか)を評価した。耐湿性の評価は、以下のようにして行った。すなわち、作製した透明導電体を65℃95%(相対湿度)の環境下に100時間静置し、その後、透明導電体を目視することにより、下記の基準にしたがって評価した。
  ◎:クラックや変色等が認められない
  ○:クラックや変色等が殆ど認められない
  △:クラックや変色等が少し認められる
  ×:クラックや変色等が多数認められる
(1) Evaluation of moisture resistance In order to evaluate the durability of the transparent conductors 1 to 13, the humidity resistance (how much humidity the transparent conductor can withstand), which is a kind of durability, was evaluated. Evaluation of moisture resistance was performed as follows. That is, the produced transparent conductor was allowed to stand in an environment of 65 ° C. and 95% (relative humidity) for 100 hours, and then the transparent conductor was visually observed and evaluated according to the following criteria.
A: No crack or discoloration is observed. ○: Almost no crack or discoloration is observed. Δ: A little crack or discoloration is observed.
(2)透過率の評価
 透明導電体1~13の表面の法線に対して、5°傾けた角度から光を入射させて、その平均透過率を測定した。平均透過率は、分光光度計U4100(日立ハイテクノロジーズ社製)を使用してV-W法により測定した。450-800nmの平均透過率を下記の基準で評価した。
  ◎:85%以上
  ○:80%以上85%未満
  △:75%以上80%未満
  ×:75%以下
(2) Evaluation of transmittance The light was incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent conductors 1 to 13, and the average transmittance was measured. The average transmittance was measured by the VW method using a spectrophotometer U4100 (manufactured by Hitachi High-Technologies Corporation). The average transmittance of 450-800 nm was evaluated according to the following criteria.
◎: 85% or more ○: 80% or more and less than 85% △: 75% or more and less than 80% ×: 75% or less
(3)導電率の評価
 透明導電体1~13の導通領域aに三菱化学アナリテック製のロレスタEP MCP-T360を接触させて、導通領域aの表面電気抵抗を測定した。測定結果を下記の基準で評価した。
  ◎:10Ω/□未満
  ○:10Ω/□以上20Ω/□未満
  △:20Ω/□以上30Ω/□未満
  ×:30Ω/□以上
(3) Evaluation of conductivity The conductive region a of the transparent conductors 1 to 13 was brought into contact with Loresta EP MCP-T360 manufactured by Mitsubishi Chemical Analytech, and the surface electrical resistance of the conductive region a was measured. The measurement results were evaluated according to the following criteria.
◎: Less than 10Ω / □ ○: 10Ω / □ or more and less than 20Ω / □ △: 20Ω / □ or more and less than 30Ω / □ ×: 30Ω / □ or more
(4)反り抑制の評価
 松波ガラス製薄板ガラス(50mm×10mm×厚さ0.1mm)を透明基材として上記透明導電体1~13を作製し、KEYENCE社製レーザー変位計LA2010を用いて反り量を測定した。5cm離れた2点の反り角度を下記の基準で評価した。
 ◎◎:1mrad未満
  ◎:1mrad以上5mrad未満
  ○:5mrad以上10mrad未満
  △:10mrad以上20mrad未満
  ×:20mrad以上
(4) Evaluation of warpage suppression The above transparent conductors 1 to 13 were produced using a Matsunami glass sheet glass (50 mm × 10 mm × thickness 0.1 mm) as a transparent base material, and warpage was performed using a laser displacement meter LA2010 manufactured by KEYENCE. The amount was measured. The warp angles at two points 5 cm apart were evaluated according to the following criteria.
◎: Less than 1 mrad ◎: 1 mrad or more and less than 5 mrad ○: 5 mrad or more and less than 10 mrad Δ: 10 mrad or more and less than 20 mrad ×: 20 mrad or more
(5)折り曲げ時のクラック抑制の評価
 透明導電体1~13を平板状の支持部材に載置し、一端を固定した。次いで、当該透明導電体1~13を反りに対して順方向及び逆方向それぞれにU字状に屈曲させた。屈曲部の曲率半径は5mmとした。そして、支持部材と平行に配置した摺動板に、透明導電体1~13の他端を固定した。摺動板と支持部材とを平行に保ったまま、透明導電体1~13の長さ方向に摺動板を1000回往復移動させた。その後、透明導電体1~13の各層にクラック等が生じたかを目視で確認した。その確認結果を下記の基準で評価した。
  ◎:屈曲部位を含む30mm×30mmの領域に、クラックが一つも生じなかった
  ○:屈曲部位を含む30mm×30mmの領域に、1個以上10個未満のクラックが生じた
  △:屈曲部位を含む30mm×30mmの領域に、10個以上50個未満のクラックが生じた
  ×:屈曲部位を含む30mm×30mmの領域に、50個以上のクラックが生じた
(5) Evaluation of crack suppression during bending Transparent conductors 1 to 13 were placed on a flat support member, and one end was fixed. Next, the transparent conductors 1 to 13 were bent in a U shape in the forward direction and the reverse direction with respect to the warp. The curvature radius of the bent portion was 5 mm. Then, the other ends of the transparent conductors 1 to 13 were fixed to a sliding plate arranged in parallel with the support member. The sliding plate was reciprocated 1000 times in the length direction of the transparent conductors 1 to 13 while keeping the sliding plate and the support member in parallel. Thereafter, whether or not cracks or the like occurred in each layer of the transparent conductors 1 to 13 was visually confirmed. The confirmation result was evaluated according to the following criteria.
A: No crack was generated in the 30 mm × 30 mm region including the bent portion. ○: One or more cracks were generated in the 30 mm × 30 mm region including the bent portion. Δ: The bent portion was included. 10 or more and less than 50 cracks occurred in an area of 30 mm × 30 mm ×: 50 or more cracks occurred in an area of 30 mm × 30 mm including the bent portion
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(6)まとめ
 表1及び表2に示すように、透明基板の両面に導電層が設けられ、導電層のうち少なくとも一方が透明金属層及び硫化亜鉛含有層を含む積層体である本発明の透明導電体1~10は、比較例の透明導電体11~13に比べて、耐湿性に優れ、反りの発生を抑制する効果に優れていることが分かる。また、その他の機能においても、本発明の透明導電体1~10は、比較例の透明導電体11~13よりも優れていることが分かる。
 中でも、第1硫化防止層及び第2硫化防止層が設けられている本発明の透明導電体6、7、10は、本発明の透明導電体1~5、8、9よりも、透過率に優れていることが分かる。第1硫化防止層及び第2硫化防止層が設けられていることで、硫化金属の生成が抑制されたためと考えられる。
(6) Summary As shown in Table 1 and Table 2, the transparent layer of the present invention is a laminate in which conductive layers are provided on both surfaces of a transparent substrate, and at least one of the conductive layers includes a transparent metal layer and a zinc sulfide-containing layer. It can be seen that the conductors 1 to 10 are excellent in moisture resistance and the effect of suppressing the occurrence of warping as compared with the transparent conductors 11 to 13 of the comparative example. In other functions as well, it can be seen that the transparent conductors 1 to 10 of the present invention are superior to the transparent conductors 11 to 13 of the comparative example.
Among them, the transparent conductors 6, 7, and 10 of the present invention in which the first sulfidation prevention layer and the second sulfidation prevention layer are provided are more transparent than the transparent conductors 1 to 5, 8, and 9 of the present invention. It turns out that it is excellent. It is considered that the formation of metal sulfide was suppressed by providing the first antisulfurization layer and the second antisulfurization layer.
 比較例の透明導電体11は、厚さが大きく、透過率が低いものとなっている。比較例の透明導電体11においては、透明金属層の層厚を薄くすれば、透過率を改善できるものと考えられるが、透明金属層の層厚を薄くすると導電率が劣化することが予測される。また、比較例の透明導電体11は、折り曲げ時のクラック耐性が低いが、これは、透明金属層の層厚が大きく結晶性を有するためと考えられる。
 また、比較例の透明導電体12は、反り抑制効果が低いものとなっている。これは、導電層が透明基板の一方の面にのみ形成されているため、透明導電体に応力が発生し、反りが発生してしまうものと考えられる。また、透明導電体12には大きな反りが発生しているため、反りと逆方向に折り曲げられた際に大きな応力が加わってクラックが発生しやすくなっていると考えられ、これによりクラック耐性が低下しているものと考えられる。
 比較例の透明導電体13は、厚さが大きいため、透過率が低いものとなっている。また、透明導電体13は、硫化亜鉛含有層を備えていないため、耐湿性も低いものとなっている。また、TiOは、ZnSに比べて硬度が高くクラックが発生しやすい上に、応力の大きい膜材料であるため、透明導電体の材料として用いられるとクラック及び反りが発生しやすい。このため、透明導電体13は、大きな反りが発生しており、折り曲げ時のクラック耐性が低い。
The transparent conductor 11 of the comparative example has a large thickness and a low transmittance. In the transparent conductor 11 of the comparative example, it is considered that the transmittance can be improved if the thickness of the transparent metal layer is reduced. However, it is predicted that the conductivity is deteriorated when the thickness of the transparent metal layer is reduced. The In addition, the transparent conductor 11 of the comparative example has low crack resistance at the time of bending, which is considered because the layer thickness of the transparent metal layer is large and has crystallinity.
Further, the transparent conductor 12 of the comparative example has a low warpage suppressing effect. This is presumably because the conductive layer is formed only on one surface of the transparent substrate, so that stress is generated in the transparent conductor and warpage occurs. In addition, since the transparent conductor 12 is greatly warped, it is considered that a large stress is applied when the transparent conductor 12 is bent in a direction opposite to the warp, so that cracks are likely to be generated. It is thought that.
Since the transparent conductor 13 of the comparative example has a large thickness, the transmittance is low. Moreover, since the transparent conductor 13 does not include the zinc sulfide-containing layer, the moisture resistance is low. In addition, TiO 2 has a higher hardness than ZnS and easily generates cracks, and is a film material having a large stress. Therefore, when used as a material for a transparent conductor, cracks and warpage are likely to occur. For this reason, the transparent conductor 13 is greatly warped and has low crack resistance during bending.
 以上のように、本発明は、耐湿性に優れ、反りの発生を抑制できる透明導電体を提供することに適している。 As described above, the present invention is suitable for providing a transparent conductor excellent in moisture resistance and capable of suppressing the occurrence of warpage.
 1   透明基板
 2   第1高屈折率層(硫化亜鉛含有層)
 3   透明金属層
 4   第2高屈折率層(硫化亜鉛含有層)
 5a  第1硫化防止層
 5b  第2硫化防止層
 6   導電層
 100 透明導電体
 a   導通領域
 b   絶縁領域
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 1st high refractive index layer (zinc sulfide content layer)
3 Transparent metal layer 4 Second high refractive index layer (zinc sulfide-containing layer)
5a First sulfidation prevention layer 5b Second sulfidation prevention layer 6 Conductive layer 100 Transparent conductor a Conduction region b Insulation region

Claims (3)

  1.  透明基板と、
     前記透明基板の両面に設けられた導電層と、を備え、
     前記導電層のうち少なくとも一方が、透明金属層及び硫化亜鉛含有層を含む積層体であることを特徴とする透明導電体。
    A transparent substrate;
    A conductive layer provided on both sides of the transparent substrate,
    A transparent conductor, wherein at least one of the conductive layers is a laminate including a transparent metal layer and a zinc sulfide-containing layer.
  2.  前記透明金属層と前記硫化亜鉛含有層との間に、硫化防止層が設けられていることを特徴とする請求項1に記載の透明導電体。 2. The transparent conductor according to claim 1, wherein an anti-sulfurization layer is provided between the transparent metal layer and the zinc sulfide-containing layer.
  3.  前記導電層又は前記透明金属層がパターン化されていることを特徴とする請求項1又は請求項2に記載の透明導電体。 The transparent conductor according to claim 1 or 2, wherein the conductive layer or the transparent metal layer is patterned.
PCT/JP2014/083199 2014-01-24 2014-12-16 Transparent conductor WO2015111327A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015558755A JPWO2015111327A1 (en) 2014-01-24 2014-12-16 Transparent conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014011272 2014-01-24
JP2014-011272 2014-01-24

Publications (1)

Publication Number Publication Date
WO2015111327A1 true WO2015111327A1 (en) 2015-07-30

Family

ID=53681145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083199 WO2015111327A1 (en) 2014-01-24 2014-12-16 Transparent conductor

Country Status (2)

Country Link
JP (1) JPWO2015111327A1 (en)
WO (1) WO2015111327A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110507A (en) * 1986-10-27 1988-05-16 日本板硝子株式会社 Transparent conductor
JP2002313140A (en) * 2001-04-13 2002-10-25 Mitsui Chemicals Inc Transparent conductive film, optical filter and its manufacturing method
JP2003313651A (en) * 2002-04-24 2003-11-06 Mitsui Chemicals Inc Method for manufacturing transparent conductive film
JP2005116646A (en) * 2003-10-03 2005-04-28 Mitsui Chemicals Inc Transparent electromagnetic wave shielding film
WO2011070801A1 (en) * 2009-12-10 2011-06-16 凸版印刷株式会社 Conductive substrate, method for producing same, and touch panel
WO2011096151A1 (en) * 2010-02-04 2011-08-11 コニカミノルタオプト株式会社 Film mirror and process for production thereof, and sunlight collection mirror

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110507A (en) * 1986-10-27 1988-05-16 日本板硝子株式会社 Transparent conductor
JP2002313140A (en) * 2001-04-13 2002-10-25 Mitsui Chemicals Inc Transparent conductive film, optical filter and its manufacturing method
JP2003313651A (en) * 2002-04-24 2003-11-06 Mitsui Chemicals Inc Method for manufacturing transparent conductive film
JP2005116646A (en) * 2003-10-03 2005-04-28 Mitsui Chemicals Inc Transparent electromagnetic wave shielding film
WO2011070801A1 (en) * 2009-12-10 2011-06-16 凸版印刷株式会社 Conductive substrate, method for producing same, and touch panel
WO2011096151A1 (en) * 2010-02-04 2011-08-11 コニカミノルタオプト株式会社 Film mirror and process for production thereof, and sunlight collection mirror

Also Published As

Publication number Publication date
JPWO2015111327A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6314463B2 (en) Transparent conductor
JP6292225B2 (en) Transparent conductor
JP6319302B2 (en) Transparent conductor and method for producing the same
JP2016081318A (en) Transparent conductor and touch panel
WO2015068738A1 (en) Transparent conductive body
JP6536575B2 (en) Transparent conductor and touch panel
JP6344095B2 (en) Transparent conductor and touch panel
WO2015087895A1 (en) Transparent conductive body
JP2015219690A (en) Transparent conductive device and touch panel
WO2015111327A1 (en) Transparent conductor
WO2015125512A1 (en) Transparent conductor manufacturing method and transparent conductor manufacturing apparatus
WO2015125558A1 (en) Method for manufacturing transparent electroconductive body and electroconductive body
WO2014196460A1 (en) Transparent conductor and method for producing same
WO2015053371A1 (en) Transparent conductor
JP2016146052A (en) Transparent conductor, and touch panel including the same
WO2015025525A1 (en) Transparent conductive body
WO2015011928A1 (en) Method for producing transparent conductive body
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
JP6627769B2 (en) Transparent conductor and touch panel including the same
WO2014181538A1 (en) Transparent conductor and method for producing same
WO2015125677A1 (en) Transparent conductor
JP6179433B2 (en) Transparent conductor
JP2016177940A (en) Method for producing transparent conductive body
JP2016144884A (en) Transparent conductor and touch panel including the same
JP2016169420A (en) Apparatus and method for manufacturing transparent conductive member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880122

Country of ref document: EP

Kind code of ref document: A1