WO2011096151A1 - Film mirror and process for production thereof, and sunlight collection mirror - Google Patents

Film mirror and process for production thereof, and sunlight collection mirror Download PDF

Info

Publication number
WO2011096151A1
WO2011096151A1 PCT/JP2010/073496 JP2010073496W WO2011096151A1 WO 2011096151 A1 WO2011096151 A1 WO 2011096151A1 JP 2010073496 W JP2010073496 W JP 2010073496W WO 2011096151 A1 WO2011096151 A1 WO 2011096151A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
film mirror
mirror
metal
Prior art date
Application number
PCT/JP2010/073496
Other languages
French (fr)
Japanese (ja)
Inventor
美佳 本田
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011552672A priority Critical patent/JPWO2011096151A1/en
Publication of WO2011096151A1 publication Critical patent/WO2011096151A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/752Corrosion inhibitor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • B32B2551/08Mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a film mirror, and more particularly to a film mirror for collecting sunlight.
  • biomass energy, nuclear energy, and natural energy such as wind energy and solar energy have been studied as alternative energy to replace fossil fuel energy such as coal energy, oil, and natural gas.
  • fossil fuel energy such as coal energy, oil, and natural gas.
  • the most stable and large amount of natural energy is considered to be solar energy.
  • a glass mirror Since the reflecting device is exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc., a glass mirror has been conventionally used. Glass mirrors are highly durable against the environment, but they have the problem of impact properties such as breakage during transportation, and the strength of the frame on which the heavy mirrors are installed increases the construction cost of the plant.
  • Patent Documents 1 and 2 a film mirror in which the reflective layer is made of silver and the surface sealing layer made of glass is replaced with a polymer film made of resin has been proposed (see, for example, Patent Documents 1 and 2). It was.
  • the polymer film is known to be deteriorated by sunlight, particularly ultraviolet rays having a wavelength of 380 nm or less.
  • the polymer films described in Patent Document 1 and Patent Document 2 are blended with an ultraviolet absorber.
  • the irradiation spectrum of sunlight is observed from 2500 nm.
  • the thermoelectric power generation efficiency is lowered, which is not preferable.
  • this polymer film is more permeable to gases such as oxygen and water vapor than glass, and in an environment exposed to rain and dew, it penetrates into the metal reflective layer over time.
  • the gas diffusion coefficient D is different for each polymer film, the diffusion time is proportional to the thickness of the polymer film, and the thicker the film, the slower the gas permeation that degrades the metal reflective layer, so the service life is become longer.
  • the thickness of the polymer film is increased, the above-described absorption cross-sectional area in the infrared region is increased, so that the thermoelectric generation efficiency is lowered. Improving durability and maintaining thermoelectric efficiency was a trade-off.
  • an injection-molded plastic mirror has been developed in which a metal reflective layer is coated with a metal oxide on the surface of a resin substrate (see, for example, Patent Document 3).
  • This injection-molded plastic mirror had a high reflectance of 90% or more on average from the ultraviolet region to the infrared region. Therefore, in order to correspond to a large-area mirror, in Patent Document 2, a film mirror having a structure in which a silver mirror is formed on the surface of a polymer film and the surface is covered with a metal oxide is manufactured.
  • the metal oxide cracks when the film is bent.
  • Patent Document 3 has no problem with an injection-molded plastic mirror, but cannot be applied to a roll-to-roll system for producing a large-area film. It turns out that oxygen and water vapor enter from the generated crack, and the metal reflective film is corroded. It was found that the metal oxide coated film mirror once cracked was not durable.
  • An object of the present invention is to provide a film mirror capable of improving durability and maintaining thermoelectric generation efficiency for a long period of time, and further providing a film mirror for collecting sunlight using the film mirror.
  • a film mirror in which a polymer film layer, a gas barrier layer having a metal oxide, and a metal reflection layer are arranged in this order from the sunlight incident side, the thickness of the gas barrier layer with respect to the polymer film layer
  • metal oxide of the gas barrier layer is at least one selected from silicon oxide, aluminum oxide, and a mixture of two types of silicon oxide and aluminum oxide.
  • thioether thiol
  • Ni organic compound Ni organic compound
  • benzotriazole imidazole
  • oxazole tetrazaindene
  • pyrimidine thiadiazole 8
  • a solar light collecting mirror wherein the film mirror according to 10 is formed on a support through an adhesive layer of the film mirror.
  • the present invention it is possible to prevent a decrease in regular reflectance due to deterioration of the metal reflective layer, and to be light and flexible, lightweight and flexible, and can be manufactured in a large area and mass-produced with reduced manufacturing costs.
  • the film mirror which is excellent and has a good regular reflectance with respect to sunlight, its manufacturing method, and the film mirror for sunlight condensing using the same were able to be provided.
  • the gas barrier layer having a polymer film layer and a metal oxide so as to cover the reflective layer of metal, the gas barrier property can be imparted, the service life can be extended, and the replacement cost can be reduced. it can.
  • the absorption in the infrared region can be reduced, and the thermoelectric generation efficiency can be improved.
  • the present invention improves the impact resistance by coating a metal oxide film with a high molecular weight polymer instead of forming a metal oxide film on the high molecular weight polymer.
  • Molecular polymers are thinned in a direction that reduces absorption in the infrared region. As the polymer film is made thinner, a metal oxide film with a gas barrier function is attached to improve durability and maintain thermoelectric generation efficiency.
  • a film mirror in which a metal reflective layer was disposed and the thickness ratio of b) to a) was in the range of 0.1% to 5%.
  • FIG. 3 is a cross-sectional view showing an example of a film mirror having a function of reflecting sunlight according to the present invention.
  • the film mirror F has a polymer film layer 1, a gas barrier layer 2 having a metal oxide, a metal reflection layer (Ag layer) 3, and an adhesive layer 4 laminated in order from the sunlight side.
  • a release film 5 can be attached to the lower surface of the adhesive layer 4 and the release film 5 can be appropriately peeled off when desired to adhere to a metal plate or resin plate as a support.
  • the film mirror of the present invention is not limited to the configuration shown in FIG. 3, and it is preferable to add various functional layers. Moreover, even if it is the said structure, functionality can be provided to each layer.
  • embodiments of the present invention to which a functional layer is added will be described. Further, the present invention is not limited only to these embodiments.
  • the upper side means the side on which sunlight is incident
  • the lower side means the opposite side.
  • an ultraviolet absorber is added to the polymer film layer 1 so that the gas barrier layer 2 below functions as a water vapor barrier layer, and the reflective layer 3 therebelow is composed of a silver vapor deposition layer.
  • stacked the adhesion layer 4 and the peeling film 5 below be the film mirror 1 of this invention.
  • the durability increases by adding an ultraviolet absorber to the polymer film layer.
  • a film mirror provided with a corrosion inhibitor layer (a polymer layer containing a corrosion inhibitor) between the reflective layer 3 and the adhesive layer 4 is referred to as a film mirror 2 of the present invention.
  • a corrosion inhibitor layer a polymer layer containing a corrosion inhibitor
  • the film mirror 1 an adhesive layer and a corrosion inhibitor layer are laminated in order from the side where sunlight enters between the gas barrier layer 2 and the reflective layer 3, and further, a high layer is formed between the reflective layer 3 and the adhesive layer 4.
  • the film mirror which provided the molecular film layer be the film mirror 3 of this invention.
  • the film mirror 2 instead of the polymer film layer 1 to which the ultraviolet absorber is added, a film mirror in which a hard coat layer and a polymer film layer are laminated in order from the sunlight incident side is used as the film mirror of the present invention.
  • the hard coat layer preferably contains an ultraviolet absorber or the like.
  • a film mirror in which an ultraviolet reflecting layer is provided on a polymer film layer instead of a hard coat layer is referred to as a film mirror 5 of the present invention.
  • a film mirror provided with a sacrificial anticorrosive layer instead of the corrosion inhibitor layer is referred to as a film mirror 6 of the present invention.
  • the film material of the polymer film layer preferably contains, for example, polyester, polyethylene terephthalate, polyethylene naphthalate, acrylic, polycarbonate, polyolefin, cellulose, or polyamide from the viewpoint of flexibility and weight reduction.
  • an acrylic copolymer excellent in weather resistance and particularly copolymerized with at least two kinds of acrylic monomers is preferable.
  • acrylic copolymers include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
  • One or more monomers selected from monomers having no functional group in the side chain such as alkyl (meth) acrylates such as cyclohexyl methacrylate and 2-ethylhexyl methacrylate
  • alkyl (meth) acrylates such as cyclohexyl methacrylate and 2-ethylhexyl methacrylate
  • monomers selected from monomers such as 2-hydroxyethyl methacrylate, glycidyl methacrylate, acrylic acid, methacrylic acid, itaconic acid, etc.
  • a monomer having a functional group such as OH or COOH in the side chain of the mer (hereinafter referred to as a functional monomer) or a combination of two or more thereof, solution polymerization, suspension polymerization, emulsion polymerization, bulk Examples include acrylic copolymers having a weight average molecular weight of 40,000 to 1,000,000, preferably 100,000 to 400,000, obtained by copolymerization by a polymerization method such as a polymerization method.
  • Tg polymer such as ethylhexyl methacrylate
  • mass% 2-hydroxyethyl methacrylate, acrylic acid, itacone
  • Acrylic polymers such as the functional monomer contains 0 to 10% by weight of an equal is most preferred.
  • the shape of the film may be a shape required as a surface covering material for various film mirrors such as a flat surface, a diffusion surface, a concave surface, a convex surface, and a trapezoid.
  • the thickness of the film substrate is preferably 10 to 125 ⁇ m. If it is thinner than 10 ⁇ m, the film will not be stiff, and the film will be wrinkled easily, which is not preferable in appearance and tends to deteriorate the reflection performance. If it is thicker than 125 ⁇ m, the average reflectance in the range of 1600 nm to 2500 nm is less than 80%. .
  • the surface of the polymer film layer may be subjected to corona discharge treatment, plasma treatment or the like in order to improve adhesion with a metal oxide layer, a hard coat layer, a dielectric coating layer, or the like.
  • the film base material contains any one of benzotriazole, benzophenone, triazine, cyanoacrylate, and polymer type ultraviolet absorbers.
  • UV absorber As the ultraviolet absorber used for the polymer film layer, an ultraviolet absorbent having a wavelength of 370 nm or less and excellent absorption of ultraviolet rays and having a small absorption of visible light having a wavelength of 400 nm or more is preferable from the viewpoint of utilization of sunlight.
  • Examples of the ultraviolet absorber used in the present invention include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, triazine compounds, and the like. However, benzophenone compounds, less colored benzotriazole compounds, and triazine compounds are preferable. Further, ultraviolet absorbers described in JP-A Nos. 10-182621 and 8-337574, and polymer ultraviolet absorbers described in JP-A Nos. 6-148430 and 2003-113317 may be used.
  • benzotriazole ultraviolet absorbers include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzo Triazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5 Chlorobenzotriazole, 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy 3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-
  • TINUVIN 171, TINUVIN 900, TINUVIN 928, TINUVIN 360 (all manufactured by BASF Japan), LA31 (manufactured by ADEKA), RUVA-100 (Otsuka) Chemical).
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
  • gas barrier layer having a metal oxide examples include silicon oxide, aluminum oxide, or silicon oxide, a composite oxide starting from aluminum oxide, zinc oxide, tin oxide, indium oxide, niobium oxide, chromium oxide, etc. From the viewpoint of water vapor barrier properties, silicon oxide, aluminum oxide, or a composite oxide starting from silicon and aluminum is preferable.
  • a multilayer film in which a low refractive index layer having a refractive index of 1.35 to 1.8 at a wavelength of 550 nm and a high refractive index film having a refractive index of 1.85 to 2.8 at a wavelength of 550 nm are alternately laminated. Also good.
  • Examples of the low refractive index film material include silicon oxide, aluminum oxide, silicon nitride, and aluminum nitride.
  • Examples of the high refractive index film material include niobium oxide, titanium oxide, zinc oxide, tin oxide, indium oxide, tantalum oxide, and zirconium oxide. These are formed by a vacuum process such as a vacuum deposition method, a sputtering method, a PVD method (physical vapor deposition method) such as ion plating, or a CVD method (chemical vapor deposition method).
  • the thickness of the gas barrier layer having a metal oxide is preferably in the range of 5 to 800 nm, more preferably in the range of 10 to 300 nm.
  • a gas barrier layer is formed on a polymer film, and thus a silicon oxide layer or an aluminum oxide layer obtained as described above, or a composite oxide layer using silicon oxide and aluminum oxide as a starting material is oxygenated.
  • excellent barrier action against gas such as carbon dioxide, air, or water vapor.
  • a laminate of a silicon oxide layer or an aluminum oxide layer, or a composite oxide layer starting from silicon oxide or aluminum oxide and a polymer film has a water vapor permeability of 1 ⁇ 10 ⁇ 2 at 40 ° C. and 90% RH. It is preferably g / m 2 ⁇ 24 h or less.
  • the water vapor transmission rate can be measured with a water vapor transmission rate measuring device PERMATRAN-W3-33 manufactured by MOCON.
  • the silicon oxide layer or the aluminum oxide layer, or the composite oxide layer using silicon oxide and aluminum oxide as a starting material has a thickness of 1 ⁇ m or less, and the average value of each light transmittance is 90% or more. It is preferable. Thereby, there is no light loss and sunlight can be reflected efficiently.
  • the ratio of the thickness of the polymer film layer and the gas barrier layer having a metal oxide is in the range of 0.1% to 5%.
  • the ratio is smaller than 0.1%, that is, when the thickness of the gas barrier layer with respect to the polymer film becomes thin, sufficient gas barrier properties cannot be obtained and the function of suppressing the progress of deterioration cannot be exhibited.
  • the ratio is larger than 5%, that is, when the thickness of the gas barrier layer with respect to the polymer film is increased, the metal oxide cracks when an external bending force is applied, and as a result, the gas barrier property cannot be obtained and the deterioration progresses. The function to suppress is not demonstrated.
  • Metal reflective layer As the metal reflective layer according to the present invention, for example, silver or a silver alloy, gold, copper, aluminum, or an alloy thereof can be used. In particular, it is preferable to use silver.
  • a reflective layer serves as a reflective film that reflects light.
  • the reflectance of the film mirror from the infrared region to the visible light region can be increased, and the dependency of the reflectance on the incident angle can be reduced. From the infrared region to the visible light region means a wavelength region of 2500 to 400 nm.
  • the incident angle means an angle with respect to a line (normal line) perpendicular to the film surface.
  • the silver alloy there is an alloy of silver and one or more other metals selected from the group consisting of gold, palladium, tin, gallium, indium, copper, titanium and bismuth because the durability of the reflective layer is improved.
  • gold is particularly preferable from the viewpoint of high temperature humidity resistance and reflectance.
  • the reflective layer is a silver alloy film
  • silver is preferably 90 to 99.8 atomic% in the total (100 atomic%) of silver and other metals in the reflective layer. Further, the other metal is preferably 0.2 to 10 atomic% from the viewpoint of durability.
  • the film thickness of the reflective layer is preferably 60 to 300 nm, particularly preferably 80 to 200 nm. If the thickness of the reflective layer is less than 60 nm, the film thickness is thin and light is transmitted, so that the reflectance in the visible light region of the film mirror may be reduced. The reflectance increases in proportion to the film thickness up to about 200 nm, but it does not depend on the film thickness above 200 nm. Rather, when the thickness of the reflective layer exceeds 300 nm, irregularities are likely to occur on the surface of the reflective layer, which causes light scattering, which may reduce the reflectance in the visible light region.
  • Film mirrors are required to be glossy, but the method of making and bonding metal foils loses gloss due to surface irregularities. For film mirrors that require uniform surface roughness over a wide area, metal foil lamination is not preferred as a manufacturing method.
  • the metal reflection layer is preferably formed by wet plating or dry plating such as vacuum deposition.
  • the pressure-sensitive adhesive layer of the present invention is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, a heat seal agent, a hot melt agent and the like are used.
  • a dry laminating agent for example, polyester resin, urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber, etc. are used.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out continuously by a roll method from the viewpoint of economy and productivity.
  • the thickness of the adhesive layer is usually selected from the range of about 1 to 50 ⁇ m. When the thickness is less than 1 ⁇ m, a sufficient adhesive effect cannot be obtained. On the other hand, when the thickness exceeds 50 ⁇ m, the pressure-sensitive adhesive layer is too thick and the drying speed is slow, which is inefficient. In addition, the original adhesive strength cannot be obtained, and adverse effects such as residual solvent occur, which is not preferable.
  • the release film that can be used in the present invention has a base material and a release agent layer provided on the base material.
  • the outer surface of the release film has high smoothness.
  • the release agent constituting the release film include silicone resins, long-chain alkyl resins, fluorine resins, fluorosilicone resins, long-chain alkyl-modified alkyd resins, silicone-modified alkyd resins, and the like. .
  • silicone resin when used as a material for the release agent, more excellent release properties are exhibited.
  • silicone resin any of addition type, condensation type, solventless type and the like can be used.
  • the average thickness of the release agent constituting the release film is not particularly limited, but is preferably 0.01 to 0.3 ⁇ m, and more preferably 0.05 to 0.2 ⁇ m. When the average thickness of the release agent layer is less than the lower limit, the function as the release agent layer may not be sufficiently exhibited. On the other hand, if the average thickness of the release agent layer exceeds the upper limit, blocking may occur when the release film is wound into a roll, resulting in a failure in feeding.
  • the total thickness of the film mirror according to the present invention is preferably 75 to 250 ⁇ m, more preferably 90 to 230 ⁇ m, still more preferably 100 to 220 ⁇ m.
  • the thickness is 75 ⁇ m or less, when the film mirror is attached to the metal substrate, the mirror is bent and sufficient regular reflectance cannot be obtained, and when it is thicker than 250 ⁇ m, the handleability is deteriorated. It is not preferable.
  • the corrosion inhibitor layer installed on the film mirrors 2 to 5 described above as an embodiment of the present invention functions to prevent discoloration of a metal reflection layer (specifically, an Ag layer), for example, a thioether type, a thiol type, a Ni type Organic compound type, benzotriazole type, imidazole type, oxazole type, tetrazaindene type, pyrimidine type, and thiadiazole type are mentioned.
  • the corrosion inhibitor layer is roughly classified into a corrosion inhibitor having an adsorption group with silver and an antioxidant. Specific examples of these corrosion inhibitors and antioxidants are given below.
  • Corrosion inhibitors having an adsorption group with silver include amines and derivatives thereof, products having a pyrrole ring, products having a triazole ring, products having a pyrazole ring, products having a thiazole ring, products having an imidazole ring, indazole It is desirable to be selected from a ring-containing product, a copper chelate compound, a thiourea, a product having a mercapto group, at least one naphthalene-based compound, or a mixture thereof.
  • amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, o-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite , Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexyl
  • Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, N-phenyl-3, 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy- '-Tert-butylphenyl) benzotriazole, 2- (2'-hydroxy3'5'-di-tert-butylphenyl) benzotriazole, 2-
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole and the like, or a mixture thereof.
  • Examples of those having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
  • Examples of compounds having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5 dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4-phospho Myrimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and the like, or a mixture thereof.
  • copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
  • thioureas examples include thiourea, guanylthiourea, and the like, or a mixture thereof.
  • mercaptoacetic acid thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto are added if the above-mentioned materials are added.
  • naphthalene-based compounds examples include thionalide.
  • antioxidant As the antioxidant that can be used in the corrosion inhibitor layer according to the present invention, it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.
  • phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-tri
  • the phenolic antioxidant preferably has a molecular weight of 550 or more.
  • the thiol antioxidant include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), and the like.
  • the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol.
  • Diphosphite bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene-diphosphonite 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
  • a metal reflective layer is formed on the surface of the polymer film (A), and a corrosion inhibitor layer is further laminated thereon.
  • an adhesive layer is formed on the surface of the polymer film (A), that is, on the corrosion inhibitor layer.
  • a gas barrier layer is formed on the lower surface of another polymer film (B), and the gas barrier layer of the polymer film (B) and the adhesive layer of the polymer film (A) are faced to each other to produce them.
  • Adhesive layer As an adhesive layer installed in the film mirror 3 of the aspect of this invention, it consists of resin and adheres a film and the polymer film layer containing the above-mentioned ultraviolet absorber. Therefore, the adhesive layer needs to have an adhesive property for closely adhering the film and the ultraviolet absorber-containing polymer film layer, and smoothness and transparency to bring out the high reflection performance inherent to the metal reflective layer.
  • the resin used for the adhesive layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness.
  • Polyester resin, acrylic resin, melamine resin, epoxy resin, polyamide Resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin or the like, or a mixed resin thereof can be used. From the viewpoint of weather resistance, a polyester resin and a melamine resin mixed resin are preferable. It is more preferable to use a thermosetting resin mixed with a curing agent.
  • the thickness of the adhesive layer is preferably 0.01 to 3 ⁇ m, more preferably 0.1 to 1 ⁇ m. If the thickness is less than 0.01 ⁇ m, the adhesiveness is deteriorated and there is no effect of forming an adhesive layer, and it is difficult to cover the unevenness on the surface of the film substrate, and the smoothness is deteriorated. Even if the thickness is greater than 3 ⁇ m, improvement in adhesion cannot be expected, and on the contrary, unevenness of coating may cause poor smoothness or insufficient curing of the adhesive layer, which is not preferable.
  • a method for forming the adhesive layer conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • a hard coat layer can be provided as the outermost layer of the film mirror.
  • the hard coat layer is provided for preventing scratches.
  • the film mirror 4 mentioned above can be mentioned.
  • the hard coat layer can be composed of acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicone resin, and the like.
  • silicone resins and acrylic resins are preferable in terms of hardness and durability.
  • an active energy ray-curable acrylic resin or a thermosetting acrylic resin is preferable in terms of curability, flexibility, and productivity.
  • the active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component.
  • Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
  • the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
  • polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc. ), Shin-Nakamura Co., Ltd.
  • additives can be further blended in the hard coat layer as required, as long as the effects of the present invention are not impaired.
  • stabilizers such as antioxidants, light stabilizers, ultraviolet absorbers, surfactants, leveling agents, antistatic agents, and the like can be used.
  • ⁇ Leveling agents are effective in reducing surface irregularities, especially when functional layers are applied.
  • a dimethylpolysiloxane-polyoxyalkylene copolymer for example, SH190 manufactured by Toray Dow Corning Co., Ltd.
  • SH190 manufactured by Toray Dow Corning Co., Ltd. is suitable as the silicone leveling agent.
  • the ultraviolet reflective layer installed in the film mirror 5 of the embodiment of the present invention is a layer that reflects ultraviolet light and transmits visible light and infrared light.
  • the ultraviolet reflection layer preferably has an average reflectance of 75% or more for electromagnetic waves (ultraviolet rays) of 300 nm to 400 nm.
  • the ultraviolet reflective layer preferably has an average transmittance of 80% or more for electromagnetic waves (visible light and infrared light) of 400 nm to 2500 nm.
  • the polymer film layer is disposed on the side of the metal reflection layer on which sunlight is incident, and the sunlight that has passed through the polymer film layer is reflected by the metal reflection layer.
  • the ultraviolet reflective layer on the side of the polymer film layer on which sunlight is incident, the polymer film layer can be prevented from being deteriorated and discolored by ultraviolet rays, and the decrease in light transmittance of the polymer film layer can be reduced. Therefore, it becomes possible to reduce the reflectance drop of the film mirror.
  • the ultraviolet reflecting layer on the side of the polymer film layer on which sunlight is incident, it is possible to reduce a decrease in moisture resistance of the polymer film layer due to deterioration of the polymer film layer due to ultraviolet rays of sunlight. Therefore, it is possible to prevent the metal reflective layer from being deteriorated due to the deterioration of the moisture resistance of the polymer film layer, so that it is possible to reduce the reflectance drop of the film mirror.
  • the ultraviolet reflective layer is not particularly limited, a dielectric multilayer film of alternating layers of two or more kinds of dielectric materials having different refractive indexes can be used.
  • the dielectric multilayer film according to the present invention is preferably configured by alternately stacking a high refractive index dielectric layer and a low refractive index dielectric layer in an amount of 2 to 6 layers alternately.
  • the scratch resistance of a dielectric multilayer film can be improved by using a multilayer structure in which dielectric layers are stacked.
  • the high refractive index dielectric layer preferably has a refractive index of 2.0 to 2.6.
  • the low refractive index dielectric layer preferably has a refractive index of 1.8 or less.
  • the dielectric layer of high refractive index can be preferably used SiO 2, Al 2 O 3 as a dielectric layer of ZrO 2, TiO 2 the low refractive index.
  • TiO 2 can be used, and as the low refractive index dielectric layer, SiO 2 can be used more preferably.
  • TiO 2 is used on the outermost surface of the ultraviolet reflection layer, that is, the outermost surface of the film mirror, as a dielectric material having a high refractive index, the anti-fouling effect on the mirror surface due to the photocatalytic effect of TiO 2 can be obtained. It is possible to reduce the decrease in the reflectance of the film mirror caused by the above.
  • the sacrificial anticorrosive layer installed on the film mirror 6 of the embodiment of the present invention is a layer that protects the metal reflective layer by sacrificial anticorrosion, and the sacrificial anticorrosive layer is disposed between the metal reflective layer and the protective layer.
  • the corrosion resistance of the metal reflective layer can be improved.
  • the anticorrosive sacrificial layer is preferably copper having a higher ionization tendency than silver, and the copper anticorrosive sacrificial layer is provided under the reflective layer made of silver, thereby suppressing the deterioration of silver.
  • the film mirror of the present invention can be manufactured by the following steps.
  • Step 1 A biaxially stretched polyester film (polyethylene terephthalate film, thickness 60 ⁇ m) is prepared as a base material for the polymer film, placed inside the vapor deposition machine, and the inside of the vapor deposition machine is evacuated by a vacuum pump.
  • a feeding device for feeding out a polymer film wound in a roll shape
  • a winding device for taking up the polymer film deposited on the polymer film by vapor deposition.
  • a large number of rolls are arranged between the feeding device and the winding device so as to respectively guide the film, and are driven to rotate in synchronization with the polymer film travel by the driving means.
  • a metal oxide deposition nucleus evaporation source is disposed at a position facing the upstream portion of the polymer film traveling direction.
  • the deposition nuclear evaporation source is for depositing metals such as Si, Al, Ag, Cu, etc. on polymer films.
  • Metal vapor is generated by vacuum deposition or the like, and the metal is uniformly distributed over the entire width of the film.
  • An oxide vapor deposition film and a metal vapor deposition film are formed.
  • Step 3 A polyester-based pressure sensitive adhesive is applied to the surface of the metal vapor deposition film produced in step 2 to a thickness of 5 ⁇ m. Not only the above-mentioned production order but also a corrosion inhibitor effective for preventing metal deterioration after step 2 may be applied, and a sacrificial anticorrosive layer, for example, Cu may also be deposited to prevent metal deterioration.
  • a corrosion inhibitor effective for preventing metal deterioration after step 2 may be applied, and a sacrificial anticorrosive layer, for example, Cu may also be deposited to prevent metal deterioration.
  • the film mirror of the present invention can be preferably used for the purpose of collecting sunlight.
  • the film mirror can be used alone as a sunlight collecting mirror, more preferably, the film mirror is attached to a support via an adhesive layer and used as a sunlight collecting mirror.
  • Examples of the support for the solar light collecting mirror of the present invention include a resin material or a metal material.
  • resin materials such as polycarbonate resin, polyacetal resin, acrylic resin, polystyrene resin, polyimide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, and ABS resin are used without particular limitation.
  • examples of the metal material include an aluminum plate, an aluminum alloy plate, a brass plate, a stainless plate, and a steel plate.
  • Example 1 (Preparation of film mirror sample 1)
  • a biaxially stretched acrylic film (thickness: 60 ⁇ m) containing benzotriazole as an ultraviolet absorber was used.
  • a composite oxide starting from silicon oxide and aluminum oxide as a water vapor barrier layer having a metal oxide was deposited with a thickness of 80 nm.
  • Vapor deposition materials of silicon oxide and aluminum oxide were formed by an electron beam vapor deposition method at a mixing ratio of 80:20.
  • a 150 nm thick silver reflective layer is formed by vacuum deposition, and on the silver reflective layer, acrylic adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) is applied to a thickness of 5 ⁇ m as an adhesive.
  • a release film was attached to obtain a sample 1 corresponding to the film mirror 1 of the embodiment of the present invention.
  • a biaxially stretched polyester film (polyethylene terephthalate film, thickness 50 ⁇ m) containing an ultraviolet absorber benzotriazole was used.
  • a composite oxide starting from silicon and aluminum was deposited as a water vapor barrier layer having a metal oxide with a thickness of 300 nm. Vapor deposition materials of silicon oxide and aluminum oxide were formed by electron beam vapor deposition at a mixing ratio of 90:10.
  • a 150 nm thick silver reflective layer was formed by vacuum deposition, and an acrylic film was applied to the upper surface of the silver reflective layer to a thickness of 60 ⁇ m.
  • the acrylic film contains the corrosion inhibitor dimercaptoacetate.
  • acrylic adhesive Sdyne # 7851 manufactured by Sekisui Chemical Co., Ltd. was applied in a thickness of 5 ⁇ m from above, and a release film was attached to obtain a sample 2 corresponding to the film mirror 2 of the embodiment of the present invention.
  • the polymer film 2 was a biaxially stretched polyester film (polyethylene terephthalate film, thickness 50 ⁇ m) as the polymer film.
  • a 150 nm thick silver reflective layer was formed thereon as a metal reflective layer by vacuum deposition, and an acrylic film was applied to the upper surface of the silver reflective layer to a thickness of 60 ⁇ m.
  • the acrylic film contains the corrosion inhibitor dimercaptoacetate.
  • Acrylic pressure-sensitive adhesive Sdyne # 7851 manufactured by Sekisui Chemical Co., Ltd. was applied to the surface opposite to the silver reflective layer as a pressure-sensitive adhesive to a thickness of 5 ⁇ m and a release film was attached.
  • the sample prepared so far was designated as Sample A.
  • a composite oxide starting from silicon and aluminum was deposited at a thickness of 300 nm as a water vapor barrier layer having a metal oxide on a polymer film 1 (thickness 25 ⁇ m) containing benzotriazole as an ultraviolet absorber.
  • Vapor deposition materials of silicon oxide and aluminum oxide were formed by electron beam vapor deposition at a mixing ratio of 90:10.
  • Sample B was a polymer film 1 with a water vapor barrier layer produced in this separate step. Sample A and Sample B were bonded via a polyester adhesive layer to obtain Sample 3 corresponding to Film Mirror 3 of the embodiment of the present invention.
  • the polymer film 1 was a biaxially stretched polyester film (polyethylene terephthalate film, thickness 12 ⁇ m) as the polymer film.
  • a chemical vapor deposition (CVD) apparatus is used on one side of the polymer film 1 to form tetramethylenedisiloxane, oxygen, and helium at a ratio of 1:20:10 (slm) and a pressure of 100 ⁇ 10 ⁇ 4.
  • a thin film of silicon oxide (SiOx, X ⁇ 2) was formed with a thickness of 60 nm as a water vapor barrier layer having a metal oxide under the conditions of Torr, vapor deposition rate 50 nm / S, and film thickness 10 nm.
  • a 150 nm thick silver reflective layer was formed thereon as a metal reflective layer by vacuum deposition, and an acrylic film was applied to the upper surface of the silver reflective layer to a thickness of 60 ⁇ m.
  • the acrylic film contains the corrosion inhibitor dimercaptoacetate.
  • acrylic adhesive Esdyne # 7851 manufactured by Sekisui Chemical Co., Ltd.
  • a release film was attached.
  • 5% by mass of TINUVIN 328 (ultraviolet absorber, manufactured by BASF Japan) was mixed with methyl acrylate: butyl acrylate copolymer (ratio 64:36, ultraviolet curable resin) on the surface of the polymer film 1 having no silver reflection layer.
  • the toluene solution is coated by a gravure coating method, dried at 80 ° C. for 30 seconds, and then irradiated with ultraviolet rays so that the accumulated light amount becomes 5000 mJ / cm 2 to form an ultraviolet absorber-containing hard coat layer.
  • Four samples corresponding to the film mirror 4 were obtained.
  • a sample 5 corresponding to the film mirror 5 of the embodiment of the present invention was obtained in the same manner as in Example 4 except that the ultraviolet reflecting layer was made of a metal oxide instead of the ultraviolet absorbent-containing hard coat layer.
  • the ultraviolet reflection layer is composed of a dielectric multilayer film, and six layers of dielectric layers TiO 2 (thickness 37 nm) having a high refractive index and dielectric layers SiO 2 (thickness 65 nm) having a low refractive index are alternately formed by vacuum deposition. It is constructed by stacking.
  • the total thickness of the ultraviolet reflecting layer is 306 nm.
  • a biaxially stretched acrylic film (thickness 10 ⁇ m) containing benzotriazole as an ultraviolet absorber was used as the polymer film.
  • An aluminum oxide layer having a thickness of 500 nm was deposited on one side of the acrylic film as a water vapor barrier layer having a metal oxide.
  • the aluminum oxide vapor deposition material was formed by electron beam vapor deposition.
  • a silver reflection layer having a thickness of 150 nm was formed by a vacuum deposition method, and a copper layer was deposited as a sacrificial anticorrosion layer by resistance heating to a thickness of 60 nm on the silver reflection layer.
  • an acrylic pressure-sensitive adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) was applied to a thickness of 5 ⁇ m as a pressure-sensitive adhesive, and a release film was attached to obtain a sample 6 corresponding to the film mirror 6 of the embodiment of the present invention. .
  • a biaxially stretched polyester film (polyethylene terephthalate film, thickness 60 ⁇ m) was used as the polymer film.
  • a 150 nm thick silver reflective layer is formed as a metal reflective layer on one side of the polyethylene terephthalate film by a vacuum deposition method, and a composite oxide starting from silicon and aluminum is deposited on the silver reflective layer to a thickness of 80 nm. did.
  • a comparative sample 1 was obtained by applying an acrylic adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) as a pressure-sensitive adhesive on the side opposite to the silver reflecting layer to a thickness of 5 ⁇ m and attaching a release film.
  • Comparative sample 2 produced in the same process as sample 1 was obtained except that the process of forming the water vapor barrier layer having a metal oxide was not performed.
  • Each film mirror sample obtained was cut into a 2.5 cm square of the measurement size, the reflectance measurement mode of the spectrophotometer U4000 (manufactured by Hitachi High-Technologies) was selected, and the reflection of the incident light at an angle of 5 ° Light was guided to an integrating sphere and the regular reflectance was measured.
  • the wavelength range was 2500 nm to 250 nm, and it was confirmed whether there was any wavelength range in which the reflectance dropped.
  • the reflectances in the infrared light region (2500 nm to 800 nm) and the visible light region (800 nm to 400 nm) were averaged to obtain regular reflection average values for the examples and comparative examples.
  • Degradation test 1 moisture resistance test
  • the specular reflectance measurement described above was carried out after being left for 30 days in a constant temperature bath under conditions of a temperature of 85 ° C. and a humidity of 85% RH.
  • the determination of regular reflectance is the same as described above.
  • Degradation test 2 (Ammonium sulfide test) The test was conducted according to the method described in Appendix 2 of JIS-H8623 using ammonium sulfide specified in JIS-K8943. After being immersed in an aqueous ammonium sulfide solution and allowed to stand for 24 hours, the regular reflectance of the film mirror was measured. The determination of regular reflectance is the same as described above.
  • Example 2 Using samples 1 to 6 of the present invention and comparative samples 1 to 3, solar light collecting mirrors were produced by the following method.
  • An actual film mirror for solar thermal power generation has a length of at least 1 m on a side and cannot be evaluated with an evaluation measuring device with the size as it is. Therefore, a solar power generation reflective device with a small size as shown below is produced. The film mirror for solar power generation was evaluated using this.
  • the above-prepared samples 1 to 6 and comparative samples 1 to 3 are attached to a stainless steel (SUS304) plate having a thickness of 15.4 mm and a length of 25.4 mm ⁇ width of 76.2 mm through an adhesive layer having a thickness of 5 ⁇ m.
  • a film mirror for solar thermal power generation was prepared.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A film mirror having a sunlight-reflecting function, which comprises a polymer film layer, a gas barrier layer containing a metal oxide, and a reflective metal layer in this order from the sunlight incident side, and which is characterized in that the ratio of the thickness of the gas barrier layer to the thickness of the polymer film layer is 0.1 to 5%; a process for producing the film mirror; and a sunlight collection mirror.

Description

フィルムミラー、その製造方法及び太陽光集光用ミラーFilm mirror, manufacturing method thereof, and solar light collecting mirror
 本発明は、フィルムミラーに関し、更に詳しくは太陽光集光用のフィルムミラーに関する。 The present invention relates to a film mirror, and more particularly to a film mirror for collecting sunlight.
 近年、石炭エネルギー、石油、天然ガス等の化石燃料エネルギーに代わる代替エネルギーとしては現在、バイオマスエネルギー、核エネルギー、並びに風力エネルギー及び太陽エネルギー等の自然エネルギーが検討されているが、化石燃料の代替エネルギーとして最も安定しており、且つ量の多い自然エネルギーは、太陽エネルギーであると考えられる。 In recent years, biomass energy, nuclear energy, and natural energy such as wind energy and solar energy have been studied as alternative energy to replace fossil fuel energy such as coal energy, oil, and natural gas. The most stable and large amount of natural energy is considered to be solar energy.
 しかしながら、太陽エネルギーは非常に有力な代替エネルギーであるものの、これを活用する観点からは、(1)太陽エネルギーのエネルギー密度が低いこと、並びに(2)太陽エネルギーの貯蔵及び移送が困難であることが、問題となると考えられる。 However, although solar energy is a very powerful alternative energy, from the viewpoint of utilizing this, (1) the energy density of solar energy is low, and (2) it is difficult to store and transfer solar energy. However, this is considered a problem.
 これに対して、太陽エネルギーのエネルギー密度が低いという問題は、巨大な反射装置で太陽エネルギーを集めることによって解決することが提案されている。 On the other hand, it has been proposed to solve the problem of low energy density of solar energy by collecting solar energy with a huge reflector.
 反射装置は、太陽光による紫外線や熱、風雨、砂嵐などに晒されるため、従来、ガラス製ミラーが用いられてきた。ガラス製ミラーは環境に対する耐久性が高い反面、輸送時に破損するといった衝撃性の問題、重いミラーを設置する架台の強度を持たせるために、プラントの建設費がかさむといった問題があった。 Since the reflecting device is exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc., a glass mirror has been conventionally used. Glass mirrors are highly durable against the environment, but they have the problem of impact properties such as breakage during transportation, and the strength of the frame on which the heavy mirrors are installed increases the construction cost of the plant.
 そこで、上記問題を解決するために、反射層を銀とし、ガラス製であった表面封止層を樹脂製である高分子フィルムに置き換えたフィルムミラーが提案(例えば特許文献1、2参照)された。高分子フィルムは太陽光とくに380nm以下の紫外線によって劣化することが知られており、その対策として特許文献1および特許文献2に記載の高分子フィルムには紫外線吸収剤が配合されている。これらのフィルムミラーの正反射率を分光光度計にて2500nmから250nmの範囲で測定してみると紫外域反射率とともに1600nmより長い波長の赤外域の反射率においても銀そのものの反射率より低下がみられた。(図2の125μmPET/Ag)この赤外域の吸収は高分子の振動吸収によるもので樹脂材料固有の吸収である。 Therefore, in order to solve the above problem, a film mirror in which the reflective layer is made of silver and the surface sealing layer made of glass is replaced with a polymer film made of resin has been proposed (see, for example, Patent Documents 1 and 2). It was. The polymer film is known to be deteriorated by sunlight, particularly ultraviolet rays having a wavelength of 380 nm or less. As a countermeasure, the polymer films described in Patent Document 1 and Patent Document 2 are blended with an ultraviolet absorber. When the regular reflectance of these film mirrors is measured in the range of 2500 nm to 250 nm with a spectrophotometer, the reflectance in the infrared region having a wavelength longer than 1600 nm is lower than the reflectance of silver itself in addition to the ultraviolet region reflectance. It was seen. (125 μm PET / Ag in FIG. 2) This absorption in the infrared region is due to vibration absorption of the polymer and is inherent to the resin material.
 図1に見られるように太陽光の照射スペクトルは2500nmから観測される。熱発電用に太陽光エネルギーを使用する場合、表面封止層に1600nmから2500nmの赤外域の吸収があると熱発電効率低下につながり好ましくない。さらにこの高分子フィルムは酸素、水蒸気といった気体に対してはガラスよりも透過性が高く、雨、露にさらされる環境では経年とともに金属反射層へ浸透してしまう。高分子フィルムそれぞれに気体拡散係数Dは異なるが、拡散時間は高分子フィルムの厚みに比例しており、厚いフィルムであればあるほど金属反射層を劣化させる気体の浸透は遅くなるため耐用年数は長くなる。しかし高分子フィルムの厚みが厚くなると上述した赤外域の吸収断面積が多くなるため、熱発電効率は低下する。耐久性向上と熱発電効率維持はトレードオフであった。 As shown in FIG. 1, the irradiation spectrum of sunlight is observed from 2500 nm. When using solar energy for thermoelectric power generation, if the surface sealing layer has absorption in the infrared region of 1600 nm to 2500 nm, the thermoelectric power generation efficiency is lowered, which is not preferable. Furthermore, this polymer film is more permeable to gases such as oxygen and water vapor than glass, and in an environment exposed to rain and dew, it penetrates into the metal reflective layer over time. Although the gas diffusion coefficient D is different for each polymer film, the diffusion time is proportional to the thickness of the polymer film, and the thicker the film, the slower the gas permeation that degrades the metal reflective layer, so the service life is become longer. However, when the thickness of the polymer film is increased, the above-described absorption cross-sectional area in the infrared region is increased, so that the thermoelectric generation efficiency is lowered. Improving durability and maintaining thermoelectric efficiency was a trade-off.
 そこで樹脂基板の表面に、金属酸化物で金属反射層を被覆するという射出成形プラスチックミラーが開発(例えば、特許文献3参照)された。この射出成形プラスチックミラーは紫外域から赤外域まで平均90%以上の高い反射率を持っていた。そこで、大面積ミラーに対応させるために、特許文献2において、高分子フィルム表面に銀鏡を形成しその表面を金属酸化物で被覆する構成のフィルムミラーを作製した。しかし金属酸化物を最表面に配置する構成をフィルムに適用すると、フィルム屈曲時に金属酸化物にクラックが生じるということが分かった。特許文献3の技術は射出成形プラスチックミラーでは問題は無かったが大面積のフィルムを生産するためのロールtoロール方式には適応不可能であった。発生したクラックから酸素、水蒸気が入り込むことが分かり金属反射膜は腐食変色する。一旦クラックの入った金属酸化物被覆フィルムミラーは耐久性が無いことが分かった。 Therefore, an injection-molded plastic mirror has been developed in which a metal reflective layer is coated with a metal oxide on the surface of a resin substrate (see, for example, Patent Document 3). This injection-molded plastic mirror had a high reflectance of 90% or more on average from the ultraviolet region to the infrared region. Therefore, in order to correspond to a large-area mirror, in Patent Document 2, a film mirror having a structure in which a silver mirror is formed on the surface of a polymer film and the surface is covered with a metal oxide is manufactured. However, it was found that when the structure in which the metal oxide is arranged on the outermost surface is applied to the film, the metal oxide cracks when the film is bent. The technique of Patent Document 3 has no problem with an injection-molded plastic mirror, but cannot be applied to a roll-to-roll system for producing a large-area film. It turns out that oxygen and water vapor enter from the generated crack, and the metal reflective film is corroded. It was found that the metal oxide coated film mirror once cracked was not durable.
特許第3447175号明細書Japanese Patent No. 3447175 特表2009-520174号公報Special table 2009-520174 特許第3206957号明細書Japanese Patent No. 3206957
 本発明の目的は、耐久性が向上し熱発電効率を長期に維持できるフィルムミラーを提供し、更に、該フィルムミラーを用いた太陽光集光用フィルムミラーを提供することにある。 An object of the present invention is to provide a film mirror capable of improving durability and maintaining thermoelectric generation efficiency for a long period of time, and further providing a film mirror for collecting sunlight using the film mirror.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.太陽光を入射する側から順に、高分子フィルム層、金属酸化物を有するガスバリア層、及び、金属の反射層が配置されたフィルムミラーであって、該高分子フィルム層に対する該ガスバリア層の厚みの比率が0.1%~5%の範囲であることを特徴とする太陽光を反射する機能を持つフィルムミラー。 1. A film mirror in which a polymer film layer, a gas barrier layer having a metal oxide, and a metal reflection layer are arranged in this order from the sunlight incident side, the thickness of the gas barrier layer with respect to the polymer film layer A film mirror having a function of reflecting sunlight, wherein the ratio is in the range of 0.1% to 5%.
 2.前記高分子フィルム層の膜厚は10μm~125μmの範囲であることを特徴とする前記1に記載のフィルムミラー。 2. 2. The film mirror as described in 1 above, wherein the film thickness of the polymer film layer is in the range of 10 μm to 125 μm.
 3.前記ガスバリア層の金属酸化物が、酸化珪素、酸化アルミニウム、および酸化珪素と酸化アルミニウムの2種混合体、から選ばれる少なくとも1種であることを特徴とする前記1又は2に記載のフィルムミラー。 3. 3. The film mirror as described in 1 or 2 above, wherein the metal oxide of the gas barrier layer is at least one selected from silicon oxide, aluminum oxide, and a mixture of two types of silicon oxide and aluminum oxide.
 4.前記反射層の金属が、銀であることを特徴とする前記1~3のいずれか一項に記載のフィルムミラー。 4. 4. The film mirror according to claim 1, wherein the metal of the reflective layer is silver.
 5.前記金属の反射層を、湿式めっきで作製したことを特徴とする前記1~4のいずれか一項に記載のフィルムミラー。 5. 5. The film mirror according to any one of 1 to 4, wherein the metal reflective layer is formed by wet plating.
 6.前記金属の反射層を、乾式めっきで作製したことを特徴とする前記1~4のいずれか一項に記載のフィルムミラー。 6. 5. The film mirror according to claim 1, wherein the metal reflective layer is produced by dry plating.
 7.前記高分子フィルム層に紫外線吸収剤が含有されていることを特徴とする前記1~6のいずれか一項に記載のフィルムミラー。 7. 7. The film mirror as described in any one of 1 to 6 above, wherein the polymer film layer contains an ultraviolet absorber.
 8.前記金属の反射層と接して、チオエーテル系、チオール系、Ni系有機化合物系、ベンゾトリアゾール系、イミダゾール系、オキサゾール系、テトラザインデン系、ピリミジン系、及び、チアジアゾール系から選ばれる少なくとも1種を含有する腐食防止剤層が設けられていることを特徴とする前記1~7のいずれか一項に記載のフィルムミラー。 8. In contact with the metal reflective layer, at least one selected from thioether, thiol, Ni organic compound, benzotriazole, imidazole, oxazole, tetrazaindene, pyrimidine, and thiadiazole 8. The film mirror as described in any one of 1 to 7 above, wherein a corrosion inhibitor layer to be contained is provided.
 9.前記金属の反射層と接して、Cu層が設けられていることを特徴とする前記1~8のいずれか一項に記載のフィルムミラー。 9. 9. The film mirror according to claim 1, wherein a Cu layer is provided in contact with the metal reflective layer.
 10.前記1~9のいずれか一項に記載のフィルムミラーが、太陽光を入射する側の反対側に粘着層を有することを特徴とするフィルムミラー。 10. 10. The film mirror according to claim 1, wherein the film mirror has an adhesive layer on the side opposite to the side on which sunlight is incident.
 11.前記1~10のいずれか一項に記載のフィルムミラーの製造方法において、前記金属の反射層を銀蒸着によって形成することを特徴とするフィルムミラーの製造方法。 11. 11. The film mirror manufacturing method according to claim 1, wherein the metal reflective layer is formed by silver vapor deposition.
 12.前記10に記載のフィルムミラーを、該フィルムミラーの粘着層を介して、支持体上に貼り付けて形成することを特徴とする太陽光集光用ミラー。 12. 11. A solar light collecting mirror, wherein the film mirror according to 10 is formed on a support through an adhesive layer of the film mirror.
 本発明の上記手段により、金属反射層の劣化による正反射率の低下を防止するとともに、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することのできる耐光性及び耐候性に優れ、太陽光に対して良好な正反射率を有するフィルムミラー、その製造方法、及びそれを用いた太陽光集光用フィルムミラーを提供することができた。 By the above means of the present invention, it is possible to prevent a decrease in regular reflectance due to deterioration of the metal reflective layer, and to be light and flexible, lightweight and flexible, and can be manufactured in a large area and mass-produced with reduced manufacturing costs. The film mirror which is excellent and has a good regular reflectance with respect to sunlight, its manufacturing method, and the film mirror for sunlight condensing using the same were able to be provided.
 本発明によれば、高分子フィルム層と金属酸化物を有するガスバリア層を金属の反射層を被覆する配置で設けることによって、ガスバリア性を付与して耐用年数を長くさせ、交換コストを下げることができる。従来の高分子フィルム被覆フィルムミラーと比較して赤外域の吸収を減少させ、熱発電効率を向上させることができる。 According to the present invention, by providing a gas barrier layer having a polymer film layer and a metal oxide so as to cover the reflective layer of metal, the gas barrier property can be imparted, the service life can be extended, and the replacement cost can be reduced. it can. Compared with a conventional polymer film-covered film mirror, the absorption in the infrared region can be reduced, and the thermoelectric generation efficiency can be improved.
太陽光の照射スペクトル範囲を示す図である。It is a figure which shows the irradiation spectrum range of sunlight. ミラーの分光反射率を示す図である。It is a figure which shows the spectral reflectance of a mirror. 本発明の代表的なフィルムミラーの一例を示す断面図である。It is sectional drawing which shows an example of the typical film mirror of this invention.
 本発明は、上記課題を鑑み、高分子ポリマーの上に金属酸化物の膜を形成するのではなく、高分子ポリマーで金属酸化物の膜を被覆することで耐衝撃性を高め、被覆する高分子ポリマーは赤外域の吸収を減少する方向で薄くする。高分子膜を薄くした分、ガスバリア機能をもった金属酸化物の膜をつけることで、耐久性向上と熱発電効率維持を達成した。 In view of the above problems, the present invention improves the impact resistance by coating a metal oxide film with a high molecular weight polymer instead of forming a metal oxide film on the high molecular weight polymer. Molecular polymers are thinned in a direction that reduces absorption in the infrared region. As the polymer film is made thinner, a metal oxide film with a gas barrier function is attached to improve durability and maintain thermoelectric generation efficiency.
 本発明の一態様によれば、太陽光を入射する側から順に
 a)高分子フィルム層、
 b)金属酸化物を有するガスバリア層、
 c)金属の反射層が配置され上記a)に対するb)の厚みの比率が0.1%~5%の範囲であるフィルムミラーにより、上記効果を奏した。
According to one aspect of the present invention, a) a polymer film layer in order from the sunlight incident side,
b) a gas barrier layer comprising a metal oxide,
c) The above effect was achieved by a film mirror in which a metal reflective layer was disposed and the thickness ratio of b) to a) was in the range of 0.1% to 5%.
 以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited thereto.
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 図3は、本発明に係る太陽光を反射する機能を持つフィルムミラーの一例を示す断面図である。 FIG. 3 is a cross-sectional view showing an example of a film mirror having a function of reflecting sunlight according to the present invention.
 図3に示すように、フィルムミラーFは太陽光側から順番に、高分子フィルム層1、金属酸化物を有するガスバリア層2、金属の反射層(Ag層)3、粘着層4が積層されてなる。粘着層4の下側の表面には剥離フィルム5をつけて、粘着させたい時に適宜剥離フィルム5を剥がして支持体である金属板や樹脂板に密着させることができる。 As shown in FIG. 3, the film mirror F has a polymer film layer 1, a gas barrier layer 2 having a metal oxide, a metal reflection layer (Ag layer) 3, and an adhesive layer 4 laminated in order from the sunlight side. Become. A release film 5 can be attached to the lower surface of the adhesive layer 4 and the release film 5 can be appropriately peeled off when desired to adhere to a metal plate or resin plate as a support.
 なお、本発明のフィルムミラーは、図3に示す構成に限らず、様々な機能層を付加することが好ましい。また、上記構成であってもそれぞれの層に機能性を付与することができる。以下に、機能層を付加した、本発明の実施の態様を説明する。また、本発明はこれらの態様のみに限定されない。更に、以下の説明で上は太陽光が入射する側を意味し、下はその反対側を意味する。 The film mirror of the present invention is not limited to the configuration shown in FIG. 3, and it is preferable to add various functional layers. Moreover, even if it is the said structure, functionality can be provided to each layer. Hereinafter, embodiments of the present invention to which a functional layer is added will be described. Further, the present invention is not limited only to these embodiments. Furthermore, in the following description, the upper side means the side on which sunlight is incident, and the lower side means the opposite side.
 図3において、高分子フィルム層1に紫外線吸収剤を添加し、その下のガスバリア層2を水蒸気バリア層として機能させ、更にその下の反射層3は銀蒸着層からなり、該銀蒸着層の下に、粘着層4と剥離フィルム5を積層した構成を有するフィルムミラーを、本発明のフィルムミラー1とする。高分子フィルム層に紫外線吸収剤を添加することにより、耐久性が増加する。 In FIG. 3, an ultraviolet absorber is added to the polymer film layer 1 so that the gas barrier layer 2 below functions as a water vapor barrier layer, and the reflective layer 3 therebelow is composed of a silver vapor deposition layer. Let the film mirror which has the structure which laminated | stacked the adhesion layer 4 and the peeling film 5 below be the film mirror 1 of this invention. The durability increases by adding an ultraviolet absorber to the polymer film layer.
 また、上記フィルムミラー1において、反射層3と粘着層4との間に腐食防止剤層(腐食防止剤入り高分子層)を設けたフィルムミラーを、本発明のフィルムミラー2とする。腐食防止剤層を付加することで、フィルムミラーの酸素、硫化水素ガス、塩分に対する劣化防止及び平滑な光学面を長期間提供することができる。 In the film mirror 1, a film mirror provided with a corrosion inhibitor layer (a polymer layer containing a corrosion inhibitor) between the reflective layer 3 and the adhesive layer 4 is referred to as a film mirror 2 of the present invention. By adding a corrosion inhibitor layer, deterioration of oxygen, hydrogen sulfide gas and salt content of the film mirror and a smooth optical surface can be provided for a long time.
 前記フィルムミラー1において、ガスバリア層2と反射層3との間に太陽光を入射する側から順に接着層と腐食防止剤層を積層し、更に、反射層3と粘着層4との間に高分子フィルム層を設けたフィルムミラーを、本発明のフィルムミラー3とする。 In the film mirror 1, an adhesive layer and a corrosion inhibitor layer are laminated in order from the side where sunlight enters between the gas barrier layer 2 and the reflective layer 3, and further, a high layer is formed between the reflective layer 3 and the adhesive layer 4. Let the film mirror which provided the molecular film layer be the film mirror 3 of this invention.
 前記フィルムミラー2において、紫外線吸収剤が添加された高分子フィルム層1の代わりに、太陽光を入射する側から順にハードコート層と高分子フィルム層を積層したフィルムミラーを、本発明のフィルムミラー4とする。ハードコート層は紫外線吸収剤等を含有することが好ましい。 In the film mirror 2, instead of the polymer film layer 1 to which the ultraviolet absorber is added, a film mirror in which a hard coat layer and a polymer film layer are laminated in order from the sunlight incident side is used as the film mirror of the present invention. 4. The hard coat layer preferably contains an ultraviolet absorber or the like.
 上記フィルムミラー4において、ハードコート層の代わりに高分子フィルム層の上に、紫外線反射層を設けたフィルムミラーを、本発明の本発明のフィルムミラー5とする。 In the above film mirror 4, a film mirror in which an ultraviolet reflecting layer is provided on a polymer film layer instead of a hard coat layer is referred to as a film mirror 5 of the present invention.
 前記フィルムミラー2において、腐食防止剤層の代わりに、犠牲防食層を設けたフィルムミラーを、本発明のフィルムミラー6とする。 In the film mirror 2, a film mirror provided with a sacrificial anticorrosive layer instead of the corrosion inhibitor layer is referred to as a film mirror 6 of the present invention.
 続いて、本発明のフィルムミラーの各層及び各層に用いられる素材について説明する。 Subsequently, each layer of the film mirror of the present invention and materials used for each layer will be described.
 (高分子フィルム層)
 高分子フィルム層のフィルム材料としては、フレキシブル性や軽量化の点で、例えば、ポリエステル、ポリエチレンテレフタレート、ポリエチレンナフタレート、アクリル、ポリカーボネート、ポリオレフィン、セルロース、ポリアミドのいずれかを含むことが好ましい。これらの中で耐候性に優れ、特に、少なくとも2種以上のアクリル系モノマーを共重合したアクリル系共重合体が好適である。
(Polymer film layer)
The film material of the polymer film layer preferably contains, for example, polyester, polyethylene terephthalate, polyethylene naphthalate, acrylic, polycarbonate, polyolefin, cellulose, or polyamide from the viewpoint of flexibility and weight reduction. Among these, an acrylic copolymer excellent in weather resistance and particularly copolymerized with at least two kinds of acrylic monomers is preferable.
 好適なアクリル系共重合体としては、具体的には例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルメタクリレート等のアルキル(メタ)アクリレートのような側鎖中に官能性基を有しないモノマー(以下、非官能性モノマーという)から選ばれる1種または2種以上のモノマーを主成分とし、これに2-ヒドロキシエチルメタクリレート、グリシジルメタクリレート、アクリル酸、メタクリル酸、イタコン酸、等のモノマーから選ばれる1種または2種以上のモノマーの側鎖中にOHやCOOHなどの官能性基を有するモノマー(以下、官能性モノマーという)の1種または2種以上を組合せて、溶液重合法、懸濁重合法、乳化重合法、塊状重合法等の重合法により共重合させることにより得られる重量平均分子量が4万ないし100万、好ましくは10万ないし40万のアクリル系共重合体が挙げられ、中でも、エチルアクリレート、メチルアクリレート、2-エチルヘキシルメタクリレート等の比較的Tgの低いポリマーを与える非官能性モノマーを50~90質量%、メチルメタクリレート、イソブチルメタクリレート、シクロヘキシルメタクリレート等の比較的Tgの高いポリマーを与える非官能性モノマーを10~50質量%、2-ヒドロキシエチルメタクリレート、アクリル酸、イタコン酸等の官能性モノマーを0~10質量%含有するようなアクリル系重合体が最も好適である。 Specific examples of suitable acrylic copolymers include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate. One or more monomers selected from monomers having no functional group in the side chain (hereinafter referred to as non-functional monomers) such as alkyl (meth) acrylates such as cyclohexyl methacrylate and 2-ethylhexyl methacrylate As a main component, one or more kinds of monomers selected from monomers such as 2-hydroxyethyl methacrylate, glycidyl methacrylate, acrylic acid, methacrylic acid, itaconic acid, etc. A monomer having a functional group such as OH or COOH in the side chain of the mer (hereinafter referred to as a functional monomer) or a combination of two or more thereof, solution polymerization, suspension polymerization, emulsion polymerization, bulk Examples include acrylic copolymers having a weight average molecular weight of 40,000 to 1,000,000, preferably 100,000 to 400,000, obtained by copolymerization by a polymerization method such as a polymerization method. Among them, ethyl acrylate, methyl acrylate, -50 to 90% by weight of non-functional monomer that gives a relatively low Tg polymer such as ethylhexyl methacrylate, and 10 to 50 non-functional monomer that gives a relatively high Tg polymer such as methyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, etc. Mass%, 2-hydroxyethyl methacrylate, acrylic acid, itacone Acrylic polymers such as the functional monomer contains 0 to 10% by weight of an equal is most preferred.
 フィルムの形状は、平面、拡散面、凹面、凸面、台形等、各種のフィルムミラーの表面被覆材として求められる形状であればよい。 The shape of the film may be a shape required as a surface covering material for various film mirrors such as a flat surface, a diffusion surface, a concave surface, a convex surface, and a trapezoid.
 フィルム基材の厚さは、10~125μmが好ましい。10μmより薄いとフィルムにコシがなくなるためフィルムにシワが入りやすく、外観上好ましくない上に反射性能も落ちる傾向にあり、125μmよりも厚いと1600nm~2500nmの範囲の平均反射率が80%を下回る。 The thickness of the film substrate is preferably 10 to 125 μm. If it is thinner than 10 μm, the film will not be stiff, and the film will be wrinkled easily, which is not preferable in appearance and tends to deteriorate the reflection performance. If it is thicker than 125 μm, the average reflectance in the range of 1600 nm to 2500 nm is less than 80%. .
 高分子フィルム層表面は、金属酸化物層、ハードコート層、誘電体コーティング層等との密着性を向上させるために、コロナ放電処理、プラズマ処理等が施されていてもよい。 The surface of the polymer film layer may be subjected to corona discharge treatment, plasma treatment or the like in order to improve adhesion with a metal oxide layer, a hard coat layer, a dielectric coating layer, or the like.
 また、フィルム基材には、ベンゾトリアゾール系、ベンゾフェノン系、トリアジン系、シアノアクリレート系、ポリマー型の紫外線吸収剤のうちいずれかを含むことが好ましい。 Further, it is preferable that the film base material contains any one of benzotriazole, benzophenone, triazine, cyanoacrylate, and polymer type ultraviolet absorbers.
 (紫外線吸収剤)
 高分子フィルム層に使用される紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れており、かつ太陽光利用の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
(UV absorber)
As the ultraviolet absorber used for the polymer film layer, an ultraviolet absorbent having a wavelength of 370 nm or less and excellent absorption of ultraviolet rays and having a small absorption of visible light having a wavelength of 400 nm or more is preferable from the viewpoint of utilization of sunlight.
 本発明に用いられる紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物、トリアジン系化合物等を挙げることができるが、ベンゾフェノン系化合物や着色の少ないベンゾトリアゾール系化合物、トリアジン系化合物が好ましい。また、特開平10-182621号、同8-337574号公報記載の紫外線吸収剤、特開平6-148430号、特開2003-113317号公報記載の高分子紫外線吸収剤を用いてもよい。 Examples of the ultraviolet absorber used in the present invention include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, triazine compounds, and the like. However, benzophenone compounds, less colored benzotriazole compounds, and triazine compounds are preferable. Further, ultraviolet absorbers described in JP-A Nos. 10-182621 and 8-337574, and polymer ultraviolet absorbers described in JP-A Nos. 6-148430 and 2003-113317 may be used.
 ベンゾトリアゾール系紫外線吸収剤の具体例として、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-(2-オクチルオキシカルボニルエチル)-フェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(1-メチル-1-フェニルエチル)-5′-(1,1,3,3-テトラメチルブチル)-フェニル)ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物等を挙げることができるが、これらに限定されない。 Specific examples of benzotriazole ultraviolet absorbers include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzo Triazole, 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) -5 Chlorobenzotriazole, 2- (2′-hydroxy-3 ′-(3 ″, 4 ″, 5 ″, 6 ″ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy 3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3'-tert-butyl-5 '-(2-octyloxycarbonylethyl) -phenyl)- 5-chlorobenzotriazole, 2- (2′-hydroxy-3 ′-(1-methyl-1-phenylethyl) -5 ′-(1,1,3,3-tetramethylbutyl) -phenyl) benzotriazole, 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4-methylphenol, octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H -Benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl-4-hydroxy-5- (5-chloro- H- benzotriazol-2-yl) can be mentioned mixtures of phenyl] propionate, and the like.
 また、市販品として、チヌビン(TINUVIN)171、チヌビン(TINUVIN)900、チヌビン(TINUVIN)928、チヌビン(TINUVIN)360(いずれもBASFジャパン社製)、LA31(ADEKA社製)、RUVA-100(大塚化学製)が挙げられる。 As commercially available products, TINUVIN 171, TINUVIN 900, TINUVIN 928, TINUVIN 360 (all manufactured by BASF Japan), LA31 (manufactured by ADEKA), RUVA-100 (Otsuka) Chemical).
 ベンゾフェノン系化合物の具体例として、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されるものではない。 Specific examples of benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
 (金属酸化物を有するガスバリア層)
 金属酸化物を有するガスバリア層は、酸化珪素、酸化アルミニウム、または酸化珪素、酸化アルミニウムを出発材料とした複合酸化物、酸化亜鉛、酸化スズ、酸化インジウム、酸化ニオブ、酸化クロム等が挙げられ、特に水蒸気バリア性の観点から酸化珪素、酸化アルミニウム、または珪素、アルミニウムを出発材料とした複合酸化物が好ましい。そのほか波長550nmにおける屈折率が1.35から1.8の低屈折率層と、波長550nmにおける屈折率が1.85から2.8である高屈折率膜を交互に積層した多層膜であっても良い。低屈折率膜材料としては、酸化ケイ素、酸化アルミニウム、窒化ケイ素、窒化アルミニウムなどが挙げられる。高屈折率膜材料としては、酸化ニオブ、酸化チタン、酸化亜鉛、酸化スズ、酸化インジウム、酸化タンタル、酸化ジルコニウムなどが挙げられる。これらは真空蒸着法、スパッター法、イオンブレーティングなどのPVD法(物理蒸着法)、あるいは、CVD法(化学蒸着法)などの真空プロセスにより形成される。金属酸化物を有するガスバリア層の厚さは5~800nmの範囲が好ましく、更に好ましくは10~300nmの範囲である。
(Gas barrier layer with metal oxide)
Examples of the gas barrier layer having a metal oxide include silicon oxide, aluminum oxide, or silicon oxide, a composite oxide starting from aluminum oxide, zinc oxide, tin oxide, indium oxide, niobium oxide, chromium oxide, etc. From the viewpoint of water vapor barrier properties, silicon oxide, aluminum oxide, or a composite oxide starting from silicon and aluminum is preferable. In addition, a multilayer film in which a low refractive index layer having a refractive index of 1.35 to 1.8 at a wavelength of 550 nm and a high refractive index film having a refractive index of 1.85 to 2.8 at a wavelength of 550 nm are alternately laminated. Also good. Examples of the low refractive index film material include silicon oxide, aluminum oxide, silicon nitride, and aluminum nitride. Examples of the high refractive index film material include niobium oxide, titanium oxide, zinc oxide, tin oxide, indium oxide, tantalum oxide, and zirconium oxide. These are formed by a vacuum process such as a vacuum deposition method, a sputtering method, a PVD method (physical vapor deposition method) such as ion plating, or a CVD method (chemical vapor deposition method). The thickness of the gas barrier layer having a metal oxide is preferably in the range of 5 to 800 nm, more preferably in the range of 10 to 300 nm.
 本発明の方法は、高分子フィルム上でガスバリア層を作製することによって、このようにして得られる酸化珪素層または酸化アルミニウム層、または酸化珪素、酸化アルミニウムを出発材料とした複合酸化物層は酸素、二酸化炭素、空気などのガスまたは水蒸気に対する高いバリア作用に優れる。 In the method of the present invention, a gas barrier layer is formed on a polymer film, and thus a silicon oxide layer or an aluminum oxide layer obtained as described above, or a composite oxide layer using silicon oxide and aluminum oxide as a starting material is oxygenated. Excellent barrier action against gas such as carbon dioxide, air, or water vapor.
 また、酸化珪素層または酸化アルミニウム層、または酸化珪素、酸化アルミニウムを出発材料とした複合酸化物層と高分子フィルムの積層体は、40℃、90%RHにおける水蒸気透過度が1×10-2g/m・24h以下であることが好ましい。水蒸気透過度はMOCON社製の水蒸気透過度測定装置PERMATRAN-W3-33にて測定できる。 In addition, a laminate of a silicon oxide layer or an aluminum oxide layer, or a composite oxide layer starting from silicon oxide or aluminum oxide and a polymer film has a water vapor permeability of 1 × 10 −2 at 40 ° C. and 90% RH. It is preferably g / m 2 · 24 h or less. The water vapor transmission rate can be measured with a water vapor transmission rate measuring device PERMATRAN-W3-33 manufactured by MOCON.
 さらに、酸化珪素層または酸化アルミニウム層、または酸化珪素、酸化アルミニウムを出発材料とした複合酸化物層は、膜厚がそれぞれ1μm以下であり、それぞれの光線透過率の平均値は90%以上であることが好ましい。これによって、光損失がなく、太陽光を効率よく反射することができる。 Further, the silicon oxide layer or the aluminum oxide layer, or the composite oxide layer using silicon oxide and aluminum oxide as a starting material has a thickness of 1 μm or less, and the average value of each light transmittance is 90% or more. It is preferable. Thereby, there is no light loss and sunlight can be reflected efficiently.
 (高分子フィルム層と金属酸化物を有するガスバリア層の厚みの比率)
 本発明において、高分子フィルム層と金属酸化物を有するガスバリア層の厚みの比率は0.1%~5%の範囲である。比率が0.1%よりも小さい、すなわち高分子フィルムに対するガスバリア層の厚みが薄くなると、十分なガスバリア性が得られず劣化進行を抑える機能が発揮されない。比率が5%よりも大きい、すなわち高分子フィルムに対するガスバリア層の厚みが厚くなると、外部からの曲げの力が加わったときに金属酸化物にクラックが入り、結果ガスバリア性が得られず劣化進行を抑える機能が発揮されない。
(Ratio of the thickness of the gas barrier layer having the polymer film layer and the metal oxide)
In the present invention, the ratio of the thickness of the polymer film layer and the gas barrier layer having a metal oxide is in the range of 0.1% to 5%. When the ratio is smaller than 0.1%, that is, when the thickness of the gas barrier layer with respect to the polymer film becomes thin, sufficient gas barrier properties cannot be obtained and the function of suppressing the progress of deterioration cannot be exhibited. When the ratio is larger than 5%, that is, when the thickness of the gas barrier layer with respect to the polymer film is increased, the metal oxide cracks when an external bending force is applied, and as a result, the gas barrier property cannot be obtained and the deterioration progresses. The function to suppress is not demonstrated.
 (金属の反射層)
 本発明に係る金属の反射層としては、例えば、銀または銀合金、その他、金、銅、アルミニウム、これらの合金も用いることができる。特に、銀を使用することが好ましい。このような反射層は、光を反射させる反射膜としての役割を果たす。反射層を銀または銀合金の膜とすることにより、フィルムミラーの赤外域から可視光領域での反射率を高め、入射角による反射率の依存性を低減できる。赤外域から可視光領域とは、2500~400nmの波長領域を意味する。入射角とは、膜面に対して垂直な線(法線)に対する角度を意味する。
(Metal reflective layer)
As the metal reflective layer according to the present invention, for example, silver or a silver alloy, gold, copper, aluminum, or an alloy thereof can be used. In particular, it is preferable to use silver. Such a reflective layer serves as a reflective film that reflects light. By making the reflective layer a silver or silver alloy film, the reflectance of the film mirror from the infrared region to the visible light region can be increased, and the dependency of the reflectance on the incident angle can be reduced. From the infrared region to the visible light region means a wavelength region of 2500 to 400 nm. The incident angle means an angle with respect to a line (normal line) perpendicular to the film surface.
 銀合金としては、反射層の耐久性が向上する点から、銀と、金、パラジウム、スズ、ガリウム、インジウム、銅、チタンおよびビスマスの群から選ばれる1種以上の他の金属との合金が好ましい。他の金属としては、高温耐湿性、反射率の点から、金が特に好ましい。 As the silver alloy, there is an alloy of silver and one or more other metals selected from the group consisting of gold, palladium, tin, gallium, indium, copper, titanium and bismuth because the durability of the reflective layer is improved. preferable. As the other metal, gold is particularly preferable from the viewpoint of high temperature humidity resistance and reflectance.
 反射層が銀合金の膜である場合、銀は、反射層における銀と他の金属との合計(100原子%)中、90~99.8原子%が好ましい。また、他の金属は、耐久性の点から0.2~10原子%が好ましい。 When the reflective layer is a silver alloy film, silver is preferably 90 to 99.8 atomic% in the total (100 atomic%) of silver and other metals in the reflective layer. Further, the other metal is preferably 0.2 to 10 atomic% from the viewpoint of durability.
 また、反射層の膜厚は、60~300nmが好ましく、80~200nmが特に好ましい。反射層の膜厚が60nm未満では、膜厚が薄く、光を透過してしまうため、フィルムミラーの可視光領域での反射率が低下するおそれがある。200nm程度までは膜厚に比例して反射率も大きくなるが、200nm以上は膜厚に依存しない。むしろ反射層の膜厚が300nmを超えると、反射層の表面に凹凸が発生しやすくなり、これにより光の散乱が生じてしまい、可視光領域での反射率が低下するおそれがある。 The film thickness of the reflective layer is preferably 60 to 300 nm, particularly preferably 80 to 200 nm. If the thickness of the reflective layer is less than 60 nm, the film thickness is thin and light is transmitted, so that the reflectance in the visible light region of the film mirror may be reduced. The reflectance increases in proportion to the film thickness up to about 200 nm, but it does not depend on the film thickness above 200 nm. Rather, when the thickness of the reflective layer exceeds 300 nm, irregularities are likely to occur on the surface of the reflective layer, which causes light scattering, which may reduce the reflectance in the visible light region.
 フィルムミラーには光沢が求められるが、金属箔を作製して接着する方法では表面凹凸があるために光沢を失う。広い面積範囲で均一な表面粗さを求められるフィルムミラーでは金属箔ラミネートは製造方法として好ましくない。金属の反射層は、湿式めっきや、真空蒸着等の乾式めっきで形成することが好ましい。 Film mirrors are required to be glossy, but the method of making and bonding metal foils loses gloss due to surface irregularities. For film mirrors that require uniform surface roughness over a wide area, metal foil lamination is not preferred as a manufacturing method. The metal reflection layer is preferably formed by wet plating or dry plating such as vacuum deposition.
 (粘着層)
 本発明の粘着層としては、特に制限されず、例えばドライラミネート剤、ウエットラミネート剤、ヒートシール剤、ホットメルト剤などのいずれもが用いられる。例えばポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴムなどが用いられる。ラミネート方法は特に制限されず、例えばロール式で連続的に行うのが経済性及び生産性の点から好ましい。粘着層の厚さは通常1~50μm程度の範囲から選ばれる。厚さが1μm未満では充分な粘着効果が得られず、一方50μmを超えると粘着剤層が厚すぎて乾燥速度が遅くなり、非能率的である。しかも本来の粘着力が得られず、溶剤が残留するなどの弊害が生じるので好ましくない。
(Adhesive layer)
The pressure-sensitive adhesive layer of the present invention is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, a heat seal agent, a hot melt agent and the like are used. For example, polyester resin, urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber, etc. are used. The laminating method is not particularly limited, and for example, it is preferable to carry out continuously by a roll method from the viewpoint of economy and productivity. The thickness of the adhesive layer is usually selected from the range of about 1 to 50 μm. When the thickness is less than 1 μm, a sufficient adhesive effect cannot be obtained. On the other hand, when the thickness exceeds 50 μm, the pressure-sensitive adhesive layer is too thick and the drying speed is slow, which is inefficient. In addition, the original adhesive strength cannot be obtained, and adverse effects such as residual solvent occur, which is not preferable.
 (剥離フィルム)
 本発明で用いることの出来る剥離フィルムは、基材と、基材上に設けられた剥離剤層とを有している。
(Peeling film)
The release film that can be used in the present invention has a base material and a release agent layer provided on the base material.
 剥離フィルムは、その外表面が高い平滑性を有している。剥離フィルムを構成する剥離剤としては、例えば、シリコーン系樹脂、長鎖アルキル系樹脂、フッ素系樹脂、フルオロシリコーン樹脂、長鎖アルキル変性アルキド樹脂、シリコーン変性アルキド樹脂等のアルキド系樹脂等が挙げられる。 ¡The outer surface of the release film has high smoothness. Examples of the release agent constituting the release film include silicone resins, long-chain alkyl resins, fluorine resins, fluorosilicone resins, long-chain alkyl-modified alkyd resins, silicone-modified alkyd resins, and the like. .
 上述した中でも、シリコーン樹脂を剥離剤の材料として用いた場合、より優れた剥離性を発揮する。シリコーン樹脂としては、付加型、縮合型、無溶剤型等いずれのものでも用いることができる。 Among the above, when a silicone resin is used as a material for the release agent, more excellent release properties are exhibited. As the silicone resin, any of addition type, condensation type, solventless type and the like can be used.
 剥離フィルムを構成する剥離剤の平均厚さは、特に限定されないが、0.01~0.3μmであるのが好ましく、0.05~0.2μmであるのがより好ましい。剥離剤層の平均厚さが前記下限値未満であると、剥離剤層としての機能が十分に発揮されない場合がある。一方、剥離剤層の平均厚さが前記上限値を超えると、剥離フィルムをロール状に巻き取った際に、ブロッキングが発生し、繰り出しに不具合を生じる場合がある。 The average thickness of the release agent constituting the release film is not particularly limited, but is preferably 0.01 to 0.3 μm, and more preferably 0.05 to 0.2 μm. When the average thickness of the release agent layer is less than the lower limit, the function as the release agent layer may not be sufficiently exhibited. On the other hand, if the average thickness of the release agent layer exceeds the upper limit, blocking may occur when the release film is wound into a roll, resulting in a failure in feeding.
 本発明に係るフィルムミラー全体の厚さは75~250μmが好ましく、更に好ましくは90~230μm、更に好ましくは100~220μmである。厚さが75μm以下では、フィルムミラーを金属基材に貼り付けた時に、ミラーがたわんでしまって、十分な正反射率を得ることができず、また250μmより厚いと取り扱い性が悪くなるため、好ましくない。 The total thickness of the film mirror according to the present invention is preferably 75 to 250 μm, more preferably 90 to 230 μm, still more preferably 100 to 220 μm. When the thickness is 75 μm or less, when the film mirror is attached to the metal substrate, the mirror is bent and sufficient regular reflectance cannot be obtained, and when it is thicker than 250 μm, the handleability is deteriorated. It is not preferable.
 (腐食防止剤層)
 本発明の態様として前述したフィルムミラー2~5に設置される腐食防止剤層は、金属の反射層(具体的にはAg層)の変色防止として機能し、例えばチオエーテル系、チオール系、Ni系有機化合物系、ベンゾトリアゾール系、イミダゾール系、オキサゾール系、テトラザインデン系、ピリミジン系、チアジアゾール系が挙げられる。
(Corrosion inhibitor layer)
The corrosion inhibitor layer installed on the film mirrors 2 to 5 described above as an embodiment of the present invention functions to prevent discoloration of a metal reflection layer (specifically, an Ag layer), for example, a thioether type, a thiol type, a Ni type Organic compound type, benzotriazole type, imidazole type, oxazole type, tetrazaindene type, pyrimidine type, and thiadiazole type are mentioned.
 腐食防止剤層は、大別して銀との吸着基を有する腐食防止剤と、酸化防止剤が好ましく用いられる。以下、これらの腐食防止剤と酸化防止剤について具体例を挙げる。 The corrosion inhibitor layer is roughly classified into a corrosion inhibitor having an adsorption group with silver and an antioxidant. Specific examples of these corrosion inhibitors and antioxidants are given below.
 《銀との吸着基を有する腐食防止剤》
 銀との吸着基を有する腐食防止剤としては、アミン類およびその誘導体、ピロール環を有する物、トリアゾール環を有する物、ピラゾール環を有する物、チアゾール環を有する物、イミダゾール環を有する物、インダゾール環を有する物、銅キレート化合物類、チオ尿素類、メルカプト基を有する物、ナフタレン系の少なくとも一種またはこれらの混合物から選ばれることが望ましい。
<< Corrosion inhibitor with adsorption group with silver >>
Corrosion inhibitors having an adsorption group with silver include amines and derivatives thereof, products having a pyrrole ring, products having a triazole ring, products having a pyrazole ring, products having a thiazole ring, products having an imidazole ring, indazole It is desirable to be selected from a ring-containing product, a copper chelate compound, a thiourea, a product having a mercapto group, at least one naphthalene-based compound, or a mixture thereof.
 アミン類およびその誘導体としては、エチルアミン、ラウリルアミン、トリ-n-ブチルアミン、o-トルイジン、ジフェニルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2N-ジメチルエタノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール、アセトアミド、アクリルアミド、ベンズアミド、p-エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート等、あるいはこれらの混合物が挙げられる。 Examples of amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, o-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite , Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexane carboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate, or mixtures thereof.
 ピロール環を有する物としては、N-ブチル-2,5-ジメチルピロール,N-フェニル-2,5ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール,N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, N-phenyl-3, 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
 トリアゾール環を有する物としては、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ3’5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy- '-Tert-butylphenyl) benzotriazole, 2- (2'-hydroxy3'5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) benzotriazole, etc. Alternatively, a mixture thereof can be mentioned.
 ピラゾール環を有する物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole and the like, or a mixture thereof.
 チアゾール環を有する物としては、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2-N,N-ジエチルチオベンゾチアゾール、P-ジメチルアミノベンザルロダニン、2-メルカプトベンゾチアゾール等、あるいはこれらの混合物が挙げられる。 Examples of those having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
 イミダゾール環を有する物としては、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロメチルイミダゾール、2-フェニル-4,5ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。 Examples of compounds having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5 dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4-phospho Myrimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc., or these Of the mixture.
 インダゾール環を有する物としては、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and the like, or a mixture thereof.
 銅キレート化合物類としては、アセチルアセトン銅、エチレンジアミン銅、フタロシアニン銅、エチレンジアミンテトラアセテート銅、ヒドロキシキノリン銅等、あるいはこれらの混合物が挙げられる。 Examples of copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
 チオ尿素類としては、チオ尿素、グアニルチオ尿素等、あるいはこれらの混合物が挙げられる。 Examples of thioureas include thiourea, guanylthiourea, and the like, or a mixture thereof.
 メルカプト基を有する物としては、すでに上記に記載した材料も加えれば、メルカプト酢酸、チオフェノール、1,2-エタンジオール、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、グリコールジメルカプトアセテート、3-メルカプトプロピルトリメトキシシラン等、あるいはこれらの混合物が挙げられる。 As a product having a mercapto group, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto are added if the above-mentioned materials are added. -1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, etc., or a mixture thereof.
 ナフタレン系としては、チオナリド等が挙げられる。 Examples of naphthalene-based compounds include thionalide.
 《酸化防止剤》
 本発明に係る腐食防止剤層に用いることの出来る酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤およびホスファイト系酸化防止剤を使用することが好ましい。フェノール系酸化防止剤としては、例えば、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、テトラキス-〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、2,6-ジ-t-ブチル-p-クレゾール、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネー〕、3,9-ビス[1,1-ジ-メチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル]-2,4,8,10-テトラオキオキサスピロ〔5,5〕ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。
"Antioxidant"
As the antioxidant that can be used in the corrosion inhibitor layer according to the present invention, it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant. Examples of phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate ,bird Tylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis [1,1-di-methyl-2- [β- (3-t-butyl -4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene and the like.
 特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。チオール系酸化防止剤としては、例えば、ジステアリル-3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)等を挙げられる。ホスファイト系酸化防止剤としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス-(2,6-ジ-t-ブチル-4-メチルフェニル)-ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレン-ジホスホナイト、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト等が挙げられる。 In particular, the phenolic antioxidant preferably has a molecular weight of 550 or more. Examples of the thiol antioxidant include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thiopropionate), and the like. Examples of the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol. Diphosphite, bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene-diphosphonite 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
 本発明の態様のフィルムミラー3は、高分子フィルム(A)の上の表面に、金属の反射層を形成し、更に、その上に腐食防止剤層を積層する。高分子フィルム(A)の下の表面に粘着層と、剥離フィルムとを積層した後、高分子フィルム(A)の上の表面、すなわち腐食防止剤層の上に接着層を形成する。別の高分子フィルム(B)の下の表面に、ガスバリア層を成膜し、高分子フィルム(B)のガスバリア層と上記高分子フィルム(A)の接着層を対面させて張り合わせて作製する。 In the film mirror 3 according to the embodiment of the present invention, a metal reflective layer is formed on the surface of the polymer film (A), and a corrosion inhibitor layer is further laminated thereon. After laminating the adhesive layer and the release film on the lower surface of the polymer film (A), an adhesive layer is formed on the surface of the polymer film (A), that is, on the corrosion inhibitor layer. A gas barrier layer is formed on the lower surface of another polymer film (B), and the gas barrier layer of the polymer film (B) and the adhesive layer of the polymer film (A) are faced to each other to produce them.
 (接着層)
 本発明の態様のフィルムミラー3に設置される接着層としては、樹脂からなり、フィルムと上述の紫外線吸収剤入りの高分子フィルム層とを密着するものである。従って、接着層はフィルムと紫外線吸収剤含有高分子フィルム層とを密着する密着性、及びの金属の反射層が本来有する高い反射性能を引き出すための平滑性、透明性が必要である。
(Adhesive layer)
As an adhesive layer installed in the film mirror 3 of the aspect of this invention, it consists of resin and adheres a film and the polymer film layer containing the above-mentioned ultraviolet absorber. Therefore, the adhesive layer needs to have an adhesive property for closely adhering the film and the ultraviolet absorber-containing polymer film layer, and smoothness and transparency to bring out the high reflection performance inherent to the metal reflective layer.
 接着層に使用する樹脂は、上記の密着性、耐熱性、及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。 The resin used for the adhesive layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness. Polyester resin, acrylic resin, melamine resin, epoxy resin, polyamide Resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin or the like, or a mixed resin thereof can be used. From the viewpoint of weather resistance, a polyester resin and a melamine resin mixed resin are preferable. It is more preferable to use a thermosetting resin mixed with a curing agent.
 接着層の厚さは、0.01~3μmが好ましく、より好ましくは0.1~1μmである。厚さが、0.01μmより薄いと、密着性が悪くなり接着層を形成した効果がなく、またフィルム基材表面の凹凸を覆い隠すことができ難くなり、平滑性が悪くなるので好ましくない。厚さが、3μmより厚くても、密着性の向上は望めず、かえって塗りムラの発生により平滑性が悪くなったり、接着層の硬化が不充分となる場合があるので好ましくない。 The thickness of the adhesive layer is preferably 0.01 to 3 μm, more preferably 0.1 to 1 μm. If the thickness is less than 0.01 μm, the adhesiveness is deteriorated and there is no effect of forming an adhesive layer, and it is difficult to cover the unevenness on the surface of the film substrate, and the smoothness is deteriorated. Even if the thickness is greater than 3 μm, improvement in adhesion cannot be expected, and on the contrary, unevenness of coating may cause poor smoothness or insufficient curing of the adhesive layer, which is not preferable.
 接着層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 As a method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 (ハードコート層)
 本発明においては、フィルムミラーの最外層として、ハードコート層を設けることができる。ハードコート層は、傷防止のために設けられる。ハードコート層を用いる態様としては、上述したフィルムミラー4を挙げることができる。
(Hard coat layer)
In the present invention, a hard coat layer can be provided as the outermost layer of the film mirror. The hard coat layer is provided for preventing scratches. As an aspect using a hard-coat layer, the film mirror 4 mentioned above can be mentioned.
 ハードコート層は、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂等で構成することができる。特に、硬度と耐久性等の点で、シリコーン系樹脂やアクリル系樹脂が好ましい。さらに、硬化性、可撓性及び生産性の点で、活性エネルギー線硬化型のアクリル系樹脂、または熱硬化型のアクリル系樹脂が好ましい。 The hard coat layer can be composed of acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicone resin, and the like. In particular, silicone resins and acrylic resins are preferable in terms of hardness and durability. Furthermore, an active energy ray-curable acrylic resin or a thermosetting acrylic resin is preferable in terms of curability, flexibility, and productivity.
 活性エネルギー線硬化型のアクリル系樹脂または熱硬化型のアクリル系樹脂とは、重合硬化成分として多官能アクリレート、アクリルオリゴマーあるいは反応性希釈剤を含む組成物である。その他に必要に応じて光開始剤、光増感剤、熱重合開始剤あるいは改質剤等を含有しているものを用いてもよい。 The active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component. In addition, you may use what contains a photoinitiator, a photosensitizer, a thermal-polymerization initiator, a modifier, etc. as needed.
 アクリルオリゴマーとは、アクリル系樹脂骨格に反応性のアクリル基が結合されたものを始めとして、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレート等であり、また、メラミンやイソシアヌール酸等の剛直な骨格にアクリル基を結合したもの等も用いられ得る。 Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
 また、反応性希釈剤とは、塗工剤の媒体として塗工工程での溶剤の機能を担うと共に、それ自体が一官能性あるいは多官能性のアクリルオリゴマーと反応する基を有し、塗膜の共重合成分となるものである。 In addition, the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
 市販されている多官能アクリル系硬化塗料としては、三菱レイヨン株式会社;(商品名“ダイヤビーム(登録商標)”シリーズ等)、長瀬産業株式会社;(商品名“デナコール(登録商標)”シリーズ等)、新中村株式会社;(商品名“NKエステル”シリーズ等)、大日本インキ化学工業株式会社;(商品名“UNIDIC(登録商標)”シリーズ等)、東亜合成化学工業株式会社;(商品名“アロニックス(登録商標)”シリーズ等)、日本油脂株式会社;(商品名“ブレンマー(登録商標)”シリーズ等)、日本化薬株式会社;(商品名“KAYARAD(登録商標)”シリーズ等)、共栄社化学株式会社;(商品名“ライトエステル”シリーズ、“ライトアクリレート”シリーズ等)等の製品を利用することができる。 Commercially available polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc. ), Shin-Nakamura Co., Ltd. (trade name “NK Ester” series, etc.), Dainippon Ink and Chemicals Co., Ltd .; (trade name “UNIDIC (registered trademark)” series, etc.), Toa Gosei Chemical Industry Co., Ltd .; “Aronix (registered trademark)” series, etc.), Nippon Oil and Fats Corporation; (trade name “Blemmer (registered trademark)” series, etc.), Nippon Kayaku Co., Ltd .; (trade name “KAYARAD (registered trademark)” series, etc.), Products such as Kyoeisha Chemical Co., Ltd. (trade names “light ester” series, “light acrylate” series, etc.) can be used.
 本発明において、ハードコート層中には、本発明の効果が損なわれない範囲で、さらに各種の添加剤を必要に応じて配合することができる。例えば、酸化防止剤、光安定剤、紫外線吸収剤等の安定剤、界面活性剤、レベリング剤及び帯電防止剤等を用いることができる。 In the present invention, various additives can be further blended in the hard coat layer as required, as long as the effects of the present invention are not impaired. For example, stabilizers such as antioxidants, light stabilizers, ultraviolet absorbers, surfactants, leveling agents, antistatic agents, and the like can be used.
 レベリング剤は、特に機能層を塗工する際、表面凹凸低減に効果的である。レベリング剤としては、例えば、シリコーン系レベリング剤として、ジメチルポリシロキサン-ポリオキシアルキレン共重合体(例えば東レダウコーニング(株)製SH190)が好適である。 ¡Leveling agents are effective in reducing surface irregularities, especially when functional layers are applied. As the leveling agent, for example, a dimethylpolysiloxane-polyoxyalkylene copolymer (for example, SH190 manufactured by Toray Dow Corning Co., Ltd.) is suitable as the silicone leveling agent.
 [紫外反射層]
 本発明の態様のフィルムミラー5に設置される紫外反射層は、紫外線を反射し可視光及び赤外光を透過する層のことである。紫外反射層は、300nm~400nmの電磁波(紫外線)に対する平均反射率が75%以上であることが好ましい。また、紫外反射層は、400nm~2500nmの電磁波(可視光及び赤外光)に対する平均透過率が80%以上であることが好ましい。
[Ultraviolet reflective layer]
The ultraviolet reflective layer installed in the film mirror 5 of the embodiment of the present invention is a layer that reflects ultraviolet light and transmits visible light and infrared light. The ultraviolet reflection layer preferably has an average reflectance of 75% or more for electromagnetic waves (ultraviolet rays) of 300 nm to 400 nm. The ultraviolet reflective layer preferably has an average transmittance of 80% or more for electromagnetic waves (visible light and infrared light) of 400 nm to 2500 nm.
 本発明に係るフィルムミラーは、金属反射層の太陽光を入射する側に高分子フィルム層を配置し、高分子フィルム層を通過した太陽光を金属反射層で反射するため、高分子フィルム層は常に太陽光に曝される。したがって、高分子フィルム層の太陽光を入射する側に紫外反射層を配置することにより、紫外線による高分子フィルム層の劣化、変色を防止でき、高分子フィルム層の光線透過率の低下を低減できるため、フィルムミラーの反射率低下を低減することが可能となる。また、高分子フィルム層の太陽光を入射する側に紫外反射層を設けることにより、太陽光の紫外線による高分子フィルム層の劣化に起因した、高分子フィルム層の防湿性の低下も低減できる。そのため、高分子フィルム層の防湿性の劣化に伴う金属反射層の劣化も防止できるため、フィルムミラーの反射率低下を低減することが可能となる。 In the film mirror according to the present invention, the polymer film layer is disposed on the side of the metal reflection layer on which sunlight is incident, and the sunlight that has passed through the polymer film layer is reflected by the metal reflection layer. Always exposed to sunlight. Therefore, by disposing the ultraviolet reflective layer on the side of the polymer film layer on which sunlight is incident, the polymer film layer can be prevented from being deteriorated and discolored by ultraviolet rays, and the decrease in light transmittance of the polymer film layer can be reduced. Therefore, it becomes possible to reduce the reflectance drop of the film mirror. Further, by providing the ultraviolet reflecting layer on the side of the polymer film layer on which sunlight is incident, it is possible to reduce a decrease in moisture resistance of the polymer film layer due to deterioration of the polymer film layer due to ultraviolet rays of sunlight. Therefore, it is possible to prevent the metal reflective layer from being deteriorated due to the deterioration of the moisture resistance of the polymer film layer, so that it is possible to reduce the reflectance drop of the film mirror.
 紫外反射層としては特に限定されないが、屈折率の異なる2種類以上の誘電体物質の交互層の誘電体多層膜を用いることができる。本発明に係る誘電体多層膜としては、高屈折率の誘電体層と低屈折率の誘電体層を交互に2層以上6層以下積み重ねて構成することが好ましい。このように、誘電体層を積み重ねた多層構造にすることにより、誘電体多層膜の耐傷性を高めることができる。高屈折率の誘電体層は、屈折率が2.0~2.6であることが好ましい。また、低屈折率の誘電体層は、屈折率が1.8以下であることが好ましい。 Although the ultraviolet reflective layer is not particularly limited, a dielectric multilayer film of alternating layers of two or more kinds of dielectric materials having different refractive indexes can be used. The dielectric multilayer film according to the present invention is preferably configured by alternately stacking a high refractive index dielectric layer and a low refractive index dielectric layer in an amount of 2 to 6 layers alternately. Thus, the scratch resistance of a dielectric multilayer film can be improved by using a multilayer structure in which dielectric layers are stacked. The high refractive index dielectric layer preferably has a refractive index of 2.0 to 2.6. Further, the low refractive index dielectric layer preferably has a refractive index of 1.8 or less.
 高屈折率の誘電体層としてはZrO、TiO低屈折率の誘電体層としてはSiO、Alを好ましく用いることができる。本発明で用いられる高屈折率の誘電体層としてはTiO、低屈折率の誘電体層としてはSiOをより好ましく用いることができる。TiOを高屈折率の誘電体操として、紫外反射層の最表面つまりフィルムミラーの最表面で用いる場合、TiOの光触媒効果によるミラー表面の防汚効果を得ることができるため、ミラー表面の汚れに起因したフィルムミラーの反射率の低下を低減することが可能となる。 The dielectric layer of high refractive index can be preferably used SiO 2, Al 2 O 3 as a dielectric layer of ZrO 2, TiO 2 the low refractive index. As the high refractive index dielectric layer used in the present invention, TiO 2 can be used, and as the low refractive index dielectric layer, SiO 2 can be used more preferably. When TiO 2 is used on the outermost surface of the ultraviolet reflection layer, that is, the outermost surface of the film mirror, as a dielectric material having a high refractive index, the anti-fouling effect on the mirror surface due to the photocatalytic effect of TiO 2 can be obtained. It is possible to reduce the decrease in the reflectance of the film mirror caused by the above.
 (犠牲防食層)
 本発明の態様のフィルムミラー6に設置される犠牲防食層とは、金属反射層を犠牲防食により保護する層のことであり、犠牲防食層を金属反射層と保護層との間に配置することにより、金属反射層の耐食性を向上させることができる。本発明において、防食犠牲層としては銀よりもイオン化傾向の高い銅が好ましく、銅の防食犠牲層は銀から成る反射層の下に設けることによって、銀の劣化を抑制することができる。
(Sacrificial protection layer)
The sacrificial anticorrosive layer installed on the film mirror 6 of the embodiment of the present invention is a layer that protects the metal reflective layer by sacrificial anticorrosion, and the sacrificial anticorrosive layer is disposed between the metal reflective layer and the protective layer. Thus, the corrosion resistance of the metal reflective layer can be improved. In the present invention, the anticorrosive sacrificial layer is preferably copper having a higher ionization tendency than silver, and the copper anticorrosive sacrificial layer is provided under the reflective layer made of silver, thereby suppressing the deterioration of silver.
 本発明のフィルムミラーは、以下のような工程にて製造することができる。 The film mirror of the present invention can be manufactured by the following steps.
 [工程1]
 高分子フィルムの基材として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ60μm)を準備し、蒸着機内部に配置し、蒸着機内部を真空ポンプによって真空にする。真空蒸着機内には、ロール状に巻いた高分子フィルムを繰り出す繰り出し装置と、高分子フィルムに蒸着処理を施して金属蒸着された高分子フィルムを巻き取る巻き取り装置とが配置されている。繰り出し装置と巻き取り装置との間には、フィルムをそれぞれ案内するように、ロールが多数配置され、駆動手段により高分子フィルム走行と同期して回転駆動されるようになっている。
[Step 1]
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 60 μm) is prepared as a base material for the polymer film, placed inside the vapor deposition machine, and the inside of the vapor deposition machine is evacuated by a vacuum pump. In the vacuum deposition machine, there are arranged a feeding device for feeding out a polymer film wound in a roll shape, and a winding device for taking up the polymer film deposited on the polymer film by vapor deposition. A large number of rolls are arranged between the feeding device and the winding device so as to respectively guide the film, and are driven to rotate in synchronization with the polymer film travel by the driving means.
 [工程2]
 高分子フィルム走行方向上流側部分と対向する位置には、金属酸化物の蒸着核蒸発源が配置されている。蒸着核蒸発源は、Si、Al、Ag、Cu、等の金属を高分子フィルムに蒸着するためのものであり、真空蒸着法等により金属蒸気を発生させ、フィルムの全幅に亘って均一に金属酸化物蒸着膜および金属蒸着膜を形成する。
[Step 2]
A metal oxide deposition nucleus evaporation source is disposed at a position facing the upstream portion of the polymer film traveling direction. The deposition nuclear evaporation source is for depositing metals such as Si, Al, Ag, Cu, etc. on polymer films. Metal vapor is generated by vacuum deposition or the like, and the metal is uniformly distributed over the entire width of the film. An oxide vapor deposition film and a metal vapor deposition film are formed.
 [工程3]
 工程2で作製した金属蒸着膜の表面にポリエステル系の感圧粘着剤を5μm厚に塗布する。上記の作製順序に限らず、工程2の後に金属の劣化防止に効果のある腐食防止剤を塗布しても良いし、同じく金属の劣化防止に犠牲防食層、例えばCuを蒸着しても良い。
[Step 3]
A polyester-based pressure sensitive adhesive is applied to the surface of the metal vapor deposition film produced in step 2 to a thickness of 5 μm. Not only the above-mentioned production order but also a corrosion inhibitor effective for preventing metal deterioration after step 2 may be applied, and a sacrificial anticorrosive layer, for example, Cu may also be deposited to prevent metal deterioration.
 また、強い紫外線から高分子フィルムを保護するために高分子フィルムやそのほか太陽光を入射する側に配置されるハードコート層に紫外線吸収剤を添加すれば、着色を防止し、反射効率を維持することができる。 In addition, in order to protect the polymer film from strong ultraviolet rays, if an ultraviolet absorber is added to the polymer film and other hard coat layers arranged on the side where sunlight is incident, coloring is prevented and reflection efficiency is maintained. be able to.
 (太陽光集光ミラー)
 本発明のフィルムミラーは、太陽光を集光する目的において、好ましく使用できる。フィルムミラー単体で太陽光集光ミラーとして用いることもできるが、より好ましくは、支持体に粘着層を介して、当該フィルムミラーを貼り付けて太陽光集光ミラーとして用いることである。
(Sunlight collector mirror)
The film mirror of the present invention can be preferably used for the purpose of collecting sunlight. Although the film mirror can be used alone as a sunlight collecting mirror, more preferably, the film mirror is attached to a support via an adhesive layer and used as a sunlight collecting mirror.
 (支持体)
 本発明の太陽光集光用ミラーの支持体としては、樹脂材料又は金属材料を挙げることができる。
(Support)
Examples of the support for the solar light collecting mirror of the present invention include a resin material or a metal material.
 樹脂材料としては、ポリカーボネード樹脂、ポリアセタール樹脂、アクリル樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ABS樹脂等の樹脂材料が特に制限されることなく用いられる。 As the resin material, resin materials such as polycarbonate resin, polyacetal resin, acrylic resin, polystyrene resin, polyimide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, and ABS resin are used without particular limitation.
 また、金属材料としては、アルミ板、アルミ合金板、真鍮板、ステンレス板、鋼板等が挙げられる。 Also, examples of the metal material include an aluminum plate, an aluminum alloy plate, a brass plate, a stainless plate, and a steel plate.
 以下、本発明について実施例及び比較例を用いて具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples.
 実施例1
 (フィルムミラーのサンプル1の作製)
 高分子フィルムとして、紫外線吸収剤のベンゾトリアゾールを含有した2軸延伸アクリルフィルム(厚み60μm)を用いた。上記アクリルフィルムの片面に、金属酸化物を有する水蒸気バリア層として酸化珪素と酸化アルミニウムを出発材料とした複合酸化物を厚み80nmで蒸着した。酸化珪素と酸化アルミニウムの蒸着材料は80対20の割合の混合比で電子ビーム蒸着法にて製膜した。金属反射層として、真空蒸着法により厚さ150nmの銀反射層を形成し、銀反射層上に、粘着剤としてアクリル系の粘着剤エスダイン#7851(積水化学工業製)を5μm厚に塗布し、剥離フィルムをつけて本発明の実施態様のフィルムミラー1該当のサンプル1を得た。
Example 1
(Preparation of film mirror sample 1)
As the polymer film, a biaxially stretched acrylic film (thickness: 60 μm) containing benzotriazole as an ultraviolet absorber was used. On one side of the acrylic film, a composite oxide starting from silicon oxide and aluminum oxide as a water vapor barrier layer having a metal oxide was deposited with a thickness of 80 nm. Vapor deposition materials of silicon oxide and aluminum oxide were formed by an electron beam vapor deposition method at a mixing ratio of 80:20. As a metal reflective layer, a 150 nm thick silver reflective layer is formed by vacuum deposition, and on the silver reflective layer, acrylic adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) is applied to a thickness of 5 μm as an adhesive. A release film was attached to obtain a sample 1 corresponding to the film mirror 1 of the embodiment of the present invention.
 (フィルムミラーのサンプル2の作製)
 高分子フィルムとして、紫外線吸収剤のベンゾトリアゾールを含有した2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚み50μm)を用いた。上記ポリエチレンテレフタレートフィルムの片面に、金属酸化物を有する水蒸気バリア層として珪素とアルミニウムを出発材料とした複合酸化物を厚み300nmで蒸着した。酸化珪素と酸化アルミニウムの蒸着材料は90対10の割合の混合比で電子ビーム蒸着法にて製膜した。
(Preparation of film mirror sample 2)
As the polymer film, a biaxially stretched polyester film (polyethylene terephthalate film, thickness 50 μm) containing an ultraviolet absorber benzotriazole was used. On one side of the polyethylene terephthalate film, a composite oxide starting from silicon and aluminum was deposited as a water vapor barrier layer having a metal oxide with a thickness of 300 nm. Vapor deposition materials of silicon oxide and aluminum oxide were formed by electron beam vapor deposition at a mixing ratio of 90:10.
 金属反射層として、真空蒸着法により厚さ150nmの銀反射層を形成し、銀反射層の上面にアクリル系フィルムを60μmの厚みで塗布した。アクリル系フィルムには腐食防止剤のジメルカプトアセテートが含有されている。さらにその上からアクリル系の粘着剤エスダイン#7851(積水化学工業製)を5μmの厚みで塗布したし、剥離フィルムをつけて本発明の実施態様のフィルムミラー2該当のサンプル2を得た。 As the metal reflective layer, a 150 nm thick silver reflective layer was formed by vacuum deposition, and an acrylic film was applied to the upper surface of the silver reflective layer to a thickness of 60 μm. The acrylic film contains the corrosion inhibitor dimercaptoacetate. Furthermore, acrylic adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) was applied in a thickness of 5 μm from above, and a release film was attached to obtain a sample 2 corresponding to the film mirror 2 of the embodiment of the present invention.
 (フィルムミラーのサンプル3の作製)
 高分子フィルムとして、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚み50μm)を高分子フィルム2とした。その上に金属反射層として、真空蒸着法により厚さ150nmの銀反射層を形成し、銀反射層の上面にアクリル系フィルムを60μmの厚みで塗布した。アクリル系フィルムには腐食防止剤のジメルカプトアセテートが含有されている。銀反射層とは逆の面に粘着剤としてアクリル系の粘着剤エスダイン#7851(積水化学工業製)を5μm厚に塗布し剥離フィルムをつけた。ここまでに作製したサンプルをサンプルAとした。別工程で紫外線吸収剤のベンゾトリアゾールを含有した高分子フィルム1(厚み25μm)に金属酸化物を有する水蒸気バリア層として珪素とアルミニウムを出発材料とした複合酸化物を厚み300nmで蒸着した。酸化珪素と酸化アルミニウムの蒸着材料は90対10の割合の混合比で電子ビーム蒸着法にて製膜した。この別工程で作製した水蒸気バリア層付き高分子フィルム1をサンプルBとした。サンプルAとサンプルBをポリエステル系の接着層を介して接着し本発明の実施態様のフィルムミラー3該当のサンプル3を得た。
(Preparation of film mirror sample 3)
The polymer film 2 was a biaxially stretched polyester film (polyethylene terephthalate film, thickness 50 μm) as the polymer film. A 150 nm thick silver reflective layer was formed thereon as a metal reflective layer by vacuum deposition, and an acrylic film was applied to the upper surface of the silver reflective layer to a thickness of 60 μm. The acrylic film contains the corrosion inhibitor dimercaptoacetate. Acrylic pressure-sensitive adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) was applied to the surface opposite to the silver reflective layer as a pressure-sensitive adhesive to a thickness of 5 μm and a release film was attached. The sample prepared so far was designated as Sample A. In another process, a composite oxide starting from silicon and aluminum was deposited at a thickness of 300 nm as a water vapor barrier layer having a metal oxide on a polymer film 1 (thickness 25 μm) containing benzotriazole as an ultraviolet absorber. Vapor deposition materials of silicon oxide and aluminum oxide were formed by electron beam vapor deposition at a mixing ratio of 90:10. Sample B was a polymer film 1 with a water vapor barrier layer produced in this separate step. Sample A and Sample B were bonded via a polyester adhesive layer to obtain Sample 3 corresponding to Film Mirror 3 of the embodiment of the present invention.
 (フィルムミラーのサンプル4の作製)
 高分子フィルムとして、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚み12μm)を高分子フィルム1とした。上記高分子フィルム1の片面に、化学気相成長(CVD)装置を使用して、テトラメチレンジシロキサン、酸素、ヘリウムを1:20:10(slm)の比を原料とし圧力100×10-4Torr、蒸着速度50nm/S、膜厚10nmの条件でCVD法で行い、金属酸化物を有する水蒸気バリア層として珪素酸化物(SiOx、X<2)の薄膜を厚み60nmで形成した。その上に金属反射層として、真空蒸着法により厚さ150nmの銀反射層を形成し、銀反射層の上面にアクリル系フィルムを60μmの厚みで塗布した。アクリル系フィルムには腐食防止剤のジメルカプトアセテートが含有されている。粘着剤としてアクリル系の粘着剤エスダイン#7851(積水化学工業製)を5μm厚に塗布し、剥離フィルムをつけた。銀反射層が無いほうの高分子フィルム1表面上にメチルアクリレート:ブチルアクリレート共重合体(比率64:36、紫外線硬化樹脂)にTINUVIN328(紫外線吸収剤、BASFジャパン社製)を5質量%混合したトルエン溶液をグラビアコート法によりコーティングし、80℃で30秒間乾燥した後に積算光量が5000mJ/cmになるように紫外線を照射して紫外線吸収剤含有ハードコート層を形成し本発明の実施態様のフィルムミラー4該当のサンプルを4得た。
(Preparation of film mirror sample 4)
The polymer film 1 was a biaxially stretched polyester film (polyethylene terephthalate film, thickness 12 μm) as the polymer film. A chemical vapor deposition (CVD) apparatus is used on one side of the polymer film 1 to form tetramethylenedisiloxane, oxygen, and helium at a ratio of 1:20:10 (slm) and a pressure of 100 × 10 −4. A thin film of silicon oxide (SiOx, X <2) was formed with a thickness of 60 nm as a water vapor barrier layer having a metal oxide under the conditions of Torr, vapor deposition rate 50 nm / S, and film thickness 10 nm. A 150 nm thick silver reflective layer was formed thereon as a metal reflective layer by vacuum deposition, and an acrylic film was applied to the upper surface of the silver reflective layer to a thickness of 60 μm. The acrylic film contains the corrosion inhibitor dimercaptoacetate. As an adhesive, acrylic adhesive Esdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) was applied to a thickness of 5 μm, and a release film was attached. 5% by mass of TINUVIN 328 (ultraviolet absorber, manufactured by BASF Japan) was mixed with methyl acrylate: butyl acrylate copolymer (ratio 64:36, ultraviolet curable resin) on the surface of the polymer film 1 having no silver reflection layer. The toluene solution is coated by a gravure coating method, dried at 80 ° C. for 30 seconds, and then irradiated with ultraviolet rays so that the accumulated light amount becomes 5000 mJ / cm 2 to form an ultraviolet absorber-containing hard coat layer. Four samples corresponding to the film mirror 4 were obtained.
 (フィルムミラーのサンプル5の作製)
 紫外線吸収剤含有ハードコート層に替えて紫外線反射層を金属酸化物で作製した以外は実施例4と同様の操作で本発明の実施態様のフィルムミラー5該当のサンプル5を得た。紫外線反射層は、誘電体多層膜で構成されており、真空蒸着によって高屈折率の誘電体層TiO(厚み37nm)、低屈折率の誘電体層SiO(厚み65nm)を交互に6層積み重ねて構成している。紫外線反射層全体の厚みは306nmである。
(Production of film mirror sample 5)
A sample 5 corresponding to the film mirror 5 of the embodiment of the present invention was obtained in the same manner as in Example 4 except that the ultraviolet reflecting layer was made of a metal oxide instead of the ultraviolet absorbent-containing hard coat layer. The ultraviolet reflection layer is composed of a dielectric multilayer film, and six layers of dielectric layers TiO 2 (thickness 37 nm) having a high refractive index and dielectric layers SiO 2 (thickness 65 nm) having a low refractive index are alternately formed by vacuum deposition. It is constructed by stacking. The total thickness of the ultraviolet reflecting layer is 306 nm.
 (フィルムミラーのサンプル6の作製)
 高分子フィルムとして、紫外線吸収剤のベンゾトリアゾールを含有した2軸延伸アクリルフィルム(厚み10μm)を用いた。上記アクリルフィルムの片面に、金属酸化物を有する水蒸気バリア層として酸化アルミニウム層を厚み500nmで蒸着した。酸化アルミニウムの蒸着材料は電子ビーム蒸着法にて製膜した。金属反射層として、真空蒸着法により厚さ150nmの銀反射層を形成し、銀反射層上に、犠牲防食層として銅層を60nmの厚みで抵抗加熱によって蒸着した。銅層の上に粘着剤としてアクリル系の粘着剤エスダイン#7851(積水化学工業製)を5μm厚に塗布し、剥離フィルムをつけて本発明の実施態様のフィルムミラー6該当のサンプル6を得た。
(Preparation of film mirror sample 6)
As the polymer film, a biaxially stretched acrylic film (thickness 10 μm) containing benzotriazole as an ultraviolet absorber was used. An aluminum oxide layer having a thickness of 500 nm was deposited on one side of the acrylic film as a water vapor barrier layer having a metal oxide. The aluminum oxide vapor deposition material was formed by electron beam vapor deposition. As the metal reflection layer, a silver reflection layer having a thickness of 150 nm was formed by a vacuum deposition method, and a copper layer was deposited as a sacrificial anticorrosion layer by resistance heating to a thickness of 60 nm on the silver reflection layer. On the copper layer, an acrylic pressure-sensitive adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) was applied to a thickness of 5 μm as a pressure-sensitive adhesive, and a release film was attached to obtain a sample 6 corresponding to the film mirror 6 of the embodiment of the present invention. .
 (フィルムミラーの比較サンプル1の作製)
 高分子フィルムとして、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚み60μm)を用いた。上記ポリエチレンテレフタレートフィルムの片面に、金属反射層として、真空蒸着法により厚さ150nmの銀反射層を形成し、銀反射層の上に珪素とアルミニウムを出発材料とした複合酸化物を厚み80nmで蒸着した。銀反射層とは逆側に粘着剤としてアクリル系の粘着剤エスダイン#7851(積水化学工業製)を5μm厚に塗布し、剥離フィルムをつけて比較サンプル1を得た。
(Production of film mirror comparative sample 1)
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 60 μm) was used as the polymer film. A 150 nm thick silver reflective layer is formed as a metal reflective layer on one side of the polyethylene terephthalate film by a vacuum deposition method, and a composite oxide starting from silicon and aluminum is deposited on the silver reflective layer to a thickness of 80 nm. did. A comparative sample 1 was obtained by applying an acrylic adhesive Sdyne # 7851 (manufactured by Sekisui Chemical Co., Ltd.) as a pressure-sensitive adhesive on the side opposite to the silver reflecting layer to a thickness of 5 μm and attaching a release film.
 (フィルムミラーの比較サンプル2の作製)
 金属酸化物を有する水蒸気バリア層を形成する工程を行わなかった以外はサンプル1と同様の工程で作製した比較サンプル2を得た。
(Production of film mirror comparative sample 2)
Comparative sample 2 produced in the same process as sample 1 was obtained except that the process of forming the water vapor barrier layer having a metal oxide was not performed.
 (フィルムミラーの比較サンプル3の作製)
 高分子フィルムの厚みを10μmとし、金属酸化物を有する水蒸気バリア層として酸化珪素と酸化アルミニウムを出発材料とした複合酸化物を厚み600nmで蒸着した以外はサンプル1と同様の工程で作製した比較サンプル3を得た。
(Production of film mirror comparative sample 3)
Comparative sample prepared in the same process as Sample 1 except that the thickness of the polymer film was 10 μm, and a composite oxide using silicon oxide and aluminum oxide as a starting material was deposited at a thickness of 600 nm as a water vapor barrier layer having a metal oxide. 3 was obtained.
 [評価]
 以上のように作製したサンプル1~6及び比較サンプル1~3について下記の試験を実施し、その結果を下記表1に示した。
[Evaluation]
The following tests were performed on Samples 1 to 6 and Comparative Samples 1 to 3 produced as described above, and the results are shown in Table 1 below.
 (反射率測定)
 得られた、それぞれのフィルムミラーのサンプルを、測定サイズの2.5cm角に切り出し、分光光度計U4000(日立ハイテクノロジーズ製)の反射率測定モードを選択し、角度5°で入射した光の反射光を積分球に導き正反射率を測定した。波長範囲は2500nm~250nmを測定し、反射率が落ちる波長範囲が無いかどうかを確認した。赤外光領域(2500nm~800nm)、可視光領域(800nm~400nm)の反射率を平均し、実施例と比較例のそれぞれの正反射平均値を得た。
(Reflectance measurement)
Each film mirror sample obtained was cut into a 2.5 cm square of the measurement size, the reflectance measurement mode of the spectrophotometer U4000 (manufactured by Hitachi High-Technologies) was selected, and the reflection of the incident light at an angle of 5 ° Light was guided to an integrating sphere and the regular reflectance was measured. The wavelength range was 2500 nm to 250 nm, and it was confirmed whether there was any wavelength range in which the reflectance dropped. The reflectances in the infrared light region (2500 nm to 800 nm) and the visible light region (800 nm to 400 nm) were averaged to obtain regular reflection average values for the examples and comparative examples.
 ○:正反射率平均値が90%以上
 △:正反射率平均値が80%以上90%未満
 ×:正反射率平均値が80%未満
 (保管条件)
 得られた、それぞれのフィルムミラーのサンプルを、直径6cmの巻き芯に巻きつけて25℃50%の環境下で30日間保管した。保管後に劣化試験1~3を実施した。
○: Regular reflectance average value is 90% or more △: Regular reflectance average value is 80% or more and less than 90% ×: Regular reflectance average value is less than 80% (Storage conditions)
Each of the obtained film mirror samples was wound around a core having a diameter of 6 cm and stored in an environment of 25 ° C. and 50% for 30 days. Deterioration tests 1 to 3 were conducted after storage.
 劣化試験1(耐湿試験)
 温度85℃、湿度85%RHの条件で恒温槽中に30日間放置し、取り出してから前述した正反射率測定を実施した。正反射率の判定は上述したものと同じである。
Degradation test 1 (moisture resistance test)
The specular reflectance measurement described above was carried out after being left for 30 days in a constant temperature bath under conditions of a temperature of 85 ° C. and a humidity of 85% RH. The determination of regular reflectance is the same as described above.
 劣化試験2(硫化アンモニウム試験)
 JIS-K8943に規定されている硫化アンモニウムを用いて、JIS-H8623付属書2に記載の方法にそって試験を行った。硫化アンモニウム水溶液中に浸漬して24時間放置した後にフィルムミラーの正反射率を測定した。正反射率の判定は上述したものと同じである。
Degradation test 2 (Ammonium sulfide test)
The test was conducted according to the method described in Appendix 2 of JIS-H8623 using ammonium sulfide specified in JIS-K8943. After being immersed in an aqueous ammonium sulfide solution and allowed to stand for 24 hours, the regular reflectance of the film mirror was measured. The determination of regular reflectance is the same as described above.
 劣化試験3(酢酸塩水噴霧試験)
 JIS-Z2371:2000に規定されている35℃、5%塩化ナトリウムとpH=3の酢酸を用いて、JIS-Z2371:2000に記載の方法にそって試験を行った。24時間試験に投入した後にフィルムミラーの正反射率を測定した。正反射率の判定は上述したものと同じである。
Degradation test 3 (acetate spray test)
The test was carried out according to the method described in JIS-Z2371: 2000 using 35 ° C., 5% sodium chloride and pH = 3 acetic acid specified in JIS-Z2371: 2000. The specular reflectance of the film mirror was measured after putting it into the test for 24 hours. The determination of regular reflectance is the same as described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、本発明のサンプル1~6は比較サンプル1~3に比べて、反射率の劣化においていずれも良好であった。比較サンプル1では表面の金属酸化物層に微細なクラックが生じ、ガスバリア性が失われ劣化試験後に反射率が低下したことが判明した。 As is clear from the results in Table 1, the samples 1 to 6 of the present invention were all good in the deterioration of reflectance as compared with the comparative samples 1 to 3. In Comparative Sample 1, it was found that fine cracks were generated in the metal oxide layer on the surface, the gas barrier property was lost, and the reflectance was lowered after the deterioration test.
 実施例2
 本発明のサンプル1~6と比較サンプル1~3を用い、以下の方法で、太陽光集光用ミラーを作製した。
Example 2
Using samples 1 to 6 of the present invention and comparative samples 1 to 3, solar light collecting mirrors were produced by the following method.
 〔太陽熱発電用フィルムミラーの作製〕
 実際の太陽熱発電用フィルムミラーは形状として1辺が少なくとも1mを超える長さであり、そのままのサイズでは評価測定装置で評価できないことから、下記のような小サイズの太陽熱発電用反射装置を作製し、これを用いて太陽熱発電用フィルムミラーの評価を行った。
[Production of film mirrors for solar power generation]
An actual film mirror for solar thermal power generation has a length of at least 1 m on a side and cannot be evaluated with an evaluation measuring device with the size as it is. Therefore, a solar power generation reflective device with a small size as shown below is produced. The film mirror for solar power generation was evaluated using this.
 厚さ1mmで、縦25.4mm×横76.2mmのステンレス(SUS304)板に、上記作製した本発明のサンプル1~6と比較サンプル1~3を、厚さ5μmの粘着層を介して貼り付け、それぞれ太陽熱熱発電用フィルムミラーを作製した。 The above-prepared samples 1 to 6 and comparative samples 1 to 3 are attached to a stainless steel (SUS304) plate having a thickness of 15.4 mm and a length of 25.4 mm × width of 76.2 mm through an adhesive layer having a thickness of 5 μm. A film mirror for solar thermal power generation was prepared.
 本発明のサンプル1~6は屋外に3年間曝露したが金属反射層の反射率は90%以上あり問題はなかった。一方、金属酸化物を有する水蒸気バリアが無い比較サンプル2は屋外曝露1年間で金属反射層の劣化が発生した。比較サンプル1と3には金属酸化物層はあるが、クラックが生じたことによる水蒸気バリア性の低下により屋外曝露2年間で金属反射層の劣化が発生した。 The samples 1 to 6 of the present invention were exposed to the outdoors for 3 years, but the reflectivity of the metal reflective layer was 90% or more, and there was no problem. On the other hand, in Comparative Sample 2 without a water vapor barrier having a metal oxide, the metal reflective layer deteriorated after one year of outdoor exposure. Although Comparative Samples 1 and 3 had a metal oxide layer, the metal reflective layer deteriorated after two years of outdoor exposure due to a decrease in water vapor barrier properties due to the occurrence of cracks.
 E フィルムミラー
 1 高分子フィルム層
 2 ガスバリア層
 3 反射層
 4 粘着層
 5 剥離フィルム
E film mirror 1 polymer film layer 2 gas barrier layer 3 reflective layer 4 adhesive layer 5 release film

Claims (12)

  1.  太陽光を入射する側から順に、高分子フィルム層、金属酸化物を有するガスバリア層、及び、金属の反射層が配置されたフィルムミラーであって、該高分子フィルム層に対する該ガスバリア層の厚みの比率が0.1%~5%の範囲であることを特徴とする太陽光を反射する機能を持つフィルムミラー。 A film mirror in which a polymer film layer, a gas barrier layer having a metal oxide, and a metal reflection layer are arranged in this order from the sunlight incident side, the thickness of the gas barrier layer with respect to the polymer film layer A film mirror having a function of reflecting sunlight, wherein the ratio is in the range of 0.1% to 5%.
  2.  前記高分子フィルム層の膜厚は10μm~125μmの範囲であることを特徴とする請求項1に記載のフィルムミラー。 2. The film mirror according to claim 1, wherein the polymer film layer has a thickness in the range of 10 μm to 125 μm.
  3.  前記ガスバリア層の金属酸化物が、酸化珪素、酸化アルミニウム、および酸化珪素と酸化アルミニウムの2種混合体、から選ばれる少なくとも1種であることを特徴とする請求項1又は2に記載のフィルムミラー。 The film mirror according to claim 1 or 2, wherein the metal oxide of the gas barrier layer is at least one selected from silicon oxide, aluminum oxide, and a mixture of two types of silicon oxide and aluminum oxide. .
  4.  前記反射層の金属が、銀であることを特徴とする請求項1~3のいずれか一項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 3, wherein the metal of the reflective layer is silver.
  5.  前記金属の反射層を、湿式めっきで作製したことを特徴とする請求項1~4のいずれか一項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 4, wherein the metal reflective layer is formed by wet plating.
  6.  前記金属の反射層を、乾式めっきで作製したことを特徴とする請求項1~4のいずれか一項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 4, wherein the metal reflective layer is formed by dry plating.
  7.  前記高分子フィルム層に紫外線吸収剤が含有されていることを特徴とする請求項1~6のいずれか一項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 6, wherein the polymer film layer contains an ultraviolet absorber.
  8.  前記金属の反射層と接して、チオエーテル系、チオール系、Ni系有機化合物系、ベンゾトリアゾール系、イミダゾール系、オキサゾール系、テトラザインデン系、ピリミジン系、及び、チアジアゾール系から選ばれる少なくとも1種を含有する腐食防止剤層が設けられていることを特徴とする請求項1~7のいずれか一項に記載のフィルムミラー。 In contact with the metal reflective layer, at least one selected from thioether, thiol, Ni organic compound, benzotriazole, imidazole, oxazole, tetrazaindene, pyrimidine, and thiadiazole The film mirror according to any one of claims 1 to 7, further comprising a corrosion inhibitor layer contained therein.
  9.  前記金属の反射層と接して、Cu層が設けられていることを特徴とする請求項1~8のいずれか一項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 8, wherein a Cu layer is provided in contact with the metal reflective layer.
  10.  請求項1~9のいずれか一項に記載のフィルムミラーが、太陽光を入射する側の反対側に粘着層を有することを特徴とするフィルムミラー。 The film mirror according to any one of claims 1 to 9, wherein the film mirror has an adhesive layer on the side opposite to the side on which sunlight is incident.
  11.  請求項1~10のいずれか一項に記載のフィルムミラーの製造方法において、前記金属の反射層を銀蒸着によって形成することを特徴とするフィルムミラーの製造方法。 11. The film mirror manufacturing method according to claim 1, wherein the metal reflective layer is formed by silver vapor deposition.
  12.  請求項10に記載のフィルムミラーを、該フィルムミラーの粘着層を介して、支持体上に貼り付けて形成することを特徴とする太陽光集光用ミラー。 A solar light collecting mirror, wherein the film mirror according to claim 10 is formed on a support through an adhesive layer of the film mirror.
PCT/JP2010/073496 2010-02-04 2010-12-27 Film mirror and process for production thereof, and sunlight collection mirror WO2011096151A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552672A JPWO2011096151A1 (en) 2010-02-04 2010-12-27 Film mirror, manufacturing method thereof, and solar light collecting mirror

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-023070 2010-02-04
JP2010023070 2010-02-04

Publications (1)

Publication Number Publication Date
WO2011096151A1 true WO2011096151A1 (en) 2011-08-11

Family

ID=44355173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073496 WO2011096151A1 (en) 2010-02-04 2010-12-27 Film mirror and process for production thereof, and sunlight collection mirror

Country Status (2)

Country Link
JP (1) JPWO2011096151A1 (en)
WO (1) WO2011096151A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061497A1 (en) * 2012-10-16 2014-04-24 コニカミノルタ株式会社 Film mirror, and reflecting apparatus for solar thermal power generation
WO2014109354A1 (en) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 Film mirror and reflector for solar thermal power generation
WO2015111327A1 (en) * 2014-01-24 2015-07-30 コニカミノルタ株式会社 Transparent conductor
JP2017062425A (en) * 2015-09-25 2017-03-30 コニカミノルタ株式会社 Light reflection film and backlight unit for liquid crystal display device
JP2018036604A (en) * 2016-09-02 2018-03-08 コニカミノルタ株式会社 Light reflection film and backlight unit for liquid crystal display device
WO2021261433A1 (en) * 2020-06-22 2021-12-30 日東電工株式会社 Film mirror laminate and mirror member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JP2001208904A (en) * 2000-01-26 2001-08-03 Matsushita Electric Works Ltd Highly efficient reflection mirror
JP2004009591A (en) * 2002-06-07 2004-01-15 Mitsui Chemicals Inc Reflector
JP2007065261A (en) * 2005-08-31 2007-03-15 Asahi Glass Co Ltd Reflector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JP2001208904A (en) * 2000-01-26 2001-08-03 Matsushita Electric Works Ltd Highly efficient reflection mirror
JP2004009591A (en) * 2002-06-07 2004-01-15 Mitsui Chemicals Inc Reflector
JP2007065261A (en) * 2005-08-31 2007-03-15 Asahi Glass Co Ltd Reflector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061497A1 (en) * 2012-10-16 2014-04-24 コニカミノルタ株式会社 Film mirror, and reflecting apparatus for solar thermal power generation
WO2014109354A1 (en) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 Film mirror and reflector for solar thermal power generation
WO2015111327A1 (en) * 2014-01-24 2015-07-30 コニカミノルタ株式会社 Transparent conductor
JP2017062425A (en) * 2015-09-25 2017-03-30 コニカミノルタ株式会社 Light reflection film and backlight unit for liquid crystal display device
JP2018036604A (en) * 2016-09-02 2018-03-08 コニカミノルタ株式会社 Light reflection film and backlight unit for liquid crystal display device
WO2021261433A1 (en) * 2020-06-22 2021-12-30 日東電工株式会社 Film mirror laminate and mirror member

Also Published As

Publication number Publication date
JPWO2011096151A1 (en) 2013-06-10

Similar Documents

Publication Publication Date Title
WO2011096151A1 (en) Film mirror and process for production thereof, and sunlight collection mirror
US9494338B2 (en) Solar light collecting mirror and solar thermal power generation system having solar light collecting mirror
WO2011158677A1 (en) Film mirror for reflecting sunlight and reflective device for solar thermal power generation
JP5920211B2 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
JP2011128501A (en) Film mirror, method of manufacturing film mirror and mirror for condensing sunlight
WO2012105351A1 (en) Solar light collecting mirror, and solar thermal power generation system comprising the solar light collecting mirror
WO2015002053A1 (en) Light reflecting film, and light reflecting body and light reflecting device using such light reflecting film
JPWO2012057004A1 (en) Film mirror, film mirror manufacturing method, and solar power generation reflector
JP2011158751A (en) Film mirror, method of manufacturing the same, and reflecting device for solar power generation using the same
JP5962014B2 (en) Film mirror and manufacturing method thereof
JP5516603B2 (en) FILM MIRROR, METHOD FOR MANUFACTURING THE SAME, AND REFLECTOR FOR SOLAR THERMAL POWER GENERATION
JP5660051B2 (en) FILM MIRROR, MANUFACTURING METHOD THEREOF, AND SOLAR POWER GENERATOR REFLECTOR USING THE SAME
WO2013015190A1 (en) Solar light collecting mirror and solar thermal power generation system using said solar light collecting mirror
WO2012026311A1 (en) Film mirror, method for manufacturing film mirror, and reflection device for use in solar thermal power generation
WO2014199906A1 (en) Solar reflection panel
WO2011096248A1 (en) Light reflecting film for solar thermal power generation, method for producing same, and reflection device for solar thermal power generation using same
WO2011114861A1 (en) Solar concentrating mirror, and trough solar thermal power generation device and trough solar power generation device using same
JP2012053382A (en) Light-reflecting film for solar power generation and reflecting device for solar power generation
JP2012251695A (en) Solar light collection system and mirror
JP2011158752A (en) Film mirror, method of manufacturing the same, and reflecting apparatus for solar thermal power generation
JP2013015612A (en) Method for manufacturing solar collection mirror, solar collection mirror, and solar thermal power generation system
JP2016170279A (en) Light reflection film, and light reflection body and sunlight reflection device having the same
WO2012056953A1 (en) Mirror for reflecting solar light, and reflection device for solar power generation
JP2012153036A (en) Film mirror, and reflector for solar thermal power generation
JP2012242714A (en) Film mirror and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845282

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552672

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845282

Country of ref document: EP

Kind code of ref document: A1