WO2014109354A1 - Film mirror and reflector for solar thermal power generation - Google Patents

Film mirror and reflector for solar thermal power generation Download PDF

Info

Publication number
WO2014109354A1
WO2014109354A1 PCT/JP2014/050217 JP2014050217W WO2014109354A1 WO 2014109354 A1 WO2014109354 A1 WO 2014109354A1 JP 2014050217 W JP2014050217 W JP 2014050217W WO 2014109354 A1 WO2014109354 A1 WO 2014109354A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
acrylic
film
resin
weight
Prior art date
Application number
PCT/JP2014/050217
Other languages
French (fr)
Japanese (ja)
Inventor
丈範 熊谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014556432A priority Critical patent/JPWO2014109354A1/en
Publication of WO2014109354A1 publication Critical patent/WO2014109354A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a film mirror and a solar power generation reflector.
  • Patent Document 1 Japanese Patent Publication No. 2009-520174 (corresponding to PCT / US2006 / 062046)
  • Non-Patent Document 1 (“2008 Solar Annual”). Review Meeting "Susannah Clear Bob Messenger 3M Energy Markets)
  • Patent Document 1 Japanese Patent Publication No. 2009-520174 (corresponding to PCT / US2006 / 062046)
  • Patent Document 1 discloses a silver mirror structure in which an acrylic film is bonded to a silver layer with a polymer film via an adhesive layer. Yes.
  • Non-Patent Document 1 (“2008 Solar Annual Review Meeting”, Susannah Clear Bob Messenger 3M Energy Markets) discloses a film mirror for solar power generation in which a silver layer is directly formed on the back surface of an acrylic film. These film mirrors are advantageous in that they can be reduced in weight, have flexibility, can be manufactured at low cost, and can be manufactured in large areas and in large quantities.
  • an acrylic film is usually formed by using a melt-extruded acrylic resin that is melted by heat. Therefore, due to process restrictions, there is a problem with the smoothness of the surface that causes minute irregularities on the surface. Is left. In particular, when it is used as a film mirror, the light is condensed very far away, so that there is a problem that the light collecting performance is adversely affected even if minute irregularities exist on the surface.
  • Non-Patent Document 1 (“2008 Solar Annual Review Meeting” Susannah Clear Bob Messenger 3M Energy Markets)
  • only the acrylic film is used as the base material.
  • a film mirror having excellent smoothness has been developed by forming an acrylic layer by applying an acrylic resin dissolved in a solvent when a film mirror is manufactured.
  • the following problems occurred: When an acrylic resin solution dissolved in a solvent was applied, the solvent or the additive in the acrylic resin solution dissolved in the solvent was transferred to the silver layer.
  • an object of the present invention is to provide a film mirror and a solar power generation reflecting device having high reflectivity, which have excellent smoothness and durability.
  • the acrylic layer has a thickness of 20 to 100 ⁇ m, and the amount of the solvent remaining in the acrylic layer is 0.1% by weight or less based on the total weight of the acrylic layer, Film mirror.
  • FIG. 1 is a schematic side view showing a layer configuration of a film mirror according to Examples 1 to 10 of the present invention.
  • FIG. FIG. 5 is a schematic side view showing a layer configuration of a film mirror according to Comparative Examples 1 to 4.
  • 10 is a schematic side view showing a layer configuration of a film mirror according to Comparative Example 5.
  • FIG. It is a schematic side view which shows the layer structure of the film mirror by the comparative example 6. It is a schematic side view which shows the layer structure of the film mirror by Example 11 and 12 of this invention.
  • a film mirror including a silver reflective layer and an acrylic layer containing an acrylic resin formed by a coating method on a light incident side of the silver reflective layer on a resin film-like support. Is done. At this time, the thickness of the acrylic layer is 20 to 100 ⁇ m, and the amount of the solvent remaining in the acrylic layer is 0.1% by weight or less with respect to the total weight of the acrylic layer.
  • the film mirror which has the outstanding smoothness and durability, and has a high reflectance, and the solar power generation reflective apparatus can be provided.
  • the film mirror of the present invention is excellent in durability because a silver reflective layer is formed on a resin film-like support (for example, a PET substrate). Moreover, since the acrylic layer is formed on the light incident side of the silver reflection layer by the coating method, a film mirror having good smoothness on the surface can be realized.
  • the amount of the solvent remaining in the acrylic layer is 0.1% by weight or less based on the total weight of the acrylic layer, various disadvantageous problems caused by the residual solvent can be solved, and durability It is possible to realize a film mirror that is superior to the above. That is, by suppressing the amount of the solvent used when forming the acrylic layer below a certain amount, it is possible to prevent the solvent used or components such as additives dissolved in the solvent from entering the silver reflective layer. Can prevent discoloration or coloring of silver. In addition, the occurrence of cracks and cracks in the film mirror due to insufficient drying of the acrylic layer is suppressed, and the generation of gaps in the acrylic layer due to volatilization of the residual solvent is also suppressed.
  • the film mirror of the present invention has at least a resin film-like support 1, a silver reflecting layer 3, and an acrylic layer 5.
  • the acrylic layer 5 includes an acrylic resin, and if the acrylic film 5 is provided on the light incident side with respect to the resin film-like support 1 and the silver reflective layer 3, the stacking order of the resin film-like support 1 and the silver reflective layer 3. Is not particularly limited, and may be laminated with, for example, the acrylic layer 5, the silver reflecting layer 3, and the resin film-like support 1 in order from the light incident side, and the acrylic layer 5 and the resin film-like support 1 in this order from the light incident side. , And a silver reflective layer 3.
  • the silver reflection layer 3, and the acrylic layer 5 other layers may be provided on an arbitrary interlayer or an outer surface of the layer. That is, other layers may be interposed between the acrylic layer 5, the silver reflective layer 3, and the resin film-like support 1, and the respective layers may be adjacent to each other, or on the acrylic layer 5 or on the resin
  • the surface of the film-like support opposite to the acrylic layer may have another layer, for example, the hard coat layer 6 may be provided on the acrylic layer 5, and the resin film-like support.
  • An adhesive layer (not shown), a release layer (not shown), or the like may be provided on the surface opposite to the acrylic layer.
  • the hard coat layer 6, the acrylic layer 5, the resin coat layer 4, the silver reflective layer 3, the anchor layer 2, and the resin film-like support 1 are sequentially laminated from the light incident side.
  • An adhesive layer (not shown) can be provided between any of the above layers. Note that each of the layers may be provided as a single layer, may be provided as a plurality of layers, or other layers may be provided adjacent to each other.
  • the thickness of the film mirror is not particularly limited and is preferably 20 to 600 ⁇ m, more preferably 80 to 300 ⁇ m, still more preferably 80 to 200 ⁇ m, and most preferably 80 to 170 ⁇ m.
  • the thickness of the film mirror 20 ⁇ m or more it is preferable from the viewpoint that it is easy to obtain a good reflectance without bending the mirror when bonded to a base material that supports the film mirror.
  • the film mirror of the present invention is very lightweight and flexible from the constituent materials described later and the thickness range of 20 to 600 ⁇ m, and can be manufactured in a large area and mass-produced at a low manufacturing cost.
  • the thickness of each layer (also referred to as “film thickness”) is obtained as follows. That is, when the thickness of the layer is 1 ⁇ m or more, it is obtained by measuring using a micrometer (manufactured by Mitutoyo Corporation). Further, when the thickness of the layer is less than 1 ⁇ m, it is obtained by measuring using an optical interference type film thickness meter (ST2000 DLXn manufactured by X-MAC). Moreover, the thickness of each layer points out a dry film thickness unless there is special description.
  • the surface roughness Ra is used as a measure of the smoothness of the film mirror.
  • the surface roughness Ra of the film mirror of the present invention is not particularly limited, and when the film mirror is produced using a roll-to-roll method capable of continuously forming a film mirror, the surface roughness such as blocking may be caused. From the viewpoint of preventing sticking, it is preferably 3 nm or more, and from the viewpoint of suppressing sunlight scattering, it is preferably 50 nm or less.
  • the surface roughness Ra can be measured by a three-dimensional measuring device NH-3SP (manufactured by Mitaka Kogyo Co., Ltd.). The measurement conditions are a measurement range of 2 mm and a measurement pitch of 2 ⁇ m.
  • the objective lens is 100 ⁇ and the cutoff value is 0.250 mm.
  • the film mirror of the present invention is preferably manufactured by a roll-to-roll method from the viewpoint of manufacturing cost.
  • the acrylic layer according to the present invention has a function of preventing deterioration or discoloration of the layer provided in the lower layer (that is, the lower layer of the acrylic layer viewed from the light incident side) or film peeling.
  • it can function as a layer that protects the silver reflective layer from external factors such as water, chlorine, or sulfur in the air.
  • the resin film-like support provided in the lower layer can function as a layer for protecting from UV rays.
  • the thickness of the acrylic layer according to the present invention is 10 to 100 ⁇ m, preferably 20 to 100 ⁇ m, more preferably 20 to 80 ⁇ m, and further preferably 40 to 80 ⁇ m.
  • the thickness of the acrylic layer is less than 20 ⁇ m, the moisture permeability becomes high, and the amount of the ultraviolet absorber contained is limited, so that a sufficient ultraviolet absorption effect cannot be obtained, and durability of 10 years or more is achieved. There is a problem that it cannot be obtained.
  • the thickness of the acrylic layer exceeds 100 ⁇ m, the absorption of the acrylic layer with respect to sunlight increases, resulting in a decrease in light reflectivity, resulting in a decrease in light collecting and heat collecting performance. There is a problem that the flexibility of the layer itself or the layer itself cannot be sufficiently maintained.
  • the surface roughness Ra of the acrylic layer according to the present invention is preferably 1 to 50 nm, more preferably 1 to 10 nm, from the viewpoint of regular reflectance.
  • the acrylic layer according to the present invention mainly contains an acrylic resin as a base resin and can contain additives such as an ultraviolet absorber and an antioxidant.
  • UV absorber The ultraviolet absorber contained in the acrylic layer according to the present invention will be described in detail below.
  • the purpose of adding the ultraviolet absorber is to give the acrylic layer a function of absorbing and blocking ultraviolet rays.
  • an ultraviolet absorber As an organic type, a benzophenone type, a benzotriazole type, a salicylic acid phenyl type, a triazine type, a hindered amine type, a benzoate type, etc. are mentioned, and inorganic types include titanium oxide, zinc oxide, Examples include cerium oxide and iron oxide.
  • a high molecular weight ultraviolet absorber having a weight average molecular weight of 1000 or more. The weight average molecular weight is preferably 1000 or more and 3000 or less.
  • specific examples of the ultraviolet absorber those disclosed in paragraphs “0038” to “0042” of JP2012-232538A are appropriately selected.
  • benzotriazole ultraviolet absorbers and triazine ultraviolet absorbers are preferably used, and triazine ultraviolet absorbers are more preferably used.
  • a resin having an ultraviolet absorbing group or a monomer constituting the resin can be used as the ultraviolet absorber.
  • the ultraviolet absorbing resin examples include a copolymer of methyl methacrylate and a benzophenone ultraviolet absorber (BASF Japan, UVA635L), and a copolymer of methyl methacrylate and a benzotriazole ultraviolet absorber (Shin Nakamura).
  • the ultraviolet absorber a compound having a function of converting the energy held by ultraviolet light into vibration energy in the molecule and releasing the vibration energy as heat energy or the like can be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers acting as a light energy conversion agent, called quenchers, can be used in combination.
  • quenchers light stabilizers acting as a light energy conversion agent
  • the ultraviolet absorber disclosed above may be used alone or in combination of two or more thereof as necessary. Further, if necessary, an ultraviolet absorber other than the ultraviolet absorber, for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, or the like can be contained.
  • the ultraviolet absorber when an acrylic layer containing an acrylic resin contains an ultraviolet absorber, the ultraviolet absorption capability of the formed acrylic layer can be sufficiently exerted, and the yellowing of the resin used in the film mirror can be prolonged. Can be suppressed. Further, from the viewpoint of considering the elongation and toughness of the acrylic resin and the bleed-out of the ultraviolet absorber, the ultraviolet absorber is 0.1 to 20 wt% with respect to 100 wt% of the total amount of the acrylic resin contained in the acrylic layer. Is preferably blended at 1 to 10% by weight, more preferably 2 to 8% by weight.
  • content of the ultraviolet absorber with respect to 100 weight% of the total amount of an acrylic resin prepares the raw material which comprises the said acrylic resin, ie, an ultraviolet curable acrylic resin liquid, or a thermosetting acrylic resin liquid. Therefore, it is equal to the blending amount of the UV absorber with respect to the total amount of raw material monomers.
  • the inclusion of the benzotriazole ultraviolet absorber is preferably in the range of 30:70 to 70:30, more preferably in the range of 40:60 to 60:40, and 50:50 A close ratio is particularly preferred.
  • antioxidant in the present invention, an antioxidant may be contained in the acrylic layer in order to prevent deterioration of the acrylic layer. Examples of preferred antioxidants are listed below.
  • an organic antioxidant such as a hindered amine antioxidant, a hindered phenol antioxidant, and a phosphoric acid antioxidant.
  • an organic antioxidant for example, those disclosed in paragraphs “0048” to “0052” of JP2012-232538A are appropriately selected.
  • antioxidants disclosed above may be used alone or in combination of two or more.
  • the total amount of the acrylic resin is 100% by weight.
  • the blending amount of the antioxidant is preferably 0.1% by weight or more, more preferably 1% by weight or more.
  • the upper limit of the blending amount of the oxygen inhibitor is not particularly limited, but is preferably 20% by weight or less, more preferably 10% by weight or less, and further preferably 6% by weight or less. It is particularly preferable that the amount is not more than wt%.
  • the antioxidant is preferably blended at 0.1 to 20% by weight, more preferably 1 to 10% by weight, and more preferably 1 to 6% by weight based on 100% by weight of the total amount of the acrylic resin. More preferably, it is blended in an amount of 1% by weight, particularly preferably 1-5% by weight.
  • the content of the antioxidant with respect to 100% by weight of the total amount of the acrylic resin is prepared as a raw material constituting the acrylic resin, that is, an ultraviolet curable acrylic resin liquid or a thermosetting acrylic resin liquid. Therefore, the amount of the antioxidant is equal to the total amount of the raw material monomers.
  • the acrylic layer can contain an antioxidant and a UV absorber in combination.
  • the ratio of the antioxidant content to the ultraviolet absorber content is preferably in the range of 1: 1 to 1:20, preferably in the range of 1: 2 to 1:10. More preferably, it is 1: 3 to 1: 6.
  • the acrylic layer according to the present invention may have other additives in addition to the ultraviolet absorber and the antioxidant to such an extent that bleeding out does not occur.
  • additives include leveling agents, fillers such as talc, rust preventives, fluorescent whitening agents, surfactant-based, lithium-based, or organic boron-based antistatic agents, pigments, dyes, thickeners.
  • leveling agents such as talc, rust preventives, fluorescent whitening agents, surfactant-based, lithium-based, or organic boron-based antistatic agents, pigments, dyes, thickeners.
  • Additives common in the paint field such as inorganic fine particles such as colloidal silica and alumina sol, and polymethyl methacrylate acrylic fine particles.
  • the acrylic layer according to the present invention is a first step of preparing an acrylic resin liquid, and the acrylic resin liquid is applied to the upper surface of the light incident side of the resin film-like support on which a silver reflective layer is formed, It can form by the 2nd process of drying and forming a coating film, and the 3rd process of hardening
  • a step (1-a) of preparing an ultraviolet curable acrylic resin solution or a step (1-b) of preparing a thermosetting acrylic resin solution One of these.
  • the ultraviolet curable acrylic resin liquid or thermosetting acrylic resin liquid according to the present invention is prepared at 25 ° C., preferably in the viscosity range of 10 to 2000 poise, more preferably in the viscosity range of 100 to 1000 poise. It is prepared with. In the present invention, the viscosity is measured with a BII viscometer (Toki Sangyo Co., Ltd.).
  • the ultraviolet curable acrylic resin liquid includes an ultraviolet polymerization initiator, and an acrylic vinyl monomer that can undergo a polymerization / curing reaction due to ultraviolet irradiation or an acrylic vinyl monomer has a predetermined polymerization degree.
  • it means a mixed resin liquid containing an ultraviolet curable partial polymer that has been partially polymerized in advance.
  • the thermosetting acrylic resin liquid contains a pyrolytic polymerization initiator, and an acrylic vinyl monomer that can undergo a polymerization / curing reaction when heated, or the acrylic vinyl monomer has a predetermined polymerization degree. It means a mixed resin liquid containing a thermosetting partial polymer that has been partially polymerized in advance.
  • the weight average molecular weight of the partially polymerized ultraviolet curable partial polymer or thermosetting partial polymer is usually 50,000 to 1,500,000, preferably 100,000 to 1,200,000. In the present invention, the weight average molecular weight is measured by GPC.
  • step (1-a) for preparing the ultraviolet curable acrylic resin liquid and the step (1-b) for preparing the thermosetting acrylic resin liquid will be described.
  • the ultraviolet curable acrylic resin liquid may be prepared by blending an ultraviolet polymerization initiator with an ultraviolet curable acrylic vinyl monomer.
  • it may be prepared by blending an ultraviolet polymerization initiator into a mixture of a partially polymerized product obtained by polymerization and an unreacted acrylic vinyl monomer.
  • the precursor acrylic vinyl monomer also referred to as a raw material monomer
  • a wide range of radical polymerizable acrylic vinyl monomers can be used up to the monomer.
  • the acrylic layer according to the present invention has a thickness of 20 to 100 ⁇ m, if the degree of crosslinking of the acrylic layer is too high, the flexibility of the film itself is lost, and the monofunctional group monomer and / or Alternatively, a form in which a bifunctional monomer is partially polymerized as a raw material monomer is preferable.
  • radical polymerizable acrylic vinyl monomer examples include butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decanyl ( (Meth) acrylate, uncanyl (meth) acrylate, dodecanyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid, 2-hydroxyethyl ( (Meth) acrylate, methyl (meth) acrylate, ethyl (meth) arylate, (meth) acrylic acid amide, dimethylamide methacrylate, dimethylamide acrylate, stearyl (meth) acrylate, behenyl
  • radical polymerizable acrylic vinyl monomers may be used alone or in combination.
  • other monomers such as vinyl acetate, styrene, vinylbenzene, ethylene, crotonic acid, vinyl propionate, ⁇ -methylstyrene, dicyclopentene and coumarone may be used in combination. .
  • a polymerization initiator can be appropriately selected depending on the type of the monomer.
  • a photopolymerization initiator disclosed by polymerization by light such as ultraviolet rays or visible light, or a thermal decomposition type polymerization initiator is used.
  • photopolymerization initiators 2,2-diethoxycetophenone, p-dimethylaminoacetophenone, p-dimethylaminopropiophenone, methoxycetophenone, 2,2-dimethoxy-2-phenylacetophenone (manufactured by Ciba Geigy Corp.) , Trade name: Icure 651), ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone (Ciba Geigy Corp., trade name: Darocur 1173), 2-hydroxy-2-cyclohexylacetophenone (BASF, trade name: Irgacure) 184), or acetophenones such as 2-methyl-1- [4- (methylthio) phenyl] -2-montforinopropan-1-one (manufactured by Ciba Geigy KK, trade name: Irgacure 907), benzoin, benzoin Methyl ether, benzoin ethyl
  • thermal decomposition type polymerization initiator 2,2′-azobisisobutyronitrile, 2,2′-azobis-2,4-dimethylvaleronitrile (manufactured by Wako Pure Chemical Industries, Ltd., product) Name: V-70), 2,2′-azobiscyclohexylnitrile, 1,1′-azobis (cyclohexane-1-carbonitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-40), Azo initiators such as 2-phenylazo-4-methoxy-2,4-dimethylvalerotolyl, dimethyl-2,2′-azobisisobutyrate, or 2,2′-azobis (2-methylbutyronitrile); Or benzoyl peroxide, 2,4-di-chlorobenzoyl peroxide, 1-butyl-oxy-2-ethylhexanoate, 1-butylperoxy-3,5,5-trimethylhexanoate, Prop
  • a photopolymerization initiator is preferably used, and an ultraviolet polymerization initiator is more preferably used from the viewpoint of increasing productivity. Moreover, it is preferable to perform it in the atmosphere of nitrogen gas, when superposing
  • a lamp having an illuminance of 100 to 1500 mW / cm 2 the ultraviolet irradiation was intermittently performed in the range of 100 to 1500 mJ / cm 2 , and the ultraviolet irradiation was repeated until the following preferable viscosity range was reached.
  • the acrylic resin remaining in the obtained ultraviolet curable acrylic resin liquid is used.
  • the amount of the vinyl monomer is preferably 0.1 to 20% by weight, more preferably 1 to 10% by weight, and more preferably 2 to 10% by weight based on the total weight of the ultraviolet curable acrylic resin liquid. It is particularly preferred.
  • the acrylic resin liquid according to the present invention within the preferable viscosity range, it can be carried out by appropriately selecting the amount of the polymerization initiator or reaction conditions.
  • the amount of the polymerization initiator used here is preferably 0.001 to 6% by weight, and more preferably 0.003 to 4% by weight, based on 100% by weight of the total amount of raw material monomers.
  • An ultraviolet polymerization initiator is blended into the mixed solution of the obtained ultraviolet curable partial polymer and unreacted acrylic vinyl monomer to prepare an ultraviolet curable acrylic resin liquid according to step (1-a). Can do.
  • the blending amount of the ultraviolet polymerization initiator is preferably 1 to 10% by weight and more preferably 2 to 4% by weight with respect to 100% by weight of the total amount of raw material monomers.
  • the ultraviolet polymerization initiator is used when producing
  • the thermosetting acrylic resin liquid may be prepared by blending a thermosetting polymerization initiator with a thermosetting acrylic vinyl monomer.
  • a thermally decomposable polymerization initiator is added to a thermosetting partial polymer obtained by partial polymerization in advance and an unreacted acrylic vinyl monomer that is a precursor of the partial polymer. It may be prepared by blending.
  • the amount of the acrylic vinyl monomer remaining in the obtained thermosetting acrylic resin liquid is preferably 2 to 20% by weight of the total weight of the thermosetting acrylic resin liquid. It is more preferably 2 to 15% by weight, and particularly preferably 2 to 10% by weight.
  • the acrylic vinyl monomer used as a precursor thereof and a preferred embodiment are not particularly limited, and in the above step (1-a). Used from the disclosed acrylic vinyl monomers and preferred embodiments thereof.
  • the polymerization initiator and preferred embodiments are used in the same manner as the polymerization initiator disclosed in the above step (1-a) and preferred embodiments thereof, from the viewpoint of polymerization efficiency and productivity. Therefore, it is more preferable to perform partial polymerization using a thermal decomposition polymerization initiator.
  • a system resin solution can be prepared.
  • step (1-b) it is preferable to blend two types of thermal decomposition polymerization initiators having different 10-hour half-lives. More specifically, a low temperature pyrolysis polymerization initiator having a 10-hour half-life in the range of 25 to 55 ° C. and a high-temperature pyrolysis polymerization having a 10-hour half-life in the range of more than 55 ° C. and 90 ° C. or less. It is preferable to use in combination with an initiator.
  • low temperature pyrolysis polymerization initiator examples include 2,2′-azobis-2,4-dimethylvaleronitrile (manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-70), isobutyl peroxide, ( ⁇ , ⁇ '-bis-neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, di-n-propylperoxydicarbonate, diisopropylisopropyloxycarbonate, 1,1,3,3 -Tetramethylbutyl peroxyneodecanoate, bis (4-t-butylcyclohexyl) peroxydi-carbonate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, di-2-ethoxyethyl-peroxydi-carbonate, Di (2-ethylethylperoxy) dicarbonate, t-hexylperoxyn
  • 1,1′-azobis (cyclohexane-1-carbonitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-40), 3, 5, 5 Trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate, succinic peroxide, 2,5-di -Methyl-2,5-di (2-ethylhexylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, 1- Butyl peroxy-2-oxy-2-ethylhexanoate, m-toluyl, benzoy
  • the low temperature thermal decomposition type polymerization initiator and the high temperature thermal decomposition type polymerization initiator are usually in a weight ratio of 1:10 to 10: 1, preferably 1: 5 to 5: 1, more preferably. It is blended at a ratio of 1: 1.
  • the polymerization reaction in the heat polymerization step (step (3-b) in the third step described later) and the aging polymerization are performed. Both polymerization reactions proceed smoothly.
  • the blending amount of the low-temperature pyrolysis polymerization initiator is usually 0.05 to 5% by weight, preferably 0.1 to 100% by weight of the total amount of raw material monomers. ⁇ 2% by weight, more preferably 0.5-2% by weight.
  • the blending amount of the high-temperature thermal decomposition type polymerization initiator is usually from 0.05 to 5% by weight, preferably from 0.1 to 2% by weight, more preferably from 0.5 to 2% by weight.
  • step (1-b) if necessary, other components such as a crosslinking agent, a molecular weight modifier, a filler, particles, and a tackifying resin may be blended to prepare a thermally decomposable acrylic resin liquid. it can.
  • Examples of the other crosslinking agent include divinylbenzene, diethyl glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexaneol di (meth) acrylate, bisphenol A dioxydiethyl glycol di Reaction with a radical polymerizable polyfunctional monomer such as (meth) acrylate, trimethylolpropane tri (meth) acrylate, or pentaerythritol tri (meth) acrylate, or a functional group contained in the thermally decomposable acrylic resin liquid A compound having a property can be used.
  • cross-linking agents examples include isocyanate adducts such as epoxy compounds, isocyanate compounds, isocyanurates of hexamethylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name Coronate HX), or organometallic compounds. .
  • the blending amount when blending the crosslinking agent is usually 0.05 to 10% by weight, preferably 0.1 to 10% by weight, more preferably 1 to 1% by weight based on 100% by weight of the total amount of raw material monomers. 5% by weight.
  • Examples of the other component molecular weight modifier include mercaptan compounds, thioglycol, carbon tetrachloride, ⁇ -methylstyrene dimer, and the like.
  • the blending amount when blending the molecular weight modifier is usually 0.01 to 2% by weight, preferably 0.05 to 1% by weight, based on 100% by weight of the total amount of raw material monomers.
  • Examples of the filler as the other component include particles having an average particle diameter of 10 to 100 ⁇ m such as polyethylene particles (PE particles), silica particles, alumina particles, cerium oxide particles, and zirconia oxide particles.
  • the blending amount when blending the filler is usually 1 to 60% by weight, preferably 5 to 40% by weight, based on 100% by weight of the total amount of raw material monomers.
  • Examples of the other component particles include silica, alumina, titanium oxide, silicon dioxide, silicon oxide, calcium carbonate, calcium silicate, magnesium carbonate, magnesium oxide, talc, kaolin clay, calcined clay, zinc oxide, and zinc sulfate.
  • inorganic particles such as aluminum hydroxide, aluminum oxide, glass mica, barium sulfate, alumina white, zeolite, polymethyl (meth) acrylate, polystyrene, benzoguanamine resin, melamine resin, phenol resin, silicone resin, urea resin, polyethylene resin
  • resin particles produced from resins such as polyolefin resin, nylon resin, urethane resin, fluororesin, polyimide resin, and epoxy resin, and polyethylene wax. These can be used alone or in combination.
  • thermosetting acrylic resin liquid can be prepared by mixing a crosslinking agent, filler, etc., stirring and partially polymerizing in a temperature range of 25 to 35 ° C., and preferably adding a defoaming treatment.
  • a commercially available acrylic resin liquid can be used in place of the above-described acrylic vinyl monomer and the corresponding polymerization initiator.
  • examples of such commercially available acrylic resin liquids include Acrypet MD, VH, MF, V (manufactured by Mitsubishi Rayon Co., Ltd.), Hyperl M-4003, M-4005, M-4006, M-4202, M -5000, M-5001, M-4501 (manufactured by Negami Kogyo Co., Ltd.), Dialnal BR-50, BR-52, BR-53, BR-60, BR-64, BR-73, BR-75, BR -77, BR-79, BR-80, BR-82, BR-83, BR-85, BR-87, BR-88, BR-90, BR-93, BR-95, BR-100, BR-101 BR-102, BR-105, BR-106, BR-107, BR-108, BR
  • the acrylic layer contains an ultraviolet absorber or an antioxidant
  • it can be blended when preparing the acrylic resin liquid, and becomes a raw material before synthesizing the partial polymer.
  • the ultraviolet absorber or antioxidant may be added when mixing the acrylic vinyl monomer, or after synthesizing the partial polymer, that is, after the acrylic resin liquid can be prepared, An antioxidant may be added. More preferably, after the partial polymer is synthesized, an ultraviolet absorber or an antioxidant is added.
  • Solvents used here include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, propylene glycol monomethyl ether acetate (PGMEA; 1-methoxy-2-acetoxypropane), ethylene glycol monoethyl ether acetate, diethylene glycol mono Butyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropionate, propylene glycol monoethyl ether acetate, propylene glycol diacetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, formic acid Esters such as ethyl, butyl formate, propyl formate, ethyl lactate, butyl lactate or propyl lactate, 1-octa , 2-octanone, 1-nonanone, 2-n
  • a highly hydrophobic solvent such as an ester solvent, a ketone solvent, an alkyl ketone solvent, or a hydrocarbon solvent is preferably used.
  • the amount of the solvent remaining in the formed acrylic layer is preferably 0.1% by weight or less with respect to the total weight of the acrylic layer.
  • the residual solvent here (also referred to as residual solvent) means that the solvent positively added as described above remains in the acrylic layer through the reaction in the third step described later, The corresponding solvent has no polymerizability.
  • a monomer component such as methyl methacrylate is liquid at room temperature, and other components that form the resin liquid may be dissolved or dispersed. However, since such a monomer component has polymerizability, In the invention, these components are not treated as solvents.
  • the drying temperature and / or the adjustment of the drying temperature and the solvent content are used This can be achieved by reducing the amount of the raw material to be formed, or adjusting the thickness of the formed acrylic layer.
  • the solvent is preferably blended at 20 wt% or less with respect to 100 wt% of the total solid content of the acrylic resin used. It is more preferable that the amount is not more than wt%, and it is particularly preferable that the solvent is not substantially mixed.
  • the fact that the solvent here is not substantially blended means that the solvent is not actively blended.
  • the solvent used in the production of the monomer remains in the monomer or the like and is contained in the composition. It does not exclude even a solvent that is contained when preparing an acrylic resin liquid, such as a solvent to be used.
  • the second step for forming the acrylic layer according to the present invention includes the ultraviolet curable acrylic resin solution prepared in the step (1-a) and the thermosetting acrylic resin prepared in the step (1-b).
  • a liquid or a commercially available acrylic resin liquid is applied to the upper surface on the light incident side of the resin film-like support on which a silver reflective layer or the like is formed, and dried to form a coating film.
  • thermosetting acrylic resin liquid for the ultraviolet curable acrylic resin liquid, thermosetting acrylic resin liquid, or commercially available acrylic resin liquid, before being applied, from the viewpoint of suppressing the possibility of poor appearance due to foam generation at the time of application, It is preferable to perform a defoaming process.
  • the defoaming treatment is usually performed by holding any of the acrylic resin liquids in a reduced pressure state at room temperature. By performing the defoaming treatment, bubbles are not contained in the resulting acrylic layer, and an acrylic layer with high surface smoothness and high density can be formed.
  • the acrylic resin liquid of any one of the above for example, by using a coating device such as an applicator, gravure coater, doctor blade, comma coater, die coater, reverse coater, roll coater, etc. It can apply
  • a coating device such as an applicator, gravure coater, doctor blade, comma coater, die coater, reverse coater, roll coater, etc. It can apply
  • the ultraviolet curable acrylic resin liquid prepared in the step (1-a), the thermosetting acrylic resin liquid prepared in the step (1-b), and a commercially available acrylic resin liquid are used.
  • the coating thickness at the time of coating is not particularly limited as long as the thickness of the cured acrylic layer is in the range of 20 to 100 ⁇ m.
  • Any one of the acrylic resin liquids is applied and dried to form a coating film.
  • the acrylic layer formed by the coating method has a higher surface smoothness than the acrylic layer formed by the bonding method or the like, and a film mirror with higher reflectance can be obtained.
  • the acrylic resin liquid used here can increase the solid content concentration and can be applied even with a small amount of solvent, the penetration of the solvent or the raw material dissolved by the solvent into the silver reflective layer is suppressed. It is possible to suppress coloring of silver and the like.
  • the adhesion between the formed acrylic layer and the adjacent layer is improved compared to the acrylic layer formed by dissolving the acrylic resin solution with a solvent without applying the curing process. be able to.
  • the third step for forming the acrylic layer according to the present invention is a step of curing the coating film formed in the second step, and more specifically, UV curing when using the UV curable coating film.
  • Step (3-a) or a thermosetting step (3-b) in the case of using the thermosetting coating film is included.
  • the said ultraviolet curable coating film or a thermosetting coating film hardens
  • the third step can be omitted depending on the type of commercially available acrylic resin liquid used.
  • each of the step (3-a) and the step (3-b) will be described.
  • Step (3-a) Step (3-a) according to the present invention is a step of forming an acrylic layer by reacting the ultraviolet curable acrylic resin liquid. That is, the ultraviolet curable coating film obtained in the second step is intermittently irradiated with a lamp having an illuminance of 100 to 1000 mW / cm 2 and an ultraviolet irradiation amount of 100 to 1000 mJ / cm 2 . This is a step of repeating the ultraviolet irradiation until the raw material monomer does not remain.
  • the ultraviolet irradiation lamp may be a known one, and for example, a light hammer (manufactured by FUSION JAPAN) is used.
  • Step (3-b) is a step of forming an acrylic layer by reacting the thermosetting acrylic resin liquid. That is, it is a step of curing the thermosetting coating film through two stages of heat polymerization and aging polymerization of the thermosetting coating film obtained in the second step.
  • thermosetting coating is polymerized by self-heating, preferably self-heating by adiabatic polymerization (heating polymerization stage).
  • the adiabatic polymerization mentioned here means that the polymerization is started without bringing the coating film that has started polymerization into contact with a medium having a large heat transfer coefficient equal to or lower than the polymerization start temperature, and is usually carried out in air.
  • the support having the thermosetting coating film formed as described above is heated to a temperature of 60 ° C. or higher, preferably 65 ° C. or higher, particularly preferably 70 to 120 ° C. by air heating.
  • the heating is performed at a temperature of 60 to 200 ° C. under the condition that the support having the thermosetting coating film does not undergo deformation such as heat shrinkage. Start by.
  • the coating thickness of the thermosetting acrylic resin liquid prepared in the step (1-b) is thick, the support having the thermosetting coating film when the polymerization reaction is started by heating in the initial stage. Since the amount of heat generated is greater than the amount of heat released from the surface, when the reaction is started by heating a support having a thermosetting coating film in the initial stage, the reaction is accelerated by self-heating, and the applied thermosetting acrylic is applied.
  • the temperature of the coating film of the system resin liquid becomes higher than the heating temperature, and instantaneously becomes 20 to 70 ° C. higher than the heating temperature.
  • the reaction at this time is initiated mainly by a low-temperature pyrolytic polymerization initiator having a 10-hour half-life in the range of 25 to 55 ° C.
  • the reaction time in the heat polymerization stage may be very short, and in the case of air heating, several tens of seconds to 20 minutes, preferably 0.5 to The time is 10 minutes.
  • the time is 0.1 second to 20 minutes, preferably 0.5 second to 1 minute.
  • the heating in the heat polymerization step is usually at least until the low temperature pyrolysis polymerization initiator starts to function by heating, preferably until the low temperature pyrolysis polymerization initiator is consumed. It is heated for 2 to 10 minutes, preferably 0.5 to 5 minutes.
  • the raw material monomer components remaining in the thermosetting coating film are polymerized to 2 to 20% by weight of the total weight of the coating film. It is preferably 2 to 15% by weight, more preferably 2 to 10% by weight.
  • the amount of the raw material monomer component is measured by gas chromatography.
  • the aging polymerization stage according to the present invention is a stage in which the support having the thermosetting coating film that has undergone the heating polymerization stage is maintained at a temperature lower than the heating temperature of the heating polymerization stage of 60 ° C. or higher.
  • the aging polymerization step is preferably performed at a temperature of 35 to 75 ° C.
  • the high temperature thermal decomposition type polymerization initiator remaining after the heating polymerization stage gradually acts to polymerize the remaining raw material monomer over a long period of time, and the amount of the remaining raw material monomer is applied.
  • the support subjected to the heating polymerization step is at the temperature, It is preferable to hold for 1 hour to 10 days.
  • the support that has undergone the heat polymerization step is wound, and the wound product is preferably held in an aging polymerization apparatus heated to 35 to 75 ° C.
  • the high-temperature decomposable polymerization initiator is gradually decomposed, and the polymerization of the remaining raw material monomers proceeds under mild conditions to form an acrylic layer.
  • the coating film can be cured by the ultraviolet curing reaction in the step (3-a) or the thermal curing reaction in the step (3-b). From the viewpoint of productivity, it is more preferable to perform an ultraviolet curing reaction.
  • the acrylic layer according to the present invention can be obtained by reacting the ultraviolet curable acrylic resin liquid through the steps (1-a), 2 and (3-a), Alternatively, the thermosetting resin liquid can be reacted through step (1-b), step 2, and step (3-b). From the viewpoint of productivity, it is more preferable to react an ultraviolet curable acrylic resin liquid.
  • the silver reflective layer which concerns on this invention is a layer which has as a main component the silver which has the function to reflect the sunlight of a resin film-like support body, Preferably it is a layer which consists of silver.
  • the silver reflective layer which concerns on this invention consists of aluminum, chromium, nickel, titanium, magnesium, rhodium, platinum, palladium, tin, gallium, indium, bismuth, and gold other than silver from a viewpoint of improving durability.
  • a silver alloy comprising one or more other metals from the group may be included as a main component.
  • the silver atom is 90 to 99.8 atomic% in the total of silver and other metals (100 atomic%) in the silver reflective layer. It is preferable that the other metal atom is 0.2 to 10 atom% from the viewpoint of durability.
  • gold is more preferable as the other metal from the viewpoint of high temperature humidity resistance and reflectance.
  • the surface reflectance of the silver reflective layer according to the present invention is preferably 80% or more, more preferably 90% or more.
  • the surface reflectance can be measured using a commercially available spectrophotometer, such as U-4100 (manufactured by JASCO Corporation).
  • the thickness of the silver reflective layer according to the present invention is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
  • a thickness of 10 nm or more is preferable because it does not transmit light and can sufficiently ensure the reflectance in the visible light region of the film mirror.
  • the reflectance in the visible light region of the film mirror increases in proportion to the thickness of the silver reflection layer up to a thickness of about 200 nm, but tends to become independent when the thickness exceeds 200 nm.
  • the surface roughness Ra of the silver reflecting layer according to the present invention is preferably 0.01 to 0.1 ⁇ m, and more preferably 0.02 to 0.07 ⁇ m.
  • the film mirror may have two or more silver reflective layers.
  • the reflectance from the infrared region to the visible light region of the film mirror can be increased, and the dependency of the reflectance on the incident angle can be reduced.
  • the infrared region to visible light region means a wavelength region of 400 to 2500 nm.
  • the incident angle means an angle with respect to a line (normal line) perpendicular to the film surface of the film mirror.
  • the silver reflection layer may be provided on the surface side from the resin film-like support on the sunlight incident side, and on the opposite side (on the back side from the resin film-like support on the sunlight incidence side). It may be provided. It is preferable that the resin film-like support is provided on the surface side from the resin incident support on the sunlight incident side or the like from the viewpoint that the resin is not easily deteriorated by the ultraviolet rays of sunlight.
  • the silver reflective layer according to the present invention and the acrylic layer according to the present invention may be adjacent to each other or may be interposed with other layers, but the ultraviolet absorber or ultraviolet absorptivity contained in the acrylic layer.
  • the resin has another layer.
  • the other layers mentioned here may exist as a single layer, or may exist as a plurality of layers, but the total thickness thereof, that is, the silver reflective layer and the book according to the present invention.
  • the distance from the acrylic layer according to the invention is preferably 1 ⁇ m or more, and from the viewpoint of contributing to thinning of the entire film mirror of the present invention, it is preferably 30 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the distance of a silver reflection layer and an acrylic layer here means the distance between each surface which the silver reflection layer and an acrylic layer approach most.
  • the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction methods.
  • the dry method is a general term for a vacuum film forming method, and specifically includes a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, a sputtering method, and the like. is there.
  • a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used. That is, in the film mirror manufacturing method of the present invention, the silver reflective layer is preferably formed by vapor deposition.
  • the silver reflective layer according to the present invention may be formed by heating and baking a coating film containing a silver complex compound from which a ligand can be vaporized / desorbed.
  • a silver complex compound having a ligand that can be vaporized and desorbed has a ligand for stably dissolving silver in a solution, but it is coordinated by removing the solvent and heating and baking.
  • This is a silver complex compound in which the child is thermally decomposed to become CO 2 or a low molecular weight amine compound, vaporized and eliminated, and only metallic silver can remain.
  • a silver complex compound and a method for producing the same for example, a silver complex compound and a method for producing the same described in paragraphs “0064” to “0089” of JP-A-2012-137579, which are publicly known, can be used as appropriate. .
  • the silver reflective layer according to the present invention is formed by heating and baking a coating film containing a silver complex compound from which the ligand can be vaporized and desorbed, a nitrogen-containing cyclic layer is formed in the adjacent layer of the silver reflective layer. It is preferable to contain a compound.
  • a corrosion inhibitor and an antioxidant having an adsorptive group for silver are preferably used.
  • Examples of the corrosion inhibitor having an adsorptive group for silver which is the nitrogen-containing cyclic compound include a compound having a pyrrole ring, a compound having a triazole ring, a compound having a pyrazole ring, a compound having an imidazole ring, and an indazole ring. It is preferably selected from at least one kind of compound or a mixture thereof.
  • the term “corrosion” refers to a phenomenon in which silver is chemically or electrochemically eroded or deteriorated by the environmental material that takes it in (see JIS Z0103-2004). ).
  • the corrosion inhibitor as a compound having a pyrrole ring, a compound having a triazole ring, a compound having a pyrazole ring, a compound having an imidazole ring, and a compound having an indazole ring is disclosed in the [resin coat layer] column described later.
  • nitrogen cyclic compounds corresponding to each of the above may be used.
  • the antioxidant having an adsorptive group for silver which is the nitrogen-containing cyclic compound among the antioxidants disclosed in the [Acrylic layer] column, a phenol-based antioxidant having a nitrogen ring, a thiol-based oxidation Inhibitors and phosphite antioxidants are preferably used. Furthermore, the antioxidant and the light stabilizer can be used in combination. As the light stabilizer, known ones are appropriately selected, and for example, those disclosed in paragraphs “0049” to “0053” of JP2012-232538A are used.
  • resin film-like support As the resin film-like support according to the present invention, various conventionally known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyester film such as polyethylene terephthalate, polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentene Irumu, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and the like acrylic film.
  • polyester film such as polyethylene
  • polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable.
  • a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
  • the resin film support according to the present invention is preferably at a position farther from the sunlight incident side than the silver reflection layer from the viewpoint that ultraviolet rays hardly reach the resin film support.
  • the presence of an acrylic layer on the sunlight incident side of the resin film-like support, an acrylic layer with an ultraviolet absorber added, and a hard coat layer to be described later are arranged on the sunlight incidence side of the resin film-like support.
  • ultraviolet rays are less likely to reach the resin film support. Therefore, the resin film-like support according to the present invention can be used even if it is a resin that easily deteriorates with respect to ultraviolet rays. From such a viewpoint, it is possible to use a polyester film such as polyethylene terephthalate as the resin film-like support.
  • the thickness of the resin film-like support according to the present invention is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally 10 to 250 ⁇ m, preferably 20 to 200 ⁇ m.
  • the film mirror of the present invention does not have a problem such as being easily broken unlike a conventional glass support, and further has flexibility.
  • a hard coat layer may be provided on the light incident side of the acrylic layer.
  • the hard coat layer according to the present invention is provided for the purpose of preventing the film mirror surface from being damaged or contaminated.
  • the transparent hard coat layer is preferably the outermost layer, the second layer, or the third layer from the light incident side, and the film mirror surface is also damaged by washing away dirt adhering to the film mirror with a brush or the like. From the viewpoint of reducing the reflection efficiency and, as a result, preventing a decrease in reflection efficiency, it is more preferable to provide the outermost layer as a position.
  • a thinner layer (preferably having a thickness of 1 ⁇ m or less) may be provided on the hard coat layer.
  • the thickness of the hard coat layer according to the present invention is preferably 0.05 to 10 ⁇ m, more preferably 1 to 4 ⁇ m, and even more preferably 1.5 to 3 ⁇ m. If the thickness of the hard coat layer is 0.05 ⁇ m or more, sufficient scratch resistance can be obtained. In addition, if the thickness of the hard coat layer is 10 ⁇ m or less, it is possible to prevent the hard coat layer from cracking due to excessive stress, and from the viewpoint of preventing electrostatic adhesion of dirt such as dust. Is preferably 10 ⁇ m or less.
  • the scratch resistance of the hard coat layer according to the present invention is preferably 30 or less in a steel wool test with a pencil hardness of H or more and less than 6H and a load of 500 g / cm 2 .
  • the pencil hardness is evaluated based on the pencil hardness test JIS-K5400.
  • the pencil hardness of each sample at 45 ° inclination and 1 kg load is evaluated.
  • the electric resistance value of the outermost surface of the film mirror is 1.0 ⁇ 10 ⁇ 3 to 1.0 ⁇ 10 12 ⁇ ⁇ ⁇ . More preferably, it is 3.0 ⁇ 10 9 to 2.0 ⁇ 10 11 ⁇ ⁇ ⁇ .
  • the surface electrical resistance value is measured according to the standard of JIS K 7194 using Hiresta manufactured by Mitsubishi Chemical Corporation. However, after leaving the sample in an environment with a humidity of 50% and a temperature of 50 ° C. for 2 hours or more, placing the sample on a conductive metal plate, applying a voltage of 500 V, and measuring the surface electricity of the sample 30 seconds after the start of measurement. The resistance value is measured using a probe.
  • the falling angle of the hard coat layer is larger than 0 ° and not larger than 30 ° because water droplets adhering to the surface of the film mirror easily fall off due to rain or condensation.
  • the falling angle refers to a value obtained by dropping a water drop on a horizontal mirror and then gradually increasing the tilt angle of the mirror to measure the minimum angle at which a predetermined weight of water drop falls. Say. It can be said that the smaller the tumbling angle, the easier the water droplets to roll off the surface, and the surface to which the water droplets hardly adhere.
  • steel wool # 0000
  • steel wool # 0000
  • HEIDON-14DR manufactured by Shinto Kagaku Co., Ltd.
  • This test evaluates the number of scratches by reciprocating the surface of the article 10 times at a speed of 10 mm / sec.
  • the sliding angle was measured by attaching a sliding method kit DM-SA01 to a contact angle meter DM501 (Kyowa Interface Chemistry), dropping 50 ⁇ l of water, tilting the support from a horizontal state at a speed of 0.5 ° / second, The angle at which the rolls down is measured as the fall angle. A smaller rolling angle is preferable because water droplets can be easily dropped and have excellent antifouling properties.
  • the hard coat layer according to the present invention can be composed of an acrylic resin, a urethane resin, a melamine resin, an epoxy resin, an organic silicate compound, a silicone resin, or the like.
  • a silicone resin or an acrylic resin is preferable from the viewpoint of scratch resistance.
  • those made of an active energy ray-curable acrylic resin or a thermosetting acrylic resin are preferable.
  • the active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component.
  • acrylic oligomer examples include polyester acrylate, urethane acrylate, epoxy acrylate, polyether acrylate, and the like in which a reactive acrylic group is bonded to an acrylic resin skeleton, and also melamine, isocyanuric acid, and the like.
  • a material in which an acrylic group is bonded to a rigid skeleton may also be used.
  • the oligomer has a molecular weight that is somewhat large, for example, a weight average molecular weight of 1000 or more and less than 10,000.
  • the reactive diluent serves as a solvent for the coating process as a coating agent medium, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component of the film.
  • polyfunctional acrylic cured paints such as “Diabeam (registered trademark)” series (Mitsubishi Rayon Co., Ltd.), and “Denacol” (registered trademark) series (Nagase Sangyo Co., Ltd.) ), Product name “NK Ester” series (made by Shin-Nakamura Co., Ltd.), product name “UNIDIC (registered trademark)” series (made by Dainippon Ink & Chemicals, Inc.), product name “Aronix (registered trademark)” series (Made by Toagosei Co., Ltd.), brand name “Blemmer (registered trademark)” series (made by NOF Corporation), brand name “KAYARAD (registered trademark)” series (made by Nippon Kayaku Co., Ltd.), brand name, etc. Examples include the “light ester” series or “light acrylate” series (manufactured by Kyoeisha Chemical Co., Ltd.).
  • thermosetting polysiloxane resin such as a trade name Perma-New (registered trademark) 6000 (manufactured by California Hardcoating Co., Ltd.), a hard coating that is cured by irradiation with electron beams or ultraviolet rays.
  • Coating liquids especially thermosetting silicone hard coat liquids composed of partially hydrolyzed oligomers of alkoxysilane compounds, ultraviolet curable acrylic hard coat liquids composed of acrylic compounds having unsaturated groups, and thermosetting inorganic materials. It is preferable.
  • an aqueous colloidal silica-containing acrylic resin Japanese Patent Laid-Open No. 2005-66824
  • a polyurethane-based resin composition Japanese Patent Laid-Open No. 2005-110918
  • an aqueous silicone compound as a binder.
  • Resin film used Japanese Patent Laid-Open No. 2004-142161
  • photocatalytic oxide-containing silica film such as titanium oxide or alumina
  • photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio
  • photocatalyst examples thereof include a fluorine-containing resin coating (Pierex Technologies), an organic / inorganic polysilazane film, and a film using a hydrophilization accelerator (AZ Electronics) in organic / inorganic polysilazane.
  • thermosetting silicone hard coat layer a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used.
  • An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with.
  • an acid catalyst such as hydrochloric acid or nitric acid
  • the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction.
  • a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply
  • an acrylic compound having an unsaturated group such as pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethyloltetra
  • a polyfunctional (meth) acrylate mixture such as (meth) acrylate can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, or benzophenone is blended and used.
  • a hard-coat layer is formed by apply
  • the hard coat layer is preferably composed of a resin having a high degree of polymerization in order to achieve both the thinness of the hard coat layer and the scratch resistance.
  • the hard coat layer may contain various additives such as an ultraviolet absorber and an antioxidant. Various additives will be described in detail below.
  • the hard coat layer according to the present invention may contain an additive such as an ultraviolet absorber or an antioxidant, and the ultraviolet absorber or antioxidant disclosed in the [Acrylic layer] column is preferably used.
  • the content of the ultraviolet absorber in the hard coat layer is 0.1 to 20 with respect to 100% by weight of the total composition of the hard coat layer in order to improve the durability while maintaining good adhesion. % By weight is preferable, 0.25 to 15% by weight is more preferable, and 0.5 to 10% by weight is particularly preferable.
  • the content of the antioxidant in the hard coat layer is 0.01 to 3% by weight with respect to 100% by weight of the total composition of the hard coat layer in consideration of the balance between the function of the antioxidant and the bleed out. It is preferably 0.1 to 2% by weight, more preferably 0.3 to 1.5% by weight.
  • known light stabilizers, surfactants, leveling agents, antistatic agents, and the like can be blended in the hard coat layer according to the present invention as necessary.
  • the hard coat layer according to the present invention may be subjected to a surface treatment.
  • a surface treatment for example, corona treatment (JP-A-11-172028), plasma surface treatment, ultraviolet / ozone treatment, surface projection formation (JP-A-2009-226613), surface micromachining treatment, and the like can be mentioned.
  • Formation of hard coat layer As a method for forming the hard coat layer according to the present invention, conventionally known coating methods such as a wire bar coating method, a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the hard coat layer according to the present invention uses the hard coat liquid, for example, when the hard coat liquid to be used is a thermosetting type, the hard coat liquid is coated on a support having an acrylic layer with a wire bar. After drying, the film can be formed by performing heat treatment at 30 to 130 ° C. for 0.5 to 168 hours.
  • the hard coat layer according to the present invention can be formed of an inorganic material such as polysilazane, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, or lanthanum nitride.
  • it can be formed by forming a film by a vacuum film forming method.
  • the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
  • a resin coat layer is preferably provided adjacent to the silver reflective layer.
  • a resin coating layer is further provided below the silver reflection layer between the acrylic layer and the silver reflection layer, or when the silver reflection layer is located below the resin film-like support as viewed from the light incident side. Can be done.
  • the resin coating layer according to the present invention prevents moisture or chemicals in the air from entering the silver reflecting layer and corroding the silver reflecting layer, and further mechanical pressure such as impact and scratching from the outside. Therefore, it has a function of protecting the silver reflection layer.
  • the resin coat layer according to the present invention may have an ultraviolet absorbing function.
  • the resin coat layer according to the present invention may consist of only one layer or a plurality of layers.
  • the thickness of the resin coat layer is preferably 0.01 to 10 ⁇ m, and more preferably 0.05 to 8 ⁇ m.
  • the resin coat layer according to the present invention is preferably mainly composed of a binder resin in order to maintain high adhesion with a silver reflective layer or the like even when installed over a long period of time in an outdoor environment.
  • the binder resin include cellulose ester resins, polyester resins, isocyanate resins, polycarbonate resins, polyarylate resins, polysulfone (including polyethersulfone) resins, polyester resins such as polyethylene terephthalate and polyethylene naphthalate.
  • Polyethylene resin Polypropylene resin, cellophane resin, cellulose diacetate resin, cellulose triacetate resin, cellulose acetate propionate resin, cellulose acetate butyrate resin, polyvinylidene chloride resin, polyvinyl alcohol resin, Ethylene vinyl alcohol resin, syndiotactic polystyrene resin, polycarbonate resin, norbornene resin, polymethylpentene resin
  • Polyether ketone resin, polyether ketone imide resin polyamide resin, fluorine resin, nylon resin, polymethyl methacrylate-based resins, acrylic resin or the like resin.
  • polyester resins, isocyanate resins, and acrylic resins are more preferable.
  • the corrosion inhibitor is added.
  • it may be provided apart from (without adjoining) the silver reflective layer. In such a case, it is preferable to include a silver corrosion inhibitor.
  • an adsorptive group for silver or a silver alloy which is a main constituent material of the silver reflecting layer it is preferable to have.
  • the corrosion inhibitor examples include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, and indazole rings. It is desirable that the compound is selected from at least one of a compound having a compound, a copper chelate compound, a thiourea, a compound having a mercapto group, and a naphthalene compound, or a mixture thereof. Of these, corrosion inhibitors containing nitrogen cyclic compounds are more preferred.
  • the compound such as benzotriazole is an ultraviolet absorber and sometimes serves as a corrosion inhibitor.
  • silicone-modified resin It is also possible to use a silicone-modified resin. It does not specifically limit as a silicone modified resin.
  • the corrosion inhibitor for example, those disclosed in paragraphs “0061” to “0073” of JP2012-232538A are appropriately selected.
  • a conventionally known coating method such as a gravure coating method, a reverse coating method, or a die coating method can be used.
  • anchor layer In the film mirror of the present invention, it is preferable to provide an anchor layer in order to bring the resin film-like support and the silver reflective layer into close contact. Therefore, the anchor layer has an adhesive property that allows the resin film-like support and the silver reflective layer to be in close contact, heat resistance that can withstand heat when the silver reflective layer is formed by a vacuum deposition method, and the silver reflective layer that is inherently high. Smoothness is required to bring out the reflection performance.
  • the resin used for the anchor layer according to the present invention is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness, and polyester resin, acrylic resin, melamine resin, epoxy Resins, polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc., or a mixture of these resins can be used.
  • polyester resins and melamine resins are mixed resins or polyester resins.
  • a mixed resin of a resin and an acrylic resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
  • the thickness of the anchor layer according to the present invention is preferably 0.01 to 3 ⁇ m, and more preferably 0.05 to 2 ⁇ m. By satisfying the thickness range of 0.01 to 3 ⁇ m, it is possible to cover the unevenness on the surface of the resin film-like support while maintaining the adhesiveness, improve the smoothness, and sufficiently cure the anchor layer. As a result, the reflectance of the film mirror can be increased.
  • the anchor layer according to the present invention contains the corrosion inhibitor disclosed in the [resin coat layer] column.
  • a method for forming the anchor layer according to the present invention conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the fill mirror of the present invention can further have an antistatic layer.
  • the antistatic layer according to the present invention has a function of preventing the outermost layer on the sunlight incident side of the film mirror from being charged.
  • Film mirrors have a resin film-like support compared to glass mirrors and the surface is often made of resin, so they are easily charged and easily attract dirt such as sand and dust. . Therefore, sand, dust, etc. adhere and it is mentioned as a problem that reflection efficiency falls.
  • the presence of an antistatic layer in the layer closest to the outermost layer of the film mirror can suppress the charging of the surface of the film mirror, can suppress the adhesion of dirt such as sand and dust, This is preferable because high reflection efficiency can be maintained.
  • the antistatic layer according to the present invention is preferably present through a very thin layer between the layer adjacent to the outermost layer of the film mirror or the outermost layer. Further, any other layer such as an acrylic layer may also serve as the antistatic layer.
  • the thickness of the antistatic layer according to the present invention is preferably 100 nm to 1 ⁇ m. If the thickness of the antistatic layer is 1 ⁇ m or less, good light transmittance can be obtained.
  • a technique for imparting antistatic ability to the antistatic layer there is a technique of reducing the electric resistance value of the antistatic layer by imparting conductivity to the antistatic layer.
  • an antistatic technique a method in which a conductive filler which is a conductive substance is dispersed and contained in an antistatic layer, a method using a conductive polymer, a method in which a metal compound is dispersed or coated on a surface, an organic sulfonic acid And an internal addition method using an anionic compound such as organic phosphoric acid, a method using a surface active type low molecular weight antistatic agent such as polyoxyethylene alkylamine, polyoxyethylene alkenylamine, and glycerin fatty acid ester, carbon There is a method of dispersing conductive fine particles such as black.
  • conductive fillers which are conductive substances
  • conductive filler contained in the antistatic layer there are conductive inorganic fine particles, among which metal fine particles, conductive inorganic oxide fine particles and the like can be used.
  • conductive inorganic oxide fine particles can be preferably used.
  • the electrical resistance value of the antistatic layer if the coating film resistance is largely divided in the first place, it can be divided into particle internal resistance and contact resistance.
  • the internal resistance of the particles is affected by the amount of doping / oxygen defects of different metals and crystallinity.
  • the contact resistance is affected by the particle diameter and shape, the dispersibility of the fine particles in the paint, and the conductivity of the binder resin. Since a film having a relatively high conductivity is considered to have a larger influence of contact resistance than internal resistance of the particle, it is important to form a conductive path by controlling the particle state.
  • the antistatic layer has an antistatic property by containing a conductive filler.
  • a conductive filler contained in the antistatic layer, there are conductive inorganic fine particles, among which metal fine particles, conductive inorganic oxide fine particles and the like can be used.
  • conductive inorganic oxide fine particles can be preferably used.
  • an organic binder or an inorganic binder can be used as a binder for holding a conductive filler.
  • a resin can be used, and examples thereof include acrylic resins, cycloolefin resins, and polycarbonate resins.
  • a hard coat can be used as a binder, and an ultraviolet curable polyfunctional acrylic resin, urethane acrylate, epoxy acrylate, oxetane resin, polyfunctional oxetane resin, and the like can be used.
  • the inorganic binder examples include inorganic oxide binders (may be inorganic oxide binders using a sol-gel method) and tetrafunctional inorganic binders.
  • Preferable examples of the inorganic oxide binder include silicon dioxide, titanium oxide, aluminum oxide, strontium oxide and the like. Particularly preferred is silicon dioxide.
  • Preferred examples of the tetrafunctional inorganic binder include polysilazane (for example, trade name: Aquamica (manufactured by AZ Electronics Co., Ltd.)), siloxane compounds (for example, Colcoat P (manufactured by Colcoat Co., Ltd.)), alkyl silicates and metal alcoholates.
  • a tetrafunctional inorganic binder a sol-gel solution containing tetraethoxysilane as a main raw material and a catalyst added may be used.
  • materials having both organic and inorganic properties include polyorganosiloxane and polysilazane. These materials can be said to be organic binders and inorganic binders.
  • a mixture of an inorganic binder and an organic binder may be used as the binder for the antistatic layer, but the total amount of the binder is preferably an inorganic binder.
  • the binder is an inorganic binder, it is desirable because it has weather resistance to ultraviolet rays and can maintain high reflectivity over a long period even when used outdoors.
  • the adhesion between the antistatic layer and the hard coat layer is good when the binder of the antistatic layer is an inorganic binder.
  • the binder of the antistatic layer is an inorganic binder.
  • inorganic binders are more susceptible to cracking than organic binders, but by providing a hard coat layer as the upper layer of the antistatic layer, cracking prevention, chipping prevention and chipping scattering prevention effects can be obtained, and inorganic cracking is easy. Since a binder can be used without any problem, the film mirror preferably has two layers, an antistatic layer and a hard coat layer.
  • the antistatic layer according to the present invention preferably contains a conductive filler (conductive inorganic fine particles) at 75% or more from the viewpoint of ensuring conductivity, and a ratio of 95% or less from the viewpoint of light transmission. It is preferable to contain.
  • a conductive filler conductive inorganic fine particles
  • the antistatic layer according to the present invention can be formed by a conventionally known coating method such as a gravure coating method, a reverse coating method, or a die coating method.
  • a gas barrier layer may be provided on the light incident side of the silver reflecting layer. It is preferable to provide a gas barrier layer between the acrylic layer and the silver reflective layer.
  • the gas barrier layer according to the present invention is intended to prevent deterioration of humidity, particularly deterioration of the resin film-like support and each component layer supported by the resin film-like support due to high humidity.
  • -It may have a use, and as long as it has the function of preventing deterioration, a gas barrier layer of various modes can be provided.
  • paragraphs “0044” to “0096” of the publicly known international publication number WO2011 / 096151 A1 can be applied.
  • the adhesion layer in order to join the film mirror of this invention to the base material mentioned later, the adhesion layer can be provided.
  • the film mirror may have the layer by a peeling sheet in the reverse side to the sunlight incident side of an adhesion layer.
  • the adhesive layer according to the present invention is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used.
  • the laminating method for joining the adhesive layer and the substrate is not particularly limited. For example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 ⁇ m from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like.
  • a thickness of 1 ⁇ m or more is preferable because a sufficient adhesive effect can be obtained.
  • the thickness is 100 ⁇ m or less, the pressure-sensitive adhesive layer is not too thick and the drying speed is not slowed, which is efficient.
  • the original adhesive strength can be obtained, and no adverse effects such as residual solvent can occur.
  • the film mirror of the present invention may have a release layer (also referred to as a release sheet) on the side opposite to the sunlight incident side of the adhesive layer.
  • a release layer also referred to as a release sheet
  • the film mirror when shipped, it can be shipped with the release sheet attached to the adhesive layer, and the release sheet can be peeled off to expose the adhesive layer and bonded to the substrate.
  • the release sheet according to the present invention is not particularly limited as long as it can provide the protective property of the silver reflective layer.
  • a plastic such as an acrylic film, a polycarbonate film, a polyarylate film, a polyethylene naphthalate film, a polyethylene terephthalate film, and a fluorine film.
  • the thickness of the release sheet according to the present invention is not particularly limited, but is usually preferably in the range of 12 to 250 ⁇ m.
  • the surface roughness Ra of the release layer is preferably 0.01 to 0.1 ⁇ m. Due to the surface roughness of the release layer, the surface of the solar reflective film mirror or the silver reflective layer also becomes rough, so even when using a roll-to-roll system that continuously forms films in the production stage of film mirrors, blocking, etc. Can be prevented.
  • a method for manufacturing a film mirror is provided.
  • the process is characterized by the step of forming the acrylic layer. That is, the step of forming an acrylic layer includes a step of applying and drying an acrylic resin liquid by a roll-to-roll method, and in particular, applying an acrylic resin liquid by a roll-to-roll method and drying, heat or ultraviolet light. It is characterized in that it includes a step of curing by the method.
  • FIG. 1 an example of a film mirror manufacturing method will be described.
  • the anchor layer 2 can be formed on the upper surface of the resin film-like support 1 on the incident light side by a gravure coating method, and the silver reflection layer 3 can be formed on the upper surface by a vacuum deposition method.
  • the resin coat layer 4 can be formed on the upper surface of the silver reflective layer 3 by a gravure coating method.
  • an acrylic layer 5 containing an acrylic resin is formed on the upper surface of the resin coat layer 4.
  • a first step of preparing an acrylic resin liquid as a raw material of the acrylic resin a second step of applying the acrylic resin liquid to the resin coat layer 4 by a roll-to-roll method, and forming a coating film;
  • the acrylic layer 5 can be formed by the third step of curing the coating film. More specifically, the method for forming the acrylic layer 5 disclosed in the column of [Acrylic layer] is referred to.
  • a hard coat layer 6 can be formed on the upper surface of the acrylic layer 5.
  • the film filler according to one embodiment of the present invention can be manufactured, the present invention is not limited to the above-described layer configuration.
  • a solar reflective mirror is provided.
  • the solar reflective mirror has a film mirror and a self-supporting base material (supporting base material), and the film mirror is bonded to the self-supporting base material (supporting base material) via an adhesive layer. Yes.
  • the film mirror is cut into a predetermined size (for example, a size for attaching to a support base material).
  • the film mirror of the present invention is preferably attached to a self-supporting substrate and used as a solar reflective mirror.
  • self-supporting substrate means supporting the opposite edge portions when cut to a size that can be used as a substrate for a solar reflective mirror. This means that the substrate has rigidity enough to support the substrate.
  • the base material of the solar reflective mirror has a self-supporting property, so that it is easy to handle when installing the solar reflective mirror, and the holding member for holding the solar reflective mirror has a simple configuration. Therefore, it is possible to reduce the weight of the reflection device, and it is possible to suppress power consumption during solar tracking.
  • the base material according to the present invention may be a single layer or a shape in which a plurality of layers are laminated. Moreover, a single structure may be sufficient and it may be divided
  • the shape of the base material according to the present invention preferably has a concave shape or can be a concave shape. Therefore, a base material that is variable from a flat shape to a concave shape may be used, or a base material that is fixed to a concave shape may be used.
  • the base material that can be changed into the concave shape can adjust the curvature of the film mirror that is bonded by adjusting the curvature of the base material. It is preferable because a rate can be obtained.
  • the base material having the concave shape fixed is preferable from the viewpoint of adjustment cost because it is not necessary to adjust the curvature.
  • the base material according to the present invention includes a steel plate, a copper plate, an aluminum plate, an aluminum-plated steel plate, an aluminum alloy-plated steel plate, a copper-plated steel plate, a tin-plated steel plate, a chrome-plated steel plate, a stainless steel plate, and a veneer plate (preferably May be a wooden board such as a waterproof board), a fiber reinforced plastic (FRP) board, a resin board, and the like.
  • a metal plate from the viewpoint of high thermal conductivity. More preferably, it is a plated steel plate, stainless steel plate, aluminum plate or the like having not only high thermal conductivity but also good corrosion resistance. Most preferably, a steel plate combining a resin and a metal plate is used.
  • the base material when most of the base material is made of resin, it is preferable to use a resin material having a hollow structure. This is because when the substrate is made of a resin material that does not have a hollow structure, the thickness required to obtain rigidity sufficient to provide self-supporting properties increases, and as a result, the substrate mass increases. However, when the layer is made of a resin material having a hollow structure, it is possible to reduce the weight while maintaining the self-supporting property. In addition, since a function as a heat insulating material due to the hollow structure also occurs, it is possible to suppress the temperature change of the surface opposite to the light incident side from being transmitted to the film mirror, to prevent condensation and to suppress deterioration due to heat It becomes.
  • a layer having a resin material having a hollow structure it is preferable to provide a resin film having a smooth surface as a surface layer and to use a resin material having a hollow structure as an intermediate layer from the viewpoint of increasing the reflection efficiency of the film mirror. .
  • various conventionally known resin films can be used.
  • polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable.
  • a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
  • the thickness of the resin film is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally 10 to 250 ⁇ m, preferably 20 to 200 ⁇ m.
  • a cellular structure made of a foamed resin a three-dimensional structure having a wall surface made of a resin material (such as a honeycomb structure), a resin material to which hollow fine particles are added, or the like can be used.
  • the cellular structure of the foamed resin refers to a material in which a gas is finely dispersed in a resin material and formed into a foamed or porous shape, and a known foamed resin material can be used as the material.
  • Polyurethane, polyethylene, polystyrene and the like are preferably used.
  • the honeycomb structure represents a general three-dimensional structure composed of a plurality of small spaces surrounded by side walls.
  • the resin material constituting the wall surface is a homopolymer or copolymer of olefins such as ethylene, propylene, butene, isoprene pentene, and methylpentene.
  • Acrylic derivatives such as polyolefin (for example, polypropylene, high-density polyethylene), polyamide, polystyrene, polyvinyl chloride, polyacrylonitrile, ethylene-ethyl acrylate copolymer, vinyl acetate copolymers such as polycarbonate, ethylene-vinyl acetate copolymer
  • Thermoplastic resins such as ionomers, ABS resins, polyolefin oxides and polyacetals are preferably used. In addition, these may be used individually by 1 type and may be used in mixture of 2 or more types.
  • thermoplastic resins olefin-based resins or resins mainly composed of olefin-based resins
  • polypropylene-based resins or resins based mainly on polypropylene-based resins are preferable because of excellent balance between mechanical strength and moldability.
  • the resin material may contain an additive.
  • the additive include silica, mica, talc, calcium carbonate, glass fiber, carbon fiber, and other inorganic fillers, plasticizers, stabilizers, colorants, charging agents.
  • An inhibitor, a flame retardant, a foaming agent, etc. are mentioned.
  • a solar power generation reflector is provided.
  • the solar power generation reflecting device of the present invention has a solar reflective mirror and a holding member for holding the solar reflective mirror.
  • a cylindrical member having fluid inside is provided as a heat collecting part in the vicinity of the film mirror, and the internal fluid is heated by reflecting sunlight to the cylindrical member.
  • a form generally referred to as a trough type, which generates heat by converting thermal energy, can be cited as one form.
  • mold is also mentioned as another form.
  • the tower type configuration has at least one heat collecting part and at least one solar power generation reflecting device for reflecting sunlight and irradiating the heat collecting part, and the heat collected in the heat collecting part. There is one that heats a liquid by using and rotates a turbine to generate electricity.
  • a plurality of solar power generation reflecting devices are arranged around the heat collecting section.
  • a plurality of solar power generation reflecting devices are arranged in a concentric circle shape or a concentric fan shape.
  • sunlight is reflected to the collector mirror by the sunlight reflecting mirrors installed around the support tower, and then reflected further by the collector mirror and sent to the heat collector and sent to the heat exchange facility. It is done.
  • the present invention can be used for both trough type and tower type. Of course, it can be used for various other types of solar thermal power generation.
  • the solar power generation reflection device includes a holding member that holds a solar light reflecting mirror.
  • the holding member preferably holds the solar reflective mirror in a state where the sun can be tracked.
  • maintains several places with a rod-shaped holding member is preferable so that the mirror for sunlight reflection can hold
  • the holding member preferably has a configuration for holding the sunlight reflecting mirror in a state where the sun can be tracked.
  • the holding member may be driven manually or a separate driving device may be provided to automatically It is good also as a structure which tracks.
  • UV curable acrylic resin liquid > 0.003% by weight of photoinitiator (trade name: Irgacure 184, manufactured by BASF) was uniformly added to 100% by weight of the total amount of raw material monomers consisting of 85% by weight of 2-ethylhexyl acrylate and 15% by weight of acrylic acid. .
  • the mixture was charged into a 300 ml Pyrex (registered trademark) separable flask equipped with a stirring blade, a cooling pipe, a nitrogen gas introduction pipe, and a thermometer, and nitrogen gas was introduced into the container for 20 minutes to air in the container. Was replaced with nitrogen gas, and the mixture was heated to 80 ° C. in a nitrogen stream.
  • the obtained ultraviolet curable acrylic resin liquid did not contain a solvent and had a viscosity of 320 poise. Moreover, about the partial polymer contained in this, the weight average molecular weight measured by GPC was 750,000, and the number average molecular weight was 230,000.
  • thermosetting acrylic resin > V-70 (10 hours half-life 30 ° C, manufactured by Wako Pure Chemical Industries, Ltd.) as a low-temperature pyrolytic polymerization initiator for 100% by weight of the total amount of raw material monomers consisting of 85% by weight of 2-ethylhexyl acrylate and 15% by weight of acrylic acid 0.5% by weight, V-40 (10-hour half-life 88 ° C., NOF Corporation) 0.5% by weight as a high-temperature pyrolytic polymerization initiator, cross-linking agent (trade name: Coronate HX, Polyurethane Industry ( 0.05% by weight) and 30% by weight of filler (PE particles having an average particle size of 20 ⁇ m) were added. The mixture was mixed at 30 ° C. for 5 hours. Thereafter, defoaming treatment was performed to prepare a thermosetting acrylic resin liquid.
  • V-70 hours half-life 30 ° C, manufactured by Wako Pure Chemical Industries, Ltd.
  • V-40 10-hour half-life 88
  • thermosetting acrylic resin liquid did not contain a solvent, and its viscosity was 1500 centipoise. Moreover, about the partial polymer contained in this, the weight average molecular weight measured by GPC was 500,000, and the number average molecular weight was 190,000.
  • Example 1 As the resin film-like support 1, a biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 ⁇ m) was used. Polyester resin (Polyester SP-181, manufactured by Nippon Gosei Kagaku) and TDI isocyanate (2,4-tolylene diisocyanate, manufactured by Tokyo Chemical Industry Co., Ltd.) using a gravure coater on one side of the polyester film roll. Were mixed at a resin solid content ratio of 10: 2, and methyl ethyl ketone was added as a solvent so that the resin solid content concentration was 20% by weight.
  • glycol dimercaptoacetate manufactured by Wako Pure Chemical Industries, Ltd.
  • the mixture was coated by a gravure coating method to form an anchor layer 2 having a thickness of 60 nm.
  • a silver reflection layer 3 made of silver was formed on the anchor layer 2 by a vacuum deposition method so as to have a thickness of 80 nm.
  • a resin having a thickness of 60 nm is formed in the same manner except that TINUVIN 234 (manufactured by BASF) is used instead of glycol dimercaptoacetate as a corrosion inhibitor in forming the anchor layer 2 on the silver reflective layer 3. Coat layer 4 was formed.
  • the ultraviolet curable acrylic resin liquid is applied onto the resin coat layer 4 using a gravure coater so that the thickness after curing is 50 ⁇ m, and after drying, the illuminance is 100 mW / cm 2 , the light intensity
  • the acrylic layer 5 was formed by irradiating 150 mJ / cm ⁇ 2 > of ultraviolet rays and performing a curing treatment.
  • a hard coat solution Perma-New TM 6000 (manufactured by California Hardcoating Company) is coated on the acrylic layer 5 with a gravure coater, dried at 80 ° C. for 45 seconds, and then heat treated at 70 ° C. for 48 hours.
  • a hard coat layer 6 having a thickness of 3 ⁇ m was formed, and a film mirror 1 was produced. All these operations were created by the roll-to-roll method.
  • Example 2 A film mirror 2 was produced in the same manner as in Example 1 except that the acrylic layer 5 was formed by the following operation.
  • thermosetting acrylic resin liquid is applied onto the resin coat layer 4 using an applicator so that the cured thickness is 50 ⁇ m, dried at 80 ° C. for 60 seconds, and then at 50 ° C. for 1 hour.
  • the acrylic layer 5 was formed by performing a curing process.
  • Example 3 A film mirror 3 was produced in the same manner as in Example 1 except that 10% by weight of methyl ethyl ketone was added to the total amount of raw material monomers of 100% by weight in the ultraviolet curable acrylic resin liquid.
  • Example 4 A film mirror 4 was produced in the same manner as in Example 2 except that 20% by weight of methyl ethyl ketone was added to 100% by weight of the total amount of raw material monomers in the thermosetting acrylic resin liquid.
  • Example 5 Except that the UV curable acrylic resin liquid was mixed with 2.5% by weight of a UV absorber (trade name: Tinuvin 477, manufactured by BASF Japan) with respect to 100% by weight of the total amount of raw material monomers. In the same manner as in Example 1, a film mirror 5 was produced.
  • a UV absorber trade name: Tinuvin 477, manufactured by BASF Japan
  • Example 6 A film mirror 6 was produced in the same manner as in Example 5 except that the blending amount of the ultraviolet absorber was changed to 5% by weight.
  • Example 7 ⁇ Example 7> Implemented except that the ultraviolet curable acrylic resin liquid was further blended with an antioxidant (trade name: ADK STAB LA52, manufactured by ADEKA) 1% by weight based on 100% by weight of the total amount of raw material monomers. In the same manner as in Example 6, a film mirror 7 was produced.
  • an antioxidant trade name: ADK STAB LA52, manufactured by ADEKA
  • Example 8> A film mirror 8 was produced in the same manner as in Example 7 except that the thickness of the acrylic layer 5 was 75 ⁇ m.
  • Example 9 A film mirror 9 was produced in the same manner as in Example 8 except that the thickness of the acrylic layer 5 was 100 ⁇ m.
  • Example 10 A film mirror 10 was produced in the same manner as in Example 8, except that the blending amount of the ultraviolet absorber was 8% by weight.
  • Example 11 First, the resin coating layer 4 was formed in the same manner as in Example 1. Next, the resin film-like support 1 was directed to the light incident side, and the acrylic resin layer 5 and the hard coat layer 6 were sequentially formed on the upper surface in the same manner as in Example 1 to produce a film mirror 11.
  • Example 12 First, the resin coating layer 4 was formed in the same manner as in Example 1. Next, the resin film-like support 1 is directed to the light incident side, and the entire resin solid content of an acrylic resin resin liquid (trade name: BR-95, manufactured by Mitsubishi Rayon Co., Ltd., resin solid content concentration: 25% by weight) is formed on the upper surface. 100% by weight, 5% by weight of UV absorber (trade name: Tinuvin 477, manufactured by BASF Japan) and 1% by weight of antioxidant (trade name: ADK STAB LA52, manufactured by ADEKA) Further, a coating solution to which 75% by weight of methyl ethyl ketone was added was applied and dried at 85 ° C. for 5 minutes to form an acrylic layer 5 having a thickness of 30 ⁇ m. Layer 6 was formed, and film mirror 12 was produced.
  • an acrylic resin resin liquid trade name: BR-95, manufactured by Mitsubishi Rayon Co., Ltd., resin solid content concentration: 25% by weight
  • 100% by weight 5% by weight of UV absorber (trade name: Tin
  • a film mirror 13 was produced in the same manner as in Example 1 except that the acrylic layer 5a was formed by the following operation instead of the acrylic layer 5.
  • An acrylic resin liquid (trade name: BR-95, manufactured by Mitsubishi Rayon Co., Ltd., resin solid content concentration: 25% by weight) was prepared, applied to a thickness of 120 ⁇ m, and dried to form an acrylic layer 5a. .
  • UV absorbers (trade names: Tinuvin 477, BASF Japan) with respect to 100% by weight of the total resin solid content of the acrylic resin liquid (trade name: BR-95, manufactured by Mitsubishi Rayon Co., Ltd.) in the acrylic resin liquid of Comparative Example 2.
  • Film mirror 15 was produced in the same manner as Comparative Example 2 except that 5% by weight (made by Co., Ltd.) and 1% by weight of antioxidant (trade name: ADK STAB LA52, made by ADEKA) were blended.
  • an adhesive TBS-730 (Dainippon Ink Co., Ltd.) is coated on the resin coat layer 4 with a wire bar so as to have a thickness of 5 ⁇ m.
  • Acrylic resin film S001 (manufactured by Sumitomo Chemical Co., Ltd.) was bonded by a roll method to form acrylic layer 5b.
  • a hard coat layer 6 was formed on the acrylic layer 5b in the same manner as in Example 1 to produce a film mirror 17.
  • a hard coat layer 6 was formed in the same manner as in Example 1 on the opposite side of the surface of the acrylic layer 5b having silver and copper, and a film mirror 18 was produced.
  • the production levels of the film mirrors 1 to 18 produced above are shown in Table 1.
  • a schematic side view of the layer configuration of the film mirrors 1 to 10 is shown in FIG. 1
  • a schematic side view of the film mirrors 11 and 12 is shown in FIG. 5
  • a schematic side view of the film mirrors 13 to 16 is shown in FIG. 2
  • a schematic side view of the film mirror 17 is shown in FIG. 3
  • a schematic side view of the film mirror 18 is shown in FIG. 4.
  • the formed acrylic layer is peeled off from the glass to prepare an acrylic resin film, and the weight change before and after being left in a thermostatic bath at 80 ° C. for 200 hours is confirmed.
  • the weight change is the residual solvent in each acrylic layer. Was measured as the amount of.
  • a regular reflectance was measured with an incident angle of incident light of 5 ° with respect to the normal of the reflective surface using a dedicated jig. Evaluation was similarly measured as an average reflectance from 400 nm to 2500 nm.
  • UV irradiation test Each of the film mirrors was irradiated with 150 mW / ⁇ of UV light in an environment of 65 ° C. for 600 hours using an i-super UV tester (Iwasaki Electric Co., Ltd.), and the UV resistance of each film mirror was improved. evaluated.
  • the film mirror produced according to the present invention maintains high reflectance without being colored in the silver reflective layer even after production or after performing high-temperature and long-time ultraviolet irradiation or wet heat test. It was shown that. Furthermore, it has been found that it has excellent adhesion. That is, the film mirror of the present invention was found to be a film mirror having both excellent smoothness and durability and high reflectivity.
  • the acrylic layer 5a of Comparative Examples 1 to 3 is formed by dissolving an acrylic resin with a solvent and applying and drying it, as shown in Table 2, the solvent penetrates into the silver layer and the silver layer is purple or It was confirmed that the color was pale purple, and further, after the ultraviolet irradiation test, the color became stronger, and as a result, the reflectance was greatly reduced.
  • the film mirror provided by the present invention has high smoothness, durability, reflectance, and adhesion.

Abstract

Provided are: a film mirror which has excellent smoothness and excellent durability at the same time, while having high reflectance; and a reflector for solar thermal power generation. A film mirror which comprises a resin film-like supporting body, a silver reflective layer and an acrylic layer that is formed by coating on the light incident surface of the silver reflective layer, and which is characterized in that the acrylic layer has a thickness of 10-100 μm and the amount of a solvent remaining in the acrylic layer is 0.1% by weight or less relative to the total weight of the acrylic layer.

Description

フィルムミラーおよび太陽熱発電用反射装置Reflector for film mirror and solar power generation
 本発明は、フィルムミラーおよび太陽熱発電用反射装置に関する。 The present invention relates to a film mirror and a solar power generation reflector.
 石油エネルギーなどの枯渇性エネルギーの代わりに、再生可能なエネルギーとして太陽エネルギーを利用して、安全かつ地球に優しい発電システムの開発が注目されている。特に、サンベルト地帯と呼ばれている赤道を挟んだ地域には、広大な砂漠が広がっており、ここに降り注ぐ太陽エネルギーは、正に無尽蔵であり、発電には適していると言われている。また、アラビア半島や北アフリカの砂漠のわずか数パーセントの面積を使えば、太陽エネルギーを有効に活用し、全人類の消費エネルギーを全て賄うことができるとも考えられている。 The development of a safe and earth-friendly power generation system that uses solar energy as renewable energy instead of depleted energy such as petroleum energy has attracted attention. In particular, there is a vast desert spread across the equator, called the sun belt, and the solar energy that falls on it is said to be inexhaustible and suitable for power generation. . It is also believed that using only a few percent of the Arabian peninsula and the deserts of North Africa can effectively utilize solar energy and cover all the energy consumed by all mankind.
 一方、太陽エネルギーは、非常に有力な代替エネルギーであるものの、活用する際には、地上での太陽エネルギー密度が低い点、または、太陽エネルギーの貯蔵および搬送が困難である点などが、課題となる。前記太陽エネルギー密度が低いという課題に対して、集光装置を用いて太陽光を集める太陽熱発電システムが提案されている。従来、当該集光装置には、ガラス製ミラーが用いられてきたが、ガラス製ミラーでは、質量が大きい、体積が大きい、輸送コストが掛かる、設置が難しい、割れやすいなどの課題があった。 On the other hand, solar energy is a very powerful alternative energy. However, when it is used, there are problems such as low solar energy density on the ground or difficulty in storing and transporting solar energy. Become. In response to the problem that the solar energy density is low, a solar thermal power generation system that collects sunlight using a condensing device has been proposed. Conventionally, a glass mirror has been used for the light collecting device. However, the glass mirror has problems such as large mass, large volume, high transportation cost, difficult installation, and easy breakage.
 そこで、ガラス製ミラーの代わりに、樹脂製ミラーが提案された(例えば、特許文献1(特表2009-520174号公報(PCT/US2006/062046に相当))および非特許文献1(「2008 Solar Annual Review Meeting」 Susannah Clear Bob Messner3M Energy Markets))。特許文献1(特表2009-520174号公報(PCT/US2006/062046に相当))では、アクリルフィルムが接着剤層を介してポリマーフィルム付の銀層に貼合された銀鏡構造物が開示されている。また、非特許文献1(「2008 Solar Annual Review Meeting」 Susannah Clear Bob Messner3M Energy Markets)では、アクリルフィルムの裏面に直接銀層が形成された太陽熱発電用フィルムミラーが開示されている。これらのフィルムミラーは、軽量化ができて、柔軟性もあり、製造コストを抑え、大面積化・大量生産することができるという利点がある。 Therefore, resin mirrors have been proposed instead of glass mirrors (for example, Patent Document 1 (Japanese Patent Publication No. 2009-520174 (corresponding to PCT / US2006 / 062046)) and Non-Patent Document 1 (“2008 Solar Annual”). Review Meeting "Susannah Clear Bob Messenger 3M Energy Markets)). Patent Document 1 (Japanese Patent Publication No. 2009-520174 (corresponding to PCT / US2006 / 062046)) discloses a silver mirror structure in which an acrylic film is bonded to a silver layer with a polymer film via an adhesive layer. Yes. Non-Patent Document 1 (“2008 Solar Annual Review Meeting”, Susannah Clear Bob Messenger 3M Energy Markets) discloses a film mirror for solar power generation in which a silver layer is directly formed on the back surface of an acrylic film. These film mirrors are advantageous in that they can be reduced in weight, have flexibility, can be manufactured at low cost, and can be manufactured in large areas and in large quantities.
 しかしながら、アクリルフィルムは、通常、溶融押出方式により、熱で溶かしたアクリル樹脂を用いて製膜されるため、工程制約上、その表面に微小な凹凸が発生してしまうという表面の平滑性に課題が残されている。特に、フィルムミラーとして用いられる場合においては、非常に遠方に集光するため、表面に微小な凹凸が存在するだけでも、集光性能に悪影響を与えてしまう課題がある。また、非特許文献1(「2008 Solar Annual Review Meeting」 Susannah Clear Bob Messner3M Energy Markets)のように、アクリルフィルムの裏面に銀が形成される構成では、アクリルフィルムのみを基材として用いているため、熱や水分による膨張に弱く、例えば砂漠のような過酷な環境に長期間放置されると、フィルム自体の劣化速度が速く、耐久性においても課題が残されている。そのため、優れた平滑性および耐久性を併せ持つフィルムミラーが必要とされている。 However, an acrylic film is usually formed by using a melt-extruded acrylic resin that is melted by heat. Therefore, due to process restrictions, there is a problem with the smoothness of the surface that causes minute irregularities on the surface. Is left. In particular, when it is used as a film mirror, the light is condensed very far away, so that there is a problem that the light collecting performance is adversely affected even if minute irregularities exist on the surface. In addition, in the configuration in which silver is formed on the back surface of the acrylic film as in Non-Patent Document 1 (“2008 Solar Annual Review Meeting” Susannah Clear Bob Messenger 3M Energy Markets), only the acrylic film is used as the base material. When the film itself is weak against expansion due to heat and moisture and left in a harsh environment such as a desert for a long period of time, the deterioration rate of the film itself is high, and there is still a problem in durability. Therefore, a film mirror having both excellent smoothness and durability is required.
 そこで、上記課題に対して、フィルムミラーを製造する際に、溶剤で溶かしたアクリル樹脂を塗布方式によりアクリル層を形成することで、優れた平滑性を持つフィルムミラーが開発された。ところが、当該フィルムミラーにおいて、以下の問題が生じた:溶剤で溶かしたアクリル系樹脂液を塗布する際に、その溶剤またはその溶剤に溶かしたアクリル系樹脂液中の添加剤などが、銀層まで到達し、銀の変色または着色を引き起こす恐れがある;また、乾燥工程において、乾燥不十分により、アクリルフィルム中に溶剤が残り、フィルムにヒビやクラックの発生起因となってしまう恐れがある;さらに、溶剤が揮発することにより、アクリル層中に隙間が生じ、その上にハードコート層を形成する場合では、アクリル層およびハードコート層に用いられる樹脂同士の相互作用が弱くなり、良好な密着性が得られない恐れがある。 In view of the above problems, a film mirror having excellent smoothness has been developed by forming an acrylic layer by applying an acrylic resin dissolved in a solvent when a film mirror is manufactured. However, in the film mirror, the following problems occurred: When an acrylic resin solution dissolved in a solvent was applied, the solvent or the additive in the acrylic resin solution dissolved in the solvent was transferred to the silver layer. May cause discoloration or coloring of silver; and in the drying process, insufficient drying may cause a solvent to remain in the acrylic film, which may cause cracks and cracks in the film; When the solvent is volatilized, a gap is formed in the acrylic layer, and when a hard coat layer is formed thereon, the interaction between the resins used in the acrylic layer and the hard coat layer is weakened, and good adhesion is achieved. May not be obtained.
 そこで本発明は、上記課題を鑑みなされたものであり、その目的は、優れた平滑性および耐久性を併せ持つ、高反射率を有するフィルムミラーおよび太陽熱発電用反射装置を提供することにある。 Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a film mirror and a solar power generation reflecting device having high reflectivity, which have excellent smoothness and durability.
 本発明の上記目的を、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 樹脂フィルム状支持体に、銀反射層と、前記銀反射層の光入射側に塗布方式により形成されたアクリル樹脂を含むアクリル層と、を含むフィルムミラーであって、
 前記アクリル層の厚さが20~100μmであり、かつ、前記アクリル層に残存される溶剤の量が、当該アクリル層の全重量に対して0.1重量%以下であることを特徴とする、フィルムミラー。
A resin film-like support, a film mirror including a silver reflection layer, and an acrylic layer including an acrylic resin formed by a coating method on a light incident side of the silver reflection layer,
The acrylic layer has a thickness of 20 to 100 μm, and the amount of the solvent remaining in the acrylic layer is 0.1% by weight or less based on the total weight of the acrylic layer, Film mirror.
本発明の実施例1~10によるフィルムミラーの層構成を示す概略側面図である。1 is a schematic side view showing a layer configuration of a film mirror according to Examples 1 to 10 of the present invention. FIG. 比較例1~4によるフィルムミラーの層構成を示す概略側面図である。FIG. 5 is a schematic side view showing a layer configuration of a film mirror according to Comparative Examples 1 to 4. 比較例5によるフィルムミラーの層構成を示す概略側面図である。10 is a schematic side view showing a layer configuration of a film mirror according to Comparative Example 5. FIG. 比較例6によるフィルムミラーの層構成を示す概略側面図である。It is a schematic side view which shows the layer structure of the film mirror by the comparative example 6. 本発明の実施例11および12によるフィルムミラーの層構成を示す概略側面図である。It is a schematic side view which shows the layer structure of the film mirror by Example 11 and 12 of this invention.
 以下、本発明を実施するための形態について詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail.
 本発明の一形態によれば、樹脂フィルム状支持体に、銀反射層と、前記銀反射層の光入射側に塗布方式により形成されたアクリル樹脂を含むアクリル層と、を含むフィルムミラーが提供される。この際、前記アクリル層の厚さが20~100μmであり、かつ、前記アクリル層に残存される溶剤の量が、当該アクリル層の全重量に対して0.1重量%以下である点に特徴を有する。本発明によれば、優れた平滑性および耐久性を併せ持つ、高反射率を有するフィルムミラーおよび太陽熱発電用反射装置を提供することできる。 According to an aspect of the present invention, there is provided a film mirror including a silver reflective layer and an acrylic layer containing an acrylic resin formed by a coating method on a light incident side of the silver reflective layer on a resin film-like support. Is done. At this time, the thickness of the acrylic layer is 20 to 100 μm, and the amount of the solvent remaining in the acrylic layer is 0.1% by weight or less with respect to the total weight of the acrylic layer. Have ADVANTAGE OF THE INVENTION According to this invention, the film mirror which has the outstanding smoothness and durability, and has a high reflectance, and the solar power generation reflective apparatus can be provided.
 本発明のフィルムミラーは、樹脂フィルム状支持体(例えば、PET基材)上に銀反射層が形成されるため、耐久性に優れる。また、塗布方式により、前記銀反射層の光入射側にアクリル層を形成しているため、表面に良好な平滑性を有するフィルムミラーを実現することができる。 The film mirror of the present invention is excellent in durability because a silver reflective layer is formed on a resin film-like support (for example, a PET substrate). Moreover, since the acrylic layer is formed on the light incident side of the silver reflection layer by the coating method, a film mirror having good smoothness on the surface can be realized.
 さらに、前記アクリル層に残存される溶剤の量が当該アクリル層の全重量に対して0.1重量%以下であれば、残溶剤によって生じる種々不都合な問題も解決することができて、耐久性に優れるフィルムミラーを実現することができる。すなわち、アクリル層を形成する際に使用する溶剤の量を一定量以下に抑えることにより、使用される溶剤または当該溶剤に溶解された添加剤などの成分が銀反射層まで侵入することを抑えることができ、銀の変色または着色を防ぐことができる。また、アクリル層の乾燥不十分によるフィルムミラーのヒビ・クラックの発生が抑えられ、残溶剤の揮発によるアクリル層の隙間発生も抑えられる。 Furthermore, if the amount of the solvent remaining in the acrylic layer is 0.1% by weight or less based on the total weight of the acrylic layer, various disadvantageous problems caused by the residual solvent can be solved, and durability It is possible to realize a film mirror that is superior to the above. That is, by suppressing the amount of the solvent used when forming the acrylic layer below a certain amount, it is possible to prevent the solvent used or components such as additives dissolved in the solvent from entering the silver reflective layer. Can prevent discoloration or coloring of silver. In addition, the occurrence of cracks and cracks in the film mirror due to insufficient drying of the acrylic layer is suppressed, and the generation of gaps in the acrylic layer due to volatilization of the residual solvent is also suppressed.
 以下、本発明に係るフィルムミラーの詳細について説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。 Hereinafter, the details of the film mirror according to the present invention will be described. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.
 <フィルムミラー>
 以下、添付した図1を参照しながら、本発明のフィルムミラーの実施形態を説明する。なお、図面の説明において、同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
<Film mirror>
Hereinafter, an embodiment of a film mirror of the present invention will be described with reference to FIG. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 本発明のフィルムミラーは、樹脂フィルム状支持体1と、銀反射層3と、アクリル層5と、を少なくとも有する。また、アクリル層5は、アクリル樹脂を含み、樹脂フィルム状支持体1及び銀反射層3よりも光入射側に設けられていれば、樹脂フィルム状支持体1と銀反射層3との積層順は特に制限されず、例えば光入射側から順にアクリル層5、銀反射層3、および樹脂フィルム状支持体1で積層されてもよく、光入射側から順にアクリル層5、樹脂フィルム状支持体1、および銀反射層3で積層されてもよい。さらに、樹脂フィルム状支持体1、銀反射層3、およびアクリル層5において、任意の層間または層の外側面に他の層を有していてもよい。すなわち、アクリル層5、銀反射層3および樹脂フィルム状支持体1の間に他の層を介していてもよく、それぞれの層が隣接していてもよく、またはアクリル層5の上にもしくは樹脂フィルム状支持体のアクリル層と反対側の面にさらに別の層を有していてもよく、例えば、アクリル層5の上にハードコート層6を有していてもよく、樹脂フィルム状支持体のアクリル層と反対側の面に粘着層(図示せず)や剥離層(図示せず)などを有してもよい。他の層を有する場合の好ましい例として、光入射側から順に、ハードコート層6、アクリル層5、樹脂コート層4、銀反射層3、アンカー層2、および樹脂フィルム状支持体1で積層されるフィルムミラー(図1)、または光入射側から順に、ハードコート層6、アクリル層5、樹脂フィルム状支持体1、アンカー層2、銀反射層3、および樹脂コート層4で積層されるフィルムミラー(図5)などが挙げられる。また、前記いずれの層の間に接着層(図示せず)を設けることもできる。なお、前記の各層として、単一層で設けてもよく、複数層で設けてもよく、またそれぞれの他の層が隣接して設けてもよい。 The film mirror of the present invention has at least a resin film-like support 1, a silver reflecting layer 3, and an acrylic layer 5. The acrylic layer 5 includes an acrylic resin, and if the acrylic film 5 is provided on the light incident side with respect to the resin film-like support 1 and the silver reflective layer 3, the stacking order of the resin film-like support 1 and the silver reflective layer 3. Is not particularly limited, and may be laminated with, for example, the acrylic layer 5, the silver reflecting layer 3, and the resin film-like support 1 in order from the light incident side, and the acrylic layer 5 and the resin film-like support 1 in this order from the light incident side. , And a silver reflective layer 3. Furthermore, in the resin film-like support 1, the silver reflection layer 3, and the acrylic layer 5, other layers may be provided on an arbitrary interlayer or an outer surface of the layer. That is, other layers may be interposed between the acrylic layer 5, the silver reflective layer 3, and the resin film-like support 1, and the respective layers may be adjacent to each other, or on the acrylic layer 5 or on the resin The surface of the film-like support opposite to the acrylic layer may have another layer, for example, the hard coat layer 6 may be provided on the acrylic layer 5, and the resin film-like support. An adhesive layer (not shown), a release layer (not shown), or the like may be provided on the surface opposite to the acrylic layer. As a preferable example in the case of having other layers, the hard coat layer 6, the acrylic layer 5, the resin coat layer 4, the silver reflective layer 3, the anchor layer 2, and the resin film-like support 1 are sequentially laminated from the light incident side. Film mirror (FIG. 1), or a film laminated with a hard coat layer 6, an acrylic layer 5, a resin film support 1, an anchor layer 2, a silver reflective layer 3, and a resin coat layer 4 in this order from the light incident side A mirror (FIG. 5) and the like can be mentioned. An adhesive layer (not shown) can be provided between any of the above layers. Note that each of the layers may be provided as a single layer, may be provided as a plurality of layers, or other layers may be provided adjacent to each other.
 フィルムミラーの厚さは、特に制限されず、好ましくは20~600μmであり、より好ましくは80~300μmであり、よりさらに好ましくは80~200μmであり、もっとも好ましくは80~170μmである。フィルムミラーの厚さを20μm以上にすることにより、フィルムミラーを支持する基材などに接合させた時に、ミラーが撓むことなく、良好な反射率を得やすくなる観点から好ましい。また、フィルムミラーの厚さを600μm以下にすることにより、取り扱い性が良好になる観点から好ましい。また、本発明のフィルムミラーは、後述する構成材料および前記20~600μmの厚さ範囲からは、非常に軽量で柔軟性があり、製造コストが抑えられ大面積化・大量生産することができる。 The thickness of the film mirror is not particularly limited and is preferably 20 to 600 μm, more preferably 80 to 300 μm, still more preferably 80 to 200 μm, and most preferably 80 to 170 μm. By making the thickness of the film mirror 20 μm or more, it is preferable from the viewpoint that it is easy to obtain a good reflectance without bending the mirror when bonded to a base material that supports the film mirror. Moreover, it is preferable from a viewpoint that a handleability becomes favorable by making the thickness of a film mirror into 600 micrometers or less. In addition, the film mirror of the present invention is very lightweight and flexible from the constituent materials described later and the thickness range of 20 to 600 μm, and can be manufactured in a large area and mass-produced at a low manufacturing cost.
 なお、本明細書において、各層の厚さ(「膜厚」とも称する)は、以下のように求められる。すなわち、層の厚さが1μm以上である場合において、マイクロメーター(株式会社ミツトヨ製)を用いて測定することにより求められる。また、層の厚さが1μm未満である場合において、光干渉式膜厚計(X-MAC社ST2000 DLXn)を用いて測定することにより求められる。また、各層の厚さは、特別な記載がない限り、乾燥膜厚を指す。 In this specification, the thickness of each layer (also referred to as “film thickness”) is obtained as follows. That is, when the thickness of the layer is 1 μm or more, it is obtained by measuring using a micrometer (manufactured by Mitutoyo Corporation). Further, when the thickness of the layer is less than 1 μm, it is obtained by measuring using an optical interference type film thickness meter (ST2000 DLXn manufactured by X-MAC). Moreover, the thickness of each layer points out a dry film thickness unless there is special description.
 本発明において、フィルムミラーの平滑性の尺度としては、その表面粗さRaが用いられる。本発明のフィルムミラーの表面粗さRaは、特に制限されず、フィルムミラーを連続的に製膜することが可能なロールトゥーロール方式を用いて製造する際に、その表面粗さによりブロッキングなどの貼り付きを防止する観点から3nm以上であることが好ましく、また太陽光の散乱を抑える観点から50nm以下であることが好ましい。なお、本明細書において、表面粗さRaは、三次元測定装置NH-3SP(三鷹光器株式会社製)により測定することができ、測定条件は、測定範囲を2mmとし、測定ピッチを2μmとし、対物レンズを100×とし、カットオフ値は0.250mmである。 In the present invention, the surface roughness Ra is used as a measure of the smoothness of the film mirror. The surface roughness Ra of the film mirror of the present invention is not particularly limited, and when the film mirror is produced using a roll-to-roll method capable of continuously forming a film mirror, the surface roughness such as blocking may be caused. From the viewpoint of preventing sticking, it is preferably 3 nm or more, and from the viewpoint of suppressing sunlight scattering, it is preferably 50 nm or less. In this specification, the surface roughness Ra can be measured by a three-dimensional measuring device NH-3SP (manufactured by Mitaka Kogyo Co., Ltd.). The measurement conditions are a measurement range of 2 mm and a measurement pitch of 2 μm. The objective lens is 100 × and the cutoff value is 0.250 mm.
 本発明のフィルムミラーは、製造費用の観点から、ロールトゥロール方式により製造することが好ましい。 The film mirror of the present invention is preferably manufactured by a roll-to-roll method from the viewpoint of manufacturing cost.
 以下、本発明のフィルムミラーに係る各層の構成について詳細に説明する。 Hereinafter, the configuration of each layer according to the film mirror of the present invention will be described in detail.
 [アクリル層]
 本発明に係るアクリル層は、その下層(すなわち、光入射側から見るアクリル層の下層)に設けられる層の劣化や変色、または膜剥がれなどを防止する機能を有する。例えば、空気中の水、塩素、または硫黄などの外的因子から銀反射層を保護する層として機能することができる。または、紫外線吸収剤を含有させることもしくは紫外線吸収性基を有する樹脂などを用いることにより、その下層に設けられている樹脂フィルム状支持体などを紫外線から保護する層として機能することもできる。
[Acrylic layer]
The acrylic layer according to the present invention has a function of preventing deterioration or discoloration of the layer provided in the lower layer (that is, the lower layer of the acrylic layer viewed from the light incident side) or film peeling. For example, it can function as a layer that protects the silver reflective layer from external factors such as water, chlorine, or sulfur in the air. Alternatively, by containing a UV absorber or using a resin having a UV-absorbing group, the resin film-like support provided in the lower layer can function as a layer for protecting from UV rays.
 本発明に係るアクリル層の厚さは、10~100μmであり、20~100μmであることが好ましく、20~80μmであることがより好ましく、40~80μmであることがさらに好ましい。アクリル層の厚さが20μm未満の場合には、水分の透過率が高くなり、紫外線吸収剤を含有させる量が制限されるため十分な紫外線吸収効果が得られなくなり、10年以上の耐久性が得られないという問題点がある。一方、アクリル層の厚さが100μmを超える場合には、アクリル層の太陽光に対する吸収が高くなり、光の反射率の低下をもたらし、結果的に集光・集熱性能が低下してしまう問題点、または層自体の柔軟性を十分に維持することができなくなるという問題点がある。 The thickness of the acrylic layer according to the present invention is 10 to 100 μm, preferably 20 to 100 μm, more preferably 20 to 80 μm, and further preferably 40 to 80 μm. When the thickness of the acrylic layer is less than 20 μm, the moisture permeability becomes high, and the amount of the ultraviolet absorber contained is limited, so that a sufficient ultraviolet absorption effect cannot be obtained, and durability of 10 years or more is achieved. There is a problem that it cannot be obtained. On the other hand, when the thickness of the acrylic layer exceeds 100 μm, the absorption of the acrylic layer with respect to sunlight increases, resulting in a decrease in light reflectivity, resulting in a decrease in light collecting and heat collecting performance. There is a problem that the flexibility of the layer itself or the layer itself cannot be sufficiently maintained.
 本発明に係るアクリル層の表面粗さRaは、正反射率の観点から、1~50nmであることが好ましく、1~10nmであることがより好ましい。 The surface roughness Ra of the acrylic layer according to the present invention is preferably 1 to 50 nm, more preferably 1 to 10 nm, from the viewpoint of regular reflectance.
 本発明に係るアクリル層は、主にアクリル樹脂を基材樹脂として含み、また紫外線吸収剤、酸化防止剤などの添加剤を含むことができる。 The acrylic layer according to the present invention mainly contains an acrylic resin as a base resin and can contain additives such as an ultraviolet absorber and an antioxidant.
 (紫外線吸収剤)
 本発明に係るアクリル層に含有される紫外線吸収剤について以下に詳細を説明する。
(UV absorber)
The ultraviolet absorber contained in the acrylic layer according to the present invention will be described in detail below.
 本発明において、紫外線吸収剤の添加目的は、アクリル層に紫外線を吸収、遮断する機能を付与するためである。紫外線吸収剤に、特に制限は無いが、有機系として、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系、ヒンダードアミン系、ベンゾエート系などが挙げられ、また無機系として、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄などが挙げられる。尚、紫外線吸収剤を多量に含有させた際にブリードアウトしてしまうという問題を低減するためには、重量平均分子量1000以上の高分子の紫外線吸収剤を用いることが好ましい。好ましくは、重量平均分子量1000以上、3000以下である。紫外線吸収剤の具体例としては、例えば特開2012-232538号公報の段落「0038」~「0042」に開示されるものが適宜選択される。 In the present invention, the purpose of adding the ultraviolet absorber is to give the acrylic layer a function of absorbing and blocking ultraviolet rays. Although there is no restriction | limiting in particular in an ultraviolet absorber, As an organic type, a benzophenone type, a benzotriazole type, a salicylic acid phenyl type, a triazine type, a hindered amine type, a benzoate type, etc. are mentioned, and inorganic types include titanium oxide, zinc oxide, Examples include cerium oxide and iron oxide. In order to reduce the problem of bleeding out when a large amount of the ultraviolet absorber is contained, it is preferable to use a high molecular weight ultraviolet absorber having a weight average molecular weight of 1000 or more. The weight average molecular weight is preferably 1000 or more and 3000 or less. As specific examples of the ultraviolet absorber, those disclosed in paragraphs “0038” to “0042” of JP2012-232538A are appropriately selected.
 本発明において前記紫外線吸収剤中、ベンゾトリアゾール系紫外線吸収剤およびトリアジン系紫外線吸収剤が好ましく用いられ、トリアジン系紫外線吸収剤がより好ましく用いられる。 In the present invention, among the ultraviolet absorbers, benzotriazole ultraviolet absorbers and triazine ultraviolet absorbers are preferably used, and triazine ultraviolet absorbers are more preferably used.
 また、前記紫外線吸収剤の他に、紫外線吸収性基を有する樹脂もしくは前記樹脂を構成するモノマーを紫外線吸収剤として用いることができる。 In addition to the ultraviolet absorber, a resin having an ultraviolet absorbing group or a monomer constituting the resin can be used as the ultraviolet absorber.
 前記紫外線吸収性樹脂の例としては、メタクリル酸メチルとベンゾフェノン系紫外線吸収剤との共重合体(BASFジャパン製、UVA635L)、メタクリル酸メチルとベンゾトリアゾール系紫外線吸収剤との共重合体(新中村化学工業(株)製、バナレジンUVA-73A;大塚化学(株)製、PUVA50M-40TM;(株)ニッコー化学研究所製、NCI-700、NCI-900)などが挙げられるが、これらに限定されない。 Examples of the ultraviolet absorbing resin include a copolymer of methyl methacrylate and a benzophenone ultraviolet absorber (BASF Japan, UVA635L), and a copolymer of methyl methacrylate and a benzotriazole ultraviolet absorber (Shin Nakamura). Chemical Industry Co., Ltd., Vanare Resin UVA-73A; Otsuka Chemical Co., Ltd., PUVA50M-40TM; Nikko Chemical Laboratory Co., Ltd., NCI-700, NCI-900), etc. .
 また、紫外線吸収剤としては前記以外に、紫外線の保有するエネルギーを分子内で振動エネルギーに変換し、その振動エネルギーを熱エネルギー等として放出する機能を有する化合物を用いることもできる。さらに、酸化防止剤あるいは着色剤等との併用により効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。ただし、前記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。通常の紫外線吸収剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。 In addition to the above, as the ultraviolet absorber, a compound having a function of converting the energy held by ultraviolet light into vibration energy in the molecule and releasing the vibration energy as heat energy or the like can be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers acting as a light energy conversion agent, called quenchers, can be used in combination. However, when using the said ultraviolet absorber, it is necessary to select what the light absorption wavelength of a ultraviolet absorber does not overlap with the effective wavelength of a photoinitiator. When a normal ultraviolet absorber is used, it is effective to use a photopolymerization initiator that generates radicals with visible light.
 なお、前記開示した紫外線吸収剤は、単独で用いられてもよく、必要に応じてそれらの2種以上併用されてもよい。また、必要により、前記紫外線吸収剤以外の紫外線吸収剤、例えば、サリチル酸誘導体、置換アクリロニトリル、ニッケル錯体などを含有させることもできる。 In addition, the ultraviolet absorber disclosed above may be used alone or in combination of two or more thereof as necessary. Further, if necessary, an ultraviolet absorber other than the ultraviolet absorber, for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, or the like can be contained.
 本発明において、アクリル樹脂を含むアクリル層に紫外線吸収剤を含有させると、形成されたアクリル層の紫外線吸収能が十分に発揮でき、フィルムミラーに用いられている樹脂の黄変を長期に亘って抑制することができる。さらに、アクリル樹脂の伸度、靱性及び紫外線吸収剤のブリードアウトを考慮する観点から、アクリル層に含まれる前記アクリル樹脂の全量100重量%に対して、紫外線吸収剤が0.1~20重量%で配合されることが好ましく、1~10重量%で配合されることがより好ましく、2~8重量%で配合されることが特に好ましい。なお、本発明において、アクリル樹脂の全量100重量%に対する紫外線吸収剤の含有量は、当該アクリル樹脂を構成する原料、すなわち、紫外線硬化型アクリル系樹脂液または熱硬化型アクリル系樹脂液を調製するための原料モノマーの全量に対する紫外線吸収剤の配合量と等しい。また、2種以上の紫外線吸収剤を併用する場合は、例えば、ベンゾトリアゾール系紫外線吸収剤とトリアジン系紫外線吸収剤を併用する際に、耐紫外線能の観点から、ベンゾトリアゾール系紫外線吸収剤の含有量とトリアジン系紫外線吸収剤の含有量との比は、30:70~70:30の範囲であることが好ましく、40:60~60:40の範囲であることがより好ましく、50:50に近い比率であることが特に好ましい。 In the present invention, when an acrylic layer containing an acrylic resin contains an ultraviolet absorber, the ultraviolet absorption capability of the formed acrylic layer can be sufficiently exerted, and the yellowing of the resin used in the film mirror can be prolonged. Can be suppressed. Further, from the viewpoint of considering the elongation and toughness of the acrylic resin and the bleed-out of the ultraviolet absorber, the ultraviolet absorber is 0.1 to 20 wt% with respect to 100 wt% of the total amount of the acrylic resin contained in the acrylic layer. Is preferably blended at 1 to 10% by weight, more preferably 2 to 8% by weight. In addition, in this invention, content of the ultraviolet absorber with respect to 100 weight% of the total amount of an acrylic resin prepares the raw material which comprises the said acrylic resin, ie, an ultraviolet curable acrylic resin liquid, or a thermosetting acrylic resin liquid. Therefore, it is equal to the blending amount of the UV absorber with respect to the total amount of raw material monomers. Further, when two or more kinds of ultraviolet absorbers are used in combination, for example, when a benzotriazole ultraviolet absorber and a triazine ultraviolet absorber are used in combination, from the viewpoint of ultraviolet resistance, the inclusion of the benzotriazole ultraviolet absorber The ratio of the amount and the content of the triazine-based ultraviolet absorber is preferably in the range of 30:70 to 70:30, more preferably in the range of 40:60 to 60:40, and 50:50 A close ratio is particularly preferred.
 (酸化防止剤)
 本発明において、アクリル層の劣化を防止するために、アクリル層に酸化防止剤を含有させてもよい。好ましい酸化防止剤の例を以下に挙げる。
(Antioxidant)
In the present invention, an antioxidant may be contained in the acrylic layer in order to prevent deterioration of the acrylic layer. Examples of preferred antioxidants are listed below.
 酸化防止剤としては、ヒンダードアミン系酸化防止剤、ヒンダードフェノール系酸化防止剤、リン酸系酸化防止剤など、有機系酸化防止剤を使用することが好ましい。有機系酸化防止剤の具体例としては、例えば特開2012-232538号公報の段落「0048」~「0052」に開示されるものが適宜選択される。 As the antioxidant, it is preferable to use an organic antioxidant such as a hindered amine antioxidant, a hindered phenol antioxidant, and a phosphoric acid antioxidant. As specific examples of the organic antioxidant, for example, those disclosed in paragraphs “0048” to “0052” of JP2012-232538A are appropriately selected.
 なお、前記開示した各種の酸化防止剤は、単独で用いられてもよく、2種以上併用されてもよい。 In addition, the various antioxidants disclosed above may be used alone or in combination of two or more.
 本発明において、アクリル樹脂を含むアクリル層に酸化防止剤を含有させる際に、アクリル樹脂の伸度、靱性及び酸化防止剤のブリードアウトを考慮する観点から、前記アクリル樹脂の全量100重量%に対して、酸化防止剤の配合量は、好ましくは0.1重量%以上であり、より好ましくは1重量%以上である。また酸素防止剤の配合量の上限としては、特に限定されないが、20重量%以下であることが好ましく、10重量%以下であることがより好ましく、6重量%以下であることがさらに好ましく、5重量%以下であることが特に好ましい。すなわち、前記アクリル樹脂の全量100重量%に対して、酸化防止剤を0.1~20重量%で配合されることが好ましく、1~10重量%で配合されることがより好ましく、1~6重量%で配合されることがさらに好ましく、1~5重量%で配合されることが特に好ましい。なお、本発明において、アクリル樹脂の全量100重量%に対する酸化防止剤の含有量は、当該アクリル樹脂を構成する原料、すなわち、紫外線硬化型アクリル系樹脂液または熱硬化型アクリル系樹脂液を調製するための原料モノマーの全量に対する酸化防止剤の配合量と等しい。 In the present invention, when the antioxidant is contained in the acrylic layer containing the acrylic resin, from the viewpoint of considering the elongation of the acrylic resin, the toughness and the bleed out of the antioxidant, the total amount of the acrylic resin is 100% by weight. The blending amount of the antioxidant is preferably 0.1% by weight or more, more preferably 1% by weight or more. Further, the upper limit of the blending amount of the oxygen inhibitor is not particularly limited, but is preferably 20% by weight or less, more preferably 10% by weight or less, and further preferably 6% by weight or less. It is particularly preferable that the amount is not more than wt%. That is, the antioxidant is preferably blended at 0.1 to 20% by weight, more preferably 1 to 10% by weight, and more preferably 1 to 6% by weight based on 100% by weight of the total amount of the acrylic resin. More preferably, it is blended in an amount of 1% by weight, particularly preferably 1-5% by weight. In the present invention, the content of the antioxidant with respect to 100% by weight of the total amount of the acrylic resin is prepared as a raw material constituting the acrylic resin, that is, an ultraviolet curable acrylic resin liquid or a thermosetting acrylic resin liquid. Therefore, the amount of the antioxidant is equal to the total amount of the raw material monomers.
 また、本発明において、アクリル層に酸化防止剤と紫外線吸収剤とを併用して含むことができる。このような併用する場合において、酸化防止剤の含有量と紫外線吸収剤の含有量との比が1:1~1:20の範囲であることが好ましく、1:2~1:10の範囲であることがより好ましく、1:3~1:6であることが特に好ましい。 In the present invention, the acrylic layer can contain an antioxidant and a UV absorber in combination. In such a combined use, the ratio of the antioxidant content to the ultraviolet absorber content is preferably in the range of 1: 1 to 1:20, preferably in the range of 1: 2 to 1:10. More preferably, it is 1: 3 to 1: 6.
 (他の添加剤)
 本発明に係るアクリル層は、ブリードアウトが発生しない程度に前記紫外線吸収剤および酸化防止剤以外に他の添加剤を有していてもよい。
(Other additives)
The acrylic layer according to the present invention may have other additives in addition to the ultraviolet absorber and the antioxidant to such an extent that bleeding out does not occur.
 他の添加剤として、レベリング剤、タルクなどの充填剤、防錆剤、蛍光性増白剤、界面活性剤系やリチウム系、あるいは有機ホウ素系などの帯電防止剤、顔料、染料、増粘剤、コロイダルシリカ、アルミナゾルなどの無機微粒子やポリメチルメタクリレート系のアクリル系微粒子などの塗料分野で一般的な添加剤が挙げられる。 Other additives include leveling agents, fillers such as talc, rust preventives, fluorescent whitening agents, surfactant-based, lithium-based, or organic boron-based antistatic agents, pigments, dyes, thickeners. Additives common in the paint field such as inorganic fine particles such as colloidal silica and alumina sol, and polymethyl methacrylate acrylic fine particles.
 以下では、本発明に係るアクリル層の形成方法について説明する。 Hereinafter, a method for forming an acrylic layer according to the present invention will be described.
 (アクリル層の形成)
 本発明に係るアクリル層は、アクリル系樹脂液を調製する第1工程と、前記アクリル系樹脂液を、銀反射層などを形成された樹脂フィルム状支持体の光入射側の上面に塗布し、乾燥し、塗膜を形成する第2工程と、必要に応じて前記塗膜を硬化する第3工程と、によって形成することができる。
(Formation of acrylic layer)
The acrylic layer according to the present invention is a first step of preparing an acrylic resin liquid, and the acrylic resin liquid is applied to the upper surface of the light incident side of the resin film-like support on which a silver reflective layer is formed, It can form by the 2nd process of drying and forming a coating film, and the 3rd process of hardening | curing the said coating film as needed.
 〔第1工程〕
 本発明に係るアクリル層を形成するための第1工程においては、紫外線硬化型アクリル系樹脂液を調製する工程(1-a)または熱硬化型アクリル系樹脂液を調製する工程(1-b)のいずれかを含む。また、本発明に係る紫外線硬化型アクリル系樹脂液または熱硬化型アクリル系樹脂液は、25℃において、好ましくは10~2000ポイズの粘度範囲で調製され、より好ましくは100~1000ポイズの粘度範囲で調製される。なお、本発明において、粘度は、BII型粘度計(東機産業株式会社)によって測定される。
[First step]
In the first step for forming the acrylic layer according to the present invention, a step (1-a) of preparing an ultraviolet curable acrylic resin solution or a step (1-b) of preparing a thermosetting acrylic resin solution One of these. The ultraviolet curable acrylic resin liquid or thermosetting acrylic resin liquid according to the present invention is prepared at 25 ° C., preferably in the viscosity range of 10 to 2000 poise, more preferably in the viscosity range of 100 to 1000 poise. It is prepared with. In the present invention, the viscosity is measured with a BII viscometer (Toki Sangyo Co., Ltd.).
 なお、本発明において、紫外線硬化型アクリル系樹脂液とは、紫外線重合開始剤を含み、紫外線照射による重合・硬化反応が起こりうるアクリル系ビニルモノマー、またはアクリル系ビニルモノマーを所定の重合度になるようにあらかじめ部分的に重合させた紫外線硬化型部分重合物を含む混合樹脂液を意味する。一方、熱硬化型アクリル系樹脂液とは、熱分解型重合開始剤を含み、熱を加えることにより重合・硬化反応が起こりうるアクリル系ビニルモノマー、または前記アクリル系ビニルモノマーを所定の重合度になるようにあらかじめ部分的に重合させた熱硬化型部分重合物を含む混合樹脂液を意味する。 In the present invention, the ultraviolet curable acrylic resin liquid includes an ultraviolet polymerization initiator, and an acrylic vinyl monomer that can undergo a polymerization / curing reaction due to ultraviolet irradiation or an acrylic vinyl monomer has a predetermined polymerization degree. Thus, it means a mixed resin liquid containing an ultraviolet curable partial polymer that has been partially polymerized in advance. On the other hand, the thermosetting acrylic resin liquid contains a pyrolytic polymerization initiator, and an acrylic vinyl monomer that can undergo a polymerization / curing reaction when heated, or the acrylic vinyl monomer has a predetermined polymerization degree. It means a mixed resin liquid containing a thermosetting partial polymer that has been partially polymerized in advance.
 また、前記あらかじめ部分的に重合させた紫外線硬化型部分重合物または熱硬化型部分重合物の重量平均分子量は、通常は5万~150万であり、好ましくは10万~120万である。なお、本発明において、重量平均分子量は、GPCによって測定される。 The weight average molecular weight of the partially polymerized ultraviolet curable partial polymer or thermosetting partial polymer is usually 50,000 to 1,500,000, preferably 100,000 to 1,200,000. In the present invention, the weight average molecular weight is measured by GPC.
 以下では、紫外線硬化型アクリル系樹脂液を調製する工程(1-a)および熱硬化型アクリル系樹脂液を調製する工程(1-b)のそれぞれについて説明する。 Hereinafter, each of the step (1-a) for preparing the ultraviolet curable acrylic resin liquid and the step (1-b) for preparing the thermosetting acrylic resin liquid will be described.
 工程(1-a)
 本発明に係る工程(1-a)において、紫外線硬化型アクリル系樹脂液は、紫外線硬化型アクリル系ビニルモノマーに紫外線重合開始剤を配合して調製されてもよく、アクリル系ビニルモノマーをあらかじめ部分的に重合させて得られる部分重合物と未反応のアクリル系ビニルモノマーとの混合物に紫外線重合開始剤を配合して調製されてもよい。後者の場合は、得られる部分重合物が紫外線照射による重合・硬化反応ができれば、その前駆体であるアクリル系ビニルモノマー(原料モノマーとも称する)としては、特に制限されず、単官能モノマーから3官能モノマーまで幅広い範囲のラジカル重合性アクリル系ビニルモノマーを用いられる。本発明に係るアクリル層の厚さが20~100μmであるため、アクリル層の架橋度が高すぎるとフィルム自体の柔軟性がなくなり、割れやすくなる恐れがある観点から、前記単官能基モノマーおよび/または2官能基モノマーを原料モノマーとして部分的に重合させる形態が好ましい。
Step (1-a)
In the step (1-a) according to the present invention, the ultraviolet curable acrylic resin liquid may be prepared by blending an ultraviolet polymerization initiator with an ultraviolet curable acrylic vinyl monomer. Alternatively, it may be prepared by blending an ultraviolet polymerization initiator into a mixture of a partially polymerized product obtained by polymerization and an unreacted acrylic vinyl monomer. In the latter case, as long as the obtained partial polymer can be polymerized and cured by irradiation with ultraviolet rays, the precursor acrylic vinyl monomer (also referred to as a raw material monomer) is not particularly limited, and a monofunctional monomer to a trifunctional monomer. A wide range of radical polymerizable acrylic vinyl monomers can be used up to the monomer. Since the acrylic layer according to the present invention has a thickness of 20 to 100 μm, if the degree of crosslinking of the acrylic layer is too high, the flexibility of the film itself is lost, and the monofunctional group monomer and / or Alternatively, a form in which a bifunctional monomer is partially polymerized as a raw material monomer is preferable.
 前記ラジカル重合性アクリル系ビニルモノマーの例として、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オチル(メタ)アクリレート、ノニル(メタ)アクリレート、デカニル(メタ)アクリレート、ウンカニル(メタ)アクリレート、ドデカニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクレート、イソノニル(メタ)アクリレート、(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸、2-ヒドロキシエチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アリレート、(メタ)アクリル酸アマイド、ジメチルアミドメタアクリレート、ジメチルアミドアクレート、ステアリル(メタ)アクリレート、ベへニル(メタ)アクリレート、アクリルアマイド、-メチロールアクリルアマイド、アクリロニトリル、グリシジルメタクリレート、イソブチル(メ)クリレート、イソボルニル(メタ)アクリレートおよびジシクロペンタニル(メタ)アクリレートなどが挙げられる。また、これらのラジカル重合性アクリル系ビニルモノマーは、単独で用いてもよく、組み合わせたものを用いてもよい。さらに、これらのラジカル重合性アクリル系ビニルモノマーと共に、酢酸ビニル、スチレン、ビニルベンゼン、エチレン、クロトン酸、プロピオン酸ビニル、α-メチルスチレン、ジシクロペテンおよびクマロンのような他のモノマーを併用してもよい。 Examples of the radical polymerizable acrylic vinyl monomer include butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, decanyl ( (Meth) acrylate, uncanyl (meth) acrylate, dodecanyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid, 2-hydroxyethyl ( (Meth) acrylate, methyl (meth) acrylate, ethyl (meth) arylate, (meth) acrylic acid amide, dimethylamide methacrylate, dimethylamide acrylate, stearyl (meth) acrylate, behenyl ( Examples thereof include meth) acrylate, acrylamide, -methylol acrylate, acrylonitrile, glycidyl methacrylate, isobutyl (meth) acrylate, isobornyl (meth) acrylate, and dicyclopentanyl (meth) acrylate. In addition, these radical polymerizable acrylic vinyl monomers may be used alone or in combination. In addition to these radical polymerizable acrylic vinyl monomers, other monomers such as vinyl acetate, styrene, vinylbenzene, ethylene, crotonic acid, vinyl propionate, α-methylstyrene, dicyclopentene and coumarone may be used in combination. .
 前記アクリル系ビニルモノマーを部分的に重合させるために、前記モノマーの種類により適宜に重合開始剤を選択することができる。前記重合開始剤として、紫外線または可視光線などの光によって重合が開示する光重合開始剤、または熱分解型の重合開始剤が用いられる。光重合開始剤としては、2,2-ジエトキシセトフェノン、p-ジメチルアミノアセトフェノン、p-ジメチルアミノプロピオフェノン、メトキシセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン(チバガイギー(株)製、商品名:イキュア651)、α-ヒドロキシ-α,α’-ジメチルアセトフェノン(チバガイギー(株)製、商品名:ダロキュア1173)、2-ヒドロキシ-2-シクロヘキシルアセトフェノン(BASF社製、商品名:イルガキュア184)、もしくは2-メチル-1-[4-(メチルチオ)フェニル]-2-モンフォリノプロバン-1-オン(チバガイギー(株)製、商品名:イルガキュア907)などのアセトフェノン類、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、もしくはベンゾインイソブチルエーテルなどのベンゾインエーテル類、ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ジクロロベンゾフェノン、p,p’-ビスジエチルアミノベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラ-トン)、もしくは4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン(チバガイギ(株)製、商品名:ダロキュア2659)などのケトン類、チオキサントン、2-クロロオキシサントン、もしくは2-メチルチオキサントンなどのチオキサントン類、ビスアシルホスフィン酸化物(BPO)、もしくはベンゾイルホスフィン酸化物(TPO)などのホスフィン酸化物、ベンジルジメチルケタール(チバガイギー(株)製、商品名:イルガキュア651)などのケタール類、またはカンファン-2,3-ジオン(カンファ-キノン)、もしくはフェナントレンノンキノン類などが挙げられる。また、熱分解型の重合開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス-2,4-ジメチルバレロニトリル(和光純薬工業(株)社製、商品名:V-70)、2,2’-アゾビスシクロヘキシルニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)(和光純薬工業(株)社製、商品名:V-40)、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロトリル、ジメチル-2,2’-アゾビスイソブチレート、もしくは2,2’-アゾビス(2-メチルブチロニトリル)などアゾ系開始剤、またはベンゾイルパーオキサイド、2,4-ジ-クロロベンゾイルパーオキサイド、1-ブチルーオキシ-2-エチルヘキサノエート、1-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、もしくはtert-ブチルパーオキシベンゾエートなどの過酸化物系開始剤などが挙げられる。これらの重合開始剤の中でも、生産性を高くすることができる観点から、光重合開始剤を用いることが好ましく、紫外線重合開始剤を用いることがより好ましい。また、前記紫外線重合開始剤を用いて重合を行う際に、窒素ガスの雰囲気下で行うことが好ましい。照度が100~1500mW/cmのランプを用いて、紫外線照射量が100~1500mJ/cmの範囲で断続的に照射し、下記の好ましい粘度範囲になるまで紫外線照射を繰り返した。 In order to partially polymerize the acrylic vinyl monomer, a polymerization initiator can be appropriately selected depending on the type of the monomer. As the polymerization initiator, a photopolymerization initiator disclosed by polymerization by light such as ultraviolet rays or visible light, or a thermal decomposition type polymerization initiator is used. As photopolymerization initiators, 2,2-diethoxycetophenone, p-dimethylaminoacetophenone, p-dimethylaminopropiophenone, methoxycetophenone, 2,2-dimethoxy-2-phenylacetophenone (manufactured by Ciba Geigy Corp.) , Trade name: Icure 651), α-hydroxy-α, α'-dimethylacetophenone (Ciba Geigy Corp., trade name: Darocur 1173), 2-hydroxy-2-cyclohexylacetophenone (BASF, trade name: Irgacure) 184), or acetophenones such as 2-methyl-1- [4- (methylthio) phenyl] -2-montforinopropan-1-one (manufactured by Ciba Geigy KK, trade name: Irgacure 907), benzoin, benzoin Methyl ether, benzoin ethyl ether, Benzoin ethers such as benzoin isopropyl ether or benzoin isobutyl ether, benzophenone, 2-chlorobenzophenone, p, p'-dichlorobenzophenone, p, p'-bisdiethylaminobenzophenone, N, N'-tetramethyl-4, Ketones such as 4′-diaminobenzophenone (Mihiraton) or 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone (manufactured by Ciba-Gaigi Co., Ltd., trade name: Darocur 2659), thioxanthone Thioxanthones such as 2-chlorooxysantone or 2-methylthioxanthone, phosphine oxides such as bisacylphosphine oxide (BPO) or benzoylphosphine oxide (TPO), benzyldimethyl ketal (Ciba Examples include ketals manufactured by Geigy Co., Ltd., trade name: Irgacure 651), camphane-2,3-dione (camphor-quinone), and phenanthrenenone quinones. Further, as the thermal decomposition type polymerization initiator, 2,2′-azobisisobutyronitrile, 2,2′-azobis-2,4-dimethylvaleronitrile (manufactured by Wako Pure Chemical Industries, Ltd., product) Name: V-70), 2,2′-azobiscyclohexylnitrile, 1,1′-azobis (cyclohexane-1-carbonitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-40), Azo initiators such as 2-phenylazo-4-methoxy-2,4-dimethylvalerotolyl, dimethyl-2,2′-azobisisobutyrate, or 2,2′-azobis (2-methylbutyronitrile); Or benzoyl peroxide, 2,4-di-chlorobenzoyl peroxide, 1-butyl-oxy-2-ethylhexanoate, 1-butylperoxy-3,5,5-trimethylhexanoate, Properly the like peroxide initiators such as tert- butyl peroxybenzoate. Among these polymerization initiators, a photopolymerization initiator is preferably used, and an ultraviolet polymerization initiator is more preferably used from the viewpoint of increasing productivity. Moreover, it is preferable to perform it in the atmosphere of nitrogen gas, when superposing | polymerizing using the said ultraviolet polymerization initiator. Using a lamp having an illuminance of 100 to 1500 mW / cm 2 , the ultraviolet irradiation was intermittently performed in the range of 100 to 1500 mJ / cm 2 , and the ultraviolet irradiation was repeated until the following preferable viscosity range was reached.
 本発明に係る工程(1-a)において、アクリル系ビニルモノマーをあらかじめ部分的に重合させて得られる部分重合物を用いる場合は、得られる紫外線硬化型アクリル系樹脂液中に残存する前記アクリル系ビニルモノマーの量は、当該紫外線硬化型アクリル系樹脂液の全重量の0.1~20重量%であることが好ましく、1~10重量%であることがより好ましく、2~10重量%であることが特に好ましい。 In the step (1-a) according to the present invention, when a partial polymer obtained by partially polymerizing an acrylic vinyl monomer in advance is used, the acrylic resin remaining in the obtained ultraviolet curable acrylic resin liquid is used. The amount of the vinyl monomer is preferably 0.1 to 20% by weight, more preferably 1 to 10% by weight, and more preferably 2 to 10% by weight based on the total weight of the ultraviolet curable acrylic resin liquid. It is particularly preferred.
 また、本発明に係るアクリル系樹脂液が前記好ましい粘度範囲で調製するために、前記重合開始剤の量または反応条件などを適宜に選定することにより行うことができる。ここで用いられる重合開始剤の量は、原料モノマー全量100重量%に対して、0.001~6重量%であることが好ましく、0.003~4重量%であることがより好ましい。 Further, in order to prepare the acrylic resin liquid according to the present invention within the preferable viscosity range, it can be carried out by appropriately selecting the amount of the polymerization initiator or reaction conditions. The amount of the polymerization initiator used here is preferably 0.001 to 6% by weight, and more preferably 0.003 to 4% by weight, based on 100% by weight of the total amount of raw material monomers.
 前記得られた紫外線硬化型部分重合物および未反応のアクリル系ビニルモノマーの混合液に、紫外線重合開始剤を配合し、工程(1-a)に係る紫外線硬化型アクリル系樹脂液を調製することができる。前記紫外線重合開始剤の配合量としては、原料モノマー全量100重量%に対して、1~10重量%であることが好ましく、2~4重量%であることがより好ましい。なお、前記部分重合物を生成する際に紫外線重合開始剤を用いていれば、当該紫外線重合開始剤は、配合量を適宜に調節し、部分重合反応後の樹脂液において前記好ましい範囲内にすることにより、再度紫外線重合開始剤を添加する必要がない。 An ultraviolet polymerization initiator is blended into the mixed solution of the obtained ultraviolet curable partial polymer and unreacted acrylic vinyl monomer to prepare an ultraviolet curable acrylic resin liquid according to step (1-a). Can do. The blending amount of the ultraviolet polymerization initiator is preferably 1 to 10% by weight and more preferably 2 to 4% by weight with respect to 100% by weight of the total amount of raw material monomers. In addition, if the ultraviolet polymerization initiator is used when producing | generating the said partial polymer, the said ultraviolet polymerization initiator will adjust a compounding quantity suitably, and will be in the said preferable range in the resin liquid after partial polymerization reaction. Therefore, it is not necessary to add an ultraviolet polymerization initiator again.
 工程(1-b)
 本発明に係る工程(1-b)において、熱硬化型アクリル系樹脂液は、熱硬化型アクリル系ビニルモノマーに熱分解型重合開始剤を配合して調製されてもよく、前記工程(1-a)の場合と同様に、あらかじめ部分的に重合させて得た熱硬化型部分重合物と、前記部重合物の前駆体である未反応のアクリル系ビニルモノマーとに熱分解型重合開始剤を配合して調製されてもよい。後者の場合は、得られる熱硬化型アクリル系樹脂液中に残存する前記アクリル系ビニルモノマーの量は、当該熱硬化型アクリル系樹脂液の全重量の2~20重量%であることが好ましく、2~15重量%であることがより好ましく、2~10重量%であることが特に好ましい。なお、得られる部分重合物が熱を加えることにより重合・硬化反応ができれば、その前駆体となるアクリル系ビニルモノマーおよび好適な態様としては、特に制限されず、前記の工程(1-a)で開示したアクリル系ビニルモノマーおよびその好適な態様から用いられる。また、部分重合を行う際に重合開始剤および好適な態様としては、前記の工程(1-a)で開示した重合開始剤およびその好適な態様と同様に用いられ、重合効率や生産性の観点から、熱分解型重合開始剤を用いて部分重合を行うことがより好ましい。
Step (1-b)
In the step (1-b) according to the present invention, the thermosetting acrylic resin liquid may be prepared by blending a thermosetting polymerization initiator with a thermosetting acrylic vinyl monomer. As in the case of a), a thermally decomposable polymerization initiator is added to a thermosetting partial polymer obtained by partial polymerization in advance and an unreacted acrylic vinyl monomer that is a precursor of the partial polymer. It may be prepared by blending. In the latter case, the amount of the acrylic vinyl monomer remaining in the obtained thermosetting acrylic resin liquid is preferably 2 to 20% by weight of the total weight of the thermosetting acrylic resin liquid. It is more preferably 2 to 15% by weight, and particularly preferably 2 to 10% by weight. In addition, as long as the obtained partial polymer can be polymerized and cured by applying heat, the acrylic vinyl monomer used as a precursor thereof and a preferred embodiment are not particularly limited, and in the above step (1-a). Used from the disclosed acrylic vinyl monomers and preferred embodiments thereof. In addition, when performing partial polymerization, the polymerization initiator and preferred embodiments are used in the same manner as the polymerization initiator disclosed in the above step (1-a) and preferred embodiments thereof, from the viewpoint of polymerization efficiency and productivity. Therefore, it is more preferable to perform partial polymerization using a thermal decomposition polymerization initiator.
 前記で得られた熱硬化型部分重合物およびその前駆体である未反応のアクリル系ビニルモノマーの混合溶液に、熱分解型重合開始剤を添加し、工程(1-b)の熱硬化型アクリル系樹脂液を調製することができる。工程(1-b)において、二種類の10時間半減期が異なる熱分解型重合開始剤を配合することが好ましい。より具体的に、10時間半減期が25~55℃の範囲内にある低温熱分解型重合開始剤と、10時間半減期が55℃を超え90℃以下の範囲内にある高温熱分解型重合開始剤とを組み合わせて用いることが好ましい。 A thermal decomposition type polymerization initiator is added to the mixed solution of the thermosetting partial polymer obtained above and an unreacted acrylic vinyl monomer that is a precursor thereof, and the thermosetting acrylic in the step (1-b). A system resin solution can be prepared. In step (1-b), it is preferable to blend two types of thermal decomposition polymerization initiators having different 10-hour half-lives. More specifically, a low temperature pyrolysis polymerization initiator having a 10-hour half-life in the range of 25 to 55 ° C. and a high-temperature pyrolysis polymerization having a 10-hour half-life in the range of more than 55 ° C. and 90 ° C. or less. It is preferable to use in combination with an initiator.
 前記低温熱分解型重合開始剤としては、2,2’-アゾビス-2,4-ジメチルバレロニトリル(和光純薬工業(株)社製、商品名:V-70)、イソブチルパーオキシド、(α,α’-ビス-ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジ-カルボネート、ジ-イソプロピルパーオキシジ-カルボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ビス(4-t-ブチルシクロヘキシル)パーオキシジ-カルボネート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、ジ-2-エトキシエチル-パーオキシジ-カルボネート、ジ(2-エチルエチルパーオキシ)ジカルボネート、t-ヘキシルパーオキシネオデカノエート、ジメトキシブチルパーオキシジ-カルボネート、ジ(3-メチル-3-メトキシブチルパーオキシ)ジカルボネート、t-ブチルパーオキシネオデカノエート、2,4-ジ-クロロベンゾイルパーオキサイド、2,4-ジ-クロロベンゾイルパーオキサイド、1-ヘキシルパーオキシピバレート、または1-ブチルパーオキシピバレートなどが挙げられる。 Examples of the low temperature pyrolysis polymerization initiator include 2,2′-azobis-2,4-dimethylvaleronitrile (manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-70), isobutyl peroxide, (α , Α'-bis-neodecanoylperoxy) diisopropylbenzene, cumylperoxyneodecanoate, di-n-propylperoxydicarbonate, diisopropylisopropyloxycarbonate, 1,1,3,3 -Tetramethylbutyl peroxyneodecanoate, bis (4-t-butylcyclohexyl) peroxydi-carbonate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, di-2-ethoxyethyl-peroxydi-carbonate, Di (2-ethylethylperoxy) dicarbonate, t-hexylperoxyneodeca Noate, dimethoxybutylperoxydi-carbonate, di (3-methyl-3-methoxybutylperoxy) dicarbonate, t-butylperoxyneodecanoate, 2,4-di-chlorobenzoyl peroxide, 2,4- Examples thereof include di-chlorobenzoyl peroxide, 1-hexyl peroxypivalate, and 1-butyl peroxypivalate.
 また、高温熱分解型重合開始剤としては、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)(和光純薬工業(株)社製、商品名:V-40)、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ2-エチルヘキサノエート、サクシニックパーオキサイド、2,5-ジ-メチル-2,5-ジ(2-エチルヘキシルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、1-ブチルパーオキシ-2-オキシ-2-エチルヘキサノエート、m-トルイル,ベンゾイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-シクロヘキサン、または1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサンなどが挙げられる。 Further, as the high-temperature thermal decomposition type polymerization initiator, 1,1′-azobis (cyclohexane-1-carbonitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-40), 3, 5, 5 Trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate, succinic peroxide, 2,5-di -Methyl-2,5-di (2-ethylhexylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, 1- Butyl peroxy-2-oxy-2-ethylhexanoate, m-toluyl, benzoyl peroxide Benzoyl peroxide, t-butylperoxyisobutyrate, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) -cyclohexane, Alternatively, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane and the like can be mentioned.
 前記低温熱分解型重合開始剤と前記高温熱分解型重合開始剤とは、重量比で通常は1:10~10:1の割合、好ましくは1:5~5:1の割合、より好ましくは1:1の割合で配合される。このような割合で低温熱分解型重合開始剤および高温熱分解型重合開始剤を配合することにより、加熱重合工程(後述する第3工程の工程(3-b))における重合反応と、熟成重合における重合反応の両者が円滑に進行する。また、工程(1-b)において、原料モノマーの全量100重量%に対して、低温熱分解型重合開始剤の配合量は、通常は0.05~5重量%であり、好ましくは0.1~2重量%であり、より好ましくは0.5~2重量%である。また、高温熱分解型重合開始剤の配合量は、通常は0.05~5重量%、好ましくは0.1~2重量%であり、より好ましくは0.5~2重量%である。 The low temperature thermal decomposition type polymerization initiator and the high temperature thermal decomposition type polymerization initiator are usually in a weight ratio of 1:10 to 10: 1, preferably 1: 5 to 5: 1, more preferably. It is blended at a ratio of 1: 1. By blending the low-temperature pyrolysis-type polymerization initiator and the high-temperature pyrolysis-type polymerization initiator at such a ratio, the polymerization reaction in the heat polymerization step (step (3-b) in the third step described later) and the aging polymerization are performed. Both polymerization reactions proceed smoothly. In the step (1-b), the blending amount of the low-temperature pyrolysis polymerization initiator is usually 0.05 to 5% by weight, preferably 0.1 to 100% by weight of the total amount of raw material monomers. ˜2% by weight, more preferably 0.5-2% by weight. The blending amount of the high-temperature thermal decomposition type polymerization initiator is usually from 0.05 to 5% by weight, preferably from 0.1 to 2% by weight, more preferably from 0.5 to 2% by weight.
 さらに、工程(1-b)において、必要に応じて、架橋剤、分子量調整剤、フィラー、粒子、粘着付与樹脂などの他の成分を配合して熱分解型アクリル系樹脂液を調製することができる。 Furthermore, in the step (1-b), if necessary, other components such as a crosslinking agent, a molecular weight modifier, a filler, particles, and a tackifying resin may be blended to prepare a thermally decomposable acrylic resin liquid. it can.
 前記他の成分である架橋剤としては、ジビニルベンゼン、ジエチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンオールジ(メタ)アクリレート、ビスフェノールAジオキシジエチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、またはペンタエリスルトールトリ(メタ)アクリレートなどのラジカル重合性多官能モノマー、または前記熱分解型アクリル系樹脂液に含有される官能基と反応性を有する化合物を使用することができる。さらにその他の架橋剤の例として、エポキシ化合物、イソシアネート化合物、ヘキサメチレンジイソシアネートのイソシアヌレート体(日本ポリウレタン工業(株)製、商品名コロネートHX)などのイソシアネート付加物、または有機金属化合物などが挙げられる。前記架橋剤を配合する際の配合量は、原料モノマー全量100重量%に対して、通常0.05~10重量%であり、好ましくは0.1~10重量%であり、より好ましくは1~5重量%である。 Examples of the other crosslinking agent include divinylbenzene, diethyl glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexaneol di (meth) acrylate, bisphenol A dioxydiethyl glycol di Reaction with a radical polymerizable polyfunctional monomer such as (meth) acrylate, trimethylolpropane tri (meth) acrylate, or pentaerythritol tri (meth) acrylate, or a functional group contained in the thermally decomposable acrylic resin liquid A compound having a property can be used. Examples of other cross-linking agents include isocyanate adducts such as epoxy compounds, isocyanate compounds, isocyanurates of hexamethylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name Coronate HX), or organometallic compounds. . The blending amount when blending the crosslinking agent is usually 0.05 to 10% by weight, preferably 0.1 to 10% by weight, more preferably 1 to 1% by weight based on 100% by weight of the total amount of raw material monomers. 5% by weight.
 前記他の成分である分子量調整剤としては、メルカプタン系化合物、チオグリコール、四塩化炭素、α-メチルスチレンダイマーなどが挙げられる。前記分子量調整剤を配合する際の配合量は、原料モノマー全量100重量%に対して、通常0.01~2重量%であり、好ましくは0.05~1重量%である。 Examples of the other component molecular weight modifier include mercaptan compounds, thioglycol, carbon tetrachloride, α-methylstyrene dimer, and the like. The blending amount when blending the molecular weight modifier is usually 0.01 to 2% by weight, preferably 0.05 to 1% by weight, based on 100% by weight of the total amount of raw material monomers.
 前記他の成分であるフィラーとしては、ポリエチレン粒子(PE粒子)などの平均粒子径が10~100μmである粒子、またはシリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化ジルコニア粒子などが挙げられる。前記フィラーを配合する際の配合量は、原料モノマー全量100重量%に対して、通常1~60重量%であり、好ましくは5~40重量%である。 Examples of the filler as the other component include particles having an average particle diameter of 10 to 100 μm such as polyethylene particles (PE particles), silica particles, alumina particles, cerium oxide particles, and zirconia oxide particles. The blending amount when blending the filler is usually 1 to 60% by weight, preferably 5 to 40% by weight, based on 100% by weight of the total amount of raw material monomers.
 また、前記他の成分である粒子としては、シリカ、アルミナ、酸化チタン、二酸化珪素、酸化珪素、炭酸カルシウム、珪酸カルシウム、炭酸マグネシウム、酸化マグネシウム、タルク、カオリンクレー、焼成クレー、酸化亜鉛、硫酸亜鉛、水酸化アルミニウム、酸化アルミニウム、ガラス雲母、硫酸バリウム、アルミナホワイト、ゼオライト等の無機粒子の他、ポリメチル(メタ)アクリレート、ポリスチレン、ベンゾグアナミン樹脂、メラミン樹脂、フェノール樹脂、シリコーン樹脂、尿素樹脂、ポリエチレン樹脂、ポリオレフィン樹脂、ナイロン樹脂、ウレタン樹脂、フッ素樹脂、ポリイミド樹脂、エポキシ樹脂等の樹脂から製造される樹脂粒子、ポリエチレンワックスなどのものを挙げることができる。これらは単独であるいは混合して使用することができる。 Examples of the other component particles include silica, alumina, titanium oxide, silicon dioxide, silicon oxide, calcium carbonate, calcium silicate, magnesium carbonate, magnesium oxide, talc, kaolin clay, calcined clay, zinc oxide, and zinc sulfate. In addition to inorganic particles such as aluminum hydroxide, aluminum oxide, glass mica, barium sulfate, alumina white, zeolite, polymethyl (meth) acrylate, polystyrene, benzoguanamine resin, melamine resin, phenol resin, silicone resin, urea resin, polyethylene resin Examples thereof include resin particles produced from resins such as polyolefin resin, nylon resin, urethane resin, fluororesin, polyimide resin, and epoxy resin, and polyethylene wax. These can be used alone or in combination.
 前記熱分解型重合開始剤を用いて部分重合を行う際に、前記原料モノマー、前記低温熱硬化型重合開始剤、前記高温熱硬化型重合開始剤、および必要に応じて前記他の成分である架橋剤、フィラーなどを混合させ、25~35℃の温度範囲で撹拌し部分重合させ、好ましくは脱泡処理の操作を加え、熱硬化型アクリル系樹脂液を調製することができる。 When performing partial polymerization using the thermal decomposition type polymerization initiator, the raw material monomer, the low temperature thermosetting polymerization initiator, the high temperature thermosetting polymerization initiator, and, if necessary, the other components. A thermosetting acrylic resin liquid can be prepared by mixing a crosslinking agent, filler, etc., stirring and partially polymerizing in a temperature range of 25 to 35 ° C., and preferably adding a defoaming treatment.
 なお、本発明において、上述したアクリル系ビニルモノマーや、それに対応する重合開始剤などの代わりに、市販のアクリル系樹脂液を使用することもできる。かような市販のアクリル系樹脂液の例としては、アクリペットMD、VH、MF、V(三菱レイヨン(株)製)、ハイパールM-4003、M-4005、M-4006、M-4202、M-5000、M-5001、M-4501(根上工業(株)製)、ダイヤナールBR-50、BR-52、BR-53、BR-60、BR-64、BR-73、BR-75、BR-77、BR-79、BR-80、BR-82、BR-83、BR-85、BR-87、BR-88、BR-90、BR-93、BR-95、BR-100、BR-101、BR-102、BR-105、BR-106、BR-107、BR-108、BR-112、BR-113、BR-115、BR-116、BR-117、BR-118等(三菱レイヨン(株)製)などが挙げられるが、これらに限定されない。これらの市販品は、塗布後、乾燥させることによって、本発明に係るアクリル層を形成することができ、後述の第3工程(硬化する工程)を行わなくてもよい。 In the present invention, a commercially available acrylic resin liquid can be used in place of the above-described acrylic vinyl monomer and the corresponding polymerization initiator. Examples of such commercially available acrylic resin liquids include Acrypet MD, VH, MF, V (manufactured by Mitsubishi Rayon Co., Ltd.), Hyperl M-4003, M-4005, M-4006, M-4202, M -5000, M-5001, M-4501 (manufactured by Negami Kogyo Co., Ltd.), Dialnal BR-50, BR-52, BR-53, BR-60, BR-64, BR-73, BR-75, BR -77, BR-79, BR-80, BR-82, BR-83, BR-85, BR-87, BR-88, BR-90, BR-93, BR-95, BR-100, BR-101 BR-102, BR-105, BR-106, BR-107, BR-108, BR-112, BR-113, BR-115, BR-116, BR-117, BR-118, etc. (Mitsubishi Rayon Co., Ltd. ) Made) It is, but is not limited thereto. These commercial products can form the acrylic layer according to the present invention by drying after coating, and the third step (curing step) described later may not be performed.
 また、紫外線吸収剤または酸化防止剤をアクリル層に含有させる場合には、前記アクリル系樹脂液を調製する際に配合することができ、前記部分重合物を合成する前に、すなわち、原料となるアクリル系ビニルモノマーを混合する際に前記紫外線吸収剤または酸化防止剤を添加してもよく、または、前記部分重合物を合成した後に、すなわちアクリル系樹脂液を調製できた後に前記紫外線吸収剤または酸化防止剤を添加してもよい。より好ましいくは、前記部分重合物を合成した後に、紫外線吸収剤または酸化防止剤を添加する。 Further, when the acrylic layer contains an ultraviolet absorber or an antioxidant, it can be blended when preparing the acrylic resin liquid, and becomes a raw material before synthesizing the partial polymer. The ultraviolet absorber or antioxidant may be added when mixing the acrylic vinyl monomer, or after synthesizing the partial polymer, that is, after the acrylic resin liquid can be prepared, An antioxidant may be added. More preferably, after the partial polymer is synthesized, an ultraviolet absorber or an antioxidant is added.
 ここで用いられる溶剤としては、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート(PGMEA;1-メトキシ-2-アセトキシプロパン)、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールジアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、もしくは乳酸プロピルなどのエステル系溶剤、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、もしくはプロピレンカーボネートなどのケトン系溶剤、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、もしくはシクロヘキサノンなどのアルキルケトン系溶剤、またはトルエン、キシレン、ペンタン、ヘキサン、オクタン、デカン、もしくはドデカンなどの炭化水素系溶剤、チルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、n-ヘキシルアルコール、n-ヘプチルアルコール、n-オクチルアルコール、もしくはn-デカノールなどのアルコール系溶剤、エチレングリコール、ジエチレングリコール、もしくはトリエチレングリコールなどのグリコール系溶剤、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル(PGME;1-メトキシ-2-プロパノール)、エチレングリコールモノエチルエーテル、もしくはプロピレングリコールモノエチルエーテルなどのグリコールエーテル系溶剤、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、もしくはN,N-ジメチルホルムアミドなどのアミド系溶剤などが挙げられる。これらの中に、エステル系溶剤、ケトン系溶剤、アルキルケトン系溶剤、または炭化水素系溶剤のなどの疎水性の高い溶剤が好ましく用いられる。ただし、形成されたアクリル層に残存される溶剤の量は、当該アクリル層の全重量に対して0.1重量%以下であることが好ましい。なお、ここでいう残存される溶剤(残溶剤とも称する)とは、前記のように積極的に添加する溶剤が後述する第3工程の反応を経て、アクリル層に残留されたものを意味し、該当する溶剤は重合性を有さないものである。例えばメチルメタクリレートのようなモノマー成分は、常温で液体であり、前記樹脂液を形成する他の成分を溶解あるいは分散することがあるが、このようなモノマー成分は、重合性を有することから、本発明においてはこうした成分を溶剤としては扱わない。 Solvents used here include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, propylene glycol monomethyl ether acetate (PGMEA; 1-methoxy-2-acetoxypropane), ethylene glycol monoethyl ether acetate, diethylene glycol mono Butyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropionate, propylene glycol monoethyl ether acetate, propylene glycol diacetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, formic acid Esters such as ethyl, butyl formate, propyl formate, ethyl lactate, butyl lactate or propyl lactate, 1-octa , 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, diisobutylketone, cyclohexanone, methylcyclohexanone, phenylacetone, methylethylketone, methylisobutylketone, acetylacetone, acetonylacetone , Ketone solvents such as ionone, diacetonyl alcohol, acetyl carbinol, acetophenone, methyl naphthyl ketone, isophorone, or propylene carbonate, alkyl ketone solvents such as methyl isobutyl ketone, methyl amyl ketone, cyclopentanone, or cyclohexanone, Or hydrocarbon solvents such as toluene, xylene, pentane, hexane, octane, decane, or dodecane, til alcohol, ethyl alcohol Alcohols such as coal, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, n-hexyl alcohol, n-heptyl alcohol, n-octyl alcohol, or n-decanol Glycol solvents such as ethylene glycol, diethylene glycol or triethylene glycol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether (PGME; 1-methoxy-2-propanol), ethylene glycol monoethyl ether, or propylene glycol monoethyl Glycol ether solvents such as ether, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, Examples thereof include amide solvents such as N, N-dimethylformamide. Among these, a highly hydrophobic solvent such as an ester solvent, a ketone solvent, an alkyl ketone solvent, or a hydrocarbon solvent is preferably used. However, the amount of the solvent remaining in the formed acrylic layer is preferably 0.1% by weight or less with respect to the total weight of the acrylic layer. The residual solvent here (also referred to as residual solvent) means that the solvent positively added as described above remains in the acrylic layer through the reaction in the third step described later, The corresponding solvent has no polymerizability. For example, a monomer component such as methyl methacrylate is liquid at room temperature, and other components that form the resin liquid may be dissolved or dispersed. However, since such a monomer component has polymerizability, In the invention, these components are not treated as solvents.
 本発明において、製造後のアクリル層の残溶剤の量を当該アクリル層の全重量に対して0.1重量%以下にするために、乾燥温度および/または乾燥温度の調製、溶剤含有量を使用する原料から低減させること、または形成されるアクリル層の厚さを調整することによって達成できる。例えば、形成されるアクリル層の好適範囲である40~80μmの場合に、用いられるアクリル系樹脂の固形分全量100重量%に対して、前記溶剤を20重量%以下で配合させることが好ましく、10重量%以下で配合させることがより好ましく、溶剤を実質的に配合させないことが特に好ましい。なお、ここでいう溶剤を実質的に配合させないというのは、積極的に溶剤を配合しないことを意味し、例えばモノマーを製造する際等に使用した溶剤がモノマー等に残留して組成物に含有されることとなった溶剤等のようにアクリル系樹脂液を調製する際に含有されてしまう溶剤まで排除するものではない。 In the present invention, in order to reduce the amount of residual solvent in the acrylic layer after production to 0.1% by weight or less based on the total weight of the acrylic layer, the drying temperature and / or the adjustment of the drying temperature and the solvent content are used This can be achieved by reducing the amount of the raw material to be formed, or adjusting the thickness of the formed acrylic layer. For example, in the case of 40 to 80 μm which is a preferable range of the acrylic layer to be formed, the solvent is preferably blended at 20 wt% or less with respect to 100 wt% of the total solid content of the acrylic resin used. It is more preferable that the amount is not more than wt%, and it is particularly preferable that the solvent is not substantially mixed. In addition, the fact that the solvent here is not substantially blended means that the solvent is not actively blended. For example, the solvent used in the production of the monomer remains in the monomer or the like and is contained in the composition. It does not exclude even a solvent that is contained when preparing an acrylic resin liquid, such as a solvent to be used.
 〔第2工程〕
 本発明に係るアクリル層を形成するための第2工程は、前記工程(1-a)で調製した紫外線硬化型アクリル系樹脂液、前記工程(1-b)で調製した熱硬化型アクリル系樹脂液、または市販のアクリル系樹脂液を、銀反射層などを形成された樹脂フィルム状支持体の光入射側の上面に塗布し、乾燥させ、塗膜を形成する工程である。
[Second step]
The second step for forming the acrylic layer according to the present invention includes the ultraviolet curable acrylic resin solution prepared in the step (1-a) and the thermosetting acrylic resin prepared in the step (1-b). In this step, a liquid or a commercially available acrylic resin liquid is applied to the upper surface on the light incident side of the resin film-like support on which a silver reflective layer or the like is formed, and dried to form a coating film.
 前記紫外線硬化型アクリル系樹脂液、熱硬化型アクリル系樹脂液、または市販のアクリル系樹脂液については、塗布される前に、塗布時の泡発生による外観不良の可能性を抑制する観点から、脱泡処理を行うことが好ましい。当該脱泡処理は、通常、常温で減圧状態に前記いずれかのアクリル系樹脂液を保持することによって行われる。前記脱泡処理を行うことによって、得られるアクリル層中に気泡が含有されなくなり、表面の平滑性が高く、密度の高いアクリル層を形成することができる。 For the ultraviolet curable acrylic resin liquid, thermosetting acrylic resin liquid, or commercially available acrylic resin liquid, before being applied, from the viewpoint of suppressing the possibility of poor appearance due to foam generation at the time of application, It is preferable to perform a defoaming process. The defoaming treatment is usually performed by holding any of the acrylic resin liquids in a reduced pressure state at room temperature. By performing the defoaming treatment, bubbles are not contained in the resulting acrylic layer, and an acrylic layer with high surface smoothness and high density can be formed.
 前記いずれかのアクリル系樹脂液は、例えば、アプリケーター、グラビアコーター、ドクターブレード、コンマコーター、ダイコーター、リバースコーター、ロールコーターなどの塗工装置を用いて、形成されたアクリル層の好ましい厚さの範囲に合わせて、銀反射層などを形成された樹脂フィルム状支持体の表面に塗布することができる。また、製造費用の観点から、ロールトゥロール方式により塗布することが好ましい。 The acrylic resin liquid of any one of the above, for example, by using a coating device such as an applicator, gravure coater, doctor blade, comma coater, die coater, reverse coater, roll coater, etc. It can apply | coat to the surface of the resin film-like support body in which the silver reflection layer etc. were formed according to the range. Moreover, it is preferable to apply | coat by a roll toe roll system from a viewpoint of manufacturing cost.
 本発明において、前記工程(1-a)によって調製された紫外線硬化型アクリル系樹脂液および前記工程(1-b)によって調製された熱硬化型アクリル系樹脂液、並びに市販のアクリル系樹脂液を塗布する際の塗布厚さは、硬化後のアクリル層の厚さが20~100μmの範囲であれば特に制限されない。 In the present invention, the ultraviolet curable acrylic resin liquid prepared in the step (1-a), the thermosetting acrylic resin liquid prepared in the step (1-b), and a commercially available acrylic resin liquid are used. The coating thickness at the time of coating is not particularly limited as long as the thickness of the cured acrylic layer is in the range of 20 to 100 μm.
 前記いずれかのアクリル系樹脂液を塗布し、乾燥させ、塗膜が形成される。 Any one of the acrylic resin liquids is applied and dried to form a coating film.
 本発明において、前記塗布方式による形成されたアクリル層は、貼合方式などによる形成されたアクリル層より表面の平滑性が高く、より反射率の高いフィルムミラーを得ることができる。また、ここで使用されるアクリル系樹脂液は、固形分濃度を高くすることができ、少ない溶剤量でも塗布することができるため、溶剤または溶剤による溶解する原料の銀反射層への浸透を抑えることができ、銀の着色などを抑えることができる。さらに、少ない溶剤量で塗布することで、形成されたアクリル層と隣接する層との間の密着性は、硬化過程を行わず溶剤でアクリル系樹脂液を溶かし塗布してなるアクリル層より向上することができる。 In the present invention, the acrylic layer formed by the coating method has a higher surface smoothness than the acrylic layer formed by the bonding method or the like, and a film mirror with higher reflectance can be obtained. Moreover, since the acrylic resin liquid used here can increase the solid content concentration and can be applied even with a small amount of solvent, the penetration of the solvent or the raw material dissolved by the solvent into the silver reflective layer is suppressed. It is possible to suppress coloring of silver and the like. Furthermore, by applying with a small amount of solvent, the adhesion between the formed acrylic layer and the adjacent layer is improved compared to the acrylic layer formed by dissolving the acrylic resin solution with a solvent without applying the curing process. be able to.
 〔第3工程〕
 本発明に係るアクリル層を形成するための第3工程は、前記第2工程で形成される塗膜を硬化する工程であり、より具体的に、前記紫外線硬化型塗膜を用いる場合の紫外線硬化工程(3-a)、または前記熱硬化型塗膜を用いる場合の熱硬化工程(3-b)を含む。これにより、前記紫外線硬化型塗膜または熱硬化型塗膜が硬化して、アクリル樹脂を含むアクリル層が得られる。なお、上記のように、用いられる市販のアクリル系樹脂液の種類によって、当該第3工程を省略することができる。以下工程(3-a)および工程(3-b)のそれぞれについて説明する。
[Third step]
The third step for forming the acrylic layer according to the present invention is a step of curing the coating film formed in the second step, and more specifically, UV curing when using the UV curable coating film. Step (3-a) or a thermosetting step (3-b) in the case of using the thermosetting coating film is included. Thereby, the said ultraviolet curable coating film or a thermosetting coating film hardens | cures, and the acrylic layer containing an acrylic resin is obtained. As described above, the third step can be omitted depending on the type of commercially available acrylic resin liquid used. Hereinafter, each of the step (3-a) and the step (3-b) will be described.
 工程(3-a)
 本発明に係る工程(3-a)は、前記紫外線硬化型アクリル系樹脂液を反応させてアクリル層を形成する工程である。すなわち、前記第2工程で得られた紫外線硬化型塗膜を、照度が100~1000mW/cmのランプを用いて、紫外線照射量が100~1000mJ/cmの範囲で断続的に照射し、原料モノマーが残存しなくなるまで紫外線照射を繰り返す工程である。なお、本発明において、紫外線照射用のランプは公知の物であればよく、例えば、ライトハンマー(FUSION JAPAN社製)が用いられる。
Step (3-a)
Step (3-a) according to the present invention is a step of forming an acrylic layer by reacting the ultraviolet curable acrylic resin liquid. That is, the ultraviolet curable coating film obtained in the second step is intermittently irradiated with a lamp having an illuminance of 100 to 1000 mW / cm 2 and an ultraviolet irradiation amount of 100 to 1000 mJ / cm 2 . This is a step of repeating the ultraviolet irradiation until the raw material monomer does not remain. In the present invention, the ultraviolet irradiation lamp may be a known one, and for example, a light hammer (manufactured by FUSION JAPAN) is used.
 工程(3-b)
 本発明に係る工程(3-b)は、前記熱硬化型アクリル系樹脂液を反応させてアクリル層を形成する工程である。すなわち、前記第2工程で得られた熱硬化型塗膜を加熱重合および熟成重合の二段階を経て、前記熱硬化型塗膜を硬化させる工程である。
Step (3-b)
Step (3-b) according to the present invention is a step of forming an acrylic layer by reacting the thermosetting acrylic resin liquid. That is, it is a step of curing the thermosetting coating film through two stages of heat polymerization and aging polymerization of the thermosetting coating film obtained in the second step.
 前記熱硬化型塗膜を、自己発熱、好ましくは断熱重合による自己発熱により重合させる(加熱重合段階)。ここで言う断熱重合とは、重合開始した塗膜を重合開始温度以下の熱伝達係数の大きな媒体に接触させることなく重合を行わせることを意味しており、通常は空気中で実施する。前記加熱重合段階では、上記で形成された熱硬化型塗膜を有する支持体を60℃以上の温度、好ましくは65℃以上の温度、特に好ましくは空気加熱では70~120℃の温度、金属ロールのように熱伝導率の大きな媒体で加熱する場合には60~200℃の温度で、前記熱硬化型塗膜を有する支持体が熱収縮などの変形を起こさない条件のもとで、加熱することにより開始する。 The thermosetting coating is polymerized by self-heating, preferably self-heating by adiabatic polymerization (heating polymerization stage). The adiabatic polymerization mentioned here means that the polymerization is started without bringing the coating film that has started polymerization into contact with a medium having a large heat transfer coefficient equal to or lower than the polymerization start temperature, and is usually carried out in air. In the heat polymerization step, the support having the thermosetting coating film formed as described above is heated to a temperature of 60 ° C. or higher, preferably 65 ° C. or higher, particularly preferably 70 to 120 ° C. by air heating. In the case of heating with a medium having a high thermal conductivity, the heating is performed at a temperature of 60 to 200 ° C. under the condition that the support having the thermosetting coating film does not undergo deformation such as heat shrinkage. Start by.
 本発明において、前記工程(1-b)により調製された熱硬化型アクリル系樹脂液の塗布の厚さが厚いため、初期に加熱して重合反応が開始すると熱硬化型塗膜を有する支持体表面からの放熱量よりも発熱量の方が大きいので、初期に熱硬化型塗膜を有する支持体を加熱して反応が開始すると、自己発熱によって反応が加速され、塗布された熱硬化型アクリル系樹脂液の塗膜の温度が加熱温度よりも高い温度になり、瞬間的に加熱温度より20~70℃高くなる。このときの反応は、主として10時間半減期が25~55℃の範囲内にある低温熱分解型重合開始剤によって開始される。このように加熱重合段階では、重合による自己発熱によって反応が進行するので、加熱重合段階の反応時間は、非常に短時間でよく、空気加熱では数十秒~20分間、好ましくは0.5~10分間であり、加熱金属ロールのような加熱媒体を使用する場合には0.1秒~20分間、好ましくは0.5秒~1分間である。前記加熱重合段階における加熱は、少なくとも加熱によって低温熱分解型重合開始剤が機能し始めるまで、好適には反応が開始し、低温熱分解型重合開始剤が大部分消費されるまで、通常は0.2~10分間、好ましくは0.5~5分間加熱される。 In the present invention, since the coating thickness of the thermosetting acrylic resin liquid prepared in the step (1-b) is thick, the support having the thermosetting coating film when the polymerization reaction is started by heating in the initial stage. Since the amount of heat generated is greater than the amount of heat released from the surface, when the reaction is started by heating a support having a thermosetting coating film in the initial stage, the reaction is accelerated by self-heating, and the applied thermosetting acrylic is applied. The temperature of the coating film of the system resin liquid becomes higher than the heating temperature, and instantaneously becomes 20 to 70 ° C. higher than the heating temperature. The reaction at this time is initiated mainly by a low-temperature pyrolytic polymerization initiator having a 10-hour half-life in the range of 25 to 55 ° C. Thus, in the heat polymerization stage, the reaction proceeds due to self-heating due to the polymerization, and therefore the reaction time in the heat polymerization stage may be very short, and in the case of air heating, several tens of seconds to 20 minutes, preferably 0.5 to The time is 10 minutes. When a heating medium such as a heated metal roll is used, the time is 0.1 second to 20 minutes, preferably 0.5 second to 1 minute. The heating in the heat polymerization step is usually at least until the low temperature pyrolysis polymerization initiator starts to function by heating, preferably until the low temperature pyrolysis polymerization initiator is consumed. It is heated for 2 to 10 minutes, preferably 0.5 to 5 minutes.
 前記加熱重合段階において、低温熱分解型重合開始剤の大部分が消費され、前記熱硬化型塗膜に残存する原料モノマー成分は、重合し、塗膜の全重量の2~20重量%になることが好ましく、2~15重量%になることがより好ましい、2~10重量%になることが特に好ましい。なお、本発明において、原料モノマー成分の量は、ガスクロマトグラフィーによって測定される。 In the heat polymerization step, most of the low-temperature pyrolysis polymerization initiator is consumed, and the raw material monomer components remaining in the thermosetting coating film are polymerized to 2 to 20% by weight of the total weight of the coating film. It is preferably 2 to 15% by weight, more preferably 2 to 10% by weight. In the present invention, the amount of the raw material monomer component is measured by gas chromatography.
 次いで、熟成重合段階を行う。本発明に係る熟成重合段階は、前記加熱重合段階を経た熱硬化型塗膜を有する支持体を60℃以上の加熱重合段階の加熱温度よりも低い温度で維持する段階である。 Next, an aging polymerization stage is performed. The aging polymerization stage according to the present invention is a stage in which the support having the thermosetting coating film that has undergone the heating polymerization stage is maintained at a temperature lower than the heating temperature of the heating polymerization stage of 60 ° C. or higher.
 本発明において、熟成重合段階を35~75℃の温度で行うことが好ましい。前記熟成重合段階では、前記加熱重合段階を経て残存する高温熱分解型重合開始剤が徐々に作用し、長時間に亘って前記残存する原料モノマーを重合させ、当該残存する原料モノマーの量が塗膜の全重量の2.0重量%以下になるまで、好ましくは0重量%まで(実質的に残存する原料モノマーがなくなるまで)行うため、前記加熱重合段階を経た支持体を、前記温度で、1時間~10日間保持することが好ましい。 In the present invention, the aging polymerization step is preferably performed at a temperature of 35 to 75 ° C. In the aging polymerization stage, the high temperature thermal decomposition type polymerization initiator remaining after the heating polymerization stage gradually acts to polymerize the remaining raw material monomer over a long period of time, and the amount of the remaining raw material monomer is applied. In order to carry out until it becomes 2.0 wt% or less of the total weight of the membrane, preferably 0 wt% (until there is substantially no raw material monomer remaining), the support subjected to the heating polymerization step is at the temperature, It is preferable to hold for 1 hour to 10 days.
 より具体的に、前記加熱重合段階を経た支持体を巻回し、当該巻回物を好ましくは35~75℃に加温された熟成重合装置内に保持する。このように熟成重合段階では、高温分解型重合開始剤が徐々に分解して穏和な条件で残存する原料モノマーの重合が進行し、アクリル層を形成する。 More specifically, the support that has undergone the heat polymerization step is wound, and the wound product is preferably held in an aging polymerization apparatus heated to 35 to 75 ° C. As described above, in the aging polymerization stage, the high-temperature decomposable polymerization initiator is gradually decomposed, and the polymerization of the remaining raw material monomers proceeds under mild conditions to form an acrylic layer.
 前記第3工程において、工程(3-a)の紫外線硬化反応または工程(3-b)の熱硬化反応によって前記塗膜を硬化することができる。生産性の観点から、紫外線硬化反応を行うことがより好ましい。 In the third step, the coating film can be cured by the ultraviolet curing reaction in the step (3-a) or the thermal curing reaction in the step (3-b). From the viewpoint of productivity, it is more preferable to perform an ultraviolet curing reaction.
 前記のように、本発明に係るアクリル層は、工程(1-a)、工程2、および工程(3-a)を経て、前記紫外線硬化型アクリル系樹脂液を反応させてなることができ、または、工程(1-b)、工程2、および工程(3-b)を経て、前記熱硬化型樹脂液を反応させてなることもできる。生産性の観点から紫外線硬化型アクリル系樹脂液を反応させてなることがより好ましい。 As described above, the acrylic layer according to the present invention can be obtained by reacting the ultraviolet curable acrylic resin liquid through the steps (1-a), 2 and (3-a), Alternatively, the thermosetting resin liquid can be reacted through step (1-b), step 2, and step (3-b). From the viewpoint of productivity, it is more preferable to react an ultraviolet curable acrylic resin liquid.
 [銀反射層]
 本発明に係る銀反射層は、樹脂フィルム状支持体の太陽光を反射する機能を有する銀を主成分とする層であり、好ましくは銀からなる層である。
[Silver reflection layer]
The silver reflective layer which concerns on this invention is a layer which has as a main component the silver which has the function to reflect the sunlight of a resin film-like support body, Preferably it is a layer which consists of silver.
 また、本発明に係る銀反射層は、耐久性を向上させる観点から、銀以外に、アルミニウム、クロム、ニッケル、チタン、マグネシウム、ロジウム、プラチナ、パラジウム、スズ、ガリウム、インジウム、ビスマスおよび金からなる群から1種以上の他の金属をからなる銀の合金が主成分として含んでもよい。前記のような銀の合金が銀反射層の主成分である場合には、銀反射層における銀と他の金属との合計(100原子%)中、銀原子は90~99.8原子%であることが好ましく、他の金属原子は、耐久性の観点から、0.2~10原子%であることが好ましい。特に、高温耐湿性および反射率の点から、他の金属として金がより好ましい。 Moreover, the silver reflective layer which concerns on this invention consists of aluminum, chromium, nickel, titanium, magnesium, rhodium, platinum, palladium, tin, gallium, indium, bismuth, and gold other than silver from a viewpoint of improving durability. A silver alloy comprising one or more other metals from the group may be included as a main component. When the silver alloy as described above is the main component of the silver reflective layer, the silver atom is 90 to 99.8 atomic% in the total of silver and other metals (100 atomic%) in the silver reflective layer. It is preferable that the other metal atom is 0.2 to 10 atom% from the viewpoint of durability. In particular, gold is more preferable as the other metal from the viewpoint of high temperature humidity resistance and reflectance.
 本発明に係る銀反射層の表面反射率は、好ましくは80%以上であり、より好ましくは90%以上である。なお、本発明において、表面反射率は、市販の分光光度計、例えばU-4100(日本分光株式会社製)を用いて、測定することができる。 The surface reflectance of the silver reflective layer according to the present invention is preferably 80% or more, more preferably 90% or more. In the present invention, the surface reflectance can be measured using a commercially available spectrophotometer, such as U-4100 (manufactured by JASCO Corporation).
 本発明に係る銀反射層の厚さは、反射率などの観点から、10~200nmであることが好ましく、30~150nmであることがより好ましい。厚さが10nm以上であれば、光を透過してしまうことがなく、フィルムミラーの可視光領域での反射率を十分確保できるため好ましい。また、フィルムミラーの可視光領域での反射率は、厚さが200nm程度までは銀反射層の厚さに比例して大きくなるが、厚さが200nmを超えると依存しなくなる傾向がある。 The thickness of the silver reflective layer according to the present invention is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like. A thickness of 10 nm or more is preferable because it does not transmit light and can sufficiently ensure the reflectance in the visible light region of the film mirror. Further, the reflectance in the visible light region of the film mirror increases in proportion to the thickness of the silver reflection layer up to a thickness of about 200 nm, but tends to become independent when the thickness exceeds 200 nm.
 本発明に係る銀反射層の表面粗さRaは、0.01~0.1μmであることが好ましく、0.02~0.07μmであることがより好ましい。 The surface roughness Ra of the silver reflecting layer according to the present invention is preferably 0.01 to 0.1 μm, and more preferably 0.02 to 0.07 μm.
 本発明において、フィルムミラーに二層以上の銀反射層を有いていてもよい。そうすることにより、フィルムミラーの赤外領域から可視光領域までの反射率を高め、入射角による反射率の依存性を低減できる。なお、赤外領域から可視光領域とは、400~2500nmの波長領域を意味する。入射角とは、フィルムミラーの膜面に対して垂直な線(法線)に対する角度を意味する。 In the present invention, the film mirror may have two or more silver reflective layers. By doing so, the reflectance from the infrared region to the visible light region of the film mirror can be increased, and the dependency of the reflectance on the incident angle can be reduced. Note that the infrared region to visible light region means a wavelength region of 400 to 2500 nm. The incident angle means an angle with respect to a line (normal line) perpendicular to the film surface of the film mirror.
 本発明において、銀反射層は、太陽光入射側の樹脂フィルム状支持体などより表面側に設けられてもよく、その反対側(太陽光入射側の樹脂フィルム状支持体などより裏面側)に設けられてもよい。樹脂フィルム状支持体などが、太陽光線の紫外線により樹脂が劣化しにくい観点から、太陽光入射側の樹脂フィルム状支持体などより表面側に設けられることが好ましい。また、本発明に係る銀反射層と本発明に係るアクリル層とは、隣接していてもよく、他の層を介していてもよいが、アクリル層に含有される紫外線吸収剤もしくは紫外線吸収性基を有する樹脂が紫外線を吸収することにより分解し、それに伴って発生するラジカルなどが銀反射層に進入し銀の凝集をもたらすリスクを低減する観点から、他の層を介していることが好ましい。なお、ここで言う他の層は、単一の層として存在していてもよく、複数の層として存在していてもよいが、その合計厚さ、すなわち、本発明に係る銀反射層と本発明に係るアクリル層との距離が、1μm以上であることが好ましく、本発明のフィルムミラー全体の薄膜化に貢献する観点から、30μm以下であることが好ましく、5μm以下であることがより好ましい。なお、ここでいう銀反射層とアクリル層との距離とは、銀反射層とアクリル層との最も接近するそれぞれの表面の間の距離を意味する。 In the present invention, the silver reflection layer may be provided on the surface side from the resin film-like support on the sunlight incident side, and on the opposite side (on the back side from the resin film-like support on the sunlight incidence side). It may be provided. It is preferable that the resin film-like support is provided on the surface side from the resin incident support on the sunlight incident side or the like from the viewpoint that the resin is not easily deteriorated by the ultraviolet rays of sunlight. In addition, the silver reflective layer according to the present invention and the acrylic layer according to the present invention may be adjacent to each other or may be interposed with other layers, but the ultraviolet absorber or ultraviolet absorptivity contained in the acrylic layer. From the viewpoint of reducing the risk that the group-containing resin is decomposed by absorbing ultraviolet rays, and the radicals and the like generated accompanying the resin enter the silver reflecting layer and cause aggregation of silver, it is preferable that the resin has another layer. . The other layers mentioned here may exist as a single layer, or may exist as a plurality of layers, but the total thickness thereof, that is, the silver reflective layer and the book according to the present invention. The distance from the acrylic layer according to the invention is preferably 1 μm or more, and from the viewpoint of contributing to thinning of the entire film mirror of the present invention, it is preferably 30 μm or less, and more preferably 5 μm or less. In addition, the distance of a silver reflection layer and an acrylic layer here means the distance between each surface which the silver reflection layer and an acrylic layer approach most.
 (銀反射層の形成)
 本発明に係る銀反射層の形成法としては、湿式法または乾式法を使用することができる。本発明において、湿式法とは、めっき法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例として、銀鏡反応などの方法が挙げられる。乾式法とは、真空製膜法の総称であり、具体的には、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。とりわけ、本発明において、連続的に製膜するロールトゥロール方式が可能な蒸着法が好ましく用いられる。すなわち、本発明のフィルムミラーの製造方法においては、銀反射層を蒸着によって形成することが好ましい。
(Formation of silver reflective layer)
As a method for forming the silver reflective layer according to the present invention, a wet method or a dry method can be used. In the present invention, the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction methods. The dry method is a general term for a vacuum film forming method, and specifically includes a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, a sputtering method, and the like. is there. In particular, in the present invention, a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used. That is, in the film mirror manufacturing method of the present invention, the silver reflective layer is preferably formed by vapor deposition.
 一方、前記乾式法や湿式法の他に、配位子が気化・脱離しうる銀錯体化合物を含有する塗布膜を加熱焼成することにより、本発明に係る銀反射層を形成してもよい。前記「気化・脱離しうる配位子を有する銀錯体化合物」とは、溶液中では銀が安定に溶解するための配位子を有するが、溶媒を除去し、加熱焼成することによって、配位子が熱分解し、COや低分子量のアミン化合物となり、気化・脱離し、金属銀のみが残存することのできる銀錯体化合物のことをいう。このような銀錯体化合物およびその製造方法については、例えば、公知である特開2012-137579号公報の段落「0064」~「0089」に記載の銀錯体化合物およびその製造方法を適宜用いることができる。 On the other hand, in addition to the dry method and the wet method, the silver reflective layer according to the present invention may be formed by heating and baking a coating film containing a silver complex compound from which a ligand can be vaporized / desorbed. The above-mentioned “silver complex compound having a ligand that can be vaporized and desorbed” has a ligand for stably dissolving silver in a solution, but it is coordinated by removing the solvent and heating and baking. This is a silver complex compound in which the child is thermally decomposed to become CO 2 or a low molecular weight amine compound, vaporized and eliminated, and only metallic silver can remain. As for such a silver complex compound and a method for producing the same, for example, a silver complex compound and a method for producing the same described in paragraphs “0064” to “0089” of JP-A-2012-137579, which are publicly known, can be used as appropriate. .
 また、前記配位子が気化・脱離しうる銀錯体化合物を含有する塗布膜を加熱焼成することにより、本発明に係る銀反射層を形成する場合は、銀反射層の隣接層に含窒素環状化合物を含有することが好ましい。当該含窒素環状化合物としては、銀に対する吸着性基を有する腐食防止剤および酸化防止剤が好ましく用いられる。 In addition, when the silver reflective layer according to the present invention is formed by heating and baking a coating film containing a silver complex compound from which the ligand can be vaporized and desorbed, a nitrogen-containing cyclic layer is formed in the adjacent layer of the silver reflective layer. It is preferable to contain a compound. As the nitrogen-containing cyclic compound, a corrosion inhibitor and an antioxidant having an adsorptive group for silver are preferably used.
 前記含窒素環状化合物である銀に対する吸着性基を有する腐食防止剤としては、例えば、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物の少なくとも一種またはこれらの混合物から選ばれることが好ましい。なお、本明細書において、「腐食」とは、銀が、それを取り込む環境物質によって、化学的または電気化学的に侵食されるか、もしくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。 Examples of the corrosion inhibitor having an adsorptive group for silver which is the nitrogen-containing cyclic compound include a compound having a pyrrole ring, a compound having a triazole ring, a compound having a pyrazole ring, a compound having an imidazole ring, and an indazole ring. It is preferably selected from at least one kind of compound or a mixture thereof. In this specification, the term “corrosion” refers to a phenomenon in which silver is chemically or electrochemically eroded or deteriorated by the environmental material that takes it in (see JIS Z0103-2004). ).
 また、前記ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、イミダゾール環を有する化合物、およびインダゾール環を有する化合物としての腐食防止剤は、後述する[樹脂コート層]欄に開示する腐食防止剤のうち、前記のそれぞれに該当する窒素環状化合物でありうる。 Further, the corrosion inhibitor as a compound having a pyrrole ring, a compound having a triazole ring, a compound having a pyrazole ring, a compound having an imidazole ring, and a compound having an indazole ring is disclosed in the [resin coat layer] column described later. Among the corrosion inhibitors, nitrogen cyclic compounds corresponding to each of the above may be used.
 また、前記含窒素環状化合物である銀に対する吸着性基を有する酸化防止剤としては、前記[アクリル層]欄に開示する酸化防止剤のうち、窒素環を有するフェノール系酸化防止剤、チオール系酸化防止剤およびホスファイト系酸化防止剤などが好適に用いられる。さらに、前記酸化防止剤と光安定剤とを併用することもできる。光安定剤としては公知のものが適宜選択され、例えば特開2012-232538号公報の段落「0049」~「0053」に開示されるものが用いられる。 In addition, as the antioxidant having an adsorptive group for silver which is the nitrogen-containing cyclic compound, among the antioxidants disclosed in the [Acrylic layer] column, a phenol-based antioxidant having a nitrogen ring, a thiol-based oxidation Inhibitors and phosphite antioxidants are preferably used. Furthermore, the antioxidant and the light stabilizer can be used in combination. As the light stabilizer, known ones are appropriately selected, and for example, those disclosed in paragraphs “0049” to “0053” of JP2012-232538A are used.
 [樹脂フィルム状支持体]
 本発明に係る樹脂フィルム状支持体は、としては、従来公知の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムなどを挙げることができる。中でも、ポリカーボネート系フィルム、ポリエチレンテレフタレートなどのポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルム、アクリルフィルムが好ましい。特にポリエチレンテレフタレートなどのポリエステル系フィルム又はアクリルフィルムを用いることが好ましく、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
[Resin film-like support]
As the resin film-like support according to the present invention, various conventionally known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyester film such as polyethylene terephthalate, polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentene Irumu, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and the like acrylic film. Among these, polycarbonate films, polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. In particular, it is preferable to use a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
 本発明に係る樹脂フィルム状支持体は、紫外線が樹脂フィルム状支持体に到達しにくい観点から、太陽光入射側から銀反射層よりも遠い位置にあることが好ましい。特に、樹脂フィルム状支持体よりも太陽光入射側にあるアクリル層の存在や、紫外線吸収剤を添加したアクリル層や後述するハードコート層などを樹脂フィルム状支持体よりも太陽光入射側に配置した場合には、紫外線が、樹脂フィルム状支持体により一層到達しにくい。従って、本発明に係る樹脂フィルム状支持体は、紫外線に対して劣化しやすい樹脂であっても用いることが可能である。そのような観点から、樹脂フィルム状支持体として、ポリエチレンテレフタレート等のポリエステルフィルムを用いることが可能である。 The resin film support according to the present invention is preferably at a position farther from the sunlight incident side than the silver reflection layer from the viewpoint that ultraviolet rays hardly reach the resin film support. In particular, the presence of an acrylic layer on the sunlight incident side of the resin film-like support, an acrylic layer with an ultraviolet absorber added, and a hard coat layer to be described later are arranged on the sunlight incidence side of the resin film-like support. In this case, ultraviolet rays are less likely to reach the resin film support. Therefore, the resin film-like support according to the present invention can be used even if it is a resin that easily deteriorates with respect to ultraviolet rays. From such a viewpoint, it is possible to use a polyester film such as polyethylene terephthalate as the resin film-like support.
 本発明に係る樹脂フィルム状支持体の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10~250μmであり、好ましくは20~200μmである。 The thickness of the resin film-like support according to the present invention is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally 10 to 250 μm, preferably 20 to 200 μm.
 また、本発明のフィルムミラーは、前記支持体が樹脂フィルムであるため、従来のガラス製支持体と異なり、割れやすいなどの問題が発生せず、さらに柔軟性もある。 In addition, since the support is a resin film, the film mirror of the present invention does not have a problem such as being easily broken unlike a conventional glass support, and further has flexibility.
 [ハードコート層]
 本発明において、アクリル層の光入射側にハードコート層を設けてもよい。
[Hard coat layer]
In the present invention, a hard coat layer may be provided on the light incident side of the acrylic layer.
 本発明に係るハードコート層は、フィルムミラー表面の傷つきまたは汚れの付着を防止する目的に設けられる。透明ハードコート層は、光入射側から最表層、第2層目または第3層目のいずれかであることが好ましく、フィルムミラーに付着した汚れをブラシなどで洗い流すことによるフィルムミラー表面の傷つきも低減することができ、結果として反射効率の低下も防止できる観点から、最表層の位置として設けられることがより好ましい。ハードコート層の上に更に薄い層(1μm以下の厚さが好ましい)を設けてもよい。 The hard coat layer according to the present invention is provided for the purpose of preventing the film mirror surface from being damaged or contaminated. The transparent hard coat layer is preferably the outermost layer, the second layer, or the third layer from the light incident side, and the film mirror surface is also damaged by washing away dirt adhering to the film mirror with a brush or the like. From the viewpoint of reducing the reflection efficiency and, as a result, preventing a decrease in reflection efficiency, it is more preferable to provide the outermost layer as a position. A thinner layer (preferably having a thickness of 1 μm or less) may be provided on the hard coat layer.
 なお、本発明に係るハードコート層の厚さは、0.05~10μmであることが好ましく、1~4μmであることがより好ましく、1.5~3μmであることがさらに好ましい。ハードコート層の厚さが0.05μm以上であれば、十分な耐傷性を得ることができる。また、ハードコート層の厚さが10μm以下であれば、応力が強くなり過ぎてハードコート層が割れることを防止でき、さらに、砂塵等の汚れの静電的な付着を防止する観点からも厚さが10μm以下であることが好ましい。 Note that the thickness of the hard coat layer according to the present invention is preferably 0.05 to 10 μm, more preferably 1 to 4 μm, and even more preferably 1.5 to 3 μm. If the thickness of the hard coat layer is 0.05 μm or more, sufficient scratch resistance can be obtained. In addition, if the thickness of the hard coat layer is 10 μm or less, it is possible to prevent the hard coat layer from cracking due to excessive stress, and from the viewpoint of preventing electrostatic adhesion of dirt such as dust. Is preferably 10 μm or less.
 本発明に係るハードコート層の耐傷性は、鉛筆硬度がH以上6H未満、加重500g/cmのスチールウール試験における傷が30本以下であることが好ましい。鉛筆硬度は鉛筆硬度試験JIS-K5400に基づいて、各サンプルの45°傾斜、1Kg荷重における鉛筆硬度を評価する。防汚性に関しては、フィルムミラーの最表面の電気抵抗値が、1.0×10-3~1.0×1012Ω・□であることが好ましい。より好ましくは、3.0×10~2.0×1011Ω・□である。表面電気抵抗値は三菱化学社製ハイレスタを用い、JIS K 7194の規格に従って測定する。但し、試料は湿度50%、温度50℃の環境に2時間以上放置した後、その試料を導電性のある金属板上に置き、500Vの電圧を加え、測定開始30秒後の試料の表面電気抵抗値をプローブを用いて測定する。防汚性に関するもう一つの指標としては、ハードコート層の転落角が0°より大きく30°以下であれば雨や結露などによってフィルムミラー表面に付着する水滴が落ちやすくなるため好ましい。なお、転落角とは、水平なミラー上に水滴を滴下し、その後、当該ミラーの傾斜角を徐々に上げていき、静止していた所定重量の水滴が転落する最小の角度を計測したものをいう。転落角が小さければ小さい程、水滴が表面から転がり落ちやすく、水滴が付着しにくい表面であると言える。なお、スチールウール試験は往復摩耗試験機(新東科学(株)製HEIDON-14DR)に摩耗材としてスチールウール(#0000)を取り付け、荷重500g/cmの条件で各撥水・防汚性物品の表面を速度10mm/secで10回往復させ、傷本数を評価する試験である。また、転落角は、接触角計DM501(協和界面化学)に滑落法キットDM‐SA01を取り付け、水50μl滴下し、支持体を水平状態から0.5°/秒の速度で傾けていき、水滴が転がり落ちるときの角度を転落角として測定する。転落角の小さい方が水滴が落ちやすく防汚性に優れ、好ましい。 The scratch resistance of the hard coat layer according to the present invention is preferably 30 or less in a steel wool test with a pencil hardness of H or more and less than 6H and a load of 500 g / cm 2 . The pencil hardness is evaluated based on the pencil hardness test JIS-K5400. The pencil hardness of each sample at 45 ° inclination and 1 kg load is evaluated. Regarding the antifouling property, it is preferable that the electric resistance value of the outermost surface of the film mirror is 1.0 × 10 −3 to 1.0 × 10 12 Ω · □. More preferably, it is 3.0 × 10 9 to 2.0 × 10 11 Ω · □. The surface electrical resistance value is measured according to the standard of JIS K 7194 using Hiresta manufactured by Mitsubishi Chemical Corporation. However, after leaving the sample in an environment with a humidity of 50% and a temperature of 50 ° C. for 2 hours or more, placing the sample on a conductive metal plate, applying a voltage of 500 V, and measuring the surface electricity of the sample 30 seconds after the start of measurement. The resistance value is measured using a probe. As another index regarding the antifouling property, it is preferable that the falling angle of the hard coat layer is larger than 0 ° and not larger than 30 ° because water droplets adhering to the surface of the film mirror easily fall off due to rain or condensation. The falling angle refers to a value obtained by dropping a water drop on a horizontal mirror and then gradually increasing the tilt angle of the mirror to measure the minimum angle at which a predetermined weight of water drop falls. Say. It can be said that the smaller the tumbling angle, the easier the water droplets to roll off the surface, and the surface to which the water droplets hardly adhere. In the steel wool test, steel wool (# 0000) was attached as a wear material to a reciprocating abrasion tester (HEIDON-14DR manufactured by Shinto Kagaku Co., Ltd.), and each water repellency and antifouling property was applied under a load of 500 g / cm 2 . This test evaluates the number of scratches by reciprocating the surface of the article 10 times at a speed of 10 mm / sec. The sliding angle was measured by attaching a sliding method kit DM-SA01 to a contact angle meter DM501 (Kyowa Interface Chemistry), dropping 50 μl of water, tilting the support from a horizontal state at a speed of 0.5 ° / second, The angle at which the rolls down is measured as the fall angle. A smaller rolling angle is preferable because water droplets can be easily dropped and have excellent antifouling properties.
 本発明に係るハードコート層の材料としては、透明性、耐久性、耐傷性、防汚性が得られるものであることが好ましい。本発明に係るハードコート層は、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂などで構成することができる。特に、耐傷性の観点から、シリコーン系樹脂またはアクリル系樹脂が好ましい。さらに、硬化性、可撓性および生産性の観点から、活性エネルギー線硬化型のアクリル系樹脂、または熱硬化型のアクリル系樹脂からなるものが好ましい。 As a material for the hard coat layer according to the present invention, it is preferable that transparency, durability, scratch resistance, and antifouling properties are obtained. The hard coat layer according to the present invention can be composed of an acrylic resin, a urethane resin, a melamine resin, an epoxy resin, an organic silicate compound, a silicone resin, or the like. In particular, a silicone resin or an acrylic resin is preferable from the viewpoint of scratch resistance. Further, from the viewpoint of curability, flexibility, and productivity, those made of an active energy ray-curable acrylic resin or a thermosetting acrylic resin are preferable.
 活性エネルギー線硬化型のアクリル系樹脂または熱硬化型のアクリル系樹脂とは、重合硬化成分として多官能アクリレート、アクリルオリゴマーあるいは反応性希釈剤を含む組成物である。その他に必要に応じて光開始剤、光増感剤、熱重合開始剤あるいは改質剤等を含有しているものを用いてもよい。 The active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component. In addition, you may use what contains a photoinitiator, a photosensitizer, a thermal-polymerization initiator, a modifier, etc. as needed.
 前記アクリルオリゴマーとは、アクリル系樹脂骨格に反応性のアクリル基が結合されたものを始めとして、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレートなどであり、また、メラミンやイソシアヌール酸などの剛直な骨格にアクリル基を結合したものなども用いられ得る。なお、オリゴマーは、ある程度分子量の大きい、例えば、重量平均分子量が1000以上10000未満のものである。 Examples of the acrylic oligomer include polyester acrylate, urethane acrylate, epoxy acrylate, polyether acrylate, and the like in which a reactive acrylic group is bonded to an acrylic resin skeleton, and also melamine, isocyanuric acid, and the like. A material in which an acrylic group is bonded to a rigid skeleton may also be used. The oligomer has a molecular weight that is somewhat large, for example, a weight average molecular weight of 1000 or more and less than 10,000.
 また、前記反応性希釈剤とは、塗工剤の媒体として塗工工程での溶剤の機能を担うと共に、それ自体が一官能性あるいは多官能性のアクリルオリゴマーと反応する基を有し、塗膜の共重合成分となるものである。 The reactive diluent serves as a solvent for the coating process as a coating agent medium, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component of the film.
 市販されている多官能アクリル系硬化塗料としては、商品名“ダイヤビーム(登録商標)”シリーズなど(三菱レイヨン株式会社製)、商品名“デナコール”(登録商標)シリーズなど(長瀬産業株式会社製)、商品名“NKエステル”シリーズなど(新中村株式会社製)、商品名“UNIDIC(登録商標)”シリーズなど(大日本インキ化学工業株式会社製)、商品名“アロニックス(登録商標)”シリーズなど(東亞合成株式会社製)、商品名“ブレンマー(登録商標)”シリーズなど(日油株式会社製)、商品名“KAYARAD(登録商標)”シリーズなど(日本化薬株式会社製)、商品名“ライトエステル”シリーズまたは“ライトアクリレート”シリーズなど(共栄社化学株式会社製)などが挙げられる。 Commercially available polyfunctional acrylic cured paints such as “Diabeam (registered trademark)” series (Mitsubishi Rayon Co., Ltd.), and “Denacol” (registered trademark) series (Nagase Sangyo Co., Ltd.) ), Product name “NK Ester” series (made by Shin-Nakamura Co., Ltd.), product name “UNIDIC (registered trademark)” series (made by Dainippon Ink & Chemicals, Inc.), product name “Aronix (registered trademark)” series (Made by Toagosei Co., Ltd.), brand name “Blemmer (registered trademark)” series (made by NOF Corporation), brand name “KAYARAD (registered trademark)” series (made by Nippon Kayaku Co., Ltd.), brand name, etc. Examples include the “light ester” series or “light acrylate” series (manufactured by Kyoeisha Chemical Co., Ltd.).
 更に具体的には、例えば、商品名Perma-New(登録商標)6000など(California Hardcoating社製)などの熱硬化型のポリシロキサン樹脂からなるハードコート液、電子線や紫外線の照射により硬化するハードコート液、特にアルコキシシラン系化合物の部分加水分解オリゴマーからなる熱硬化型シリコーン系ハードコート液、不飽和基を有するアクリル系化合物からなる紫外線硬化型アクリル系ハードコート液、熱硬化型無機材料であることが好ましい。 More specifically, for example, a hard coat solution made of a thermosetting polysiloxane resin such as a trade name Perma-New (registered trademark) 6000 (manufactured by California Hardcoating Co., Ltd.), a hard coating that is cured by irradiation with electron beams or ultraviolet rays. Coating liquids, especially thermosetting silicone hard coat liquids composed of partially hydrolyzed oligomers of alkoxysilane compounds, ultraviolet curable acrylic hard coat liquids composed of acrylic compounds having unsaturated groups, and thermosetting inorganic materials. It is preferable.
 また、ハードコート層に用いることができる材料として、水性コロイダルシリカ含有アクリル樹脂(特開2005-66824号公報)、ポリウレタン系樹脂組成物(特開2005-110918号公報)、水性シリコーン化合物をバインダーとして用いた樹脂膜(特開2004-142161号公報)、酸化チタン等の光触媒性酸化物含有シリカ膜もしくはアルミナ、アスペクト比の高い酸化チタンもしくは酸化ニオブなどの光触媒膜(特開2009-62216)、光触媒含有フッ素樹脂コーティング(ピアレックス・テクノロジーズ社)、有機/無機ポリシラザン膜、有機/無機ポリシラザンに親水化促進剤(AZエレクトロニクス社)を用いた膜、等も挙げることができる。 As materials that can be used for the hard coat layer, an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane-based resin composition (Japanese Patent Laid-Open No. 2005-110918), and an aqueous silicone compound as a binder. Resin film used (Japanese Patent Laid-Open No. 2004-142161), photocatalytic oxide-containing silica film such as titanium oxide or alumina, photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio (Japanese Patent Laid-Open No. 2009-62216), photocatalyst Examples thereof include a fluorine-containing resin coating (Pierex Technologies), an organic / inorganic polysilazane film, and a film using a hydrophilization accelerator (AZ Electronics) in organic / inorganic polysilazane.
 熱硬化型シリコーン系のハードコート層には公知の方法によって合成したアルコキシシラン化合物の部分加水分解オリゴマーを使用できる。その合成方法の一例は以下の通りである。まず、アルコキシシラン化合物としてテトラメトキシシラン、又はテトラエトキシシランを用い、これを塩酸、硝酸等の酸触媒の存在下に所定量の水を加えて、副生するアルコールを除去しながら室温から80℃で反応させる。この反応によりアルコキシシランは加水分解し、更に縮合反応により一分子中にシラノール基又はアルコキシ基を2個以上有し、平均重合度4~8のアルコキシシラン化合物の部分加水分解オリゴマーが得られる。次にこれに酢酸、マレイン酸等の硬化触媒を添加し、アルコール、グリコールエーテル系の有機溶剤に溶解させて熱硬化型シリコーン系ハードコート液が得られる。そしてこれを通常の塗料における塗装方法によりフィルムミラー等の外面に塗布し、80~140℃の温度で加熱硬化することによってハードコート層を形成させる。但しこの場合、フィルムミラーの熱変形温度以下での硬化温度の設定が前提となる。なお、テトラアルコキシシランの代わりにジ(アルキルまたはアリール)ジアルコキシシラン、並びに/あるいはモノ(アルキルまたはアリール)トリアルコキシシランを使用することにより、同様にポリシロキサン系のハードコート層を製造することが可能である。 For the thermosetting silicone hard coat layer, a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used. An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with. By this reaction, the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction. Next, a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply | coated to the outer surface of a film mirror etc. with the coating method in a normal coating material, and a hard-coat layer is formed by heat-hardening at the temperature of 80-140 degreeC. However, in this case, the setting of the curing temperature below the thermal deformation temperature of the film mirror is a prerequisite. By using di (alkyl or aryl) dialkoxysilane and / or mono (alkyl or aryl) trialkoxysilane instead of tetraalkoxysilane, a polysiloxane hard coat layer can be produced in the same manner. Is possible.
 紫外線硬化型アクリル系のハードコート層には、不飽和基を有するアクリル系化合物として、例えばペンタエリスリトールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールテトラ(メタ)アクリレート等の多官能(メタ)アクリレート混合物等を使用することができ、これにベンゾイン、ベンゾインメチルエーテル、ベンゾフェノン等の光重合開始剤を配合して用いる。そしてこれを反射フィルム10等の外面に塗布し、紫外線硬化することによってハードコート層が形成される。 For the ultraviolet curable acrylic hard coat layer, for example, an acrylic compound having an unsaturated group, such as pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethyloltetra A polyfunctional (meth) acrylate mixture such as (meth) acrylate can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, or benzophenone is blended and used. And a hard-coat layer is formed by apply | coating this to outer surfaces, such as the reflective film 10, and ultraviolet-curing.
 なお、本発明において、前記の開示した各種の樹脂のうち、ハードコート層の薄さと耐傷性とを両立させるために、重合度の高い樹脂からハードコート層を構成することが好ましい。 In the present invention, among the various resins disclosed above, the hard coat layer is preferably composed of a resin having a high degree of polymerization in order to achieve both the thinness of the hard coat layer and the scratch resistance.
 (添加剤)
 ハードコート層に紫外線吸収剤や酸化防止剤などの各種の添加剤を含有させてもよい。以下に各種の添加剤について詳述する。
(Additive)
The hard coat layer may contain various additives such as an ultraviolet absorber and an antioxidant. Various additives will be described in detail below.
 本発明に係るハードコート層に紫外線吸収剤または酸化防止剤などの添加剤を含有させてもよく、前記[アクリル層]欄に開示される紫外線吸収剤または酸化防止剤が好適に用いられる。 The hard coat layer according to the present invention may contain an additive such as an ultraviolet absorber or an antioxidant, and the ultraviolet absorber or antioxidant disclosed in the [Acrylic layer] column is preferably used.
 なお、ハードコート層における紫外線吸収剤の含有量は、密着性を良好に保ちつつ、耐久性を良好にするために、ハードコート層の組成物全量100重量%に対して、0.1~20重量%であることが好ましく、0.25~15重量%であることがより好ましく、0.5~10重量%であることが特に好ましい。また、ハードコート層における酸化防止剤の含有量は、酸化防止剤の機能とブリードアウトのバランスを考慮して、ハードコート層の組成物全量100重量%に対して、0.01~3重量%であることが好ましく、0.1~2重量%であることがより好ましく、0.3~1.5重量%であることが特に好ましい。 The content of the ultraviolet absorber in the hard coat layer is 0.1 to 20 with respect to 100% by weight of the total composition of the hard coat layer in order to improve the durability while maintaining good adhesion. % By weight is preferable, 0.25 to 15% by weight is more preferable, and 0.5 to 10% by weight is particularly preferable. The content of the antioxidant in the hard coat layer is 0.01 to 3% by weight with respect to 100% by weight of the total composition of the hard coat layer in consideration of the balance between the function of the antioxidant and the bleed out. It is preferably 0.1 to 2% by weight, more preferably 0.3 to 1.5% by weight.
 その他に、例えば、公知の光安定剤、界面活性剤、レベリング剤および帯電防止剤などを必要に応じて本発明に係るハードコート層に配合することもできる。 In addition, for example, known light stabilizers, surfactants, leveling agents, antistatic agents, and the like can be blended in the hard coat layer according to the present invention as necessary.
 また、本発明に係るハードコート層に表面処理を施してもよい。例えば、コロナ処理(特開平11-172028公報)、プラズマ表面処理、紫外線・オゾン処理、表面突起物形成(特開2009-226613公報)、表面微細加工処理などを挙げることができる。 Further, the hard coat layer according to the present invention may be subjected to a surface treatment. For example, corona treatment (JP-A-11-172028), plasma surface treatment, ultraviolet / ozone treatment, surface projection formation (JP-A-2009-226613), surface micromachining treatment, and the like can be mentioned.
 (ハードコート層の形成)
 本発明に係るハードコート層の形成方法としては、ワイヤーバーコート法、グラビアコート法、リバースコート法、ダイコート法など、従来公知のコーティング方法が使用できる。
(Formation of hard coat layer)
As a method for forming the hard coat layer according to the present invention, conventionally known coating methods such as a wire bar coating method, a gravure coating method, a reverse coating method, and a die coating method can be used.
 本発明に係るハードコート層は、前記ハードコート液を用いて、例えば、用いるハードコート液が熱硬化型である場合において、当該ハードコート液を、ワイヤーバーによりアクリル層を有する支持体にコートし、乾燥させた後に、30~130℃にて、0.5~168時間の熱処理を行うことにより形成することができる。 The hard coat layer according to the present invention uses the hard coat liquid, for example, when the hard coat liquid to be used is a thermosetting type, the hard coat liquid is coated on a support having an acrylic layer with a wire bar. After drying, the film can be formed by performing heat treatment at 30 to 130 ° C. for 0.5 to 168 hours.
 また、本発明に係るハードコート層は、例えば、ポリシラザン、酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化ランタン、窒化ランタンなどの無機物から形成されることもできる。このような場合は、真空製膜法により製膜することで形成できる。前記真空製膜法としては、例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。 Further, the hard coat layer according to the present invention can be formed of an inorganic material such as polysilazane, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, or lanthanum nitride. In such a case, it can be formed by forming a film by a vacuum film forming method. Examples of the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
 [樹脂コート層]
 本発明のフィルムミラーにおいて、銀反射層に隣接して樹脂コート層が設けられることが好ましい。例えば、アクリル層と銀反射層との間に、または光入射側からみて銀反射層が樹脂フィルム状支持体の下層に位置する場合に、銀反射層よりも下層に、樹脂コート層がさらに設けられることができる。本発明に係る樹脂コート層は、空気中の水分や化学物質などが銀反射層へ侵入し、銀反射層を腐食させることを防止し、さらに外部からの例えば衝撃や引っ掻きなどの機械的な圧力から、銀反射層を保護する機能を有する。また、本発明に係る樹脂コート層は、紫外線吸収機能を有していてもよい。
[Resin coat layer]
In the film mirror of the present invention, a resin coat layer is preferably provided adjacent to the silver reflective layer. For example, a resin coating layer is further provided below the silver reflection layer between the acrylic layer and the silver reflection layer, or when the silver reflection layer is located below the resin film-like support as viewed from the light incident side. Can be done. The resin coating layer according to the present invention prevents moisture or chemicals in the air from entering the silver reflecting layer and corroding the silver reflecting layer, and further mechanical pressure such as impact and scratching from the outside. Therefore, it has a function of protecting the silver reflection layer. Further, the resin coat layer according to the present invention may have an ultraviolet absorbing function.
 本発明に係る樹脂コート層は、1層のみからなっていてもよく、複数層からなっていてもよい。樹脂コート層の厚さは、0.01~10μmであることが好ましく、0.05~8μmであることがより好ましい。 The resin coat layer according to the present invention may consist of only one layer or a plurality of layers. The thickness of the resin coat layer is preferably 0.01 to 10 μm, and more preferably 0.05 to 8 μm.
 本発明に係る樹脂コート層は、屋外環境下で長期に亘って設置しても銀反射層などとの高い密着性を保つために、主にバインダー樹脂から構成されることが好ましい。前記バインダー樹脂としては、セルロースエステル系樹脂、ポリエステル系樹脂、イソシアネート系樹脂、ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリスルホン(ポリエーテルスルホンも含む)系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、セロファン系樹脂、セルロースジアセテート系樹脂、セルローストリアセテート系樹脂、セルロースアセテートプロピオネート系樹脂、セルロースアセテートブチレート系樹脂、ポリ塩化ビニリデン系樹脂、ポリビニルアルコール系樹脂、エチレンビニルアルコール系樹脂、シンジオタクティックポリスチレン系樹脂、ポリカーボネート系樹脂、ノルボルネン系樹脂、ポリメチルペンテン系樹脂、ポリエーテルケトン系樹脂、ポリエーテルケトンイミド系樹脂、ポリアミド系樹脂、フッ素系樹脂、ナイロン系樹脂、ポリメチルメタクリレート系樹脂、アクリル樹脂系樹脂などを挙げることができる。中でも、ポリエステル系樹脂、イソシアネート系樹脂、およびアクリル系樹脂がより好ましい。 The resin coat layer according to the present invention is preferably mainly composed of a binder resin in order to maintain high adhesion with a silver reflective layer or the like even when installed over a long period of time in an outdoor environment. Examples of the binder resin include cellulose ester resins, polyester resins, isocyanate resins, polycarbonate resins, polyarylate resins, polysulfone (including polyethersulfone) resins, polyester resins such as polyethylene terephthalate and polyethylene naphthalate. Polyethylene resin, polypropylene resin, cellophane resin, cellulose diacetate resin, cellulose triacetate resin, cellulose acetate propionate resin, cellulose acetate butyrate resin, polyvinylidene chloride resin, polyvinyl alcohol resin, Ethylene vinyl alcohol resin, syndiotactic polystyrene resin, polycarbonate resin, norbornene resin, polymethylpentene resin Polyether ketone resin, polyether ketone imide resin, polyamide resin, fluorine resin, nylon resin, polymethyl methacrylate-based resins, acrylic resin or the like resin. Among these, polyester resins, isocyanate resins, and acrylic resins are more preferable.
 (腐食防止剤)
 また、本発明に係る樹脂コート層は、銀反射層に隣接している場合、銀反射層の腐食をより効果的に防止するために、腐食防止剤が添加されていることが好ましい。ただし、前記目的を達成しえる範囲内であれば、銀反射層から離して(隣接することなく)設けられていてもよく、そうした場合にも、銀の腐食防止剤を含むことが好ましい。
(Corrosion inhibitor)
Moreover, when the resin coat layer which concerns on this invention is adjacent to a silver reflection layer, in order to prevent corrosion of a silver reflection layer more effectively, it is preferable that the corrosion inhibitor is added. However, as long as the object can be achieved, it may be provided apart from (without adjoining) the silver reflective layer. In such a case, it is preferable to include a silver corrosion inhibitor.
 本発明に係る樹脂コート層に含まれる銀の腐食防止剤としては、銀反射層の主な構成物質である銀または銀の合金に対する吸着性基を有することが好ましく、特に銀に対する吸着性基を有することが好ましい。 As the corrosion inhibitor of silver contained in the resin coat layer according to the present invention, it is preferable to have an adsorptive group for silver or a silver alloy which is a main constituent material of the silver reflecting layer, and in particular, an adsorptive group for silver. It is preferable to have.
 前記腐食防止剤としては、アミン類およびその誘導体、ピロール環を有する化合物、ベンゾトリアゾールなどのトリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物、チオ尿素類、メルカプト基を有する化合物、およびナフタレン系化合物の少なくとも一種またはこれらの混合物から選ばれることが望ましい。これらのうち、窒素環状化合物を含む腐食防止剤はより好ましい。また、前記ベンゾトリアゾールなどの化合物においては、紫外線吸収剤であり、腐食防止剤を兼ねる場合もある。また、シリコーン変性樹脂を用いることも可能である。シリコーン変性樹脂として特に限定されない。腐食防止剤の具体例としては、例えば特開2012-232538号公報の段落「0061」~「0073」に開示されるものが適宜選択される。 Examples of the corrosion inhibitor include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, and indazole rings. It is desirable that the compound is selected from at least one of a compound having a compound, a copper chelate compound, a thiourea, a compound having a mercapto group, and a naphthalene compound, or a mixture thereof. Of these, corrosion inhibitors containing nitrogen cyclic compounds are more preferred. In addition, the compound such as benzotriazole is an ultraviolet absorber and sometimes serves as a corrosion inhibitor. It is also possible to use a silicone-modified resin. It does not specifically limit as a silicone modified resin. As specific examples of the corrosion inhibitor, for example, those disclosed in paragraphs “0061” to “0073” of JP2012-232538A are appropriately selected.
 本発明に係る樹脂コート層の形成方法は、グラビアコート法、リバースコート法、ダイコート法など、従来公知のコーティング方法が使用できる。 As a method for forming the resin coating layer according to the present invention, a conventionally known coating method such as a gravure coating method, a reverse coating method, or a die coating method can be used.
 [アンカー層]
 本発明のフィルムミラーにおいて、樹脂フィルム状支持体と銀反射層とを密着させるために、アンカー層を設けることが好ましい。従って、アンカー層は樹脂フィルム状支持体と銀反射層とを密着させる密着性、銀反射層を真空蒸着法等で形成する時の熱にも耐え得る耐熱性、及び銀反射層が本来有する高い反射性能を引き出すための平滑性が必要である。
[Anchor layer]
In the film mirror of the present invention, it is preferable to provide an anchor layer in order to bring the resin film-like support and the silver reflective layer into close contact. Therefore, the anchor layer has an adhesive property that allows the resin film-like support and the silver reflective layer to be in close contact, heat resistance that can withstand heat when the silver reflective layer is formed by a vacuum deposition method, and the silver reflective layer that is inherently high. Smoothness is required to bring out the reflection performance.
 本発明に係るアンカー層に使用する樹脂は、上記の密着性、耐熱性、及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂又はポリエステル系樹脂とアクリル系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。 The resin used for the anchor layer according to the present invention is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness, and polyester resin, acrylic resin, melamine resin, epoxy Resins, polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc., or a mixture of these resins can be used. From the viewpoint of weather resistance, polyester resins and melamine resins are mixed resins or polyester resins. A mixed resin of a resin and an acrylic resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
 本発明に係るアンカー層の厚さは、0.01~3μmがであることが好ましく、0.05~2μmであることがより好ましい。厚さが0.01~3μmの範囲を満たすことにより、密着性を保ちつつ、樹脂フィルム状支持体表面の凹凸を覆い隠すことができ、平滑性を良好にでき、アンカー層の硬化も十分に行えるため、結果としてフィルムミラーの反射率を高めることが可能となる。 The thickness of the anchor layer according to the present invention is preferably 0.01 to 3 μm, and more preferably 0.05 to 2 μm. By satisfying the thickness range of 0.01 to 3 μm, it is possible to cover the unevenness on the surface of the resin film-like support while maintaining the adhesiveness, improve the smoothness, and sufficiently cure the anchor layer. As a result, the reflectance of the film mirror can be increased.
 また、本発明に係るアンカー層には、前記[樹脂コート層]欄に開示される腐食防止剤を含有させることが好ましい。 In addition, it is preferable that the anchor layer according to the present invention contains the corrosion inhibitor disclosed in the [resin coat layer] column.
 本発明に係るアンカー層の形成方法は、グラビアコート法、リバースコート法、ダイコート法など、従来公知のコーティング方法が使用できる。 As a method for forming the anchor layer according to the present invention, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 [帯電防止層]
 本発明のフィルミラーは、さらに帯電防止層を有することができる。
[Antistatic layer]
The fill mirror of the present invention can further have an antistatic layer.
 本発明に係る帯電防止層は、フィルムミラーの太陽光入射側の最表層が帯電してしまうことを防止する機能を有している。フィルムミラーはガラスミラーなどと比較して、樹脂フィルム状支持体を有しており、また、表面が樹脂で形成されていることが多いため、帯電しやすく、砂や埃などの汚れを引き寄せやすい。そのため、砂や埃などが付着し、反射効率が低下することが問題として挙げられる。フィルムミラーの最表層の近い層に帯電防止層が存在することにより、フィルムミラーの表面の帯電を抑えることができ、砂やほこりなどの塵の汚れの付着を抑えることができ、長時間にわたって、高い反射効率を維持することができるため好ましい。 The antistatic layer according to the present invention has a function of preventing the outermost layer on the sunlight incident side of the film mirror from being charged. Film mirrors have a resin film-like support compared to glass mirrors and the surface is often made of resin, so they are easily charged and easily attract dirt such as sand and dust. . Therefore, sand, dust, etc. adhere and it is mentioned as a problem that reflection efficiency falls. The presence of an antistatic layer in the layer closest to the outermost layer of the film mirror can suppress the charging of the surface of the film mirror, can suppress the adhesion of dirt such as sand and dust, This is preferable because high reflection efficiency can be maintained.
 本発明に係る帯電防止層は、フィルムミラーの最表層に隣接する層または最表層との間に極薄い層を介して存在していることが好ましい。また、他のいずれかの層、例えばアクリル層が帯電防止層を兼ねても良い。 The antistatic layer according to the present invention is preferably present through a very thin layer between the layer adjacent to the outermost layer of the film mirror or the outermost layer. Further, any other layer such as an acrylic layer may also serve as the antistatic layer.
 本発明に係る帯電防止層の厚さは、100nm~1μmであることが好ましい。帯電防止層の厚さが1μm以下であれば良好な光透過性を得ることができる。 The thickness of the antistatic layer according to the present invention is preferably 100 nm to 1 μm. If the thickness of the antistatic layer is 1 μm or less, good light transmittance can be obtained.
 本発明において、帯電防止層に帯電防止能を付与する技術として、帯電防止層に導電性をもたせて、その帯電防止層の電気抵抗値を低下させるという手法がある。例えば、その帯電防止技術として、帯電防止層に、導電性物質である導電性フィラーを分散させて含有させる方法、導電性ポリマーを用いる方法、金属化合物を分散もしくは表面にコートする方法、有機スルホン酸及び有機リン酸のような陰イオン性化合物を利用した内部添加法、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルケニルアミン、グリセリン脂肪酸エステルなどの界面活性型の低分子型帯電防止剤を用いる方法、カーボンブラック等の導電性微粒子を分散させる方法などがある。特に、導電性物質である導電性フィラーを分散させて含有させる方法を用いることが好ましい。前記帯電防止層に含有する導電性フィラーとして、導電性無機微粒子があり、その中でも金属微粒子や導電性の無機酸化物微粒子等を用いることができる。特に、導電性の無機酸化物微粒子を好適に用いることができる。 In the present invention, as a technique for imparting antistatic ability to the antistatic layer, there is a technique of reducing the electric resistance value of the antistatic layer by imparting conductivity to the antistatic layer. For example, as an antistatic technique, a method in which a conductive filler which is a conductive substance is dispersed and contained in an antistatic layer, a method using a conductive polymer, a method in which a metal compound is dispersed or coated on a surface, an organic sulfonic acid And an internal addition method using an anionic compound such as organic phosphoric acid, a method using a surface active type low molecular weight antistatic agent such as polyoxyethylene alkylamine, polyoxyethylene alkenylamine, and glycerin fatty acid ester, carbon There is a method of dispersing conductive fine particles such as black. In particular, it is preferable to use a method in which conductive fillers, which are conductive substances, are dispersed and contained. As the conductive filler contained in the antistatic layer, there are conductive inorganic fine particles, among which metal fine particles, conductive inorganic oxide fine particles and the like can be used. In particular, conductive inorganic oxide fine particles can be preferably used.
 なお、帯電防止層の電気抵抗値に関し、そもそも塗膜抵抗を大きく分けると、粒子内部抵抗と接触抵抗に分けることができる。粒子内部抵抗は、異種金属のドープ量・酸素欠陥量及び結晶性に影響される。また、接触抵抗は、粒子径や形状、塗料中の微粒子の分散性、バインダー樹脂の導電性に影響される。導電性の比較的高い膜は、粒子内部抵抗よりも接触抵抗の影響が大きいと考えられるので、粒子状態の制御により導電パスを形成することが重要である。 In addition, regarding the electrical resistance value of the antistatic layer, if the coating film resistance is largely divided in the first place, it can be divided into particle internal resistance and contact resistance. The internal resistance of the particles is affected by the amount of doping / oxygen defects of different metals and crystallinity. The contact resistance is affected by the particle diameter and shape, the dispersibility of the fine particles in the paint, and the conductivity of the binder resin. Since a film having a relatively high conductivity is considered to have a larger influence of contact resistance than internal resistance of the particle, it is important to form a conductive path by controlling the particle state.
 帯電防止層は、導電性フィラーを含有することで、帯電防止性を有することが好ましい。帯電防止層に含有する導電性フィラーとして、導電性無機微粒子があり、その中でも金属微粒子や導電性の無機酸化物微粒子等を用いることができる。特に、導電性の無機酸化物微粒子を好適に用いることができる。 It is preferable that the antistatic layer has an antistatic property by containing a conductive filler. As the conductive filler contained in the antistatic layer, there are conductive inorganic fine particles, among which metal fine particles, conductive inorganic oxide fine particles and the like can be used. In particular, conductive inorganic oxide fine particles can be preferably used.
 本発明に係る帯電防止層には、導電性フィラーを保持するバインダーとして有機バインダー又は無機バインダーを用いることができる。有機バインダーとしては、樹脂を用いることができ、例えば、アクリル系樹脂、シクロオレフィン系樹脂、ポリカーボネート系樹脂などが挙げられる。さらに、有機バインダーとして、ハードコートをバインダーとすることもでき、紫外線硬化性多官能アクリル樹脂、ウレタンアクリレート、エポキシアクリレート、オキセタン系樹脂、多官能オキセタン系樹脂などが利用できる。また、無機バインダーとしては、無機酸化物系バインダー(ゾルゲル法を用いた無機酸化物系バインダーであってもよい)や、4官能無機バインダーを好ましい例として挙げることができる。無機酸化物系バインダーの好ましい例としては、二酸化ケイ素、酸化チタン、酸化アルミニウム、酸化ストロンチウム等を挙げることができる。特に好ましいのは、二酸化ケイ素である。また4官能無機バインダーの好ましい例としては、ポリシラザン(例えば、商品名:アクアミカ(AZエレクトロニクス社製))、シロキサン系化合物(例えば、コルコートP(株式会社コルコート社製))、アルキルシリケート及び金属アルコラートの混合であるFJ803(GRANDEX社製)、アルミナゾル(川研ファインケミカル株式会社製)、などを用いることができる。また、4官能無機バインダーとして、テトラエトキシシランを主原料とし、触媒を添加したゾルゲル液を用いてもいい。さらに、有機と無機の両方の性質を併せ持つ材料としてポリオルガノシロキサン、ポリシラザンなどが挙げられ、これらの材料は有機バインダーとも言えるし、無機バインダーとも言える。帯電防止層のバインダーに無機バインダーと有機バインダーの混合物を用いてもよいが、バインダーの全量が無機バインダーであることが好ましい。バインダーが無機バインダーである場合、屋外で用いる場合であっても紫外線への耐候性を有し長期に渡って高い反射性を維持できるため望ましい。 In the antistatic layer according to the present invention, an organic binder or an inorganic binder can be used as a binder for holding a conductive filler. As the organic binder, a resin can be used, and examples thereof include acrylic resins, cycloolefin resins, and polycarbonate resins. Furthermore, as an organic binder, a hard coat can be used as a binder, and an ultraviolet curable polyfunctional acrylic resin, urethane acrylate, epoxy acrylate, oxetane resin, polyfunctional oxetane resin, and the like can be used. Examples of the inorganic binder include inorganic oxide binders (may be inorganic oxide binders using a sol-gel method) and tetrafunctional inorganic binders. Preferable examples of the inorganic oxide binder include silicon dioxide, titanium oxide, aluminum oxide, strontium oxide and the like. Particularly preferred is silicon dioxide. Preferred examples of the tetrafunctional inorganic binder include polysilazane (for example, trade name: Aquamica (manufactured by AZ Electronics Co., Ltd.)), siloxane compounds (for example, Colcoat P (manufactured by Colcoat Co., Ltd.)), alkyl silicates and metal alcoholates. Mixing FJ803 (manufactured by GRANDEX), alumina sol (manufactured by Kawaken Fine Chemical Co., Ltd.), and the like can be used. Further, as a tetrafunctional inorganic binder, a sol-gel solution containing tetraethoxysilane as a main raw material and a catalyst added may be used. Furthermore, examples of materials having both organic and inorganic properties include polyorganosiloxane and polysilazane. These materials can be said to be organic binders and inorganic binders. A mixture of an inorganic binder and an organic binder may be used as the binder for the antistatic layer, but the total amount of the binder is preferably an inorganic binder. When the binder is an inorganic binder, it is desirable because it has weather resistance to ultraviolet rays and can maintain high reflectivity over a long period even when used outdoors.
 また、前記ハードコート層の好ましい材料の一つであるポリオルガノシロキサンでハードコート層を形成した場合、帯電防止層のバインダーが無機バインダーであると、帯電防止層とハードコート層の密着性が良好になり、層剥がれ等による反射性能の低下といった問題を防止できるため好ましい。更に、無機バインダーは有機バインダーに比して割れを生じやすいが、帯電防止層の上層としてハードコート層を設けることにより、割れ防止、欠け防止、及び欠けの飛散防止効果が得られ、割れやすい無機バインダーでも問題なく使用できるため、フィルムミラーは帯電防止層とハードコート層の二つの層を持っていることが好ましい。 In addition, when the hard coat layer is formed of polyorganosiloxane, which is one of the preferred materials for the hard coat layer, the adhesion between the antistatic layer and the hard coat layer is good when the binder of the antistatic layer is an inorganic binder. This is preferable because it is possible to prevent a problem such as a decrease in reflection performance due to layer peeling. Furthermore, inorganic binders are more susceptible to cracking than organic binders, but by providing a hard coat layer as the upper layer of the antistatic layer, cracking prevention, chipping prevention and chipping scattering prevention effects can be obtained, and inorganic cracking is easy. Since a binder can be used without any problem, the film mirror preferably has two layers, an antistatic layer and a hard coat layer.
 また、本発明に係る帯電防止層は、導電性フィラー(導電性無機微粒子)を、導電性を確保の観点から75%以上で含有することが好ましく、光透過性の観点から95%以下の割合で含有することが好ましい。 The antistatic layer according to the present invention preferably contains a conductive filler (conductive inorganic fine particles) at 75% or more from the viewpoint of ensuring conductivity, and a ratio of 95% or less from the viewpoint of light transmission. It is preferable to contain.
 本発明に係る帯電防止層は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法によって形成できる。 The antistatic layer according to the present invention can be formed by a conventionally known coating method such as a gravure coating method, a reverse coating method, or a die coating method.
 [ガスバリア層]
 本発明のフィルムミラーにおいて、銀反射層よりも光入射側にガスバリア層を設けてもよい。アクリル層と銀反射層の間にガスバリア層を設けることが好ましい。
[Gas barrier layer]
In the film mirror of the present invention, a gas barrier layer may be provided on the light incident side of the silver reflecting layer. It is preferable to provide a gas barrier layer between the acrylic layer and the silver reflective layer.
 本発明に係るガスバリア層は、湿度の変動、特に高湿度による樹脂フィルム状支持体及び樹脂フィルム状支持体に支持される各構成層等の劣化を防止するためのものであるが、特別の機能・用途を持たせたものであってもよく、前記劣化防止機能を有する限りにおいて、種々の態様のガスバリア層を設けることができる。ガスバリア層の詳細については、例えば、公知である国際公開番号WO2011/096151 A1公報の段落「0044」~「0096」を適用することができる。 The gas barrier layer according to the present invention is intended to prevent deterioration of humidity, particularly deterioration of the resin film-like support and each component layer supported by the resin film-like support due to high humidity. -It may have a use, and as long as it has the function of preventing deterioration, a gas barrier layer of various modes can be provided. For details of the gas barrier layer, for example, paragraphs “0044” to “0096” of the publicly known international publication number WO2011 / 096151 A1 can be applied.
 [粘着層]
 本発明において、本発明のフィルムミラーを後述する基材に接合するために、粘着層を設けることができる。なお、フィルムミラーは粘着層の太陽光入射側とは逆側に、剥離シートによる層を有していてもよい。フィルムミラーが剥離シートによる層を有する場合、剥離シートを粘着層から剥離した後、粘着層を介してフィルムミラーを基材に接合させることができる。
[Adhesive layer]
In this invention, in order to join the film mirror of this invention to the base material mentioned later, the adhesion layer can be provided. In addition, the film mirror may have the layer by a peeling sheet in the reverse side to the sunlight incident side of an adhesion layer. When a film mirror has a layer by a peeling sheet, after peeling a peeling sheet from an adhesion layer, a film mirror can be joined to a base material via an adhesion layer.
 本発明に係る粘着層としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。粘着剤としては、例えば、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴム等が用いられる。粘着層と基材とを接合するためのラミネート法は、特に制限されず、例えば、ロール式で連続的に行うのが経済性及び生産性の点から好ましい。また、粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~100μm程度の範囲であることが好ましい。厚さが1μm以上であれば充分な粘着効果が得られるため好ましく、一方100μm以下であれば粘着剤層が厚すぎて乾燥速度が遅くなるということがなく、能率的である。しかも本来の粘着力が得られ、溶剤が残留するなどの弊害が生じることもない。 The adhesive layer according to the present invention is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used. As the adhesive, for example, a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used. The laminating method for joining the adhesive layer and the substrate is not particularly limited. For example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity. The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 100 μm from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like. A thickness of 1 μm or more is preferable because a sufficient adhesive effect can be obtained. On the other hand, if the thickness is 100 μm or less, the pressure-sensitive adhesive layer is not too thick and the drying speed is not slowed, which is efficient. In addition, the original adhesive strength can be obtained, and no adverse effects such as residual solvent can occur.
 [剥離層(剥離シート)]
 本発明のフィルムミラーは、前記粘着層の太陽光入射側と逆側に剥離層(剥離シートとも称する)を有していてもよい。例えば、フィルムミラーの出荷時には剥離シートが粘着層に張り付いた状態で出荷し、剥離シートを剥がし粘着層を露出させ、基材に接合させることができる。
[Peeling layer (peeling sheet)]
The film mirror of the present invention may have a release layer (also referred to as a release sheet) on the side opposite to the sunlight incident side of the adhesive layer. For example, when the film mirror is shipped, it can be shipped with the release sheet attached to the adhesive layer, and the release sheet can be peeled off to expose the adhesive layer and bonded to the substrate.
 本発明に係る剥離シートとしては、銀反射層の保護性を付与できるものであればよく、例えば、アクリルフィルム、ポリカーボネートフィルム、ポリアリレートフィルム、ポリエチレンナフタレートフィルム、ポリエチレンテレフタレートフィルム、フッ素フィルムなどのプラスチックフィルム、または酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルム、これらを練り込んだ樹脂をコーティングしたり、アルミニウム等の金属によって金属蒸着などを行い表面加工を施した樹脂フィルムが用いられる。 The release sheet according to the present invention is not particularly limited as long as it can provide the protective property of the silver reflective layer. For example, a plastic such as an acrylic film, a polycarbonate film, a polyarylate film, a polyethylene naphthalate film, a polyethylene terephthalate film, and a fluorine film. A film or a resin film kneaded with titanium oxide, silica, aluminum powder, copper powder, etc., a resin film coated with a resin kneaded with these, or metallized with a metal such as aluminum, etc. Used.
 本発明に係る剥離シートの厚さは、特に制限はないが通常12~250μmの範囲であることが好ましい。 The thickness of the release sheet according to the present invention is not particularly limited, but is usually preferably in the range of 12 to 250 μm.
 また、剥離シートによって、太陽光反射用フィルムミラーまたは銀反射層に表面粗さを付与する場合には、剥離層の表面粗さRaは0.01~0.1μmであることが好ましい。剥離層の表面粗さにより、太陽光反射用フィルムミラーまたは銀反射層の表面も粗くなるため、フィルムミラーの生産段階において、連続的に製膜するロールトゥロール方式を用いた場合でも、ブロッキングなどの貼りつきを防止することができる。 Further, when the surface roughness is imparted to the solar reflective film mirror or the silver reflective layer by the release sheet, the surface roughness Ra of the release layer is preferably 0.01 to 0.1 μm. Due to the surface roughness of the release layer, the surface of the solar reflective film mirror or the silver reflective layer also becomes rough, so even when using a roll-to-roll system that continuously forms films in the production stage of film mirrors, blocking, etc. Can be prevented.
 <フィルムミラーの製造方法>
 本発明の他の実施形態によれば、フィルムミラーの製造方法が提供される。この際、アクリル層を形成する工程に特徴を有する。すなわち、アクリル層を形成する工程は、アクリル系樹脂液を、ロールトゥロール方式により塗布し乾燥する工程を含み、特にアクリル系樹脂液を、ロールトゥロール方式により塗布し、乾燥後、熱または紫外線による硬化する工程を含む点に特徴を有する。
<Film mirror manufacturing method>
According to another embodiment of the present invention, a method for manufacturing a film mirror is provided. In this case, the process is characterized by the step of forming the acrylic layer. That is, the step of forming an acrylic layer includes a step of applying and drying an acrylic resin liquid by a roll-to-roll method, and in particular, applying an acrylic resin liquid by a roll-to-roll method and drying, heat or ultraviolet light. It is characterized in that it includes a step of curing by the method.
 添付した図1を参照しながら、フィルムミラーの製造方法の一例として説明する。 Referring to FIG. 1 attached, an example of a film mirror manufacturing method will be described.
 樹脂フィルム状支持体1の入射光側の上面に、グラビアコート法により、アンカー層2を形成し、その上面に真空蒸着法により銀反射層3を形成することができる。 The anchor layer 2 can be formed on the upper surface of the resin film-like support 1 on the incident light side by a gravure coating method, and the silver reflection layer 3 can be formed on the upper surface by a vacuum deposition method.
 次いで、銀反射層3の上面に、グラビアコート法により、樹脂コート層4を形成することができる。 Next, the resin coat layer 4 can be formed on the upper surface of the silver reflective layer 3 by a gravure coating method.
 次いで、前記樹脂コート層4の上面に、アクリル樹脂を含むアクリル層5を形成する。この際、前記アクリル樹脂の原料であるアクリル系樹脂液を調製する第1工程と、前記アクリル系樹脂液をロールトゥロール方式により樹脂コート層4に塗布し、塗膜を形成する第2工程と、前記塗膜を硬化する第3工程と、によってアクリル層5を形成することができる。より具体的には、前記[アクリル層]の欄に開示されるアクリル層5の形成方法を参照する。 Next, an acrylic layer 5 containing an acrylic resin is formed on the upper surface of the resin coat layer 4. At this time, a first step of preparing an acrylic resin liquid as a raw material of the acrylic resin, a second step of applying the acrylic resin liquid to the resin coat layer 4 by a roll-to-roll method, and forming a coating film; The acrylic layer 5 can be formed by the third step of curing the coating film. More specifically, the method for forming the acrylic layer 5 disclosed in the column of [Acrylic layer] is referred to.
 そして、前記アクリル層5の上面に、ハードコート層6を形成することができる。 Then, a hard coat layer 6 can be formed on the upper surface of the acrylic layer 5.
 このように、本発明の一実施形態によるフィルムフィラーを製造することができるが、本発明は前記の層構成などに限定されるものではない。 Thus, although the film filler according to one embodiment of the present invention can be manufactured, the present invention is not limited to the above-described layer configuration.
 <太陽光反射用ミラー>
 本発明によれば、太陽光反射用ミラーが提供される。
<Sunlight reflection mirror>
According to the present invention, a solar reflective mirror is provided.
 太陽光反射用ミラーは、フィルムミラーと、自己支持性の基材(支持基材)とを有し、粘着層を介してフィルムミラーが自己支持性の基材(支持基材)に接合されている。ここで、前記フィルムミラーは、上記したように、所定の大きさ(例えば、支持基材に貼りつけるための大きさ)に切断されたものである。 The solar reflective mirror has a film mirror and a self-supporting base material (supporting base material), and the film mirror is bonded to the self-supporting base material (supporting base material) via an adhesive layer. Yes. Here, as described above, the film mirror is cut into a predetermined size (for example, a size for attaching to a support base material).
 [基材]
 本発明のフィルムミラーを自己支持性のある基材に貼りつけて、太陽光反射用ミラーに用いることが好ましい。「自己支持性の基材」という場合の、「自己支持性」とは、太陽光反射用ミラーの基材として用いられる大きさに断裁された場合において、その対向する端縁部分を支持することで、基材を担持することが可能な程度の剛性を有することを表す。太陽光反射用ミラーの基材が自己支持性を有することで、太陽光反射用ミラーを設置する際に取り扱い性に優れるとともに、太陽光反射用ミラーを保持するための保持部材を簡素な構成とすることが可能となるため、反射装置を軽量化することが可能となり、太陽追尾の際の消費電力を抑制することが可能となる。
[Base material]
The film mirror of the present invention is preferably attached to a self-supporting substrate and used as a solar reflective mirror. In the case of “self-supporting substrate”, “self-supporting” means supporting the opposite edge portions when cut to a size that can be used as a substrate for a solar reflective mirror. This means that the substrate has rigidity enough to support the substrate. The base material of the solar reflective mirror has a self-supporting property, so that it is easy to handle when installing the solar reflective mirror, and the holding member for holding the solar reflective mirror has a simple configuration. Therefore, it is possible to reduce the weight of the reflection device, and it is possible to suppress power consumption during solar tracking.
 本発明に係る基材は、単層であってもよく、複数の層を積層させた形状であってもよい。また、単一構造であってもよく、複数に分割されていてもよい。 The base material according to the present invention may be a single layer or a shape in which a plurality of layers are laminated. Moreover, a single structure may be sufficient and it may be divided | segmented into plurality.
 本発明に係る基材の形状としては、凹面状の形状を有する又は凹面状の形状になり得ることが好ましい。そのために、平板状から凹面状の形状に可変である基材を用いてもよいし、凹面状の形状に固定されている基材を用いてもよい。凹面状の形状に可変である基材は、基材の曲率を調整することで、接合されているフィルムミラーの曲率も任意に調整することが可能となるため、反射効率を調整し高い正反射率を得ることができるため好ましい。凹面状の形状が固定されている基材は曲率を調整する必要がなくなるため、調整費用の観点から好ましい。 The shape of the base material according to the present invention preferably has a concave shape or can be a concave shape. Therefore, a base material that is variable from a flat shape to a concave shape may be used, or a base material that is fixed to a concave shape may be used. The base material that can be changed into the concave shape can adjust the curvature of the film mirror that is bonded by adjusting the curvature of the base material. It is preferable because a rate can be obtained. The base material having the concave shape fixed is preferable from the viewpoint of adjustment cost because it is not necessary to adjust the curvature.
 本発明に係る基材の素材としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板などの金属板、ベニヤ板(好ましくは防水処理がされたもの)などの木板、繊維強化プラスチック(FRP)板、樹脂板、などが挙げられる。前記材料の中でも金属板を用いることが、熱伝導率が高いという観点から好ましい。さらに好ましくは、高い熱伝導率だけでなく耐腐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板などにすることである。最も好ましくは、樹脂と金属板を組み合わせた鋼板を用いることである。 The base material according to the present invention includes a steel plate, a copper plate, an aluminum plate, an aluminum-plated steel plate, an aluminum alloy-plated steel plate, a copper-plated steel plate, a tin-plated steel plate, a chrome-plated steel plate, a stainless steel plate, and a veneer plate (preferably May be a wooden board such as a waterproof board), a fiber reinforced plastic (FRP) board, a resin board, and the like. Among these materials, it is preferable to use a metal plate from the viewpoint of high thermal conductivity. More preferably, it is a plated steel plate, stainless steel plate, aluminum plate or the like having not only high thermal conductivity but also good corrosion resistance. Most preferably, a steel plate combining a resin and a metal plate is used.
 なお、基材の大部分を樹脂により構成する場合には、中空構造を有する樹脂材料を用いて構成することが好ましい。なぜなら、基材を中空構造を有さない樹脂材料からなる層とした場合、自己支持性を持たせる程度の剛性を得るために必要な厚さが大きくなり、結果として基材の質量が重くなってしまうが、中空構造を有する樹脂材料から成る層とした場合、自己支持性を持たせながらの軽量化が可能となるからである。また、中空構造による断熱材としての機能も生じるため、光入射側とは反対側の表面の温度変化がフィルムミラーへ伝わることを抑制し、結露の防止や、熱による劣化を抑制することが可能となる。中空構造からなる樹脂材料を持つ層とする場合、表面層として平滑な面を有する樹脂フィルムを設け、中空構造を有する樹脂材料を中間層として用いることが、フィルムミラーの反射効率を高める観点で好ましい。 In addition, when most of the base material is made of resin, it is preferable to use a resin material having a hollow structure. This is because when the substrate is made of a resin material that does not have a hollow structure, the thickness required to obtain rigidity sufficient to provide self-supporting properties increases, and as a result, the substrate mass increases. However, when the layer is made of a resin material having a hollow structure, it is possible to reduce the weight while maintaining the self-supporting property. In addition, since a function as a heat insulating material due to the hollow structure also occurs, it is possible to suppress the temperature change of the surface opposite to the light incident side from being transmitted to the film mirror, to prevent condensation and to suppress deterioration due to heat It becomes. In the case of a layer having a resin material having a hollow structure, it is preferable to provide a resin film having a smooth surface as a surface layer and to use a resin material having a hollow structure as an intermediate layer from the viewpoint of increasing the reflection efficiency of the film mirror. .
 表面層としての樹脂フィルムの材料としては、従来公知の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムなどを挙げることができる。中でも、ポリカーボネート系フィルム、ポリエチレンテレフタレートなどのポリエステル系フィルム、ノルボルネン系樹脂フィルム、およびセルロースエステル系フィルム、アクリルフィルムが好ましい。特にポリエチレンテレフタレートなどのポリエステル系フィルム又はアクリルフィルムを用いることが好ましく、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。この樹脂フィルムの厚さは、樹脂の種類及び目的などに応じて適切な厚さにすることが好ましい。例えば、一般的には、10~250μmであり、好ましくは20~200μmである。 As the material for the resin film as the surface layer, various conventionally known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and the like acrylic film. Among these, polycarbonate films, polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. In particular, it is preferable to use a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation. The thickness of the resin film is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally 10 to 250 μm, preferably 20 to 200 μm.
 前記中空構造を構成する樹脂材料としては、発泡樹脂からなる気泡構造、樹脂材料からなる壁面を有する立体構造(ハニカム構造等)や、中空微粒子を添加した樹脂材料等を用いることができる。発泡樹脂の気泡構造は、樹脂材料中にガスを細かく分散させ、発泡状又は多孔質形状に形成されたものを指し、材料としては、公知の発泡樹脂材料を使用可能であるが、ポリオレフィン系樹脂、ポリウレタン、ポリエチレン、ポリスチレン等が好ましく用いられる。ハニカム構造とは、空間が側壁で囲まれた複数の小空間で構成される立体構造全般を表すものとする。中空構造を樹脂材料からなる壁面を有する立体構造とする場合、壁面を構成する樹脂材料としては、エチレン、プロピレン、ブテン、イソプレンペンテン、メチルペンテン等のオレフィン類の単独重合体あるいは共重合体であるポリオレフィン(例えば、ポリプロピレン、高密度ポリエチレン)、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリアクリロニトリル、エチレン-エチルアクリレート共重合体等のアクリル誘導体、ポリカーボネート、エチレン-酢酸ビニル共重合体等の酢酸ビニル共重合体、アイオノマー、ABS樹脂、ポリオレフィンオキサイド、ポリアセタール等の熱可塑性樹脂が好ましく用いられる。なお、これらは一種類を単独で用いてもよく、二種類以上を混合して用いてもよい。特に、熱可塑性樹脂のなかでもオレフィン系樹脂又はオレフィン系樹脂を主体にした樹脂、ポリプロピレン系樹脂又はポリプロピレン系樹脂を主体にした樹脂が、機械的強度及び成形性のバランスに優れている点で好ましい。樹脂材料には、添加剤が含まれていてもよく、その添加剤としては、シリカ、マイカ、タルク、炭酸カルシウム、ガラス繊維、カーボン繊維等の無機フィラー、可塑剤、安定剤、着色剤、帯電防止剤、難燃剤、発泡剤などが挙げられる。 As the resin material constituting the hollow structure, a cellular structure made of a foamed resin, a three-dimensional structure having a wall surface made of a resin material (such as a honeycomb structure), a resin material to which hollow fine particles are added, or the like can be used. The cellular structure of the foamed resin refers to a material in which a gas is finely dispersed in a resin material and formed into a foamed or porous shape, and a known foamed resin material can be used as the material. Polyurethane, polyethylene, polystyrene and the like are preferably used. The honeycomb structure represents a general three-dimensional structure composed of a plurality of small spaces surrounded by side walls. When the hollow structure is a three-dimensional structure having a wall surface made of a resin material, the resin material constituting the wall surface is a homopolymer or copolymer of olefins such as ethylene, propylene, butene, isoprene pentene, and methylpentene. Acrylic derivatives such as polyolefin (for example, polypropylene, high-density polyethylene), polyamide, polystyrene, polyvinyl chloride, polyacrylonitrile, ethylene-ethyl acrylate copolymer, vinyl acetate copolymers such as polycarbonate, ethylene-vinyl acetate copolymer Thermoplastic resins such as ionomers, ABS resins, polyolefin oxides and polyacetals are preferably used. In addition, these may be used individually by 1 type and may be used in mixture of 2 or more types. In particular, among thermoplastic resins, olefin-based resins or resins mainly composed of olefin-based resins, polypropylene-based resins or resins based mainly on polypropylene-based resins are preferable because of excellent balance between mechanical strength and moldability. . The resin material may contain an additive. Examples of the additive include silica, mica, talc, calcium carbonate, glass fiber, carbon fiber, and other inorganic fillers, plasticizers, stabilizers, colorants, charging agents. An inhibitor, a flame retardant, a foaming agent, etc. are mentioned.
 <太陽熱発電用反射装置>
 本発明のさらなる実施形態によれば、太陽熱発電用反射装置が提供される。
<Reflector for solar power generation>
According to a further embodiment of the present invention, a solar power generation reflector is provided.
 本発明の太陽熱発電用反射装置は、太陽光反射用ミラーおよび太陽光反射用ミラーを保持する保持部材を有する。この太陽熱発電用反射装置を使用する場合、内部に流体を有する筒状部材を集熱部としてフィルムミラーの近傍に設け、筒状部材に太陽光を反射させることで内部の流体を加熱し、その熱エネルギーを変換して発電する、一般的にトラフ型と呼ばれる形態が一形態として挙げられる。また、その他の形態として、タワー型と呼ばれる形態も挙げられる。タワー型の形態は、少なくとも一つの集熱部と、太陽光を反射して集熱部に照射するための少なくとも一つの太陽熱発電用反射装置を有しており、集熱部に集められた熱を用いて液体を加熱しタービンを回して発電するものがある。なお、集熱部の周囲に、太陽熱発電用反射装置が複数配置されていることが好ましい。また、それぞれの太陽熱発電用反射装置が同心円状や、同心の扇状に複数配置されていることが好ましい。また、支持タワーの周囲に設置された太陽光反射用ミラーにより、太陽光が集光鏡へと反射され、その後、集光鏡によりさらに反射し、集熱部へと送られ熱交換施設へ送られる。本発明はトラフ型、タワー型のどちらにも用いることができる。もちろん、それ以外の種々の太陽熱発電に用いることができる。 The solar power generation reflecting device of the present invention has a solar reflective mirror and a holding member for holding the solar reflective mirror. When using this solar power generation reflecting device, a cylindrical member having fluid inside is provided as a heat collecting part in the vicinity of the film mirror, and the internal fluid is heated by reflecting sunlight to the cylindrical member. A form generally referred to as a trough type, which generates heat by converting thermal energy, can be cited as one form. Moreover, the form called a tower type | mold is also mentioned as another form. The tower type configuration has at least one heat collecting part and at least one solar power generation reflecting device for reflecting sunlight and irradiating the heat collecting part, and the heat collected in the heat collecting part. There is one that heats a liquid by using and rotates a turbine to generate electricity. In addition, it is preferable that a plurality of solar power generation reflecting devices are arranged around the heat collecting section. In addition, it is preferable that a plurality of solar power generation reflecting devices are arranged in a concentric circle shape or a concentric fan shape. In addition, sunlight is reflected to the collector mirror by the sunlight reflecting mirrors installed around the support tower, and then reflected further by the collector mirror and sent to the heat collector and sent to the heat exchange facility. It is done. The present invention can be used for both trough type and tower type. Of course, it can be used for various other types of solar thermal power generation.
 [保持部材]
 太陽熱発電用反射装置は、太陽光反射用ミラーを保持する保持部材を有する。
[Holding member]
The solar power generation reflection device includes a holding member that holds a solar light reflecting mirror.
 前記保持部材は、太陽光反射用ミラーを太陽を追尾可能な状態で保持する事が好ましい。保持部材の形態としては、特に制限はないが、例えば、太陽光反射用ミラーが所望の形状を保持できるように、複数個所を棒状の保持部材により、保持する形態が好ましい。保持部材は太陽を追尾可能な状態で太陽光反射用ミラーを保持する構成を有することが好ましいが、太陽追尾に際しては、手動で駆動させてもよいし、別途駆動装置を設けて自動的に太陽を追尾する構成としてもよい。 The holding member preferably holds the solar reflective mirror in a state where the sun can be tracked. Although there is no restriction | limiting in particular as a form of a holding member, For example, the form which hold | maintains several places with a rod-shaped holding member is preferable so that the mirror for sunlight reflection can hold | maintain a desired shape. The holding member preferably has a configuration for holding the sunlight reflecting mirror in a state where the sun can be tracked. However, when the sun is tracked, the holding member may be driven manually or a separate driving device may be provided to automatically It is good also as a structure which tracks.
 以下、本発明について実施例および比較例を用いて具体的に説明する。但し、本発明はこれらに限定されるものではない。以下の実施例や比較例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「重量部」あるいは「重量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to these. In the following Examples and Comparative Examples, “parts” or “%” is used, and “parts by weight” or “% by weight” is expressed unless otherwise specified.
 <紫外線硬化型アクリル系樹脂液の調製>
 2-エチルヘキシルアクリレート85重量%とアクリル酸15重量%とからなる原料モノマー全量100重量%に対して、光開始剤(商品名:イルガキュア184,BASF社製)0.003重量%を均一に添加した。前記混合物を、撹拌羽根、冷却管、窒素ガス導入管、温度計を備えた容量300mlのパイレックス(登録商標)製セパラブルフラスコに仕込み、容器内に20分間窒素ガスを導入して容器内の空気を窒素ガスで置換した後、窒素気流中で混合物を80℃に昇温して、この温度を一定に保ちながら、フラスコの外部に設置した水冷式高圧水銀ランプ(出力100W)にて、紫外線照射量が1300mJ/cmとなるまで、断続的に紫外線の照射を繰り返して、脱泡処理して紫外線硬化型アクリル系樹脂液を調製した。
<Preparation of UV curable acrylic resin liquid>
0.003% by weight of photoinitiator (trade name: Irgacure 184, manufactured by BASF) was uniformly added to 100% by weight of the total amount of raw material monomers consisting of 85% by weight of 2-ethylhexyl acrylate and 15% by weight of acrylic acid. . The mixture was charged into a 300 ml Pyrex (registered trademark) separable flask equipped with a stirring blade, a cooling pipe, a nitrogen gas introduction pipe, and a thermometer, and nitrogen gas was introduced into the container for 20 minutes to air in the container. Was replaced with nitrogen gas, and the mixture was heated to 80 ° C. in a nitrogen stream. While maintaining this temperature constant, a water-cooled high-pressure mercury lamp (output 100 W) installed outside the flask was irradiated with ultraviolet rays. Until the amount reached 1300 mJ / cm 2 , ultraviolet irradiation was repeated intermittently, and defoaming treatment was performed to prepare an ultraviolet curable acrylic resin solution.
 得られた紫外線硬化型アクリル系樹脂液は、溶媒を含んでおらず、粘度が320ポイズであった。また、これに含まれる部分重合物について、GPCで測定した重量平均分子量は75万であり、数平均分子量は23万であった。 The obtained ultraviolet curable acrylic resin liquid did not contain a solvent and had a viscosity of 320 poise. Moreover, about the partial polymer contained in this, the weight average molecular weight measured by GPC was 750,000, and the number average molecular weight was 230,000.
 <熱硬化型アクリル樹脂の調製>
 2-エチルヘキシルアクリレート85重量%とアクリル酸15重量%とからなる原料モノマー全量100重量%に対して、低温熱分解型重合開始剤としてV―70(10時間半減期30℃、和光純薬製)0.5重量%、高温熱分解型重合開始剤としてV-40(10時間半減期88℃、日油(株)製)0.5重量%、架橋剤(商品名:コロネートHX,ポリウレタン工業(株)製)0.05重量%、およびフィラー(平均粒子径:20μmのPE粒子)30重量%を添加した。30℃で5時間前記混合物を混合させた。その後、脱泡処理して熱硬化型アクリル系樹脂液を調製した。
<Preparation of thermosetting acrylic resin>
V-70 (10 hours half-life 30 ° C, manufactured by Wako Pure Chemical Industries, Ltd.) as a low-temperature pyrolytic polymerization initiator for 100% by weight of the total amount of raw material monomers consisting of 85% by weight of 2-ethylhexyl acrylate and 15% by weight of acrylic acid 0.5% by weight, V-40 (10-hour half-life 88 ° C., NOF Corporation) 0.5% by weight as a high-temperature pyrolytic polymerization initiator, cross-linking agent (trade name: Coronate HX, Polyurethane Industry ( 0.05% by weight) and 30% by weight of filler (PE particles having an average particle size of 20 μm) were added. The mixture was mixed at 30 ° C. for 5 hours. Thereafter, defoaming treatment was performed to prepare a thermosetting acrylic resin liquid.
 前記得られた熱硬化型アクリル系樹脂液は、溶媒を含有しておらず、その粘度は1500センチポイズであった。また、これに含まれる部分重合物について、GPCで測定した重量平均分子量は50万であり、数平均分子量は19万であった。 The obtained thermosetting acrylic resin liquid did not contain a solvent, and its viscosity was 1500 centipoise. Moreover, about the partial polymer contained in this, the weight average molecular weight measured by GPC was 500,000, and the number average molecular weight was 190,000.
 <実施例1>
 樹脂フィルム状支持体1として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ25μm)を用いた。前記ポリエステルフィルムのロールの片面に対して、グラビアコーターを用いてポリエステル系樹脂(ポリエスター SP-181、日本合成化学社製)とTDI系イソシアネート(2,4-トリレンジイソシアネート、東京化成社製)とを樹脂固形分比率で10:2に混合し、前記樹脂固形分濃度20重量%となるように、溶媒としてメチルエチルケトンを加えた。さらに腐食防止剤としてグリコールジメルカプトアセテート(和光純薬製)を前記樹脂全量に対して10重量%となるよう加えた。前記混合物をグラビアコート法によりコーティングして、厚さ60nmのアンカー層2を形成した。
<Example 1>
As the resin film-like support 1, a biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 μm) was used. Polyester resin (Polyester SP-181, manufactured by Nippon Gosei Kagaku) and TDI isocyanate (2,4-tolylene diisocyanate, manufactured by Tokyo Chemical Industry Co., Ltd.) using a gravure coater on one side of the polyester film roll. Were mixed at a resin solid content ratio of 10: 2, and methyl ethyl ketone was added as a solvent so that the resin solid content concentration was 20% by weight. Further, glycol dimercaptoacetate (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a corrosion inhibitor so as to be 10% by weight based on the total amount of the resin. The mixture was coated by a gravure coating method to form an anchor layer 2 having a thickness of 60 nm.
 続いて、前記アンカー層2の上に、真空蒸着法により、厚さが80nmになるように銀からなる銀反射層3を形成した。 Subsequently, a silver reflection layer 3 made of silver was formed on the anchor layer 2 by a vacuum deposition method so as to have a thickness of 80 nm.
 次に、前記銀反射層3の上に、アンカー層2の形成において、腐食防止剤としてグリコールジメルカプトアセテートの代わりにTINUVIN234(BASF社製)を用いた以外は同様にして、厚さ60nmの樹脂コート層4を形成した。 Next, a resin having a thickness of 60 nm is formed in the same manner except that TINUVIN 234 (manufactured by BASF) is used instead of glycol dimercaptoacetate as a corrosion inhibitor in forming the anchor layer 2 on the silver reflective layer 3. Coat layer 4 was formed.
 そして、前記樹脂コート層4の上に、前記紫外線硬化型アクリル系樹脂液をグラビアコーターを用いて、硬化後の厚さが50μmになるように塗布し、乾燥後、照度100mW/cm、光量150mJ/cmの紫外線を照射して硬化処理を行うことにより、アクリル層5を形成した。 Then, the ultraviolet curable acrylic resin liquid is applied onto the resin coat layer 4 using a gravure coater so that the thickness after curing is 50 μm, and after drying, the illuminance is 100 mW / cm 2 , the light intensity The acrylic layer 5 was formed by irradiating 150 mJ / cm < 2 > of ultraviolet rays and performing a curing treatment.
 さらに、ハードコート液Perma‐NewTM 6000(California Hardcoating Company製)をグラビアコーターにより、前記アクリル層5の上にコートし、80℃にて45秒間乾燥後、70℃にて、48時間熱処理を行うことにより、厚さ3μmのハードコート層6を形成し、フィルムミラー1を作製した。これらの操作は全てロールトゥロール方式により作成した。 Further, a hard coat solution Perma-New 6000 (manufactured by California Hardcoating Company) is coated on the acrylic layer 5 with a gravure coater, dried at 80 ° C. for 45 seconds, and then heat treated at 70 ° C. for 48 hours. Thus, a hard coat layer 6 having a thickness of 3 μm was formed, and a film mirror 1 was produced. All these operations were created by the roll-to-roll method.
 <実施例2>
 アクリル層5の形成を下記操作で行ったこと以外は、実施例1と同様にして、フィルムミラー2を作製した。
<Example 2>
A film mirror 2 was produced in the same manner as in Example 1 except that the acrylic layer 5 was formed by the following operation.
 前記樹脂コート層4の上に、前記熱硬化型アクリル系樹脂液をアプリケーターを用いて、硬化後の厚さが50μmになるように塗布し、80℃で60秒間乾燥後、50℃で1時間硬化処理を行うことにより、アクリル層5を形成した。 The thermosetting acrylic resin liquid is applied onto the resin coat layer 4 using an applicator so that the cured thickness is 50 μm, dried at 80 ° C. for 60 seconds, and then at 50 ° C. for 1 hour. The acrylic layer 5 was formed by performing a curing process.
 <実施例3>
 前記紫外線硬化型アクリル系樹脂液中に、原料モノマーの全量100重量%に対してメチルエチルケトン10重量%を添加したこと以外は、実施例1と同様にして、フィルムミラー3を作製した。
<Example 3>
A film mirror 3 was produced in the same manner as in Example 1 except that 10% by weight of methyl ethyl ketone was added to the total amount of raw material monomers of 100% by weight in the ultraviolet curable acrylic resin liquid.
 <実施例4>
 前記熱硬化型アクリル系樹脂液中に、原料モノマーの全量100重量%に対してメチルエチルケトン20重量%を添加したこと以外は、実施例2と同様にして、フィルムミラー4を作製した。
<Example 4>
A film mirror 4 was produced in the same manner as in Example 2 except that 20% by weight of methyl ethyl ketone was added to 100% by weight of the total amount of raw material monomers in the thermosetting acrylic resin liquid.
 <実施例5>
 前記紫外線硬化型アクリル系樹脂液中に、原料モノマーの全量100重量%に対して紫外線吸収剤(商品名:Tinuvin477、BASFジャパン(株)製)2.5重量%を配合したこと以外は、実施例1と同様にして、フィルムミラー5を作製した。
<Example 5>
Except that the UV curable acrylic resin liquid was mixed with 2.5% by weight of a UV absorber (trade name: Tinuvin 477, manufactured by BASF Japan) with respect to 100% by weight of the total amount of raw material monomers. In the same manner as in Example 1, a film mirror 5 was produced.
 <実施例6>
 前記紫外線吸収剤の配合量を5重量%にしたこと以外は、実施例5と同様にして、フィルムミラー6を作製した。
<Example 6>
A film mirror 6 was produced in the same manner as in Example 5 except that the blending amount of the ultraviolet absorber was changed to 5% by weight.
 <実施例7>
 前記紫外線硬化型アクリル系樹脂液中に、原料モノマーの全量100重量%に対して、さらに酸化防止剤(商品名:アデカスタブLA52、(株)ADEKA製)1重量%を配合したこと以外は、実施例6と同様にして、フィルムミラー7を作製した。
<Example 7>
Implemented except that the ultraviolet curable acrylic resin liquid was further blended with an antioxidant (trade name: ADK STAB LA52, manufactured by ADEKA) 1% by weight based on 100% by weight of the total amount of raw material monomers. In the same manner as in Example 6, a film mirror 7 was produced.
 <実施例8>
 前記アクリル層5の厚さを75μmにしたこと以外は、実施例7と同様にして、フィルムミラー8を作製した。
<Example 8>
A film mirror 8 was produced in the same manner as in Example 7 except that the thickness of the acrylic layer 5 was 75 μm.
 <実施例9>
 前記アクリル層5の厚さを100μmにしたこと以外は、実施例8と同様にして、フィルムミラー9を作製した。
<Example 9>
A film mirror 9 was produced in the same manner as in Example 8 except that the thickness of the acrylic layer 5 was 100 μm.
 <実施例10>
 前記紫外線吸収剤の配合量を8重量%にしたこと以外は、実施例8と同様にして、フィルムミラー10を作製した。
<Example 10>
A film mirror 10 was produced in the same manner as in Example 8, except that the blending amount of the ultraviolet absorber was 8% by weight.
 <実施例11>
 まず、実施例1と同様にして樹脂コート層4まで形成した。次いで、樹脂フィルム状支持体1を光入射側に向け、その上面に実施例1と同様にしてアクリル樹脂層5およびハードコート層6を順に形成し、フィルムミラー11を作製した。
<Example 11>
First, the resin coating layer 4 was formed in the same manner as in Example 1. Next, the resin film-like support 1 was directed to the light incident side, and the acrylic resin layer 5 and the hard coat layer 6 were sequentially formed on the upper surface in the same manner as in Example 1 to produce a film mirror 11.
 <実施例12>
 まず、実施例1と同様にして樹脂コート層4まで形成した。次いで、樹脂フィルム状支持体1を光入射側に向け、その上面に、アクリル樹脂系樹脂液(商品名:BR-95、三菱レイヨン社製、樹脂固形分濃度25重量%)の樹脂固形分全量100重量%に対して、紫外線吸収剤(商品名:Tinuvin477、BASFジャパン(株)製)5重量%、および酸化防止剤(商品名:アデカスタブLA52、(株)ADEKA製)1重量%を配合し、さらにメチルエチルケトン75重量%を添加した塗布液を、塗布し、85℃で5分間を乾燥することによって、厚さ30μmのアクリル層5を形成し、その上面に実施例1と同様にしてハードコート層6を形成し、フィルムミラー12を作製した。
<Example 12>
First, the resin coating layer 4 was formed in the same manner as in Example 1. Next, the resin film-like support 1 is directed to the light incident side, and the entire resin solid content of an acrylic resin resin liquid (trade name: BR-95, manufactured by Mitsubishi Rayon Co., Ltd., resin solid content concentration: 25% by weight) is formed on the upper surface. 100% by weight, 5% by weight of UV absorber (trade name: Tinuvin 477, manufactured by BASF Japan) and 1% by weight of antioxidant (trade name: ADK STAB LA52, manufactured by ADEKA) Further, a coating solution to which 75% by weight of methyl ethyl ketone was added was applied and dried at 85 ° C. for 5 minutes to form an acrylic layer 5 having a thickness of 30 μm. Layer 6 was formed, and film mirror 12 was produced.
 <比較例1>
 前記アクリル層5の代わりにアクリル層5aを以下の操作で形成したこと以外は、実施例1と同様にして、フィルムミラー13を作製した。
<Comparative Example 1>
A film mirror 13 was produced in the same manner as in Example 1 except that the acrylic layer 5a was formed by the following operation instead of the acrylic layer 5.
 アクリル系樹脂液(商品名:BR-95、三菱レイヨン社製、樹脂固形分濃度25重量%)を準備し、厚さが120μmになるように塗布し、乾燥させて、アクリル層5aを形成した。 An acrylic resin liquid (trade name: BR-95, manufactured by Mitsubishi Rayon Co., Ltd., resin solid content concentration: 25% by weight) was prepared, applied to a thickness of 120 μm, and dried to form an acrylic layer 5a. .
 <比較例2>
 前記アクリル層5aの厚さを75μmにしたこと以外は、比較例1と同様にして、フィルムミラー14を作製した。
<Comparative Example 2>
A film mirror 14 was produced in the same manner as in Comparative Example 1 except that the thickness of the acrylic layer 5a was 75 μm.
 <比較例3>
 比較例2のアクリル系樹脂液に前記アクリル系樹脂液(商品名:BR-95、三菱レイヨン社製)の樹脂固形分全量100重量%に対して紫外線吸収剤(商品名:Tinuvin477、BASFジャパン(株)製)5重量%、および酸化防止剤(商品名:アデカスタブLA52、(株)ADEKA製)1重量%を配合したこと以外は、比較例2と同様にして、フィルムミラー15を作製した。
<Comparative Example 3>
UV absorbers (trade names: Tinuvin 477, BASF Japan) with respect to 100% by weight of the total resin solid content of the acrylic resin liquid (trade name: BR-95, manufactured by Mitsubishi Rayon Co., Ltd.) in the acrylic resin liquid of Comparative Example 2. Film mirror 15 was produced in the same manner as Comparative Example 2 except that 5% by weight (made by Co., Ltd.) and 1% by weight of antioxidant (trade name: ADK STAB LA52, made by ADEKA) were blended.
 <比較例4>
 前記アクリル層5aの厚さを10μmにしたこと以外は、比較例3と同様にして、フィルムミラー16を作製した。
<Comparative example 4>
A film mirror 16 was produced in the same manner as in Comparative Example 3 except that the thickness of the acrylic layer 5a was 10 μm.
 <比較例5>
 まず、樹脂コート層4までは実施例1と同様して形成した。
<Comparative Example 5>
First, the resin coating layer 4 was formed in the same manner as in Example 1.
 次いで、前記樹脂コート層4の上に、接着剤TBS‐730(大日本インキ社製)を厚さ5μmになるように、ワイヤーバーによりコーティングして接着層7を形成し、その上から75μmのアクリル樹脂フィルムS001(住友化学社製)をロール方式により貼り合わせてアクリル層5bを形成した。 Next, an adhesive TBS-730 (Dainippon Ink Co., Ltd.) is coated on the resin coat layer 4 with a wire bar so as to have a thickness of 5 μm. Acrylic resin film S001 (manufactured by Sumitomo Chemical Co., Ltd.) was bonded by a roll method to form acrylic layer 5b.
 その後、前記アクリル層5bの上に、ハードコート層6を実施例1と同様にして形成し、フィルムミラー17を作製した。 Thereafter, a hard coat layer 6 was formed on the acrylic layer 5b in the same manner as in Example 1 to produce a film mirror 17.
 <比較例6>
 厚さが75μmであるアクリル樹脂フィルムS001(住友化学社製)を基材として(ここで、当該基材層を「アクリル層5b」とも称する。)、銀を80nmの厚さになるように蒸着し銀反射層3を形成し、続けて銅を100nmの厚さになるように蒸着し銅層8を形成した。
<Comparative Example 6>
Using an acrylic resin film S001 (manufactured by Sumitomo Chemical Co., Ltd.) having a thickness of 75 μm as a base material (herein, the base material layer is also referred to as “acrylic layer 5b”), silver is deposited to a thickness of 80 nm. Then, the silver reflection layer 3 was formed, and then copper was deposited to a thickness of 100 nm to form a copper layer 8.
 次いで、前記アクリル層5bの銀および銅を有する面の反対側に、ハードコート層6を実施例1と同様にして形成し、フィルムミラー18を作製した。 Next, a hard coat layer 6 was formed in the same manner as in Example 1 on the opposite side of the surface of the acrylic layer 5b having silver and copper, and a film mirror 18 was produced.
 前記で作製したフィルムミラー1~18の作製水準については、表1に示される。また、前記フィルムミラー1~10の層構成の概略側面図は図1に示され、前記フィルムミラー11および12の概略側面図は図5に示され、前記フィルムミラー13~16の概略側面図は図2に示され、前記フィルムミラー17の概略側面図は図3に示され、前記フィルムミラー18の概略側面図は図4に示される。 The production levels of the film mirrors 1 to 18 produced above are shown in Table 1. A schematic side view of the layer configuration of the film mirrors 1 to 10 is shown in FIG. 1, a schematic side view of the film mirrors 11 and 12 is shown in FIG. 5, and a schematic side view of the film mirrors 13 to 16 is shown in FIG. 2, a schematic side view of the film mirror 17 is shown in FIG. 3, and a schematic side view of the film mirror 18 is shown in FIG. 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [評価]
 前記で作製したフィルムミラー1~18について、下記の方法に従って、残溶剤量の測定、および紫外線照射試験の前後、湿熱試験の前後における外観、正反射率、密着性、平滑性を測定し、評価を行った。その結果は表2に示す。
[Evaluation]
For the film mirrors 1 to 18 produced as described above, the amount of residual solvent and the appearance, regular reflectance, adhesion, and smoothness before and after the ultraviolet irradiation test and before and after the wet heat test were measured and evaluated according to the following methods. Went. The results are shown in Table 2.
 <残溶剤量の測定>
 (アクリル層における残溶剤量の測定)
 前記各実施例および比較例でアクリル層を形成した際に用いたアクリル系樹脂液、アクリル樹脂またはアクリル樹脂フィルムなどを、別途ガラス状に塗布し、各実施例および比較例と同様な条件で、それぞれに紫外線吸収剤、酸化防止剤、溶剤または他の添加剤などを適宜に配合し、乾燥、紫外線照射または加熱などを適宜に行い、前記各実施例および比較例に対応する単独のアクリル層を形成した。
<Measurement of residual solvent amount>
(Measurement of residual solvent amount in acrylic layer)
Acrylic resin liquid, acrylic resin or acrylic resin film used when the acrylic layer was formed in each of the above examples and comparative examples, separately applied in a glass shape, under the same conditions as in each of the examples and comparative examples, An ultraviolet absorber, an antioxidant, a solvent or other additives are appropriately blended in each, and drying, ultraviolet irradiation or heating is appropriately performed, and a single acrylic layer corresponding to each of the examples and comparative examples is formed. Formed.
 ついで、形成されたアクリル層をガラスから剥離し、アクリル樹脂フィルムを作製し、80℃の恒温槽に200時間放置した前後の重量変化を確認して、当該重量変化は、各アクリル層における残溶剤の量として測定した。 Next, the formed acrylic layer is peeled off from the glass to prepare an acrylic resin film, and the weight change before and after being left in a thermostatic bath at 80 ° C. for 200 hours is confirmed. The weight change is the residual solvent in each acrylic layer. Was measured as the amount of.
 (フィルムミラー全体における残溶剤の測定)
 前記各実施例および比較例で作製したフィルムミラー全体を、80℃の恒温槽に200時間放置した前後の重量変化を確認して、当該重量変化は、各フィルムミラー全体における残溶剤の量として測定した。
(Measurement of residual solvent in the entire film mirror)
The weight change before and after leaving the whole film mirror produced by each said Example and the comparative example for 200 hours in an 80 degreeC thermostat was confirmed, and the said weight change was measured as the quantity of the residual solvent in each whole film mirror. did.
 <正反射率の測定>
 日立ハイテク社製の分光光度計「U-4100」を用いて、測定試料の透過率を400nmから2500nmまでの平均反射率として測定した。
<Measurement of regular reflectance>
Using a spectrophotometer “U-4100” manufactured by Hitachi High-Tech, the transmittance of the measurement sample was measured as an average reflectance from 400 nm to 2500 nm.
 正反射率に関して、専用の治具を用いて、反射面の法線に対して、入射光の入射角を5°の正反射率を測定した。評価は、同様に400nmから2500nmまでの平均反射率として測定した。 Regarding the regular reflectance, a regular reflectance was measured with an incident angle of incident light of 5 ° with respect to the normal of the reflective surface using a dedicated jig. Evaluation was similarly measured as an average reflectance from 400 nm to 2500 nm.
 <密着性の測定>
 JIS K 5600に準拠し、試料にカッターでクロス状に傷をつけ、100マスの切り目を入れる。セロハンテープを切れ目部分に貼り付けた後、45°方向に引っ張り、剥離後に塗膜が剥がれていないマス数を計測して、アクリル層とハードコート層との密着性を評価した。
<Measurement of adhesion>
According to JIS K 5600, the sample is scratched in a cross shape with a cutter, and a 100 square cut is made. After applying the cellophane tape to the cut portion, it was pulled in the 45 ° direction, and the number of masses where the coating film was not peeled after peeling was measured to evaluate the adhesion between the acrylic layer and the hard coat layer.
 すなわち、当該密着性は、前記剥がれていないマスの数で比較評価を行った。 That is, the adhesiveness was evaluated by comparison with the number of unstriped cells.
 <平滑性の測定>
 WYKO NT9000(Veeco社製)を用い、フィルムミラー最表面の表面粗さRa値を測定し平滑性として評価した。
<Measurement of smoothness>
Using WYKO NT9000 (manufactured by Veeco), the surface roughness Ra value of the outermost surface of the film mirror was measured and evaluated as smoothness.
 <紫外線(UV)照射試験>
 作製した各フィルムミラーに対して、アイスーパーUVテスター(岩崎電気社製)を用いて、150mW/□の紫外線を65℃の環境下で600時間照射を行い、それぞれのフィルムミラーの耐紫外線能を評価した。
<Ultraviolet (UV) irradiation test>
Each of the film mirrors was irradiated with 150 mW / □ of UV light in an environment of 65 ° C. for 600 hours using an i-super UV tester (Iwasaki Electric Co., Ltd.), and the UV resistance of each film mirror was improved. evaluated.
 <湿熱試験>
 作製した各フィルムミラーを80℃、90%の恒温恒湿層(エスペック(株)製)に200時間投入後、前記密着性について測定を実施した。
<Moist heat test>
Each of the produced film mirrors was placed in a constant temperature and humidity layer (manufactured by Espec Corp.) at 80 ° C. and 90% for 200 hours, and then the adhesion was measured.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明のフィルムミラーのいずれも、優れた平滑性および耐久性を併せ持つことが分かった。より具体的に、本発明によって作製したフィルムミラーは、作製後もしくは高温かつ長時間の紫外線照射や湿熱試験などを実施した後においても銀反射層の着色が見られず、高い反射率を維持することが示された。さらに、優れた密着性を有することも分かった。すなわち、本発明のフィルムミラーは、優れた平滑性および耐久性を併せ持ち、高反射率を有するフィルムミラーであることが分かった。 As shown in Table 2, it was found that all of the film mirrors of the present invention had excellent smoothness and durability. More specifically, the film mirror produced according to the present invention maintains high reflectance without being colored in the silver reflective layer even after production or after performing high-temperature and long-time ultraviolet irradiation or wet heat test. It was shown that. Furthermore, it has been found that it has excellent adhesion. That is, the film mirror of the present invention was found to be a film mirror having both excellent smoothness and durability and high reflectivity.
 一方、前記比較例1~3のアクリル層5aはアクリル樹脂を溶剤で溶かして塗布乾燥することによって形成されるため、表2に示すように、溶剤が銀層に侵入し、銀層が紫色または薄紫色に着色されたことが確認され、さらに、紫外線照射試験後、着色が強くなり、結果的に反射率も大幅に低減したことが分かった。 On the other hand, since the acrylic layer 5a of Comparative Examples 1 to 3 is formed by dissolving an acrylic resin with a solvent and applying and drying it, as shown in Table 2, the solvent penetrates into the silver layer and the silver layer is purple or It was confirmed that the color was pale purple, and further, after the ultraviolet irradiation test, the color became stronger, and as a result, the reflectance was greatly reduced.
 また、比較例1~3において、残溶剤量が多いため、アクリル層5aとハードコート層6との密着性が得られないことが分かった。 Further, in Comparative Examples 1 to 3, it was found that the adhesiveness between the acrylic layer 5a and the hard coat layer 6 could not be obtained due to the large amount of residual solvent.
 また、アクリル層の厚さが10μmである(比較例4)と、紫外線照射試験後に反射率及び密着性が低下したことから、耐久性に問題があることが示唆された。 In addition, when the thickness of the acrylic layer was 10 μm (Comparative Example 4), it was suggested that there was a problem in durability because the reflectance and adhesion decreased after the ultraviolet irradiation test.
 また、アクリル貼合方式による作製したフィルムミラー(比較例5)や樹脂基材としてアクリル樹脂を用いているもの(比較例6)では、表面の平滑性が低く、正反射率が低いことが分わかった。 Moreover, it is found that the surface mirror is low and the regular reflectance is low in the film mirror produced by the acrylic bonding method (Comparative Example 5) and the one using the acrylic resin as the resin substrate (Comparative Example 6). all right.
 以上の結果から明らかなように、本発明によって提供されるフィルムミラーは、平滑性、耐久性、反射率、密着性、が高いことが分かった。 As apparent from the above results, it was found that the film mirror provided by the present invention has high smoothness, durability, reflectance, and adhesion.
 なお、本出願は、2013年1月11日に出願された日本特許出願第2013-003629号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2013-003629 filed on January 11, 2013, the disclosure of which is incorporated by reference in its entirety.
1 樹脂フィルム状支持体、
2 アンカー層、
3 銀反射層、
4 樹脂コート層、
5 アクリル層、
5a アクリル層、
5b アクリル層、
6 ハードコート層、
7 接着層、
8 銅層。
1 resin film-like support,
2 anchor layer,
3 Silver reflective layer,
4 resin coating layer,
5 Acrylic layer,
5a acrylic layer,
5b acrylic layer,
6 Hard coat layer,
7 Adhesive layer
8 Copper layer.

Claims (10)

  1.  樹脂フィルム状支持体に、銀反射層と、前記銀反射層の光入射側に塗布方式により形成されたアクリル樹脂を含むアクリル層と、を含むフィルムミラーであって、
     前記アクリル層の厚さが10~100μmであり、かつ、前記アクリル層に残存される溶剤の量が、当該アクリル層の全重量に対して0.1重量%以下であることを特徴とする、フィルムミラー。
    A resin film-like support, a film mirror including a silver reflection layer, and an acrylic layer including an acrylic resin formed by a coating method on a light incident side of the silver reflection layer,
    The acrylic layer has a thickness of 10 to 100 μm, and the amount of the solvent remaining in the acrylic layer is 0.1% by weight or less based on the total weight of the acrylic layer, Film mirror.
  2.  前記アクリル樹脂が、紫外線硬化型アクリル系樹脂液または熱硬化型アクリル系樹脂液を反応させてなることを特徴とする、請求項1に記載のフィルムミラー。 The film mirror according to claim 1, wherein the acrylic resin is obtained by reacting an ultraviolet curable acrylic resin liquid or a thermosetting acrylic resin liquid.
  3.  前記アクリル層が、紫外線吸収剤を含むことを特徴とする、請求項1または2に記載のフィルムミラー。 The film mirror according to claim 1 or 2, wherein the acrylic layer contains an ultraviolet absorber.
  4.  前記紫外線吸収剤の含有量が、前記アクリル樹脂の全量100重量%に対して2~8重量%であることを特徴とする、請求項3に記載のフィルムミラー。 4. The film mirror according to claim 3, wherein the content of the ultraviolet absorber is 2 to 8% by weight with respect to 100% by weight of the total amount of the acrylic resin.
  5.  前記アクリル層が、酸化防止剤を含むことを特徴とする、請求項1~4のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 4, wherein the acrylic layer contains an antioxidant.
  6.  前記酸化防止剤の含有量が、前記アクリル樹脂の全量100重量%に対して0.1~5重量%であることを特徴とする、請求項5に記載のフィルムミラー。 6. The film mirror according to claim 5, wherein the content of the antioxidant is 0.1 to 5% by weight based on 100% by weight of the total amount of the acrylic resin.
  7.  前記アクリル層の厚さが、20~80μmであることを特徴とする、請求項1~6のいずれか1項に記載のフィルムミラー。 The film mirror according to any one of claims 1 to 6, wherein the acrylic layer has a thickness of 20 to 80 µm.
  8.  樹脂フィルム状支持体に、銀反射層と、前記銀反射層の光入射側に塗布方式により形成されたアクリル樹脂を含むアクリル層と、を含むフィルムミラーの製造方法であって、
     前記アクリル層の厚さが10~100μmであり、かつ、前記アクリル層に残存される溶剤の量が、当該アクリル層の全重量に対して0.1重量%以下であり、
     前記アクリル層は、アクリル系樹脂液を、ロールトゥロール方式により塗布し、乾燥後、熱または紫外線による硬化する工程によって形成されることを特徴とする、フィルムミラーの製造方法。
    A resin film-like support, a method for producing a film mirror, comprising: a silver reflective layer; and an acrylic layer containing an acrylic resin formed by a coating method on the light incident side of the silver reflective layer,
    The acrylic layer has a thickness of 10 to 100 μm, and the amount of the solvent remaining in the acrylic layer is 0.1% by weight or less based on the total weight of the acrylic layer;
    The acrylic layer is formed by a step of applying an acrylic resin liquid by a roll-to-roll method, drying, and curing with heat or ultraviolet rays.
  9.  請求項1~7のいずれか1項に記載のフィルムミラー、または、請求項8に記載の方法によって製造されるフィルムミラーを、支持基材に貼りつけて形成されてなることを特徴とする、太陽光反射用ミラー。 A film mirror according to any one of claims 1 to 7, or a film mirror produced by the method according to claim 8, is formed by sticking to a support substrate, Sunlight reflecting mirror.
  10.  請求項9に記載の太陽光反射用ミラー、および前記太陽光反射用ミラーを保持する保持部材を有することを特徴とする、太陽熱発電用反射装置。 A solar power generation reflecting device comprising: the solar reflective mirror according to claim 9; and a holding member for holding the solar reflective mirror.
PCT/JP2014/050217 2013-01-11 2014-01-09 Film mirror and reflector for solar thermal power generation WO2014109354A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014556432A JPWO2014109354A1 (en) 2013-01-11 2014-01-09 Reflector for film mirror and solar power generation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-003629 2013-01-11
JP2013003629 2013-01-11

Publications (1)

Publication Number Publication Date
WO2014109354A1 true WO2014109354A1 (en) 2014-07-17

Family

ID=51167001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050217 WO2014109354A1 (en) 2013-01-11 2014-01-09 Film mirror and reflector for solar thermal power generation

Country Status (2)

Country Link
JP (1) JPWO2014109354A1 (en)
WO (1) WO2014109354A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020484A (en) * 2017-07-12 2019-02-07 株式会社クラレ Screen for display and method for manufacturing the same
CN109870753A (en) * 2018-12-21 2019-06-11 宁波激智科技股份有限公司 A kind of dirty silver-colored reflectance coating of the anti-finger of super bright high reliability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096151A1 (en) * 2010-02-04 2011-08-11 コニカミノルタオプト株式会社 Film mirror and process for production thereof, and sunlight collection mirror
JP2012137579A (en) * 2010-12-27 2012-07-19 Konica Minolta Advanced Layers Inc Film mirror, method for manufacturing the same, and sunlight reflection mirror
JP2012220708A (en) * 2011-04-08 2012-11-12 Konica Minolta Advanced Layers Inc Film mirror and reflector for solar thermal power generation
JP2012232538A (en) * 2011-05-09 2012-11-29 Konica Minolta Advanced Layers Inc Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096151A1 (en) * 2010-02-04 2011-08-11 コニカミノルタオプト株式会社 Film mirror and process for production thereof, and sunlight collection mirror
JP2012137579A (en) * 2010-12-27 2012-07-19 Konica Minolta Advanced Layers Inc Film mirror, method for manufacturing the same, and sunlight reflection mirror
JP2012220708A (en) * 2011-04-08 2012-11-12 Konica Minolta Advanced Layers Inc Film mirror and reflector for solar thermal power generation
JP2012232538A (en) * 2011-05-09 2012-11-29 Konica Minolta Advanced Layers Inc Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020484A (en) * 2017-07-12 2019-02-07 株式会社クラレ Screen for display and method for manufacturing the same
CN109870753A (en) * 2018-12-21 2019-06-11 宁波激智科技股份有限公司 A kind of dirty silver-colored reflectance coating of the anti-finger of super bright high reliability

Also Published As

Publication number Publication date
JPWO2014109354A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
WO2012090987A1 (en) Functional film, film mirror, and reflecting device for solar thermal power generation
JP6731486B2 (en) Anti-fog laminate
WO2007074693A1 (en) Anti-reflective optical film and method for manufacture thereof
JP5954257B2 (en) Vehicle window material
TW201518086A (en) Hard coated laminate and method for producing same
TW201114814A (en)
JPWO2018038271A1 (en) Antireflective laminate
WO2014109354A1 (en) Film mirror and reflector for solar thermal power generation
JP2006212987A (en) Transfer material
CN110734710B (en) window film
JP2012247606A (en) Laminate for antireflection and manufacturing method thereof, and curable composition
WO2012057003A1 (en) Film mirror for solar power generation purposes and reflection device for solar power generation purposes
JP6481302B2 (en) Curable resin composition, cured product and laminate
WO2010024143A1 (en) Heat-insulating article, process for producing heat-insulating article, and building member
WO2015194595A1 (en) Wavelength conversion material and solar cell sealing film containing same
WO2014061497A1 (en) Film mirror, and reflecting apparatus for solar thermal power generation
WO2014155861A1 (en) Film mirror and solar reflector using same
JPWO2014061497A6 (en) Film mirror and reflector for solar power generation
JP2007022071A (en) Antistatic laminate
JP5942927B2 (en) Transparent laminate
JP6790236B2 (en) Laminates, their manufacturing methods, and solar cell modules
JP2012003074A (en) Optical film and optical device using the same
WO2015122337A1 (en) Film mirror and reflection device for solar power generation
JP2017068059A (en) Method for manufacturing light-transmitting hard coat laminate
JP2009067049A (en) Transparent resin laminate and its production process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556432

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14738225

Country of ref document: EP

Kind code of ref document: A1