JP2012232538A - Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power - Google Patents

Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power Download PDF

Info

Publication number
JP2012232538A
JP2012232538A JP2011104031A JP2011104031A JP2012232538A JP 2012232538 A JP2012232538 A JP 2012232538A JP 2011104031 A JP2011104031 A JP 2011104031A JP 2011104031 A JP2011104031 A JP 2011104031A JP 2012232538 A JP2012232538 A JP 2012232538A
Authority
JP
Japan
Prior art keywords
layer
film
resin
mirror
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011104031A
Other languages
Japanese (ja)
Other versions
JP5691811B2 (en
Inventor
Hitoshi Adachi
仁 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Advanced Layers Inc
Original Assignee
Konica Minolta Advanced Layers Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Advanced Layers Inc filed Critical Konica Minolta Advanced Layers Inc
Priority to JP2011104031A priority Critical patent/JP5691811B2/en
Publication of JP2012232538A publication Critical patent/JP2012232538A/en
Application granted granted Critical
Publication of JP5691811B2 publication Critical patent/JP5691811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a film mirror for generating solar power, the mirror having superior contamination resistance, scratch resistance and weather resistance, and being capable of maintaining a satisfactory specular reflectance to solar light, even if installed in a harsh environment for a long time, and to provide a solar power generation film mirror using the film mirror, and a reflection apparatus for generating solar power.SOLUTION: The solar power generation film mirror 20 having a reflection layer 3 on a resin substrate 1, includes a contamination-preventing layer 8 where inorganic particles having different particle diameters of, for example, 0.5-100 nm, are dispersed.

Description

本発明は、フィルムミラー、フィルムミラーを用いた太陽光反射用ミラー及び太陽光反射用ミラーを用いた太陽熱発電用反射装置に関する。   The present invention relates to a film mirror, a solar reflective mirror using a film mirror, and a solar power generation reflector using a solar reflective mirror.

近年の地球温暖化は一層深刻な事態に発展し、将来の人類の生存すら脅かされる可能性がでてきている。その主原因は、20世紀に入りエネルギー源として多量に使用されてきた化石燃料から放出された大気中の二酸化炭素(CO)であると考えられている。したがって近い将来、化石燃料をこのまま使い続けることは許されなくなると考えられる。また、他方で、中国、インド、ブラジル等のいわゆる発展途上国の急激な経済成長に伴うエネルギー需用の増大により、かつては無尽蔵と考えられていた石油、天然ガスの枯渇が現実味を帯びてきている。 In recent years, global warming has developed into a more serious situation, and even the future survival of humankind may be threatened. The main cause is thought to be atmospheric carbon dioxide (CO 2 ) released from fossil fuels that have been used in large quantities as an energy source in the 20th century. Therefore, it is considered that it will not be allowed to continue using fossil fuels in the near future. On the other hand, the depletion of oil and natural gas, once thought to be inexhaustible, has become a reality due to the increase in energy demand accompanying the rapid economic growth of so-called developing countries such as China, India and Brazil. Yes.

化石燃料の代替エネルギーとして、安定しており且つ量の多い自然エネルギーの一つとして、太陽エネルギーが考えられる。特に世界のサンベルト地帯と呼ばれている赤道近くには、広大な砂漠が広がっており、ここに降りそそぐ太陽エネルギーは正に無尽蔵と言える。これに関して、米国南西部に拡がる砂漠のわずか数%を使えば、実に7,000GWものエネルギーを得ることが可能であると考えられている。また、アラビア半島、北アフリカの砂漠のわずか数%を使えば、全人類の使うエネルギーを全て賄うことができるとも考えられている。   As an alternative energy to fossil fuel, solar energy can be considered as one of the stable and abundant natural energy. In particular, the vast desert spreads near the equator, which is called the world's sun belt, and the solar energy that falls down here is truly inexhaustible. In this regard, it is believed that energy of as much as 7,000 GW can be obtained using only a few percent of the desert that extends to the southwestern United States. It is also believed that using only a few percent of the Arabian peninsula and the deserts of North Africa can cover all the energy used by all mankind.

このように、太陽エネルギーは非常に有力な代替エネルギーであるものの、これを社会活動の中で活用するためには、(1)太陽エネルギーのエネルギー密度が低いこと、並びに(2)太陽エネルギーの貯蔵及び移送が困難であることが、問題となると考えられる。
これに対して、太陽エネルギーのエネルギー密度が低いという問題は、巨大な集光装置で太陽エネルギーを集めることによって解決することが提案されている。
Thus, although solar energy is a very powerful alternative energy, in order to utilize it in social activities, (1) the energy density of solar energy is low, and (2) solar energy storage. And the difficulty of transport is considered a problem.
On the other hand, it has been proposed to solve the problem that the energy density of solar energy is low by collecting solar energy with a huge concentrator.

当該集光装置は太陽光による紫外線や熱、風雨、砂嵐などに晒されるため、従来から、当該集光装置にはガラス製ミラーが用いられてきた。ガラス製ミラーは環境に対する耐久性が高い反面、輸送時に破損したり、重量が重いために、ミラーを設置する架台の強度を持たせるために、プラントの建設費がかさむといった問題があった。   Since the light collecting device is exposed to ultraviolet rays, heat, wind and rain, sandstorms, and the like caused by sunlight, conventionally, a glass mirror has been used for the light collecting device. Glass mirrors are highly durable to the environment, but they are damaged during transportation and heavy, so that there is a problem that the construction cost of the plant is increased due to the strength of the mount on which the mirrors are installed.

上記問題を解決するために、ガラス製ミラーを樹脂製ミラーに置き換えることが考えられてきた(例えば特許文献1及び特許文献2)が、樹脂製ミラーは反射層に銀などの金属を用いると、樹脂層を介して酸素や水蒸気、硫化水素などが透過し、銀を腐食してしまうといった問題や、紫外線により樹脂層が劣化し、変色や膜剥がれが生じるなども問題も生じ、樹脂製ミラーの適用は困難であった。   In order to solve the above problem, it has been considered to replace a glass mirror with a resin mirror (for example, Patent Document 1 and Patent Document 2). However, when a metal such as silver is used for the resin mirror, Oxygen, water vapor, hydrogen sulfide, etc. permeate through the resin layer and corrode silver, and the resin layer deteriorates due to ultraviolet rays, causing discoloration and film peeling. Application was difficult.

上記のような問題に対して、紫外線を遮断し、耐光性の優れるアクリルフィルムを表面に用いた樹脂製ミラーが提案されている(例えば特許文献3)。しかしながら、特許文献3で提案されている層構成は、粘着層が様々なものを透過しやすいため、粘着層と銀反射層の界面から汚染物質が侵入し、銀の腐食が進行し、反射率が低下してしまうといった課題や、長期間の紫外線曝露によって、銀より光源側にあるポリエステルフィルムが黄変してしまうといった問題が生じる。更に、銀の反射面が粘着層と直接接触又は非常に薄い銅層を介して接触するため、粘着層が持っている凹凸が銀反射面に転写してしまい、反射光が散乱して集光効率が低下するといった課題が生じるため、太陽光を集光するためのミラーとして、使用に耐えうるものでは無かった。   In order to solve the above problems, a resin mirror that uses an acrylic film that blocks ultraviolet rays and has excellent light resistance on the surface has been proposed (for example, Patent Document 3). However, in the layer configuration proposed in Patent Document 3, since the adhesive layer easily transmits various substances, contaminants enter from the interface between the adhesive layer and the silver reflective layer, and the corrosion of the silver progresses. There arises a problem that the polyester film located on the light source side of silver is yellowed due to a problem that the color is lowered and exposure to ultraviolet rays for a long time. Furthermore, since the silver reflecting surface is in direct contact with the adhesive layer or through a very thin copper layer, the unevenness of the adhesive layer is transferred to the silver reflecting surface, and the reflected light is scattered and condensed. Since the problem that efficiency falls arises, it was not what can endure use as a mirror for condensing sunlight.

米国特許第4,307,150号明細書US Pat. No. 4,307,150 米国特許第4,645,714号明細書US Pat. No. 4,645,714 特表2009−520174号公報Special table 2009-520174

本発明は係る点を鑑み、軽量でありながら、紫外線による劣化や銀の腐食を防止でき、太陽光反射用のミラーとしての実用に耐えうる高い耐傷性、耐候性と高い反射率を有するだけでなく、長期間維持でき、かつ高い生産性を有するフィルムミラー、太陽光反射用ミラー及び太陽熱発電用反射装置を提供することを目的とする。   In view of this point, the present invention can prevent deterioration due to ultraviolet rays and corrosion of silver while being lightweight, and has high scratch resistance, weather resistance and high reflectance that can withstand practical use as a mirror for solar light reflection. An object of the present invention is to provide a film mirror, a solar reflective mirror, and a solar thermal power reflector that can be maintained for a long period of time and have high productivity.

請求項1に記載のフィルムミラーは、樹脂フィルム状支持体に銀反射層が設けられたフィルムミラーであって、光入射側から順に、アクリル層、接着層、樹脂コート層、前記銀反射層、前記樹脂フィルム状支持体及び粘着層を有し、前記アクリル層は紫外線吸収剤を含有することを特徴とする。   The film mirror according to claim 1 is a film mirror in which a silver reflective layer is provided on a resin film-like support, in order from the light incident side, an acrylic layer, an adhesive layer, a resin coat layer, the silver reflective layer, It has a resin film-like support and an adhesive layer, and the acrylic layer contains an ultraviolet absorber.

請求項2に記載のフィルムミラーは、請求項1に記載の発明であって、前記樹脂コート層と前記銀反射層とは隣接しており、前記樹脂コート層が、銀の腐食防止剤を含有していることを特徴とする。   The film mirror according to claim 2 is the invention according to claim 1, wherein the resin coat layer and the silver reflective layer are adjacent to each other, and the resin coat layer contains a silver corrosion inhibitor. It is characterized by that.

請求項3に記載のフィルムミラーは、請求項1又は2に記載の発明であって、前記アクリル層の光入射側に透明ハードコート層を有することを特徴とする。   A film mirror according to a third aspect is the invention according to the first or second aspect, wherein a transparent hard coat layer is provided on the light incident side of the acrylic layer.

請求項4に記載のフィルムミラーは、請求項1〜3の何れか一項に記載の発明であって、前記銀反射層よりも光入射側にガスバリア層を有することを特徴とする。   A film mirror according to a fourth aspect is the invention according to any one of the first to third aspects, wherein the film mirror has a gas barrier layer on a light incident side with respect to the silver reflection layer.

請求項5に記載の太陽光反射用ミラーは、請求項1〜4の何れかに記載のフィルムミラーと、自己支持性の基材とを有し、前記粘着層を介して前記フィルムミラーが前記基材に接合されていることを特徴とする。   The mirror for sunlight reflection of Claim 5 has the film mirror in any one of Claims 1-4, and a self-supporting base material, The said film mirror is the said through the said adhesion layer. It is characterized by being bonded to a base material.

請求項6に記載の太陽光反射用ミラーは、請求項5に記載の発明であって、前記基材が、一対の金属平板と、前記金属平板の間に設けられた中間層とを有し、前記中間層は中空構造を有する層又は樹脂層であることを特徴とする。   The solar reflective mirror according to claim 6 is the invention according to claim 5, wherein the base material includes a pair of metal flat plates and an intermediate layer provided between the metal flat plates. The intermediate layer is a layer having a hollow structure or a resin layer.

請求項7に記載の太陽光反射用ミラーは、請求項5に記載の発明であって、前記基材が、中空構造を有する樹脂層からなる。   The solar reflective mirror described in claim 7 is the invention described in claim 5, wherein the substrate is made of a resin layer having a hollow structure.

請求項8に記載の太陽熱発電用反射装置は、請求項5〜7の何れかに記載の太陽光反射用ミラーを有することを特徴とする。   The solar power generation reflecting device according to an eighth aspect includes the solar light reflecting mirror according to any one of the fifth to seventh aspects.

本発明によれば、軽量でありながら、紫外線による劣化や銀の腐食を防止でき、太陽光反射用のミラーとしての実用に耐えうる高い耐傷性、耐候性と高い反射率を有するだけでなく、長期間維持でき、かつ高い生産性を有するフィルムミラー、太陽光反射用ミラー及び太陽熱発電用反射装置を提供することができる。   According to the present invention, while being lightweight, it can prevent deterioration due to ultraviolet rays and corrosion of silver, and not only has high scratch resistance, weather resistance and high reflectivity that can withstand practical use as a mirror for sunlight reflection, It is possible to provide a film mirror, a solar reflective mirror, and a solar power generation reflecting device that can be maintained for a long period of time and have high productivity.

比較例としてのフィルムミラーの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of a film mirror as a comparative example 本発明の太陽熱発電用のフィルムミラーの構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the film mirror for solar power generation of this invention. 本発明の太陽熱発電用のフィルムミラーの構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the film mirror for solar power generation of this invention. 本発明の太陽熱発電用のフィルムミラーの構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the film mirror for solar power generation of this invention. 本発明の太陽熱発電用のフィルムミラーの構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the film mirror for solar power generation of this invention.

以下、本発明に係る太陽熱発電用のミラーについて詳細について説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。   Hereinafter, the mirror for solar power generation according to the present invention will be described in detail. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.

<1.フィルムミラー>
本発明のフィルムミラー20(20b〜20e)は、光入射側から順に、アクリル層5、接着層4、樹脂コート層8(11)、銀反射層3、樹脂フィルム状支持体1及び粘着層6を少なくとも有する。尚、これらの層の間に他の層を介していてもよいし、それぞれの層が隣接していてもよい。また、アクリル層5や粘着層6の上に更に別の層を有していてもよい。
<1. Film mirror>
The film mirror 20 (20b to 20e) of the present invention has an acrylic layer 5, an adhesive layer 4, a resin coat layer 8 (11), a silver reflective layer 3, a resin film support 1, and an adhesive layer 6 in this order from the light incident side. At least. In addition, you may interpose another layer between these layers, and each layer may adjoin. Further, another layer may be provided on the acrylic layer 5 or the adhesive layer 6.

上述の層の間に他の層を介在したり、アクリル層5や粘着層6の上に更に別の層を有する場合、好ましい例として以下のような例が挙げられる。   In the case where another layer is interposed between the above-mentioned layers or another layer is provided on the acrylic layer 5 or the adhesive layer 6, the following examples are given as preferable examples.

銀反射層3よりも光入射側のどこかにガスバリア層9を有していてもよい。
また、アクリル層の光入射側に透明ハードコート層10を設けてもよい。
The gas barrier layer 9 may be provided somewhere on the light incident side of the silver reflecting layer 3.
Further, the transparent hard coat layer 10 may be provided on the light incident side of the acrylic layer.

また、銀反射層3と樹脂フィルム状支持体1の間にアンカー層2を設けてもよい。
また、粘着層6を覆う剥離層7を設けてもよい。
Further, the anchor layer 2 may be provided between the silver reflective layer 3 and the resin film-like support 1.
Moreover, you may provide the peeling layer 7 which covers the adhesion layer 6. FIG.

なお、本発明に係るフィルムミラー全体の厚さは、撓み防止、正反射率、取り扱い性等の観点から80〜300μmが好ましく、より好ましくは80〜200μm、更に好ましくは80〜170μmである。   The thickness of the entire film mirror according to the present invention is preferably 80 to 300 [mu] m, more preferably 80 to 200 [mu] m, still more preferably 80 to 170 [mu] m, from the viewpoints of prevention of bending, regular reflectance, and handling properties.

以下、各層の構成の詳細を記載する。   Details of the configuration of each layer will be described below.

<2.アクリル層>
アクリル層は、紫外線吸収剤を含有する。また、アクリル層は酸化防止剤を含有してもよい。アクリル層は固いため、柔らかく破損しにくいアクリル層を得るため、可塑剤の微粒子を含有させてもよい。可塑剤の微粒子の好ましい例としては、例えば、ブチルゴムやブチルアクリレートの微粒子などが挙げられる。尚、アクリル層の厚さは、20〜150μmであることが好ましい。より好ましくは、40〜100μmである。
<2. Acrylic layer>
The acrylic layer contains an ultraviolet absorber. The acrylic layer may contain an antioxidant. Since the acrylic layer is hard, plasticizer fine particles may be contained in order to obtain an acrylic layer that is soft and difficult to break. Preferable examples of the plasticizer fine particles include butyl rubber and butyl acrylate fine particles. In addition, it is preferable that the thickness of an acrylic layer is 20-150 micrometers. More preferably, it is 40-100 micrometers.

アクリル層は、メタクリル樹脂を基材樹脂として構成されていることが好ましい。メタクリル樹脂は、メタクリル酸エステルを主体とする重合体であり、メタクリル酸エステルの単独重合体であってもよいし、メタクリル酸エステル50重量%以上とこれ以外の単量体50重量%以下との共重合体であってもよい。ここで、メタクリル酸エステルとしては、通常、メタクリル酸のアルキルエステルが用いられる。特に好ましく用いられるメタクリル樹脂は、ポリメタクリル酸メチル樹脂(PMMA)である。   The acrylic layer is preferably composed of a methacrylic resin as a base resin. The methacrylic resin is a polymer mainly composed of a methacrylic acid ester, and may be a homopolymer of a methacrylic acid ester, or a methacrylic acid ester of 50% by weight or more and other monomers of 50% by weight or less. A copolymer may also be used. Here, as the methacrylic acid ester, an alkyl ester of methacrylic acid is usually used. A particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA).

メタクリル樹脂の好ましい単量体組成は、全単量体を基準として、メタクリル酸エステルが50〜100重量%、アクリル酸エステルが0〜50重量%、これら以外の単量体が0〜49重量%であり、より好ましくは、メタクリル酸エステルが50〜99.9重量%、アクリル酸エステルが0.1〜50重量%、これら以外の単量体が0〜49重量%である。   The preferred monomer composition of the methacrylic resin is 50 to 100% by weight of methacrylic acid ester, 0 to 50% by weight of acrylic acid ester, and 0 to 49% by weight of other monomers based on all monomers. More preferably, the methacrylic acid ester is 50 to 99.9% by weight, the acrylic acid ester is 0.1 to 50% by weight, and other monomers are 0 to 49% by weight.

ここで、メタクリル酸アルキルの例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1〜8、好ましくは1〜4である。中でもメタクリル酸メチルが好ましく用いられる。   Here, examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and the like. The alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. It is. Of these, methyl methacrylate is preferably used.

また、アクリル酸アルキルの例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1〜8、好ましくは1〜4である。   Examples of alkyl acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like. The alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. is there.

また、メタクリル酸アルキル及びアクリル酸アルキル以外の単量体は、単官能単量体、すなわち分子内に重合性の炭素−炭素二重結合を1個有する化合物であってもよいし、多官能単量体、すなわち分子内に重合性の炭素−炭素二重結合を少なくとも2個有する化合物であってもよいが、単官能単量体が好ましく用いられる。そして、この単官能単量体の例としては、スチレン、α−メチルスチレン、ビニルトルエンの如き芳香族アルケニル化合物、アクリロニトリル、メタクリロニトリルの如きアルケニルシアン化合物などが挙げられる。また、多官能単量体の例としては、エチレングリコールジメタクリレート、ブタンジオールジメタクリレート、トリメチロールプロパントリアクリレートの如き多価アルコールのポリ不飽和カルボン酸エステル、アクリル酸アリル、メタクリル酸アリル、ケイ皮酸アリルの如き不飽和カルボン酸のアルケニルエステル、フタル酸ジアリル、マレイン酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレートの如き多塩基酸のポリアルケニルエステル、ジビニルベンゼンの如き芳香族ポリアルケニル化合物などが挙げられる。   The monomer other than alkyl methacrylate and alkyl acrylate may be a monofunctional monomer, that is, a compound having one polymerizable carbon-carbon double bond in the molecule, or a polyfunctional monofunctional monomer. Although it may be a monomer, that is, a compound having at least two polymerizable carbon-carbon double bonds in the molecule, a monofunctional monomer is preferably used. Examples of this monofunctional monomer include aromatic alkenyl compounds such as styrene, α-methylstyrene and vinyltoluene, and alkenyl cyan compounds such as acrylonitrile and methacrylonitrile. Examples of polyfunctional monomers include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon. Alkenyl esters of unsaturated carboxylic acids such as allyl acids, polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, aromatic polyalkenyl compounds such as divinylbenzene, etc. Can be mentioned.

なお、上記のメタクリル酸アルキル、アクリル酸アルキル、及びこれら以外の単量体は、それぞれ、必要に応じてそれらの2種以上を用いてもよい。   In addition, as for said alkyl methacrylate, alkyl acrylate, and monomers other than these, respectively, you may use those 2 or more types as needed.

メタクリル樹脂は、フィルムの耐熱性の点から、そのガラス転移温度が40℃以上であるのが好ましく、60℃以上であるのがより好ましい。このガラス転移温度は、単量体の種類やその割合を調整することにより、適宜設定することができる。   The methacrylic resin preferably has a glass transition temperature of 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.

メタクリル樹脂は、その単量体成分を、懸濁重合、乳化重合、塊状重合などの方法により重合させることにより、調製することができる。その際、好適なガラス転移温度を得るため、又は好適なフィルムへの成形性を示す粘度を得るため、重合時に連鎖移動剤を使用することが好ましい。連鎖移動剤の量は、単量体の種類やその割合などに応じて、適宜決定すればよい。   The methacrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization. The amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.

<2−2.紫外線吸収剤>
アクリル層に含有される紫外線吸収剤について以下に詳細を説明する。
<2-2. UV absorber>
Details of the ultraviolet absorber contained in the acrylic layer will be described below.

紫外線吸収剤に、特に制限は無いが、有機系として、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系、ベンゾエート系等が挙げられ、また無機系として、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄等が挙げられる。尚、紫外線吸収剤を多量に含有させた際にブリードアウトしてしまうという問題を低減するためには、分子量の1000以上の高分子の紫外線吸収剤を用いることが好ましい。好ましくは、分子量1000以上、3000以下である。   Although there is no restriction | limiting in particular in an ultraviolet absorber, As an organic type, a benzophenone type, a benzotriazole type, a phenyl salicylate type, a triazine type, a benzoate type etc. are mentioned, and an inorganic type includes titanium oxide, zinc oxide, cerium oxide, Examples thereof include iron oxide. In order to reduce the problem of bleeding out when a large amount of ultraviolet absorber is contained, it is preferable to use a polymeric ultraviolet absorber having a molecular weight of 1000 or more. Preferably, the molecular weight is 1000 or more and 3000 or less.

ベンゾフェノン系紫外線吸収剤としては、2,4−ジヒドロキシ−ベンゾフェノン、2−ヒドロキシ−4−メトキシ−ベンゾフェノン、2−ヒドロキシ−4−n−オクトキシ−ベンゾフェノン、2−ヒドロキシ−4−ドデシロキシ−ベンゾフェノン、2−ヒドロキシ−4−オクタデシロキシ−ベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシ−ベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−ベンゾフェノン、2,2’,4,4’−テトラヒドロキシ−ベンゾフェノン等が挙げられる。   Examples of the benzophenone ultraviolet absorber include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2′-dihydroxy-4-methoxy-benzophenone, 2,2′-dihydroxy-4,4′-dimethoxy-benzophenone, 2,2 ′, 4,4′-tetra And hydroxy-benzophenone.

ベンゾトリアゾール系紫外線吸収剤の例としては、2−(2’−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)ベンゾトリアゾール、2,2’−メチレンビス[6−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール](分子量659;市販品の例としては株式会社ADEKAのLA31)、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール(分子量447.6;市販品の例としてはチバ・スペシャリティ・ケミカルズ株式会社のチヌビン234)などが挙げられる。   Examples of benzotriazole ultraviolet absorbers include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) benzotriazole, 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1, 1,3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercial products are LA31 from ADEKA Corporation), 2- (2H-benzotriazol-2-yl) -4,6-bis (1- Methyl-1-phenylethyl) phenol (molecular weight 447.6; examples of commercially available products include Tinuvin 234 from Ciba Specialty Chemicals). It is.

サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2−4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート等が挙げられる。ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6−テトラメチルピペリジン−4−イル)セバケート等が挙げられる。   Examples of the phenyl salicylate ultraviolet absorber include phenylsulcylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like. Examples of hindered amine ultraviolet absorbers include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.

トリアジン系紫外線吸収剤としては、2,4−ジフェニル−6−(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−エトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジン、〔2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−(ヘキシル)オキシフェノール〕(チヌビン1577FF、商品名、チバ・スペシャルティーケミカルズ製)、〔2−[4,6−ビス(2,4ジメチルフェニル)−1,3,5−トリアジン−2−イル]−5−(オクチルオキシ)フェノール〕(CYASORB UV−1164、商品名、サイテックインダストリーズ製)等が挙げられる。   Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-triazi 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl) -1 , 3,5-triazine, [2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyl) oxyphenol] (Tinuvin 1577FF, trade name, Ciba Specialty Chemicals) Product), [2- [4,6-bis (2,4dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol] (CYASORB UV-1164, trade name, For example, made by Cytec Industries).

また、上記ベンゾエート系紫外線吸収剤の例としては、2,4−ジ−tert−ブチルフェニル−3,5−ジ−tert−ブチル−4−ヒドロキシベンゾエート(分子量438.7;市販品の例としては住友化学株式会社のSumisorb400)などが挙げられる。   Examples of the benzoate ultraviolet absorber include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; examples of commercially available products) Sumisorb 400) from Sumitomo Chemical Co., Ltd.

また、紫外線吸収剤としては上記以外に、紫外線の保有するエネルギーを分子内で振動エネルギーに変換し、その振動エネルギーを熱エネルギー等として放出する機能を有する化合物を用いることもできる。さらに、酸化防止剤あるいは着色剤等との併用により効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。但し、上記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。通常の紫外線吸収剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。   In addition to the above, as the ultraviolet absorber, a compound having a function of converting the energy held by ultraviolet rays into vibration energy in the molecule and releasing the vibration energy as heat energy or the like can be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers acting as a light energy conversion agent, called quenchers, can be used in combination. However, when using the above-mentioned ultraviolet absorber, it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator. When a normal ultraviolet absorber is used, it is effective to use a photopolymerization initiator that generates radicals with visible light.

なお、上記紫外線吸収剤はそれぞれ、必要に応じてそれらの2種以上を用いることもできる。また、必要により、上記紫外線吸収剤以外の紫外線吸収剤、例えば、サリチル酸誘導体、置換アクリロニトリル、ニッケル錯体、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤などを含有させることもできる。   In addition, the said ultraviolet absorber can also respectively use those 2 or more types as needed. Further, if necessary, an ultraviolet absorber other than the above-described ultraviolet absorber, for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, a benzophenone-based ultraviolet absorber, a triazine-based ultraviolet absorber, or the like can be contained.

紫外線吸収剤のアクリル層への含有量は、0.1〜20質量%であることが好ましく、より好ましくは1〜15質量%、さらに好ましくは3〜10質量%である。また、紫外線吸収剤のアクリル層への含有量は、フィルム単位面積当たりの含有量が0.17〜2.28g/m2で、より好ましくは単位面積当たりの含有量が0.4〜2.28g/m2以上である。含有量を上記の範囲にすることによって、耐候性能を十分発揮しつつ、紫外線吸収剤のブリードアウトによるロールやフィルムの汚れを起こすことを防止できる。 The content of the ultraviolet absorber in the acrylic layer is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, and still more preferably 3 to 10% by mass. The content of the ultraviolet absorber in the acrylic layer is 0.17 to 2.28 g / m 2 per unit area of the film, and more preferably 0.4 to 2.2. 28 g / m 2 or more. By setting the content within the above range, it is possible to prevent the roll and the film from being soiled by bleeding out of the ultraviolet absorber while sufficiently exhibiting the weather resistance.

<2−3.酸化防止剤>
アクリル層の溶融製膜時の劣化を防止したり、ラジカルを捕捉してアクリル層の劣化を防止するために、アクリル層に酸化防止剤を含有させてもよい。好ましい酸化防止剤の例を以下に挙げる。
<2-3. Antioxidant>
An antioxidant may be included in the acrylic layer in order to prevent the acrylic layer from being deteriorated during melt film formation or to capture radicals and prevent the acrylic layer from deteriorating. Examples of preferred antioxidants are listed below.

酸化防止剤としては、フェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、チオール系酸化防止剤およびホスファイト系酸化防止剤など、有機系酸化防止剤を使用することが好ましい。   As the antioxidant, it is preferable to use organic antioxidants such as phenolic antioxidants, hindered amine antioxidants, thiol antioxidants, and phosphite antioxidants.

フェノール系酸化防止剤としては、例えば、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、テトラキス−〔メチレン−3−(3’、5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート〕メタン、2,6−ジ−t−ブチル−p−クレゾール、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、1,3,5−トリス(3’、5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−S−トリアジン−2,4,6−(1H,3H,5H)トリオン、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネー〕、3,9−ビス[1,1−ジ−メチル−2−〔β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕エチル]−2,4,8,10−テトラオキオキサスピロ〔5,5〕ウンデカン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン等が挙げられる。特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。   Examples of phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t-). Butylphenol), tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propio , Triethylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis [1,1-di-methyl-2- [β- (3 -T-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4 , 6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene and the like. In particular, the phenolic antioxidant preferably has a molecular weight of 550 or more.

ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、1−メチル−8−(1,2,2,6,6−ペンタメチル−4−ピペリジル)−セバケート、1−[2−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕エチル]−4−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2、6,6−テトラメチルピペリジン、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタン−テトラカルボキシレート、トリエチレンジアミン、8−アセチル−3−ドデシル−7,7,9,9−テトラメチル−1,3,8−トリアザスピロ[4,5]デカン−2,4−ジオン等が挙げられる。   Examples of hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6, 6-tetramethyl Piperidine, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, triethylenediamine, 8-acetyl-3-dodecyl-7,7,9 , 9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4-dione.

特に、ヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的には、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、または1,2,2,6,6−ペンタメチル−4−ピペリジノール/トリデシルアルコールと1,2,3,4−ブタンテトラカルボン酸との縮合物が好ましい。   In particular, the hindered amine light stabilizer is preferably a hindered amine light stabilizer containing only a tertiary amine, specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl). ) -Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, Alternatively, a condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferable.

チオール系酸化防止剤としては、例えば、ジステアリル−3,3’−チオジプロピオネート、ペンタエリスリトールーテトラキスー(β−ラウリル−チオプロピオネート)等を挙げられる。   Examples of the thiol antioxidant include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis (β-lauryl-thiopropionate), and the like.

ホスファイト系酸化防止剤としては、例えば、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス−(2,6−ジ−t−ブチル−4−メチルフェニル)−ペンタエリスリトールジホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)4,4’−ビフェニレン−ジホスホナイト、2,2’−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト等が挙げられる。   Examples of the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol. Diphosphite, bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene-diphosphonite 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.

なお、上記した酸化防止剤と下記の光安定剤を併用することもできる。光安定剤としては、例えば、ニッケル系紫外線安定剤も使用可能であり、ニッケル系紫外線安定剤として、〔2,2’−チオビス(4−t−オクチルフェノレート)〕−2−エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス−3,5−ジ−t−ブチル−4−ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル−ジチオカーバメート等が挙げられる。   The above antioxidant and the following light stabilizer can be used in combination. As the light stabilizer, for example, a nickel-based UV stabilizer can also be used. As the nickel-based UV stabilizer, [2,2′-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel ( II), nickel complex-3,5-di-t-butyl-4-hydroxybenzyl phosphate monoethylate, nickel dibutyl-dithiocarbamate and the like.

<3.接着層>
接着層は、層同士の接着性を高める機能があるものであれば特に限定はない。接着であっても粘着であってもよい。好ましくは、アクリル層と樹脂コート層とを接着させる層である。接着層は、層同士を密着する密着性、銀反射層を真空蒸着法等で形成する時の熱にも耐え得る耐熱性、及び銀反射層が本来有する高い反射性能を引き出すための平滑性を有する事が好ましい。
<3. Adhesive layer>
The adhesive layer is not particularly limited as long as it has a function of improving the adhesion between the layers. Adhesion or adhesion may be used. Preferably, it is a layer for bonding the acrylic layer and the resin coat layer. Adhesive layer has adhesion to adhere the layers, heat resistance that can withstand heat when the silver reflective layer is formed by vacuum deposition, etc., and smoothness to bring out the high reflective performance that the silver reflective layer originally has. It is preferable to have it.

接着層は、1層のみからなっていてもよいし、複数層からなっていてもよい。接着層の厚さは、密着性、平滑性、反射材の反射率等の観点から、1〜10μmが好ましく、より好ましくは3〜8μmである。   The adhesive layer may consist of only one layer or may consist of a plurality of layers. The thickness of the adhesive layer is preferably 1 to 10 μm, more preferably 3 to 8 μm, from the viewpoints of adhesion, smoothness, reflectance of the reflective material, and the like.

接着層が樹脂である場合、樹脂として、上記の密着性、耐熱性、及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂又はポリエステル系樹脂とウレタン系樹脂の混合樹脂が好ましく、さらにアクリル系樹脂にイソシアネートを混合させるような、イソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。接着層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。   When the adhesive layer is a resin, the resin is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness, polyester resin, urethane resin, acrylic resin, melamine Resin, epoxy resin, polyamide resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin, etc. can be used singly or as a mixed resin. From the viewpoint of weather resistance, polyester resin and melamine resin or polyester resin can be used. A mixed resin of a resin and a urethane-based resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is mixed such that an isocyanate is mixed with an acrylic resin is more preferable. As a method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.

また、接着層が金属酸化物である場合、例えば酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化ランタン、窒化ランタン等、各種真空製膜法により製膜することができる。例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。   When the adhesive layer is a metal oxide, it can be formed by various vacuum film forming methods such as silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, and lanthanum nitride. For example, there are a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.

<4.樹脂コート層>
樹脂コート層は、アクリル層と銀反射層の間に設けられている。樹脂コート層が銀反射層に隣接している場合、樹脂コート層が銀の腐食を防止するよう、樹脂コート層が銀の腐食防止剤を含有していることが好ましい。
<4. Resin coat layer>
The resin coat layer is provided between the acrylic layer and the silver reflective layer. When the resin coat layer is adjacent to the silver reflection layer, the resin coat layer preferably contains a silver corrosion inhibitor so that the resin coat layer prevents silver corrosion.

樹脂コート層は、1層のみからなっていてもよいし、複数層からなっていてもよい。樹脂コート層の厚さは、1〜10μmが好ましく、より好ましくは2〜8μmである。   The resin coat layer may consist of only one layer or may consist of a plurality of layers. The thickness of the resin coat layer is preferably 1 to 10 μm, more preferably 2 to 8 μm.

樹脂コート層のバインダーとしては、例えば以下の樹脂を好ましく用いることができる。セルロースエステル、ポリエステル、ポリカーボネート、ポリアリレート、ポリスルホン(ポリエーテルスルホンも含む)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール、シンジオタクティックポリスチレン系、ポリカーボネート、ノルボルネン系、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル樹脂等を挙げることができる。中でも、アクリル樹脂が好ましい。   As the binder of the resin coat layer, for example, the following resins can be preferably used. Cellulose ester, polyester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyethylene terephthalate, polyethylene naphthalate, polyester, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate propionate, cellulose Acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene, polymethylpentene, polyether ketone, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, An acrylic resin etc. can be mentioned. Among these, an acrylic resin is preferable.

<4−2.腐食防止剤>
腐食防止剤としては、銀に対する吸着性基を有することが好ましい。ここで、「腐食」とは、金属(銀)がそれをとり囲む環境物質によって、化学的または電気化学的に浸食されるか若しくは材質的に劣化する現象をいう(JIS Z0103−2004参照)。
なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には0.1〜1.0/mの範囲内であることが好ましい。
<4-2. Corrosion inhibitor>
The corrosion inhibitor preferably has an adsorptive group for silver. Here, “corrosion” refers to a phenomenon in which a metal (silver) is chemically or electrochemically eroded or deteriorated by an environmental material surrounding it (see JIS Z0103-2004).
The optimum content of the corrosion inhibitor varies depending on the compound used, but it is generally preferred that the content is in the range of 0.1 to 1.0 / m 2 .

銀に対する吸着性基を有する腐食防止剤としては、アミン類およびその誘導体、ピロール環を有する化合物、ベンゾトリアゾール等トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系の少なくとも一種またはこれらの混合物から選ばれることが望ましい。ベンゾトリアゾール等の化合物においては、紫外線吸収剤が腐食防止剤を兼ねる場合もある。また、シリコーン変性樹脂を用いることも可能である。シリコーン変性樹脂として特に限定されない。   Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and having an imidazole ring It is desirable to be selected from a compound, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene-based compound, or a mixture thereof. In compounds such as benzotriazole, the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. It does not specifically limit as a silicone modified resin.

アミン類およびその誘導体としては、エチルアミン、ラウリルアミン、トリ−n−ブチルアミン、O−トルイジン、ジフェニルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2N−ジメチルエタノールアミン、2−アミノ−2−メチル−1,3−プロパンジオール、アセトアミド、アクリルアミド、ベンズアミド、p−エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート等、あるいはこれらの混合物が挙げられる。   Examples of amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolaminebenzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexane carboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate, or mixtures thereof.

ピロール環を有する物としては、N−ブチル−2,5−ジメチルピロール,N−フェニル−2,5ジメチルピロール、N−フェニル−3−ホルミル−2,5−ジメチルピロール,N−フェニル−3,4−ジホルミル−2,5−ジメチルピロール等、あるいはこれらの混合物が挙げられる。   Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, N-phenyl-3, 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.

トリアゾール環を有する化合物としては、1,2,3−トリアゾール、1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、3−ヒドロキシ−1,2,4−トリアゾール、3−メチル−1,2,4−トリアゾール、1−メチル−1,2,4−トリアゾール、1−メチル−3−メルカプト−1,2,4−トリアゾール、4−メチル−1,2,3−トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1−ヒドロキシベンゾトリアゾール、4,5,6,7−テトラハイドロトリアゾール、3−アミノ−1,2,4−トリアゾール、3−アミノ−5−メチル−1,2,4−トリアゾール、カルボキシベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ3’5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)ベンゾトリアゾール、2,2’−メチレンビス[6−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール](分子量659;市販品の例としては株式会社ADEKAのLA31)、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール(分子量447.6;市販品の例としてはチバ・スペシャリティ・ケミカルズ株式会社のチヌビン234)などが挙げられる。あるいはこれらの混合物が挙げられる。   Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy) 5′-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy 3′5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-4-octoxyphenyl) benzotriazole, 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) benzotriazole, 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1 , 3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercial products are LA31 from ADEKA Corporation), 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl -1-phenylethyl) phenol (molecular weight 447.6; an example of a commercially available product is Tinuvin 2 from Ciba Specialty Chemicals Co., Ltd. 4), and the like. Alternatively, a mixture thereof can be mentioned.

ピラゾール環を有する化合物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5−ジメチルピラゾール、3−メチル−5−ヒドロキシピラゾール、4−アミノピラゾール等、あるいはこれらの混合物が挙げられる。   Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.

チアゾール環を有する化合物としては、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2−N,N−ジエチルチオベンゾチアゾール、P−ジメチルアミノベンザルロダニン、2−メルカプトベンゾチアゾール等、あるいはこれらの混合物が挙げられる。   Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole and the like. Or a mixture thereof.

イミダゾール環を有する化合物としては、イミダゾール、ヒスチジン、2−ヘプタデシルイミダゾール、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−フェニル−4−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2−フェニル−4−メチル−5−ヒドロメチルイミダゾール、2−フェニル−4,5ジヒドロキシメチルイミダゾール、4−フォルミルイミダゾール、2−メチル−4−フォルミルイミダゾール、2−フェニル−4−フォルミルイミダゾール、4−メチル−5−フォルミルイミダゾール、2−エチル−4−メチル−5−フォルミルイミダゾール、2−フェニル−4−メチル−4−フォルミルイミダゾール、2−メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。   Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl. Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5 dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4-phenyl Rumyl imidazole, 4-methyl-5-formyl imidazole, 2-ethyl-4-methyl-5-formyl imidazole, 2-phenyl-4-methyl-4-formyl imidazole, 2-mercaptobenzimidazole, etc., or these Of the mixture.

インダゾール環を有する化合物としては、4−クロロインダゾール、4−ニトロインダゾール、5−ニトロインダゾール、4−クロロ−5−ニトロインダゾール等、あるいはこれらの混合物が挙げられる。   Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.

銅キレート化合物類としては、アセチルアセトン銅、エチレンジアミン銅、フタロシアニン銅、エチレンジアミンテトラアセテート銅、ヒドロキシキノリン銅等、あるいはこれらの混合物が挙げられる。   Examples of the copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and a mixture thereof.

チオ尿素類としては、チオ尿素、グアニルチオ尿素等、あるいはこれらの混合物が挙げられる。   Examples of thioureas include thiourea, guanylthiourea, and the like, or a mixture thereof.

メルカプト基を有する化合物としては、すでに上記に記載した材料も加えれば、メルカプト酢酸、チオフェノール、1,2‐エタンジオール、3−メルカプト−1,2,4−トリアゾール、1−メチル−3−メルカプト−1,2,4−トリアゾール、2−メルカプトベンゾチアゾール、2−メルカプトベンゾイミダゾール、グリコールジメルカプトアセテート、3−メルカプトプロピルトリメトキシシラン等、あるいはこれらの混合物が挙げられる。   As a compound having a mercapto group, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto can be added to the above-described materials. -1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, and the like, or a mixture thereof.

ナフタレン系としては、チオナリド等が挙げられる。   Examples of the naphthalene type include thionalide.

<5.銀反射層>
銀反射層は、太陽光を良好に反射する機能を有する銀を主成分とする層である。銀反射層の表面反射率は80%以上であることが好ましく、より好ましくは90%以上である。尚、銀反射層の厚さは、反射率等の観点から、10〜200nmが好ましく、より好ましくは30〜150nmである。
<5. Silver reflective layer>
A silver reflective layer is a layer which has as a main component silver which has the function to reflect sunlight favorably. The surface reflectance of the silver reflective layer is preferably 80% or more, more preferably 90% or more. The thickness of the silver reflective layer is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectance and the like.

この銀反射層の形成法としては、湿式法及び乾式法のどちらも使用することができる。湿式法とは、めっき法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例をあげるとすれば、銀鏡反応などがある。一方、乾式法とは、真空製膜法の総称であり、具体的に例示するとすれば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。とりわけ、本発明には連続的に製膜するロールツーロール方式が可能な蒸着法が好ましく用いられる。例えば、太陽熱発電用フィルムミラーの製造方法において、銀反射層を銀蒸着によって形成する製造方法であることが好ましい。   As a method for forming this silver reflective layer, either a wet method or a dry method can be used. The wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction. On the other hand, the dry method is a general term for a vacuum film-forming method. Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method. And sputtering method. In particular, a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. For example, in the manufacturing method of the film mirror for solar power generation, it is preferable that it is a manufacturing method which forms a silver reflection layer by silver vapor deposition.

<5−2.気化・脱離しうる配位子を有する銀錯体化合物>
銀反射層を形成する際に、配位子が気化・脱離しうる銀錯体化合物を含有する塗布膜を加熱焼成することにより銀反射層を形成するようにしてもよい。
<5-2. Silver complex compound having a ligand that can be vaporized and desorbed>
When forming a silver reflective layer, you may make it form a silver reflective layer by heat-baking the coating film containing the silver complex compound which a ligand can vaporize and detach | desorb.

「気化・脱離しうる配位子を有する銀錯体化合物」とは、溶液中では銀が安定に溶解するための配位子を有するが、溶媒を除去し、加熱焼成することによって、配位子が熱分解し、COや低分子量のアミン化合物となり、気化・脱離し、金属銀のみが残存することのできる銀錯体化合物のことをいう。 “Silver complex compound having a ligand that can be vaporized / desorbed” has a ligand for stably dissolving silver in a solution, but the ligand is removed by removing the solvent and heating and firing. Is a silver complex compound that can be thermally decomposed into CO 2 or a low molecular weight amine compound, vaporized / desorbed, and only metallic silver remains.

このような錯体の例は、公知である特表2009−535661号、特表2010−5
00475号各公報等に記載されており、下記一般式(1)で表される銀化合物と、一般式(2)〜(4)で表されるアンモニウムカルバメート系化合物又はアンモニウムカーボネート系化合物とを反応して得られる銀錯体化合物であることが好ましい。
Examples of such a complex are publicly known special table 2009-535661, special table 2010-5.
A silver compound represented by the following general formula (1) is reacted with an ammonium carbamate compound or an ammonium carbonate compound represented by general formulas (2) to (4). It is preferable that it is a silver complex compound obtained by doing this.

また、銀錯体化合物は銀コーティング液組成物に含有され、これを塗布することにより支持体上に本発明に係る錯体を含有する塗布膜が形成される。すなわち、銀錯体化合物を用いてフィルム上に塗布膜を形成した後に、塗布膜を80〜250℃の範囲内の温度において加熱焼成することにより銀反射層を形成することが好ましい。更に好ましくは100〜220の範囲内、特に好ましくは120〜200℃の範囲内である。加熱焼成手段としては、特に制限は無く、一般的に用いられる加熱手段はどんなものでも適用できる。   Moreover, a silver complex compound is contained in a silver coating liquid composition, and the coating film containing the complex according to the present invention is formed on a support by coating this. That is, after forming a coating film on a film using a silver complex compound, it is preferable to form a silver reflective layer by heating and baking the coating film at a temperature in the range of 80 to 250 ° C. More preferably, it exists in the range of 100-220, Most preferably, it exists in the range of 120-200 degreeC. There is no restriction | limiting in particular as a heat-firing means, What kind of heating means generally used can be applied.

以下、下記一般式(1)で表される銀化合物と、一般式(2)〜(4)で表されるアンモニウムカルバメート系化合物又はアンモニウムカーボネート系化合物等について説明をする。   Hereinafter, the silver compound represented by the following general formula (1) and the ammonium carbamate compound or the ammonium carbonate compound represented by the general formulas (2) to (4) will be described.

AgX ・・・(1) Ag n X (1)

Figure 2012232538
Figure 2012232538

(一般式(1)〜(4)において、Xは、酸素、硫黄、ハロゲン、シアノ、シアネート、カーボネート、ニトレート、ニトライト、サルフェート、ホスフェート、チオシアネート、クロレート、パークロレート、テトラフルオロボレート、アセチルアセトネート、カルボキシレート、及びこれらの誘導体から選択される置換基であり、nは、1〜4の整数であって、R〜Rは、互いに独立して、水素、C1〜C30の脂肪族や脂環族アルキル基、アリール基又はアラルキル(aralkyl)基、官能基が置換されたアルキル及びアリール基、ヘテロ環化合物基と高分子化合物及びその誘導体から選択される置換基である。) (In the general formulas (1) to (4), X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, nitrite, sulfate, phosphate, thiocyanate, chlorate, perchlorate, tetrafluoroborate, acetylacetonate, It is a substituent selected from carboxylate and derivatives thereof, n is an integer of 1 to 4, and R 1 to R 6 are independently of each other hydrogen, C1 to C30 aliphatic or fatty acid. These are substituents selected from cyclic alkyl groups, aryl groups or aralkyl groups, alkyl and aryl groups substituted with functional groups, heterocyclic compound groups, polymer compounds and derivatives thereof.

一般式(1)の具体例としては、例えば、酸化銀、チオシアネート化銀、硫化銀、塩化銀、シアン化銀、シアネート化銀、炭酸銀、硝酸銀、亜硝酸銀、硫酸銀、燐酸銀、過塩素酸銀、四フッ素ボレート化銀、アセチルアセトネート化銀、酢酸銀、乳酸銀、シュウ酸銀及びその誘導体などが挙げられるが、これに限定されるものではない。   Specific examples of the general formula (1) include, for example, silver oxide, silver thiocyanate, silver sulfide, silver chloride, silver cyanide, silver cyanate, silver carbonate, silver nitrate, silver nitrite, silver sulfate, silver phosphate, perchlorine. Examples include, but are not limited to, acid silver, silver tetrafluoroborate, silver acetylacetonate, silver acetate, silver lactate, silver oxalate and derivatives thereof.

また、一般式(2)〜(4)において、R〜Rは、具体的に例えば、水素、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、アミル、ヘキシル、エチルヘキシル、ヘプチル、オクチル、イソオクチル、ノニル、デシル、ドデシル、ヘキサデシル、オクタデシル、ドコデシル、シクロプロピル、シクロペンチル、シクロヘキシル、アリール、ヒドロキシ、メトキシ、ヒドロキシエチル、メトキシエチル、2−ヒドロキシプロピル、メトキシプロピル、シアノエチル、エトキシ、ブトキシ、ヘキシルオキシ、メトキシエトキシエチル、メトキシエトキシエトキシエチル、ヘキサメチレンイミン、モルホリン、ピペリジン、ピペラジン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、トリエチレンジアミン、ピロール、イミダゾール、ピリジン、カルボキシメチル、トリメトキシシリルプロピル、トリエトキシシリルプロピル、フェニル、メトキシフェニル、シアノフェニル、フェノキシ、トリル、ベンジル及びその誘導体、そしてポリアリールアミンやポリエチレンアミンのような高分子化合物及びこれらの誘導体などが挙げられるが、これに限定されるものではない。 In the general formulas (2) to (4), R 1 to R 6 are specifically, for example, hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, amyl, hexyl, ethylhexyl, heptyl, octyl, isooctyl , Nonyl, decyl, dodecyl, hexadecyl, octadecyl, docodecyl, cyclopropyl, cyclopentyl, cyclohexyl, aryl, hydroxy, methoxy, hydroxyethyl, methoxyethyl, 2-hydroxypropyl, methoxypropyl, cyanoethyl, ethoxy, butoxy, hexyloxy, methoxy Ethoxyethyl, methoxyethoxyethoxyethyl, hexamethyleneimine, morpholine, piperidine, piperazine, ethylenediamine, propylenediamine, hexamethylenediamine, triethylenedia , Pyrrole, imidazole, pyridine, carboxymethyl, trimethoxysilylpropyl, triethoxysilylpropyl, phenyl, methoxyphenyl, cyanophenyl, phenoxy, tolyl, benzyl and their derivatives, and polymers such as polyarylamine and polyethyleneamine Examples of the compound and derivatives thereof are not limited thereto.

一般式(2)〜(4)の化合物例としては、例えば、アンモニウムカルバメート(ammonium carbamate)、アンモニウムカーボネート(ammoniumcarbonate)、アンモニウムバイカーボネート(ammonium bicarbonate)、エチルアンモニウム エチルカルバメート、イソプロピルアンモニウムイソプロピルカルバメート、n−ブチルアンモニウム n−ブチルカルバメート、イソブチルアンモニウム イソブチルカルバメート、t−ブチルアンモニウム t−ブチルカルバメート、2−エチルヘキシルアンモニウム 2−エチルヘキシルカルバメート、オクタデシルアンモニウム オクタデシルカルバメート、2−メトキシエチルアンモニウム 2−メトキシエチルカルバメート、2−シアノエチルアンモニウム 2−シアノエチルカルバメート、ジブチルアンモニウム ジブチルカルバメート、ジオクタデシルアンモニウムジオクタデシルカルバメート、メチルデシルアンモニウム メチルデシルカルバメート、ヘキサメチレンイミンアンモニウム ヘキサメチレンイミンカルバメート、モルホリニウム モルホリンカルバメート、ピリジウムエチルヘキシルカルバメート、トリエチレンジアミニウム イソプロピルバイカルバメート、ベンジルアンモニウム ベンジルカルバメート、トリエトキシシリルプロピルアンモニウム トリエトキシシリルプロピルカルバメート、エチルアンモニウム エチルカーボネート、イソプロピルアンモニウム イソプロピルカーボネート、イソプロピルアンモニウム バイカーボネート、n−ブチルアンモニウム n−ブチルカーボネート、イソブチルアンモニウム イソブチルカーボネート、t−ブチルアンモニウム t−ブチルカーボネート、t−ブチルアンモニウム バイカーボネート、2−エチルヘキシルアンモニウム 2−エチルヘキシルカーボネート、2−エチルヘキシルアンモニウム バイカーボネート、2−メトキシエチルアンモニウム 2−メトキシエチルカーボネート、2−メトキシエチルアンモニウム バイカーボネート、2−シアノエチルアンモニウム 2−シアノエチルカーボネート、2−シアノエチルアンモニウム バイカーボネート、オクタデシルアンモニウム オクタデシルカーボネート、ジブチルアンモニウム ジブチルカーボネート、ジオクタデシルアンモニウム ジオクタデシルカーボネート、ジオクタデシルアンモニウム バイカーボネート、メチルデシルアンモニウム メチルデシルカーボネート、ヘキサメチレンイミンアンモニウム ヘキサメチレンイミンカーボネート、モルホリンアンモニウム モルホリンカーボネート、ベンジルアンモニウム ベンジルカーボネート、トリエトキシシリルプロピルアンモニウム トリエトキシシリルプロピルカーボネート、ピリジウム バイカーボネート、トリエチレンジアミニウム イソプロピルカーボネート、トリエチレンジアミニウム バイカーボネート、及びその誘導体から選択される一種又は二種以上の混合物などが挙げられるが、これに限定されるものではない。   Examples of the compounds of the general formulas (2) to (4) include, for example, ammonium carbamate, ammonium carbonate, ammonium bicarbonate, ethylammonium ethylcarbamate, isopropylammonium isopropylcarbamate, n- Butylammonium n-butylcarbamate, isobutylammonium isobutylcarbamate, t-butylammonium t-butylcarbamate, 2-ethylhexylammonium 2-ethylhexylcarbamate, octadecylammonium octadecylcarbamate, 2-methoxyethylammonium 2-methoxyethylcarbamate, 2-si Noethylammonium 2-cyanoethylcarbamate, dibutylammonium dibutylcarbamate, dioctadecylammonium dioctadecylcarbamate, methyldecylammonium methyldecylcarbamate, hexamethyleneimineammonium hexamethyleneiminecarbamate, morpholinium morpholinecarbamate, pyridiumethylhexylcarbamate, triethylenediaminiumisopropyl Bicarbamate, benzylammonium benzylcarbamate, triethoxysilylpropylammonium triethoxysilylpropylcarbamate, ethylammonium ethyl carbonate, isopropylammonium isopropylcarbonate, isopropylammonium bicarbonate, n-butyl Ammonium n-butyl carbonate, isobutylammonium isobutyl carbonate, t-butylammonium t-butyl carbonate, t-butylammonium bicarbonate, 2-ethylhexylammonium 2-ethylhexylcarbonate, 2-ethylhexylammonium bicarbonate, 2-methoxyethylammonium 2- Methoxyethyl carbonate, 2-methoxyethylammonium bicarbonate, 2-cyanoethylammonium 2-cyanoethyl carbonate, 2-cyanoethylammonium bicarbonate, octadecylammonium octadecylcarbonate, dibutylammonium dibutylcarbonate, dioctadecylammonium dioctadecylcarbonate, dioctade Silammonium bicarbonate, methyldecylammonium methyldecylcarbonate, hexamethyleneimineammonium hexamethyleneiminecarbonate, morpholineammonium morpholinecarbonate, benzylammonium benzylcarbonate, triethoxysilylpropylammonium triethoxysilylpropylcarbonate, pyridium bicarbonate, triethylenediaminium Examples thereof include, but are not limited to, one or a mixture of two or more selected from isopropyl carbonate, triethylenediaminium bicarbonate, and derivatives thereof.

一方、上記のアンモニウムカルバメート又はアンモニウムカーボネート系化合物の種類及び製造方法は、特に制限する必要はない。例えば、米国特許第4,542,214号では、第1アミン、第2アミン、第3アミン、又は少なくとも1つ以上のこれらの混合物と二酸化炭素からアンモニウムカルバメート系化合物が製造できると記述しており、前記アミン1モル当り水0.5モルをさらに添加すると、アンモニウムカーボネート系化合物が得られて、水1モル以上を添加する場合は、アンモニウムバイカーボネート系化合物を得ることができる。この際、常圧又は加圧状態で特別な溶媒を使用せずに直接製造するか、溶媒を使用する場合、水、メタノール、エタノール、イソプロパノール、ブタノールのようなアルコール類、エチレングリコール、グリセリンのようなグリコール類、エチルアセテート、ブチルアセテート、カルビトールアセテートのようなアセテート類、ジエチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、メチルエチルケトン、アセトンのようなケトン類、ヘキサン、ヘプタンのような炭化水素系、ベンゼン、トルエンのような芳香族、そしてクロロホルムやメチレンクロライド、カーボンテトラクロライドのようなハロゲン置換溶媒又はこれらの混合溶媒などが挙げられて、二酸化炭素は、気相状態でバブリング(bubbling)するか、固体相ドライアイスを使用することができて、超臨界(supercritical)状態でも反応することができる。アンモニウムカルバメート又はアンモニウムカーボネート誘導体の製造には、上記の方法の他にも、最終物質の構造が同一であれば、公知のいかなる方法を使用してもよい。即ち、製造のための溶媒、反応温度、濃度又は触媒などを特に限定する必要はなく、製造収率にも影響しない。   On the other hand, the kind and production method of the above-mentioned ammonium carbamate or ammonium carbonate compound need not be particularly limited. For example, US Pat. No. 4,542,214 describes that ammonium carbamate compounds can be prepared from carbon dioxide and primary amines, secondary amines, tertiary amines, or at least one of these mixtures. When 0.5 mol of water is further added per 1 mol of the amine, an ammonium carbonate compound is obtained. When 1 mol or more of water is added, an ammonium bicarbonate compound can be obtained. At this time, it is produced directly without using a special solvent at normal pressure or under pressure, or when a solvent is used, alcohols such as water, methanol, ethanol, isopropanol, butanol, ethylene glycol, glycerin, etc. Glycols, ethyl acetate, butyl acetate, acetates such as carbitol acetate, ethers such as diethyl ether, tetrahydrofuran, dioxane, ketones such as methyl ethyl ketone, acetone, hydrocarbons such as hexane, heptane, Examples include aromatics such as benzene and toluene, and halogen-substituted solvents such as chloroform, methylene chloride, and carbon tetrachloride, or mixed solvents thereof. Is carbon dioxide bubbled in the gas phase? To be able to use the solid phase dry ice, it can be reacted in supercritical (supercritical) state. In addition to the above method, any known method may be used for the production of the ammonium carbamate or ammonium carbonate derivative as long as the structure of the final substance is the same. That is, it is not necessary to specifically limit the solvent, reaction temperature, concentration or catalyst for production, and the production yield is not affected.

このように製造されたアンモニウムカルバメート又はアンモニウムカーボネート系化合物と銀化合物とを反応して、有機銀錯体化合物を製造することができる。例えば、一般式(1)に示したような少なくとも一つ以上の銀化合物と、一般式(2)〜(4)に示したような少なくとも一つ以上のアンモニウムカルバメート又はアンモニウムカーボネート誘導体及びこれらの混合物を、窒素雰囲気の常圧又は加圧状態で、溶媒を使用せずに直接反応するか、溶媒を使用する場合、水、メタノール、エタノール、イソプロパノール、ブタノールのようなアルコール類、エチレングリコール、グリセリンのようなグリコール類、エチルアセテート、ブチルアセテート、カルビトールアセテートのようなアセテート類、ジエチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、メチルエチルケトン、アセトンのようなケトン類、ヘキサン、ヘプタンのような炭化水素系、ベンゼン、トルエンのような芳香族、そしてクロロホルムやメチレンクロライド、カーボンテトラクロライドのようなハロゲン置換溶媒又はこれらの混合溶媒などを使用することができる。   An organic silver complex compound can be produced by reacting the thus produced ammonium carbamate or ammonium carbonate compound with a silver compound. For example, at least one silver compound represented by the general formula (1), at least one ammonium carbamate or ammonium carbonate derivative represented by the general formulas (2) to (4), and a mixture thereof. In a nitrogen atmosphere at normal pressure or under pressure without using a solvent, or when using a solvent, alcohols such as water, methanol, ethanol, isopropanol, butanol, ethylene glycol, glycerin Glycols such as ethyl acetate, butyl acetate, acetates such as carbitol acetate, ethers such as diethyl ether, tetrahydrofuran and dioxane, ketones such as methyl ethyl ketone and acetone, hydrocarbons such as hexane and heptane Of benzene, toluene Aromatic UNA, and chloroform and methylene chloride, and halogen-substituted solvents or a mixed solvent such as carbon tetrachloride can be used.

銀錯体化合物の製造には、上記の方法の他に、一般式(1)の銀化合物と一つ以上のアミン化合物とが混合された溶液を製造した後、二酸化炭素を反応して、銀錯体化合物を製造することもできる。上記のように、窒素雰囲気の常圧又は加圧状態で、溶媒を使用せずに直接反応するか、溶媒を使用して反応することができる。しかしながら、最終物質の構造が同一であれば、公知の如何なる方法を使用してもよい。即ち、製造のための溶媒、反応温度、濃度又は触媒の使用有無などを特に限定する必要はなく、製造収率にも影響しない。   For the production of the silver complex compound, in addition to the above method, a solution in which the silver compound of the general formula (1) and one or more amine compounds are mixed is reacted with carbon dioxide to produce a silver complex. Compounds can also be produced. As described above, the reaction can be performed directly without using a solvent in a normal pressure or pressurized state of a nitrogen atmosphere, or can be performed using a solvent. However, any known method may be used as long as the structure of the final material is the same. That is, it is not necessary to specifically limit the solvent for the production, the reaction temperature, the concentration, the presence or absence of the catalyst, and the production yield is not affected.

銀錯体化合物は、特表2008−530001号公報にその製造方法が記載されており、下記一般式(5)の構造で認識される。   The production method of the silver complex compound is described in JP-T-2008-530001, and is recognized by the structure of the following general formula (5).

Ag[A] ・・・(5)
(一般式(5)において、Aは、一般式(2)〜(4)の化合物であり、mは、0.5〜1.5である。)
高反射、高光沢の反射面の形成のために使用される銀コーティング液組成物は、前記の銀錯体化合物を含有し、必要に応じて、溶媒、安定剤、レベリング剤(Leveling agent)、薄膜補助剤、還元剤、熱分解反応促進剤の添加剤を、銀コーティング組成物に含有することができる。補助剤、還元剤、熱分解反応促進剤の添加剤を、本発明の銀コーティング組成物に含有することができる。
Ag [A] m (5)
(In General formula (5), A is a compound of General formula (2)-(4), and m is 0.5-1.5.)
The silver coating liquid composition used for forming a highly reflective and highly glossy reflective surface contains the above-mentioned silver complex compound, and if necessary, a solvent, a stabilizer, a leveling agent, a thin film Adjuncts, reducing agents, and additives for thermal decomposition reaction accelerators can be contained in the silver coating composition. Additives such as adjuvants, reducing agents and thermal decomposition reaction accelerators can be contained in the silver coating composition of the present invention.

一方、前記安定剤としては例えば、第1アミン、第2アミン又は第3アミンのようなアミン化合物や、前記アンモニウムカルバメート、アンモニウムカーボネート、アンモニウムバイカーボネート系化合物、又はホスフィン(phosphine)、ホスファイ(phosphite)、ホスフェート(phosphate)のようなリン化合物、チオール(thiol)やスルフィド(sulfide)のような硫黄化合物と、少なくとも一つ以上のこれらの混合物が挙げられ、アミン化合物としては、具体的に例えば、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、イソアミルアミン、n−ヘキシルアミン、2−エチルヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、イソオクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、ヘキサデシルアミン、オクタデシルアミン、ドコデシルアミン、シクロプロピルアミン、シクロペンチルアミン、シクロヘキシルアミン、アリールアミン、ヒドロキシアミン、アンモニウムヒドロキシド、メトキシアミン、2−エタノールアミン、メトキシエチルアミン、2−ヒドロキシプロピルアミン、2−ヒドロキシ−2−メチルプロピルアミン、メトキシプロピルアミン、シアノエチルアミン、エトキシアミン、n−ブトキシアミン、2−ヘキシルオキシアミン、メトキシエトキシエチルアミン、メトキシエトキシエトキシエチルアミン、ジメチルアミン、ジプロピルアミン、ジエタノールアミン、ヘキサメチレンイミン、モルホリン、ピペリジン、ピペラジン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、トリエチレンジアミン、2,2−(エチレンジオキシ)ビスエチルアミン、トリエチルアミン、トリエタノールアミン、ピロール、イミダゾール、ピリジン、アミノアセトアルデヒドジメチルアセタル、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、アニリン、アニシジン、アミノベンゾニトリル、ベンジルアミン及びその誘導体、そしてポリアリールアミンやポリエチレンイミンのような高分子化合物及びその誘導体などのようなアミン化合物が挙げられる。   On the other hand, examples of the stabilizer include amine compounds such as primary amines, secondary amines, and tertiary amines, ammonium carbamates, ammonium carbonates, ammonium bicarbonate compounds, phosphines, and phosphites. And a phosphorus compound such as phosphate, a sulfur compound such as thiol and sulfide, and at least one mixture thereof. Specific examples of amine compounds include, for example, methyl Amine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, isoamylamine, n-hexylamine, 2-ethylhexylamine, n-heptylamine, n-octyl Ruamine, isooctylamine, nonylamine, decylamine, dodecylamine, hexadecylamine, octadecylamine, docodecylamine, cyclopropylamine, cyclopentylamine, cyclohexylamine, arylamine, hydroxyamine, ammonium hydroxide, methoxyamine, 2-ethanol Amine, methoxyethylamine, 2-hydroxypropylamine, 2-hydroxy-2-methylpropylamine, methoxypropylamine, cyanoethylamine, ethoxyamine, n-butoxyamine, 2-hexyloxyamine, methoxyethoxyethylamine, methoxyethoxyethoxyethylamine , Dimethylamine, dipropylamine, diethanolamine, hexamethyleneimine, morpholine, piperidine, Perazine, ethylenediamine, propylenediamine, hexamethylenediamine, triethylenediamine, 2,2- (ethylenedioxy) bisethylamine, triethylamine, triethanolamine, pyrrole, imidazole, pyridine, aminoacetaldehyde dimethyl acetal, 3-aminopropyltrimethoxy Examples include silane, 3-aminopropyltriethoxysilane, aniline, anisidine, aminobenzonitrile, benzylamine and derivatives thereof, and amine compounds such as polymer compounds such as polyarylamine and polyethyleneimine and derivatives thereof.

アンモニウムカルバメート、カーボネート、バイカーボネート系化合物として具体的に例えば、アンモニウムカルバメート(ammonium carbamate)、アンモニウムカーボネート(ammonium carbonate)、アンモニウムバイカーボネート(ammonium bicarbonate)、エチルアンモニウム エチルカルバメート、イソプロピルアンモニウム イソプロピルカルバメート、n−ブチルアンモニウム n−ブチルカルバメート、イソブチルアンモニウム イソブチルカルバメート、t−ブチルアンモニウム t−ブチルカルバメート、2−エチルヘキシルアンモニウム 2−エチルヘキシルカルバメート、オクタデシルアンモニウム オクタデシルカルバメート、2−メトキシエチルアンモニウム 2−メトキシエチルカルバメート、2−シアノエチルアンモニウム 2−シアノエチルカルバメート、ジブチルアンモニウム ジブチルカルバメート、ジオクタデシルアンモニウム ジオクタデシルカルバメート、メチルデシルアンモニウム メチルデシルカルバメート、ヘキサメチレンイミンアンモニウム ヘキサメチレンイミンカルバメート、モルホリニウム モルホリンカルバメート、ピリジウムエチルヘキシルカルバメート、トリエチレンジアミニウム イソプロピルバイカルバメート、ベンジルアンモニウム ベンジルカルバメート、トリエトキシシリルプロピルアンモニウム トリエトキシシリルプロピルカルバメート、エチルアンモニウム エチルカーボネート、イソプロピルアンモニウム イソプロピルカーボネート、イソプロピルアンモニウム バイカーボネート、n−ブチルアンモニウム n−ブチルカーボネート、イソブチルアンモニウム イソブチルカーボネート、t−ブチルアンモニウム t−ブチルカーボネート、t−ブチルアンモニウム バイカーボネート、2−エチルヘキシルアンモニウム 2−エチルヘキシルカーボネート、2−エチルヘキシルアンモニウム バイカーボネート、2−メトキシエチルアンモニウム 2−メトキシエチルカーボネート、2−メトキシエチルアンモニウム バイカーボネート、2−シアノエチルアンモニウム 2−シアノエチルカーボネート、2−シアノエチルアンモニウム バイカーボネート、オクタデシルアンモニウム オクタデシルカーボネート、ジブチルアンモニウム ジブチルカーボネート、ジオクタデシルアンモニウム ジオクタデシルカーボネート、ジオクタデシルアンモニウム バイカーボネート、メチルデシルアンモニウム メチルデシルカーボネート、ヘキサメチレンイミンアンモニウム ヘキサメチレンイミンカーボネート、モルホリンアンモニウム モルホリンカーボネート、ベンジルアンモニウム ベンジルカーボネート、トリエトキシシリルプロピルアンモニウム トリエトキシシリルプロピルカーボネート、ピリジウム バイカーボネート、トリエチレンジアミニウム イソプロピルカーボネート、トリエチレンジアミニウム バイカーボネート、及びその誘導体などが挙げられる。   Specific examples of ammonium carbamate, carbonate, and bicarbonate-based compounds include, for example, ammonium carbamate, ammonium carbonate, ammonium bicarbonate, ethylammonium ethylcarbamate, isopropylammonium isopropylcarbamate, and n-butyl. Ammonium n-butyl carbamate, isobutyl ammonium isobutyl carbamate, t-butyl ammonium t-butyl carbamate, 2-ethylhexyl ammonium 2-ethylhexyl carbamate, octadecyl ammonium octadecyl carbamate, 2-methoxyethyl ammonium 2-methoxyethyl carbamate, 2-cyanoethylammonium 2-cyanoethylcarbamate, dibutylammonium dibutylcarbamate, dioctadecylammonium dioctadecylcarbamate, methyldecylammonium methyldecylcarbamate, hexamethyleneimineammonium hexamethyleneiminecarbamate, morpholinium morpholinecarbamate, pyridiumethylhexyl Carbamate, triethylenediaminium isopropyl bicarbamate, benzylammonium benzylcarbamate, triethoxysilylpropylammonium triethoxysilylpropylcarbamate, ethylammonium ethyl carbonate, isopropylammonium isopropyl carbonate, isopropyl Ruammonium bicarbonate, n-butylammonium n-butylcarbonate, isobutylammonium isobutylcarbonate, t-butylammonium t-butylcarbonate, t-butylammonium bicarbonate, 2-ethylhexylammonium 2-ethylhexylcarbonate, 2-ethylhexylammonium bicarbonate 2-methoxyethylammonium 2-methoxyethyl carbonate, 2-methoxyethylammonium bicarbonate, 2-cyanoethylammonium 2-cyanoethyl carbonate, 2-cyanoethylammonium bicarbonate, octadecylammonium octadecylcarbonate, dibutylammonium dibutylcarbonate, dioctadecylammoni Dioctadecyl carbonate, dioctadecyl ammonium bicarbonate, methyl decyl ammonium methyl decyl carbonate, hexamethylene imine ammonium hexamethylene imine carbonate, morpholine ammonium morpholine carbonate, benzyl ammonium benzyl carbonate, triethoxysilylpropyl ammonium triethoxysilylpropyl carbonate, pyridium bi Examples thereof include carbonate, triethylenediaminium isopropyl carbonate, triethylenediaminium bicarbonate, and derivatives thereof.

また、リン化合物としては、一般式RP、(RO)P又は(RO)POで表されるリン化合物で挙げられる。ここでRは、炭素数1〜20のアルキル又はアリール基を示し、具体的に例えば、トリブチルホスフィン、トリフェニルホスフィン、トリエチルホスファイト、トリフェニルホスファイト、ジベンジルホスフェート、トリエチルホスフェートなどが挙げられる。 As the phosphorus compounds of the general formula R 3 P, include a phosphorus compound represented by (RO) 3 P or (RO) 3 PO. Here, R represents an alkyl or aryl group having 1 to 20 carbon atoms, and specific examples include tributylphosphine, triphenylphosphine, triethyl phosphite, triphenyl phosphite, dibenzyl phosphate, triethyl phosphate and the like.

そして、硫黄化合物として、具体的に例えば、ブタンチオール、n−ヘキサンチオール、ジエチルスルフィド、テトラヒドロチオフェン、アリールジスルフィド、2−メルカプトベンゾアゾール、テトラヒドロチオフェン、オクチルチオグリコレートなどが挙げられる。   Specific examples of the sulfur compound include butanethiol, n-hexanethiol, diethyl sulfide, tetrahydrothiophene, aryl disulfide, 2-mercaptobenzoazole, tetrahydrothiophene, and octylthioglycolate.

このような安定剤の使用量は、本発明のインク特性に符合する限り、特に制限する必要はない。しかしながら、その含量は、銀化合物に対し、モル比で0.1%〜90%が好ましい。   The amount of such a stabilizer used is not particularly limited as long as it matches the ink characteristics of the present invention. However, the content is preferably 0.1% to 90% in terms of molar ratio with respect to the silver compound.

また、薄膜補助剤としては、有機酸及び有機酸誘導体、又は少なくとも一つ以上のこれらの混合物が挙げられる。具体的に例えば、酢酸、酪酸(Butyric acid)、吉草酸(Valeric acid)、ピバル酸(Pivalic acid)、ヘキサン酸、オクタン酸、2−エチル−ヘキサン酸、ネオデカン酸(Neodecanoic acid)、ラウリン酸(Lauric acid)、ステアリン酸、ナフタル酸などの有機酸が挙げられ、有機酸誘導体としては、具体的に例えば、酢酸アンモニウム塩、クエン酸アンモニウム塩、ラウリン酸アンモニウム塩、乳酸アンモニウム塩、マレイン酸アンモニウム塩、シュウ酸アンモニウム塩、モリブデン酸アンモニウム塩などの有機酸アンモニウム塩と、Au、Cu、Zn、Ni、Co、Pd、Pt、Ti、V、Mn、Fe、Cr、Zr、Nb、Mo、W、Ru、Cd、Ta、Re、Os、Ir、Al、Ga、Ge、In、Sn、Sb、Pb、Bi、Sm、Eu、Ac、Thなどのような金属を含有するシュウ酸マンガン、酢酸金、シュウ酸パラジウム、2−エチルヘキサン酸銀、オクタン酸銀、ネオデカン酸銀、ステアリン酸コバルト、ナフタル酸ニッケル、ナフタル酸コバルトなどの有機酸金属塩が挙げられる。前記薄膜補助剤の使用量は、特に限定されないが、銀錯体化合物に対して、モル比で0.1〜25%が好ましい。   Moreover, as a thin film adjuvant, an organic acid and an organic acid derivative, or a mixture of at least one or more thereof can be used. Specifically, for example, acetic acid, butyric acid (valeric acid), pivalic acid (pivalic acid), hexanoic acid, octanoic acid, 2-ethyl-hexanoic acid, neodecanoic acid, lauric acid ( Lauric acid), stearic acid, naphthalic acid, and the like. Specific examples of organic acid derivatives include ammonium acetate, ammonium citrate, ammonium laurate, ammonium lactate, and ammonium maleate. Organic acid ammonium salts such as ammonium oxalate and ammonium molybdate, Au, Cu, Zn, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Manganese oxalate, gold acetate, palladium oxalate, silver 2-ethylhexanoate containing metals such as Ir, Al, Ga, Ge, In, Sn, Sb, Pb, Bi, Sm, Eu, Ac, Th And organic acid metal salts such as silver octanoate, silver neodecanoate, cobalt stearate, nickel naphthalate and cobalt naphthalate. Although the usage-amount of the said thin film adjuvant is not specifically limited, 0.1-25% is preferable by molar ratio with respect to a silver complex compound.

前記還元剤としては、ルイス酸又は弱いブレンステッド酸(bronsted acid)が挙げられ、具体的に例えば、ヒドラジン、ヒドラジンモノハイドレート、アセトヒドラジド、水酸化ホウ素ナトリウム又は水酸化ホウ素カリウム、ジメチルアミンボラン、ブチルアミンボランのようなアミン化合物、第1塩化鉄、乳酸鉄のような金属塩、水素、ヨウ化水素、一酸化炭素、ホルムアルデヒド、アセトアルデヒド、グリオキサールのようなアルデヒド化合物、ギ酸メチル、ギ酸ブチル、トリエチル−o−ギ酸のようなギ酸化合物、グルコース、アスコルビン酸、ヒドロキノンのような還元性有機化合物を少なくとも一つ以上含有するこれらの混合物を挙げることができる。   Examples of the reducing agent include Lewis acid or weak Bronsted acid, and specific examples thereof include hydrazine, hydrazine monohydrate, acetohydrazide, sodium borohydride or potassium borohydride, dimethylamine borane, Amine compounds such as butylamine borane, metal salts such as ferrous chloride and iron lactate, hydrogen, hydrogen iodide, carbon monoxide, aldehyde compounds such as formaldehyde, acetaldehyde and glyoxal, methyl formate, butyl formate, triethyl Examples thereof include a mixture of at least one formic compound such as o-formic acid, at least one reducing organic compound such as glucose, ascorbic acid, and hydroquinone.

前記熱分解反応促進剤としては、具体的に例えば、エタノールアミン、メチルジエタノールアミン、トリエタノールアミン、プロパノールアミン、ブタノールアミン、ヘキサノールアミン、ジメチルエタノールアミンのようなヒドロキシアルキルアミン類、ピペリジン、N−メチルピペリジン、ピペラジン、N,N′−ジメチルピペラジン、1−アミノ−4メチルピペラジン、ピロリジン、N−メチルピロリジン、モルホリンのようなアミン化合物、アセトンオキシム、ジメチルグリオキシム、2−ブタノンオキシム、2,3−ブタジオンモノオキシムのようなアルキルオキシム類、エチレングリコール、ジエチレングリコール、トリエチレングリコールのようなグリコール類、メトキシエチルアミン、エトキシエチルアミン、メトキシプロピルアミンのようなアルコキシアルキルアミン類、メトキシエタノール、メトキシプロパノール、エトキシエタノールのようなアルコキシアルカノール類、アセトン、メチルエチルケトン、メチルイソブチルケトンのようなケトン類、アセトール、ジアセトンアルコールのようなケトンアルコール類、多価フェノール化合物、フェノール樹脂、アルキド樹脂、ピロール、エチレンジオキシチオフェン(EDOT)のような酸化重合性樹脂などが挙げられる。   Specific examples of the thermal decomposition reaction accelerator include, for example, ethanolamine, methyldiethanolamine, triethanolamine, propanolamine, butanolamine, hexanolamine, hydroxyalkylamines such as dimethylethanolamine, piperidine, and N-methylpiperidine. , Piperazine, N, N'-dimethylpiperazine, 1-amino-4methylpiperazine, pyrrolidine, N-methylpyrrolidine, amine compounds such as morpholine, acetone oxime, dimethylglyoxime, 2-butanone oxime, 2,3-butane Alkyl oximes such as dione monooxime, glycols such as ethylene glycol, diethylene glycol, and triethylene glycol, methoxyethylamine, ethoxyethylamine, methoxypropyl Alkoxyalkylamines such as ruamine, alkoxyalkanols such as methoxyethanol, methoxypropanol and ethoxyethanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ketone alcohols such as acetol and diacetone alcohol, Examples thereof include hydric phenol compounds, phenol resins, alkyd resins, pyrroles, and oxidatively polymerizable resins such as ethylenedioxythiophene (EDOT).

なお、銀コーティング液組成物の粘度調節や円滑な薄膜形成のために溶媒が必要な場合があるが、この際使用できる溶媒としては、水、メタノール、エタノール、イソプロパノール、1−メトキシプロパノール、ブタノール、エチルヘキシルアルコール、テルピネオールのようなアルコール類、エチレングリコール、グリセリンのようなグリコール類、エチルアセテート、ブチルアセテート、メトキシプロピルアセテート、カルビトールアセテート、エチルカルビトールアセテートのようなアセテート類、メチルセロソルブ、ブチルセロソルブ、ジエチルエーテル、テトラヒドロフラン、ジオキサンのようなエーテル類、メチルエチルケトン、アセトン、ジメチルホルムアミド、1−メチル−2−ピロリドンのようなケトン類、ヘキサン、ヘプタン、ドデカン、パラフィンオイル、ミネラルスピリットのような炭化水素系、ベンゼン、トルエン、キシレンのような芳香族、そしてクロロホルムやメチレンクロライド、カーボンテトラクロライドのようなハロゲン置換溶媒、アセトニトリル、ジメチルスルホキシド、又はこれらの混合溶媒などを使用することができる。   In addition, a solvent may be required for adjusting the viscosity of the silver coating solution composition or for smooth thin film formation. Examples of the solvent that can be used in this case include water, methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, Ethyl hexyl alcohol, alcohols such as terpineol, ethylene glycol, glycols such as glycerin, ethyl acetate, butyl acetate, methoxypropyl acetate, carbitol acetate, acetates such as ethyl carbitol acetate, methyl cellosolve, butyl cellosolve, diethyl Ethers such as ether, tetrahydrofuran and dioxane, methyl ethyl ketone, acetone, dimethylformamide, ketones such as 1-methyl-2-pyrrolidone, hexane, Hydrocarbons such as tan, dodecane, paraffin oil, mineral spirits, aromatics such as benzene, toluene, xylene, and halogen-substituted solvents such as chloroform, methylene chloride, carbon tetrachloride, acetonitrile, dimethyl sulfoxide, or these Or a mixed solvent thereof can be used.

<5−3.銀反射層の隣接層に含窒素環状化合物>
銀反射層を形成する際に、配位子が気化・脱離しうる銀錯体化合物を含有する塗布膜を加熱焼成することにより銀反射層を形成する場合、銀反射層の隣接層に含窒素環状化合物を含有することが好ましい。当該含窒素環状化合物としては、大別して、銀に対する吸着性基を有する腐食防止剤と酸化防止剤が好ましく用いられる。
<5-3. Nitrogen-containing cyclic compound in the adjacent layer of the silver reflective layer>
When forming a silver reflective layer by heating and baking a coating film containing a silver complex compound capable of vaporizing and desorbing a ligand when forming a silver reflective layer, a nitrogen-containing cyclic layer is formed adjacent to the silver reflective layer. It is preferable to contain a compound. As the nitrogen-containing cyclic compound, broadly, a corrosion inhibitor and an antioxidant having an adsorptive group for silver are preferably used.

銀に対する吸着性基を有する腐食防止剤において、含窒素環状化合物を用いることで、所望の腐食防止効果を得ることができる。例えば、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物の少なくとも一種又はこれらの混合物から選ばれることが望ましい。   In a corrosion inhibitor having an adsorptive group for silver, a desired corrosion prevention effect can be obtained by using a nitrogen-containing cyclic compound. For example, it is desirable to be selected from at least one of a compound having a pyrrole ring, a compound having a triazole ring, a compound having a pyrazole ring, a compound having an imidazole ring, a compound having an indazole ring, or a mixture thereof.

ピロール環を有する物としては、N−ブチル−2,5−ジメチルピロール,N−フェニル−2,5ジメチルピロール、N−フェニル−3−ホルミル−2,5−ジメチルピロール,N−フェニル−3,4−ジホルミル−2,5−ジメチルピロール等、あるいはこれらの混合物が挙げられる。   Examples of the compound having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, N-phenyl-3, 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.

トリアゾール環を有する化合物としては、1,2,3−トリアゾール、1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール、3−ヒドロキシ−1,2,4−トリアゾール、3−メチル−1,2,4−トリアゾール、1−メチル−1,2,4−トリアゾール、1−メチル−3−メルカプト−1,2,4−トリアゾール、4−メチル−1,2,3−トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1−ヒドロキシベンゾトリアゾール、4,5,6,7−テトラハイドロトリアゾール、3−アミノ−1,2,4−トリアゾール、3−アミノ−5−メチル−1,2,4−トリアゾール、カルボキシベンゾトリアゾール、2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ3’5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾール等、あるいはこれらの混合物が挙げられる。   Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy) 5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy 3'5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) benzotriazole, etc. Or a mixture thereof.

ピラゾール環を有する化合物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5−ジメチルピラゾール、3−メチル−5−ヒドロキシピラゾール、4−アミノピラゾール等、あるいはこれらの混合物が挙げられる。   Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.

イミダゾール環を有する化合物としては、イミダゾール、ヒスチジン、2−ヘプタデシルイミダゾール、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−フェニル−4−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2−フェニル−4−メチル−5−ヒドロメチルイミダゾール、2−フェニル−4,5ジヒドロキシメチルイミダゾール、4−フォルミルイミダゾール、2−メチル−4−フォルミルイミダゾール、2−フェニル−4−フォルミルイミダゾール、4−メチル−5−フォルミルイミダゾール、2−エチル−4−メチル−5−フォルミルイミダゾール、2−フェニル−4−メチル−4−フォルミルイミダゾール、2−メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。   Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl. Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5 dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4-phenyl Rumyl imidazole, 4-methyl-5-formyl imidazole, 2-ethyl-4-methyl-5-formyl imidazole, 2-phenyl-4-methyl-4-formyl imidazole, 2-mercaptobenzimidazole, etc., or these Of the mixture.

インダゾール環を有する化合物としては、4−クロロインダゾール、4−ニトロインダゾール、5−ニトロインダゾール、4−クロロ−5−ニトロインダゾール等、あるいはこれらの混合物が挙げられる。   Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.

<5−4.酸化防止剤>
フィルムミラーに用いられる銀反射層の腐食防止剤としては、酸化防止剤を用いることもできる。
<5-4. Antioxidant>
As a corrosion inhibitor for the silver reflective layer used in the film mirror, an antioxidant can also be used.

酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤及びホスファイト系酸化防止剤を使用することが好ましい。   As the antioxidant, it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.

フェノール系酸化防止剤としては、例えば、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、2,2’−メチレンビス(4−エチル−6−t−ブチルフェノール)、テトラキス−〔メチレン−3−(3’、5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート〕メタン、2,6−ジ−t−ブチル−p−クレゾール、4,4’−チオビス(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェノール)、1,3,5−トリス(3’、5’−ジ−t−ブチル−4’−ヒドロキシベンジル)−S−トリアジン−2,4,6−(1H,3H,5H)トリオン、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネー〕、3,9−ビス[1,1−ジ−メチル−2−〔β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ〕エチル]−2,4,8,10−テトラオキオキサスピロ〔5,5〕ウンデカン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン等が挙げられる。特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。   Examples of phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t-). Butylphenol), tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-tert-butylphenol), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propio , Triethylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis [1,1-di-methyl-2- [β- (3 -T-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4 , 6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene and the like. In particular, the phenolic antioxidant preferably has a molecular weight of 550 or more.

チオール系酸化防止剤としては、例えば、ジステアリル−3,3’−チオジプロピオネート、ペンタエリスリトール−テトラキス−(β−ラウリル−チオプロピオネート)等を挙げられる。   Examples of the thiol antioxidant include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thiopropionate), and the like.

ホスファイト系酸化防止剤としては、例えば、トリス(2,4−ジ−t−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6−ジ−t−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス−(2,6−ジ−t−ブチル−4−メチルフェニル)−ペンタエリスリトールジホスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)4,4’−ビフェニレン−ジホスホナイト、2,2’−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト等が挙げられる。   Examples of the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol. Diphosphite, bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene-diphosphonite 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.

なお、上記酸化防止剤と下記の光安定剤を併用することもできる。   In addition, the said antioxidant and the following light stabilizer can also be used together.

ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、1−メチル−8−(1,2,2,6,6−ペンタメチル−4−ピペリジル)−セバケート、1−[2−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕エチル]−4−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2、6,6−テトラメチルピペリジン、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタン−テトラカルボキシレート、トリエチレンジアミン、8−アセチル−3−ドデシル−7,7,9,9−テトラメチル−1,3,8−トリアザスピロ[4,5]デカン−2,4−ジオン等が挙げられる。   Examples of hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6, 6-tetramethyl Piperidine, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, triethylenediamine, 8-acetyl-3-dodecyl-7,7,9 , 9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4-dione.

その他ニッケル系紫外線安定剤として、〔2,2’−チオビス(4−t−オクチルフェノレート)〕−2−エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス−3,5−ジ−t−ブチル−4−ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル−ジチオカーバメート等も使用することが可能である。   Other nickel-based UV stabilizers include [2,2′-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4- Hydroxybenzyl phosphate monoethylate, nickel dibutyl-dithiocarbamate and the like can also be used.

特にヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的には、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、又は1,2,2,6,6−ペンタメチル−4−ピペリジノール/トリデシルアルコールと1,2,3,4−ブタンテトラカルボン酸との縮合物が好ましい。   In particular, the hindered amine light stabilizer is preferably a hindered amine light stabilizer containing only a tertiary amine, specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl). Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, or A condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferred.

<6.樹脂フィルム状支持体>
樹脂フィルム状支持体としては、従来公知の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエチレンテレフタレート等のポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルム、アクリルフィルムが好ましい。特にポリエチレンテレフタレート等のポリエステル系フィルム又はアクリルフィルムを用いることが好ましく、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
<6. Resin Film Support>
Various conventionally known resin films can be used as the resin film-like support. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, polycarbonate films, polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. In particular, it is preferable to use a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.

樹脂フィルム状支持体は、銀反射層よりも光入射側から遠い位置にあるため、紫外線が樹脂フィルム状支持体に到達しにくい。特に、樹脂フィルム状支持体よりも光入射側にあるアクリル層等に紫外線吸収剤を含有させたりする場合は、紫外線が、樹脂フィルム状支持体により到達しにくい。従って、樹脂フィルム状支持体は、紫外線に対して劣化しやすい樹脂であっても用いることが可能となる。そのような観点から、樹脂フィルム状支持体として、ポリエチレンテレフタレート等のポリエステルフィルムを用いることが可能となる。   Since the resin film-like support is located farther from the light incident side than the silver reflecting layer, ultraviolet rays hardly reach the resin film-like support. In particular, when an ultraviolet absorber is contained in an acrylic layer or the like that is closer to the light incident side than the resin film-like support, ultraviolet rays are less likely to reach the resin film-like support. Therefore, the resin film-like support can be used even if it is a resin that easily deteriorates with respect to ultraviolet rays. From such a viewpoint, it becomes possible to use a polyester film such as polyethylene terephthalate as the resin film-like support.

樹脂フィルム状支持体の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10〜250μmの範囲内である。好ましくは20〜200μmである。   The thickness of the resin film-like support is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 250 μm. Preferably it is 20-200 micrometers.

<7.粘着層>
フィルムミラーの粘着層は、当該粘着層によってフィルムミラーを支持基材に貼り付けて、太陽光反射用ミラーを形成するための層である。尚、フィルムミラーは粘着層の光入射側とは逆側に剥離層を有していてもよい。フィルムミラーが剥離層を有する場合、剥離層を粘着層から剥離した後、粘着層を介してフィルムミラーを支持基材に貼り付けることができる。
<7. Adhesive layer>
The adhesive layer of a film mirror is a layer for sticking a film mirror to a support base material by the said adhesive layer, and forming a mirror for sunlight reflection. The film mirror may have a release layer on the side opposite to the light incident side of the adhesive layer. When a film mirror has a peeling layer, after peeling a peeling layer from an adhesion layer, a film mirror can be affixed on a support base material through an adhesion layer.

粘着層としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。粘着剤としては、例えば、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴム等が用いられる。ラミネート法は、特に制限されず、例えば、ロール式で連続的に行うのが経済性及び生産性の点から好ましい。また、粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1〜100μm程度の範囲であることが好ましい。   The adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used. As the adhesive, for example, a polyester resin, a urethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or the like is used. The laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity. Moreover, it is preferable that the thickness of an adhesion layer is the range of about 1-100 micrometers normally from viewpoints, such as an adhesion effect and a drying rate.

<8.透明ハードコート層>
アクリル層の光入射側に透明ハードコート層を設けてもよい。透明ハードコート層は、フィルムミラー表面の傷つきや汚れの付着を防止する目的に設けられる。透明ハードコート層は光入射側から最外層、2層目、又は3層目のいずれかであることが好ましい。透明ハードコート層の上に更に薄い(1μm以下が好ましい)別の層を設けてもよい。尚、ハードコート層の厚みは、十分な耐傷性を得つつ、フィルムミラーにそりが発生するのを防止するという観点から、0.05μm以上、10μm以下であることが好ましい。より好ましくは、1μm以上、10μm以下である。
<8. Transparent hard coat layer>
A transparent hard coat layer may be provided on the light incident side of the acrylic layer. The transparent hard coat layer is provided for the purpose of preventing damage to the surface of the film mirror and adhesion of dirt. The transparent hard coat layer is preferably either the outermost layer, the second layer, or the third layer from the light incident side. Another thin layer (preferably 1 μm or less) may be provided on the transparent hard coat layer. The thickness of the hard coat layer is preferably 0.05 μm or more and 10 μm or less from the viewpoint of preventing the film mirror from warping while obtaining sufficient scratch resistance. More preferably, they are 1 micrometer or more and 10 micrometers or less.

透明ハードコート層を形成する材料としては、透明性、耐候性、硬度、機械的強度等が得られるものであれば、特に限定されるものではない。透明ハードコート層は、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂などで構成することができる。特に、硬度と耐久性などの点で、シリコーン系樹脂やアクリル系樹脂が好ましい。さらに、硬化性、可撓性および生産性の点で、活性エネルギー線硬化型のアクリル系樹脂、または熱硬化型のアクリル系樹脂からなるものが好ましい。   The material for forming the transparent hard coat layer is not particularly limited as long as transparency, weather resistance, hardness, mechanical strength, and the like can be obtained. The transparent hard coat layer can be composed of acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicone resin, and the like. In particular, silicone resins and acrylic resins are preferable in terms of hardness and durability. Further, in terms of curability, flexibility, and productivity, those made of an active energy ray-curable acrylic resin or a thermosetting acrylic resin are preferable.

活性エネルギー線硬化型のアクリル系樹脂または熱硬化型のアクリル系樹脂とは、重合硬化成分として多官能アクリレート、アクリルオリゴマーあるいは反応性希釈剤を含む組成物である。その他に必要に応じて光開始剤、光増感剤、熱重合開始剤あるいは改質剤等を含有しているものを用いてもよい。   The active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component. In addition, you may use what contains a photoinitiator, a photosensitizer, a thermal-polymerization initiator, a modifier, etc. as needed.

アクリルオリゴマーとは、アクリル系樹脂骨格に反応性のアクリル基が結合されたものを始めとして、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレートなどであり、また、メラミンやイソシアヌール酸などの剛直な骨格にアクリル基を結合したものなども用いられ得る。   Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.

また、反応性希釈剤とは、塗工剤の媒体として塗工工程での溶剤の機能を担うと共に、それ自体が一官能性あるいは多官能性のアクリルオリゴマーと反応する基を有し、塗膜の共重合成分となるものである。   In addition, the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.

市販されている多官能アクリル系硬化塗料としては、三菱レイヨン株式会社;(商品名“ダイヤビーム(登録商標)”シリーズなど)、長瀬産業株式会社;(商品名“デナコール(登録商標)”シリーズなど)、新中村株式会社;(商品名“NKエステル”シリーズなど)、大日本インキ化学工業株式会社;(商品名“UNIDIC(登録商標)”シリーズなど)、東亜合成化学工業株式会社;(商品名“アロニックス(登録商標)”シリーズなど)、日本油脂株式会社;(商品名“ブレンマー(登録商標)”シリーズなど)、日本化薬株式会社;(商品名“KAYARAD(登録商標)”シリーズなど)、共栄社化学株式会社;(商品名“ライトエステル”シリーズ、“ライトアクリレート”シリーズなど)などの製品を利用することができる。   Commercially available polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc. ), Shin-Nakamura Co., Ltd. (trade name “NK Ester” series, etc.), Dainippon Ink and Chemicals Co., Ltd .; (trade name “UNIDIC (registered trademark)” series, etc.), Toa Gosei Chemical Industry Co., Ltd .; "Aronix (registered trademark)" series, etc.), Nippon Oil and Fats Corporation; (trade name "Blemmer (registered trademark)" series, etc.), Nippon Kayaku Co., Ltd. (trade name "KAYARAD (registered trademark)" series, etc.), Kyoeisha Chemical Co., Ltd .; (Product name "Light Ester" series, "Light Acrylate" series, etc.) That.

更に具体的には、例えば、電子線や紫外線の照射により硬化する樹脂や熱硬化性の樹脂等を使用でき、特にアルコキシシラン系化合物の部分加水分解オリゴマーからなる熱硬化型シリコーン系ハードコート、熱硬化型のポリシロキサン樹脂からなるハードコート、不飽和基を有するアクリル系化合物からなる紫外線硬化型アクリル系ハードコート、熱硬化型無機材料であることが好ましい。また、透明ハードコート層に用いることができる材料として、水性コロイダルシリカ含有アクリル樹脂(特開2005−66824号公報)、ポリウレタン系樹脂組成物(特開2005−110918号公報)、水性シリコーン化合物をバインダーとして用いた樹脂膜(特開2004−142161号公報)、酸化チタン等の光触媒性酸化物含有シリカ膜もしくはアルミナ、アスペクト比の高い酸化チタンもしくは酸化ニオブなどの光触媒膜(特開2009−62216)、光触媒含有フッ素樹脂コーティング(ピアレックス・テクノロジーズ社)、有機/無機ポリシラザン膜、有機/無機ポリシラザンに親水化促進剤(AZエレクトロニクス社)を用いた膜、等も挙げることができる。   More specifically, for example, a resin curable by electron beam or ultraviolet irradiation, a thermosetting resin, or the like can be used. In particular, a thermosetting silicone hard coat composed of a partially hydrolyzed oligomer of an alkoxysilane compound, a heat A hard coat made of a curable polysiloxane resin, an ultraviolet curable acrylic hard coat made of an acrylic compound having an unsaturated group, and a thermosetting inorganic material are preferable. As materials that can be used for the transparent hard coat layer, an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane resin composition (Japanese Patent Laid-Open No. 2005-110918), and a water-based silicone compound are used as binders. Resin film (Japanese Patent Laid-Open No. 2004-142161) used as a photocatalytic oxide-containing silica film or alumina such as titanium oxide, photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio (Japanese Patent Laid-Open No. 2009-62216), Examples thereof include a photocatalyst-containing fluororesin coating (Pyrex Technologies), an organic / inorganic polysilazane film, and a film using a hydrophilization accelerator (AZ Electronics) on organic / inorganic polysilazane.

熱硬化型シリコーン系の透明ハードコート層には公知の方法によって合成したアルコキシシラン化合物の部分加水分解オリゴマーを使用できる。その合成方法の一例は以下の通りである。まず、アルコキシシラン化合物としてテトラメトキシシラン、又はテトラエトキシシランを用い、これを塩酸、硝酸等の酸触媒の存在下に所定量の水を加えて、副生するアルコールを除去しながら室温から80℃で反応させる。この反応によりアルコキシシランは加水分解し、更に縮合反応により一分子中にシラノール基又はアルコキシ基を2個以上有し、平均重合度4〜8のアルコキシシラン化合物の部分加水分解オリゴマーが得られる。次にこれに酢酸、マレイン酸等の硬化触媒を添加し、アルコール、グリコールエーテル系の有機溶剤に溶解させて熱硬化型シリコーン系ハードコート液が得られる。そしてこれを通常の塗料における塗装方法によりフィルムミラー等の外面に塗布し、80〜140℃の温度で加熱硬化することによって透明ハードコート層を形成させる。但しこの場合、フィルムミラーの熱変形温度以下での硬化温度の設定が前提となる。なお、テトラアルコキシシランの代わりにジ(アルキルまたはアリール)ジアルコキシシラン、並びに/或いはモノ(アルキルまたはアリール)トリアルコキシシランを使用することにより、同様にポリシロキサン系の透明ハードコート層を製造することが可能である。   A partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used for the thermosetting silicone-based transparent hard coat layer. An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with. By this reaction, the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of an alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by a condensation reaction. Next, a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply | coated to outer surfaces, such as a film mirror, by the coating method in a normal coating material, and a transparent hard-coat layer is formed by heat-hardening at the temperature of 80-140 degreeC. However, in this case, the setting of the curing temperature below the thermal deformation temperature of the film mirror is a prerequisite. In addition, by using di (alkyl or aryl) dialkoxysilane and / or mono (alkyl or aryl) trialkoxysilane instead of tetraalkoxysilane, a polysiloxane-based transparent hard coat layer is similarly produced. Is possible.

紫外線硬化型アクリル系のハードコート層には、不飽和基を有するアクリル系化合物として、例えばペンタエリスリトールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールテトラ(メタ)アクリレート等の多官能(メタ)アクリレート混合物等を使用することができ、これにベンゾイン、ベンゾインメチルエーテル、ベンゾフェノン等の光重合開始剤を配合して用いる。そしてこれを反射フィルム10等の外面に塗布し、紫外線硬化することによって透明ハードコート層が形成される。   For the ultraviolet curable acrylic hard coat layer, for example, an acrylic compound having an unsaturated group, such as pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethyloltetra A polyfunctional (meth) acrylate mixture such as (meth) acrylate can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, or benzophenone is blended and used. And this is apply | coated to outer surfaces, such as the reflective film 10, and a transparent hard-coat layer is formed by carrying out ultraviolet curing.

また、透明ハードコート層に表面処理を施して、親水性を付与することが好ましい。例えば、コロナ処理(特開平11−172028公報)、プラズマ表面処理、紫外線・オゾン処理、表面突起物形成(特開2009−226613公報)、表面微細加工処理などを挙げることができる。   Moreover, it is preferable to surface-treat to a transparent hard-coat layer and to provide hydrophilicity. For example, corona treatment (JP-A-11-172028), plasma surface treatment, ultraviolet ray / ozone treatment, surface projection formation (JP-A-2009-226613), surface fine processing treatment, and the like can be mentioned.

透明ハードコート層の作製方法としては、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。   As a method for producing the transparent hard coat layer, conventionally known coating methods such as a gravure coating method, a reverse coating method and a die coating method can be used.

透明ハードコート層が無機物からなる場合、例えば酸化シリコン、酸化アルミニウム、窒化シリコン、窒化アルミニウム、酸化ランタン、窒化ランタン等を、真空製膜法により製膜することで形成できる。真空製膜法としては、例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。   When the transparent hard coat layer is made of an inorganic material, it can be formed, for example, by depositing silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like by a vacuum film forming method. Examples of the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.

また、透明ハードコート層が無機物からなる場合、ポリシラザンを塗布製膜し、加熱硬化した膜からなることが好ましい。ハードコートの前駆体が、ポリシラザンを含有する場合、例えば下記の一般式(6)で表されるポリシラザンを含む有機溶剤中に必要に応じて触媒を加えた溶液を塗布した後、溶剤を蒸発させて除去し、それによってフィルムミラー上に0.05〜3.0μmの層厚を有するポリシラザン層を残す。そして、水蒸気を含む雰囲気中で酸素、活性酸素、場合によっては窒素の存在下で、上記のポリシラザン層を局所的加熱することによって、フィルムミラー上にガラス様の透明なハードコートの被膜を形成する方法を採用することが好ましい。
−(SiR−NR− ・・・(6)
Moreover, when a transparent hard-coat layer consists of inorganic substances, it is preferable to consist of the film | membrane which apply | coated polysilazane and heat-hardened. When the hard coat precursor contains polysilazane, for example, after applying a solution to which a catalyst is added if necessary in an organic solvent containing polysilazane represented by the following general formula (6), the solvent is evaporated. Thereby leaving a polysilazane layer having a layer thickness of 0.05 to 3.0 μm on the film mirror. Then, a glass-like transparent hard coat film is formed on the film mirror by locally heating the polysilazane layer in the presence of oxygen, active oxygen, and in some cases nitrogen in an atmosphere containing water vapor. It is preferable to adopt the method.
-(SiR 1 R 2 -NR 3 ) n- (6)

一般式(6)中、R、R、及びRは、同一か又は異なり、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基、好ましくは水素、メチル、エチル、プロピル、iso−プロピル、ブチル、iso−ブチル、tert−ブチル、フェニル、ビニル又は3−(トリエトキシシリル)プロピル、3−(トリメトキシシリルプロピル)からなる群から選択される基を表す。この際、nは整数であり、nは、ポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められる。 In general formula (6), R 1 , R 2 , and R 3 are the same or different and are independently of each other hydrogen, or an optionally substituted alkyl group, aryl group, vinyl group, or (trialkoxysilyl). ) From an alkyl group, preferably hydrogen, methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, phenyl, vinyl or 3- (triethoxysilyl) propyl, 3- (trimethoxysilylpropyl) Represents a group selected from the group consisting of In this case, n is an integer, and n is determined so that polysilazane has a number average molecular weight of 150 to 150,000 g / mol.

触媒としては、好ましくは、塩基性触媒、特にN,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3−モルホリノプロピルアミン又はN−複素環式化合物が使用される。触媒濃度は、ポリシラザンを基準にして通常0.1〜10モル%、好ましくは0.5〜7モル%の範囲である。   As catalysts, preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used. . The catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.

なお、好ましい態様の一つでは、式(6)中のR、R及びRのすべてが水素原子であるパーヒドロポリシラザンを含む溶液が使用される。 In one preferred embodiment, a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 in formula (6) are hydrogen atoms is used.

また、別の好ましい態様の一つでは、透明ハードコート層が、下記の一般式(7)で表される少なくとも一種のポリシラザンを含むことである。
−(SiR−NR−(SiR−NR− ・・・(7)
In another preferred embodiment, the transparent hard coat layer contains at least one polysilazane represented by the following general formula (7).
- (SiR 1 R 2 -NR 3 ) n - (SiR 4 R 5 -NR 6) p - ··· (7)

一般式(7)中、R、R、R、R、R及びRは、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表す。この際、n及びpは整数であり、特にnは、ポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められる。 In general formula (7), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other hydrogen, or optionally substituted alkyl group, aryl group, vinyl group or ( Represents a trialkoxysilyl) alkyl group; In this case, n and p are integers, and in particular, n is determined so that polysilazane has a number average molecular weight of 150 to 150,000 g / mol.

特に好ましいものは、R、R及びRが水素を表し、そしてR、R及びRがメチルを表す化合物。またR、R及びRが水素を表し、そしてR、Rがメチルを表し、そしてRがビニルを表す化合物。また、R、R、R及びRが水素を表し、そしてR及びRがメチルを表す化合物である。 Particularly preferred are compounds in which R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 and R 5 represent methyl. A compound in which R 1 , R 3 and R 6 represent hydrogen, R 2 and R 4 represent methyl, and R 5 represents vinyl. Further, R 1 , R 3 , R 4 and R 6 represent hydrogen, and R 2 and R 5 represent methyl.

さらに、別の好ましい態様の一つでは、透明ハードコート層が、下記の一般式(8)で表される少なくとも一種のポリシラザンを含むことである。
−(SiR−NR−(SiR−NR−(SiR−NR− ・・・(8)
Furthermore, in another preferable embodiment, the transparent hard coat layer contains at least one polysilazane represented by the following general formula (8).
- (SiR 1 R 2 -NR 3 ) n - (SiR 4 R 5 -NR 6) p - (SiR 7 R 8 -NR 9) q - ··· (8)

一般式(8)中、R、R、R、R、R、R、R、R及びRは、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表す。この際、n、p及びqは整数であり、特にnは、ポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められる。 In general formula (8), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of each other hydrogen or optionally substituted alkyl. Represents a group, an aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, n, p and q are integers, and in particular, n is determined so that polysilazane has a number average molecular weight of 150 to 150,000 g / mol.

特に好ましいものは、R、R及びRが水素を表し、そしてR、R、R及びRがメチルを表し、Rが(トリエトキシシリル)プロピルを表し、そしてRがアルキル又は水素を表す化合物である。 Particularly preferred are R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 , R 5 and R 8 represent methyl, R 9 represents (triethoxysilyl) propyl and R 7 Is a compound in which represents alkyl or hydrogen.

溶剤中のポリシラザンの割合は、一般的には、ポリシラザン1〜80質量%、好ましくは5〜50質量%、特に好ましくは10〜40質量%である。   The ratio of polysilazane in the solvent is generally 1 to 80% by mass of polysilazane, preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.

溶剤としては、特に、水及び反応性基(例えばヒドロキシル基又はアミン基)を含まず、ポリシラザンに対して不活性の有機系で好ましくは非プロトン性の溶剤が好適である。これは、例えば、脂肪族又は芳香族炭化水素、ハロゲン炭化水素、エステル、例えば酢酸エチル又は酢酸ブチル、ケトン、例えばアセトン又はメチルエチルケトン、エーテル、例えばテトラヒドロフラン又はジブチルエーテル、並びにモノ−及びポリアルキレングリコールジアルキルエーテル(ジグライム類)又はこれらの溶剤からなる混合物である。   As the solvent, water and a reactive group (for example, hydroxyl group or amine group) are not included, and an organic system which is inert to polysilazane and preferably an aprotic solvent is particularly suitable. This includes, for example, aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters such as ethyl acetate or butyl acetate, ketones such as acetone or methyl ethyl ketone, ethers such as tetrahydrofuran or dibutyl ether, and mono- and polyalkylene glycol dialkyl ethers. (Diglymes) or a mixture of these solvents.

このポリシラザン溶液の追加の成分に、塗料の製造に慣用されているもののような、更に別のバインダーを用いることができる。これは、例えば、セルロースエーテル及びセルロースエステル、例えばエチルセルロース、ニトロセルロース、セルロースアセテート又はセルロースアセトブチレート、天然樹脂、例えばゴムもしくはロジン樹脂、又は合成樹脂、例えば重合樹脂もしくは縮合樹脂、例えばアミノプラスト、特に尿素樹脂及びメラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、又はポリシロキサンである。   As an additional component of the polysilazane solution, further binders can be used, such as those conventionally used in the production of paints. For example, cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.

また、このポリシラザン調合物に更に追加する別の成分として、例えば、調合物の粘度、下地の濡れ、成膜性、潤滑作用又は排気性に影響を与える添加剤、あるいは無機ナノ粒子、例えばSiO、TiO、ZnO、ZrO又はAlを用いることができる。 Further, as another component to be further added to the polysilazane preparation, for example, an additive that affects the viscosity, wettability of the preparation, film forming property, lubricating action or exhaust property, or inorganic nanoparticles such as SiO 2 TiO 2 , ZnO, ZrO 2 or Al 2 O 3 can be used.

このようにして形成したポリシラザンの透明ハードコート層は、酸素・水蒸気バリア膜としても用いることができる。   The polysilazane transparent hard coat layer thus formed can also be used as an oxygen / water vapor barrier film.

また、透明ハードコート層の特に好ましい例の一つとして、多官能アクリルモノマーとシリコーン樹脂を含有するハードコート層が挙げられる。多官能アクリルモノマーを以下「A」成分とし、シリコーン樹脂を以下「B」成分とする。   Moreover, as a particularly preferable example of the transparent hard coat layer, a hard coat layer containing a polyfunctional acrylic monomer and a silicone resin can be given. The polyfunctional acrylic monomer is hereinafter referred to as “A” component, and the silicone resin is hereinafter referred to as “B” component.

<8−2.「A」成分>
多官能アクリルモノマー「A」成分は、不飽和基、特に、活性エネルギー線反応性不飽和基を有することが好ましい。尚、本明細書で言う活性エネルギー線とは、好ましくは電子線か紫外線をいう。活性エネルギー線反応性不飽和基を有する多官能アクリルモノマーとしては、ラジカル重合系モノマーが用いられ、好ましくは、分子中にα,β−不飽和二重結合を有する2官能以上の多官能モノマーである多官能アクリレート型もしくは多官能メタクリレート型モノマー等が挙げられる。他に、ビニル型モノマー、アリル型モノマーや単官能のモノマーを有していてもよい。また、ラジカル重合系モノマーは、単独でも、または架橋密度を調整すべく2種類以上のモノマーを併用することも可能である。「A」成分としては、これら比較的低分子量化合物、例えば分子量が1000未満のいわゆる狭義のモノマーの他、ある程度分子量の大きい、例えば重量平均分子量が1000以上10000未満のオリゴマー、プレポリマーも用いることが可能である。
<8-2. “A” component>
The polyfunctional acrylic monomer “A” component preferably has an unsaturated group, particularly an active energy ray-reactive unsaturated group. The active energy ray referred to in this specification preferably means an electron beam or an ultraviolet ray. As the polyfunctional acrylic monomer having an active energy ray-reactive unsaturated group, a radical polymerization monomer is used, preferably a bifunctional or higher polyfunctional monomer having an α, β-unsaturated double bond in the molecule. A certain polyfunctional acrylate type or polyfunctional methacrylate type monomer may be mentioned. In addition, a vinyl monomer, an allyl monomer, or a monofunctional monomer may be included. Further, the radical polymerization monomer can be used alone or in combination of two or more kinds of monomers in order to adjust the crosslinking density. As the “A” component, in addition to these relatively low molecular weight compounds, for example, so-called narrowly-defined monomers having a molecular weight of less than 1000, oligomers and prepolymers having a somewhat high molecular weight, for example, a weight average molecular weight of 1000 or more and less than 10,000 may be used. Is possible.

単官能(メタ)アクリレートモノマーとして、具体的には、2−(メタ)アクリロイロキシエチルフタレート、2−(メタ)アクリロイロキシエチル−2−ヒドロキシエチルフタレート、2−(メタ)アクリロイロキシエチルヘキサヒドロフタレート、2−(メタ)アクリロイロキシプロピルフタレート、2−エチルヘキシル(メタ)アクリレート、2−エチルヘキシルカルビトール(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート、カプロラクトン(メタ)アクリレート、セチル(メタ)アクリレート、クレゾール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、フェニル(メタ)アクリレート、エチル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソデシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウロキシポリエチレングリコール(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、オクトキシポリエチレングリコール−ポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレ−ト、パラクミルフェノキシエチレングリコール(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、コハク酸(メタ)アクリレート、t−ブチル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリデシル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、β−カルボキシエチル(メタ)アクリレート、ω−カルボキシ−ポリカプロラクトン(メタ)アクリレート、およびこれらの誘導体、変性品等が挙げられる。   Specific examples of the monofunctional (meth) acrylate monomer include 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, and 2- (meth) acryloyloxyethyl. Hexahydrophthalate, 2- (meth) acryloyloxypropyl phthalate, 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate , 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, benzyl (meth) acrylate, butanediol mono ( Acrylate), butoxyethyl (meth) acrylate, butyl (meth) acrylate, caprolactone (meth) acrylate, cetyl (meth) acrylate, cresol (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, diethylene glycol monoethyl ether (meth) acrylate, dimethylaminoethyl (meth) acrylate, dipropylene glycol (meth) acrylate, phenyl (meth) acrylate, ethyl (Meth) acrylate, isoamyl (meth) acrylate, isobornyl (meth) acrylate, isobutyl (meth) acrylate, isodecyl (meta Acrylate, isooctyl (meth) acrylate, isostearyl (meth) acrylate, isomyristyl (meth) acrylate, lauroxy polyethylene glycol (meth) acrylate, lauryl (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene glycol (Meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methyl (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxy polypropylene glycol (Meth) acrylate, octafluoropentyl (meth) acrylate, Cutoxypolyethylene glycol-polypropylene glycol (meth) acrylate, octyl (meth) acrylate, paracumylphenoxyethylene glycol (meth) acrylate, perfluorooctylethyl (meth) acrylate, phenoxy (meth) acrylate, phenoxydiethylene glycol (meth) Acrylate, phenoxyethyl (meth) acrylate, phenoxyhexaethylene glycol (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, stearyl (meth) acrylate, succinic acid (meth) acrylate, t-butyl (Meth) acrylate, t-butylcyclohexyl (meth) acrylate, tetrafluoropropyl (meth) a Relate, tetrahydrofurfuryl (meth) acrylate, tribromophenyl (meth) acrylate, tridecyl (meth) acrylate, trifluoroethyl (meth) acrylate, β-carboxyethyl (meth) acrylate, ω-carboxy-polycaprolactone (meth) Examples thereof include acrylates, derivatives thereof, and modified products.

多官能(メタ)アクリレートモノマーとして、具体的には、1,3−ブチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ヘキサヒドロフタル酸ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、フタル酸ジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレ−ト、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、リン酸トリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンベンゾエートトリ(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌレート、ジ(メタ)アクリル化イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、およびこれらの誘導体、変性品等が挙げられる。   Specifically, as the polyfunctional (meth) acrylate monomer, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, bisphenol A di (meth) acrylate, bisphenol F di (meth) acrylate, diethylene glycol di (meth) acrylate, hexahydrophthalic acid di (meth) acrylate, neopentyl hydroxypivalate Glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, hydroxypivalate ester neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, di (meth) acrylate phthalate Polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, triethylene glycol di (meth) acrylate, Tetraethylene glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, tripropylene glycol di (meth) ) Acrylate, Triglycerol di (meth) acrylate, Dipropylene glycol di (meth) acrylate, Glycerol tri (meth) acrylate, Pentaerythri Tri (meth) acrylate, tri (meth) acrylate phosphate, trimethylolpropane tri (meth) acrylate, trimethylolpropanebenzoate tri (meth) acrylate, tris ((meth) acryloxyethyl) isocyanurate, di (meth) acrylic Isocyanurate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and derivatives and modified products thereof It is done.

このような重合性有機化合物である「A」成分の市販品としては、例えば、東亞合成(株)製アロニックスM−400、M−408、M−450、M−305、M−309、M−310、M−315、M−320、M−350、M−360、M−208、M−210、M−215、M−220、M−225、M−233、M−240、M−245、M−260、M−270、M−1100、M−1200、M−1210、M−1310、M−1600、M−221、M−203、TO−924、TO−1270、TO−1231、TO−595、TO−756、TO−1343、TO−902、TO−904、TO−905、TO−1330、日本化薬(株)製KAYARAD D−310、D−330、DPHA、DPCA−20、DPCA−30、DPCA−60、DPCA−120、DN−0075、DN−2475、SR−295、SR−355、SR−399E、SR−494、SR−9041、SR−368、SR−415、SR−444、SR−454、SR−492、SR−499、SR−502、SR−9020、SR−9035、SR−111、SR−212、SR−213、SR−230、SR−259、SR−268、SR−272、SR−344、SR−349、SR−601、SR−602、SR−610、SR−9003、PET−30、T−1420、GPO−303、TC−120S、HDDA、NPGDA、TPGDA、PEG400DA、MANDA、HX−220、HX−620、R−551、R−712、R−167、R−526、R−551、R−712、R−604、R−684、TMPTA、THE−330、TPA−320、TPA−330、KS−HDDA、KS−TPGDA、KS−TMPTA、共栄社化学(株)製ライトアクリレート PE−4A、DPE−6A、DTMP−4A等を挙げることができる。   As a commercial item of "A" component which is such a polymeric organic compound, Toagosei Co., Ltd. Aronix M-400, M-408, M-450, M-305, M-309, M- 310, M-315, M-320, M-350, M-360, M-208, M-210, M-215, M-220, M-225, M-233, M-240, M-245, M-260, M-270, M-1100, M-1200, M-1210, M-1310, M-1600, M-221, M-203, TO-924, TO-1270, TO-1231, TO- 595, TO-756, TO-1343, TO-902, TO-904, TO-905, TO-1330, KAYARAD D-310, D-330, DPHA, DPCA-20, DPC manufactured by Nippon Kayaku Co., Ltd. -30, DPCA-60, DPCA-120, DN-0075, DN-2475, SR-295, SR-355, SR-399E, SR-494, SR-9041, SR-368, SR-415, SR-444 SR-454, SR-492, SR-499, SR-502, SR-9020, SR-9035, SR-111, SR-212, SR-213, SR-230, SR-259, SR-268, SR -272, SR-344, SR-349, SR-601, SR-602, SR-610, SR-9003, PET-30, T-1420, GPO-303, TC-120S, HDDA, NPGDA, TPGDA, PEG400DA , MANDA, HX-220, HX-620, R-551, R-712, R-167, R-526, R- 551, R-712, R-604, R-684, TMPTA, THE-330, TPA-320, TPA-330, KS-HDDA, KS-TPGDA, KS-TMPTA, Kyoeisha Chemical Co., Ltd. light acrylate PE- 4A, DPE-6A, DTMP-4A and the like.

重合性有機化合物「A」成分の含有量は、防汚性や耐光性を良好にする観点から、「A」+「B」の組成物全体を100重量%として、10〜90重量%であることが好ましく、15〜80重量%がさらに好ましい。   The content of the polymerizable organic compound “A” component is 10 to 90% by weight based on the total composition of “A” + “B” being 100% by weight from the viewpoint of improving antifouling properties and light resistance. It is preferably 15 to 80% by weight.

<8−3.「B」成分>
シリコーン樹脂「B」成分としては、活性エネルギー線反応性不飽和基を有するシリコーン樹脂であることが好ましい。シリコーン樹脂は、ポリオルガノシロキサンを含有し、好ましくは、活性エネルギー線硬化性不飽和結合を分子内に有したポリオルガノシロキサン鎖を有する化合物である。特に、ラジカル重合性二重結合およびポリオルガノシロキサン鎖を有する単量体(a)1〜50重量%と、ラジカル重合性二重結合および反応性官能基を有する(a)以外の単量体(b)10〜95重量%と、(a)および(b)以外のラジカル重合性二重結合を有する単量体(c)0〜89重量%とを含む単量体を重合してなる重合体(α)に、前記した反応性官能基と反応可能な官能基、およびラジカル重合性二重結合を有する化合物(β)を反応させてなる数平均分子量5000〜100000のビニル共重合体である活性エネルギー線硬化性樹脂組成物であることが好ましい。
<8-3. “B” component>
The silicone resin “B” component is preferably a silicone resin having an active energy ray-reactive unsaturated group. The silicone resin contains a polyorganosiloxane, and is preferably a compound having a polyorganosiloxane chain having an active energy ray-curable unsaturated bond in the molecule. In particular, monomers (a) having a radically polymerizable double bond and a polyorganosiloxane chain (1) to 50% by weight, and monomers other than (a) having a radically polymerizable double bond and a reactive functional group ( b) a polymer obtained by polymerizing a monomer comprising 10 to 95% by weight and a monomer (c) having a radical polymerizable double bond other than (a) and (b) (c). Activity which is a vinyl copolymer having a number average molecular weight of 5,000 to 100,000, obtained by reacting (α) with a functional group capable of reacting with the reactive functional group and a compound (β) having a radical polymerizable double bond. It is preferable that it is an energy beam curable resin composition.

ラジカル重合性二重結合およびポリオルガノシロキサン鎖を有する単量体(a)として、具体的には、例えばチッソ(株)製のサイラプレーンFM−0711、FM−0721、FM−0725などの片末端(メタ)アクリロキシ基含有ポリオルガノシロキサン化合物、東亜合成(株)製のAC−SQ SI−20、Hybrid Plastics社製POSS(Polyhedral Oligomeric Silsesquioxane)シリーズのアクリレート、メタクリレート含有化合物等が挙げられる。   Specific examples of the monomer (a) having a radically polymerizable double bond and a polyorganosiloxane chain include one end of, for example, Silaplane FM-0711, FM-0721, FM-0725 manufactured by Chisso Corporation. Examples include (meth) acryloxy group-containing polyorganosiloxane compounds, AC-SQ SI-20 manufactured by Toa Gosei Co., Ltd., POSS (Polyhydrogen Oligomeric Silsesquioxane) series acrylates and methacrylate-containing compounds manufactured by Hybrid Plastics.

「B」成分は、要求性能に応じて1種、または2種以上を混合して用いることができる。また、重合比率は、重合体を構成する単量体の総重量を基準として1〜50重量%であることが好ましく、さらに好ましくは10〜35重量%である。「B」成分の共重合比率が1重量%未満の場合には、硬化物の上部表面に防汚性、耐候性を付与することが困難となり、50重量%を越える場合には、耐擦傷性が低下する上、放射線硬化型組成物に含まれる他の成分との相溶性、基材との密着性、強靭性等の塗膜性能、および重合体の溶媒への溶解性を得ることが困難となる。上記成分中に、ポリシロキサンを適当量含有することもでき、「B」成分の化学構造や量比によっては、ポリシロキサンを添加することによって、耐久性が向上する。   The “B” component can be used alone or in combination of two or more according to the required performance. Moreover, it is preferable that a polymerization ratio is 1 to 50 weight% on the basis of the total weight of the monomer which comprises a polymer, More preferably, it is 10 to 35 weight%. When the copolymerization ratio of the “B” component is less than 1% by weight, it becomes difficult to impart antifouling properties and weather resistance to the upper surface of the cured product, and when it exceeds 50% by weight, scratch resistance is obtained. In addition, it is difficult to obtain compatibility with other components contained in the radiation curable composition, coating performance such as adhesion to a substrate, toughness, and solubility of a polymer in a solvent. It becomes. An appropriate amount of polysiloxane can also be contained in the above components, and depending on the chemical structure and quantitative ratio of the “B” component, the durability can be improved by adding polysiloxane.

この透明ハードコート層は、屈曲性があり、反りが生じないことが好ましい。フィルムミラーの最表面層における透明ハードコート層は密な架橋構造を形成する場合があり、そのためフィルムが反り曲がることや、屈曲性がないためにクラックが入りやすいようなことがあり、取り扱いが困難になる。このような場合、透明ハードコート層組成中の無機物の量を調整するなどして、柔軟性があり、平面性が得られるように設計することが好ましい。   This transparent hard coat layer is preferably flexible and does not warp. The transparent hard coat layer on the outermost surface layer of the film mirror may form a dense cross-linked structure, which may cause the film to warp or bend easily and may be difficult to handle. become. In such a case, it is preferable to design so as to obtain flexibility and flatness by adjusting the amount of the inorganic substance in the transparent hard coat layer composition.

<8−4.添加剤>
また、透明ハードコート層に紫外線吸収剤や酸化防止剤を含有させてもよい。紫外線吸収剤や酸化防止剤としては、上述の<2−2.紫外線吸収剤>や<2−3.酸化防止剤>に記載したものを用いることができる。
<8-4. Additives>
Further, the transparent hard coat layer may contain an ultraviolet absorber or an antioxidant. As an ultraviolet absorber and antioxidant, <2-2. UV absorber> and <2-3. Antioxidants> can be used.

特に、多官能アクリルモノマーとシリコーン樹脂を含有するハードコート層において好ましい紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤である。ベンゾトリアゾール系の紫外線吸収剤をハードコート層に含有させることにより、耐候性を更に良好にするだけでなく、転落角も更に低下できるという優れた効果を得ることができる。特に、下記一般式(9)で表される化合物をハードコート層に含有させた場合、転落角の低下という効果が著しい。尚、転落角とは、水平なミラー上に水滴を滴下し、その後、当該ミラーの傾斜角を徐々に上げていき、静止していた所定重量の水滴が転落する最小の角度を計測したものをいう。転落角が小さければ小さい程、水滴が表面から転がり落ちやすく、水滴が付着しにくい表面であると言える。

Figure 2012232538
In particular, a preferred UV absorber in a hard coat layer containing a polyfunctional acrylic monomer and a silicone resin is a benzotriazole-based UV absorber. By including a benzotriazole-based ultraviolet absorber in the hard coat layer, it is possible to obtain an excellent effect that not only the weather resistance is further improved, but also the falling angle can be further reduced. In particular, when the compound represented by the following general formula (9) is contained in the hard coat layer, the effect of lowering the sliding angle is remarkable. The falling angle refers to a value obtained by dropping a water drop on a horizontal mirror, and then gradually increasing the tilt angle of the mirror, and measuring the minimum angle at which the water drop of a predetermined weight that was stationary falls. Say. It can be said that the smaller the tumbling angle, the easier the water droplets to roll off the surface, and the surface to which the water droplets hardly adhere.
Figure 2012232538

尚、透明ハードコート層における紫外線吸収剤の使用量は、密着性を良好に保ちつつ、耐候性を良好にするために、0.1〜20質量%であることが好ましい。さらに好ましくは0.25〜15質量%、より好ましくは0.5〜10質量%である。   In addition, it is preferable that the usage-amount of the ultraviolet absorber in a transparent hard-coat layer is 0.1-20 mass% in order to make a weather resistance favorable, keeping adhesiveness favorable. More preferably, it is 0.25-15 mass%, More preferably, it is 0.5-10 mass%.

透明ハードコート層に用いられる酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤およびホスファイト系酸化防止剤など、有機系酸化防止剤を使用することが好ましい。有機系酸化防止剤をハードコート層に含有させることでも、転落角を低下し得る。酸化防止剤と光安定剤を併用してもよい。   As the antioxidant used for the transparent hard coat layer, it is preferable to use an organic antioxidant such as a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant. The falling angle can also be reduced by including an organic antioxidant in the hard coat layer. An antioxidant and a light stabilizer may be used in combination.

ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、1−メチル−8−(1,2,2,6,6−ペンタメチル−4−ピペリジル)−セバケート、1−[2−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕エチル]−4−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2、6,6−テトラメチルピペリジン、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタン−テトラカルボキシレート、トリエチレンジアミン、8−アセチル−3−ドデシル−7,7,9,9−テトラメチル−1,3,8−トリアザスピロ[4,5]デカン−2,4−ジオン等が挙げられる。   Examples of hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6, 6-tetramethyl Piperidine, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, triethylenediamine, 8-acetyl-3-dodecyl-7,7,9 , 9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4-dione.

特に、ヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的には、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロネート、または1,2,2,6,6−ペンタメチル−4−ピペリジノール/トリデシルアルコールと1,2,3,4−ブタンテトラカルボン酸との縮合物が好ましい。   In particular, the hindered amine light stabilizer is preferably a hindered amine light stabilizer containing only a tertiary amine, specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl). ) -Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, Alternatively, a condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferable.

その他、光安定剤としてニッケル系紫外線安定剤も使用可能であり、ニッケル系紫外線安定剤として、〔2,2’−チオビス(4−t−オクチルフェノレート)〕−2−エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス−3,5−ジ−t−ブチル−4−ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル−ジチオカーバメート等が挙げられる。   In addition, a nickel-based ultraviolet stabilizer can also be used as the light stabilizer, and [2,2′-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II) can be used as the nickel-based ultraviolet stabilizer. Nickel complex-3,5-di-t-butyl-4-hydroxybenzyl phosphate monoethylate, nickel dibutyl-dithiocarbamate, and the like.

透明ハードコート層、特に、多官能アクリルモノマーとシリコーン樹脂を含有するハードコート層は、重合を開始するための開始剤を含有することが好ましい。紫外線などの活性エネルギー線硬化性樹脂の光重合開始剤が好ましく用いられる。例えば、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。また、開始剤を光増感剤と共に使用してもよい。上記開始剤も光増感剤として使用できる。また、エポキシアクリレート系の開始剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることができる。開始剤また光増感剤は該組成物100質量部に対して0.1〜15質量部であり、好ましくは1〜10質量部、より好ましくは、2〜5質量部である。2種類の開始剤を併用することもでき、特にラジカル系開始剤の場合、少なくとも2種類の開始剤、好ましくは互いに異なる波長を吸収するラジカル系開始剤を用いることである。より好ましくは、互いに紫外線吸収波長の異なる2種類の開始剤を使用することである。例えば、より短波長の波長を吸収する開始剤のみでは、開始剤によってモノマー全ての重合反応を行えない場合がある。一方、より長波長の波長を吸収する開始剤のみでは、反応性はよくなるが、長期使用時に開始剤が着色してしまう可能性がある。そこで、長期使用時においても着色することなく、耐候性を良好にし、更に、重合反応性も良好にするために、互いに異なる波長を吸収するラジカル系開始剤を用いることが好ましい。   The transparent hard coat layer, particularly the hard coat layer containing a polyfunctional acrylic monomer and a silicone resin, preferably contains an initiator for initiating polymerization. Photoinitiators of active energy ray-curable resins such as ultraviolet rays are preferably used. Examples include benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and the like. Moreover, you may use an initiator with a photosensitizer. The above initiator can also be used as a photosensitizer. In addition, when using an epoxy acrylate initiator, a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used. The initiator or photosensitizer is 0.1 to 15 parts by mass, preferably 1 to 10 parts by mass, and more preferably 2 to 5 parts by mass with respect to 100 parts by mass of the composition. Two types of initiators can be used in combination. In particular, in the case of radical initiators, at least two types of initiators, preferably radical initiators that absorb different wavelengths, are used. More preferably, two kinds of initiators having different ultraviolet absorption wavelengths are used. For example, with only an initiator that absorbs a shorter wavelength, the polymerization reaction of all the monomers may not be performed by the initiator. On the other hand, only an initiator that absorbs longer wavelengths improves the reactivity, but the initiator may be colored during long-term use. Therefore, it is preferable to use radical initiators that absorb different wavelengths in order to improve the weather resistance and also the polymerization reactivity without coloring even during long-term use.

透明ハードコート層中には、さらに各種の添加剤を必要に応じて配合することができる。例えば、界面活性剤、レベリング剤および帯電防止剤などを用いることができる。   Various additives can be further blended in the transparent hard coat layer as necessary. For example, a surfactant, a leveling agent and an antistatic agent can be used.

レベリング剤は、表面凹凸低減に効果的である。レベリング剤としては、例えば、シリコーン系レベリング剤として、ジメチルポリシロキサン−ポリオキシアルキレン共重合体(例えば東レダウコーニング(株)製SH190)が好適である。   The leveling agent is effective in reducing surface irregularities. As a leveling agent, for example, a dimethylpolysiloxane-polyoxyalkylene copolymer (for example, SH190 manufactured by Toray Dow Corning Co., Ltd.) is suitable as a silicone leveling agent.

<9.ガスバリア層>
銀反射層よりも光入射側にガスバリア層を設けてもよい。アクリル層と銀反射層の間にガスバリア層を設けることが好ましい。更には、接着層と樹脂コート層の間にガスバリア層を設けることが好ましい。ガスバリア層は、湿度の変動、特に高湿度による樹脂フィルム状支持体及び樹脂フィルム状支持体に支持される各構成層等の劣化を防止するためのものであるが、特別の機能・用途を持たせたものであってもよく、上記劣化防止機能を有する限りにおいて、種々の態様のガスバリア層を設けることができる。
<9. Gas barrier layer>
A gas barrier layer may be provided on the light incident side of the silver reflective layer. It is preferable to provide a gas barrier layer between the acrylic layer and the silver reflective layer. Furthermore, it is preferable to provide a gas barrier layer between the adhesive layer and the resin coat layer. The gas barrier layer is intended to prevent the deterioration of the humidity, especially the resin film-like support and the constituent layers supported by the resin film-like support due to high humidity, but it has special functions and applications. As long as it has the function of preventing deterioration, a gas barrier layer of various modes can be provided.

ガスバリア層の防湿性としては、40℃、90%RHにおける水蒸気透過度が、1g/m・day以下であることが好ましく、より好ましくは0.5g/m・day以下、更に好ましくは0.2g/m・day以下である。また、ガスバリア層の酸素透過度としては、測定温度23℃、湿度90%RHの条件下で、0.6ml/m/day/atm以下であることが好ましい。 As the moisture resistance of the gas barrier layer, the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 · day or less, more preferably 0.5 g / m 2 · day or less, and still more preferably 0. .2 g / m 2 · day or less. In addition, the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.

ガスバリア層の形成方法は、真空蒸着法、スパッタリング、イオンビームアシスト、化学気相成長法等の方法により無機酸化物を形成する方法が挙げられるが、ゾル−ゲル法による無機酸化物の前駆体を塗布した後に、その塗布膜に加熱処理及び/又は紫外線照射処理を施して、無機酸化物膜を形成する方法も好ましく用いられる。   Examples of the method for forming the gas barrier layer include a method of forming an inorganic oxide by a method such as vacuum vapor deposition, sputtering, ion beam assist, chemical vapor deposition, and the like. An inorganic oxide precursor by a sol-gel method is used. A method of forming an inorganic oxide film by applying heat treatment and / or ultraviolet irradiation treatment to the coating film after coating is also preferably used.

<9−2.無機酸化物>
無機酸化物は、有機金属化合物を原料とするゾルから局所的加熱により形成されたものである。例えば、有機金属化合物に含有されているケイ素(Si)、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ニオブ(Nb)等の元素の酸化物であり、例えば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等である。これらのうち、好ましくは、酸化ケイ素である。
<9-2. Inorganic oxide>
The inorganic oxide is formed by local heating from a sol using an organometallic compound as a raw material. For example, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound, An oxide of an element such as tin (Sn) or niobium (Nb), for example, silicon oxide, aluminum oxide, zirconium oxide, or the like. Of these, silicon oxide is preferable.

無機酸化物を形成する方法としては、いわゆるゾル−ゲル法またはポリシラザン法を用いることが好ましい。ゾル−ゲル法は無機酸化物の前駆体である有機金属化合物から無機酸化物を形成する方法であり、ポリシラザン法は無機酸化物の前駆体であるポリシラザンから無機酸化物を形成する方法である。   As a method for forming the inorganic oxide, it is preferable to use a so-called sol-gel method or a polysilazane method. The sol-gel method is a method of forming an inorganic oxide from an organometallic compound that is a precursor of an inorganic oxide, and the polysilazane method is a method of forming an inorganic oxide from a polysilazane that is a precursor of an inorganic oxide.

<9−3.無機酸化物の前駆体>
ガスバリア層は、加熱により無機酸化物を形成する前駆体を塗布した後に、一般的な加熱方法が適用して形成することできるが、局所的加熱により形成することが好ましい。この前駆体は、ゾル状の有機金属化合物又はポリシラザンが好ましい。
<9-3. Inorganic Oxide Precursor>
The gas barrier layer can be formed by applying a general heating method after applying a precursor that forms an inorganic oxide by heating, but is preferably formed by local heating. This precursor is preferably a sol-shaped organometallic compound or polysilazane.

<9−4.有機金属化合物>
有機金属化合物は、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ランタン(La)、イットリウム(Y)、及びニオブ(Nb)のうちの少なくとも一つの元素を含有することが好ましい。特に、有機金属化合物が、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、亜鉛(Zn)、及びバリウム(Ba)のうちの少なくとも一つの元素を含有することが好ましい。さらに、ケイ素(Si)、アルミニウム(Al)、及びリチウム(Li)のうちの少なくとも一つの元素を含有することが好ましい。
<9-4. Organometallic compound>
The organometallic compounds are silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In), It is preferable to contain at least one element of tin (Sn), lanthanum (La), yttrium (Y), and niobium (Nb). In particular, the organometallic compound contains at least one element of silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba). It is preferable to contain. Furthermore, it is preferable to contain at least one element of silicon (Si), aluminum (Al), and lithium (Li).

有機金属化合物としては、加水分解が可能なものであればよく、特に限定されるものではないが、好ましい有機金属化合物としては、金属アルコキシドが挙げられる。この金属アルコキシドは、下記の一般式(10)で表される。
MR (ORn−m ・・・(10)
上記の一般式(10)において、Mは、酸化数nの金属を表す。R及びRは、各々独立にアルキル基を表す。mは、0〜(n−1)の整数を表す。また、R及びRは、同一でもよく、異なっていてもよい。R及びRとしては、炭素原子4個以下のアルキル基が好ましく、例えば、メチル基CH(以下、Meで表す。)、エチル基C(以下、Etで表す)、プロピル基C(以下、Prで表す。)、イソプロピル基i−C(以下、i−Prで表す。)、ブチル基C(以下、Buで表す)、イソブチル基i−C(以下、i−Buで表す)等の低級アルキル基がより好ましい。
The organometallic compound is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include metal alkoxides. This metal alkoxide is represented by the following general formula (10).
MR 2 m (OR 1 ) nm (10)
In the above general formula (10), M represents a metal having an oxidation number n. R 1 and R 2 each independently represents an alkyl group. m represents an integer of 0 to (n-1). R 1 and R 2 may be the same or different. R 1 and R 2 are preferably alkyl groups having 4 or less carbon atoms, for example, a methyl group CH 3 (hereinafter represented by Me), an ethyl group C 2 H 5 (hereinafter represented by Et), a propyl group. C 3 H 7 (hereinafter represented by Pr), isopropyl group i-C 3 H 7 (hereinafter represented by i-Pr), butyl group C 4 H 9 (hereinafter represented by Bu), isobutyl group i- Lower alkyl groups such as C 4 H 9 (hereinafter represented by i-Bu) are more preferred.

また、上記の式(10)で表される金属アルコキシドとしては、例えば、リチウムエトキシドLiOEt、ニオブエトキシドNb(OEt)、マグネシウムイソプロポキシドMg(OPr−i)、アルミニウムイソプロポキシドAl(OPr−i)、亜鉛プロポキシドZn(OPr)、テトラエトキシシランSi(OEt)、チタンイソプロポキシドTi(OPr−i)、バリウムエトキシドBa(OEt)、バリウムイソプロポキシドBa(OPr−i)、トリエトキシボランB(OEt)、ジルコニウムプロポキシドZn(OPr)、ランタンプロポキシドLa(OPr)、イットリウムプロポキシドY(OPr)、鉛イソプロポキシドPb(OPr−i)等が好適に挙げられる。これらの金属アルコキシドは何れも市販品があり、容易に入手することができる。また、金属アルコキシドは、部分的に加水分解して得られる低縮合物も市販されており、これを原料として使用することも可能である。 Examples of the metal alkoxide represented by the above formula (10) include lithium ethoxide LiOEt, niobium ethoxide Nb (OEt) 5 , magnesium isopropoxide Mg (OPr-i) 2 , and aluminum isopropoxide Al. (OPr-i) 3 , zinc propoxide Zn (OPr) 2 , tetraethoxysilane Si (OEt) 4 , titanium isopropoxide Ti (OPr-i) 4 , barium ethoxide Ba (OEt) 2 , barium isopropoxide Ba (OPr-i) 2 , triethoxyborane B (OEt) 3 , zirconium propoxide Zn (OPr) 4 , lanthanum propoxide La (OPr) 3 , yttrium propoxide Y (OPr) 3 , lead isopropoxide Pb ( OPr-i) 2 and the like are preferable. All of these metal alkoxides are commercially available and can be easily obtained. Moreover, the metal alkoxide is also commercially available as a low condensate obtained by partial hydrolysis, and it can be used as a raw material.

<9−5.ゾル−ゲル法>
ここで、「ゾル−ゲル法」とは、有機金属化合物を加水分解すること等により、水酸化物のゾルを得て、脱水処理してゲルとし、さらにこのゲルを加熱処理することで、ある一定の形状(フィルム状、粒子状、繊維状等)の金属酸化物ガラスを調製する方法をいう。異なる複数のゾル溶液を混合する方法、他の金属イオンを添加する方法等により、多成分系の金属酸化物ガラスを得ることも可能である。具体的には、下記の工程を有するゾル−ゲル法で、無機酸化物を製造することが好ましい。
<9-5. Sol-gel method>
Here, the “sol-gel method” is to obtain a hydroxide sol by hydrolyzing an organometallic compound, etc., dehydrate it into a gel, and then heat the gel. It refers to a method for preparing a metal oxide glass having a certain shape (film, particle, fiber, etc.). A multi-component metal oxide glass can be obtained by a method of mixing a plurality of different sol solutions, a method of adding other metal ions, or the like. Specifically, it is preferable to produce an inorganic oxide by a sol-gel method having the following steps.

すなわち、少なくとも水及び有機溶媒を含有する反応液中で、ホウ素イオン存在下にてハロゲンイオンを触媒として、pHを4.5〜5.0に調整しながら、有機金属化合物を加水分解及び脱水縮合して反応生成物を得る工程、及びその反応生成物を200℃以下の温度で加熱してガラス化する工程、を有するゾル−ゲル法により製造されてなることが、高温熱処理による微細孔の発生や膜の劣化等が発生しないという観点から特に好ましい。   That is, in a reaction solution containing at least water and an organic solvent, the organometallic compound is hydrolyzed and dehydrated and condensed while adjusting the pH to 4.5 to 5.0 using a halogen ion as a catalyst in the presence of boron ion. Generation of micropores due to high-temperature heat treatment is produced by a sol-gel method having a step of obtaining a reaction product by heating and vitrifying the reaction product at a temperature of 200 ° C. or lower. And is particularly preferable from the viewpoint that no deterioration of the film occurs.

このゾル−ゲル法において、原料として用いられる有機金属化合物としては、加水分解が可能なものであればよく、特に限定されるものではないが、好ましい有機金属化合物としては、上記した金属アルコキシドが挙げられる。   In this sol-gel method, the organometallic compound used as a raw material is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include the above-described metal alkoxides. It is done.

ゾル−ゲル法において、上記した有機金属化合物は、そのまま反応に用いてもよいが、反応の制御を容易にするため溶媒で希釈して用いることが好ましい。希釈用溶媒は、有機金属化合物を溶解することができ、かつ水と均一に混合することができるものであればよい。そのような希釈用溶媒としては、脂肪族の低級アルコール、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、エチレングリコール、プロピレングリコール、及びそれらの混合物が好適に挙げられる。また、ブタノールとセロソルブとブチルセロソルブの混合溶媒、あるいはキシロールとセロソルブアセテートとメチルイソブチルケトンとシクロヘキサンの混合溶媒などを使用することもできる。   In the sol-gel method, the above-described organometallic compound may be used for the reaction as it is, but it is preferably diluted with a solvent for easy control of the reaction. The dilution solvent may be any solvent that can dissolve the organometallic compound and can be uniformly mixed with water. Preferred examples of such a solvent for dilution include aliphatic lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, propylene glycol, and mixtures thereof. Further, a mixed solvent of butanol, cellosolve, and butyl cellosolve, or a mixed solvent of xylol, cellosolve acetate, methyl isobutyl ketone, and cyclohexane may be used.

この有機金属化合物において、金属がCa、Mg、Al等である場合には、反応液中の水と反応して水酸化物を生成したり、炭酸イオンCO 2−が存在すると炭酸塩を生成したりして沈殿を生ずるため、反応液に隠蔽剤としてトリエタノールアミンのアルコール溶液を添加することが好ましい。溶媒に混合溶解するときの有機金属化合物の濃度としては、70質量%以下が好ましく、5〜70質量%の範囲に希釈して使用することがより好ましい。 In this organometallic compound, when the metal is Ca, Mg, Al, etc., it reacts with water in the reaction solution to form a hydroxide, or when carbonate ion CO 3 2- is present, a carbonate is formed. Therefore, it is preferable to add an alcohol solution of triethanolamine as a masking agent to the reaction solution. The concentration of the organometallic compound when mixed and dissolved in the solvent is preferably 70% by mass or less, and more preferably diluted to a range of 5 to 70% by mass.

ゾル−ゲル法において用いられる反応液は、少なくとも水及び有機溶媒を含有する。有機溶媒としては、水及び酸、アルカリと均一な溶液をつくるものであればよく、通常、有機金属化合物の希釈に用いる脂肪族の低級アルコール類と同様のものが好適に挙げられる。脂肪族の低級アルコール類の中でも、メタノール、エタノールより、炭素数の多いプロパノール、イソプロパノール、ブタノール、及びイソブタノールが好ましい。これは、生成する金属酸化物ガラスの膜の成長が安定であるためである。この反応液において、水の割合としては、水の濃度として0.2〜50mol/Lの範囲が好ましい。   The reaction liquid used in the sol-gel method contains at least water and an organic solvent. The organic solvent is not particularly limited as long as it can form a uniform solution with water, acid, and alkali. Usually, the same aliphatic aliphatic alcohols used for diluting the organometallic compound are preferably used. Among aliphatic lower alcohols, propanol, isopropanol, butanol, and isobutanol having a larger number of carbon atoms are preferable to methanol and ethanol. This is because the growth of the metal oxide glass film to be generated is stable. In this reaction solution, the water ratio is preferably in the range of 0.2 to 50 mol / L as the water concentration.

また、ゾル−ゲル法においては、反応液中において、ホウ素イオンの存在下にて、ハロゲンイオンを触媒として、有機金属化合物を加水分解する。ホウ素イオンB3+を与える化合物としては、トリアルコキシボランB(OR)が好適に挙げられる。その中でも、トリエトキシボランB(OEt)がより好ましい。また、反応液中のB3+イオン濃度としては、1.0〜10.0mol/Lの範囲が好ましい。 In the sol-gel method, an organometallic compound is hydrolyzed in a reaction solution in the presence of boron ions using a halogen ion as a catalyst. Preferred examples of the compound that gives boron ion B 3+ include trialkoxyborane B (OR) 3 . Among these, triethoxyborane B (OEt) 3 is more preferable. Moreover, as a B <3+ > ion density | concentration in a reaction liquid, the range of 1.0-10.0 mol / L is preferable.

ハロゲンイオンとしては、フッ素イオン及び/又は塩素イオンが好適に挙げられる。即ち、フッ素イオン単独、塩素イオン単独でもよく、これらの混合物でもよい。用いる化合物としては、上記した反応液中でフッ素イオン及び/又は塩素イオンを生ずるものであればよく、例えば、フッ素イオン源として、フッ化水素アンモニウムNHHF・HF、フッ化ナトリウムNaF等が好適に挙げられ、塩素イオン源として、塩化アンモニウムNHCl等が好適に挙げられる。 As a halogen ion, a fluorine ion and / or a chlorine ion are mentioned suitably. That is, fluorine ions alone, chlorine ions alone or a mixture thereof may be used. The compound to be used is not particularly limited as long as it generates fluorine ions and / or chlorine ions in the reaction solution described above. For example, as the fluorine ion source, ammonium hydrogen fluoride NH 4 HF · HF, sodium fluoride NaF and the like are suitable. Preferred examples of the chlorine ion source include ammonium chloride NH 4 Cl.

また、反応液中のハロゲンイオンの濃度としては、製造しようとする無機マトリックスを有する無機組成物からなるフィルムの膜厚や、その他の条件によって異なるが、一般的には、触媒を含む反応液の合計質量に対して、0.001〜2mol/kg、特に0.002〜0.3mol/kgの範囲が好ましい。ハロゲンイオンの濃度が0.001mol/kgより低いと、有機金属化合物の加水分解が十分に進行し難くなり、膜の形成が困難となる。またハロゲンイオンの濃度が2mol/kgを超えると、生成する無機マトリックス(金属酸化物ガラス)が不均一になり易いため、いずれも好ましくない。   The concentration of halogen ions in the reaction solution varies depending on the film thickness of the inorganic composition having the inorganic matrix to be produced and other conditions. A range of 0.001 to 2 mol / kg, particularly 0.002 to 0.3 mol / kg is preferable with respect to the total mass. If the halogen ion concentration is lower than 0.001 mol / kg, hydrolysis of the organometallic compound does not proceed sufficiently, and film formation becomes difficult. Moreover, since the produced | generated inorganic matrix (metal oxide glass) will become non-uniform easily when the density | concentration of a halogen ion exceeds 2 mol / kg, neither is preferable.

なお、反応時に使用したホウ素に関しては、得られる無機マトリックスの設計組成中にB成分として含有させる場合は、その含有量に応じた有機ホウ素化合物の計算量を添加したまま生成物とすればよく、またホウ素を除去したいときは、成膜後、溶媒としてのメタノールの存在下、又はメタノールに浸漬して加熱すればホウ素はホウ素メチルエステルとして蒸発させて除去することができる。 With respect to the boron used during the reaction, if to be contained as a B 2 O 3 component in the design the composition of the resulting inorganic matrix, by leaving product was added calculated amount of organic boron compound in accordance with the content of In addition, when it is desired to remove boron, boron can be removed by evaporation as boron methyl ester by heating after film formation in the presence of methanol as a solvent or by immersing in methanol.

有機金属化合物を、加水分解及び脱水縮合して反応生成物を得る工程においては、通常所定量の有機金属化合物を、所定量の水及び有機溶媒を含有する混合溶媒に混合溶解した主剤溶液、ならびに所定量のハロゲンイオンを含有する所定量の反応液を、所定の比で混合し十分に攪拌して均一な反応溶液とした後、酸又はアルカリで反応溶液のpHを希望の値に調整し、数時間熟成することにより進行させて反応生成物を得る。ホウ素化合物は、主剤溶液又は反応液に予め所定量を混合溶解しておく。また、アルコキシボランを用いる場合は、他の有機金属化合物と共に主剤溶液に溶解するのが有利である。   In the step of obtaining a reaction product by hydrolysis and dehydration condensation of an organometallic compound, a main agent solution in which a predetermined amount of an organometallic compound is usually mixed and dissolved in a mixed solvent containing a predetermined amount of water and an organic solvent, and After mixing a predetermined amount of a reaction solution containing a predetermined amount of halogen ions at a predetermined ratio and stirring sufficiently to obtain a uniform reaction solution, the pH of the reaction solution is adjusted to a desired value with an acid or alkali, The reaction product is obtained by aging for several hours. A predetermined amount of the boron compound is previously mixed and dissolved in the main agent solution or reaction solution. Further, when alkoxyborane is used, it is advantageous to dissolve it in the main agent solution together with other organometallic compounds.

反応溶液のpHは、目的によって選択され、無機マトリックス(金属酸化物ガラス)を有する無機組成物からなる膜(フィルム)の形成を目的とするときは、例えば、塩酸等の酸を用いてpHを4.5〜5の範囲に調整して熟成するのが好ましい。この場合は、例えば、指示薬としてメチルレッドとブロモクレゾールグリーンとを混合したもの等を用いると便利である。   The pH of the reaction solution is selected according to the purpose, and when the purpose is to form a film (film) made of an inorganic composition having an inorganic matrix (metal oxide glass), the pH is adjusted using an acid such as hydrochloric acid. It is preferable to ripen after adjusting to the range of 4.5-5. In this case, for example, it is convenient to use a mixture of methyl red and bromocresol green as an indicator.

なお、ゾル−ゲル法においては、同一成分の同一濃度の主剤溶液、及び反応液(B3+及びハロゲンイオンを含む。)を所定のpHに調整しながら、逐次同一割合で追加添加することにより簡単に継続して、反応生成物を製造することもできる。なお、反応溶液の濃度は±50質量%の範囲で、水(酸又はアルカリを含む。)の濃度は、±30質量%の範囲で、及びハロゲンイオンの濃度は±30質量%の範囲で変化させることができる。 In the sol-gel method, the main component solution of the same concentration of the same component and the reaction liquid (including B 3+ and halogen ions) are added to each other at the same rate while adjusting to a predetermined pH. The reaction product can also be produced continuously. The concentration of the reaction solution is in the range of ± 50% by mass, the concentration of water (including acid or alkali) is in the range of ± 30% by mass, and the concentration of the halogen ion is in the range of ± 30% by mass. Can be made.

次に、前工程で得られた反応生成物(熟成後の反応溶液)を、200℃以下の温度に加熱して乾燥しガラス化させる。加熱にあたって、特に50〜70℃の温度区間を注意して徐々に昇温して、予備乾燥(溶媒揮散)工程を経た後さらに昇温することが好ましい。この乾燥は、膜形成の場合、無孔化膜とするために重要である。予備乾燥工程後、加熱し乾燥する温度としては、70〜150℃が好ましく、80〜130℃がより好ましい。   Next, the reaction product (reaction solution after aging) obtained in the previous step is heated to a temperature of 200 ° C. or lower, dried and vitrified. In heating, it is preferable to raise the temperature gradually after paying attention to a temperature range of 50 to 70 ° C., followed by a preliminary drying (solvent volatilization) step. This drying is important for forming a non-porous film in the case of film formation. The temperature for heating and drying after the preliminary drying step is preferably 70 to 150 ° C, more preferably 80 to 130 ° C.

<10.アンカー層>
アンカー層は、樹脂からなり、樹脂フィルム状支持体と銀反射層とを密着させるために設けられる層である。従って、アンカー層は樹脂フィルム状支持体と銀反射層とを密着させる密着性、銀反射層を真空蒸着法等で形成する時の熱にも耐え得る耐熱性、及び銀反射層が本来有する高い反射性能を引き出すための平滑性が必要である。
<10. Anchor layer>
An anchor layer is a layer which consists of resin and is provided in order to adhere | attach a resin film-like support body and a silver reflection layer. Therefore, the anchor layer has an adhesive property that allows the resin film-like support and the silver reflective layer to be in close contact, heat resistance that can withstand heat when the silver reflective layer is formed by a vacuum deposition method, and the silver reflective layer that is inherently high. Smoothness is required to bring out the reflection performance.

アンカー層に使用する樹脂は、上記の密着性、耐熱性、及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂又はポリエステル系樹脂とアクリル系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。   The resin used for the anchor layer is not particularly limited as long as it satisfies the above adhesiveness, heat resistance, and smoothness conditions. Polyester resin, acrylic resin, melamine resin, epoxy resin, polyamide Resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin, etc. can be used singly or as a mixed resin. From the viewpoint of weather resistance, polyester resin and melamine resin mixed resin or polyester resin and acrylic resin can be used. A resin mixed resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.

アンカー層の厚さは、0.01〜3μmが好ましく、より好ましくは0.1〜2μmである。この範囲を満たすことにより、密着性を保ちつつ、樹脂フィルム状支持体表面の凹凸を覆い隠すことができ、平滑性を良好にでき、アンカー層の硬化も十分に行えるため、結果としてフィルムミラーの反射率を高めることが可能となる。   The thickness of the anchor layer is preferably 0.01 to 3 μm, more preferably 0.1 to 2 μm. By satisfying this range, the unevenness of the resin film-like support surface can be covered while maintaining the adhesion, the smoothness can be improved, and the anchor layer can be sufficiently cured. The reflectance can be increased.

また、アンカー層には、上述の<4−2.腐食防止剤>に記載した腐食防止剤を含有させることが好ましい。   Further, the anchor layer has the above-described <4-2. It is preferable to contain the corrosion inhibitor described in <Corrosion inhibitor>.

尚、アンカー層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。   In addition, the formation method of an anchor layer can use conventionally well-known coating methods, such as a gravure coat method, a reverse coat method, and a die coat method.

<11.剥離層>
フィルムミラーは、粘着層の光入射側と逆側に剥離層を有していてもよい。例えば、フィルムミラーの出荷時には剥離層が粘着層に張り付いた状態で出荷し、剥離層から粘着層を有するフィルムミラーを剥離し、他の基材に貼り合わせて太陽光反射用ミラーを形成することができる。
<11. Release layer>
The film mirror may have a release layer on the side opposite to the light incident side of the adhesive layer. For example, when a film mirror is shipped, it is shipped with the release layer attached to the adhesive layer, the film mirror having the adhesive layer is peeled off from the release layer, and is bonded to another substrate to form a solar reflective mirror. be able to.

剥離層としては、銀反射層層の保護性を付与できるものであればよく、例えば、アクリルフィルム又はシート、ポリカーボネートフィルム又はシート、ポリアリレートフィルム又はシート、ポリエチレンナフタレートフィルム又はシート、ポリエチレンテレフタレートフィルム又はシート、フッ素フィルムなどのプラスチックフィルム又はシート、又は酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルム又はシート、これらを練り込んだ樹脂をコーティングしたりアルミニウム等の金属を金属蒸着などの表面加工を施した樹脂フィルム又はシートが用いられる。   The release layer may be any layer that can impart protection to the silver reflective layer, for example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film or Plastic film or sheet such as sheet, fluorine film, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc., coating the resin kneaded with these, metal deposition such as aluminum, etc. A resin film or sheet subjected to the above surface treatment is used.

剥離層の厚さは、特に制限はないが通常12〜250μmの範囲であることが好ましい。   Although there is no restriction | limiting in particular in the thickness of a peeling layer, Usually, it is preferable that it is the range of 12-250 micrometers.

また、これらの剥離層フィルムミラーと貼り合わせる前に凹部や凸部を設けてから貼り合せてもよく、貼り合せた後で凹部や凸部を有するように成形してもよく、貼り合わせと凹部や凸部を有するように成形することを同時にしてもよいものである。   Moreover, it may be bonded after providing a concave portion or a convex portion before being bonded to these release layer film mirrors, or may be formed to have a concave portion or a convex portion after being bonded. Or forming so as to have a convex portion.

<12.太陽光反射用ミラー>
太陽光反射用ミラーは、フィルムミラーと、自己支持性の基材とを有し、粘着層を介してフィルムミラーが基材に接合されている。
<12. Sunlight reflection mirror>
The mirror for sunlight reflection has a film mirror and a self-supporting base material, and the film mirror is joined to the base material via an adhesive layer.

<12−2.自己支持性の基材>
自己支持性の基材は、以下のA及びBの何れかの構成を有することが好ましい。
<12-2. Self-supporting substrate>
The self-supporting substrate preferably has one of the following structures A and B.

A:一対の金属平板と、当該金属平板の間に設けられた中間層とを有し、当該中間層は
中空構造を有する層又は樹脂材料から構成される層である。
A: A pair of metal flat plates and an intermediate layer provided between the metal flat plates, and the intermediate layer is a layer having a hollow structure or a layer made of a resin material.

B:中空構造を有する樹脂材料層からなる。   B: A resin material layer having a hollow structure.

「自己支持性の基材」という場合の、「自己支持性」とは、太陽光反射用ミラーの基材として用いられる大きさに断裁された場合において、その対向する端縁部分を支持することで、基材を担持することが可能な程度の剛性を有することを表す。太陽光反射用ミラーの基材が自己支持性を有することで、太陽光反射用ミラーを設置する際に取り扱い性に優れるとともに、太陽光反射用ミラーを保持するための保持部材を簡素な構成とすることが可能となるため、反射装置を軽量化することが可能となり、太陽追尾の際の消費電力を抑制することが可能となる。   In the case of “self-supporting substrate”, “self-supporting” means supporting the opposite edge portions when cut to a size that can be used as a substrate for a solar reflective mirror. This means that the substrate has rigidity enough to support the substrate. The base material of the solar reflective mirror has a self-supporting property, so that it is easy to handle when installing the solar reflective mirror, and the holding member for holding the solar reflective mirror has a simple configuration. Therefore, it is possible to reduce the weight of the reflection device, and it is possible to suppress power consumption during solar tracking.

構成Aのように、自己支持性の基材を、一対の金属平板と、当該金属平板の間に設けられた中間層からなる構成とし、中間層は中空構造を有する層か樹脂材料から構成される層とすることにより、金属平板による高い平面性を有するとともに、中間層が中空構造を有する層か、樹脂材料から構成される層とされていることにより、金属平板のみで基材を構成する場合に比べて、基材を大幅に軽量化することが可能となるとともに、比較的軽量な中間層により剛性を上げることができるため、軽量且つ自己支持性を有する支持体とすることが可能となる。中間層として樹脂材料から構成される層を用いる場合においても、中空構造を有する樹脂材料の層とすることで更に軽量化が可能である。   As in Configuration A, the self-supporting base material is composed of a pair of metal flat plates and an intermediate layer provided between the metal flat plates, and the intermediate layer is formed of a layer having a hollow structure or a resin material. By having a layer that has high flatness due to a metal flat plate, and the intermediate layer is a layer having a hollow structure or a layer composed of a resin material, the base material is configured only by a metal flat plate. Compared to the case, the weight of the substrate can be greatly reduced, and the rigidity can be increased by the relatively lightweight intermediate layer, so that it can be a lightweight and self-supporting support. Become. Even in the case where a layer made of a resin material is used as the intermediate layer, it is possible to further reduce the weight by using a resin material layer having a hollow structure.

また、中間層を中空構造とした場合には、中間層が断熱材としての機能を果たすため、裏面の金属平板の温度変化がフィルムミラーへ伝わることを抑制し、結露の防止や、熱による劣化を抑制することが可能となる。   In addition, when the intermediate layer has a hollow structure, the intermediate layer functions as a heat insulating material, so that the temperature change of the metal flat plate on the back side is prevented from being transmitted to the film mirror, preventing condensation and deterioration due to heat. Can be suppressed.

構成Aの表面層を形成する、金属平板としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板など熱伝導率の高い金属材料が好ましく用いることができる。本発明においては、特に、耐腐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板などにすることが好ましい。   As the metal flat plate forming the surface layer of the configuration A, steel plate, copper plate, aluminum plate, aluminum plated steel plate, aluminum alloy plated steel plate, copper plated steel plate, tin plated steel plate, chrome plated steel plate, stainless steel plate, etc. A high metal material can be preferably used. In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate or the like having good corrosion resistance.

構成Aの中間層を中空構造とする場合、金属、無機材料(ガラス等)、樹脂等の素材を用いることができる。中空構造としては、発泡樹脂からなる気泡構造、金属、無機材料又は樹脂材料からなる壁面を有する立体構造(ハニカム構造等)や、中空微粒子を添加した樹脂材料等を用いることができる。発泡樹脂の気泡構造は、樹脂材料中にガスを細かく分散させ、発泡状又は多孔質形状に形成されたものを指し、材料としては、公知の発泡樹脂材料を使用可能であるが、ポリオレフィン系樹脂、ポリウレタン、ポリエチレン、ポリスチレン等が好ましく用いられる。ハニカム構造とは、空間が側壁で囲まれた複数の小空間で構成される立体構造全般を表すものとする。中空構造を樹脂材料からなる壁面を有する立体構造とする場合、壁面を構成する樹脂材料としては、エチレン、プロピレン、ブテン、イソプレンペンテン、メチルペンテン等のオレフィン類の単独重合体あるいは共重合体であるポリオレフィン(例えば、ポリプロピレン、高密度ポリエチレン)、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリアクリロニトリル、エチレン−エチルアクリレート共重合体等のアクリル誘導体、ポリカーボネート、エチレン−酢酸ビニル共重合体等の酢酸ビニル共重合体、アイオノマー、エチレン−プロピレン−ジエン類等のターポリマー、ABS樹脂、ポリオレフィンオキサイド、ポリアセタール等の熱可塑性樹脂が好ましく用いられる。なお、これらは一種類を単独で用いても、二種類以上を混合して用いてもよい。特に、熱可塑性樹脂のなかでもオレフィン系樹脂又はオレフィン系樹脂を主体にした樹脂、ポリプロピレン系樹脂又はポリプロピレン系樹脂を主体にした樹脂が、機械的強度及び成形性のバランスに優れている点で好ましい。樹脂材料には、添加剤が含まれていてもよく、その添加剤としては、シリカ、マイカ、タルク、炭酸カルシウム、ガラス繊維、カーボン繊維等の無機フィラー、可塑剤、安定剤、着色剤、帯電防止剤、難燃剤、発泡剤等が挙げられる。   When the intermediate layer of Configuration A has a hollow structure, a material such as a metal, an inorganic material (glass or the like), or a resin can be used. As the hollow structure, a cellular structure made of a foamed resin, a three-dimensional structure having a wall surface made of a metal, an inorganic material, or a resin material (such as a honeycomb structure), a resin material to which hollow fine particles are added, or the like can be used. The cellular structure of the foamed resin refers to a material in which a gas is finely dispersed in a resin material and formed into a foamed or porous shape, and a known foamed resin material can be used as the material. Polyurethane, polyethylene, polystyrene and the like are preferably used. The honeycomb structure represents a general three-dimensional structure composed of a plurality of small spaces surrounded by side walls. When the hollow structure is a three-dimensional structure having a wall surface made of a resin material, the resin material constituting the wall surface is a homopolymer or copolymer of olefins such as ethylene, propylene, butene, isoprene pentene, and methylpentene. Acrylic derivatives such as polyolefin (for example, polypropylene, high density polyethylene), polyamide, polystyrene, polyvinyl chloride, polyacrylonitrile, ethylene-ethyl acrylate copolymer, vinyl acetate copolymers such as polycarbonate, ethylene-vinyl acetate copolymer Terpolymers such as ionomers and ethylene-propylene-dienes, and thermoplastic resins such as ABS resin, polyolefin oxide, and polyacetal are preferably used. In addition, these may be used individually by 1 type, or may mix and use 2 or more types. In particular, among thermoplastic resins, olefin-based resins or resins mainly composed of olefin-based resins, polypropylene-based resins or resins based mainly on polypropylene-based resins are preferable because of excellent balance between mechanical strength and moldability. . The resin material may contain an additive. Examples of the additive include silica, mica, talc, calcium carbonate, glass fiber, carbon fiber, and other inorganic fillers, plasticizers, stabilizers, colorants, charging agents. An inhibitor, a flame retardant, a foaming agent, etc. are mentioned.

また、中間層を樹脂プレートからなる層とすることも可能であり、この場合に中間層を構成する樹脂材料としては、前述のフィルムミラーの支持体を構成する材料と同様のものを好ましく用いることができる。   In addition, the intermediate layer can be a layer made of a resin plate. In this case, the resin material constituting the intermediate layer is preferably the same as the material constituting the support for the film mirror described above. Can do.

中間層は、基材の全ての領域に設けられる必要はなく、金属平板の平面性及び基材としての自己支持性を担保できる範囲であれば、一部の領域に設けられていてもよい。中間層を上述の立体構造とする場合、金属平板の面積に対して、90〜95%程度の領域に立体構造を設けることが好ましく、発泡樹脂を用いる場合は、30〜40%程度の領域に設けることが好ましい。   The intermediate layer does not need to be provided in all regions of the base material, and may be provided in a part of the region as long as the flatness of the metal flat plate and the self-supporting property as the base material can be ensured. When the intermediate layer has the above-described three-dimensional structure, it is preferable to provide the three-dimensional structure in a region of about 90 to 95% with respect to the area of the metal flat plate. It is preferable to provide it.

上記の構成Bのように、自己支持性の基材を、中空構造を有する樹脂材料からなる層とすることも可能である。基材を樹脂のみからなる層とした場合、自己支持性を持たせる程度の剛性を得るために必要な厚さが大きくなり、結果として基材の質量が重くなるが、樹脂基材に中空構造を持たせることにより、自己支持性を持たせながら軽量化が可能となる。中空構造を有する樹脂材料からなる層とする場合、表面層として平滑な面を有する樹脂シートを設け、中空構造を有する樹脂材料を中間層として用いることが、フィルムミラーの正反射率を高める観点で好ましい。この樹脂シートの材料としては、前述のフィルムミラーの支持体を構成する材料と同様のものを好ましく用いることができ、中空構造を構成する樹脂材料としては、上述の発泡材料や、立体構造に用いられるものと同様の樹脂材料を好ましく用いることができる。   As in the configuration B, the self-supporting base material can be a layer made of a resin material having a hollow structure. When the base material is made of a resin-only layer, the thickness required to obtain rigidity sufficient to provide self-supporting properties increases, and as a result, the weight of the base material increases, but the resin base material has a hollow structure. By providing the weight, it is possible to reduce the weight while providing a self-supporting property. In the case of a layer made of a resin material having a hollow structure, a resin sheet having a smooth surface is provided as a surface layer, and the resin material having a hollow structure is used as an intermediate layer from the viewpoint of increasing the regular reflectance of the film mirror. preferable. As the material of this resin sheet, the same material as that constituting the above-mentioned film mirror support can be preferably used, and as the resin material constituting the hollow structure, it is used for the above-mentioned foamed material and three-dimensional structure. The same resin material as that obtained can be preferably used.

<13.保持部材>
太陽熱発電用反射装置は、太陽光反射用ミラーを保持する保持部材を有する。保持部材は、太陽光反射用ミラーを太陽を追尾可能な状態で保持する事が好ましい。保持部材の形態としては、特に制限はないが、例えば、太陽光反射用ミラーが所望の形状を保持できるように、複数個所を棒状の保持部材により、保持する形態が好ましい。保持部材は太陽を追尾可能な状態で太陽光反射用ミラーを保持する構成を有するが、太陽追尾に際しては、手動で駆動させてもよいし、別途駆動装置を設けて自動的に太陽を追尾する構成としてもよい。
<13. Holding member>
The solar power generation reflection device includes a holding member that holds a solar light reflecting mirror. The holding member preferably holds the sunlight reflecting mirror in a state where the sun can be tracked. Although there is no restriction | limiting in particular as a form of a holding member, For example, the form which hold | maintains several places with a rod-shaped holding member is preferable so that the mirror for sunlight reflection can hold | maintain a desired shape. The holding member has a configuration for holding the sunlight reflecting mirror in a state in which the sun can be tracked. However, when the sun is tracked, it may be driven manually, or a separate driving device is provided to automatically track the sun. It is good also as a structure.

以下、本発明について実施例及び比較例を用いて具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples and comparative examples.

(銀錯体化合物含有塗布液Aの調製)
攪拌器付き500mlのシュレンク(Schlenk)フラスコに、2−エチルヘキシルアンモニウム2−エチルカルバメート65.0g(215ミリモル)を150.0gのイソプロパノールに溶解させた後、酸化銀20.0g(86.2ミリモル)を添加して、常温で反応した。前記反応溶液は、最初は黒色懸濁液(Slurry)で反応が進行され、錯化合物が生成されるにつれて段々色が薄くなり、透明に変わることが観察されて、2時間反応した結果、無色透明な溶液が得られた。この溶液に、安定剤として2−ヒドロキシ−2−メチルプロピルアミン2.5gに、溶媒としてn−ブタノール85.0gとアミルアルコール50.0gを添加して攪拌した後、0.45ミクロンのメンブレンフィルタ(membrane filter)を使用してフィルタし、熱分析(TGA)した結果、銀含量4.87質量%の銀錯体化合物含有塗布液Aを製造した。
(Preparation of silver complex compound-containing coating solution A)
In a 500 ml Schlenk flask equipped with a stirrer, 65.0 g (215 mmol) of 2-ethylhexylammonium 2-ethylcarbamate was dissolved in 150.0 g of isopropanol, and then 20.0 g (86.2 mmol) of silver oxide. Was added and reacted at room temperature. The reaction solution was initially reacted with a black suspension (Slurry), and as the complex compound was formed, it was observed that the color gradually faded and changed to transparent. Solution was obtained. To this solution was added 2.5 g of 2-hydroxy-2-methylpropylamine as a stabilizer, 85.0 g of n-butanol and 50.0 g of amyl alcohol as a solvent and stirred, and then a 0.45 micron membrane filter. As a result of filtering using a membrane filter and thermal analysis (TGA), a silver complex compound-containing coating solution A having a silver content of 4.87% by mass was produced.

[比較例1]
(比較例1のフィルムミラーの作製)
比較例1の層構成概略を図1に示す。樹脂フィルム状支持体1として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ25μm)を用いた。上記ポリエチレンテレフタレートフィルムの片面に、ポリエステル樹脂(ポリエスター SP−181 日本合成化学製)、メラミン樹脂(スーパーベッカミンJ−820 DIC製)、TDI系イソシアネート(2,4−トリレンジイソシアネート)、HDMI系イソシアネート(1,6−ヘキサメチレンジイソシアネート)を樹脂固形分比率で20:1:1:2に、固形分濃度10%となるようにトルエン中に混合した樹脂を、グラビアコート法によりコーティングして、厚さ0.1μmのアンカー層2を形成し、アンカー層2上に、銀反射層3として、真空蒸着法により厚さ100nmの銀反射層を形成した。次に、銀反射層3上に、ドライラミネーションプロセスにより、接着層4と、アクリル層5として透明アクリルフィルム(三菱レイヨン製アクリプレンHBS010P 厚さ100μm)を、ラミネート温度60℃にて貼合した。更に重量平均分子量50万の付加反応型シリコーン系粘着剤100部に白金系触媒1部を加えて35質量%トルエン溶液としたものを、剥離層7である厚さ25μmのポリエステル製セパレートフィルムの片面に塗布し、130℃で5分間加熱して厚さ25μmのシリコーン系粘着層6(Si系)を形成した後、上記ポリエチレンテレフタレートフィルムのアンカー層及び銀反射層とは反対面側にラミネートし、比較例1のフィルムミラーを得た。
[Comparative Example 1]
(Preparation of film mirror of Comparative Example 1)
An outline of the layer structure of Comparative Example 1 is shown in FIG. As the resin film-like support 1, a biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 μm) was used. On one side of the polyethylene terephthalate film, a polyester resin (Polyester SP-181 manufactured by Nippon Synthetic Chemical), a melamine resin (manufactured by Super Becamine J-820 DIC), a TDI-based isocyanate (2,4-tolylene diisocyanate), an HDMI-based A resin mixed with isocyanate (1,6-hexamethylene diisocyanate) in toluene at a resin solid content ratio of 20: 1: 1: 2 and a solid content concentration of 10% was coated by a gravure coating method, An anchor layer 2 having a thickness of 0.1 μm was formed, and a silver reflective layer having a thickness of 100 nm was formed on the anchor layer 2 as a silver reflective layer 3 by a vacuum deposition method. Next, an adhesive layer 4 and a transparent acrylic film (acrylic HBS010P thickness 100 μm, manufactured by Mitsubishi Rayon Co., Ltd.) as an acrylic layer 5 were bonded onto the silver reflective layer 3 at a lamination temperature of 60 ° C. by a dry lamination process. Further, one side of a 25 μm thick polyester separate film as a release layer 7 was prepared by adding 1 part of a platinum catalyst to 100 parts of an addition reaction type silicone pressure-sensitive adhesive having a weight average molecular weight of 500,000 to form a 35 mass% toluene solution. After forming a silicone adhesive layer 6 (Si system) having a thickness of 25 μm by heating at 130 ° C. for 5 minutes, it is laminated on the side opposite to the anchor layer and the silver reflecting layer of the polyethylene terephthalate film, A film mirror of Comparative Example 1 was obtained.

(太陽光反射用ミラーの作製)
上記比較例1の反射フィルムから剥離層7を剥離し、厚さ0.1mmで、たて4cm×よこ5cmのアルミ板と、フィルムミラーを粘着層6を介して貼り合せて、太陽光反射用ミラー(A−1)を得た。同様にして、下記実施例のフィルムミラーを用いて、太陽光反射用ミラーをそれぞれ作製した。
(Production of solar reflective mirror)
The release layer 7 is peeled off from the reflective film of Comparative Example 1 above, and a 0.1 mm thick aluminum plate measuring 4 cm × 5 cm wide and a film mirror are bonded via the adhesive layer 6 to reflect sunlight. A mirror (A-1) was obtained. Similarly, mirrors for sunlight reflection were produced using the film mirrors of the following examples.

[実施例1]
(実施例1のフィルムミラーの作製)
実施例1の層構成概略を図2に示す。樹脂フィルム状支持体1として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ25μm)を用いた。上記ポリエチレンテレフタレートフィルムの片面に、ポリエステル樹脂(ポリエスター SP−181 日本合成化学製)、メラミン樹脂(スーパーベッカミンJ−820 DIC製)、TDI系イソシアネート(2,4−トリレンジイソシアネート)、HDMI系イソシアネート(1,6−ヘキサメチレンジイソシアネート)を樹脂固形分比率で20:1:1:2に、固形分濃度10%となるようにトルエン中に混合した樹脂を、グラビアコート法によりコーティングして、厚さ0.1μmのアンカー層2を形成し、アンカー層2上に、銀反射層3として、真空蒸着法により厚さ100nmの銀反射層3を形成した。更に、上記銀反射層3上に、ポリエステル系樹脂とTDI(トリレンジイソシアネート)系イソシアネートを樹脂固形分比率で10:2に混合した樹脂を、グラビアコート法によりコーティングして、厚さ3.0μmの樹脂コート層8を形成した。次に、上記樹脂コート層8の上に、ドライラミネーションプロセスにより、接着層4と、アクリル層5として紫外線吸収剤を含有した透明アクリルフィルム(三菱レイヨン製アクリプレンHBS010P 厚さ100μm)を、ラミネート温度60℃にて貼合した。更に重量平均分子量50万の付加反応型シリコーン系粘着剤100部に白金系触媒1部を加えて35質量%トルエン溶液としたものを、剥離層7である厚さ25μmのであるポリエステル製セパレートフィルムの片面に塗布し、130℃で5分間加熱して厚さ25μmのシリコーン系粘着層6(Si系)を形成した後、上記ポリエチレンテレフタレートフィルムのアンカー層及び銀反射層と反対面側にラミネートし、実施例1のフィルムミラーを得た。
[Example 1]
(Preparation of film mirror of Example 1)
An outline of the layer structure of Example 1 is shown in FIG. As the resin film-like support 1, a biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 μm) was used. On one side of the polyethylene terephthalate film, a polyester resin (Polyester SP-181 manufactured by Nippon Synthetic Chemical), a melamine resin (manufactured by Super Becamine J-820 DIC), a TDI-based isocyanate (2,4-tolylene diisocyanate), an HDMI-based A resin mixed with isocyanate (1,6-hexamethylene diisocyanate) in toluene at a resin solid content ratio of 20: 1: 1: 2 and a solid content concentration of 10% was coated by a gravure coating method, An anchor layer 2 having a thickness of 0.1 μm was formed, and a silver reflective layer 3 having a thickness of 100 nm was formed on the anchor layer 2 as a silver reflective layer 3 by a vacuum deposition method. Further, a resin in which a polyester resin and a TDI (tolylene diisocyanate) isocyanate are mixed at a resin solid content ratio of 10: 2 is coated on the silver reflective layer 3 by a gravure coating method to obtain a thickness of 3.0 μm. The resin coat layer 8 was formed. Next, a transparent acrylic film (Acryprene HBS010P, thickness 100 μm, manufactured by Mitsubishi Rayon Co., Ltd.) containing an ultraviolet absorber as the acrylic layer 5 is laminated on the resin coating layer 8 by a dry lamination process. Bonding was performed at ° C. Furthermore, 100 parts of an addition reaction type silicone adhesive having a weight average molecular weight of 500,000 was added with 1 part of a platinum catalyst to form a 35 mass% toluene solution, which was a release layer 7 of a polyester separate film having a thickness of 25 μm. After coating on one side and heating at 130 ° C. for 5 minutes to form a silicone adhesive layer 6 (Si system) with a thickness of 25 μm, laminating on the opposite side of the polyethylene terephthalate film anchor layer and silver reflective layer, The film mirror of Example 1 was obtained.

また、太陽光反射用ミラー(A−1)と同様の方法により、実施例1のフィルムミラーを用いて、太陽光反射用ミラー(B−1)を作製した。   Moreover, the mirror for sunlight reflection (B-1) was produced using the film mirror of Example 1 by the method similar to the mirror for sunlight reflection (A-1).

[実施例2]
(実施例2のフィルムミラーの作製)
実施例2の層構成概略は実施例1と同じく図2に示した層構成となっている。実施例1の樹脂コート層4中に、銀の腐食防止剤として2−メルカプトベンゾチアゾールを樹脂に対して10質量%となるように添加した以外は、実施例1と同様の方法により、実施例2のフィルムミラーを得た。
[Example 2]
(Preparation of film mirror of Example 2)
The outline of the layer structure of Example 2 is the same as that of Example 1 shown in FIG. In the same manner as in Example 1 except that 2-mercaptobenzothiazole was added to the resin coat layer 4 of Example 1 as a silver corrosion inhibitor so as to be 10% by mass with respect to the resin. 2 film mirrors were obtained.

また、太陽光反射用ミラー(A−1)と同様の方法により、実施例2のフィルムミラーを用いて、太陽光反射用ミラー(C−1)を作製した。   Moreover, the mirror for sunlight reflection (C-1) was produced using the film mirror of Example 2 by the method similar to the mirror for sunlight reflection (A-1).

[実施例3]
(実施例3のフィルムミラーの作製)
実施例3の層構成概略を図3に示す。実施例2の樹脂コート層8上に、ジブチルエーテル中(クラリアント社製 NL120)の3%パーヒドロポリシラザン液を用いて、乾燥後の膜の厚さが100nmとなるようにバーコーティングし、3分間自然乾燥した後、90℃のオーブンで30分間アニールし、ガスバリア層8を設ける以外は、実施例2と同様の方法により、実施例3のフィルムミラーを得た。
[Example 3]
(Preparation of film mirror of Example 3)
An outline of the layer structure of Example 3 is shown in FIG. On the resin coating layer 8 of Example 2, a 3% perhydropolysilazane solution in dibutyl ether (NL120 manufactured by Clariant) was bar-coated so that the thickness of the dried film was 100 nm, and the coating was performed for 3 minutes. After natural drying, a film mirror of Example 3 was obtained in the same manner as in Example 2 except that annealing was performed in an oven at 90 ° C. for 30 minutes to provide the gas barrier layer 8.

また、太陽光反射用ミラー(A−1)と同様の方法により、実施例3のフィルムミラーを用いて、太陽光反射用ミラー(D−1)を作製した。   Moreover, the mirror for sunlight reflection (D-1) was produced using the film mirror of Example 3 by the method similar to the mirror for sunlight reflection (A-1).

[実施例4]
(実施例4のフィルムミラーの作製)
実施例4の層構成概略を図4に示す。実施例3の透明アクリルフィルム上に、市販のハードコート剤(JSR製 オプスター(登録商標)Z7534)をメチルエチルケトンで固形分濃度が50質量%になるように希釈し、更に平均粒子径が1.5μmのアクリル系微粒子(綜研化学製 ケミスノー(登録商標)MXシリーズ)を上記ハードコート剤の固形分に対して1質量%添加して、傷防止層用の塗料を調製した。上記の塗料を塗工後、80℃で乾燥、さらに紫外線1.0J/cmを照射して硬化させ、厚さ6μmの透明ハードコート層10を設けたこと以外は、実施例3と同様の方法により、実施例4のフィルムミラーを得た。
[Example 4]
(Preparation of film mirror of Example 4)
An outline of the layer structure of Example 4 is shown in FIG. On the transparent acrylic film of Example 3, a commercially available hard coat agent (Opster (registered trademark) Z7534 manufactured by JSR) was diluted with methyl ethyl ketone so that the solid content concentration became 50% by mass, and the average particle size was 1.5 μm. Acrylic fine particles (Chemisnow (registered trademark) MX series, manufactured by Soken Chemical Co., Ltd.) were added in an amount of 1% by mass based on the solid content of the hard coating agent to prepare a coating for a scratch-preventing layer. After coating the above-mentioned paint, it was dried at 80 ° C., further cured by irradiation with ultraviolet light 1.0 J / cm 2 , and the same as in Example 3 except that a 6 μm thick transparent hard coat layer 10 was provided. The film mirror of Example 4 was obtained by the method.

また、太陽光反射用ミラー(A−1)と同様の方法により、実施例4のフィルムミラーを用いて、太陽光反射用ミラー(E−1)を作製した。   Moreover, the mirror for sunlight reflection (E-1) was produced using the film mirror of Example 4 by the method similar to the mirror for sunlight reflection (A-1).

[実施例5]
(実施例5のフィルムミラーの作製)
実施例4の銀反射層3の替わりに、アンカー層2上に銀錯体化合物含有塗布液Aを加熱乾燥後の銀の乾燥後膜厚が100nmとなるように塗布した。ドライオーブンにて150℃、2分間加熱乾燥し、銀反射層3を形成して実施例5のフィルムミラーを得た。
[Example 5]
(Preparation of film mirror of Example 5)
Instead of the silver reflection layer 3 of Example 4, the silver complex compound-containing coating solution A was applied onto the anchor layer 2 so that the film thickness after drying of the heat-dried silver was 100 nm. A film mirror of Example 5 was obtained by drying by heating in a dry oven at 150 ° C. for 2 minutes to form a silver reflective layer 3.

また、太陽光反射用ミラー(A−1)と同様の方法により、実施例5のフィルムミラーを用いて、太陽光反射用ミラー(F−1)を作製した。   Moreover, the mirror for sunlight reflection (F-1) was produced using the film mirror of Example 5 by the method similar to the mirror for sunlight reflection (A-1).

[実施例6]
(実施例6のフィルムミラーの作製)
実施例6の層構成概略を図5に示す。樹脂フィルム状支持体1として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ25μm)を用いた。上記ポリエチレンテレフタレートフィルムの片面に、ポリエステル樹脂(ポリエスター SP−181 日本合成化学製)、メラミン樹脂(スーパーベッカミンJ−820 DIC製)、TDI系イソシアネート(2,4−トリレンジイソシアネート)、HDMI系イソシアネート(1,6−ヘキサメチレンジイソシアネート)を樹脂固形分比率で20:1:1:2に、固形分濃度10%となるようにトルエン中に混合した樹脂を、グラビアコート法によりコーティングして、厚さ0.1μmのアンカー層2を形成し、アンカー層2上に、銀反射層3として、真空蒸着法により厚さ100nmの銀反射層3を形成した。更に、上記銀反射層3上に、アクリル系樹脂とTDI(トリレンジイソシアネート)系イソシアネートを樹脂固形分比率で10:2に混合し、銀の腐食防止剤兼紫外線吸収剤としてチバ・スペシャリティ・ケミカルズ株式会社のチヌビン234を樹脂に対して25質量%となるように添加した樹脂を、グラビアコート法によりコーティングして、厚さ1.0μmの樹脂コート層8を形成した。更に、樹脂コート層8上に、アクリル系樹脂グラビアコート法によりコーティングして、厚さ3.0μmの第2樹脂コート層11を形成した。次に、上記第2樹脂コート層11の上に、ドライラミネーションプロセスにより、接着層4と、アクリル層5として紫外線吸収剤を含有した透明アクリルフィルム(三菱レイヨン製アクリプレンHBS010P 厚さ100μm)を、ラミネート温度60℃にて貼合した。アクリル層5上に、市販のハードコート剤(JSR製 オプスター(登録商標)Z7534)をメチルエチルケトンで固形分濃度が50質量%になるように希釈し、更に平均粒子径が1.5μmのアクリル系微粒子(綜研化学製 ケミスノー(登録商標)MXシリーズ)を上記ハードコート剤の固形分に対して1質量%添加して、傷防止層用の塗料を調製した。上記の塗料を塗工後、80℃で乾燥、さらに紫外線1.0J/cmを照射して硬化させ、厚さ6μmの透明ハードコート層10を設けた。更に重量平均分子量50万の付加反応型シリコーン系粘着剤100部に白金系触媒1部を加えて35質量%トルエン溶液としたものを、剥離層7である厚さ25μmのであるポリエステル製セパレートフィルムの片面に塗布し、130℃で5分間加熱して厚さ25μmのシリコーン系粘着層6(Si系)を形成した後、上記ポリエチレンテレフタレートフィルムのアンカー層及び銀反射層と反対面側にラミネートし、実施例6のフィルムミラーを得た。
[Example 6]
(Preparation of film mirror of Example 6)
An outline of the layer structure of Example 6 is shown in FIG. As the resin film-like support 1, a biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 μm) was used. On one side of the polyethylene terephthalate film, a polyester resin (Polyester SP-181 manufactured by Nippon Synthetic Chemical), a melamine resin (manufactured by Super Becamine J-820 DIC), a TDI-based isocyanate (2,4-tolylene diisocyanate), an HDMI-based A resin mixed with isocyanate (1,6-hexamethylene diisocyanate) in toluene at a resin solid content ratio of 20: 1: 1: 2 and a solid content concentration of 10% was coated by a gravure coating method, An anchor layer 2 having a thickness of 0.1 μm was formed, and a silver reflective layer 3 having a thickness of 100 nm was formed on the anchor layer 2 as a silver reflective layer 3 by a vacuum deposition method. Further, an acrylic resin and a TDI (tolylene diisocyanate) isocyanate are mixed at a resin solid content ratio of 10: 2 on the silver reflective layer 3, and Ciba Specialty Chemicals is used as a silver corrosion inhibitor and ultraviolet absorber. Resin in which Tinuvin 234 from Co., Ltd. was added to 25% by mass with respect to the resin was coated by a gravure coating method to form a resin coating layer 8 having a thickness of 1.0 μm. Further, the resin coating layer 8 was coated by an acrylic resin gravure coating method to form a second resin coating layer 11 having a thickness of 3.0 μm. Next, on the second resin coat layer 11, an adhesive layer 4 and a transparent acrylic film (acrylic HBS010P thickness 100 μm made by Mitsubishi Rayon) containing an ultraviolet absorber as the acrylic layer 5 are laminated by a dry lamination process. Bonding was performed at a temperature of 60 ° C. On the acrylic layer 5, a commercially available hard coat agent (Opster (registered trademark) Z7534 manufactured by JSR) is diluted with methyl ethyl ketone so that the solid content concentration becomes 50% by mass, and acrylic fine particles having an average particle size of 1.5 μm. A coating for a scratch-preventing layer was prepared by adding 1% by mass of Chemisnow (registered trademark) MX series manufactured by Soken Chemical Co., Ltd. to the solid content of the hard coat agent. After applying the above-mentioned paint, it was dried at 80 ° C. and further irradiated with ultraviolet rays 1.0 J / cm 2 to be cured, thereby providing a transparent hard coat layer 10 having a thickness of 6 μm. Furthermore, 100 parts of an addition reaction type silicone adhesive having a weight average molecular weight of 500,000 was added with 1 part of a platinum catalyst to form a 35 mass% toluene solution, which was a release layer 7 of a polyester separate film having a thickness of 25 μm. After coating on one side and heating at 130 ° C. for 5 minutes to form a silicone adhesive layer 6 (Si system) with a thickness of 25 μm, laminating on the opposite side of the polyethylene terephthalate film anchor layer and silver reflective layer, The film mirror of Example 6 was obtained.

また、太陽光反射用ミラー(A−1)と同様の方法により、実施例6のフィルムミラーを用いて、太陽光反射用ミラー(G−1)を作製した。   Moreover, the mirror for sunlight reflection (G-1) was produced by the method similar to the mirror for sunlight reflection (A-1) using the film mirror of Example 6.

また、上記太陽光反射用ミラー(B−1)〜(G−1)を作製する際に、厚さ0.1mmで、たて4cm×よこ5cmのアルミ板に替えて、各フィルムミラーの粘着層と両面材質の自己支持性の基材を対面して貼り付けて太陽光反射用ミラーを作製した((B−2)〜(G−2))。自己支持性の基材の厚さは2mmのものを使用した。両面材質とは、中空構造を有する層をサンドイッチする材料を言う。金属平板の厚さは片面0.12mmのアルミニウム、中間層の樹脂層は、厚さ1.76mmの発泡ポリエチレン樹脂を充填したものを使用した。重さ及び駆動電力消費率を測定した結果、従来の太陽光反射用ミラーに対して大幅に軽量化でき、その結果、搬送効率がアップし、作業の短縮化が図れ、コスト低減にも寄与した。   Moreover, when producing the said solar reflective mirrors (B-1)-(G-1), it replaced with the aluminum plate of thickness 4mm x width 5cm by thickness 0.1mm, and adhesion of each film mirror. A layer and a self-supporting base material made of double-sided material were attached facing each other to produce a solar reflective mirror ((B-2) to (G-2)). A self-supporting substrate having a thickness of 2 mm was used. Double-sided material refers to a material that sandwiches layers having a hollow structure. The thickness of the metal flat plate was 0.12 mm on one side, and the intermediate resin layer was filled with a foamed polyethylene resin having a thickness of 1.76 mm. As a result of measuring the weight and driving power consumption rate, it was possible to significantly reduce the weight compared to the conventional solar reflective mirror, resulting in improved transport efficiency, shortened work, and contributed to cost reduction. .

[評価]
上記で得た太陽光反射用ミラーについて、下記の方法により正反射率及び耐候性、耐光性の測定をそれぞれ行った。
[Evaluation]
About the solar reflective mirror obtained above, regular reflectance, weather resistance, and light resistance were measured by the following methods.

<正反射率の測定>
島津製作所社製の分光光度計「UV265」に、積分球反射付属装置を取り付けたものを改造し、反射面の法線に対して、入射光の入射角を5°となるように調整し、反射角5°の正反射率を測定した。評価は、350nmから700nmまでの平均反射率として測定した。
<Measurement of regular reflectance>
A spectrophotometer “UV265” manufactured by Shimadzu Corporation was modified with an integrating sphere reflection accessory, and the incident angle of incident light was adjusted to 5 ° with respect to the normal of the reflecting surface. The regular reflectance at a reflection angle of 5 ° was measured. Evaluation was measured as an average reflectance from 350 nm to 700 nm.

<正反射率の耐候性試験>
温度85℃、湿度85%RHの条件で30日間放置後のフィルムミラーの正反射率を、上記光線反射率測定と同様の方法により測定し、強制劣化前のフィルムミラーの正反射率と強制劣化後のフィルムミラーの正反射率から、正反射率の低下率を算出した。以下に耐候性試験の評価基準を記す。
5:正反射率の低下率が5%未満
4:正反射率の低下率が5%以上10%未満
3:正反射率の低下率が10%以上15%未満
2:正反射率の低下率が15%以上20%未満
1:正反射率の低下率が20%以上
<Weather resistance test for regular reflectance>
The regular reflectance of the film mirror after being left for 30 days under the conditions of a temperature of 85 ° C. and a humidity of 85% RH is measured by the same method as the above-mentioned light reflectance measurement, and the regular reflectance and forced degradation of the film mirror before forced degradation. From the regular reflectance of the subsequent film mirror, the decrease rate of regular reflectance was calculated. The evaluation criteria for the weather resistance test are described below.
5: The rate of decrease in regular reflectance is less than 5% 4: The rate of decrease in regular reflectance is 5% or more and less than 10% 3: The rate of decrease in regular reflectance is 10% or more but less than 15% 2: The rate of decrease in regular reflectance 15% or more and less than 20% 1: Decrease rate of regular reflectance is 20% or more

<太陽光集光ミラーの黄色変化>
得られたサンプルを岩崎電気製アイスーパーUVテスターを用いて、65℃の環境下で7日間紫外線照射を行ったのち、目視により黄色変化を行った。
○:目視で色味の差が見えない。
△:目視で色味の差がわずかに見える。
×:目視で色味の差がはっきり見える。
<Yellow change of sunlight collecting mirror>
The obtained sample was irradiated with ultraviolet rays for 7 days in an environment of 65 ° C. using an I-super UV tester manufactured by Iwasaki Electric Co., Ltd., and then the yellow color was visually changed.
○: The difference in color is not visible.
Δ: A slight difference in color is visually observed.
X: The difference in color is clearly visible.

<防汚性試験>
太陽光反射用ミラーを幅10cm×長さ10cmの試験片に切り抜き、アルミ製の枠に固定し、45°に傾けて屋外に暴露した(平成22年1〜6月、場所:東京都八王子市)。屋外暴露6ヵ月後の汚れの程度を目視観察し3段階(○:埃の付着無し、△:埃の付着少々、×:埃の付着多い)で評価した。
<Anti-fouling test>
A solar reflective mirror was cut into a 10 cm wide x 10 cm long test piece, fixed to an aluminum frame, and exposed to the outdoors tilted at 45 ° (January-June 2010, location: Hachioji, Tokyo) ). The degree of contamination after 6 months of outdoor exposure was visually observed and evaluated in three stages (◯: no dust adhesion, Δ: little dust adhesion, ×: much dust adhesion).

<鉛筆硬度試験>
JIS−K5400に基づいて、各サンプルの45°傾斜、1Kg荷重における鉛筆硬度を測定した。測定結果を表2に示す。
<Pencil hardness test>
Based on JIS-K5400, the pencil hardness of each sample at 45 ° inclination and 1 kg load was measured. The measurement results are shown in Table 2.

得られた各種フィルムミラーの内容を下記表1に、特性を評価した結果を下記表2に示す。   The contents of the various film mirrors obtained are shown in Table 1 below, and the results of evaluation of the characteristics are shown in Table 2 below.

<質量>
得られた太陽光反射用ミラーF−1、F−2の1.0mサイズの質量を測定した結果を表3に示す。
<Mass>
Table 3 shows the result of measuring the 1.0 m 2 size mass of the obtained sunlight reflecting mirrors F-1 and F-2.

<駆動電力消費率>
太陽光反射用ミラーを太陽追尾型の太陽熱発電用反射装置に組み込んだ際、太陽光反射用ミラーL−1を組み込んだ1基の追尾にかかる駆動電力を100とした時の比率を表3に示す。
<Drive power consumption rate>
Table 3 shows the ratio when the driving power required for one tracking incorporating the solar reflective mirror L-1 is 100 when the solar reflective mirror is incorporated in the solar tracking type solar power generation reflector. Show.

得られた各種フィルムミラーの内容を下記表1に、特性を評価した結果を下記表2、3に示す。   The contents of the various film mirrors obtained are shown in Table 1 below, and the results of evaluating the characteristics are shown in Tables 2 and 3 below.

Figure 2012232538
Figure 2012232538

Figure 2012232538
Figure 2012232538

Figure 2012232538
Figure 2012232538

表2、3に示した評価結果から明らかなように、本発明に係る実施例の各種特性は、比較例に対して優れていることが分かる。すなわち、本発明の上記手段により、銀反射層の劣化による正反射率の低下を防止するとともに、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することのできる耐光性、耐候性及び防汚性、耐傷性に優れ、太陽光に対して良好な正反射率を有するフィルムミラー、その製造方法、及びそれを用いた太陽光反射用ミラーを提供することができることが分かる。   As is apparent from the evaluation results shown in Tables 2 and 3, it can be seen that the various characteristics of the examples according to the present invention are superior to the comparative examples. That is, by the above-mentioned means of the present invention, while preventing a decrease in regular reflectance due to the deterioration of the silver reflective layer, it is lightweight and flexible, light resistance and weather resistance that can be reduced in production cost and can be increased in area and mass-produced. It can be seen that it is possible to provide a film mirror having excellent specularity, antifouling property, and scratch resistance, and having a good regular reflectance with respect to sunlight, a method for producing the same, and a solar reflective mirror using the film mirror.

1 樹脂フィルム状支持体
2 アンカー層
3 銀反射層
4 接着層
5 アクリル層
6 粘着層
7 剥離層
8 樹脂コート層
9 ガスバリア層
10 透明ハードコート層
11 第2樹脂コート層
20(20b〜20e)フィルムミラー
DESCRIPTION OF SYMBOLS 1 Resin film-like support body 2 Anchor layer 3 Silver reflection layer 4 Adhesive layer 5 Acrylic layer 6 Adhesive layer 7 Peeling layer 8 Resin coat layer 9 Gas barrier layer 10 Transparent hard coat layer 11 2nd resin coat layer 20 (20b-20e) film mirror

Claims (8)

樹脂フィルム状支持体に銀反射層が設けられたフィルムミラーであって、
光入射側から順に、アクリル層、接着層、樹脂コート層、前記銀反射層、前記樹脂フィルム状支持体及び粘着層を有し、
前記アクリル層は紫外線吸収剤を含有することを特徴とするフィルムミラー。
A film mirror in which a silver reflective layer is provided on a resin film support,
In order from the light incident side, an acrylic layer, an adhesive layer, a resin coat layer, the silver reflective layer, the resin film-like support and an adhesive layer,
The film mirror, wherein the acrylic layer contains an ultraviolet absorber.
前記樹脂コート層と前記銀反射層とは隣接しており、
前記樹脂コート層が、銀の腐食防止剤を含有していることを特徴とする請求項1に記載のフィルムミラー。
The resin coat layer and the silver reflective layer are adjacent to each other,
The film mirror according to claim 1, wherein the resin coat layer contains a silver corrosion inhibitor.
前記アクリル層の光入射側に透明ハードコート層を有することを特徴とする請求項1又は2に記載のフィルムミラー。   The film mirror according to claim 1, further comprising a transparent hard coat layer on a light incident side of the acrylic layer. 前記銀反射層よりも光入射側にガスバリア層を有することを特徴とする請求項1〜3の何れか一項に記載のフィルムミラー。   The film mirror according to claim 1, further comprising a gas barrier layer on a light incident side with respect to the silver reflection layer. 請求項1〜4の何れかに記載のフィルムミラーと、自己支持性の基材とを有し、
前記粘着層を介して前記フィルムミラーが前記基材に接合されていることを特徴とする太陽光反射用ミラー。
The film mirror according to any one of claims 1 to 4 and a self-supporting base material,
The solar reflective mirror, wherein the film mirror is bonded to the substrate via the adhesive layer.
前記基材が、一対の金属平板と、前記金属平板の間に設けられた中間層とを有し、前記中間層は中空構造を有する層又は樹脂層であることを特徴とする請求項5に記載の太陽光反射用ミラー。   The said base material has a pair of metal flat plate and the intermediate | middle layer provided between the said metal flat plates, The said intermediate | middle layer is a layer or resin layer which has a hollow structure, It is characterized by the above-mentioned. The solar reflective mirror described. 前記基材が、中空構造を有する樹脂層からなることを特徴とする請求項5に記載の太陽光反射用ミラー。   The solar reflective mirror according to claim 5, wherein the substrate is made of a resin layer having a hollow structure. 請求項5〜7の何れかに記載の太陽光反射用ミラーを有することを特徴とする、太陽熱発電用反射装置。   A solar power generation reflecting device comprising the solar light reflecting mirror according to claim 5.
JP2011104031A 2011-05-09 2011-05-09 Film mirror, solar reflective mirror, and solar power generation reflector Active JP5691811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104031A JP5691811B2 (en) 2011-05-09 2011-05-09 Film mirror, solar reflective mirror, and solar power generation reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104031A JP5691811B2 (en) 2011-05-09 2011-05-09 Film mirror, solar reflective mirror, and solar power generation reflector

Publications (2)

Publication Number Publication Date
JP2012232538A true JP2012232538A (en) 2012-11-29
JP5691811B2 JP5691811B2 (en) 2015-04-01

Family

ID=47433359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104031A Active JP5691811B2 (en) 2011-05-09 2011-05-09 Film mirror, solar reflective mirror, and solar power generation reflector

Country Status (1)

Country Link
JP (1) JP5691811B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109354A1 (en) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 Film mirror and reflector for solar thermal power generation
JP2014205736A (en) * 2013-04-10 2014-10-30 旭化成株式会社 Coating composition and laminate
WO2015022877A1 (en) * 2013-08-13 2015-02-19 コニカミノルタ株式会社 Film mirror and reflective device for solar thermal power generation
WO2015037397A1 (en) * 2013-09-12 2015-03-19 富士フイルム株式会社 Hard coat film, and film mirror
WO2015079803A1 (en) * 2013-11-28 2015-06-04 コニカミノルタ株式会社 Film mirror
CN107797334A (en) * 2016-09-02 2018-03-13 柯尼卡美能达株式会社 Optical reflection film and back light for liquid crystal display device unit
WO2020217886A1 (en) * 2019-04-26 2020-10-29 尾池工業株式会社 Reflection film, liquid crystal display device, and reflection film manufacturing method
JP2020183092A (en) * 2019-04-26 2020-11-12 尾池工業株式会社 Reflection film, liquid crystal display unit and manufacturing method of reflection film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JP2006162746A (en) * 2004-12-03 2006-06-22 Sanesu:Kk Reflecting mirror and method for manufacturing reflecting mirror
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
JP2009520174A (en) * 2005-12-16 2009-05-21 ミッドウエスト リサーチ インスティテュート A new UV-resistant silver mirror for use in solar reflectors
JP2009545646A (en) * 2006-08-04 2009-12-24 レキット ベンキサー ナムローゼ フェンノートシャップ Detergent composition
JP2010060722A (en) * 2008-09-02 2010-03-18 Asahi Kasei E-Materials Corp Light reflection mirror and method of manufacturing the same, reflector device and photovoltaic power genaration system
JP2010237415A (en) * 2009-03-31 2010-10-21 Konica Minolta Opto Inc Film mirror having ultraviolet ray reflection film
WO2011096284A1 (en) * 2010-02-02 2011-08-11 コニカミノルタオプト株式会社 Film mirror for solar thermal power generation, method for producing film mirror for solar thermal power generation, and reflection device for solar thermal power generation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JP2006162746A (en) * 2004-12-03 2006-06-22 Sanesu:Kk Reflecting mirror and method for manufacturing reflecting mirror
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
JP2009520174A (en) * 2005-12-16 2009-05-21 ミッドウエスト リサーチ インスティテュート A new UV-resistant silver mirror for use in solar reflectors
JP2009545646A (en) * 2006-08-04 2009-12-24 レキット ベンキサー ナムローゼ フェンノートシャップ Detergent composition
JP2010060722A (en) * 2008-09-02 2010-03-18 Asahi Kasei E-Materials Corp Light reflection mirror and method of manufacturing the same, reflector device and photovoltaic power genaration system
JP2010237415A (en) * 2009-03-31 2010-10-21 Konica Minolta Opto Inc Film mirror having ultraviolet ray reflection film
WO2011096284A1 (en) * 2010-02-02 2011-08-11 コニカミノルタオプト株式会社 Film mirror for solar thermal power generation, method for producing film mirror for solar thermal power generation, and reflection device for solar thermal power generation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014109354A1 (en) * 2013-01-11 2014-07-17 コニカミノルタ株式会社 Film mirror and reflector for solar thermal power generation
JP2014205736A (en) * 2013-04-10 2014-10-30 旭化成株式会社 Coating composition and laminate
WO2015022877A1 (en) * 2013-08-13 2015-02-19 コニカミノルタ株式会社 Film mirror and reflective device for solar thermal power generation
WO2015037397A1 (en) * 2013-09-12 2015-03-19 富士フイルム株式会社 Hard coat film, and film mirror
JP2015054461A (en) * 2013-09-12 2015-03-23 富士フイルム株式会社 Hard coat film
WO2015079803A1 (en) * 2013-11-28 2015-06-04 コニカミノルタ株式会社 Film mirror
CN107797334A (en) * 2016-09-02 2018-03-13 柯尼卡美能达株式会社 Optical reflection film and back light for liquid crystal display device unit
WO2020217886A1 (en) * 2019-04-26 2020-10-29 尾池工業株式会社 Reflection film, liquid crystal display device, and reflection film manufacturing method
JP2020183092A (en) * 2019-04-26 2020-11-12 尾池工業株式会社 Reflection film, liquid crystal display unit and manufacturing method of reflection film
KR20210138055A (en) * 2019-04-26 2021-11-18 오이케 고교 가부시키가이샤 Reflective film, liquid crystal display device and reflective film manufacturing method
JP7064778B2 (en) 2019-04-26 2022-05-11 尾池工業株式会社 Liquid crystal display device
JP7356747B2 (en) 2019-04-26 2023-10-05 尾池工業株式会社 Reflective film for liquid crystal display devices
KR102635994B1 (en) 2019-04-26 2024-02-13 오이케 고교 가부시키가이샤 Reflective film, liquid crystal display device and reflective film manufacturing method

Also Published As

Publication number Publication date
JP5691811B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5691811B2 (en) Film mirror, solar reflective mirror, and solar power generation reflector
JP6176116B2 (en) Manufacturing method of film mirror
WO2012165460A1 (en) Reflecting device for solar thermal power generation, film mirror, and method for producing film mirror
WO2012133517A1 (en) Mirror and reflective device for generating solar power
WO2013094633A1 (en) Film mirror for solar light reflection, and reflective device for solar power generation
WO2011158677A1 (en) Film mirror for reflecting sunlight and reflective device for solar thermal power generation
WO2011096309A1 (en) Film mirror, process for producing same, and sunlight-reflecting mirror
JP5962014B2 (en) Film mirror and manufacturing method thereof
JP5672071B2 (en) Film mirror manufacturing method, film mirror, and solar power generation reflector
WO2011078156A1 (en) Film mirror, method for producing same, and reflecting device for solar thermal power generator using said film mirror
WO2014061497A1 (en) Film mirror, and reflecting apparatus for solar thermal power generation
WO2011077816A1 (en) Film mirror and process for production thereof, and reflection device for solar power generation purposes
JP2012047861A (en) Film mirror, manufacturing method thereof, and film mirror for condensing solar light
JPWO2014061497A6 (en) Film mirror and reflector for solar power generation
WO2011077982A1 (en) Film mirror, process for production of same, and reflection device for solar power generation purposes comprising same
JP5794232B2 (en) Film mirror for solar power generation, manufacturing method thereof, and reflector for solar power generation
JP5747547B2 (en) Reflector for film mirror and solar power generation
WO2013054869A1 (en) Mirror for reflecting sunlight and reflecting device for solar power generation
WO2011158665A1 (en) Film mirror and reflective device for solar thermal power generation
JP2015161826A (en) Film mirror and reflection device for solar thermal power generation
JPWO2012043606A1 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
JPWO2012056952A1 (en) Film mirror, film mirror manufacturing method and solar light reflecting mirror
WO2015079803A1 (en) Film mirror
JP2017040669A (en) Film mirror and solar thermal power generation reflective device using the same
WO2012056953A1 (en) Mirror for reflecting solar light, and reflection device for solar power generation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150