WO2015037397A1 - Hard coat film, and film mirror - Google Patents

Hard coat film, and film mirror Download PDF

Info

Publication number
WO2015037397A1
WO2015037397A1 PCT/JP2014/071583 JP2014071583W WO2015037397A1 WO 2015037397 A1 WO2015037397 A1 WO 2015037397A1 JP 2014071583 W JP2014071583 W JP 2014071583W WO 2015037397 A1 WO2015037397 A1 WO 2015037397A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
layer
coat layer
mass
film
Prior art date
Application number
PCT/JP2014/071583
Other languages
French (fr)
Japanese (ja)
Inventor
威史 濱
克行 温井
祐也 山本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015037397A1 publication Critical patent/WO2015037397A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a hard coat film and a film mirror, and more particularly to a hard coat film and a film mirror having a hard coat layer exhibiting predetermined characteristics (surface free energy, surface resistance value, hardness).
  • Patent Document 1 discloses a film mirror having a resin base material and an outermost layer showing a predetermined electric resistance value, pencil hardness, and the like.
  • the use of the film mirror is not limited to solar power generation, but is also used for applications such as a hot water condensing mirror and a lighting mirror. At that time, it is required to suppress adhesion of sand and dust in the atmosphere, and resistance to oil generated in daily life is also required. In addition, when considering the installation in the field, scratch resistance against sand dust, contamination resistance against contamination due to rainfall or drying after dew, etc. are also required. That is, it is required to have all adhesion resistance to dust, adhesion resistance to oil, scratch resistance, and contamination resistance.
  • the inventors of the present invention have evaluated the above-mentioned performance with respect to the outermost layer in the film mirror described in Patent Document 1, and found that a material satisfying all the above-mentioned performances cannot be obtained, and further improvement is necessary.
  • an object of the present invention is to provide a hard coat film including a hard coat layer excellent in adhesion resistance to dust, adhesion resistance to oil, scratch resistance, and contamination resistance.
  • the present inventor has found that the above-mentioned problems can be solved if the hard coat layer satisfies predetermined requirements, and has completed the present invention. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • a hard coat film having a support and a hard coat layer disposed on the support contains poly (meth) acrylate and a metal oxide, and the metal oxide is contained in an amount of 1 to 50% by mass relative to the total mass of the hard coat layer,
  • the surface free energy of the hard coat layer surface is 30 mN / m or less,
  • the surface resistance value of the hard coat layer surface is less than 1 ⁇ 10 13 ⁇ / ⁇ ,
  • the hard coat layer is a layer obtained by curing a composition for forming a hard coat layer containing at least a polymerizable compound having a (meth) acryloyl group and a metal oxide.
  • the hard coat film according to (4), wherein the composition for forming a hard coat layer further contains a fluorine compound having no polymerizable group.
  • the metal oxide includes at least one selected from the group consisting of tin oxide, phosphorus-doped tin oxide, and fluorine-doped tin oxide.
  • the hard coat film according to (8) which is used as a solar light collecting film mirror.
  • the content of the metal oxide is 1 to 50% by mass with respect to the total mass of the hard coat layer,
  • the surface is The surface free energy is 30 mN / m or less,
  • the surface resistance value is less than 1 ⁇ 10 13 ⁇ / ⁇ , A film mirror having a pencil hardness of 2H or more.
  • a hard coat film including a hard coat layer having excellent resistance to dust, adhesion to oil, scratch resistance, and contamination resistance.
  • FIG. 1 sectional drawing of one Embodiment of the hard coat film of this invention is shown.
  • the hard coat film 10 has a support 12 and a hard coat layer 14. Below, each layer which comprises the hard coat film 10 is explained in full detail.
  • a support body is a base material which supports the hard-coat layer mentioned later.
  • the type of the support is not particularly limited, and a resin film, a glass film, paper, or the like can be used from the viewpoint of flexibility and weight reduction.
  • a resin film (resin support) is preferable in terms of excellent handleability.
  • the resin film is formed by molding glass epoxy, polyester, polyimide, thermosetting polyphenylene ether, polyamide, polyaramid, liquid crystal polymer, or the like into a film shape.
  • the resin material in the resin film any resin that can be formed into a film can be used.
  • phenol resin epoxy resin, polyimide resin, bismaleimide triazine (BT) resin, polyphenylene ether (PPE) Resin, tetrafluoroethylene resin, liquid crystal resin, polyester resin, polyethylene naphthalate (PEN), aramid resin, polyamide resin, polyethersulfone, triacetylcellulose, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polystyrene, polybutadiene, Polyacetylene and the like are suitable, and particularly suitable supports include polyester resins and polyimide resins.
  • the shape of the support may be any shape as long as it is a shape required for various film substrates such as a flat surface, a diffusion surface, a concave surface, and a convex surface.
  • the thickness of the support is preferably about 10 ⁇ m to 5 mm. If it is in the said range, it will be excellent in the handling at the time of production and will be easy to shape
  • a surface treatment for a support body includes UV irradiation, ozone treatment, plasma treatment, corona treatment, flame treatment and other surface activation treatments, hydrazine, N-methylpyrrolidone, sodium hydroxide solution, alkaline solution such as potassium hydroxide solution And treatment with an acidic solution such as sulfuric acid, hydrochloric acid and nitric acid.
  • Examples of the treatment for removing and cleaning the surface of the support include treatment with an organic solvent such as methanol, ethanol, toluene, ethyl acetate, and acetone, and washing with water to remove attached dust.
  • the hard coat film may include a metal reflective layer as in the second embodiment described later.
  • the surface roughness (Ra) of the support is preferably 50 nm or less, more preferably 20 nm or less, and more preferably 5 nm or less for the purpose of improving reflectivity. More preferably it is.
  • the support may contain an ultraviolet absorber. Moreover, you may contain the plasticizer for maintaining a softness
  • the support contains an ultraviolet absorber
  • the content of the ultraviolet absorber is in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin in the support when the support is a resin film. It is preferable.
  • the support contains an antioxidant, the content of the antioxidant is in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin in the support when the support is a resin film. It is preferable.
  • the hard coat layer is a layer disposed on the outermost surface of the hard coat film, and is a layer that suppresses external influences such as dust and oil on the hard coat film.
  • the hard coat layer forms the outermost surface of the hard coat film.
  • the hard coat layer includes poly (meth) acrylate and at least one metal oxide.
  • the poly (meth) acrylate is a polymer obtained by polymerizing a polymerizable compound having a (meth) acryloyl group, and preferably has a crosslinked structure from the viewpoint of hardness.
  • the hard coat layer is a layer obtained by curing a composition containing a polymerizable compound having a (meth) acryloyl group.
  • (meth) acrylate includes acrylate and methacrylate. More specifically, poly (meth) acrylate is meant to include polyacrylate and polymethacrylate (polymethacrylate).
  • the (meth) acrylate monomer is meant to include a methacrylate monomer (a monomer having a methacryloyl group) and an acrylate monomer (a monomer having an acryloyl group). Further, the (meth) acryloyl group includes an acryloyl group and a methacryloyl group.
  • the polymerizable compound having a (meth) acryloyl group is not particularly limited as long as it is a compound having a (meth) acryloyl group, and may be a so-called (meth) acrylate monomer (monomer) or oligomer. Among them, a polymerizable compound (polyfunctional (meth) acrylate) having two or more (meth) acryloyl groups is preferable in that the hardness of the obtained hard coat layer is more excellent, for example, ethylene glycol diacrylate, diethylene glycol.
  • the metal oxide has a function of increasing the hardness of the hard coat layer and a function of decreasing the surface resistance value.
  • the type of metal oxide is not particularly limited.
  • tin oxide, antimony pentoxide, zinc antimonate, antimony doped tin oxide, tin doped indium oxide, titanium dioxide, zirconia, zinc oxide, phosphorus doped tin oxide, fluorine doped examples thereof include tin oxide (FTO), niobium-doped tin oxide, and tantalum-doped tin oxide.
  • tin oxide, phosphorus-doped tin oxide, and fluorine-doped tin oxide are preferable, and phosphorus-doped tin oxide is particularly preferable in that the surface resistance value of the hard coat layer is further reduced and infrared light is transmitted.
  • the average particle diameter of the metal oxide is not particularly limited, but the dispersibility of the metal oxide in the hard coat layer is superior, and various performances (adhesion resistance to dust, adhesion to oil, or scratch resistance and contamination resistance) ) Is preferably 1 to 100 nm, and from the viewpoint of increasing the transparency and reducing the haze of the coating film, 1 to 50 nm is more preferable. preferable.
  • the average particle diameter is calculated as follows. An image obtained by TEM observation of the metal oxide dispersion was taken into image processing software ImageJ and subjected to image processing. The image processing was performed on 500 particles arbitrarily extracted from TEM images of several fields of view. The diameter of a circle having the same area as the particle area calculated from the TEM image was taken as the particle diameter. The same processing is performed on 500 particles, and the average value is defined as the average particle diameter.
  • the content of the metal oxide in the hard coat layer is 1 to 50% by mass with respect to the total mass of the hard coat layer in that the effect of the present invention is more excellent, and the effect of the present invention is more excellent. 10 mass% or more is preferable, 15 mass% or more is more preferable, 20 mass% or more is further more preferable, 40 mass% or less is preferable, and 35 mass% or less is more preferable.
  • the content is 1% by mass or more, the surface resistance value is sufficiently lowered, so that the adhesion to sand dust and scratch resistance are excellent.
  • 50% by mass or less the surface resistance value is sufficiently reduced, and the metal oxide occupying the hard coat layer is suppressed from being excessively increased, so that it is difficult to become brittle and scratch resistance is excellent.
  • the surface free energy on the surface of the hard coat layer is 30 mN / m or less, and 26 mN / m or less is preferable and 24 mN / m or less is more preferable in that the effect of the present invention is more excellent.
  • the lower limit is not particularly limited, but is often 15 mN / m or more.
  • the surface free energy is calculated according to a predetermined formula (Young's formula, Owens' formula) from the obtained values by measuring the two-component static contact angle of water and methylene iodide.
  • the surface resistance of the hard coat layer surface is less than 1 ⁇ 10 13 ⁇ / ⁇ ( ohms per square), in that the effect of the present invention is more excellent, preferably 1 ⁇ 10 12 ⁇ / ⁇ or less, 1 ⁇ 10 11 ⁇ / ⁇ or less is more preferable, 1 ⁇ 10 10 ⁇ / ⁇ or less is more preferable, and 1 ⁇ 10 9 ⁇ / ⁇ or less is more preferable.
  • the surface resistance value is measured using Hiresta MCP-HT450 type (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) and URS probe.
  • the pencil hardness on the surface of the hard coat layer is 2H or higher, 3H or higher is preferable from the viewpoint that the effects of the present invention are more excellent, and 4H or higher is more preferable from the viewpoint that it is superior to dust scratch resistance.
  • the pencil hardness is measured according to JIS K 5600-5-4.
  • the water contact angle on the surface of the hard coat layer is not particularly limited, it is preferably 90 ° or more, more preferably 95 ° or more, and further preferably 100 ° or more from the viewpoint that the effect of the present invention is more excellent.
  • the contact angle (static contact angle) of the hard coat layer surface is measured using Drop Master 700 (Kyowa Interface Science Co., Ltd.). Specifically, the syringe part is connected to the AUTO DISPENSER AD-31, and a certain amount of pure water is pushed out of the syringe and deposited on the surface of the hard coat layer.
  • the contact angle of methylene iodide with respect to the hard coat layer surface is not particularly limited, but is preferably 60 ° or more, more preferably 63 ° or more, still more preferably 67 ° or more, in view of more excellent effects of the present invention, 70 It is particularly preferable that the angle is at least.
  • the contact angle (static contact angle) of the hard coat layer surface is measured using Drop Master 700 (Kyowa Interface Science Co., Ltd.). Specifically, the syringe part is connected to the AUTO DISPENSER AD-31, and a certain amount of methylene iodide is pushed out of the syringe and deposited on the surface of the hard coat layer.
  • the method for forming the hard coat layer is not particularly limited, but a composition for forming a hard coat layer containing at least a polymerizable compound having a (meth) acryloyl group and a metal oxide from the viewpoint of easy control of the thickness of the hard coat layer.
  • cure is mentioned.
  • the coating method is not particularly limited, and examples include known coating methods (for example, gravure coating method, reverse coating method, die coating method, blade coater, roll coater, air knife coater, screen coater, bar coater, curtain coater, etc.).
  • an optimal method is appropriately selected depending on the type of the polymerizable compound having a (meth) acryloyl group to be used, but usually a heat treatment or a light irradiation treatment is performed.
  • the definitions of “polymerizable compound having (meth) acryloyl group” and “metal oxide” contained in the composition for forming a hard coat layer are as described above.
  • the ratio of the content of the polymerizable compound having a (meth) acryloyl group and the metal oxide is appropriately set so that the content of the metal oxide in the hard coat layer falls within the above range.
  • the hard coat layer forming composition may contain other components other than “polymerizable compound having (meth) acryloyl group” and “metal oxide”.
  • the composition for forming a hard coat layer further contains “a fluorine compound having no polymerizable group” in that the effect of the present invention is more excellent.
  • the polymerizable compound having a (meth) acryloyl group is a polymerizable compound having a fluorine atom together with a (meth) acryloyl group (hereinafter referred to as “fluorine”). Containing at least (containing (meth) acrylate).
  • the composition for forming a hard coat layer further contains a “fluorine compound having no polymerizable group”, and the “polymerizable compound having a (meth) acryloyl group” is a fluorine-containing (meth) acrylate.
  • the aspect (henceforth "the aspect X") which contains at least is mentioned.
  • fluorine compound having no polymerizable group examples include so-called fluorine surfactants.
  • the polymerizable group examples include a (meth) acryloyl group, a radical polymerizable group such as a vinyl group, and a cationic polymerizable group.
  • fluorine-based surfactants are trade names manufactured by Dainippon Ink and Chemicals, Inc .: MegaFuck F-443, F-444, F-445, F-446, F-475, F-142D, F-144D, F-171, F-172, F-173, F-177, F-178A, F-178K, F-179, F-179A, F-183, F-184, F-191, F-812, F- 815, F-1405, F410, F-443, F-445, F-450, F-471, F-472SF, F-475, F-479, F-482, R-30, MCF-350, TF1025, Trade name: EFTOP EF-101, EF-121, EF-122B, EF-122C, EF-122A3, EF-121, EF-123A, EF-123B, EF-126 F-127, EF-301, EF-302, EF-351, EF-352, EF-601, EF-801
  • the fluorine-containing (meth) acrylate is a polymerizable compound containing a (meth) acryloyl group and a fluorine atom, and its structure is not particularly limited.
  • the fluorine-containing (meth) acrylate may be a so-called (meth) acrylate monomer (monomer) or oligomer containing a fluorine atom.
  • the number of (meth) acryloyl groups is not particularly limited, and may be one or two or more.
  • commercially available products can be used as the fluorine-containing (meth) acrylate.
  • Beam Set 1402 (Arakawa Chemical Industry Co., Ltd.), Beam Set 1461 (Arakawa Chemical Industries Co., Ltd.), FH-700 (Manufactured by DIC Corporation), MegaFac RS-75 (manufactured by DIC Corporation) (perfluoropolyether (meth) acrylate), and the like.
  • the “polymerizable compound having a (meth) acryloyl group” in the composition for forming a hard coat layer is a polymerization having a “(meth) acryloyl group not having a fluorine atom” together with the fluorine-containing (meth) acrylate.
  • the composition for forming a hard coat layer may be an embodiment A containing “fluorine-containing (meth) acrylate” and “fluorine-free (meth) acrylate”, “fluorine-containing (meth) acrylate”, It may be an embodiment B containing "fluorine-free (meth) acrylate” and "fluorine atom compound having no polymerizable group”.
  • the fluorine-containing (meth) acrylate is preferably contained in an amount of 0.1 to 10% by mass with respect to the total solid content in the composition for forming a hard coat layer.
  • solid content intends the component which comprises a hard-coat layer, and a solvent is not contained.
  • the hard coat layer forming composition may contain a solvent.
  • the solvent include water, monohydric alcohols having 1 to 6 carbon atoms, dihydric alcohols having 1 to 6 carbon atoms, and alcohols such as glycerin; formamide, N-methylformamide, N-ethylformamide Amides such as N, N-dimethylformamide, N, N-diethylformamide, N-methylacetamide, N-ethylacetamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methylpyrrolidone; Diethyl ether, di (n-propyl) ether, diisopropyl ether, diglyme, 1,4-dioxane, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, pro Ethers such as lenglycol dimethyl ether; esters such as ethy
  • the hard coat layer forming composition may contain a polymerization initiator.
  • the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator, and an optimal polymerization initiator is selected according to the curing conditions.
  • the average transmittance of the hard coat film having the support and the hard coat layer described above in the near-infrared light is not particularly limited. % Or more is preferable, 90% or more is more preferable, and 95% or more is particularly preferable.
  • the average transmittance can be measured using, for example, an ultraviolet-visible near-infrared spectrophotometer UV-3100 (manufactured by Shimadzu Corporation).
  • the hard coat film 110 has the support body 12, the metal reflective layer 16, and the hard coat layer 14 in this order.
  • the hard coat film 110 can be used as a film mirror that reflects light as described later.
  • the hard coat layer 14 forms a surface on which light is incident.
  • the surface on which light is incident is the surface on the side opposite to the support 12 and means the surface on the side on which light is incident on the metal reflection layer 16. Since the hard coat film 110 shown in FIG. 2 has the same configuration as the hard coat film 10 shown in FIG. 1 except that the metal reflective layer 16 is provided, the same reference numerals denote the same components. The description is omitted, and the metal reflective layer 16 will be mainly described in detail below.
  • the metal reflection layer is a layer provided on the support and has a function of reflecting light incident from the hard coat layer 14 side.
  • the material for forming the metal reflective layer is not particularly limited as long as it is a metal material that reflects visible light and infrared light, and examples thereof include silver and aluminum. From the viewpoint of light reflection performance, silver or an alloy containing silver is preferable. Silver or an alloy containing silver can increase the reflectance of the hard coat film in the visible light region, and can reduce the dependency of the reflectance on the incident angle.
  • the visible light region means a wavelength region of 400 to 700 nm.
  • the incident angle means an angle with respect to a line perpendicular to the layer surface.
  • silver alloy As a silver alloy, from the point that the durability of the metal reflective layer is improved, other metals such as gold, palladium, copper, nickel, iron, gallium, indium, etc. One or more metals selected from the group consisting of titanium and bismuth may be included. As the silver alloy, an alloy of silver and one or more metals selected from gold, copper, nickel, iron, and palladium is particularly preferable from the viewpoint of heat and humidity resistance, reflectance, and the like.
  • the metal reflective layer is a layer made of a silver alloy
  • the silver content is preferably 90 to 99.8 atomic% in the total (100 atomic%) of silver and other metals in the metallic reflective layer.
  • the content of other metals is preferably 0.2 to 10 atomic% from the viewpoint of durability.
  • the surface roughness (Ra) of the metal reflective layer is preferably 20 nm or less, more preferably 10 nm or less, and even more preferably 5 nm or less. By setting it within this range, the reflectance of the obtained hard coat film is improved, and sunlight can be collected efficiently.
  • the formation method of a metal reflective layer is not specifically limited, Either a wet method or a dry method may be employ
  • the wet method include an electroplating method.
  • the dry method include a vacuum deposition method, a sputtering method, and an ion plating method.
  • a conventionally known method can be used as the electroplating method.
  • the metal particles contained in the plating undercoat polymer layer have a function as an electrode. By performing electroplating, it is possible to form a metal reflective layer having excellent adhesion to the support.
  • metal compounds used for plating include silver nitrate, silver acetate, silver sulfate, silver carbonate, silver methanesulfonate, silver ammonia, silver cyanide, silver thiocyanate, silver chloride, silver bromide, silver chromate, and chloranil.
  • silver compounds such as silver oxide, silver salicylate, silver diethyldithiocarbamate, silver diethyldithiocarbamate, and silver p-toluenesulfonate.
  • silver methanesulfonate is preferable from the viewpoint of environmental impact and smoothness.
  • a metal layer containing another metal such as copper, nickel, chromium, iron, or the like may be provided as a base metal layer.
  • the film thickness of the metal reflective layer obtained by the electroplating method can be controlled by adjusting the metal concentration contained in the plating bath or the current density. By adding a base metal layer having an appropriate thickness, it is possible to improve reflectance and reduce pinholes by smoothing the surface.
  • the film thickness of the metal reflection layer is preferably 0.05 to 2.0 ⁇ m from the viewpoint of forming a reflection film without pinholes and not forming irregularities that scatter light on the surface of the metal reflection layer. It is more preferably 0.08 to 0.5 ⁇ m.
  • the metal reflective layer may be formed by performing dry plating such as vacuum deposition using a plating undercoat polymer layer containing reduced metal particles. According to this method, since the surface of the plating undercoat polymer layer is covered with metal, it is possible to form a metal reflective layer that has better adhesion than normal vapor deposition and is strong against heat.
  • the metal reflective layer may be treated with strong acid or strong alkali in order to improve the reflection performance and durability of the metal reflective layer.
  • the anti-discoloring agent layer functions to prevent discoloration of the metal reflective layer.
  • discoloration preventing agent examples include thioether-based, thiol-based, Ni-based organic compound-based, benzotriazole-based, imidazole-based, oxazole-based, tetrazaindene-based, pyrimidine-based and thiadiazole-based discoloration preventing agents.
  • the anti-discoloring agent layer is broadly classified, and those having an adsorbing group that adsorbs metals and antioxidants are preferably used.
  • the hard coat film of the second embodiment can be suitably used as a film mirror (reflecting mirror). Among these, it can be suitably used for collecting sunlight.
  • a sunlight reflecting plate can be mentioned. More specifically, a hard coat film including a metal reflection layer is fixed to a substrate or frame made of any of resin, metal, and ceramic, thereby creating a mirror surface by the metal reflection layer and reflecting sunlight. A plate can be made. It is preferable to efficiently collect sunlight by arranging a plurality of mirror units thus manufactured. In particular, more efficient sunlight collection can be realized by including a solar light tracking system that tracks the mirror unit in the diurnal motion of the sun. Further, the hard coat film of the second embodiment may be used as a daylighting mirror. Since the hard coat film of the second embodiment has flexibility, it has good followability to a surface having a curvature, so that it is also preferable to install it on such a surface.
  • FIG. 3 sectional drawing of one Embodiment of the hard coat film of this invention is shown.
  • the hard coat film 210 includes the support 12, the metal reflective layer 16, the protective layer 18, and the hard coat layer 14 in this order.
  • the hard coat film 210 can be used as a film mirror that reflects light as described later.
  • the hard coat film 210 shown in FIG. 3 has the same configuration as that of the hard coat film 110 shown in FIG. 2 except that the hard coat film 210 includes the protective layer 18. The description thereof will be omitted, and the protective layer 18 will be mainly described in detail below.
  • the protective layer is a layer provided to improve the adhesion between the hard coat layer and the metal reflective layer and to stabilize the specularity of the metal reflective layer, and is provided on the incident light side surface of the metal reflective layer. Is a layer.
  • the resin material used for forming the protective layer is a resin that can form a film or a layer, and the strength or durability of the formed film or layer, air and moisture blocking properties, and further, a hard coat layer and In addition to the adhesiveness, a resin having transparency, particularly high transparency to light having a wavelength required by the film mirror is preferable.
  • Examples of the material for forming the protective layer include photocurable resins such as urethane (meth) acrylate resins, polyester (meth) acrylate resins, silicone (meth) acrylate resins, and epoxy (meth) acrylate resins; urethane resins and phenol resins.
  • thermosetting resins such as urea resin (urea resin), phenoxy resin, silicone resin, polyimide resin, diallyl phthalate resin, furan resin, bismaleimide resin, cyanate resin, etc., and these can be used alone. Or two or more of them may be used in combination.
  • a resin having a urethane bond is preferable.
  • a photocurable resin for example, a polyester polyol (A) and a polyisocyanate (B) are reacted to synthesize an isocyanate group-terminated urethane prepolymer, and then a hydroxyl group-containing (meth) acrylate compound (C) is used.
  • the urethane (meth) acrylate resin for example, a polyester polyol (A) and a polyisocyanate (B) are reacted to synthesize an isocyanate group-terminated urethane prepolymer, and then a hydroxyl group-containing (meth) acrylate compound (C) is used.
  • Preferable examples include products obtained by reaction.
  • the polyester polyol (A) is obtained by reacting a polybasic acid and a polyhydric alcohol.
  • a polyhydric alcohol include polytetramethylene glycol (PTMG) and polyoxypropylene diol (PPG).
  • polyoxyethylene diol include polytetramethylene glycol (PTMG) and polyoxypropylene diol (PPG).
  • the polyisocyanate (B) is not particularly limited as long as it has two or more isocyanate groups in the molecule.
  • Specific examples thereof include 2,4-tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI). ), Hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI), and the like.
  • hydroxyl group-containing (meth) acrylate compound (C) examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Examples thereof include glycidol di (meth) acrylate and pentaerythritol tri (meth) acrylate.
  • urethane (meth) acrylate resin synthesized using the above-described polyester polyol (A), polyisocyanate (B) and hydroxyl group-containing (meth) acrylate compound (C) commercially available products can be used.
  • UV curable urethane acrylate resins manufactured by Nippon Gosei Co., Ltd. such as UV1700B, UV6300B, UV7600B, and polymer acrylates manufactured by DIC, such as Unidic V-6840, Unidic V-6841, Unidic WHV-649. Unidic EKS-675 or the like can be used.
  • resins that can be used for the protective layer include, for example, cellulose ester resins, polycarbonate resins, polyarylate resins, polysulfone (including polyether sulfone) resins, polyesters such as polyethylene terephthalate and polyethylene naphthalate.
  • Resins such as polyethylene, polypropylene, cellulose diacetate resin, cellulose triacetate resin, cellulose acetate propionate resin, cellulose acetate butyrate resin, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl alcohol resin, ethylene vinyl acetate resin, and Ethylene acrylate copolymer, polycarbonate, norbornene resin, polymethylpentene resin, polyamide, fluorine resin , Polymethyl methacrylate, acrylic resins, polyurethane resins, and silicone resins.
  • olefinic resins such as polyethylene, polypropylene, cellulose diacetate resin, cellulose triacetate resin, cellulose acetate propionate resin, cellulose acetate butyrate resin, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl alcohol resin, ethylene vinyl acetate resin, and Ethylene acrylate copolymer, polycarbonate, norbornene resin, polymethylpentene resin, polyamide, fluorine
  • the resin contained in the protective layer is selected from acrylic resin, polyvinyl butyral, ethylene vinyl acetate resin, and ethylene acrylate copolymer.
  • acrylic resin polyvinyl butyral
  • ethylene vinyl acetate resin ethylene vinyl acetate copolymer
  • ethylene acrylate copolymer One or more resins are preferred.
  • the thickness of the protective layer is not particularly limited, it is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 5 ⁇ m or more, for the reason that dust scratch resistance and sand adhesion are more excellent. Preferably, it is 10 ⁇ m or more.
  • the upper limit is not particularly limited, but is usually preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the method for forming the protective layer is not particularly limited.
  • the protective layer-forming composition containing a photocurable resin or a thermosetting resin is applied to the surface of the metal reflective layer, and then the solvent is removed as necessary. And a method of curing by ultraviolet irradiation or heating.
  • the protective layer forming composition is used to form a film in advance, and the film obtained through the adhesive is bonded to the metal reflective layer, or heat Examples thereof include a method of forming a protective layer by a method such as laminating to the metal reflective layer by a method such as laminating.
  • the protective layer forming composition As a method for applying the protective layer forming composition, conventionally known coating methods such as gravure coating method, reverse coating method, die coating method, blade coater, roll coater, air knife coater, screen coater, bar coater, curtain coater and the like can be used.
  • the method for curing the protective layer-forming composition applied to the surface of the metal reflective layer is not particularly limited, and a method according to the resin material used to form the protective layer, such as heating or UV irradiation, can be selected as appropriate. That's fine.
  • the composition for forming a protective layer may contain a solvent and various additives in addition to the components described above.
  • the solvent is not particularly limited, and examples thereof include alcohol solvents such as water, methanol, ethanol, propanol, ethylene glycol, glycerin, propylene glycol monomethyl ether, acids such as acetic acid, ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, formamide, Amide solvents such as dimethylacetamide and N-methylpyrrolidone, nitrile solvents such as acetonitrile and propionitrile, ester solvents such as methyl acetate and ethyl acetate, carbonate solvents such as dimethyl carbonate and diethyl carbonate, benzene, toluene, In addition to aromatic hydrocarbon solvents such as xylene, other than these, ether solvents, glycol solvents, amine solvents, thiol solvents,
  • amide solvents amide solvents, ketone solvents, nitrile solvents, carbonate solvents, and aromatic hydrocarbon solvents are preferable.
  • acetone, dimethylacetamide, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetonitrile, propio Nitrile, N-methylpyrrolidone, dimethyl carbonate and toluene are preferred.
  • the solid content concentration of the protective layer-forming composition is preferably in the range of 1 to 30% by mass.
  • the composition for forming a protective layer may further contain a crosslinking agent.
  • a cross-linking agent By containing a cross-linking agent, the cross-linked structure is formed in the protective layer, so that the strength is further improved, and further, the adhesion with the adjacent metal reflective layer is further improved.
  • the crosslinking agent can be selected depending on the correlation with the resin constituting the protective layer, and examples thereof include a carbodiimide compound, an isocyanate compound, an epoxy compound, an oxetane compound, a melamine compound, and a bisvinylsulfone compound. Are preferably selected from the group consisting of carbodiimide compounds, isocyanate compounds, and epoxy compounds, and at least one crosslinking agent is preferred.
  • the film thickness of the protective layer is preferably in the range of 3 to 30 ⁇ m, preferably in the range of 5 to 10 ⁇ m, from the viewpoints of achieving the necessary protective function and durability and suppressing the reduction in light reflectivity. It is more preferable.
  • the hard coat film 310 includes the support 12, the resin layer 20, the metal reflective layer 16, the protective layer 18, and the hard coat layer 14 in this order.
  • the hard coat film 310 can be used as a film mirror that reflects light, as will be described later. Since the hard coat film 310 shown in FIG. 4 has the same configuration as the hard coat film 210 shown in FIG. 3 except that the resin layer 20 is provided, the same reference numerals are assigned to the same components. The description will be omitted, and the resin layer 20 will be mainly described in detail below.
  • a resin layer is a layer arrange
  • the resin layer include an adhesive layer for facilitating adhesion of metal and a plating undercoat polymer layer useful when a metal reflective layer is formed by a plating method. It may be composed of the above plural layers.
  • the adhesive layer is a layer that improves the adhesion between the support and the metal reflective layer.
  • the adhesive layer improves the adhesion between the support and the plating undercoat polymer layer, resulting in adhesion between the support and the metal reflective layer. More improved.
  • the adhesive layer preferably contains the same resin as the resin constituting the support or a resin having an affinity for the resin constituting the support, from the viewpoint of adhesiveness with the adjacent support.
  • the resin contained in the adhesive layer may be, for example, a thermosetting resin, a thermoplastic resin, or a mixture thereof.
  • the thermosetting resin include epoxy resin, phenol resin, polyimide resin, polyester resin, bismaleimide resin, melamine resin, and isocyanate resin.
  • the thermoplastic resin include polyolefin resin, phenoxy resin, polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, polyether imide, and the like.
  • the thermoplastic resin and the thermosetting resin may be used alone or in combination of two or more. The combined use of two or more kinds of resins is performed for the purpose of expressing a more excellent effect by compensating for each defect.
  • the adhesive layer is included in a polymer compound having a functional group and a polymerizable group that interact with the metal precursor contained in the plating undercoat polymer layer described later. It is preferable to contain active species that generate active sites that can interact with each other.
  • Such an adhesive layer is preferably, for example, a polymerization initiation layer containing a radical polymerization initiator or a polymerization initiation layer made of a resin having a functional group capable of initiating polymerization.
  • the adhesive layer is composed of a layer containing a polymer compound and a radical polymerization initiator, a layer containing a polymerizable compound and a radical polymerization initiator, or a resin having a functional group capable of initiating polymerization.
  • a layer is preferred.
  • the layer made of a resin having a functional group capable of initiating polymerization include polyimide having a polymerization initiation site described in paragraphs [0018] to [0078] of JP-A-2005-307140 in the skeleton.
  • a compound having a polymerizable double bond specifically an acrylate compound or a methacrylate compound, may be used in order to promote crosslinking in the layer. It is preferable to use one.
  • a compound having a polymerizable double bond a part of a thermosetting resin or a thermoplastic resin such as an epoxy resin, a phenol resin, a polyimide resin, a polyolefin resin, a fluorine resin, etc.
  • a resin that has been (meth) acrylated using acid, acrylic acid, or the like may be used.
  • one or more additives such as an adhesion-imparting agent, a silane coupling agent, an antioxidant, and an ultraviolet absorber are added to the adhesive layer as necessary. May be.
  • the thickness of the adhesive layer is preferably in the range of 0.1 to 10 ⁇ m, and more preferably in the range of 0.2 to 5 ⁇ m.
  • the plating undercoat polymer layer is a layer containing a component (for example, metal particles) that acts as an electrode when performing the above-described plating (such as electroplating).
  • the plating undercoat polymer used to form the plating undercoat polymer layer has at least a polymerizable group and a functional group that interacts with the metal precursor (hereinafter, referred to as “interactive group” as appropriate).
  • an acrylic polymer, polyether, acrylamide, polyamide, polyimide, acrylic polymer, polyester, and the like are preferable, but an acrylic polymer is more preferable.
  • the plating undercoat polymer is a structural unit other than “structural unit containing a polymerizable group” and “structural unit containing an interactive group” depending on the purpose (hereinafter, referred to as “other structural unit” as appropriate). May be included. By including other structural units, when a composition for forming a plating undercoat polymer is used, a uniform plating undercoat polymer layer having excellent solubility in water or an organic solvent can be formed.
  • an acrylic polymer having a polymerizable group and an acidic group as an interactive group in the side chain can be mentioned.
  • a polymerizable group, an interactive group, and characteristics of the plating undercoat polymer will be described in detail.
  • the polymerizable group of the plating undercoating polymer is chemically bonded between the polymers or between the polymer and the support (in the case where the adhesive layer is formed on the support, the adhesive layer) by applying energy. Any functional group may be used.
  • the polymerizable group include a radical polymerizable group and a cationic polymerizable group. Of these, a radical polymerizable group is preferable from the viewpoint of reactivity.
  • radical polymerizable group examples include methacryloyl group, acryloyl group, itaconic acid ester group, crotonic acid ester group, isocrotonic acid ester group, maleic acid ester group, styryl group, vinyl group, acrylamide group and methacrylamide group. It is done. Of these, a methacryloyl group, an acryloyl group, a vinyl group, a styryl group, an acrylamide group, or a methacrylamide group is preferable. Among them, a methacryloyl group, an acryloyl group, an acrylamide group, or a methacryl group is preferable from the viewpoint of radical polymerization reactivity and synthetic versatility.
  • an amide group is preferable, and an acrylamide group or a methacrylamide group is more preferable from the viewpoint of alkali resistance.
  • various polymerizable groups introduced into the acrylic polymer include (meth) acrylic groups such as (meth) acrylate groups or (meth) acrylamide groups, vinyl ester groups of carboxylic acids, vinyl ether groups, and allyl ether groups.
  • a polymerizable group is preferred.
  • the interaction group of the plating undercoat polymer is a functional group that interacts with the metal precursor (for example, a coordination group, a metal ion adsorbing group, etc.), and can form an electrostatic interaction with the metal precursor.
  • a functional group, or a nitrogen-containing functional group, a sulfur-containing functional group, an oxygen-containing functional group or the like that can form a coordination with a metal precursor can be used.
  • Nitrogen-containing functional groups such as pyrazole group, group containing alkylamine structure, cyano group, cyanate group (R—O—CN); ether group, hydroxyl group, phenolic hydroxyl group, carboxyl group, carbonate group, carbonyl group, ester group, Oxygen-containing functional groups such as groups containing N-oxide structures, groups containing S-oxide structures, groups containing N-hydroxy structures; thiophene groups, thiol groups, thiourea groups, sulfoxide groups, sulfonic acid groups, sulfonic acid ester structures Sulfur-containing functional group such as a group containing phosphine group: phosphor group,
  • the interactive group composed of an ionic polar group among the above-mentioned interactive groups, adhesion to the support of the plating undercoat polymer (or the adhesive layer when the adhesive layer is formed on the support)
  • carboxylic acid group, sulfonic acid group, phosphoric acid group or boronic acid group is preferable, and in particular, it has moderate acidity (does not decompose other functional groups), and affects other functional groups
  • Carboxylic acid groups are particularly preferred from the viewpoints of less concern, excellent compatibility with the metal reflective layer, and easy availability of raw materials.
  • An ionic polar group such as a carboxylic acid group can be introduced into the plating undercoat polymer by copolymerizing a radical polymerizable compound having an acidic group.
  • paragraphs [0106] to [0112] of JP-A-2009-007540 are referred to as “polymer having a radical polymerizable group and an interactive group composed of a non-dissociable functional group”.
  • the polymer having a radically polymerizable group and an interactive group comprising an ionic polar group the polymers described in paragraphs [0065] to [0070] of JP-A-2006-135271 can be used. .
  • the metal precursor described later may be applied after the formation of the plating undercoat polymer layer, or may be contained from the beginning in the composition for forming the plating undercoat polymer layer.
  • the plating undercoat polymer layer preferably contains a radical polymerization initiator such as a photopolymerization initiator and a thermal polymerization initiator in order to increase sensitivity to energy application.
  • the radical polymerization initiator is not particularly limited, and generally known ones are used. However, in the case where, by applying energy, the plating undercoat polymer can generate active sites that interact with the support or the adhesive layer, that is, when a polymer having a polymerization initiation site in the polymer skeleton described above is used, these The radical polymerization initiator may not be added.
  • the amount of the radical polymerization initiator to be contained in the plating undercoat polymer layer forming composition is selected according to the configuration of the plating undercoat polymer layer forming composition, but in general, the plating undercoat polymer layer forming composition.
  • the content is preferably about 0.05 to 30% by mass, more preferably about 0.1 to 10.0% by mass.
  • the plating undercoat polymer layer applies energy by applying a composition for forming a polymer layer containing a plating undercoat polymer on a support (or on the adhesive layer when the adhesive layer is formed on the support). Can be formed.
  • the plating undercoat polymer layer is directly provided on the support, it is preferable to carry out an easy adhesion treatment such as applying energy to the surface of the support in advance.
  • the method of providing the plating undercoat polymer layer on the support is not particularly limited, and the method of immersing the support in the composition for forming the plating undercoat polymer layer containing the plating undercoat polymer or the formation of the plating undercoat polymer layer containing the plating undercoat polymer The method of apply
  • coating the composition for coating on a support body etc. are mentioned. From the viewpoint of easily controlling the thickness of the resulting plating undercoat polymer layer, a method of applying a plating undercoat polymer layer-forming composition containing a plating undercoat polymer on a support is preferred.
  • the coating amount of the composition for forming a polymer layer containing a plating undercoat polymer is preferably 0.05 to 10 g / m 2 in terms of solid content, particularly 0, from the viewpoint of sufficient interaction formation with the metal precursor described later. 3 to 5 g / m 2 is more preferable.
  • the coating solution for the plating undercoat polymer layer forming composition containing the plating undercoat polymer applied to the support or the like is dried at 20 to 60 ° C. for 1 second to 2 hours, and then dried at a temperature exceeding 60 ° C. for 1 second to 2 hours. More preferably, after drying at 20 to 60 ° C. for 1 second to 20 minutes, it is more preferable to dry at a temperature exceeding 60 ° C. for 1 second to 20 minutes.
  • the composition for forming a plating undercoat polymer layer is applied with energy after being brought into contact with the support (adhesive layer in the case where the adhesive layer is formed on the support).
  • An interaction is formed between the polymerizable groups of the polymer, or between the polymerizable group of the polymer and the support (the adhesive layer in the case where the adhesive layer is formed on the support), A plated undercoat polymer layer fixed on the support (on the adhesive layer when the adhesive layer is formed on the support) is formed. Thereby, a support body and a plating undercoat polymer layer adhere
  • Examples of the energy application method include heating and exposure.
  • As an energy application method by exposure specifically, light irradiation by a UV lamp, visible light, or the like is possible.
  • Examples of the light source used for exposure include a mercury lamp, a metal halide lamp, a xenon lamp, and a chemical lamp.
  • Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Also, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used.
  • the exposure power may be in the range of 10 to 8000 mJ / cm 2 from the viewpoint of facilitating the polymerization, suppressing the decomposition of the polymer, or forming a good interaction of the polymer. A range of 100 to 3000 mJ / cm 2 is more preferable. Note that exposure may be performed in an atmosphere in which substitution with an inert gas such as nitrogen, helium, or carbon dioxide is performed, and the oxygen concentration is suppressed to 600 ppm or less, preferably 400 ppm or less.
  • an inert gas such as nitrogen, helium, or carbon dioxide
  • Energy application by heating can be performed by, for example, a general heat heat roller, laminator, hot stamp, electric heating plate, thermal head, laser, blower dryer, oven, hot plate, infrared dryer, heating drum, or the like.
  • the temperature is preferably in the range of 20 to 200 ° C., in order to facilitate the polymerization and to suppress thermal denaturation of the support, and preferably in the range of 40 to 120 ° C. More preferably, it is the range.
  • the film thickness of the plating undercoat polymer layer is not particularly limited, but is preferably 0.05 to 10 ⁇ m, more preferably 0.3 to 5 ⁇ m from the viewpoint of adhesion to a support or the like.
  • the surface roughness (Ra) of the plating undercoat polymer layer obtained by the above method is preferably 20 nm or less, more preferably 10 nm or less, from the viewpoint of reflection performance.
  • the plating primer polymer layer includes reduced metal particles. Reduced metal particles contained in the plating primer polymer layer are obtained by applying a metal precursor to the plating primer polymer layer and reducing the metal precursor to reduce the metal precursor to reduced metal particles. . When the metal precursor is applied to the plating undercoat polymer layer, the metal precursor adheres to the interactive group by interaction.
  • the metal precursor used in the present invention is not particularly limited as long as it functions as an electrode by changing to a metal by a reduction reaction. Moreover, as a metal precursor, what functions as an electrode of plating in formation of a metal reflective layer is mentioned preferably. Therefore, what functions as an electrode by reducing a metal precursor to a metal is preferable.
  • metal ions such as Au, Pt, Pd, Ag, Cu, Ni, Al, Fe, and Co are used.
  • Metal ions that are metal precursors are contained in a composition containing a plating undercoat polymer (a composition for forming a plating undercoat polymer layer). After forming a layer on the support, zero-valent metal particles are formed by a reduction reaction. It becomes. It is preferable that the metal ion which is a metal precursor is contained in the composition for forming a plating undercoat polymer layer as a metal salt.
  • a metal ion Ag ion, Cu ion, and Pd ion are preferable in terms of the type and number of functional groups capable of coordination, and catalytic ability.
  • the Ag ions those obtained by dissociating the silver compounds shown below can be suitably used.
  • the silver compound include silver nitrate, silver acetate, silver sulfate, silver carbonate, silver cyanide, silver thiocyanate, silver chloride, silver bromide, silver chromate, silver chloranilate, silver salicylate, silver diethyldithiocarbamate, Examples thereof include silver diethyldithiocarbamate and silver p-toluenesulfonate.
  • silver nitrate is preferable from the viewpoint of water solubility.
  • Cu ions those obtained by dissociating copper compounds as shown below can be suitably used.
  • copper compounds include copper nitrate, copper acetate, copper sulfate, copper cyanide, copper thiocyanate, copper chloride, copper bromide, copper chromate, copper chloranilate, copper salicylate, copper diethyldithiocarbamate, diethyldithio Examples thereof include copper carbamate and copper p-toluenesulfonate. Among these, copper sulfate is preferable from the viewpoint of water solubility.
  • the metal precursor is preferably applied to the plating undercoat polymer layer as a dispersion or solution (metal precursor liquid).
  • the application method include a method of applying a metal precursor solution on a support provided with a plating undercoat polymer layer, and a method of immersing a support provided with a plating undercoat polymer layer in the metal precursor solution.
  • Metal ions that are metal precursors applied to the plating undercoat polymer layer are reduced by a metal activation liquid (reducing liquid).
  • the metal activation liquid is composed of a reducing agent that can reduce a metal precursor (mainly metal ions) to a zero-valent metal and a pH adjuster for activating the reducing agent.
  • concentration of the reducing agent with respect to the entire metal activation liquid is preferably 0.05 to 50% by mass, and more preferably 0.1 to 30% by mass.
  • boron-based reducing agents such as sodium borohydride and dimethylamine borane
  • reducing agents such as formaldehyde and hypophosphorous acid
  • reduction with an aqueous alkaline solution containing formaldehyde is preferred.
  • the concentration of the pH adjusting agent with respect to the entire metal activation liquid is preferably 0.05 to 10% by mass, and more preferably 0.1 to 5% by mass.
  • As the pH adjuster acetic acid, hydrochloric acid, sulfuric acid, nitric acid, sodium hydrogen carbonate, aqueous ammonia, sodium hydroxide, potassium hydroxide and the like can be used.
  • the temperature during the reduction is preferably 10 to 100 ° C, more preferably 20 to 70 ° C. These concentrations and temperature ranges are preferably within this range from the viewpoint of the particle diameter of the metal precursor, the surface roughness of the polymer layer, the conductivity (surface resistance value), and the deterioration of the reducing solution during reduction.
  • the surface resistance value of the plating undercoat polymer layer containing the reduced metal particles is preferably 0.001 to 100 ⁇ / ⁇ , and more preferably 0.03 to 50 ⁇ / ⁇ . Within this range, the plated surface is formed uniformly and smoothly and the reflectance is good. Further, the surface roughness (Ra) of the plating undercoat polymer layer containing the reduced metal particles is preferably 20 nm or less, and more preferably 10 nm or less, from the viewpoint of reflection performance.
  • the plating undercoat polymer layer containing the metal particles thus obtained is suitably used when the above-described metal reflective layer is formed by a wet plating method, and is formed by a plating method using the plating undercoat polymer layer.
  • the metal reflective layer made is excellent in adhesion to the support and surface smoothness.
  • an ultraviolet absorbing layer in addition to the layer configuration described above, an ultraviolet absorbing layer, an ultraviolet reflecting layer, a gas barrier are used in accordance with a desired application. You may install a layer, an adhesive layer, a support back surface protective layer, other functional layers of a white layer, and the like.
  • the above-mentioned support especially resin support
  • hard coat layer especially acrylic layer
  • protective layer especially acrylic layer
  • resin layer especially silicone layer
  • other functional layers hereinafter, these layers and support are collectively abbreviated as “functional layer”.
  • the composition used for forming the functional layer if necessary, for example, a photopolymerization initiator, a thermal polymerization initiator, a cationic polymerization initiator, an anionic polymerization initiator, an antistatic agent, a surface conditioning.
  • Agents eg leveling agents, fluorine antifouling additives, UV absorbers, light stabilizers, antioxidants, plasticizers, radical scavengers, antifoaming agents, thickeners, antisettling agents, pigments, dispersants And additives such as silane coupling agents may be contained.
  • the surface conditioner is a component that can be arbitrarily added to the composition forming the functional layer from the viewpoint of imparting surface smoothness and antifouling property to the functional layer described above.
  • a substance generally used as a surface conditioner include polyacrylate polymers such as polyalkyl acrylate; polyvinyl ether polymers such as polyalkyl vinyl ether; dimethyl polysiloxane, methylphenyl polysiloxane, polyether, polyester, Silicone polymers such as organically modified polysiloxanes with aralkyl introduced therein; those containing fluorine atoms in these polymers; and the like. These may be used alone or in combination of two or more. Also good.
  • the surface conditioner having a fluorine atom can be obtained, for example, by copolymerizing a monomer having a fluorine-containing group.
  • a film (layer) containing a fluorine-based surface conditioner the surface energy of the film surface is lowered to form a water- and oil-repellent surface and to impart antifouling properties to the film surface.
  • UV absorber for example, at least among ultraviolet absorbers such as benzotriazole, benzophenone, triazine, phenyl salicylate, hindered amine, cyanoacrylate, and inorganic particle type ultraviolet absorbers such as titanium oxide Preferably one is included.
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
  • Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole and the like.
  • Examples of the phenyl salicylate ultraviolet absorber include phenylsulcylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • Examples of the hindered amine ultraviolet absorber include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxy
  • the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers that act as light energy conversion agents, called quenchers, can be used in combination.
  • the light stabilizer is a component that can be arbitrarily added to the composition forming the functional layer from the viewpoint of preventing oxidative degradation due to light (mainly ultraviolet rays).
  • a hindered amine light stabilizer, a benzoate light stabilizer, and the like are preferable, and among them, a hindered amine light stabilizer (HALS) is preferable.
  • HALS hindered amine light stabilizer
  • the light stabilizer can be used alone or in combination of two or more.
  • hindered amine light stabilizer for example, as a light stabilizer which is a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, TINUVIN 622 ”(manufactured by Ciba Japan); a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol and N, N ′, N ′′, N ′ '' -Tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7-
  • a light stabilizer which is a one-to-one reaction product with diazadecane-1,10-diamine, “TINUVIN 119” (manufactured by Ciba Japan); dibutylamine, 1,3-triazine, N, N′-bis ( This is a polycon
  • antioxidant for example, a phenol-based antioxidant, a thiol-based antioxidant, or a phosphite-based antioxidant is preferably used.
  • phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H
  • Examples of the thiol antioxidant include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), and the like.
  • Examples of the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol.
  • Diphosphite bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylenedi Examples thereof include phosphonite and 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite.
  • Example 1> (Preparation of a PET film with a silver reflective layer)
  • acrylic polymer 1 22.02 parts by mass
  • 1-methoxy-2-propanol 72.73 parts by mass
  • cyclohexanone 4.74 parts by mass
  • a surfactant F-780- F, solid content 30%, manufactured by DIC (0.16 parts by mass
  • a photopolymerization initiator Esacure KTO-46, manufactured by Lamberdy
  • the above-described coating solution for forming the undercoat polymer layer is applied by a bar coating method, dried at 25 ° C. for 5 minutes, and then dried at 80 ° C. for 5 minutes.
  • a coating film was obtained.
  • the coating film is irradiated at an integrated exposure amount of 600 mJ / cm 2 at a wavelength of 254 nm, A plating undercoat polymer layer (thickness: 0.55 ⁇ m) was formed to obtain a PET film with a plating undercoat polymer layer.
  • the PET film with the plating undercoat polymer layer was immersed in a 1 wt% sodium hydrogen carbonate aqueous solution for 5 minutes to remove unreacted polymer from the plating undercoat polymer layer. Thereafter, the PET film with the plating undercoat polymer layer was washed with pure water and further air-dried.
  • the PET film with a plating undercoat polymer layer was immersed in a 1 wt% silver nitrate aqueous solution for 5 minutes, then washed with pure water and air-dried to obtain a PET film with a plating undercoat polymer layer imparted with silver ions.
  • a plating undercoat polymer layer By immersing the PET film with a plating undercoat polymer layer to which silver ions are added in an alkaline aqueous solution containing 0.14 wt% NaOH and 0.25 wt% formalin for 1 minute, and then washing with pure water and air drying.
  • a reduced silver layer (film thickness of about 20 nm) was formed in the vicinity of the surface of the plating undercoat polymer layer. Thereby, a PET film with a reduced silver layer was obtained.
  • the following electroplating treatment was performed on the PET film with a reduced silver layer to obtain a PET film with a silver layer having a 50 nm thick silver layer on the reduced silver layer.
  • an electroplating solution Dyne Silver Bright PL50 (manufactured by Daiwa Kasei Co., Ltd.) was used, and the pH was adjusted to 7.8 with 8M potassium hydroxide.
  • the PET film with a silver layer was immersed in an electroplating solution, plated at 0.33 A / dm 2 for 15 seconds, then washed by pouring with pure water for 1 minute, and air-dried.
  • the obtained PET film with a silver layer was immersed in a thiourea aqueous solution (thiourea: 100 mass ppm) for 60 seconds to perform surface treatment of the silver layer. After the surface treatment, it was washed with pure water and air-dried. Next, the following electroplating treatment was performed on the silver layer after the surface treatment, and a silver layer having a thickness of 75 nm was further formed on the silver layer after the surface treatment to obtain a silver reflection layer.
  • Dyne Silver Bright PL50 manufactured by Daiwa Kasei Co., Ltd.
  • the pH was adjusted to 7.8 with 8M potassium hydroxide.
  • the surface-treated PET film with a silver layer was immersed in an electrosilver plating solution, plated at 0.5 A / dm 2 for 15 seconds, and then washed by pouring with pure water for 1 minute and air-dried. Furthermore, in order to remove the oxide film, as an electroplating post-treatment, the film was immersed in a 10% by mass aqueous solution (methanesulfonic acid: 6% by mass) of Dyne Silver ACC (manufactured by Daiwa Kasei Co., Ltd.) for 90 seconds. Then, it washed by pouring with pure water for 1 minute, and air-dried. In this way, a PET film on which a silver reflective layer was formed was obtained. When the arithmetic mean roughness Ra of the surface of the formed silver layer was measured using an atomic force microscope (AFM), it was 3.4 nm.
  • AFM atomic force microscope
  • composition 1 for protective layer formation mentioned later was apply
  • composition of protective layer forming composition 1- Acrylate monomer: Unidic EKS-675 (manufactured by DIC Corporation, solid content 55% by mass) 47.90 parts by mass
  • Solvent 2 cyclohexanone 5.00 parts by mass
  • the hard coat layer forming composition 1 described later was applied onto the protective layer so that the dry film thickness was 8 ⁇ m. Thereafter, it was dried at 130 ° C. and cured by irradiation with ultraviolet rays (300 mJ / cm 2 in terms of 365 nm) to form a hard coat layer. In this way, a hard coat film (hereinafter also referred to as a film mirror) having a metal reflective layer and a hard coat layer was produced.
  • a hard coat film hereinafter also referred to as a film mirror
  • Initiator-containing acrylate monomer FH-700 (manufactured by DIC Corporation, solid content: 91% by mass) 41.79 parts by mass
  • Surfactant Megafac F-780F (manufactured by DIC Corporation, solid content: 3% by mass, MEK) Dilution) 0.40 parts by mass
  • Metal oxide Celnax CX-S204IP (manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 10.01 parts by mass
  • Solvent 1 methyl isobutyl ketone 42.80 parts by mass
  • Solvent 2 5.00 parts by mass of cyclohexanone
  • the contact angle (static contact angle) on the surface of the hard coat layer was measured using Drop Master 700 (Kyowa Interface Science Co., Ltd.). The syringe part was connected to an AUTO DISPENSER AD-31, and a fixed amount of solution was pushed out of the syringe and deposited on the surface of the hard coat layer. In this example, contact angles were measured for pure water and methylene iodide. Next, the surface free energy of the hard coat layer was calculated from the Owens equation and the Young equation.
  • SW scratch resistance A load of 500 g / cm 2 was applied to # 0000 Bonster (steel wool: manufactured by Nippon Steel Wool Co., Ltd.), and the hard coat layer surface was reciprocated 10 times. Thereafter, how the hard coat layer surface was damaged was observed. The number of scratches generated in a streak shape was evaluated visually. “A”: 0 scratches “B”: 1-5 scratches “C”: 6 scratches or more
  • D F is the degree of scratching of the hard coat layer surface due to dust, where D F is the diffusion degree of the film mirror before the test, D S is the diffusion degree of the film mirror after the dust test, and D W is the diffusion degree of the film mirror after the cleaning. Defined as W- DF .
  • the degree of sand adhesion on the hard coat layer surface was defined as D S -D W.
  • D W -D F represents the deterioration of the degree of diffusion of the film mirror caused by scratches on the hard coat layer, and the smaller D W -D F means that there are fewer scratches on the hard coat layer in the dust test.
  • D S -D W represents the deterioration of the diffusion degree of the film mirror caused by sand adhesion on the hard coat layer, and the smaller D S -D W means that the sand adhesion on the hard coat layer in the dust test is less.
  • dust scratch resistance was evaluated according to the following criteria. “S”: When D W -D F is 5 or less “A”: When D W -D F is more than 5 and 7.5 or less “B”: When D W -D F is more than 7.5 and 10 or less “C”: When D W ⁇ D F is more than 10 and less than 15, “D”: When D W ⁇ D F is more than 20. Further, the degree of sand adhesion was evaluated according to the following criteria.
  • D o -D F represents the deterioration of the degree of diffusion of the film mirror due to contamination of the hard coat layer, and the smaller D o -D F means that the hard coat layer is less contaminated.
  • the contamination resistance was evaluated according to the following criteria. “A”: When D o -D F is 6 or less “B”: When D o -D F is greater than 6 and less than 8 “C”: When D o -D F is greater than 8 and less than 10 “D”: When D o -D F exceeds 10
  • optical characteristics two points of the average reflectance of the near-infrared light and the solar energy reflectance of the produced film mirror were evaluated. The specific procedure is shown below. Using a UV-visible near-infrared spectrophotometer UV-3100 (manufactured by Shimadzu Corporation), the reflectance of the film mirror in the wavelength range of 280 nm to 1700 nm was measured every 1 nm in the wavelength range. The average reflectance of the near-infrared light of the film mirror is defined as the average value of the reflectance of the film mirror, which is obtained by averaging the values measured at intervals of 1 nm in the wavelength range of 780 nm to 1700 nm. And calculated.
  • the solar energy reflectance was calculated as follows.
  • the reflection spectrum at a wavelength of 280 nm to 1700 nm is Rs ( ⁇ ) ( ⁇ : wavelength)
  • the reference irradiance spectrum of sunlight at a wavelength of 280 nm to 1700 nm is Si ( ⁇ ) ( ⁇ : wavelength)
  • the solar energy reflectance (Rtotal) is It was defined by the following formula.
  • the standard irradiance spectrum Si of sunlight was a value defined by ASTM G173-03.
  • Rtotal means an effective reflection efficiency of solar energy in consideration of irradiation intensity at each wavelength of sunlight.
  • the average reflectance and solar energy reflectance of near-infrared light were evaluated according to the following criteria. From a practical viewpoint, Rtotal is preferably B or more, more preferably A or more.
  • Examples 2 to 4 A hard coat film was prepared according to the same procedure as in Example 1 except that the amount of Cellux CX-S204IP used was changed to the amount shown in Table 1, and various evaluations were performed. The results are summarized in Table 1.
  • Example 5 A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 2 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 1.
  • Example 6 to 7 A hard coat film was produced according to the same procedure as in Example 5 except that the amount of Cellux CX-S204IP used was changed to the amount shown in Table 1, and various evaluations were performed. The results are summarized in Table 1.
  • Initiator-containing acrylate monomer Beam set 1402 (Arakawa Chemical Industries, Ltd., solid content: 87.1% by mass) 43.60 parts by mass
  • Solvent 2 5.00 parts by mass of cyclohexanone
  • Example 9 to 10> A hard coat film was produced according to the same procedure as in Example 8, except that the amount of Cellnax CX-S204IP used was changed to the amount shown in Table 1, and various evaluations were performed. The results are summarized in Table 1.
  • Example 11 A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 4 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 1.
  • -Composition for forming a hard coat layer 4- Acrylate monomer: KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd., solid content concentration: 100% by mass) 33.59 parts by mass 0.40 parts by mass Metal oxide: Celnax CX-S204IP (Nissan Chemical Industry Co., Ltd., solid content 20% by mass) 20.00 parts by mass Initiator: IRGACURE 127 (manufactured by BASF Japan) 0.80 parts by mass Polymerizability Fluorine compound: Megafac RS-75 (manufactured by DIC Corporation, solid content 40% by mass) 4.00 parts by mass Solvent 1: methyl ethyl ketone 36.21 parts by mass Solvent 2: cyclohexan
  • Example 12 to 13 A hard coat film was prepared and subjected to various evaluations according to the same procedure as in Example 11 except that the amount used of Celnax CX-S204IP was changed to the amount shown in Table 1. The results are summarized in Table 1.
  • Example 14 A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 5 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 1.
  • Initiator-containing acrylate monomer Beam set 1461 (Arakawa Chemical Industries, Ltd.) 46.26 parts by mass
  • Surfactant MegaFac F-780-F (DIC Corporation, solid content 3 mass%, diluted MEK) 0.40 parts by mass
  • Solvent 1 methyl ethyl ketone 28.36 parts by mass
  • Solvent 2 cyclohexanone 5.00 Parts by mass
  • Example 15 to 16> A hard coat film was prepared according to the same procedure as in Example 14 except that the amount used of Celnax CX-S204IP was changed to the amount shown in Table 1, and various evaluations were performed. The results are summarized in Table 1.
  • Example 17 A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 6 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 1.
  • Initiator-containing acrylate monomer FH-700 (manufactured by DIC Corporation, solid content: 91% by mass) 42.83 parts by mass
  • Surfactant Megafac F-780-F (manufactured by DIC Corporation, solid content: 3% by mass) 0.40 parts by mass
  • Metal oxide Fluorine-doped tin oxide 1.00 parts by mass
  • Solvent 1 Methyl ethyl ketone 50.77 parts by mass
  • Solvent 2 Cyclohexanone 5.00 parts by mass Particles having an average primary particle size of 27 nm prepared according to the method described in Example 1 of 2012-193071 were used.
  • Example 1 A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 9 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
  • -Composition for forming a hard coat layer 9- Initiator-containing acrylate monomer FH-700 (manufactured by DIC Corporation, solid content: 85 mass%, initiator: 3 mass%) 43.96 parts by mass
  • Surfactant Megafac F-780-F (manufactured by DIC Corporation) 0.40 part by mass
  • Solvent 1 methyl ethyl ketone 50.65 parts by mass
  • Solvent 2 cyclohexanone 5.00 parts by mass
  • Example 5 A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 11 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
  • -Composition for forming a hard coat layer 11- Initiator-containing acrylate monomer FH-700 (manufactured by DIC Corporation, solid content 91% by mass) 43.53 parts by mass
  • Surfactant Megafac F-780-F (manufactured by DIC Corporation, solid content 3% by mass) 0.40 parts by mass
  • Antistatic agent Polyaniline (manufactured by Kaken Sangyo Co., Ltd., solid content 10% by mass, MEK dilution) 4.00 parts by mass
  • Solvent 1 methyl ethyl ketone 47.08 parts by mass
  • Solvent 2 cyclohexanone 5.00 parts by mass
  • ⁇ Comparative Example 8> A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 12 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
  • -Composition 12 for forming a hard coat layer- Initiator-containing acrylate monomer FH-700 (manufactured by DIC Corporation, solid content 91% by mass) 43.53 parts by mass
  • Surfactant Megafac F-780-F (manufactured by DIC Corporation, solid content 3% by mass 0.40 parts by mass
  • Antistatic agent Organic boron polymer Hiboron KB212 (manufactured by Boron International Co., Ltd., solid content 10% by mass, diluted MEK) 4.00 parts by mass
  • Example 11 A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 13 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
  • -Composition for forming a hard coat layer 13- Initiator-containing acrylate monomer FH-700 (manufactured by DIC Corporation, solid content: 91% by mass) 43.70 parts by mass
  • Surfactant Megafac F-780-F (manufactured by DIC Corporation, solid content: 3% by mass) 0.40 parts by mass
  • Antistatic agent Anionic surfactant Electro stripper ME2 (manufactured by Lion Corporation, solid content 10% by mass, MEK dilution) 2.00 parts by mass
  • Solvent 1 methyl ethyl ketone 48.91 masses
  • Part solvent 2 5.00 parts by mass of cyclohexanone
  • Example 13 A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 14 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
  • -Composition for forming a hard coat layer 14- Initiator-containing acrylate monomer FH-700 (manufactured by DIC Corporation, solid content: 91% by mass) 43.70 parts by mass
  • Surfactant Megafac F-780-F (manufactured by DIC Corporation, solid content: 3% by mass) 0.40 parts by mass
  • Antistatic agent Cationic surfactant ARCARD T-50 (manufactured by Kao Corporation, solid content 10% by mass, diluted MEK) 2.00 parts by mass
  • Solvent 1 methyl ethyl ketone 48.91
  • Mass part solvent 2 Cyclohexanone 5.00 parts by mass
  • ⁇ Comparative Example 15> A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 15 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
  • -Composition 15 for forming a hard coat layer- Initiator-containing acrylate monomer Beam Set 575CB (Arakawa Chemical Industries, Ltd.) 40.03 parts by mass
  • Solvent 1 methyl ethyl ketone 54.97 parts by mass
  • Solvent 2 cyclohexanone 5.00 parts by mass
  • ⁇ Comparative Example 16> A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 16 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
  • -Composition 16 for forming a hard coat layer- Initiator-containing acrylate monomer Beamset 575CB (Arakawa Chemical Industries, Ltd.) 39.97 parts by mass
  • Surfactant MegaFac F-780-F (DIC Corporation, solid content 3% by mass, diluted MEK) 0.40 parts by mass
  • Solvent 1 methyl ethyl ketone 54.63 parts by mass
  • Solvent 2 cyclohexanone 5.00 parts by mass
  • ⁇ Comparative Example 17> A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 17 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
  • -Composition 17 for forming a hard coat layer- Initiator-containing acrylate monomer Beam set 1461 (manufactured by Arakawa Chemical Co., Ltd.) 51.54 parts by mass
  • Solvent 1 methyl ethyl ketone 43.36 parts by mass
  • Solvent 2 cyclohexanone 5.00 parts by mass
  • Example 18 A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 7 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
  • -Composition 7 for forming a hard coat layer- Initiator-containing acrylate monomer FH-700 (manufactured by DIC Corporation, solid content: 91% by mass) 43.33 parts by mass
  • Surfactant Megafac F-780-F (manufactured by DIC Corporation, solid content: 3% by mass) 0.40 parts by mass
  • Metal oxide ITO paint P1-3 (Mitsubishi Materials Electronic Chemicals, total solid content 40%, ITO concentration 28%) 1.43 parts by mass
  • Solvent 1 methyl ethyl ketone 49.83 parts by mass
  • Solvent 2 5.00 parts by mass of cyclohexanone
  • “concentration” in the metal oxide column represents mass% of the metal oxide with respect to the total solid mass in the hard coat layer.
  • “Concentration” in the other antistatic agent column represents mass% of the antistatic agent relative to the total solid mass in the hard coat layer. Since “FH-700”, “beam set 1402”, and “beam set 1461” used as initiator-containing acrylate monomers correspond to fluorine-containing (meth) acrylates, in Tables 1 and 2, “(meth)” The above compounds are described in both the “acrylate” column and the “polymerizable group” column of the “fluorine compound” column.
  • “Megafac RS-75” used as a polymerizable fluorine compound also corresponds to a fluorine-containing (meth) acrylate.
  • “E + 12” in the “Surface resistance value” column is intended to be “10 12 ”, and “10 A ” is also intended for other numerical values A.
  • “1E13 or more” is intended to mean “1 ⁇ 10 13 ” or more.
  • each example which is a hard coat film according to an embodiment of the present invention, is excellent in various performances. Especially, it was confirmed from the comparison between Examples that when the surface resistance value on the surface of the hard coat layer is 1 ⁇ 10 11 ⁇ / ⁇ or less, the dust scratch resistance and sand adhesion resistance are more excellent. Moreover, it was confirmed from the comparison between Examples that when the surface energy of the hard coat layer is 26 mN / m or less, the magic repellent property (adhesion resistance to oil) is more excellent. On the other hand, the aspect of the comparative example having a hard coat layer that does not exhibit the predetermined characteristics was inferior in performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided are a hard coat film and a film mirror which each comprise a hard coat layer that satisfies a dust adhesion resistance property, an oil adhesion resistance property, a scratch resistance property, and a stain resistance property. The hard coat film has a support body and the hard coat layer which is disposed on the support body. The hard coat layer contains poly(meth)acrylate and at least one kind of metal oxide. The metal oxide is contained in an amount of 1-50 mass% relative to the total mass of the poly(meth)acrylate. The surface free energy of the hard coat layer surface is 30 mN/m or less, the surface resistance value of the hard coat layer surface is less than 1×1013Ω/□, and the pencil hardness of the hard coat layer surface is 2H or more.

Description

ハードコートフィルム及びフィルムミラーHard coat film and film mirror
 本発明は、ハードコートフィルム及びフィルムミラーに係り、特に、所定の特性(表面自由エネルギー、表面抵抗値、硬度)を示すハードコート層を有するハードコートフィルム及びフィルムミラーに関する。 The present invention relates to a hard coat film and a film mirror, and more particularly to a hard coat film and a film mirror having a hard coat layer exhibiting predetermined characteristics (surface free energy, surface resistance value, hardness).
 近年、石油、石炭、天然ガスに代表される化石燃料に代わる代替エネルギーの研究が、盛んに行なわれている。特に、太陽光、風力、地熱等の自然エネルギーは、資源の枯渇、地球温暖化等の懸念がなく、クリーンなエネルギーとして注目されている。これらの中でも、太陽光を利用する太陽エネルギーは、安定供給が可能なエネルギーとして更なる開発が期待されている。 In recent years, research on alternative energy alternatives to fossil fuels typified by oil, coal, and natural gas has been actively conducted. In particular, natural energy such as solar light, wind power, and geothermal heat has attracted attention as clean energy without concern about resource depletion and global warming. Among these, solar energy using sunlight is expected to be further developed as energy that can be stably supplied.
 しかしながら、太陽エネルギーにはエネルギー密度が低いという問題がある。この問題を解決するため、近年では、巨大な反射鏡を用いて太陽光を集光しようという試みがなされている。これまで、太陽光を集光するための反射鏡は、屋外に設置され、太陽光に起因する紫外線や熱、風雨、砂塵等に晒されるため、ガラス製のものが用いられてきた。しかしながら、ガラス製の反射鏡は、耐候性に優れるものの、重量があり、破損しやすく、かつ、柔軟性に欠けるため、取り扱い性に改良の余地があるという問題があった。 However, solar energy has a problem of low energy density. In order to solve this problem, in recent years, attempts have been made to collect sunlight using a huge reflector. Until now, a reflector for condensing sunlight has been used outdoors because it is installed outdoors and exposed to ultraviolet rays, heat, wind and rain, sand dust and the like caused by sunlight. However, although the glass-made reflecting mirror is excellent in weather resistance, there is a problem that there is room for improvement in handling property because it is heavy, easily broken, and lacks flexibility.
 上記問題に対しては、ガラス製の反射鏡を、軽量で柔軟性のある樹脂製の反射鏡に置き換えることが考えられている。
 例えば、特許文献1では、樹脂基材と共に、所定の電気抵抗値および鉛筆硬度などを示す最表層を有するフィルムミラーが開示されている。
In order to solve the above problem, it is considered to replace the glass reflector with a light and flexible resin reflector.
For example, Patent Document 1 discloses a film mirror having a resin base material and an outermost layer showing a predetermined electric resistance value, pencil hardness, and the like.
国際公開第2011/096320号International Publication No. 2011/096320
 一方、フィルムミラーの用途としては、太陽熱発電用に限らず、給湯用集光ミラーや採光用ミラーなどの用途にも用いられる。
 その際、大気中の砂や塵の付着が抑制されることが求められると共に、日常生活で発生する油などに対する耐付着性も要求される。また、野外に設置する点を考慮した場合、対砂塵に対する耐傷性や、降雨や露後の乾燥での汚染に対する耐汚染性なども求められる。つまり、砂塵に対する耐付着性、油に対する耐付着性、耐傷性および耐汚染性を全て備えることが求められる。
 本発明者らは、特許文献1に記載のフィルムミラー中の最表層に関して、上記性能を評価したところ、上記すべての性能を満たすものは得られず、さらなる改良が必要であることを知見した。
On the other hand, the use of the film mirror is not limited to solar power generation, but is also used for applications such as a hot water condensing mirror and a lighting mirror.
At that time, it is required to suppress adhesion of sand and dust in the atmosphere, and resistance to oil generated in daily life is also required. In addition, when considering the installation in the field, scratch resistance against sand dust, contamination resistance against contamination due to rainfall or drying after dew, etc. are also required. That is, it is required to have all adhesion resistance to dust, adhesion resistance to oil, scratch resistance, and contamination resistance.
The inventors of the present invention have evaluated the above-mentioned performance with respect to the outermost layer in the film mirror described in Patent Document 1, and found that a material satisfying all the above-mentioned performances cannot be obtained, and further improvement is necessary.
 本発明は、上記実情に鑑みて、砂塵に対する耐付着性、油に対する耐付着性、耐傷性および耐汚染性に優れるハードコート層を備えるハードコートフィルムを提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a hard coat film including a hard coat layer excellent in adhesion resistance to dust, adhesion resistance to oil, scratch resistance, and contamination resistance.
 本発明者は、上記課題を達成すべく鋭意研究した結果、所定の要件を満たすハードコート層であれば上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
As a result of earnest research to achieve the above-mentioned problems, the present inventor has found that the above-mentioned problems can be solved if the hard coat layer satisfies predetermined requirements, and has completed the present invention.
That is, the present inventors have found that the above problem can be solved by the following configuration.
(1) 支持体と、支持体上に配置されたハードコート層とを有するハードコートフィルムであって、
 ハードコート層が、ポリ(メタ)アクリレートおよび金属酸化物を含有し、金属酸化物がハードコート層全質量に対して1~50質量%含有され、
 ハードコート層表面の表面自由エネルギーが30mN/m以下であり、
 ハードコート層表面の表面抵抗値が1×1013Ω/□未満であり、
 ハードコート層表面の鉛筆硬度が2H以上である、ハードコートフィルム。
(2) ハードコート層表面の水接触角が90°以上である、(1)に記載のハードコートフィルム。
(3) ハードコート層表面の表面抵抗値が1×1011Ω/□以下である、(1)または(2)に記載のハードコートフィルム。
(4) ハードコート層が、(メタ)アクリロイル基を有する重合性化合物と、金属酸化物とを少なくとも含有するハードコート層形成用組成物を硬化させて得られる層である、(1)~(3)のいずれかに記載のハードコートフィルム。
(5) ハードコート層形成用組成物が、さらに、重合性基を有さないフッ素化合物を含有する、(4)に記載のハードコートフィルム。
(6) (メタ)アクリロイル基を有する重合性化合物が、(メタ)アクリロイル基とフッ素原子とを有する重合性化合物を少なくとも含有する、(4)または(5)に記載のハードコートフィルム。
(7) 金属酸化物が、酸化錫、リンドープ酸化錫、およびフッ素ドープ酸化錫からなる群から選択される少なくとも1つを含む、(1)~(6)のいずれかに記載のハードコートフィルム。
(8) 支持体とハードコート層との間に金属反射層を有し、フィルムミラーとして用いられる、(1)~(7)のいずれかに記載のハードコートフィルム。
(9) 太陽光集光用フィルムミラーとして用いられる、(8)に記載のハードコートフィルム。
(10) 光を反射する金属反射層と、
 光が入射する表面を形成するように金属反射層の上に配置され、ポリ(メタ)アクリレート及び金属酸化物を含有するハードコート層と、
 を備え、
 金属酸化物の含有量は、前記ハードコート層の全質量に対して1~50質量%であり、
 表面は、
 表面自由エネルギーが30mN/m以下であり、
 表面抵抗値が1×1013Ω/□未満であり、
 鉛筆硬度が2H以上であるフィルムミラー。
(1) A hard coat film having a support and a hard coat layer disposed on the support,
The hard coat layer contains poly (meth) acrylate and a metal oxide, and the metal oxide is contained in an amount of 1 to 50% by mass relative to the total mass of the hard coat layer,
The surface free energy of the hard coat layer surface is 30 mN / m or less,
The surface resistance value of the hard coat layer surface is less than 1 × 10 13 Ω / □,
A hard coat film having a pencil hardness of 2H or more on the surface of the hard coat layer.
(2) The hard coat film according to (1), wherein a water contact angle on the surface of the hard coat layer is 90 ° or more.
(3) The hard coat film according to (1) or (2), wherein the surface resistance value of the surface of the hard coat layer is 1 × 10 11 Ω / □ or less.
(4) The hard coat layer is a layer obtained by curing a composition for forming a hard coat layer containing at least a polymerizable compound having a (meth) acryloyl group and a metal oxide. The hard coat film according to any one of 3).
(5) The hard coat film according to (4), wherein the composition for forming a hard coat layer further contains a fluorine compound having no polymerizable group.
(6) The hard coat film according to (4) or (5), wherein the polymerizable compound having a (meth) acryloyl group contains at least a polymerizable compound having a (meth) acryloyl group and a fluorine atom.
(7) The hard coat film according to any one of (1) to (6), wherein the metal oxide includes at least one selected from the group consisting of tin oxide, phosphorus-doped tin oxide, and fluorine-doped tin oxide.
(8) The hard coat film according to any one of (1) to (7), which has a metal reflective layer between the support and the hard coat layer, and is used as a film mirror.
(9) The hard coat film according to (8), which is used as a solar light collecting film mirror.
(10) a metal reflective layer that reflects light;
A hard coat layer disposed on the metal reflective layer to form a light incident surface and containing poly (meth) acrylate and a metal oxide;
With
The content of the metal oxide is 1 to 50% by mass with respect to the total mass of the hard coat layer,
The surface is
The surface free energy is 30 mN / m or less,
The surface resistance value is less than 1 × 10 13 Ω / □,
A film mirror having a pencil hardness of 2H or more.
 本発明によれば、砂塵に対する耐付着性、油に対する耐付着性、耐傷性および耐汚染性に優れるハードコート層を備えるハードコートフィルムを提供することができる。 According to the present invention, it is possible to provide a hard coat film including a hard coat layer having excellent resistance to dust, adhesion to oil, scratch resistance, and contamination resistance.
本発明のハードコートフィルムの第1の実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the hard coat film of this invention. 本発明のハードコートフィルムの第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the hard coat film of this invention. 本発明のハードコートフィルムの第3の実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the hard coat film of this invention. 本発明のハードコートフィルムの第4の実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of the hard coat film of this invention.
 以下に、本発明のハードコートフィルムの好適実施形態について説明する。
 まず、本発明の従来技術と比較した特徴点としては、所定の成分を含み、所定の表面自由エネルギー、表面抵抗値、および鉛筆硬度を示すハードコート層を使用する点が挙げられる。
Below, suitable embodiment of the hard coat film of this invention is described.
First, as a feature point compared with the prior art of this invention, the point which uses the hard-coat layer which contains a predetermined component and shows a predetermined surface free energy, a surface resistance value, and pencil hardness is mentioned.
<第1の実施形態>
 以下に、本発明のハードコートフィルムの第1の実施形態について図面を参照して説明する。図1に、本発明のハードコートフィルムの一実施形態の断面図を示す。
 ハードコートフィルム10は、支持体12と、ハードコート層14とを有する。
 以下に、ハードコートフィルム10を構成する各層について詳述する。
<First Embodiment>
Below, 1st Embodiment of the hard coat film of this invention is described with reference to drawings. In FIG. 1, sectional drawing of one Embodiment of the hard coat film of this invention is shown.
The hard coat film 10 has a support 12 and a hard coat layer 14.
Below, each layer which comprises the hard coat film 10 is explained in full detail.
[支持体]
 支持体は、後述するハードコート層を支持する基材である。支持体の種類は特に制限されず、フレキシブル性や軽量化の観点で、樹脂フィルム、ガラスフィルム、紙などを用いることができる。なかでも、取扱い性に優れる点で、樹脂フィルム(樹脂支持体)が好ましい。樹脂フィルムは、ガラスエポキシ、ポリエステル、ポリイミド、熱硬化型ポリフェニレンエーテル、ポリアミド、ポリアラミド、液晶ポリマー等をフィルム状に成形して構成される。
 樹脂フィルム中の樹脂材料としては、フィルム状に成形できる樹脂であればすべて使用することができるが、例えば、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ビスマレイミドトリアジン(BT)樹脂、ポリフェニレンエーテル(PPE)樹脂、テトラフルオロエチレン樹脂、液晶樹脂、ポリエステル樹脂、ポリエチレンナフタレート(PEN)、アラミド樹脂、ポリアミド樹脂、ポリエーテルスルホン、トリアセチルセルロース、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリブタジエン、ポリアセチレン等が好適であり、特に好適な支持体としては、ポリエステル樹脂またはポリイミド樹脂が挙げられる。
 支持体の形状としては、平面、拡散面、凹面、凸面、等各種のフィルム基材として求められる形状であれば、いずれの形状であってもよい。
 支持体の厚みとしては、10μm~5mm程度が好ましい。上記範囲内であれば、生産時のハンドリングに優れ、かつ、成形しやすい。より好ましくは、20μm~1mmであり、更に好ましくは25μm~500μmの範囲である。
[Support]
A support body is a base material which supports the hard-coat layer mentioned later. The type of the support is not particularly limited, and a resin film, a glass film, paper, or the like can be used from the viewpoint of flexibility and weight reduction. Among these, a resin film (resin support) is preferable in terms of excellent handleability. The resin film is formed by molding glass epoxy, polyester, polyimide, thermosetting polyphenylene ether, polyamide, polyaramid, liquid crystal polymer, or the like into a film shape.
As the resin material in the resin film, any resin that can be formed into a film can be used. For example, phenol resin, epoxy resin, polyimide resin, bismaleimide triazine (BT) resin, polyphenylene ether (PPE) Resin, tetrafluoroethylene resin, liquid crystal resin, polyester resin, polyethylene naphthalate (PEN), aramid resin, polyamide resin, polyethersulfone, triacetylcellulose, polyvinyl chloride, polyvinylidene chloride, polyethylene, polypropylene, polystyrene, polybutadiene, Polyacetylene and the like are suitable, and particularly suitable supports include polyester resins and polyimide resins.
The shape of the support may be any shape as long as it is a shape required for various film substrates such as a flat surface, a diffusion surface, a concave surface, and a convex surface.
The thickness of the support is preferably about 10 μm to 5 mm. If it is in the said range, it will be excellent in the handling at the time of production and will be easy to shape | mold. More preferably, it is 20 μm to 1 mm, and still more preferably 25 μm to 500 μm.
 また、支持体は、支持体の上に後述の樹脂層を形成しやすくするために、あらかじめ表面処理を施してもよい。
 表面処理としては、UV照射、オゾン処理、プラズマ処理、コロナ処理、火炎処理などの表面を分解活性化させる処理、ヒドラジン、N-メチルピロリドン、水酸化ナトリウム溶液、水酸化カリウム溶液のようなアルカリ性溶液での処理、硫酸、塩酸、硝酸のような酸性溶液での処理などが挙げられる。また、支持体表面の汚れを落として清浄にする処理としては、メタノール、エタノール、トルエン、酢酸エチル、アセトン等の有機溶剤による処理、付着したゴミを落とすための水洗等が挙げられる。
 これらの表面処理は複数種を組み合わせて行ってもよい。
Moreover, in order to make it easy to form the below-mentioned resin layer on a support body, you may perform a surface treatment for a support body previously.
Surface treatment includes UV irradiation, ozone treatment, plasma treatment, corona treatment, flame treatment and other surface activation treatments, hydrazine, N-methylpyrrolidone, sodium hydroxide solution, alkaline solution such as potassium hydroxide solution And treatment with an acidic solution such as sulfuric acid, hydrochloric acid and nitric acid. Examples of the treatment for removing and cleaning the surface of the support include treatment with an organic solvent such as methanol, ethanol, toluene, ethyl acetate, and acetone, and washing with water to remove attached dust.
These surface treatments may be performed in combination of a plurality of types.
 ハードコートフィルムは、後述する第2の実施形態のように金属反射層を含んでもよい。ハードコートフィルムに金属反射層が含まれる場合、反射能を向上させる目的から、支持体の表面粗さ(Ra)が50nm以下であることが好ましく、20nm以下であることがより好ましく、5nm以下であることがさらに好ましい。 The hard coat film may include a metal reflective layer as in the second embodiment described later. When the metal coating layer is included in the hard coat film, the surface roughness (Ra) of the support is preferably 50 nm or less, more preferably 20 nm or less, and more preferably 5 nm or less for the purpose of improving reflectivity. More preferably it is.
 支持体は、紫外線吸収剤を含んでもよい。また、柔軟性を維持するための可塑剤、フィルム自体の劣化を防ぐ酸化防止剤、ラジカル捕捉剤等を含んでもよい。これら添加剤の種類は、後述する。
 支持体が紫外線吸収剤を含む場合この紫外線吸収剤の含有量としては、支持体が樹脂フィルムのとき、支持体中の樹脂100質量部に対して、0.1~10質量部の範囲であることが好ましい。
 支持体が酸化防止剤を含む場合この酸化防止剤の含有量としては、支持体が樹脂フィルムのとき、支持体中の樹脂100質量部に対して、0.1~10質量部の範囲であることが好ましい。
The support may contain an ultraviolet absorber. Moreover, you may contain the plasticizer for maintaining a softness | flexibility, the antioxidant which prevents deterioration of the film itself, a radical scavenger, etc. The types of these additives will be described later.
When the support contains an ultraviolet absorber, the content of the ultraviolet absorber is in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin in the support when the support is a resin film. It is preferable.
When the support contains an antioxidant, the content of the antioxidant is in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass of the resin in the support when the support is a resin film. It is preferable.
[ハードコート層]
 ハードコート層はハードコートフィルムの最表面に配置される層であり、このハードコートフィルムに対する砂塵や油などの外部からの影響を抑える層である。ハードコート層は、ハードコートフィルムの最表面を形成する。
 ハードコート層には、ポリ(メタ)アクリレート、および、少なくとも1種類の金属酸化物が含まれる。以下、これらの成分について詳述する。
[Hard coat layer]
The hard coat layer is a layer disposed on the outermost surface of the hard coat film, and is a layer that suppresses external influences such as dust and oil on the hard coat film. The hard coat layer forms the outermost surface of the hard coat film.
The hard coat layer includes poly (meth) acrylate and at least one metal oxide. Hereinafter, these components will be described in detail.
(ポリ(メタ)アクリレート)
 ポリ(メタ)アクリレートとは、(メタ)アクリロイル基を有する重合性化合物を重合して得られるポリマーであり、硬度の点からは、架橋構造を有していることが好ましい。言い換えれば、後述するように、ハードコート層は、(メタ)アクリロイル基を有する重合性化合物を含む組成物を硬化させて得られる層である。
 なお、本明細書において、(メタ)アクリレートとは、アクリレートとメタクリレートとを包含して意味するものとする。より具体的には、ポリ(メタ)アクリレートとは、ポリアクリレートとポリメタアクリレート(ポリメタクリレート)とを包含して意味するものとする。また、(メタ)アクリレートモノマーとは、メタアクリレートモノマー(メタクリロイル基を有する単量体)とアクリレートモノマー(アクリロイル基を有する単量体)とを包含して意味するものとする。また、(メタ)アクリロイル基は、アクリロイル基とメタアクリロイル基とを包含して意味するものとする。
(Poly (meth) acrylate)
The poly (meth) acrylate is a polymer obtained by polymerizing a polymerizable compound having a (meth) acryloyl group, and preferably has a crosslinked structure from the viewpoint of hardness. In other words, as will be described later, the hard coat layer is a layer obtained by curing a composition containing a polymerizable compound having a (meth) acryloyl group.
In this specification, (meth) acrylate includes acrylate and methacrylate. More specifically, poly (meth) acrylate is meant to include polyacrylate and polymethacrylate (polymethacrylate). Further, the (meth) acrylate monomer is meant to include a methacrylate monomer (a monomer having a methacryloyl group) and an acrylate monomer (a monomer having an acryloyl group). Further, the (meth) acryloyl group includes an acryloyl group and a methacryloyl group.
 (メタ)アクリロイル基を有する重合性化合物としては(メタ)アクリロイル基を有する化合物であれば特に制限されず、いわゆる(メタ)アクリレートモノマー(単量体)またはオリゴマーであってもよい。なかでも、得られるハードコート層の硬度がより優れる点で、2つ以上の(メタ)アクリロイル基を有する重合性化合物(多官能性(メタ)アクリレート)が好ましく、例えば、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、イソボロニルアクリレート、多官能ウレタン(メタ)アクリレート等が好ましく挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。上記モノマーの2量体、3量体等のオリゴマーであってもよい。 The polymerizable compound having a (meth) acryloyl group is not particularly limited as long as it is a compound having a (meth) acryloyl group, and may be a so-called (meth) acrylate monomer (monomer) or oligomer. Among them, a polymerizable compound (polyfunctional (meth) acrylate) having two or more (meth) acryloyl groups is preferable in that the hardness of the obtained hard coat layer is more excellent, for example, ethylene glycol diacrylate, diethylene glycol. Diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, tetramethylolmethane triacrylate, tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate Acrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol Triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl Glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, tetramethylol methane trimethacrylate, tetramethylol methane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate Acrylate, glycerol trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetramethacrylate, dipentaerythritol penta methacrylate, dipentaerythritol hexa methacrylate, isobornyl acrylate, multifunctional urethane (meth) acrylate preferably. These compounds are used alone or in admixture of two or more. It may be an oligomer such as a dimer or trimer of the above monomer.
(金属酸化物)
 金属酸化物は、ハードコート層の硬度を高める機能や、表面抵抗値を低下させる機能などを有する。
 金属酸化物としてはその種類は特に制限されないが、例えば、酸化錫、五酸化アンチモン、アンチモン酸亜鉛、アンチモンドープ酸化錫、錫ドープ酸化インジウム、二酸化チタン、ジルコニア、酸化亜鉛、リンドープ酸化錫、フッ素ドープ酸化錫(FTO)、ニオブドープ酸化スズ、タンタルドープ酸化スズなどが挙げられる。なかでも、ハードコート層の表面抵抗値がより低下する点、赤外光を透過する点で、酸化錫、リンドープ酸化錫やフッ素ドープ酸化錫が好ましく、リンドープ酸化錫が特に好ましい。
(Metal oxide)
The metal oxide has a function of increasing the hardness of the hard coat layer and a function of decreasing the surface resistance value.
The type of metal oxide is not particularly limited. For example, tin oxide, antimony pentoxide, zinc antimonate, antimony doped tin oxide, tin doped indium oxide, titanium dioxide, zirconia, zinc oxide, phosphorus doped tin oxide, fluorine doped Examples thereof include tin oxide (FTO), niobium-doped tin oxide, and tantalum-doped tin oxide. Among these, tin oxide, phosphorus-doped tin oxide, and fluorine-doped tin oxide are preferable, and phosphorus-doped tin oxide is particularly preferable in that the surface resistance value of the hard coat layer is further reduced and infrared light is transmitted.
 金属酸化物の平均粒子径は特に制限されないが、ハードコート層中における金属酸化物の分散性がより優れ、各種性能(砂塵に対する耐付着性、油に対する耐付着性、または耐傷性および耐汚染性)のいずれかがより優れる点(以後、「本発明の効果がより優れる点」とも称する)で、1~100nmが好ましく、透過性を高め塗膜のヘイズを下げる観点から、1~50nmがより好ましい。
 上記平均粒子径は以下のようにして算出される。金属酸化物分散液のTEM観察により得られた像を、画像処理ソフトImageJに取り込み、画像処理を施した。画像処理は、数視野のTEM像から任意に抽出した500点の粒子に関して行った。TEM像から算出される粒子の面積と同面積となる円の直径を粒径とした。500点の粒子に関して同様の処理を行い、その平均値を平均粒子径とする。
The average particle diameter of the metal oxide is not particularly limited, but the dispersibility of the metal oxide in the hard coat layer is superior, and various performances (adhesion resistance to dust, adhesion to oil, or scratch resistance and contamination resistance) ) Is preferably 1 to 100 nm, and from the viewpoint of increasing the transparency and reducing the haze of the coating film, 1 to 50 nm is more preferable. preferable.
The average particle diameter is calculated as follows. An image obtained by TEM observation of the metal oxide dispersion was taken into image processing software ImageJ and subjected to image processing. The image processing was performed on 500 particles arbitrarily extracted from TEM images of several fields of view. The diameter of a circle having the same area as the particle area calculated from the TEM image was taken as the particle diameter. The same processing is performed on 500 particles, and the average value is defined as the average particle diameter.
 ハードコート層中における金属酸化物の含有量は、本発明の効果がより優れる点で、上記ハードコート層の全質量に対して1~50質量%であり、本発明の効果がより優れる点で、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましく、40質量%以下が好ましく、35質量%以下がより好ましい。
 含有量が1質量%以上の場合、表面抵抗値が十分低下するため、砂塵に対する耐付着性及び耐傷性に優れる。50質量%以下の場合、表面抵抗値を十分に低下しつつ、ハードコート層中に占める金属酸化物が過剰に多くなることが抑制されることにより脆弱になりにくく、耐傷性が優れる。
The content of the metal oxide in the hard coat layer is 1 to 50% by mass with respect to the total mass of the hard coat layer in that the effect of the present invention is more excellent, and the effect of the present invention is more excellent. 10 mass% or more is preferable, 15 mass% or more is more preferable, 20 mass% or more is further more preferable, 40 mass% or less is preferable, and 35 mass% or less is more preferable.
When the content is 1% by mass or more, the surface resistance value is sufficiently lowered, so that the adhesion to sand dust and scratch resistance are excellent. In the case of 50% by mass or less, the surface resistance value is sufficiently reduced, and the metal oxide occupying the hard coat layer is suppressed from being excessively increased, so that it is difficult to become brittle and scratch resistance is excellent.
 ハードコート層表面の表面自由エネルギーは30mN/m以下であり、本発明の効果がより優れる点で、26mN/m以下が好ましく、24mN/m以下がより好ましい。下限は特に制限されないが、15mN/m以上の場合が多い。
 表面自由エネルギーは、水およびヨウ化メチレンの2液静的接触角を測定し、得られた値から所定の公式(ヤングの式、オーウェンスの式)により算出される。
The surface free energy on the surface of the hard coat layer is 30 mN / m or less, and 26 mN / m or less is preferable and 24 mN / m or less is more preferable in that the effect of the present invention is more excellent. The lower limit is not particularly limited, but is often 15 mN / m or more.
The surface free energy is calculated according to a predetermined formula (Young's formula, Owens' formula) from the obtained values by measuring the two-component static contact angle of water and methylene iodide.
 ハードコート層表面の表面抵抗値は1×1013Ω/□(ohms per square)未満であり、本発明の効果がより優れる点で、1×1012Ω/□以下が好ましく、1×1011Ω/□以下がより好ましく、1×1010Ω/□以下がさらに好ましく、1×10Ω/□以下がさらに好ましい。
 表面抵抗値は、ハイレスタMCP-HT450型((株)三菱化学アナリテック製)、URSプローブを用いて測定される。
The surface resistance of the hard coat layer surface is less than 1 × 10 13 Ω / □ ( ohms per square), in that the effect of the present invention is more excellent, preferably 1 × 10 12 Ω / □ or less, 1 × 10 11 Ω / □ or less is more preferable, 1 × 10 10 Ω / □ or less is more preferable, and 1 × 10 9 Ω / □ or less is more preferable.
The surface resistance value is measured using Hiresta MCP-HT450 type (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) and URS probe.
 ハードコート層表面の鉛筆硬度が2H以上であり、本発明の効果がより優れる点で、3H以上が好ましく、砂塵耐傷性より優れる点で、4H以上がより好ましい。
 鉛筆硬度の測定方法は、JIS K 5600-5-4に準じて行われる。
The pencil hardness on the surface of the hard coat layer is 2H or higher, 3H or higher is preferable from the viewpoint that the effects of the present invention are more excellent, and 4H or higher is more preferable from the viewpoint that it is superior to dust scratch resistance.
The pencil hardness is measured according to JIS K 5600-5-4.
 ハードコート層表面の水接触角は特に制限されないが、本発明の効果がより優れる点で、90°以上が好ましく、95°以上がより好ましく、100°以上がさらに好ましい。
 水接触角の測定方法は、ハードコート層表面の接触角(静的接触角)をDrop Master700(協和界面科学(株))を用いて測定される。具体的には、シリンジ部をAUTO DISPENSER AD-31に接続し、一定量の純水をシリンジから押し出してハードコート層表面に着滴させる。
 また、ハードコート層表面に対するヨウ化メチレンの接触角は特に制限されないが、本発明の効果がより優れる点で、60°以上が好ましく、63°以上がより好ましく、67°以上がさらに好ましく、70°以上が特に好ましい。
 ヨウ化メチレンの接触角の測定方法は、ハードコート層表面の接触角(静的接触角)をDrop Master700(協和界面科学(株))を用いて測定される。具体的には、シリンジ部をAUTO DISPENSER AD-31に接続し、一定量のヨウ化メチレンをシリンジから押し出してハードコート層表面に着滴させる。
Although the water contact angle on the surface of the hard coat layer is not particularly limited, it is preferably 90 ° or more, more preferably 95 ° or more, and further preferably 100 ° or more from the viewpoint that the effect of the present invention is more excellent.
In the method for measuring the water contact angle, the contact angle (static contact angle) of the hard coat layer surface is measured using Drop Master 700 (Kyowa Interface Science Co., Ltd.). Specifically, the syringe part is connected to the AUTO DISPENSER AD-31, and a certain amount of pure water is pushed out of the syringe and deposited on the surface of the hard coat layer.
Further, the contact angle of methylene iodide with respect to the hard coat layer surface is not particularly limited, but is preferably 60 ° or more, more preferably 63 ° or more, still more preferably 67 ° or more, in view of more excellent effects of the present invention, 70 It is particularly preferable that the angle is at least.
As a method for measuring the contact angle of methylene iodide, the contact angle (static contact angle) of the hard coat layer surface is measured using Drop Master 700 (Kyowa Interface Science Co., Ltd.). Specifically, the syringe part is connected to the AUTO DISPENSER AD-31, and a certain amount of methylene iodide is pushed out of the syringe and deposited on the surface of the hard coat layer.
 ハードコート層の形成方法は特に制限されないが、ハードコート層の厚みの制御が容易である点から、(メタ)アクリロイル基を有する重合性化合物および金属酸化物を少なくとも含有するハードコート層形成用組成物を支持体上に塗布して、硬化させる方法が挙げられる。
 塗布方法は特に制限されず、公知の塗布法(例えば、グラビアコート法、リバースコート法、ダイコート法、ブレードコーター、ロールコーター、エアナイフコーター、スクリーンコーター、バーコーター、カーテンコーター等など)が挙げられる。
 硬化方法は使用される(メタ)アクリロイル基を有する重合性化合物の種類により適宜最適な方法が選択されるが、通常、加熱処理または光照射処理が実施される。
The method for forming the hard coat layer is not particularly limited, but a composition for forming a hard coat layer containing at least a polymerizable compound having a (meth) acryloyl group and a metal oxide from the viewpoint of easy control of the thickness of the hard coat layer. The method of apply | coating an object on a support body and making it harden | cure is mentioned.
The coating method is not particularly limited, and examples include known coating methods (for example, gravure coating method, reverse coating method, die coating method, blade coater, roll coater, air knife coater, screen coater, bar coater, curtain coater, etc.).
As the curing method, an optimal method is appropriately selected depending on the type of the polymerizable compound having a (meth) acryloyl group to be used, but usually a heat treatment or a light irradiation treatment is performed.
 ハードコート層形成用組成物に含まれる「(メタ)アクリロイル基を有する重合性化合物」および「金属酸化物」の定義は、上述の通りである。(メタ)アクリロイル基を有する重合性化合物と金属酸化物との含有量の比は、ハードコート層中における金属酸化物の含有量が上記範囲になるように、適宜設定される。
 また、ハードコート層形成用組成物には、「(メタ)アクリロイル基を有する重合性化合物」および「金属酸化物」、以外の他の成分が含まれていてもよい。
 例えば、本発明の効果がより優れる点で、ハードコート層形成用組成物は、さらに、「重合性基を有さないフッ素化合物」を含有することが好ましい。
 また、本発明の効果がより優れる点で、他の好ましい態様としては、(メタ)アクリロイル基を有する重合性化合物が、(メタ)アクリロイル基と共に、フッ素原子を有する重合性化合物(以後、「フッ素含有(メタ)アクリレート」とも称する)を少なくとも含有することが挙げられる。
 最も好ましくは、ハードコート層形成用組成物が、「重合性基を有さないフッ素化合物」をさらに含有し、かつ、「(メタ)アクリロイル基を有する重合性化合物」がフッ素含有(メタ)アクリレートを少なくとも含有する態様(以後、「態様X」とも称する)が挙げられる。
 態様Xにおいてより優れた効果が得られる理由としては、フッ素含有(メタ)アクリレートは化学結合を介してハードコート層内部に残り、重合性基を有さないフッ素化合物は表面に移動するため、ハードコート層全体に渡ってフッ素化合物が満遍なく存在するためと推測される。
The definitions of “polymerizable compound having (meth) acryloyl group” and “metal oxide” contained in the composition for forming a hard coat layer are as described above. The ratio of the content of the polymerizable compound having a (meth) acryloyl group and the metal oxide is appropriately set so that the content of the metal oxide in the hard coat layer falls within the above range.
In addition, the hard coat layer forming composition may contain other components other than “polymerizable compound having (meth) acryloyl group” and “metal oxide”.
For example, it is preferable that the composition for forming a hard coat layer further contains “a fluorine compound having no polymerizable group” in that the effect of the present invention is more excellent.
In addition, as another preferred embodiment, the polymerizable compound having a (meth) acryloyl group is a polymerizable compound having a fluorine atom together with a (meth) acryloyl group (hereinafter referred to as “fluorine”). Containing at least (containing (meth) acrylate).
Most preferably, the composition for forming a hard coat layer further contains a “fluorine compound having no polymerizable group”, and the “polymerizable compound having a (meth) acryloyl group” is a fluorine-containing (meth) acrylate. The aspect (henceforth "the aspect X") which contains at least is mentioned.
The reason why a more excellent effect can be obtained in the aspect X is that the fluorine-containing (meth) acrylate remains inside the hard coat layer through a chemical bond, and the fluorine compound having no polymerizable group moves to the surface. This is presumably because the fluorine compound is present uniformly throughout the coat layer.
 「重合性基を有さないフッ素化合物」としては、いわゆるフッ素系界面活性剤などが挙げられる。なお、重合性基とは、例えば、(メタ)アクリロイル基や、ビニル基などのラジカル重合性基や、カチオン重合性基などが挙げられる。
 フッ素系界面活性剤の市販品としては、大日本インキ化学工業製 商品名:メガファックF-443、F-444、F-445、F-446、F-475、F-142D、F-144D、F-171、F-172、F-173、F-177、F-178A、F-178K、F-179、F-179A、F-183、F-184、F-191、F-812、F-815、F-1405、F410、F-443、F―445、F―450、F―471、F-472SF、F-475、F―479、F―482、R-30、MCF-350、TF1025、(株)ジェムコ製 商品名:EFTOP EF-101、EF-121、EF-122B、EF-122C、EF-122A3、EF-121、EF-123A、EF-123B、EF-126、EF-127、EF-301、EF-302、EF-351、EF-352、EF-601、EF-801、EF-802、(株)ネオス製 商品名:フタージェント250、251、222F、FTX-218、212M、245M、290M、FTX-207S、FTX-211S、FTX-220S、FTS-230S、FTX-209F、FTX-213F、FTX-233F、FTX-245F、FTX-208G、FTX-218G、FTX-230G、FTS-240G、FTX-204D、FTX-208D、FTX-212D、FTX-216D、FTX-218D、FTX-220D、FTX-222D、FTX-720C、FTX-740C、セイミケミカル(株)製 商品名:サーフロンS-111、S-112、S-113、S-121、S-131、S-132、S-141、S-145、S-381、S-383、S-393、S-101、KH-40、SA-100等が挙げられる。
Examples of the “fluorine compound having no polymerizable group” include so-called fluorine surfactants. Examples of the polymerizable group include a (meth) acryloyl group, a radical polymerizable group such as a vinyl group, and a cationic polymerizable group.
Commercially available fluorine-based surfactants are trade names manufactured by Dainippon Ink and Chemicals, Inc .: MegaFuck F-443, F-444, F-445, F-446, F-475, F-142D, F-144D, F-171, F-172, F-173, F-177, F-178A, F-178K, F-179, F-179A, F-183, F-184, F-191, F-812, F- 815, F-1405, F410, F-443, F-445, F-450, F-471, F-472SF, F-475, F-479, F-482, R-30, MCF-350, TF1025, Trade name: EFTOP EF-101, EF-121, EF-122B, EF-122C, EF-122A3, EF-121, EF-123A, EF-123B, EF-126 F-127, EF-301, EF-302, EF-351, EF-352, EF-601, EF-801, EF-802, manufactured by Neos Co., Ltd. Trade name: Footage 250, 251, 222F, FTX- 218, 212M, 245M, 290M, FTX-207S, FTX-211S, FTX-220S, FTS-230S, FTX-209F, FTX-213F, FTX-233F, FTX-245F, FTX-208G, FTX-218G, FTX- 230G, FTS-240G, FTX-204D, FTX-208D, FTX-212D, FTX-216D, FTX-218D, FTX-220D, FTX-222D, FTX-720C, FTX-740C, manufactured by Seimi Chemical Co., Ltd. : Surflon S-111, S-112, S- 113, S-121, S-131, S-132, S-141, S-145, S-381, S-383, S-393, S-101, KH-40, SA-100, and the like.
 フッ素含有(メタ)アクリレートとは、(メタ)アクリロイル基およびフッ素原子を含む重合性化合物であり、その構造は特に制限されない。また、フッ素含有(メタ)アクリレートは、いわゆるフッ素原子を含む(メタ)アクリレートモノマー(単量体)またはオリゴマーであってもよい。また、(メタ)アクリロイル基の数も特に制限されず、1つであっても、2つ以上であってもよい。
 該フッ素含有(メタ)アクリレートとしては、市販品を使用することができ、例えば、ビームセット1402(荒川化学工業(株)製)、ビームセット1461(荒川化学工業(株)製)、FH-700(DIC(株)製)、メガファックRS-75(DIC(株)製)(パーフルオロポリエーテル(メタ)アクリレート)などが挙げられる。
 なお、ハードコート層形成用組成物中の「(メタ)アクリロイル基を有する重合性化合物」は、上記フッ素含有(メタ)アクリレートと共に、「フッ素原子を有さない(メタ)アクリロイル基」を有する重合性化合物(以後、「フッ素不含有(メタ)アクリレート」とも称する)を含有していてもよい。
 つまり、ハードコート層形成用組成物は、「フッ素含有(メタ)アクリレート」および「フッ素不含有(メタ)アクリレート」を含有する態様Aであってもよいし、「フッ素含有(メタ)アクリレート」、「フッ素不含有(メタ)アクリレート」、および、「重合性基を有さないフッ素原子化合物」を含有する態様Bであってもよい。
 なお、態様Bの場合、フッ素含有(メタ)アクリレートは、ハードコート層形成用組成物中の全固形分に対して、0.1~10質量%含まれることが好ましい。なお、固形分とは、ハードコート層を構成する成分を意図し、溶媒は含まれない。
The fluorine-containing (meth) acrylate is a polymerizable compound containing a (meth) acryloyl group and a fluorine atom, and its structure is not particularly limited. The fluorine-containing (meth) acrylate may be a so-called (meth) acrylate monomer (monomer) or oligomer containing a fluorine atom. Further, the number of (meth) acryloyl groups is not particularly limited, and may be one or two or more.
As the fluorine-containing (meth) acrylate, commercially available products can be used. For example, Beam Set 1402 (Arakawa Chemical Industry Co., Ltd.), Beam Set 1461 (Arakawa Chemical Industries Co., Ltd.), FH-700 (Manufactured by DIC Corporation), MegaFac RS-75 (manufactured by DIC Corporation) (perfluoropolyether (meth) acrylate), and the like.
The “polymerizable compound having a (meth) acryloyl group” in the composition for forming a hard coat layer is a polymerization having a “(meth) acryloyl group not having a fluorine atom” together with the fluorine-containing (meth) acrylate. (Hereinafter also referred to as “fluorine-free (meth) acrylate”).
That is, the composition for forming a hard coat layer may be an embodiment A containing “fluorine-containing (meth) acrylate” and “fluorine-free (meth) acrylate”, “fluorine-containing (meth) acrylate”, It may be an embodiment B containing "fluorine-free (meth) acrylate" and "fluorine atom compound having no polymerizable group".
In the case of aspect B, the fluorine-containing (meth) acrylate is preferably contained in an amount of 0.1 to 10% by mass with respect to the total solid content in the composition for forming a hard coat layer. In addition, solid content intends the component which comprises a hard-coat layer, and a solvent is not contained.
 また、ハードコート層形成用組成物には、溶媒が含まれていてもよい。溶媒としては、具体的には、水、炭素数1~6個の一価アルコール、炭素数1~6個の二価アルコール、グリセリンなどのアルコール類;ホルムアミド、N-メチルホルムアミド、N-エチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N-エチルアセトアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルピロリドンなどのアミド類;テトラヒドロフラン、ジエチルエーテル、ジ(n-プロピル)エーテル、ジイソプロピルエーテル、ジグライム、1,4-ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテルなどのエーテル類;ギ酸エチル、酢酸メチル、酢酸エチル、乳酸エチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート、炭酸ジエチル、炭酸エチレン、炭酸プロピレンなどのエステル類;アセトン、メチルエチルケトン、メチルプロピルケトン、メチル(n-ブチル)ケトン、メチルイソブチルケトン、メチルアミルケトン、シクロペンタノン、シクロヘキサノンなどのケトン類;アセトニトリル、プロピオニトリル、n-ブチロニトリル、イソブチロニトリルなどのニトリル類;ジメチルスルホキシド、ジメチルスルホン、スルホランなどが好適に用いられる。 Moreover, the hard coat layer forming composition may contain a solvent. Specific examples of the solvent include water, monohydric alcohols having 1 to 6 carbon atoms, dihydric alcohols having 1 to 6 carbon atoms, and alcohols such as glycerin; formamide, N-methylformamide, N-ethylformamide Amides such as N, N-dimethylformamide, N, N-diethylformamide, N-methylacetamide, N-ethylacetamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methylpyrrolidone; Diethyl ether, di (n-propyl) ether, diisopropyl ether, diglyme, 1,4-dioxane, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, pro Ethers such as lenglycol dimethyl ether; esters such as ethyl formate, methyl acetate, ethyl acetate, ethyl lactate, ethylene glycol monomethyl ether acetate, ethylene glycol diacetate, propylene glycol monomethyl ether acetate, diethyl carbonate, ethylene carbonate, propylene carbonate; Ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl (n-butyl) ketone, methyl isobutyl ketone, methyl amyl ketone, cyclopentanone, cyclohexanone; acetonitrile, propionitrile, n-butyronitrile, isobutyronitrile, etc. Nitriles; dimethyl sulfoxide, dimethyl sulfone, sulfolane and the like are preferably used.
 ハードコート層形成用組成物には、重合開始剤が含まれていてもよい。重合開始剤としては、光重合開始剤や熱重合開始剤などが挙げられ、硬化条件に応じて最適な重合開始剤が選択される。 The hard coat layer forming composition may contain a polymerization initiator. Examples of the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator, and an optimal polymerization initiator is selected according to the curing conditions.
[ハードコートフィルム]
 上述した支持体およびハードコート層を有するハードコートフィルムの近赤外光(波長780nm~1700nm)における平均透過率は特に制限されないが、下地となる金属反射層の反射光を低下させない点で、85%以上が好ましく、90%以上がより好ましく、95%以上が特に好ましい。平均透過率は、例えば、紫外可視近赤外分光光度計UV-3100(島津製作所社製)などを用いて測定することができる。
[Hard coat film]
The average transmittance of the hard coat film having the support and the hard coat layer described above in the near-infrared light (wavelength 780 nm to 1700 nm) is not particularly limited. % Or more is preferable, 90% or more is more preferable, and 95% or more is particularly preferable. The average transmittance can be measured using, for example, an ultraviolet-visible near-infrared spectrophotometer UV-3100 (manufactured by Shimadzu Corporation).
<第2の実施形態>
 以下に、本発明のハードコートフィルムの第2の実施形態について図面を参照して説明する。図2に、本発明のハードコートフィルムの一実施形態の断面図を示す。
 ハードコートフィルム110は、支持体12と、金属反射層16と、ハードコート層14とをこの順で有する。該ハードコートフィルム110は、後述するように光を反射するフィルムミラーとして用いることができる。フィルムミラーにおいて、ハードコート層14は、光が入射する表面を形成する。本実施形態において、光が入射する表面は、支持体12とは反対側の面であり、金属反射層16に光が入射する側の面を意味する。
 図2に示すハードコートフィルム110は、金属反射層16を備える点を除いて、図1に示すハードコートフィルム10と同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略し、以下では主として金属反射層16について詳述する。
<Second Embodiment>
Below, 2nd Embodiment of the hard coat film of this invention is described with reference to drawings. In FIG. 2, sectional drawing of one Embodiment of the hard coat film of this invention is shown.
The hard coat film 110 has the support body 12, the metal reflective layer 16, and the hard coat layer 14 in this order. The hard coat film 110 can be used as a film mirror that reflects light as described later. In the film mirror, the hard coat layer 14 forms a surface on which light is incident. In the present embodiment, the surface on which light is incident is the surface on the side opposite to the support 12 and means the surface on the side on which light is incident on the metal reflection layer 16.
Since the hard coat film 110 shown in FIG. 2 has the same configuration as the hard coat film 10 shown in FIG. 1 except that the metal reflective layer 16 is provided, the same reference numerals denote the same components. The description is omitted, and the metal reflective layer 16 will be mainly described in detail below.
[金属反射層]
 金属反射層は、支持体上に設けられる層であり、ハードコート層14側から入射する光を反射する機能を有する。
 金属反射層の形成材料は、可視光および赤外光を反射する金属材料であれば、特に限定されず、例えば、銀、アルミニウム等が挙げられる。光の反射性能の観点からは、銀、または、銀を含む合金が好ましい。銀または銀を含む合金は、ハードコートフィルムの可視光領域での反射率を高め、入射角による反射率の依存性を低減できる。可視光領域とは、400~700nmの波長領域を意味する。ここで、入射角とは層面に対して垂直な線に対する角度を意味する。
 銀合金としては、金属反射層の耐久性が向上する点から、金属反射層の反射特性に影響がない程度において、他の金属、例えば、金、パラジウム、銅、ニッケル、鉄、ガリウム、インジウム、チタン、およびビスマスからなる群の金属から選ばれる1種以上の金属を含んでいてもよい。銀合金としては、銀と、金、銅、ニッケル、鉄、パラジウムから選ばれる1種以上の金属との合金が、耐湿熱性、反射率等の観点から特に好ましい。
[Metal reflective layer]
The metal reflection layer is a layer provided on the support and has a function of reflecting light incident from the hard coat layer 14 side.
The material for forming the metal reflective layer is not particularly limited as long as it is a metal material that reflects visible light and infrared light, and examples thereof include silver and aluminum. From the viewpoint of light reflection performance, silver or an alloy containing silver is preferable. Silver or an alloy containing silver can increase the reflectance of the hard coat film in the visible light region, and can reduce the dependency of the reflectance on the incident angle. The visible light region means a wavelength region of 400 to 700 nm. Here, the incident angle means an angle with respect to a line perpendicular to the layer surface.
As a silver alloy, from the point that the durability of the metal reflective layer is improved, other metals such as gold, palladium, copper, nickel, iron, gallium, indium, etc. One or more metals selected from the group consisting of titanium and bismuth may be included. As the silver alloy, an alloy of silver and one or more metals selected from gold, copper, nickel, iron, and palladium is particularly preferable from the viewpoint of heat and humidity resistance, reflectance, and the like.
 例えば、金属反射層が銀合金からなる層である場合、銀の含有量は、金属反射層における銀と他の金属との合計(100原子%)中、90~99.8原子%が好ましい。また、他の金属の含有量は、耐久性の点から0.2~10原子%が好ましい。 For example, when the metal reflective layer is a layer made of a silver alloy, the silver content is preferably 90 to 99.8 atomic% in the total (100 atomic%) of silver and other metals in the metallic reflective layer. The content of other metals is preferably 0.2 to 10 atomic% from the viewpoint of durability.
 金属反射層の表面粗さ(Ra)は、20nm以下であることが好ましく、10nm以下であることがより好ましく、5nm以下であることが更に好ましい。この範囲内とすることで、得られたハードコートフィルムの反射率が向上し、太陽光を効率良く集光することが可能となる。 The surface roughness (Ra) of the metal reflective layer is preferably 20 nm or less, more preferably 10 nm or less, and even more preferably 5 nm or less. By setting it within this range, the reflectance of the obtained hard coat film is improved, and sunlight can be collected efficiently.
 金属反射層の形成方法は、特に限定されず、湿式法または乾式法のいずれを採用してもよい。湿式法としては、例えば、電気めっき法が挙げられる。乾式法としては、例えば、真空蒸着法、スパッタ法、イオンプレーティング法等が挙げられる。
 以下、金属反射層を電気めっき法により形成する場合について、説明する。電気めっき法としては、従来公知の方法を用いることができる。後述する第4の実施形態に示すように、支持体上にめっき下塗りポリマー層を形成する場合、めっき下塗りポリマー層に含まれる金属粒子が電極としての機能を有するため、めっき下塗りポリマー層に対して電気めっきを行なうことにより、支持体との密着性に優れた金属反射層を形成することができる。めっきに用いられる金属化合物としては、例えば、硝酸銀、酢酸銀、硫酸銀、炭酸銀、メタンスルホン酸銀、アンモニア銀、シアン化銀、チオシアン酸銀、塩化銀、臭化銀、クロム酸銀、クロラニル酸銀、サリチル酸銀、ジエチルジチオカルバミン酸銀、ジエチルジチオカルバミド酸銀、p-トルエンスルホン酸銀等の銀化合物が挙げられる。これらの中でも、環境影響や平滑性の観点から、メタンスルホン酸銀が好ましい。
The formation method of a metal reflective layer is not specifically limited, Either a wet method or a dry method may be employ | adopted. Examples of the wet method include an electroplating method. Examples of the dry method include a vacuum deposition method, a sputtering method, and an ion plating method.
Hereinafter, a case where the metal reflective layer is formed by electroplating will be described. A conventionally known method can be used as the electroplating method. As shown in the fourth embodiment to be described later, when the plating undercoat polymer layer is formed on the support, the metal particles contained in the plating undercoat polymer layer have a function as an electrode. By performing electroplating, it is possible to form a metal reflective layer having excellent adhesion to the support. Examples of metal compounds used for plating include silver nitrate, silver acetate, silver sulfate, silver carbonate, silver methanesulfonate, silver ammonia, silver cyanide, silver thiocyanate, silver chloride, silver bromide, silver chromate, and chloranil. Examples thereof include silver compounds such as silver oxide, silver salicylate, silver diethyldithiocarbamate, silver diethyldithiocarbamate, and silver p-toluenesulfonate. Among these, silver methanesulfonate is preferable from the viewpoint of environmental impact and smoothness.
 なお、めっき下塗りポリマー層と金属反射層との間には、例えば、銅、ニッケル、クロム、鉄等の他の金属を含有する金属層を下地金属層として有していてもよい。
 また、電気めっき法により得られる金属反射層の膜厚は、めっき浴中に含まれる金属濃度、または、電流密度を調整することで制御することができる。適切な厚みの下地金属層を入れることで、表面平滑化による反射率向上やピンホール低減が可能となる。
 金属反射層の膜厚は、ピンホールなく反射膜を形成する観点、および、金属反射層の表面に光を散乱させるような凹凸を作らないという観点から、0.05~2.0μmが好ましく、0.08~0.5μmがより好ましい。
In addition, between the plating undercoat polymer layer and the metal reflective layer, for example, a metal layer containing another metal such as copper, nickel, chromium, iron, or the like may be provided as a base metal layer.
Moreover, the film thickness of the metal reflective layer obtained by the electroplating method can be controlled by adjusting the metal concentration contained in the plating bath or the current density. By adding a base metal layer having an appropriate thickness, it is possible to improve reflectance and reduce pinholes by smoothing the surface.
The film thickness of the metal reflection layer is preferably 0.05 to 2.0 μm from the viewpoint of forming a reflection film without pinholes and not forming irregularities that scatter light on the surface of the metal reflection layer. It is more preferably 0.08 to 0.5 μm.
 また、還元された金属粒子を含むめっき下塗りポリマー層を利用して真空蒸着等の乾式めっきを行なうことにより、金属反射層を形成してもよい。この方法によれば、めっき下塗りポリマー層の表面が金属で覆われているため、通常の蒸着等よりも密着性がよく、かつ、熱に対しても強い金属反射層を形成することができる。 Further, the metal reflective layer may be formed by performing dry plating such as vacuum deposition using a plating undercoat polymer layer containing reduced metal particles. According to this method, since the surface of the plating undercoat polymer layer is covered with metal, it is possible to form a metal reflective layer that has better adhesion than normal vapor deposition and is strong against heat.
 電気めっきの後、金属反射層の反射性能や耐久性を向上させるために、金属反射層を強酸や強アルカリ等で処理してもよい。また、金属反射層表面に、無機皮膜や金属酸化皮膜を形成してもよい。また、金属反射層表面に、変色防止剤を含有する変色防止剤層を設けてもよい。変色防止剤層は、金属反射層の変色防止に機能する。変色防止剤としては、チオエーテル系、チオール系、Ni系有機化合物系、ベンゾトリアゾール系、イミダゾール系、オキサゾール系、テトラザインデン系、ピリミジン系、チアジアゾール系等の変色防止剤が挙げられる。変色防止剤層は、大別して、金属を吸着する吸着基を有するものや、酸化防止剤が好ましく用いられる。 After the electroplating, the metal reflective layer may be treated with strong acid or strong alkali in order to improve the reflection performance and durability of the metal reflective layer. Moreover, you may form an inorganic membrane | film | coat and a metal oxide film in the metal reflective layer surface. Moreover, you may provide the discoloration prevention agent layer containing a discoloration prevention agent in the metal reflective layer surface. The anti-discoloring agent layer functions to prevent discoloration of the metal reflective layer. Examples of the discoloration preventing agent include thioether-based, thiol-based, Ni-based organic compound-based, benzotriazole-based, imidazole-based, oxazole-based, tetrazaindene-based, pyrimidine-based and thiadiazole-based discoloration preventing agents. The anti-discoloring agent layer is broadly classified, and those having an adsorbing group that adsorbs metals and antioxidants are preferably used.
 上記第2の実施形態のハードコートフィルムは、フィルムミラー(反射鏡)として好適に用いることができる。なかでも、太陽光の集光用として好適に用いることができる。その応用態様としては、例えば、太陽光反射板への適用が挙げられる。より具体的には、樹脂、金属、およびセラミックのいずれかからなる基板や枠体に、金属反射層を含むハードコートフィルムを固定化することで、金属反射層による鏡面を作製し、太陽光反射板を作製することができる。このようにして作製された複数のミラーユニットを配置して太陽光を効率的に集光することが好ましい。特に、上記ミラーユニットを太陽の日周運動に追尾させる太陽光追尾システムと、を備えることで、より効率的な太陽光の集光を実現できる。
 また、上記第2の実施形態のハードコートフィルムを採光用ミラーとして使用してもよい。上記第2の実施形態のハードコートフィルムは柔軟性を有するため、曲率を有する表面への追従性がよいので、そのような表面上に設置することも好ましい。
The hard coat film of the second embodiment can be suitably used as a film mirror (reflecting mirror). Among these, it can be suitably used for collecting sunlight. As the application mode, for example, application to a sunlight reflecting plate can be mentioned. More specifically, a hard coat film including a metal reflection layer is fixed to a substrate or frame made of any of resin, metal, and ceramic, thereby creating a mirror surface by the metal reflection layer and reflecting sunlight. A plate can be made. It is preferable to efficiently collect sunlight by arranging a plurality of mirror units thus manufactured. In particular, more efficient sunlight collection can be realized by including a solar light tracking system that tracks the mirror unit in the diurnal motion of the sun.
Further, the hard coat film of the second embodiment may be used as a daylighting mirror. Since the hard coat film of the second embodiment has flexibility, it has good followability to a surface having a curvature, so that it is also preferable to install it on such a surface.
<第3の実施形態>
 以下に、本発明のハードコートフィルムの第3の実施形態について図面を参照して説明する。図3に、本発明のハードコートフィルムの一実施形態の断面図を示す。
 ハードコートフィルム210は、支持体12と、金属反射層16と、保護層18と、ハードコート層14とをこの順で有する。該ハードコートフィルム210は、後述するように光を反射するフィルムミラーとして用いることができる。
 図3に示すハードコートフィルム210は、保護層18を備える点を除いて、図2に示すハードコートフィルム110と同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略し、以下では主として保護層18について詳述する。
<Third Embodiment>
Below, 3rd Embodiment of the hard coat film of this invention is described with reference to drawings. In FIG. 3, sectional drawing of one Embodiment of the hard coat film of this invention is shown.
The hard coat film 210 includes the support 12, the metal reflective layer 16, the protective layer 18, and the hard coat layer 14 in this order. The hard coat film 210 can be used as a film mirror that reflects light as described later.
The hard coat film 210 shown in FIG. 3 has the same configuration as that of the hard coat film 110 shown in FIG. 2 except that the hard coat film 210 includes the protective layer 18. The description thereof will be omitted, and the protective layer 18 will be mainly described in detail below.
[保護層]
 保護層は、ハードコート層と金属反射層との密着性を高めると共に、金属反射層の鏡面性の安定化を図るために設けられる層で、金属反射層の入射光側の表面上に設けられる層である。
 保護層の形成に用いられる樹脂材料としては、フィルムまたは層を形成しうる樹脂であって、形成されたフィルムまたは層の強度、耐久性、空気や水分の遮断性、さらには、ハードコート層との密着性に加え、透明性、特にフィルムミラーが必要とする波長の光に対する高い透過性を有する樹脂が好ましい。
 保護層を形成する材料としては、例えば、ウレタン(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂、シリコーン(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂などの光硬化性樹脂;ウレタン樹脂、フェノール樹脂、ユリア樹脂(尿素樹脂)、フェノキシ樹脂、シリコーン樹脂、ポリイミド樹脂、ジアリルフタレート樹脂、フラン樹脂、ビスマレイミド樹脂、シアネート樹脂などの熱硬化性樹脂;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
[Protective layer]
The protective layer is a layer provided to improve the adhesion between the hard coat layer and the metal reflective layer and to stabilize the specularity of the metal reflective layer, and is provided on the incident light side surface of the metal reflective layer. Is a layer.
The resin material used for forming the protective layer is a resin that can form a film or a layer, and the strength or durability of the formed film or layer, air and moisture blocking properties, and further, a hard coat layer and In addition to the adhesiveness, a resin having transparency, particularly high transparency to light having a wavelength required by the film mirror is preferable.
Examples of the material for forming the protective layer include photocurable resins such as urethane (meth) acrylate resins, polyester (meth) acrylate resins, silicone (meth) acrylate resins, and epoxy (meth) acrylate resins; urethane resins and phenol resins. And thermosetting resins such as urea resin (urea resin), phenoxy resin, silicone resin, polyimide resin, diallyl phthalate resin, furan resin, bismaleimide resin, cyanate resin, etc., and these can be used alone. Or two or more of them may be used in combination.
 これらのうち、ウレタン結合を有する樹脂が好ましく、具体的には、光硬化性樹脂を用いるのがより好ましく、ハードコートフィルムの硬度を調整しやすい理由から、ウレタン(メタ)アクリレート樹脂が更に好ましい。上記ウレタン(メタ)アクリレート樹脂としては、例えば、ポリエステルポリオール(A)とポリイソシアネート(B)とを反応させてイソシアネート基末端ウレタンプレポリマーを合成した後に、水酸基含有(メタ)アクリレート化合物(C)を反応させて得られる生成物等が好適に挙げられる。
 ここで、上記ポリエステルポリオール(A)は、多塩基酸と多価アルコールとを反応させて得られるものであり、その具体例としては、ポリテトラメチレングリコール(PTMG)、ポリオキシプロピレンジオール(PPG)、ポリオキシエチレンジオール等が挙げられる。
 また、上記ポリイソシアネート(B)は、分子中にイソシアネート基を2個以上有するものであれば特に限定されず、その具体例としては、2,4-トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、キシリレンジイソシアネート(XDI)等が挙げられる。
 また、上記水酸基含有(メタ)アクリレート化合物(C)としては、具体的には、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリシドールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。
 上述したポリエステルポリオール(A)、ポリイソシアネート(B)および水酸基含有(メタ)アクリレート化合物(C)を用いて合成されるウレタン(メタ)アクリレート樹脂としては、市販品を用いることができ、具体的には、日本合成社製の紫外線硬化型ウレタンアクリレート樹脂、例えば、UV1700B、UV6300B、UV7600B等や、DIC社製のポリマー型アクリレート、例えばユニディックV-6840、ユニディックV-6841、ユニディックWHV-649、ユニディックEKS-675等を用いることができる。
Of these, a resin having a urethane bond is preferable. Specifically, it is more preferable to use a photocurable resin, and a urethane (meth) acrylate resin is more preferable because the hardness of the hard coat film is easily adjusted. As the urethane (meth) acrylate resin, for example, a polyester polyol (A) and a polyisocyanate (B) are reacted to synthesize an isocyanate group-terminated urethane prepolymer, and then a hydroxyl group-containing (meth) acrylate compound (C) is used. Preferable examples include products obtained by reaction.
Here, the polyester polyol (A) is obtained by reacting a polybasic acid and a polyhydric alcohol. Specific examples thereof include polytetramethylene glycol (PTMG) and polyoxypropylene diol (PPG). And polyoxyethylene diol.
The polyisocyanate (B) is not particularly limited as long as it has two or more isocyanate groups in the molecule. Specific examples thereof include 2,4-tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI). ), Hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), xylylene diisocyanate (XDI), and the like.
Specific examples of the hydroxyl group-containing (meth) acrylate compound (C) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Examples thereof include glycidol di (meth) acrylate and pentaerythritol tri (meth) acrylate.
As urethane (meth) acrylate resin synthesized using the above-described polyester polyol (A), polyisocyanate (B) and hydroxyl group-containing (meth) acrylate compound (C), commercially available products can be used. Are UV curable urethane acrylate resins manufactured by Nippon Gosei Co., Ltd., such as UV1700B, UV6300B, UV7600B, and polymer acrylates manufactured by DIC, such as Unidic V-6840, Unidic V-6841, Unidic WHV-649. Unidic EKS-675 or the like can be used.
 その他、保護層に用いることのできる樹脂としては、例えば、セルロースエステル系樹脂、ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリスルフォン(ポリエーテルスルフォンも含む)系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂、セルロースジアセテート樹脂、セルローストリアセテート樹脂、セルロースアセテートプロピオネート樹脂、セルロースアセテートブチレート樹脂、ポリビニルアルコール、ポリビニルブチラール、エチレンビニルアルコール樹脂、エチレン酢酸ビニル樹脂、およびエチレンアクリル酸エステル共重合体、ポリカーボネート、ノルボルネン系樹脂、ポリメチルペンテン樹脂、ポリアミド、フッ素系樹脂、ポリメチルメタクリレート、アクリル樹脂、ポリウレタン樹脂、シリコーン樹脂等を挙げることができる。
 これらのなかでも、保護層と金属反射層との密着性の観点から、保護層に含有される樹脂としては、アクリル樹脂、ポリビニルブチラール、エチレン酢酸ビニル樹脂、およびエチレンアクリル酸エステル共重合体から選ばれる1種以上の樹脂が好ましい。
Other resins that can be used for the protective layer include, for example, cellulose ester resins, polycarbonate resins, polyarylate resins, polysulfone (including polyether sulfone) resins, polyesters such as polyethylene terephthalate and polyethylene naphthalate. Resins, olefinic resins such as polyethylene, polypropylene, cellulose diacetate resin, cellulose triacetate resin, cellulose acetate propionate resin, cellulose acetate butyrate resin, polyvinyl alcohol, polyvinyl butyral, ethylene vinyl alcohol resin, ethylene vinyl acetate resin, and Ethylene acrylate copolymer, polycarbonate, norbornene resin, polymethylpentene resin, polyamide, fluorine resin , Polymethyl methacrylate, acrylic resins, polyurethane resins, and silicone resins.
Among these, from the viewpoint of adhesion between the protective layer and the metal reflective layer, the resin contained in the protective layer is selected from acrylic resin, polyvinyl butyral, ethylene vinyl acetate resin, and ethylene acrylate copolymer. One or more resins are preferred.
 保護層の厚みは特に制限されないが、砂塵耐傷性および耐砂付着性がより優れる理由から、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、5μm以上であることがさらに好ましく、10μm以上であることが特に好ましい。上限は特に制限されないが、通常、100μm以下であることが好ましく、50μm以下であることがより好ましい。 Although the thickness of the protective layer is not particularly limited, it is preferably 0.1 μm or more, more preferably 1 μm or more, and further preferably 5 μm or more, for the reason that dust scratch resistance and sand adhesion are more excellent. Preferably, it is 10 μm or more. The upper limit is not particularly limited, but is usually preferably 100 μm or less, and more preferably 50 μm or less.
 保護層の形成方法は特に限定されないが、例えば、光硬化性樹脂や熱硬化性樹脂を含有する保護層形成用組成物を上記金属反射層の表面に塗布した後、必要に応じて溶媒を除去して、紫外線照射や加熱によって硬化させる方法などが挙げられる。
 保護層の形成方法としては、上記以外にも上記保護層形成用組成物を用いて予めフィルム状に成形し、接着剤を介して得られたフィルムを金属反射層に貼り合わせるか、または、熱ラミネート等の方法で金属反射層に融着させるなどの方法により保護層を形成する方法等が挙げられる。
 以下では、上述した保護層形成用組成物を用いる態様について詳述する。
The method for forming the protective layer is not particularly limited. For example, the protective layer-forming composition containing a photocurable resin or a thermosetting resin is applied to the surface of the metal reflective layer, and then the solvent is removed as necessary. And a method of curing by ultraviolet irradiation or heating.
As a method for forming the protective layer, in addition to the above, the protective layer forming composition is used to form a film in advance, and the film obtained through the adhesive is bonded to the metal reflective layer, or heat Examples thereof include a method of forming a protective layer by a method such as laminating to the metal reflective layer by a method such as laminating.
Below, the aspect using the composition for protective layer formation mentioned above is explained in full detail.
 保護層形成用組成物の塗布方法は、グラビアコート法、リバースコート法、ダイコート法、ブレードコーター、ロールコーター、エアナイフコーター、スクリーンコーター、バーコーター、カーテンコーター等、従来公知のコーティング方法が使用できる。
 金属反射層の表面に塗布した保護層形成用組成物を硬化させる方法は、特に限定されず、加熱やUV照射等、保護層を形成するために用いた樹脂材料に応じた方法を適宜選択すればよい。
As a method for applying the protective layer forming composition, conventionally known coating methods such as gravure coating method, reverse coating method, die coating method, blade coater, roll coater, air knife coater, screen coater, bar coater, curtain coater and the like can be used.
The method for curing the protective layer-forming composition applied to the surface of the metal reflective layer is not particularly limited, and a method according to the resin material used to form the protective layer, such as heating or UV irradiation, can be selected as appropriate. That's fine.
 保護層形成用組成物は、上述した成分以外に、溶媒や各種添加剤を含有していてもよい。
 溶媒は特に限定されず、例えば、水、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、プロピレングリコールモノメチルエーテルなどのアルコール系溶媒、酢酸などの酸、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、ホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなどのアミド系溶媒、アセトニトリル、プロピオニトリルなどのニトリル系溶媒、酢酸メチル、酢酸エチルなどのエステル系溶媒、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒、この他にも、エーテル系溶媒、グリコール系溶媒、アミン系溶媒、チオール系溶媒、ハロゲン系溶媒などが挙げられる。この中でも、アミド系溶媒、ケトン系溶媒、ニトリル系溶媒、カーボネート系溶媒、芳香族炭化水素系溶媒が好ましく、具体的には、アセトン、ジメチルアセトアミド、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトニトリル、プロピオニトリル、N-メチルピロリドン、ジメチルカーボネート、トルエンが好ましい。
 密着性に優れた保護層を均一に形成するという観点からは、保護層形成用組成物の固形分濃度は、1~30質量%の範囲であることが好ましい。
The composition for forming a protective layer may contain a solvent and various additives in addition to the components described above.
The solvent is not particularly limited, and examples thereof include alcohol solvents such as water, methanol, ethanol, propanol, ethylene glycol, glycerin, propylene glycol monomethyl ether, acids such as acetic acid, ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone, formamide, Amide solvents such as dimethylacetamide and N-methylpyrrolidone, nitrile solvents such as acetonitrile and propionitrile, ester solvents such as methyl acetate and ethyl acetate, carbonate solvents such as dimethyl carbonate and diethyl carbonate, benzene, toluene, In addition to aromatic hydrocarbon solvents such as xylene, other than these, ether solvents, glycol solvents, amine solvents, thiol solvents, halogen solvents, and the like can be given. Of these, amide solvents, ketone solvents, nitrile solvents, carbonate solvents, and aromatic hydrocarbon solvents are preferable. Specifically, acetone, dimethylacetamide, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetonitrile, propio Nitrile, N-methylpyrrolidone, dimethyl carbonate and toluene are preferred.
From the viewpoint of uniformly forming a protective layer having excellent adhesion, the solid content concentration of the protective layer-forming composition is preferably in the range of 1 to 30% by mass.
 保護層形成用組成物は、更に架橋剤を含有してもよい。架橋剤を含有することで、保護層中に架橋構造が形成されることにより、強度がより向上し、さらに、隣接する金属反射層との密着性がより向上するなどの利点を有することになる。架橋剤としては、保護層を構成する樹脂との相関により選択することができ、例えば、カルボジイミド化合物、イソシアネート化合物、エポキシ化合物、オキセタン化合物、メラミン化合物、ビスビニルスルオン化合物などが挙げられ、効果の観点からは、カルボジイミド化合物、イソシアネート化合物、およびエポキシ化合物からなる群より選ばれ少なくとも1種の架橋剤が好ましい。 The composition for forming a protective layer may further contain a crosslinking agent. By containing a cross-linking agent, the cross-linked structure is formed in the protective layer, so that the strength is further improved, and further, the adhesion with the adjacent metal reflective layer is further improved. . The crosslinking agent can be selected depending on the correlation with the resin constituting the protective layer, and examples thereof include a carbodiimide compound, an isocyanate compound, an epoxy compound, an oxetane compound, a melamine compound, and a bisvinylsulfone compound. Are preferably selected from the group consisting of carbodiimide compounds, isocyanate compounds, and epoxy compounds, and at least one crosslinking agent is preferred.
 保護層の膜厚は、必要な保護機能と耐久性とを達成し、且つ、光反射能低減を抑制するといった観点から、3~30μmの範囲であることが好ましく、5~10μmの範囲であることがより好ましい。 The film thickness of the protective layer is preferably in the range of 3 to 30 μm, preferably in the range of 5 to 10 μm, from the viewpoints of achieving the necessary protective function and durability and suppressing the reduction in light reflectivity. It is more preferable.
<第4の実施形態>
 以下に、本発明のハードコートフィルムの第4の実施形態について図面を参照して説明する。図4に、本発明のハードコートフィルムの一実施形態の断面図を示す。
 ハードコートフィルム310は、支持体12と、樹脂層20と、金属反射層16と、保護層18と、ハードコート層14とをこの順で有する。該ハードコートフィルム310は、後述するように光を反射するフィルムミラーとして用いることができる。
 図4に示すハードコートフィルム310は、樹脂層20を備える点を除いて、図3に示すハードコートフィルム210と同様の構成を有するものであるので、同一の構成要素には同一の参照符号を付し、その説明を省略し、以下では主として樹脂層20について詳述する。
<Fourth Embodiment>
Below, 4th Embodiment of the hard coat film of this invention is described with reference to drawings. In FIG. 4, sectional drawing of one Embodiment of the hard coat film of this invention is shown.
The hard coat film 310 includes the support 12, the resin layer 20, the metal reflective layer 16, the protective layer 18, and the hard coat layer 14 in this order. The hard coat film 310 can be used as a film mirror that reflects light, as will be described later.
Since the hard coat film 310 shown in FIG. 4 has the same configuration as the hard coat film 210 shown in FIG. 3 except that the resin layer 20 is provided, the same reference numerals are assigned to the same components. The description will be omitted, and the resin layer 20 will be mainly described in detail below.
[樹脂層]
 樹脂層は、支持体と金属反射層との間に配置される層で、主に両者の密着性を向上させる機能を有する。樹脂層としては、金属を接着しやすくするための接着層や、金属反射層をめっき法により形成する場合に有用なめっき下塗りポリマー層などが挙げられ、これらは単層構成であっても2層以上の複数層から構成されるものであってもよい。
[Resin layer]
A resin layer is a layer arrange | positioned between a support body and a metal reflective layer, and has a function which mainly improves both adhesiveness. Examples of the resin layer include an adhesive layer for facilitating adhesion of metal and a plating undercoat polymer layer useful when a metal reflective layer is formed by a plating method. It may be composed of the above plural layers.
(接着層)
 接着層は、支持体と金属反射層との接着性を向上させる層である。また、接着層上に後述するめっき下塗りポリマー層を設ける場合には、接着層が支持体とめっき下塗りポリマー層との接着性を向上させることで、結果として、支持体と金属反射層との接着性がより向上する。
(Adhesive layer)
The adhesive layer is a layer that improves the adhesion between the support and the metal reflective layer. In addition, when a plating undercoat polymer layer to be described later is provided on the adhesive layer, the adhesive layer improves the adhesion between the support and the plating undercoat polymer layer, resulting in adhesion between the support and the metal reflective layer. More improved.
 接着層は、隣接する支持体との接着性の観点から、支持体を構成する樹脂と同じ樹脂、または、支持体を構成する樹脂と親和性を有する樹脂を含んでいることが好ましい。接着層に含まれる樹脂は、例えば、熱硬化性樹脂でも熱可塑性樹脂でもまたそれらの混合物でもよい。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、ビスマレイミド樹脂、メラミン樹脂、イソシアネート系樹脂等が挙げられる。熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、フェノキシ樹脂、ポリエーテルスルフォン、ポリスルフォン、ポリフェニレンスルフォン、ポリフェニレンサルファイド、ポリフェニルエーテル、ポリエーテルイミド等が挙げられる。熱可塑性樹脂と熱硬化性樹脂とは、それぞれ単独で用いてもよいし、2種以上併用してもよい。2種以上の樹脂の併用は、それぞれの欠点が補うことでより優れた効果を発現させる目的で行われる。 The adhesive layer preferably contains the same resin as the resin constituting the support or a resin having an affinity for the resin constituting the support, from the viewpoint of adhesiveness with the adjacent support. The resin contained in the adhesive layer may be, for example, a thermosetting resin, a thermoplastic resin, or a mixture thereof. Examples of the thermosetting resin include epoxy resin, phenol resin, polyimide resin, polyester resin, bismaleimide resin, melamine resin, and isocyanate resin. Examples of the thermoplastic resin include polyolefin resin, phenoxy resin, polyether sulfone, polysulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenyl ether, polyether imide, and the like. The thermoplastic resin and the thermosetting resin may be used alone or in combination of two or more. The combined use of two or more kinds of resins is performed for the purpose of expressing a more excellent effect by compensating for each defect.
 接着層を、めっき下塗りポリマー層と支持体との間に設ける場合には、後述するめっき下塗りポリマー層に含まれる、金属前駆体と相互作用する官能基および重合性基を有する高分子化合物との間で、相互作用し得る活性点を発生する活性種を含有することが好ましい。このような接着層は、例えば、ラジカル重合開始剤を含有する重合開始層や、重合開始可能な官能基を有する樹脂からなる重合開始層が好ましい。より具体的には、接着層は、高分子化合物とラジカル重合開始剤とを含む層や、重合性化合物とラジカル重合開始剤とを含む層、または、重合開始可能な官能基を有する樹脂からなる層が好ましい。重合開始可能な官能基を有する樹脂からなる層としては、例えば、特開2005-307140号公報の段落[0018]~[0078]に記載の重合開始部位を骨格中に有するポリイミドが挙げられる。 In the case where the adhesive layer is provided between the plating undercoat polymer layer and the support, it is included in a polymer compound having a functional group and a polymerizable group that interact with the metal precursor contained in the plating undercoat polymer layer described later. It is preferable to contain active species that generate active sites that can interact with each other. Such an adhesive layer is preferably, for example, a polymerization initiation layer containing a radical polymerization initiator or a polymerization initiation layer made of a resin having a functional group capable of initiating polymerization. More specifically, the adhesive layer is composed of a layer containing a polymer compound and a radical polymerization initiator, a layer containing a polymerizable compound and a radical polymerization initiator, or a resin having a functional group capable of initiating polymerization. A layer is preferred. Examples of the layer made of a resin having a functional group capable of initiating polymerization include polyimide having a polymerization initiation site described in paragraphs [0018] to [0078] of JP-A-2005-307140 in the skeleton.
 さらに、接着層を形成する際に、層内での架橋を進めるために重合性の二重結合を有する化合物、具体的には、アクリレート化合物、メタクリレート化合物を用いてもよく、特に、多官能のものを用いることが好ましい。その他、重合性の二重結合を有する化合物として、熱硬化性樹脂、または、熱可塑性樹脂、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリオレフィン樹脂、フッ素樹脂等に対し、その一部を、メタクリル酸やアクリル酸等を用いて、(メタ)アクリル化させた樹脂を用いてもよい。
 接着層には、本発明の効果を損なわない限りにおいて、必要に応じて、接着性付与剤、シランカップリング剤、酸化防止剤、紫外線吸収剤等の各種添加剤を1種または2種以上添加してもよい。
 接着層の厚みは、一般に、0.1~10μmの範囲であることが好ましく、0.2~5μmの範囲であることがより好ましい。
Furthermore, when forming the adhesive layer, a compound having a polymerizable double bond, specifically an acrylate compound or a methacrylate compound, may be used in order to promote crosslinking in the layer. It is preferable to use one. In addition, as a compound having a polymerizable double bond, a part of a thermosetting resin or a thermoplastic resin such as an epoxy resin, a phenol resin, a polyimide resin, a polyolefin resin, a fluorine resin, etc. A resin that has been (meth) acrylated using acid, acrylic acid, or the like may be used.
As long as the effects of the present invention are not impaired, one or more additives such as an adhesion-imparting agent, a silane coupling agent, an antioxidant, and an ultraviolet absorber are added to the adhesive layer as necessary. May be.
In general, the thickness of the adhesive layer is preferably in the range of 0.1 to 10 μm, and more preferably in the range of 0.2 to 5 μm.
(めっき下塗りポリマー層)
 金属反射層を金属めっきにより作製する場合、金属反射層と支持体との間にめっき下塗りポリマー層を設けることが好ましい。めっき下塗りポリマー層は、上述しためっき(電気めっきなど)を行う際に、電極として作用する成分(例えば、金属粒子)を含む層である。
 めっき下塗りポリマー層を形成するために用いられるめっき下塗りポリマーは、重合性基、および、金属前駆体と相互作用する官能基(以後、適宜「相互作用性基」と称する。)を少なくとも有する。めっき下塗りポリマーの主骨格としては、アクリルポリマー、ポリエーテル、アクリルアミド、ポリアミド、ポリイミド、アクリルポリマー、ポリエステル等が好ましいが、アクリルポリマーがより好ましい。
 めっき下塗りポリマーは、目的に応じて、「重合性基を含む構成単位」および「相互作用性基を含む構成単位」、以外の構成単位(以下、適宜、「他の構成単位」と称する。)を含んでいてもよい。他の構成単位を含むことによって、めっき下塗りポリマー形成用組成物としたときに、水または有機溶剤への溶解性に優れ、均一なめっき下塗りポリマー層を形成することができる。
(Plating undercoat polymer layer)
When the metal reflective layer is produced by metal plating, it is preferable to provide a plating undercoat polymer layer between the metal reflective layer and the support. The plating undercoat polymer layer is a layer containing a component (for example, metal particles) that acts as an electrode when performing the above-described plating (such as electroplating).
The plating undercoat polymer used to form the plating undercoat polymer layer has at least a polymerizable group and a functional group that interacts with the metal precursor (hereinafter, referred to as “interactive group” as appropriate). As the main skeleton of the plating undercoat polymer, an acrylic polymer, polyether, acrylamide, polyamide, polyimide, acrylic polymer, polyester, and the like are preferable, but an acrylic polymer is more preferable.
The plating undercoat polymer is a structural unit other than “structural unit containing a polymerizable group” and “structural unit containing an interactive group” depending on the purpose (hereinafter, referred to as “other structural unit” as appropriate). May be included. By including other structural units, when a composition for forming a plating undercoat polymer is used, a uniform plating undercoat polymer layer having excellent solubility in water or an organic solvent can be formed.
 めっき下塗りポリマーの好ましい態様として、重合性基と相互作用性基としての酸性基とを側鎖に有するアクリルポリマーが挙げられる。以下、めっき下塗りポリマーに含まれる重合性基、相互作用性基、およびその特性等について詳述する。 As a preferred embodiment of the plating undercoat polymer, an acrylic polymer having a polymerizable group and an acidic group as an interactive group in the side chain can be mentioned. Hereinafter, a polymerizable group, an interactive group, and characteristics of the plating undercoat polymer will be described in detail.
-重合性基-
 めっき下塗りポリマーが有する重合性基は、エネルギー付与により、ポリマー同士、または、ポリマーと支持体(支持体上に上記接着層が形成されている場合には、接着層)との間で化学結合を形成し得る官能基であればよい。重合性基としては、例えば、ラジカル重合性基、カチオン重合性基等が挙げられる。なかでも、反応性の観点から、ラジカル重合性基が好ましい。
 ラジカル重合性基としては、例えば、メタクリロイル基、アクリロイル基、イタコン酸エステル基、クロトン酸エステル基、イソクロトン酸エステル基、マレイン酸エステル基、スチリル基、ビニル基、アクリルアミド基、メタクリルアミド基等が挙げられる。なかでも、メタクリロイル基、アクリロイル基、ビニル基、スチリル基、アクリルアミド基、または、メタクリルアミド基が好ましく、中でも、ラジカル重合反応性および合成汎用性の点から、メタクリロイル基、アクリロイル基、アクリルアミド基またはメタクリルアミド基が好ましく、耐アルカリ性の観点からアクリルアミド基またはメタクリルアミド基が更に好ましい。なかでも、アクリルポリマーに導入される重合性基としては、(メタ)アクリレート基または(メタ)アクリルアミド基等の(メタ)アクリル基、カルボン酸のビニルエステル基、ビニルエーテル基、アリルエーテル基等の各種重合性基が好ましい。
-Polymerizable group-
The polymerizable group of the plating undercoating polymer is chemically bonded between the polymers or between the polymer and the support (in the case where the adhesive layer is formed on the support, the adhesive layer) by applying energy. Any functional group may be used. Examples of the polymerizable group include a radical polymerizable group and a cationic polymerizable group. Of these, a radical polymerizable group is preferable from the viewpoint of reactivity.
Examples of the radical polymerizable group include methacryloyl group, acryloyl group, itaconic acid ester group, crotonic acid ester group, isocrotonic acid ester group, maleic acid ester group, styryl group, vinyl group, acrylamide group and methacrylamide group. It is done. Of these, a methacryloyl group, an acryloyl group, a vinyl group, a styryl group, an acrylamide group, or a methacrylamide group is preferable. Among them, a methacryloyl group, an acryloyl group, an acrylamide group, or a methacryl group is preferable from the viewpoint of radical polymerization reactivity and synthetic versatility. An amide group is preferable, and an acrylamide group or a methacrylamide group is more preferable from the viewpoint of alkali resistance. Among these, various polymerizable groups introduced into the acrylic polymer include (meth) acrylic groups such as (meth) acrylate groups or (meth) acrylamide groups, vinyl ester groups of carboxylic acids, vinyl ether groups, and allyl ether groups. A polymerizable group is preferred.
-相互作用性基-
 めっき下塗りポリマーが有する相互作用性基は、金属前駆体と相互作用する官能基(例えば、配位性基、金属イオン吸着性基等)であり、金属前駆体と静電相互作用を形成可能な官能基、または、金属前駆体と配位形成可能な含窒素官能基、含硫黄官能基、含酸素官能基等を使用することができる。
 相互作用性基としてより具体的には、アミノ基、アミド基、イミド基、ウレア基、トリアゾール環、イミダゾール基、ピリジン基、ピリミジン基、ピラジン基、トリアジン基、ピペリジン基、ピペラジン基、ピロリジン基、ピラゾール基、アルキルアミン構造を含む基、シアノ基、シアネート基(R-O-CN)等の含窒素官能基;エーテル基、水酸基、フェノール性水酸基、カルボキシル基、カーボネート基、カルボニル基、エステル基、N-オキシド構造を含む基、S-オキシド構造を含む基、N-ヒドロキシ構造を含む基等の含酸素官能基;チオフェン基、チオール基、チオウレア基、スルホキシド基、スルホン酸基、スルホン酸エステル構造を含む基等の含硫黄官能基;ホスフォート基、ホスフォロアミド基、ホスフィン基、リン酸エステル構造を含む基等の含リン官能基;塩素、臭素等のハロゲン原子を含む基等が挙げられ、塩構造をとり得る官能基においては、それらの塩も使用することができる。
 相互作用性基としては、非解離性官能基であっても、イオン性極性基であってもよく、これらが同時に含まれていてもよいが、イオン性極性基が好ましい。
-Interactive groups-
The interaction group of the plating undercoat polymer is a functional group that interacts with the metal precursor (for example, a coordination group, a metal ion adsorbing group, etc.), and can form an electrostatic interaction with the metal precursor. A functional group, or a nitrogen-containing functional group, a sulfur-containing functional group, an oxygen-containing functional group or the like that can form a coordination with a metal precursor can be used.
More specifically, as an interactive group, amino group, amide group, imide group, urea group, triazole ring, imidazole group, pyridine group, pyrimidine group, pyrazine group, triazine group, piperidine group, piperazine group, pyrrolidine group, Nitrogen-containing functional groups such as pyrazole group, group containing alkylamine structure, cyano group, cyanate group (R—O—CN); ether group, hydroxyl group, phenolic hydroxyl group, carboxyl group, carbonate group, carbonyl group, ester group, Oxygen-containing functional groups such as groups containing N-oxide structures, groups containing S-oxide structures, groups containing N-hydroxy structures; thiophene groups, thiol groups, thiourea groups, sulfoxide groups, sulfonic acid groups, sulfonic acid ester structures Sulfur-containing functional group such as a group containing phosphine group: phosphor group, phosphoramide group, phosphine group, phosphoric acid Phosphorus-containing functional groups such as those containing ester structure; chlorine, such as group containing a halogen atom such as bromine and the like, in a functional group capable of having a salt structure can also be used the salts thereof.
The interactive group may be a non-dissociative functional group or an ionic polar group, and these may be contained at the same time, but an ionic polar group is preferred.
 イオン性極性基からなる相互作用性基としては、上記相互作用性基の中でも、めっき下塗りポリマーの支持体(支持体上に上記接着層が形成されている場合には、接着層)に対する密着性の観点から、カルボン酸基、スルホン酸基、リン酸基、または、ボロン酸基が好ましく、なかでも、適度な酸性(他の官能基を分解しない)を有する点、他の官能基に影響を与える懸念が少ない点、金属反射層との親和性に優れる点、および、原料が入手容易であるという点から、カルボン酸基が特に好ましい。 As the interactive group composed of an ionic polar group, among the above-mentioned interactive groups, adhesion to the support of the plating undercoat polymer (or the adhesive layer when the adhesive layer is formed on the support) From the point of view, carboxylic acid group, sulfonic acid group, phosphoric acid group or boronic acid group is preferable, and in particular, it has moderate acidity (does not decompose other functional groups), and affects other functional groups Carboxylic acid groups are particularly preferred from the viewpoints of less concern, excellent compatibility with the metal reflective layer, and easy availability of raw materials.
 カルボン酸基等のイオン性極性基は、酸性基を有するラジカル重合性化合物を共重合させることにより、めっき下塗りポリマーに導入することができる。めっき下塗りポリマーの好適な構成については、「ラジカル重合性基と非解離性官能基からなる相互作用性基とを有するポリマー」として、特開2009-007540号公報の段落[0106]~[0112]に記載のポリマー等が使用できる。また、「ラジカル重合性基とイオン性極性基からなる相互作用性基とを有するポリマー」としては、特開2006-135271号公報の段落[0065]~[0070]に記載のポリマー等が使用できる。「ラジカル重合性基と、非解離性官能基からなる相互作用性基と、イオン性極性基からなる相互作用性基とを有するポリマー」としては、特開2010-248464号公報の段落[0010]~[0128]、特開2010-84196号公報、および米国特許出願公開2010-080964号明細書の段落[0030]~[0108]に記載のポリマー等が使用できる。 An ionic polar group such as a carboxylic acid group can be introduced into the plating undercoat polymer by copolymerizing a radical polymerizable compound having an acidic group. As for a suitable constitution of the plating undercoat polymer, paragraphs [0106] to [0112] of JP-A-2009-007540 are referred to as “polymer having a radical polymerizable group and an interactive group composed of a non-dissociable functional group”. Can be used. As the “polymer having a radically polymerizable group and an interactive group comprising an ionic polar group”, the polymers described in paragraphs [0065] to [0070] of JP-A-2006-135271 can be used. . As the “polymer having a radical polymerizable group, an interactive group composed of a non-dissociable functional group, and an interactive group composed of an ionic polar group”, paragraph [0010] of JP2010-248464A. To [0128], JP 2010-84196 A, and US Patent Application Publication No. 2010-080964, paragraphs [0030] to [0108] can be used.
 なお、後述する金属前駆体は、めっき下塗りポリマー層形成後に付与してもよく、また、めっき下塗りポリマー層形成用組成物に当初から含有させてもよい。 The metal precursor described later may be applied after the formation of the plating undercoat polymer layer, or may be contained from the beginning in the composition for forming the plating undercoat polymer layer.
 めっき下塗りポリマー層は、エネルギー付与に対する感度を高めるために、光重合開始剤、熱重合開始剤等のラジカル重合開始剤を含有することが好ましい。ラジカル重合開始剤としては、特に限定されず、一般に公知のものが使用される。但し、エネルギー付与により、めっき下塗りポリマーが支持体や接着層と相互作用する活性点を生成し得る場合、即ち、上述したポリマー骨格中に重合開始部位を有するポリマーを用いるような場合には、これらのラジカル重合開始剤を添加しなくてもよい。
 めっき下塗りポリマー層形成用組成物に含有させるラジカル重合開始剤の量は、めっき下塗りポリマー層形成用組成物の構成に応じて選択されるが、一般的には、めっき下塗りポリマー層形成用組成物中に、0.05~30質量%程度であることが好ましく、0.1~10.0質量%程度であることがより好ましい。
The plating undercoat polymer layer preferably contains a radical polymerization initiator such as a photopolymerization initiator and a thermal polymerization initiator in order to increase sensitivity to energy application. The radical polymerization initiator is not particularly limited, and generally known ones are used. However, in the case where, by applying energy, the plating undercoat polymer can generate active sites that interact with the support or the adhesive layer, that is, when a polymer having a polymerization initiation site in the polymer skeleton described above is used, these The radical polymerization initiator may not be added.
The amount of the radical polymerization initiator to be contained in the plating undercoat polymer layer forming composition is selected according to the configuration of the plating undercoat polymer layer forming composition, but in general, the plating undercoat polymer layer forming composition. The content is preferably about 0.05 to 30% by mass, more preferably about 0.1 to 10.0% by mass.
 めっき下塗りポリマー層は、めっき下塗りポリマーを含むポリマー層形成用組成物を支持体上(支持体上に上記接着層が形成されている場合には、接着層上)に塗布し、エネルギーを付与することにより形成することができる。支持体上にめっき下塗りポリマー層を直接設ける場合には、予め支持体の表面にエネルギーを付与する等の易接着処理を施しておくことが好ましい。支持体上にめっき下塗りポリマー層を設ける方法は特に限定されず、めっき下塗りポリマーを含むめっき下塗りポリマー層形成用組成物中に支持体を浸漬する方法や、めっき下塗りポリマーを含むめっき下塗りポリマー層形成用組成物を支持体上に塗布する方法などが挙げられる。得られるめっき下塗りポリマー層の厚みを制御しやすい点から、めっき下塗りポリマーを含むめっき下塗りポリマー層形成用組成物を支持体上に塗布する方法が好ましい。 The plating undercoat polymer layer applies energy by applying a composition for forming a polymer layer containing a plating undercoat polymer on a support (or on the adhesive layer when the adhesive layer is formed on the support). Can be formed. When the plating undercoat polymer layer is directly provided on the support, it is preferable to carry out an easy adhesion treatment such as applying energy to the surface of the support in advance. The method of providing the plating undercoat polymer layer on the support is not particularly limited, and the method of immersing the support in the composition for forming the plating undercoat polymer layer containing the plating undercoat polymer or the formation of the plating undercoat polymer layer containing the plating undercoat polymer The method of apply | coating the composition for coating on a support body etc. are mentioned. From the viewpoint of easily controlling the thickness of the resulting plating undercoat polymer layer, a method of applying a plating undercoat polymer layer-forming composition containing a plating undercoat polymer on a support is preferred.
 めっき下塗りポリマーを含むポリマー層形成用組成物の塗布量は、後述する金属前駆体との充分な相互作用形成性の観点から、固形分換算で0.05~10g/m2が好ましく、特に0.3~5g/m2がより好ましい。支持体等へ塗布しためっき下塗りポリマーを含むめっき下塗りポリマー層形成用組成物の塗布液は、20~60℃で1秒から2時間乾燥した後、60℃を超える温度で1秒~2時間乾燥することが好ましく、20~60℃で1秒~20分乾燥した後、60℃を超える温度で1秒~20分乾燥することがより好ましい。 The coating amount of the composition for forming a polymer layer containing a plating undercoat polymer is preferably 0.05 to 10 g / m 2 in terms of solid content, particularly 0, from the viewpoint of sufficient interaction formation with the metal precursor described later. 3 to 5 g / m 2 is more preferable. The coating solution for the plating undercoat polymer layer forming composition containing the plating undercoat polymer applied to the support or the like is dried at 20 to 60 ° C. for 1 second to 2 hours, and then dried at a temperature exceeding 60 ° C. for 1 second to 2 hours. More preferably, after drying at 20 to 60 ° C. for 1 second to 20 minutes, it is more preferable to dry at a temperature exceeding 60 ° C. for 1 second to 20 minutes.
 めっき下塗りポリマー層形成用組成物は、上記支持体(支持体上に上記接着層が形成されている場合には、接着層)と接触させた後、エネルギーを付与することで、エネルギー付与領域においてポリマーが有する重合性基同士、または、ポリマーが有する重合性基と上記支持体(支持体上に上記接着層が形成されている場合には、接着層)との間に相互作用が形成され、支持体上(支持体上に上記接着層が形成されている場合には、接着層上)に固定化されためっき下塗りポリマー層が形成される。これにより、支持体とめっき下塗りポリマー層とが強固に密着する。 In the energy application region, the composition for forming a plating undercoat polymer layer is applied with energy after being brought into contact with the support (adhesive layer in the case where the adhesive layer is formed on the support). An interaction is formed between the polymerizable groups of the polymer, or between the polymerizable group of the polymer and the support (the adhesive layer in the case where the adhesive layer is formed on the support), A plated undercoat polymer layer fixed on the support (on the adhesive layer when the adhesive layer is formed on the support) is formed. Thereby, a support body and a plating undercoat polymer layer adhere | attach firmly.
 エネルギー付与方法としては、例えば、加熱や露光が挙げられる。露光によるエネルギー付与方法としては、具体的には、UVランプ、可視光線等による光照射が可能である。露光で使用する光源としては、例えば、水銀灯、メタルハライドランプ、キセノンランプ、ケミカルランプ等がある。放射線としては、電子線、X線、イオンビーム、遠赤外線等がある。また、g線、i線、Deep-UV光、高密度エネルギービーム(レーザービーム)も使用される。露光パワーは、重合を容易に進行させるため、また、ポリマーの分解を抑制するため、あるいは、ポリマーが良好な相互作用を形成するため、といった観点から10~8000mJ/cm2の範囲であることが好ましく、100~3000mJ/cm2の範囲であることがより好ましい。なお、露光は、窒素、ヘリウム、二酸化炭素等の不活性ガスによる置換を行ない、酸素濃度を600ppm以下、好ましくは400ppm以下に抑制した雰囲気中で行なってもよい。 Examples of the energy application method include heating and exposure. As an energy application method by exposure, specifically, light irradiation by a UV lamp, visible light, or the like is possible. Examples of the light source used for exposure include a mercury lamp, a metal halide lamp, a xenon lamp, and a chemical lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Also, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are used. The exposure power may be in the range of 10 to 8000 mJ / cm 2 from the viewpoint of facilitating the polymerization, suppressing the decomposition of the polymer, or forming a good interaction of the polymer. A range of 100 to 3000 mJ / cm 2 is more preferable. Note that exposure may be performed in an atmosphere in which substitution with an inert gas such as nitrogen, helium, or carbon dioxide is performed, and the oxygen concentration is suppressed to 600 ppm or less, preferably 400 ppm or less.
 加熱によるエネルギー付与は、例えば、一般の熱ヒートローラー、ラミネーター、ホットスタンプ、電熱板、サーマルヘッド、レーザー、送風乾燥機、オーブン、ホットプレート、赤外線乾燥機、加熱ドラム等により行なうことができる。また、加熱によりエネルギー付与を行なう場合、その温度は、重合を容易に進行させるため、また、支持体の熱変性を抑制するため、20~200℃の範囲であることが好ましく、40~120℃の範囲であることがより好ましい。 Energy application by heating can be performed by, for example, a general heat heat roller, laminator, hot stamp, electric heating plate, thermal head, laser, blower dryer, oven, hot plate, infrared dryer, heating drum, or the like. In addition, when energy is applied by heating, the temperature is preferably in the range of 20 to 200 ° C., in order to facilitate the polymerization and to suppress thermal denaturation of the support, and preferably in the range of 40 to 120 ° C. More preferably, it is the range.
 エネルギー付与後は、更に適宜、未反応のポリマーを除去する工程を設けてもよい。めっき下塗りポリマー層の膜厚は、特に限定されないが、支持体等との密着性の観点から、0.05~10μmであることが好ましく、0.3~5μmであることがより好ましい。また、上記方法により得られるめっき下塗りポリマー層の表面粗さ(Ra)は、反射性能の観点から、20nm以下であることが好ましく、10nm以下であることがより好ましい。 After the application of energy, a step of removing unreacted polymer may be provided as appropriate. The film thickness of the plating undercoat polymer layer is not particularly limited, but is preferably 0.05 to 10 μm, more preferably 0.3 to 5 μm from the viewpoint of adhesion to a support or the like. Moreover, the surface roughness (Ra) of the plating undercoat polymer layer obtained by the above method is preferably 20 nm or less, more preferably 10 nm or less, from the viewpoint of reflection performance.
 めっき下塗りポリマー層は、還元された金属粒子を含む。めっき下塗りポリマー層に含まれる還元された金属粒子は、めっき下塗りポリマー層に金属前駆体を付与し、この金属前駆体を還元して、金属前駆体を還元された金属粒子とすることによって得られる。金属前駆体をめっき下塗りポリマー層に付与すると、上記相互作用性基に、金属前駆体が相互作用により付着する。
 本発明において用いられる金属前駆体は、還元反応により金属に変化させることで電極として機能するものであれば、特に限定されない。また、金属前駆体としては、金属反射層の形成において、めっきの電極として機能するものが好ましく挙げられる。そのため、金属前駆体は、金属に還元させることで電極として機能するものが好ましい。具体的には、Au、Pt、Pd、Ag、Cu、Ni、Al、Fe、Coなどの金属イオンが用いられる。金属前駆体である金属イオンは、めっき下塗りポリマーを含む組成物(めっき下塗りポリマー層形成用組成物)に含まれており、支持体上に層を形成した後、還元反応によって0価の金属粒子となる。金属前駆体である金属イオンは、金属塩としてめっき下塗りポリマー層形成用組成物に含まれることが好ましい。
 金属イオンとしては、配位可能な官能基の種類、数、および、触媒能の点で、Agイオン、Cuイオン、Pdイオンが好ましい。Agイオンとしては、以下に示す銀化合物が解離したものを好適に用いることができる。銀化合物の具体例としては、硝酸銀、酢酸銀、硫酸銀、炭酸銀、シアン化銀、チオシアン酸銀、塩化銀、臭化銀、クロム酸銀、クロラニル酸銀、サリチル酸銀、ジエチルジチオカルバミン酸銀、ジエチルジチオカルバミド酸銀、p-トルエンスルホン酸銀が挙げられる。この中でも、水溶性の観点から硝酸銀が好ましい。Cuイオンを用いる場合、以下に示すような銅化合物が解離したものを好適に用いることができる。銅化合物の具体例としては、硝酸銅、酢酸銅、硫酸銅、シアン化銅、チオシアン酸銅、塩化銅、臭化銅、クロム酸銅、クロラニル酸銅、サリチル酸銅、ジエチルジチオカルバミン酸銅、ジエチルジチオカルバミド酸銅、p-トルエンスルホン酸銅が挙げられる。この中でも、水溶性の観点から硫酸銅が好ましい。
The plating primer polymer layer includes reduced metal particles. Reduced metal particles contained in the plating primer polymer layer are obtained by applying a metal precursor to the plating primer polymer layer and reducing the metal precursor to reduce the metal precursor to reduced metal particles. . When the metal precursor is applied to the plating undercoat polymer layer, the metal precursor adheres to the interactive group by interaction.
The metal precursor used in the present invention is not particularly limited as long as it functions as an electrode by changing to a metal by a reduction reaction. Moreover, as a metal precursor, what functions as an electrode of plating in formation of a metal reflective layer is mentioned preferably. Therefore, what functions as an electrode by reducing a metal precursor to a metal is preferable. Specifically, metal ions such as Au, Pt, Pd, Ag, Cu, Ni, Al, Fe, and Co are used. Metal ions that are metal precursors are contained in a composition containing a plating undercoat polymer (a composition for forming a plating undercoat polymer layer). After forming a layer on the support, zero-valent metal particles are formed by a reduction reaction. It becomes. It is preferable that the metal ion which is a metal precursor is contained in the composition for forming a plating undercoat polymer layer as a metal salt.
As a metal ion, Ag ion, Cu ion, and Pd ion are preferable in terms of the type and number of functional groups capable of coordination, and catalytic ability. As the Ag ions, those obtained by dissociating the silver compounds shown below can be suitably used. Specific examples of the silver compound include silver nitrate, silver acetate, silver sulfate, silver carbonate, silver cyanide, silver thiocyanate, silver chloride, silver bromide, silver chromate, silver chloranilate, silver salicylate, silver diethyldithiocarbamate, Examples thereof include silver diethyldithiocarbamate and silver p-toluenesulfonate. Among these, silver nitrate is preferable from the viewpoint of water solubility. When Cu ions are used, those obtained by dissociating copper compounds as shown below can be suitably used. Specific examples of copper compounds include copper nitrate, copper acetate, copper sulfate, copper cyanide, copper thiocyanate, copper chloride, copper bromide, copper chromate, copper chloranilate, copper salicylate, copper diethyldithiocarbamate, diethyldithio Examples thereof include copper carbamate and copper p-toluenesulfonate. Among these, copper sulfate is preferable from the viewpoint of water solubility.
 金属前駆体は、分散液または溶液(金属前駆体液)として、めっき下塗りポリマー層に付与されることが好ましい。付与の方法としては、例えば、めっき下塗りポリマー層を備える支持体上に金属前駆体液を塗布する方法、めっき下塗りポリマー層を備える支持体を金属前駆体液に浸漬する方法などが挙げられる。 The metal precursor is preferably applied to the plating undercoat polymer layer as a dispersion or solution (metal precursor liquid). Examples of the application method include a method of applying a metal precursor solution on a support provided with a plating undercoat polymer layer, and a method of immersing a support provided with a plating undercoat polymer layer in the metal precursor solution.
 めっき下塗りポリマー層に付与した金属前駆体である金属イオンは、金属活性化液(還元液)により還元する。金属活性化液は、金属前駆体(主に金属イオン)を0価金属に還元できる還元剤と、該還元剤を活性化するためのpH調製剤からなる。金属活性化液全体に対する還元剤の濃度は、0.05~50質量%であることが好ましく、0.1~30質量%であることがより好ましい。還元剤としては、水素化ホウ素ナトリウム、ジメチルアミンボランのようなホウ素系還元剤、ホルムアルデヒド、次亜リン酸等の還元剤を用いることが可能である。特に、ホルムアルデヒドを含有するアルカリ水溶液で還元することが好ましい。 Metal ions that are metal precursors applied to the plating undercoat polymer layer are reduced by a metal activation liquid (reducing liquid). The metal activation liquid is composed of a reducing agent that can reduce a metal precursor (mainly metal ions) to a zero-valent metal and a pH adjuster for activating the reducing agent. The concentration of the reducing agent with respect to the entire metal activation liquid is preferably 0.05 to 50% by mass, and more preferably 0.1 to 30% by mass. As the reducing agent, boron-based reducing agents such as sodium borohydride and dimethylamine borane, and reducing agents such as formaldehyde and hypophosphorous acid can be used. In particular, reduction with an aqueous alkaline solution containing formaldehyde is preferred.
 金属活性化液全体に対するpH調整剤の濃度は、0.05~10質量%であることが好ましく、0.1~5質量%であることがより好ましい。
 pH調整剤としては、酢酸、塩酸、硫酸、硝酸、炭酸水素ナトリウム、アンモニア水、水酸化ナトリウム、水酸化カリウム等を使用することが可能である。還元時の温度は、10~100℃が好ましく、20~70℃がより好ましい。これら濃度や温度範囲は、還元の際の、金属前駆体の粒子径、ポリマー層の表面粗さ、導電性(表面抵抗値)、還元液の劣化の観点からこの範囲であることが好ましい。
The concentration of the pH adjusting agent with respect to the entire metal activation liquid is preferably 0.05 to 10% by mass, and more preferably 0.1 to 5% by mass.
As the pH adjuster, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, sodium hydrogen carbonate, aqueous ammonia, sodium hydroxide, potassium hydroxide and the like can be used. The temperature during the reduction is preferably 10 to 100 ° C, more preferably 20 to 70 ° C. These concentrations and temperature ranges are preferably within this range from the viewpoint of the particle diameter of the metal precursor, the surface roughness of the polymer layer, the conductivity (surface resistance value), and the deterioration of the reducing solution during reduction.
 還元された金属粒子を含むめっき下塗りポリマー層の表面抵抗値は、0.001~100Ω/□であることが好ましく、0.03~50Ω/□であることがより好ましい。この範囲内であると、均一および平滑にめっき面が形成され反射率が良好となる。
 また、還元された金属粒子を含むめっき下塗りポリマー層の表面粗さ(Ra)は、反射性能の観点から、20nm以下が好ましく、10nm以下がより好ましい。
 このようにして得られた金属粒子を含むめっき下塗りポリマー層は、上述した金属反射層を湿式法であるめっき法により形成する際に好適に用いられ、めっき下塗りポリマー層を用いてめっき法により形成された金属反射層は、支持体との密着性と表面平滑性に優れる。
The surface resistance value of the plating undercoat polymer layer containing the reduced metal particles is preferably 0.001 to 100Ω / □, and more preferably 0.03 to 50Ω / □. Within this range, the plated surface is formed uniformly and smoothly and the reflectance is good.
Further, the surface roughness (Ra) of the plating undercoat polymer layer containing the reduced metal particles is preferably 20 nm or less, and more preferably 10 nm or less, from the viewpoint of reflection performance.
The plating undercoat polymer layer containing the metal particles thus obtained is suitably used when the above-described metal reflective layer is formed by a wet plating method, and is formed by a plating method using the plating undercoat polymer layer. The metal reflective layer made is excellent in adhesion to the support and surface smoothness.
 上記においては、第1の実施形態~第4の実施形態について述べたが、上記各形態には、上述した層構成に加えて、所望の用途に合わせて、紫外線吸収層、紫外線反射層、ガスバリア層、粘着剤層、支持体裏面保護層、白色層の他の機能層等を設置してもよい。 In the above description, the first to fourth embodiments have been described. In each of the above embodiments, in addition to the layer configuration described above, an ultraviolet absorbing layer, an ultraviolet reflecting layer, a gas barrier are used in accordance with a desired application. You may install a layer, an adhesive layer, a support back surface protective layer, other functional layers of a white layer, and the like.
 <添加剤>
 本発明においては、上述した支持体(特に樹脂支持体)、ハードコート層、保護層、樹脂層、および、他の機能層(以下、これらの層および支持体をまとめて「機能層」とも略す。)、または、該機能層の形成に使用する組成物に、必要に応じて、例えば、光重合開始剤、熱重合開始剤、カチオン重合開始剤、アニオン重合開始剤、帯電防止剤、表面調整剤(例えばレベリング剤、フッ素系防汚添加剤など)、紫外線吸収剤、光安定剤、酸化防止剤、可塑剤、ラジカル補足剤、消泡剤、増粘剤、沈降防止剤、顔料、分散剤、シランカップリング剤などの添加剤を含有していてもよい。
<Additives>
In the present invention, the above-mentioned support (especially resin support), hard coat layer, protective layer, resin layer, and other functional layers (hereinafter, these layers and support are collectively abbreviated as “functional layer”). .), Or the composition used for forming the functional layer, if necessary, for example, a photopolymerization initiator, a thermal polymerization initiator, a cationic polymerization initiator, an anionic polymerization initiator, an antistatic agent, a surface conditioning. Agents (eg leveling agents, fluorine antifouling additives), UV absorbers, light stabilizers, antioxidants, plasticizers, radical scavengers, antifoaming agents, thickeners, antisettling agents, pigments, dispersants And additives such as silane coupling agents may be contained.
 (表面調整剤)
 表面調整剤は、上述した機能層において、表面平滑性や防汚性を付与する観点から、機能層を形成する組成物に任意に添加することができる成分である。
 表面調整剤として一般的に使用される物質としては、例えば、ポリアルキルアクリレートなどのポリアクリレート系ポリマー;ポリアルキルビニルエーテルなどのポリビニルエーテル系ポリマー;ジメチルポリシロキサン、メチルフェニルポリシロキサン、ポリエーテル、ポリエステル、アラルキルなどが導入された有機変性ポリシロキサンなどのシリコーン系ポリマー;これらのポリマーにフッ素原子を含有するもの;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 フッ素原子を有する表面調整剤としては、例えば、フッ素含有基を有するモノマーを共重合させることにより得ることができる。特に、フッ素系表面調整剤を含んでなる膜(層)においては、膜表面の表面エネルギーが下がることで撥水・撥油性の表面を成し、膜表面に防汚性を付与することができる。
 具体的な商品としては、例えば、サーフロン「S-381」、「S-382」、「SC-101」、「SC-102」、「SC-103」、「SC-104」(いずれも旭硝子株式会社製)、フロラード「FC-430」、「FC-431」、「FC-173」(いずれもフロロケミカル-住友スリーエム製)、エフトップ「EF352」、「EF301」、「EF303」(いずれも新秋田化成株式会社製)、シュベゴーフルアー「8035」、「8036」(いずれもシュベグマン社製)、「BM1000」、「BM1100」(いずれもビーエム・ヒミー社製)、メガファック「F-171」、「F-470」、「F-780-F」、「RS-75」、「RS-72-K」(いずれもDIC社製)、BYK340(ビックケミー・ジャパン社製)、「ZX-049」、「ZX-001」、「ZX-017」(何れも富士化成工業社製)等を挙げることができる。
(Surface conditioner)
The surface conditioner is a component that can be arbitrarily added to the composition forming the functional layer from the viewpoint of imparting surface smoothness and antifouling property to the functional layer described above.
Examples of a substance generally used as a surface conditioner include polyacrylate polymers such as polyalkyl acrylate; polyvinyl ether polymers such as polyalkyl vinyl ether; dimethyl polysiloxane, methylphenyl polysiloxane, polyether, polyester, Silicone polymers such as organically modified polysiloxanes with aralkyl introduced therein; those containing fluorine atoms in these polymers; and the like. These may be used alone or in combination of two or more. Also good.
The surface conditioner having a fluorine atom can be obtained, for example, by copolymerizing a monomer having a fluorine-containing group. In particular, in a film (layer) containing a fluorine-based surface conditioner, the surface energy of the film surface is lowered to form a water- and oil-repellent surface and to impart antifouling properties to the film surface. .
Specific products include, for example, Surflon “S-381”, “S-382”, “SC-101”, “SC-102”, “SC-103”, “SC-104” (all Asahi Glass shares Company-made), FLORARD "FC-430", "FC-431", "FC-173" (all made by Fluorochemicals-Sumitomo 3M), F-top "EF352", "EF301", "EF303" (all new) (Akita Kasei Co., Ltd.), Schwego Flour "8035", "8036" (Both Schwegman), "BM1000", "BM1100" (BBM Himmy), MegaFuck "F-171" , “F-470”, “F-780-F”, “RS-75”, “RS-72-K” (all manufactured by DIC), BYK340 (Big Chemie Ja Made emissions Co., Ltd.), "ZX-049", "ZX-001", mention may be made of the "ZX-017" (both Fuji Chemical Industry Co., Ltd.), and the like.
(紫外線吸収剤)
 紫外線吸収剤としては、例えば、ベンゾトリアゾール系、ベンゾフェノン系、トリアジン系、サリチル酸フェニル系、ヒンダードアミン系、シアノアクリレート系等の紫外線吸収剤、および酸化チタン等の無機粒子型の紫外線吸収剤の内、少なくとも一つを含むことが好ましい。
 ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-ベンゾフェノン、2,2’,4,4’-テトラヒドロキシ-ベンゾフェノン等が挙げられる。
 ベンゾトリアゾール系紫外線吸収剤としては、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)ベンゾトリアゾール等が挙げられる。
 サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。
 ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。
(UV absorber)
As the ultraviolet absorber, for example, at least among ultraviolet absorbers such as benzotriazole, benzophenone, triazine, phenyl salicylate, hindered amine, cyanoacrylate, and inorganic particle type ultraviolet absorbers such as titanium oxide Preferably one is included.
Examples of the benzophenone ultraviolet absorber include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole and the like.
Examples of the phenyl salicylate ultraviolet absorber include phenylsulcylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
Examples of the hindered amine ultraviolet absorber include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
 トリアジン系紫外線吸収剤としては、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン等が挙げられる。 Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine and the like.
 紫外線吸収剤としては、上記以外に紫外線の保有するエネルギーを、分子内で振動エネルギーに変換し、その振動エネルギーを、熱エネルギー等として放出する機能を有する化合物が含まれる。さらに、酸化防止剤または着色剤等との併用で効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。 In addition to the above, the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers that act as light energy conversion agents, called quenchers, can be used in combination.
(光安定剤)
 光安定剤は、光(主に紫外線)による酸化劣化を防止する観点から、機能層を形成する組成物に任意に添加することができる成分である。
 光安定剤としては、例えば、ヒンダードアミン系光安定剤、ベンゾエート系光安定剤などが好ましく、中でも、ヒンダードアミン光安定剤(HALS)が好ましい。光安定剤は1種または2種以上を併用することができる。
 商業的に入手可能なヒンダードアミン光安定剤としては、例えば、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとの重合物である光安定剤として、「TINUVIN 622」(チバ・ジャパン社製);コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールとの重合物とN,N’,N’’,N’’’-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミンとの1対1の反応生成物である光安定剤として「TINUVIN 119」(チバ・ジャパン社製);ジブチルアミン・1,3-トリアジン・N, N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-へキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンとの重縮合物である光安定剤として「TINUVIN 2020」(チバ・ジャパン社製);ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}へキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]である光安定剤として「TINUVIN 944」(チバ・ジャパン社製);ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートとの混合物である光安定剤として「TINUVIN 765」(チバ・ジャパン社製);ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケートである光安定剤として「TINUVIN 770」(チバ・ジャパン社製);デカン二酸ビス(2,2,6,6-テトラメチル-1-(オクチルオキシ)-4-ピペリジニル)エステル(1,1-ジメチルエチルヒドロペルオキシド)とオクタンとの反応生成物である光安定剤として「TINUVIN 123 」(チバ・ジャパン社製);ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネートである光安定剤として「TINUVIN 144」(チバ・ジャパン社製);シクロへキサンと過酸化N-ブチル-2,2,6,6-テトラメチル-4-ピペリジンアミン-2,4,6-トリクロロ-1,3,5-トリアジンとの反応生成物と2-アミノエタノールとの反応生成物である光安定剤として「TINUVIN 152」(チバ・ジャパン社製);ビス(1,2,2,6, 6-ペンタメチル-4-ピペリジル)セバケートとメチル-1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートとの混合物である光安定剤として「TINUVIN 292」(チバ・ジャパン社製);等が挙げられる。
(Light stabilizer)
The light stabilizer is a component that can be arbitrarily added to the composition forming the functional layer from the viewpoint of preventing oxidative degradation due to light (mainly ultraviolet rays).
As the light stabilizer, for example, a hindered amine light stabilizer, a benzoate light stabilizer, and the like are preferable, and among them, a hindered amine light stabilizer (HALS) is preferable. The light stabilizer can be used alone or in combination of two or more.
As a commercially available hindered amine light stabilizer, for example, as a light stabilizer which is a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, TINUVIN 622 ”(manufactured by Ciba Japan); a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol and N, N ′, N ″, N ′ '' -Tetrakis- (4,6-bis- (butyl- (N-methyl-2,2,6,6-tetramethylpiperidin-4-yl) amino) -triazin-2-yl) -4,7- As a light stabilizer which is a one-to-one reaction product with diazadecane-1,10-diamine, “TINUVIN 119” (manufactured by Ciba Japan); dibutylamine, 1,3-triazine, N, N′-bis ( This is a polycondensate of 2,2,6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine and N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine “TINUVIN 2020” (manufactured by Ciba Japan) as a light stabilizer; poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}] as a light stabilizer “TINUVIN 944 (Made by Ciba Japan): Mixture of bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate “TINUVIN 765” (manufactured by Ciba Japan) as a light stabilizer; “TINUVIN 770” (Ciba Japan) as a light stabilizer which is bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate ); A reaction product of bis (2,2,6,6-tetramethyl-1- (octyloxy) -4-piperidinyl) ester (1,1-dimethylethyl hydroperoxide) decane and octane “TINUVIN 123” (manufactured by Ciba Japan) as a light stabilizer; bis (1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl)- “TINUVIN 144” (manufactured by Ciba Japan) as a light stabilizer which is 4-hydroxyphenyl] methyl] butyl malonate; Of N-butyl-2,2,6,6-tetramethyl-4-piperidinamine-2,4,6-trichloro-1,3,5-triazine with 2-aminoethanol TINUVIN 152 (manufactured by Ciba Japan); bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl-1,2,2,6,6 As a light stabilizer which is a mixture with -pentamethyl-4-piperidyl sebacate, “TINUVIN 292” (manufactured by Ciba Japan);
(酸化防止剤)
 酸化防止剤としては、例えば、フェノール系酸化防止剤、チオール系酸化防止剤、または、ホスファイト系酸化防止剤を使用することが好ましい。
 フェノール系酸化防止剤としては、例えば、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、テトラキス-〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン、2,6-ジ-t-ブチル-p-クレゾール、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,3,5-トリス(3’ ,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート、3,9-ビス[1,1-ジ-メチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル]-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。
(Antioxidant)
As the antioxidant, for example, a phenol-based antioxidant, a thiol-based antioxidant, or a phosphite-based antioxidant is preferably used.
Examples of phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate ,bird Tylene glycol bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate, 3,9-bis [1,1-di-methyl-2- [β- (3-t-butyl- 4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4,6-tris (3 , 5-di-t-butyl-4-hydroxybenzyl) benzene. In particular, the phenolic antioxidant preferably has a molecular weight of 550 or more.
 チオール系酸化防止剤としては、例えば、ジステアリル-3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)等が挙げられる。
 ホスファイト系酸化防止剤としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス-(2,6-ジ-t-ブチル-4-メチルフェニル)-ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、2,2’-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト等が挙げられる。
Examples of the thiol antioxidant include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thiopropionate), and the like.
Examples of the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol. Diphosphite, bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylenedi Examples thereof include phosphonite and 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
<実施例1>
(銀反射層が形成されたPETフィルムの作製)
 下記構造のアクリルポリマー1(22.02質量部)、1-メトキシ-2-プロパノール(72.73質量部)およびシクロヘキサノン(4.74質量部)の混合溶液に、界面活性剤(F-780-F、固形分30%、DIC社製)(0.16質量部)、および光重合開始剤(エサキュアKTO-46、ランベルディー社製)(0.35質量部)を添加して、攪拌することにより、めっき下塗りポリマー層形成用塗布液を調製した。
<Example 1>
(Preparation of a PET film with a silver reflective layer)
In a mixed solution of acrylic polymer 1 (22.02 parts by mass), 1-methoxy-2-propanol (72.73 parts by mass) and cyclohexanone (4.74 parts by mass) having the following structure, a surfactant (F-780- F, solid content 30%, manufactured by DIC (0.16 parts by mass), and a photopolymerization initiator (Esacure KTO-46, manufactured by Lamberdy) (0.35 parts by mass) are added and stirred. Thus, a coating solution for forming a plating undercoat polymer layer was prepared.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 PETフィルム(A4300、東洋紡社製)上に、上記のめっき下塗りポリマー層形成用塗布液を、バーコート法により塗布し、25℃にて5分間乾燥し、次いで80℃にて5分間乾燥して塗膜を得た。
 上記塗膜に対して、三永電機製のUV露光機(型番:UVF-502S、ランプ:UXM-501MD)を用いて、254nmの波長で600mJ/cm2の積算露光量にて照射を行い、めっき下塗りポリマー層(厚み:0.55μm)を形成し、めっき下塗りポリマー層付きPETフィルムを得た。上記めっき下塗りポリマー層付きPETフィルムを1wt%炭酸水素ナトリウム水溶液中に5分間浸漬し、めっき下塗りポリマー層から未反応のポリマーを除去した。その後めっき下塗りポリマー層付きPETフィルムを純水で洗浄し、さらに風乾した。
On the PET film (A4300, manufactured by Toyobo Co., Ltd.), the above-described coating solution for forming the undercoat polymer layer is applied by a bar coating method, dried at 25 ° C. for 5 minutes, and then dried at 80 ° C. for 5 minutes. A coating film was obtained.
Using a UV exposure machine (model number: UVF-502S, lamp: UXM-501MD) manufactured by Mitsunaga Electric, the coating film is irradiated at an integrated exposure amount of 600 mJ / cm 2 at a wavelength of 254 nm, A plating undercoat polymer layer (thickness: 0.55 μm) was formed to obtain a PET film with a plating undercoat polymer layer. The PET film with the plating undercoat polymer layer was immersed in a 1 wt% sodium hydrogen carbonate aqueous solution for 5 minutes to remove unreacted polymer from the plating undercoat polymer layer. Thereafter, the PET film with the plating undercoat polymer layer was washed with pure water and further air-dried.
 次に、上記めっき下塗りポリマー層付きPETフィルムを1wt%硝酸銀水溶液中に5分間浸漬し、次いで純水で洗浄及び風乾することで、銀イオンを付与しためっき下塗りポリマー層付きPETフィルムを得た。
 上記銀イオンを付与しためっき下塗りポリマー層付きPETフィルムを、0.14wt%のNaOHと0.25wt%のホルマリンとを含むアルカリ水溶液に1分間浸漬し、その後純水で洗浄し、風乾することで、めっき下塗りポリマー層表面近傍に還元銀層(膜厚約20nm)を形成した。これにより、還元銀層付きPETフィルムを得た。
Next, the PET film with a plating undercoat polymer layer was immersed in a 1 wt% silver nitrate aqueous solution for 5 minutes, then washed with pure water and air-dried to obtain a PET film with a plating undercoat polymer layer imparted with silver ions.
By immersing the PET film with a plating undercoat polymer layer to which silver ions are added in an alkaline aqueous solution containing 0.14 wt% NaOH and 0.25 wt% formalin for 1 minute, and then washing with pure water and air drying. A reduced silver layer (film thickness of about 20 nm) was formed in the vicinity of the surface of the plating undercoat polymer layer. Thereby, a PET film with a reduced silver layer was obtained.
 次に、上記還元銀層付きPETフィルムに対して、以下の電気めっき処理を行い、還元銀層上に厚み50nmの銀層を有する銀層付きPETフィルムを得た。電気めっき液として、ダインシルバーブライトPL50(大和化成社製)を用い、8M水酸化カリウムによりpH7.8に調整した。銀層付きPETフィルムを電気めっき液に浸漬し、0.33A/dm2にて15秒間めっきし、その後、純水で1分間掛け流しにより洗浄し、風乾した。
 得られた銀層付きPETフィルムを、チオ尿素水溶液(チオ尿素:100質量ppm)に60秒間浸漬することにより、銀層の表面処理を行った。表面処理後に純水で洗浄し、風乾した。
 次に、表面処理後の銀層に対して、以下の電気めっき処理を行い、表面処理後の銀層上に厚み75nmの銀層をさらに形成し、銀反射層を得た。電気めっき液として、ダインシルバーブライトPL50(大和化成社製)を用い、8M水酸化カリウムによりpH7.8に調整した。表面処理後の銀層付きPETフィルムを、電気銀めっき液に浸漬し、0.5A/dm2にて15秒間めっきし、その後、純水で1分間掛け流しにより洗浄し、風乾した。さらに、酸化皮膜を除去するために、電気めっき後処理として、ダインシルバーACC(大和化成社製)の10質量%水溶液(メタンスルホン酸:6質量%)に90秒間浸漬した。その後、純水で1分間掛け流しにより洗浄し、風乾した。
 このようにして、銀反射層が形成されたPETフィルムを得た。形成された銀層の表面の算術平均粗さRaを原子間力顕微鏡(AFM)を用いて測定したところ、3.4nmであった。
Next, the following electroplating treatment was performed on the PET film with a reduced silver layer to obtain a PET film with a silver layer having a 50 nm thick silver layer on the reduced silver layer. As an electroplating solution, Dyne Silver Bright PL50 (manufactured by Daiwa Kasei Co., Ltd.) was used, and the pH was adjusted to 7.8 with 8M potassium hydroxide. The PET film with a silver layer was immersed in an electroplating solution, plated at 0.33 A / dm 2 for 15 seconds, then washed by pouring with pure water for 1 minute, and air-dried.
The obtained PET film with a silver layer was immersed in a thiourea aqueous solution (thiourea: 100 mass ppm) for 60 seconds to perform surface treatment of the silver layer. After the surface treatment, it was washed with pure water and air-dried.
Next, the following electroplating treatment was performed on the silver layer after the surface treatment, and a silver layer having a thickness of 75 nm was further formed on the silver layer after the surface treatment to obtain a silver reflection layer. As an electroplating solution, Dyne Silver Bright PL50 (manufactured by Daiwa Kasei Co., Ltd.) was used, and the pH was adjusted to 7.8 with 8M potassium hydroxide. The surface-treated PET film with a silver layer was immersed in an electrosilver plating solution, plated at 0.5 A / dm 2 for 15 seconds, and then washed by pouring with pure water for 1 minute and air-dried. Furthermore, in order to remove the oxide film, as an electroplating post-treatment, the film was immersed in a 10% by mass aqueous solution (methanesulfonic acid: 6% by mass) of Dyne Silver ACC (manufactured by Daiwa Kasei Co., Ltd.) for 90 seconds. Then, it washed by pouring with pure water for 1 minute, and air-dried.
In this way, a PET film on which a silver reflective layer was formed was obtained. When the arithmetic mean roughness Ra of the surface of the formed silver layer was measured using an atomic force microscope (AFM), it was 3.4 nm.
(保護層の作製)
 ワイヤーバーを用いて、後述する保護層形成用組成物1を、乾燥膜厚が8μmとなるように銀反射層の表面上に塗布した。その後130℃で乾燥し、紫外線(波長365nm換算で300mJ/cm2)を照射して硬化させ、保護層を形成した。
(Preparation of protective layer)
The composition 1 for protective layer formation mentioned later was apply | coated on the surface of the silver reflection layer so that a dry film thickness might be 8 micrometers using a wire bar. Thereafter, the film was dried at 130 ° C. and cured by irradiation with ultraviolet rays (300 mJ / cm 2 in terms of wavelength 365 nm) to form a protective layer.
-保護層形成用組成物1の組成-
アクリレートモノマー:ユニディックEKS-675(DIC(株)製、固形分55質量%) 47.90質量部
界面活性剤:メガファックF-780F(DIC(株)製、固形分3質量%、MEK希釈)  0.29質量部
開始剤:IRGACURE127(BASFジャパン(株)製)  0.57質量部
UV吸収剤:TINUVIN405(BASFジャパン(株)製)  1.43質量部
光安定剤:TINUVIN292(BASFジャパン(株)製)  0.29質量部
溶媒1:メチルイソブチルケトン  44.52質量部
溶媒2:シクロヘキサノン  5.00質量部
-Composition of protective layer forming composition 1-
Acrylate monomer: Unidic EKS-675 (manufactured by DIC Corporation, solid content 55% by mass) 47.90 parts by mass Surfactant: Megafac F-780F (manufactured by DIC Corporation, solid content 3% by mass, diluted by MEK) ) 0.29 parts by mass Initiator: IRGACURE127 (manufactured by BASF Japan) 0.57 parts by mass UV absorber: TINUVIN405 (manufactured by BASF Japan) 1.43 parts by mass Light stabilizer: TINUVIN292 (BASF Japan ( 0.29 parts by mass Solvent 1: methyl isobutyl ketone 44.52 parts by mass Solvent 2: cyclohexanone 5.00 parts by mass
(ハードコート層の作製)
 ワイヤーバーを用いて、後述するハードコート層形成用組成物1を、乾燥膜厚が8μmとなるように保護層上に塗布した。その後、130℃で乾燥し、紫外線(365nm換算で300mJ/cm2)を照射して硬化させ、ハードコート層を形成した。このようにして、金属反射層およびハードコート層を有するハードコートフィルム(以後、フィルムミラーとも称する)を製造した。
(Preparation of hard coat layer)
Using a wire bar, the hard coat layer forming composition 1 described later was applied onto the protective layer so that the dry film thickness was 8 μm. Thereafter, it was dried at 130 ° C. and cured by irradiation with ultraviolet rays (300 mJ / cm 2 in terms of 365 nm) to form a hard coat layer. In this way, a hard coat film (hereinafter also referred to as a film mirror) having a metal reflective layer and a hard coat layer was produced.
-ハードコート層形成用組成物1の組成-
開始剤含有アクリレートモノマー:FH-700(DIC(株)製、固形分91質量%)  41.79質量部
界面活性剤:メガファックF-780F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
金属酸化物:セルナックスCX-S204IP(日産化学工業(株)製、固形分20質量%)  10.01質量部
溶媒1:メチルイソブチルケトン  42.80質量部
溶媒2:シクロヘキサノン  5.00質量部
-Composition of hard coat layer forming composition 1-
Initiator-containing acrylate monomer: FH-700 (manufactured by DIC Corporation, solid content: 91% by mass) 41.79 parts by mass Surfactant: Megafac F-780F (manufactured by DIC Corporation, solid content: 3% by mass, MEK) Dilution) 0.40 parts by mass Metal oxide: Celnax CX-S204IP (manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 10.01 parts by mass Solvent 1: methyl isobutyl ketone 42.80 parts by mass Solvent 2: 5.00 parts by mass of cyclohexanone
<評価方法:ハードコート層の物性評価>
 得られたハードコートフィルム中のハードコート層の接触角(水)、表面エネルギー、鉛筆硬度、シート抵抗、スチールウール耐傷性、砂塵耐傷性、耐砂付着性、および、耐汚染性、マジックハジキ性、光学特性を評価した。以下、各々の評価に関して記載する。結果を表1にまとめて示す。
<Evaluation method: physical property evaluation of hard coat layer>
Contact angle (water), surface energy, pencil hardness, sheet resistance, steel wool scratch resistance, dust scratch resistance, sand adhesion resistance, and stain resistance, magic repellency of the hard coat layer in the obtained hard coat film The optical properties were evaluated. Hereinafter, it describes about each evaluation. The results are summarized in Table 1.
-接触角、表面エネルギー-
 ハードコート層表面の接触角(静的接触角)をDrop Master700(協和界面科学(株))を用いて測定した。シリンジ部をAUTO DISPENSER AD-31に接続し、一定量の溶液をシリンジから押し出してハードコート層表面に着滴させた。
 本実施例では、純水とヨウ化メチレンとに関して、接触角を測定した。次いで、オーウェンスの式、ヤングの式からハードコート層の表面自由エネルギーを算出した。
-Contact angle, surface energy-
The contact angle (static contact angle) on the surface of the hard coat layer was measured using Drop Master 700 (Kyowa Interface Science Co., Ltd.). The syringe part was connected to an AUTO DISPENSER AD-31, and a fixed amount of solution was pushed out of the syringe and deposited on the surface of the hard coat layer.
In this example, contact angles were measured for pure water and methylene iodide. Next, the surface free energy of the hard coat layer was calculated from the Owens equation and the Young equation.
-鉛筆硬度-
 JIS K 5600-5-4の規格に従って実施した。鉛筆を45度の角度として、750gの荷重をかけて、各ハードコート層の最表層面の引っ掻き試験を行った。5回のうち4回以上傷の付かなかった鉛筆の硬さ記号で、ランク付けを行った。
-Pencil hardness-
The test was conducted according to the standard of JIS K 5600-5-4. A scratch test was conducted on the outermost surface of each hard coat layer with a pencil at a 45 degree angle and a load of 750 g. Ranking was performed by the hardness symbol of the pencil that was not damaged more than 4 times out of 5 times.
-表面抵抗値(シート抵抗)-
 ハードコート層表面の表面抵抗値は、ハイレスタMCP-HT450型((株)三菱化学アナリテック製)URSプローブを用いて測定した。
-Surface resistance (sheet resistance)-
The surface resistance value on the surface of the hard coat layer was measured using a Hiresta MCP-HT450 type (manufactured by Mitsubishi Chemical Analytech Co., Ltd.) URS probe.
-スチールウール耐傷性(SW耐傷性)-
 #0000 ボンスター(スチールウール:日本スチールウール(株)製)に500g/cm2の荷重をかけ、ハードコート層表面を10往復した。その後、ハードコート層表面の傷つき方を観察した。目視にて、スジ状に発生する傷の本数で評価を行った。
「A」:傷の本数が0本
「B」:傷の本数が1~5本
「C」:傷の本数が6本以上
-Steel wool scratch resistance (SW scratch resistance)-
A load of 500 g / cm 2 was applied to # 0000 Bonster (steel wool: manufactured by Nippon Steel Wool Co., Ltd.), and the hard coat layer surface was reciprocated 10 times. Thereafter, how the hard coat layer surface was damaged was observed. The number of scratches generated in a streak shape was evaluated visually.
“A”: 0 scratches “B”: 1-5 scratches “C”: 6 scratches or more
-砂塵耐傷性・耐砂付着性-
 ハードコート層の砂塵耐傷性試験はIEC 60068-2-68に記載の方法で行った。予め、60℃、2時間乾燥させたフラタリーサンドを、粉じん濃度1g/m3、風速20m/secでハードコート層表面に2時間吹きつけた。
 ハードコート層の砂塵耐傷性、耐砂付着性の評価は、分光測色計CM-700D(コニカミノルタ(株)製)を用いてフィルムミラーの拡散度(正反射光SCIと拡散反射光SCEの比)を測定することにより行った。
 試験前のフィルムミラーの拡散度をDF、砂塵試験後のフィルムミラーの拡散度をDS、洗浄後のフィルムミラーの拡散度をDWとして、砂塵によるハードコート層表面の傷付き度合いをDW-DFと定義した。また、ハードコート層表面の砂付着度合いをDS-DWと定義した。DW-DFはハードコート層の傷に起因するフィルムミラーの拡散度の悪化を表し、DW-DFが小さいほど砂塵試験におけるハードコート層の傷が少ないことを意味する。DS-DWはハードコート層の砂付着に起因するフィルムミラーの拡散度の悪化を表し、DS-DWが小さいほど砂塵試験におけるハードコート層の砂付着が少ないことを意味する。なお、以下の基準に従って、砂塵耐傷性を評価した。
 「S」:DW-DFが5以下の場合
 「A」:DW-DFが5超7.5以下の場合
 「B」:DW-DFが7.5超10以下の場合
 「C」:DW-DFが10超15以下の場合
 「D」:DW-DFが20超の場合。
 また、以下の基準に従って、砂付着度合いを評価した。
 「A」:DS-DWが10以下の場合
 「B」:DS-DWが10超20以下の場合
 「C」:DS-DWが20超30以下の場合
 「D」:DS-DWが30超の場合
-Dust resistance and adhesion to sand-
The dust coating scratch resistance test of the hard coat layer was conducted by the method described in IEC 60068-2-68. Flattery sand previously dried at 60 ° C. for 2 hours was sprayed onto the surface of the hard coat layer for 2 hours at a dust concentration of 1 g / m 3 and a wind speed of 20 m / sec.
Dust scratch resistance and sand adhesion resistance of the hard coat layer were evaluated by using a spectrocolorimeter CM-700D (manufactured by Konica Minolta Co., Ltd.) and the diffusivity of the film mirror (regular reflection light SCI and diffuse reflection light SCE). Ratio).
D F is the degree of scratching of the hard coat layer surface due to dust, where D F is the diffusion degree of the film mirror before the test, D S is the diffusion degree of the film mirror after the dust test, and D W is the diffusion degree of the film mirror after the cleaning. Defined as W- DF . The degree of sand adhesion on the hard coat layer surface was defined as D S -D W. D W -D F represents the deterioration of the degree of diffusion of the film mirror caused by scratches on the hard coat layer, and the smaller D W -D F means that there are fewer scratches on the hard coat layer in the dust test. D S -D W represents the deterioration of the diffusion degree of the film mirror caused by sand adhesion on the hard coat layer, and the smaller D S -D W means that the sand adhesion on the hard coat layer in the dust test is less. In addition, dust scratch resistance was evaluated according to the following criteria.
“S”: When D W -D F is 5 or less “A”: When D W -D F is more than 5 and 7.5 or less “B”: When D W -D F is more than 7.5 and 10 or less “C”: When D W −D F is more than 10 and less than 15, “D”: When D W −D F is more than 20.
Further, the degree of sand adhesion was evaluated according to the following criteria.
"A": When D S -D W is 10 or less "B": When D S -D W is greater than 10 and 20 or less "C": When D S -D W is greater than 20 and 30 or less "D": When D S -D W is greater than 30
-耐汚染性評価-
 ハードコート層の耐汚染性評価をJSTM J 7602に記載の汚染物質懸濁水流下法により行った。懸濁水流下汚染促進試験機DT-W(スガ試験機(株)製)を用いて、1.0g/Lの濃度で作製した汚染水の流下と乾燥を50サイクル行った。
 試験前後においてフィルムミラーの拡散度を測定することにより行った。試験前のフィルムミラーの拡散度をDF、汚染試験後のフィルムミラーの拡散度をDoとして、ハードコート層の汚染度合いをDo-DFと定義した。Do-DFはハードコート層の汚染に起因するフィルムミラーの拡散度の悪化を表し、Do-DFが小さいほどハードコート層の汚染が少ないことを意味する。なお、以下の基準に従って、耐汚染性を評価した。
 「A」:Do-DFが6以下の場合
 「B」:Do-DFが6超8以下の場合
 「C」:Do-DFが8超10以下の場合
 「D」:Do-DFが10超の場合
-Pollution resistance evaluation-
Contamination resistance evaluation of the hard coat layer was performed by the pollutant suspended water flow method described in JSTM J7602. The suspended water flow pollution promotion tester DT-W (manufactured by Suga Test Instruments Co., Ltd.) was used to flow and dry the contaminated water prepared at a concentration of 1.0 g / L for 50 cycles.
The measurement was performed by measuring the diffusivity of the film mirror before and after the test. The diffusion of the film mirror before test D F, the diffusion of the film mirror after stain test as D o, the degree of contamination of the hard coat layer is defined as D o -D F. D o -D F represents the deterioration of the degree of diffusion of the film mirror due to contamination of the hard coat layer, and the smaller D o -D F means that the hard coat layer is less contaminated. The contamination resistance was evaluated according to the following criteria.
“A”: When D o -D F is 6 or less “B”: When D o -D F is greater than 6 and less than 8 “C”: When D o -D F is greater than 8 and less than 10 “D”: When D o -D F exceeds 10
-マジックハジキ性-
 ハードコート層表面に、油性マーカー:マッキーケア(黒)(ゼブラ社(株)製)を用いて塗布し、3分後に目視確認を行った。次いで、ベンコットM-3II(旭化成せんい(株)製)で拭き取り作業を行った。
「A」:マジックをはじき、かつ5往復以内で拭き取りができた。
「B」:マジックをややはじくが、5往復後にマジック跡が残った。
「C」:マジックをはじかず、5往復後にもマジック跡が残った。
-Magic repellency-
The oily marker: Mackey Care (black) (manufactured by Zebra Co., Ltd.) was applied to the hard coat layer surface, and visual confirmation was performed after 3 minutes. Next, a wiping operation was performed with Bencott M-3II (manufactured by Asahi Kasei Fibers Co., Ltd.).
“A”: The magic was repelled and wiped off within 5 round trips.
“B”: Magic was slightly repelled, but a magic mark remained after 5 round trips.
“C”: Magic was not repelled, and a magic mark remained after 5 round trips.
-光学特性-
 光学特性としては、作製したフィルムミラーの近赤外光の平均反射率、および、太陽エネルギー反射率の2点を評価した。具体的な手順を以下に示す。紫外可視近赤外分光光度計UV-3100(島津製作所社製)を用いて、フィルムミラーの波長280nm~1700nmの範囲での反射率を、該波長範囲において1nm間隔毎に測定した。
 フィルムミラーの近赤外光の平均反射率は、波長範囲を780nm~1700nmとして、その範囲で1nm間隔毎に測定した値を平均して得られる数値を、フィルムミラーの反射率の平均値と定義して算出した。
 太陽エネルギー反射率は以下のように算出した。
 波長280nm~1700nmにおける反射スペクトルをRs(λ)(λ:波長)、波長280nm~1700nmにおける太陽光の基準放射照度スペクトルをSi(λ)(λ:波長)として、太陽エネルギー反射率(Rtotal)を下記式で定義した。なお、太陽光の基準放射照度スペクトルSiは、ASTMG173-03により定義された値を使用した。
-optical properties-
As the optical characteristics, two points of the average reflectance of the near-infrared light and the solar energy reflectance of the produced film mirror were evaluated. The specific procedure is shown below. Using a UV-visible near-infrared spectrophotometer UV-3100 (manufactured by Shimadzu Corporation), the reflectance of the film mirror in the wavelength range of 280 nm to 1700 nm was measured every 1 nm in the wavelength range.
The average reflectance of the near-infrared light of the film mirror is defined as the average value of the reflectance of the film mirror, which is obtained by averaging the values measured at intervals of 1 nm in the wavelength range of 780 nm to 1700 nm. And calculated.
The solar energy reflectance was calculated as follows.
The reflection spectrum at a wavelength of 280 nm to 1700 nm is Rs (λ) (λ: wavelength), the reference irradiance spectrum of sunlight at a wavelength of 280 nm to 1700 nm is Si (λ) (λ: wavelength), and the solar energy reflectance (Rtotal) is It was defined by the following formula. The standard irradiance spectrum Si of sunlight was a value defined by ASTM G173-03.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 Rtotalは太陽光の各波長における照射強度を加味した、実効的な太陽光エネルギーの反射効率を意味する。近赤外光の平均反射率と太陽エネルギー反射率は以下の基準で評価を行った。なお、実用上の観点から、RtotalはB以上が好ましく、A以上がより好ましい。
<近赤外光の平均反射率の評価基準>
A:95%以上
B:90%以上95%未満
C:90%未満
<太陽エネルギー反射率の評価基準>
A:92%以上
B:90%以上92%未満
C:80%以上90%未満
D:80%未満
Rtotal means an effective reflection efficiency of solar energy in consideration of irradiation intensity at each wavelength of sunlight. The average reflectance and solar energy reflectance of near-infrared light were evaluated according to the following criteria. From a practical viewpoint, Rtotal is preferably B or more, more preferably A or more.
<Evaluation criteria for average reflectance of near-infrared light>
A: 95% or more B: 90% or more and less than 95% C: less than 90% <Solar energy reflectance evaluation criteria>
A: 92% or more B: 90% or more and less than 92% C: 80% or more and less than 90% D: Less than 80%
<実施例2~4>
 セルナックスCX-S204IPの使用量を表1に記載の量に変えた以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表1にまとめて示す。
<Examples 2 to 4>
A hard coat film was prepared according to the same procedure as in Example 1 except that the amount of Cellux CX-S204IP used was changed to the amount shown in Table 1, and various evaluations were performed. The results are summarized in Table 1.
<実施例5>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物2を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表1にまとめて示す。
-ハードコート層形成用組成物2-
開始剤含有アクリレートモノマー:ビームセット575CB(荒川化学工業(株)製、固形分100質量%)  36.41質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
金属酸化物:セルナックスCX-S204IP(日産化学工業(株)製、固形分20質量%)  10.01質量部
重合性フッ素化合物:メガファックRS-75(DIC(株)製、固形分40質量%)  4.00質量部
溶媒1:メチルエチルケトン  44.18質量部
溶媒2:シクロヘキサノン  5.00質量部
<Example 5>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 2 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 1.
-Composition for forming a hard coat layer 2-
Initiator-containing acrylate monomer: Beam Set 575CB (Arakawa Chemical Industries, Ltd., solid content: 100% by mass) 36.41 parts by mass Surfactant: MegaFac F-780-F (DIC Corporation, solid content: 3) 0.40 parts by mass Metal oxide: CELNAX CX-S204IP (manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 10.01 parts by mass Polymerizable fluorine compound: Megafax RS-75 (DIC Corporation, solid content 40% by mass) 4.00 parts by mass Solvent 1: methyl ethyl ketone 44.18 parts by mass Solvent 2: cyclohexanone 5.00 parts by mass
<実施例6~7>
 セルナックスCX-S204IPの使用量を表1に記載の量に変えた以外は、実施例5と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表1にまとめて示す。
<Examples 6 to 7>
A hard coat film was produced according to the same procedure as in Example 5 except that the amount of Cellux CX-S204IP used was changed to the amount shown in Table 1, and various evaluations were performed. The results are summarized in Table 1.
<実施例8>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物3を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表1にまとめて示す。
-ハードコート層形成用組成物3-
開始剤含有アクリレートモノマー:ビームセット1402(荒川化学工業(株)製、固形分87.1質量%)  43.60質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈  0.40質量部
金属酸化物:セルナックスCX-S204IP(日産化学工業(株)製、固形分20質量%)  10.00質量部
溶媒1:メチルエチルケトン  41.00質量部
溶媒2:シクロヘキサノン  5.00質量部
<Example 8>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 3 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 1.
-Composition for forming a hard coat layer 3-
Initiator-containing acrylate monomer: Beam set 1402 (Arakawa Chemical Industries, Ltd., solid content: 87.1% by mass) 43.60 parts by mass Surfactant: Megafac F-780-F (DIC Corporation, solid) 3 mass%, MEK dilution 0.40 mass parts Metal oxide: Celnax CX-S204IP (manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 10.00 mass parts Solvent 1: methyl ethyl ketone 41.00 mass parts Solvent 2: 5.00 parts by mass of cyclohexanone
<実施例9~10>
 セルナックスCX-S204IPの使用量を表1に記載の量に変えた以外は、実施例8と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表1にまとめて示す。
<Examples 9 to 10>
A hard coat film was produced according to the same procedure as in Example 8, except that the amount of Cellnax CX-S204IP used was changed to the amount shown in Table 1, and various evaluations were performed. The results are summarized in Table 1.
<実施例11>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物4を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表1にまとめて示す。
-ハードコート層形成用組成物4-
アクリレートモノマー:KAYARAD DPHA(日本化薬製、固形分濃度100質量%)  33.59質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
金属酸化物:セルナックスCX-S204IP(日産化学工業(株)製、固形分20質量%)  20.00質量部
開始剤:IRGACURE127(BASFジャパン製)  0.80質量部
重合性フッ素化合物:メガファックRS-75(DIC(株)製、固形分40質量%)  4.00質量部
溶媒1:メチルエチルケトン  36.21質量部
溶媒2:シクロヘキサノン  5.00質量部
<Example 11>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 4 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 1.
-Composition for forming a hard coat layer 4-
Acrylate monomer: KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd., solid content concentration: 100% by mass) 33.59 parts by mass 0.40 parts by mass Metal oxide: Celnax CX-S204IP (Nissan Chemical Industry Co., Ltd., solid content 20% by mass) 20.00 parts by mass Initiator: IRGACURE 127 (manufactured by BASF Japan) 0.80 parts by mass Polymerizability Fluorine compound: Megafac RS-75 (manufactured by DIC Corporation, solid content 40% by mass) 4.00 parts by mass Solvent 1: methyl ethyl ketone 36.21 parts by mass Solvent 2: cyclohexanone 5.00 parts by mass
<実施例12~13>
 セルナックスCX-S204IPの使用量を表1に記載の量に変えた以外は、実施例11と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表1にまとめて示す。
<Examples 12 to 13>
A hard coat film was prepared and subjected to various evaluations according to the same procedure as in Example 11 except that the amount used of Celnax CX-S204IP was changed to the amount shown in Table 1. The results are summarized in Table 1.
<実施例14>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物5を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表1にまとめて示す。
-ハードコート層形成用組成物5-
開始剤含有アクリレートモノマー:ビームセット1461(荒川化学工業(株)製)  46.26質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
金属酸化物:セルナックスCX-S204IP(日産化学工業(株)製、固形分20質量%)  19.98質量部
溶媒1:メチルエチルケトン  28.36質量部
溶媒2:シクロヘキサノン  5.00質量部
<Example 14>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 5 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 1.
-Composition for forming a hard coat layer 5-
Initiator-containing acrylate monomer: Beam set 1461 (Arakawa Chemical Industries, Ltd.) 46.26 parts by mass Surfactant: MegaFac F-780-F (DIC Corporation, solid content 3 mass%, diluted MEK) 0.40 parts by mass Metal oxide: Celnax CX-S204IP (manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 19.98 parts by mass Solvent 1: methyl ethyl ketone 28.36 parts by mass Solvent 2: cyclohexanone 5.00 Parts by mass
<実施例15~16>
 セルナックスCX-S204IPの使用量を表1に記載の量に変えた以外は、実施例14と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表1にまとめて示す。
<Examples 15 to 16>
A hard coat film was prepared according to the same procedure as in Example 14 except that the amount used of Celnax CX-S204IP was changed to the amount shown in Table 1, and various evaluations were performed. The results are summarized in Table 1.
<実施例17>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物6を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表1にまとめて示す。
-ハードコート層形成用組成物6-
開始剤含有アクリレートモノマー:FH-700(DIC(株)製、固形分91質量%)  42.83質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
金属酸化物:フッ素ドープ酸化スズ  1.00質量部
溶媒1:メチルエチルケトン  50.77質量部
溶媒2:シクロヘキサノン  5.00質量部
 ここで、フッ素ドープ酸化錫は特開2012-193071の実施例1に記載の方法に従って作製した平均一次粒径27nmの粒子を用いた。
<Example 17>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 6 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 1.
-Composition for forming a hard coat layer 6-
Initiator-containing acrylate monomer: FH-700 (manufactured by DIC Corporation, solid content: 91% by mass) 42.83 parts by mass Surfactant: Megafac F-780-F (manufactured by DIC Corporation, solid content: 3% by mass) 0.40 parts by mass Metal oxide: Fluorine-doped tin oxide 1.00 parts by mass Solvent 1: Methyl ethyl ketone 50.77 parts by mass Solvent 2: Cyclohexanone 5.00 parts by mass Particles having an average primary particle size of 27 nm prepared according to the method described in Example 1 of 2012-193071 were used.
<比較例1>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物9を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
-ハードコート層形成用組成物9-
開始剤含有アクリレートモノマー:FH-700(DIC(株)製、固形分85質量%、開始剤3質量%)  43.96質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
溶媒1:メチルエチルケトン  50.65質量部
溶媒2:シクロヘキサノン  5.00質量部
<Comparative Example 1>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 9 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
-Composition for forming a hard coat layer 9-
Initiator-containing acrylate monomer: FH-700 (manufactured by DIC Corporation, solid content: 85 mass%, initiator: 3 mass%) 43.96 parts by mass Surfactant: Megafac F-780-F (manufactured by DIC Corporation) 0.40 part by mass Solvent 1: methyl ethyl ketone 50.65 parts by mass Solvent 2: cyclohexanone 5.00 parts by mass
<比較例2>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物10を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
-ハードコート層形成用組成物10-
開始剤含有アクリレートモノマー:FH-700(DIC(株)製、固形分91質量%)  43.53質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
帯電防止剤:アクリット1SX(大成ファインケミカル(株)製、固形分10質量%、MEK希釈)(アンモニウム塩アクリルポリマー)  4.00質量部
溶媒1:メチルエチルケトン  47.08質量部
溶媒2:シクロヘキサノン  5.00質量部
<Comparative example 2>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 10 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
-Composition for forming a hard coat layer 10-
Initiator-containing acrylate monomer: FH-700 (manufactured by DIC Corporation, solid content 91% by mass) 43.53 parts by mass Surfactant: Megafac F-780-F (manufactured by DIC Corporation, solid content 3% by mass) 0.40 parts by mass Antistatic agent: Aclit 1SX (manufactured by Taisei Fine Chemical Co., Ltd., solid content 10% by mass, diluted MEK) (ammonium salt acrylic polymer) 4.00 parts by mass Solvent 1: methyl ethyl ketone 47.08 Mass part solvent 2: Cyclohexanone 5.00 parts by mass
<比較例3~4>
 アクリット1SXの使用量を表2に記載の量に変えた以外は、比較例2と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
<Comparative Examples 3 to 4>
A hard coat film was produced according to the same procedure as in Comparative Example 2 except that the amount of Acryt 1SX was changed to the amount shown in Table 2, and various evaluations were performed. The results are summarized in Table 2.
<比較例5>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物11を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
-ハードコート層形成用組成物11-
開始剤含有アクリレートモノマー:FH-700(DIC(株)製、固形分91質量%)  43.53質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
帯電防止剤:ポリアニリン(化研産業(株)製、固形分10質量%、MEK希釈)  4.00質量部
溶媒1:メチルエチルケトン  47.08質量部
溶媒2:シクロヘキサノン  5.00質量部
<Comparative Example 5>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 11 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
-Composition for forming a hard coat layer 11-
Initiator-containing acrylate monomer: FH-700 (manufactured by DIC Corporation, solid content 91% by mass) 43.53 parts by mass Surfactant: Megafac F-780-F (manufactured by DIC Corporation, solid content 3% by mass) 0.40 parts by mass Antistatic agent: Polyaniline (manufactured by Kaken Sangyo Co., Ltd., solid content 10% by mass, MEK dilution) 4.00 parts by mass Solvent 1: methyl ethyl ketone 47.08 parts by mass Solvent 2: cyclohexanone 5.00 parts by mass
<比較例6~7>
 ポリアニリンの使用量を表2に記載の量に変えた以外は、比較例5と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
<Comparative Examples 6-7>
A hard coat film was produced according to the same procedure as in Comparative Example 5 except that the amount of polyaniline used was changed to the amount shown in Table 2, and various evaluations were performed. The results are summarized in Table 2.
<比較例8>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物12を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
-ハードコート層形成用組成物12-
開始剤含有アクリレートモノマー:FH-700(DIC(株)製、固形分91質量%)  43.53質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
帯電防止剤:有機ホウ素ポリマー ハイボロンKB212(ボロンインターナショナル(株)製、固形分10質量%、MEK希釈)  4.00質量部
溶媒1:メチルエチルケトン  47.08質量部
溶媒2:シクロヘキサノン  5.00質量部
<Comparative Example 8>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 12 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
-Composition 12 for forming a hard coat layer-
Initiator-containing acrylate monomer: FH-700 (manufactured by DIC Corporation, solid content 91% by mass) 43.53 parts by mass Surfactant: Megafac F-780-F (manufactured by DIC Corporation, solid content 3% by mass 0.40 parts by mass Antistatic agent: Organic boron polymer Hiboron KB212 (manufactured by Boron International Co., Ltd., solid content 10% by mass, diluted MEK) 4.00 parts by mass Solvent 1: methyl ethyl ketone 47.08 parts by mass solvent 2: Cyclohexanone 5.00 parts by mass
<比較例9~10>
 ハイボロンKB212の使用量を表2に記載の量に変えた以外は、比較例8と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表1にまとめて示す。
<Comparative Examples 9 to 10>
A hard coat film was prepared according to the same procedure as in Comparative Example 8 except that the amount of high boron KB212 used was changed to the amount shown in Table 2, and various evaluations were performed. The results are summarized in Table 1.
<比較例11>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物13を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
-ハードコート層形成用組成物13-
開始剤含有アクリレートモノマー:FH-700(DIC(株)製、固形分91質量%)  43.70質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
帯電防止剤:アニオン系界面活性剤 エレクトロストリッパーME2(ライオン(株)製、固形分10質量%、MEK希釈)  2.00質量部
溶媒1:メチルエチルケトン  48.91質量部
溶媒2:シクロヘキサノン  5.00質量部
<Comparative Example 11>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 13 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
-Composition for forming a hard coat layer 13-
Initiator-containing acrylate monomer: FH-700 (manufactured by DIC Corporation, solid content: 91% by mass) 43.70 parts by mass Surfactant: Megafac F-780-F (manufactured by DIC Corporation, solid content: 3% by mass) 0.40 parts by mass Antistatic agent: Anionic surfactant Electro stripper ME2 (manufactured by Lion Corporation, solid content 10% by mass, MEK dilution) 2.00 parts by mass Solvent 1: methyl ethyl ketone 48.91 masses Part solvent 2: 5.00 parts by mass of cyclohexanone
<比較例12>
 エレクトロストリッパーME2の使用量を表2に記載の量に変えた以外は、比較例11と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
<Comparative Example 12>
A hard coat film was prepared according to the same procedure as in Comparative Example 11 except that the amount of the electrostripper ME2 used was changed to the amount shown in Table 2, and various evaluations were performed. The results are summarized in Table 2.
<比較例13>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物14を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
-ハードコート層形成用組成物14-
開始剤含有アクリレートモノマー:FH-700(DIC(株)製、固形分91質量%)  43.70質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
帯電防止剤:カチオン系界面活性剤 アーカードT-50(花王(株)製、固形分10質量%、MEK希釈)  2.00質量部
溶媒1:メチルエチルケトン  48.91質量部
溶媒2:シクロヘキサノン  5.00質量部
<Comparative Example 13>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 14 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
-Composition for forming a hard coat layer 14-
Initiator-containing acrylate monomer: FH-700 (manufactured by DIC Corporation, solid content: 91% by mass) 43.70 parts by mass Surfactant: Megafac F-780-F (manufactured by DIC Corporation, solid content: 3% by mass) 0.40 parts by mass Antistatic agent: Cationic surfactant ARCARD T-50 (manufactured by Kao Corporation, solid content 10% by mass, diluted MEK) 2.00 parts by mass Solvent 1: methyl ethyl ketone 48.91 Mass part solvent 2: Cyclohexanone 5.00 parts by mass
<比較例14>
 アーカードT-50の使用量を表2に記載の量に変えた以外は、比較例13と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
<Comparative example 14>
A hard coat film was prepared according to the same procedure as in Comparative Example 13 except that the amount of Arcade T-50 used was changed to the amount shown in Table 2, and various evaluations were performed. The results are summarized in Table 2.
<比較例15>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物15を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
-ハードコート層形成用組成物15-
開始剤含有アクリレートモノマー:ビームセット575CB(荒川化学工業(株)製)  40.03質量部
溶媒1:メチルエチルケトン  54.97質量部
溶媒2:シクロヘキサノン  5.00質量部
<Comparative Example 15>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 15 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
-Composition 15 for forming a hard coat layer-
Initiator-containing acrylate monomer: Beam Set 575CB (Arakawa Chemical Industries, Ltd.) 40.03 parts by mass Solvent 1: methyl ethyl ketone 54.97 parts by mass Solvent 2: cyclohexanone 5.00 parts by mass
<比較例16>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物16を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
-ハードコート層形成用組成物16-
開始剤含有アクリレートモノマー:ビームセット575CB(荒川化学工業(株)製)  39.97質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
溶媒1:メチルエチルケトン  54.63質量部
溶媒2:シクロヘキサノン  5.00質量部
<Comparative Example 16>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 16 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
-Composition 16 for forming a hard coat layer-
Initiator-containing acrylate monomer: Beamset 575CB (Arakawa Chemical Industries, Ltd.) 39.97 parts by mass Surfactant: MegaFac F-780-F (DIC Corporation, solid content 3% by mass, diluted MEK) 0.40 parts by mass Solvent 1: methyl ethyl ketone 54.63 parts by mass Solvent 2: cyclohexanone 5.00 parts by mass
<比較例17>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物17を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
-ハードコート層形成用組成物17-
開始剤含有アクリレートモノマー:ビームセット1461(荒川化学工業(株)製)  51.54質量部
溶媒1:メチルエチルケトン  43.36質量部
溶媒2:シクロヘキサノン  5.00質量部
<Comparative Example 17>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 17 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
-Composition 17 for forming a hard coat layer-
Initiator-containing acrylate monomer: Beam set 1461 (manufactured by Arakawa Chemical Co., Ltd.) 51.54 parts by mass Solvent 1: methyl ethyl ketone 43.36 parts by mass Solvent 2: cyclohexanone 5.00 parts by mass
<比較例18>
 ハードコート層形成用組成物1の代わりに、ハードコート層形成用組成物7を使用した以外は、実施例1と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
-ハードコート層形成用組成物7-
開始剤含有アクリレートモノマー:FH-700(DIC(株)製、固形分91質量%)  43.33質量部
界面活性剤:メガファックF-780-F(DIC(株)製、固形分3質量%、MEK希釈)  0.40質量部
金属酸化物:ITO塗料 P1-3(三菱マテリアル電子化成製、総固形分40%、ITO濃度28%)  1.43質量部
溶媒1:メチルエチルケトン  49.83質量部
溶媒2:シクロヘキサノン  5.00質量部
<Comparative Example 18>
A hard coat film was prepared according to the same procedure as in Example 1 except that the hard coat layer forming composition 7 was used instead of the hard coat layer forming composition 1, and various evaluations were performed. The results are summarized in Table 2.
-Composition 7 for forming a hard coat layer-
Initiator-containing acrylate monomer: FH-700 (manufactured by DIC Corporation, solid content: 91% by mass) 43.33 parts by mass Surfactant: Megafac F-780-F (manufactured by DIC Corporation, solid content: 3% by mass) 0.40 parts by mass Metal oxide: ITO paint P1-3 (Mitsubishi Materials Electronic Chemicals, total solid content 40%, ITO concentration 28%) 1.43 parts by mass Solvent 1: methyl ethyl ketone 49.83 parts by mass Solvent 2: 5.00 parts by mass of cyclohexanone
<比較例19>
 P1-3の使用量を表2に記載の量に変えた以外は、比較例18と同様の手順に従って、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
<Comparative Example 19>
A hard coat film was prepared according to the same procedure as in Comparative Example 18 except that the amount of P1-3 used was changed to the amount shown in Table 2, and various evaluations were performed. The results are summarized in Table 2.
<比較例20>
 国際公開第2011/096320号内の段落[0159]に記載の方法で、ハードコートフィルムを作製し、各種評価を実施した。結果を表2にまとめて示す。
<Comparative Example 20>
A hard coat film was produced by the method described in Paragraph [0159] of International Publication No. 2011/096320, and various evaluations were performed. The results are summarized in Table 2.
 なお、表1中、金属酸化物欄の「濃度」は、ハードコート層中の全固形分質量に対する金属酸化物の質量%を表す。
 また、表2中、他の帯電防止剤欄の「濃度」は、ハードコート層中の全固形分質量に対する帯電防止剤の質量%を表す。
 なお、開始剤含有アクリレートモノマーとして使用した「FH-700」「ビームセット1402」「ビームセット1461」は、いずれもフッ素含有(メタ)アクリレートに該当するため、表1および表2では「(メタ)アクリレート」欄、および、「フッ素化合物」欄の「重合性基」欄の両者に上記化合物を記載する。また、重合性フッ素化合物として使用した「メガファックRS-75」も、フッ素含有(メタ)アクリレートに該当する。
 また、表1および2中の「表面抵抗値」欄における「E+12」とは「1012」を意図し、他の数値Aの場合も同様に「10」を意図する。なお、「1E13以上」とは「1×1013」以上であること意図する。
In Table 1, “concentration” in the metal oxide column represents mass% of the metal oxide with respect to the total solid mass in the hard coat layer.
In Table 2, “Concentration” in the other antistatic agent column represents mass% of the antistatic agent relative to the total solid mass in the hard coat layer.
Since “FH-700”, “beam set 1402”, and “beam set 1461” used as initiator-containing acrylate monomers correspond to fluorine-containing (meth) acrylates, in Tables 1 and 2, “(meth)” The above compounds are described in both the “acrylate” column and the “polymerizable group” column of the “fluorine compound” column. “Megafac RS-75” used as a polymerizable fluorine compound also corresponds to a fluorine-containing (meth) acrylate.
In Tables 1 and 2, “E + 12” in the “Surface resistance value” column is intended to be “10 12 ”, and “10 A ” is also intended for other numerical values A. Note that “1E13 or more” is intended to mean “1 × 10 13 ” or more.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、本発明の実施形態に係るハードコートフィルムである各実施例では、各種性能に優れていることが確認された。
 なかでも、実施例間の比較より、ハードコート層表面の表面抵抗値は1×1011Ω/□以下の場合、砂塵耐傷性および耐砂付着性がより優れることが確認された。
 また、実施例間の比較より、ハードコート層の表面エネルギーが26mN/m以下の場合、マジックハジキ性(油に対する耐付着性)がより優れることが確認された。
 一方、所定の特性を示さないハードコート層を有する比較例の態様では、いずれかの性能に劣っていた。
As shown in Table 1, it was confirmed that each example, which is a hard coat film according to an embodiment of the present invention, is excellent in various performances.
Especially, it was confirmed from the comparison between Examples that when the surface resistance value on the surface of the hard coat layer is 1 × 10 11 Ω / □ or less, the dust scratch resistance and sand adhesion resistance are more excellent.
Moreover, it was confirmed from the comparison between Examples that when the surface energy of the hard coat layer is 26 mN / m or less, the magic repellent property (adhesion resistance to oil) is more excellent.
On the other hand, the aspect of the comparative example having a hard coat layer that does not exhibit the predetermined characteristics was inferior in performance.
 10,110,210,310  ハードコートフィルム
 12  支持体
 14  ハードコート層
 16  金属反射層
 18  保護層
 20  樹脂層
10, 110, 210, 310 Hard coat film 12 Support 14 Hard coat layer 16 Metal reflective layer 18 Protective layer 20 Resin layer

Claims (10)

  1.  支持体と、前記支持体上に配置されたハードコート層とを有するハードコートフィルムであって、
     前記ハードコート層が、ポリ(メタ)アクリレートおよび金属酸化物を含有し、前記金属酸化物が前記ハードコート層全質量に対して1~50質量%含有され、
     前記ハードコート層表面の表面自由エネルギーが30mN/m以下であり、
     前記ハードコート層表面の表面抵抗値が1×1013Ω/□未満であり、
     前記ハードコート層表面の鉛筆硬度が2H以上である、ハードコートフィルム。
    A hard coat film having a support and a hard coat layer disposed on the support,
    The hard coat layer contains poly (meth) acrylate and a metal oxide, and the metal oxide is contained in an amount of 1 to 50% by mass with respect to the total mass of the hard coat layer,
    The surface free energy of the hard coat layer surface is 30 mN / m or less,
    The surface resistance value of the hard coat layer surface is less than 1 × 10 13 Ω / □,
    The hard coat film whose pencil hardness of the said hard-coat layer surface is 2H or more.
  2.  前記ハードコート層表面の水接触角が90°以上である、請求項1に記載のハードコートフィルム。
    The hard coat film according to claim 1, wherein a water contact angle on the surface of the hard coat layer is 90 ° or more.
  3.  前記ハードコート層表面の表面抵抗値が1×1011Ω/□以下である、請求項1または2に記載のハードコートフィルム。
    The hard coat film according to claim 1 or 2, wherein a surface resistance value of the hard coat layer surface is 1 × 10 11 Ω / □ or less.
  4.  前記ハードコート層が、(メタ)アクリロイル基を有する重合性化合物と、金属酸化物とを少なくとも含有するハードコート層形成用組成物を硬化させて得られる層である、請求項1~3のいずれか1項に記載のハードコートフィルム。
    4. The hard coat layer according to claim 1, wherein the hard coat layer is a layer obtained by curing a composition for forming a hard coat layer containing at least a polymerizable compound having a (meth) acryloyl group and a metal oxide. 2. The hard coat film according to item 1.
  5.  前記ハードコート層形成用組成物が、さらに、重合性基を有さないフッ素化合物を含有する、請求項4に記載のハードコートフィルム。
    The hard coat film according to claim 4, wherein the composition for forming a hard coat layer further contains a fluorine compound having no polymerizable group.
  6.  前記(メタ)アクリロイル基を有する重合性化合物が、(メタ)アクリロイル基とフッ素原子とを有する重合性化合物を少なくとも含有する、請求項4または5に記載のハードコートフィルム。
    The hard coat film according to claim 4 or 5, wherein the polymerizable compound having a (meth) acryloyl group contains at least a polymerizable compound having a (meth) acryloyl group and a fluorine atom.
  7.  前記金属酸化物が、酸化錫、リンドープ酸化錫、およびフッ素ドープ酸化錫からなる群から選択される少なくとも1つを含む、請求項1~6のいずれか1項に記載のハードコートフィルム。
    The hard coat film according to any one of claims 1 to 6, wherein the metal oxide includes at least one selected from the group consisting of tin oxide, phosphorus-doped tin oxide, and fluorine-doped tin oxide.
  8.  前記支持体と前記ハードコート層との間に金属反射層を有し、フィルムミラーとして用いられる、請求項1~7のいずれか1項に記載のハードコートフィルム。
    The hard coat film according to any one of claims 1 to 7, which has a metal reflective layer between the support and the hard coat layer, and is used as a film mirror.
  9.  太陽光集光用フィルムミラーとして用いられる、請求項8に記載のハードコートフィルム。
    The hard coat film according to claim 8, which is used as a film mirror for collecting sunlight.
  10.  光を反射する金属反射層と、
     光が入射する表面を形成するように前記金属反射層の上に配置され、ポリ(メタ)アクリレート及び金属酸化物を含有するハードコート層と、
     を備え、
     前記金属酸化物の含有量は、前記ハードコート層の全質量に対して1~50質量%であり、
     前記表面は、
     表面自由エネルギーが30mN/m以下であり、
     表面抵抗値が1×1013Ω/□未満であり、
     鉛筆硬度が2H以上であるフィルムミラー。
    A metal reflective layer that reflects light;
    A hard coat layer disposed on the metal reflective layer to form a surface on which light is incident and containing poly (meth) acrylate and a metal oxide;
    With
    The content of the metal oxide is 1 to 50% by mass with respect to the total mass of the hard coat layer,
    The surface is
    The surface free energy is 30 mN / m or less,
    The surface resistance value is less than 1 × 10 13 Ω / □,
    A film mirror having a pencil hardness of 2H or more.
PCT/JP2014/071583 2013-09-12 2014-08-18 Hard coat film, and film mirror WO2015037397A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-189619 2013-09-12
JP2013189619A JP2015054461A (en) 2013-09-12 2013-09-12 Hard coat film

Publications (1)

Publication Number Publication Date
WO2015037397A1 true WO2015037397A1 (en) 2015-03-19

Family

ID=52665515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071583 WO2015037397A1 (en) 2013-09-12 2014-08-18 Hard coat film, and film mirror

Country Status (2)

Country Link
JP (1) JP2015054461A (en)
WO (1) WO2015037397A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170027307A1 (en) * 2014-06-30 2017-02-02 Komy Co., Ltd. Mirror for aircraft crew members
WO2018128073A1 (en) * 2017-01-06 2018-07-12 コニカミノルタ株式会社 Self-repairing membrane, self-repairing film, and method for producing self-repairing membrane
US20220187194A1 (en) * 2019-03-28 2022-06-16 Carl Zeiss Spectroscopy Gmbh Measurement light source and measuring arrangement for detecting a reflection spectrum

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107207639A (en) 2015-09-24 2017-09-26 Jsr株式会社 Emulsion compositions and its manufacture method and layered product and its manufacture method
CN113412190B (en) * 2019-02-06 2023-09-26 日产化学株式会社 Curable composition for antistatic hard coating
KR102024032B1 (en) * 2019-05-15 2019-09-24 주식회사 퍼시픽인터켐코포레이션 Additives for improving stratchresistance and Resin composition using the same
KR102332887B1 (en) 2019-10-01 2021-11-30 동우 화인켐 주식회사 Hard coating film and image display device using the same
KR102327414B1 (en) * 2019-10-01 2021-11-17 동우 화인켐 주식회사 Hard coating film and image display device using the same
KR102327415B1 (en) 2019-10-01 2021-11-17 동우 화인켐 주식회사 Hard coating film and image display device using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066991A (en) * 2007-09-14 2009-04-02 Sumitomo Osaka Cement Co Ltd Antistatic film with surface protecting film, and its manufacturing method and its manufactuing paint
JP2010139878A (en) * 2008-12-12 2010-06-24 Fujifilm Corp Method of manufacturing optical laminate
WO2011096320A1 (en) * 2010-02-05 2011-08-11 コニカミノルタオプト株式会社 Film mirror, film mirror for solar thermal power generation, and reflection device for solar photovoltaic power generation
WO2012026312A1 (en) * 2010-08-25 2012-03-01 コニカミノルタオプト株式会社 Film mirror for solar thermal power generation, method for producing film mirror for solar thermal power generation, and reflecting device for solar thermal power generation
JP2012047861A (en) * 2010-08-25 2012-03-08 Konica Minolta Opto Inc Film mirror, manufacturing method thereof, and film mirror for condensing solar light
WO2012057003A1 (en) * 2010-10-27 2012-05-03 コニカミノルタオプト株式会社 Film mirror for solar power generation purposes and reflection device for solar power generation purposes
WO2012133517A1 (en) * 2011-03-31 2012-10-04 コニカミノルタアドバンストレイヤー株式会社 Mirror and reflective device for generating solar power
JP2012232538A (en) * 2011-05-09 2012-11-29 Konica Minolta Advanced Layers Inc Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066991A (en) * 2007-09-14 2009-04-02 Sumitomo Osaka Cement Co Ltd Antistatic film with surface protecting film, and its manufacturing method and its manufactuing paint
JP2010139878A (en) * 2008-12-12 2010-06-24 Fujifilm Corp Method of manufacturing optical laminate
WO2011096320A1 (en) * 2010-02-05 2011-08-11 コニカミノルタオプト株式会社 Film mirror, film mirror for solar thermal power generation, and reflection device for solar photovoltaic power generation
WO2012026312A1 (en) * 2010-08-25 2012-03-01 コニカミノルタオプト株式会社 Film mirror for solar thermal power generation, method for producing film mirror for solar thermal power generation, and reflecting device for solar thermal power generation
JP2012047861A (en) * 2010-08-25 2012-03-08 Konica Minolta Opto Inc Film mirror, manufacturing method thereof, and film mirror for condensing solar light
WO2012057003A1 (en) * 2010-10-27 2012-05-03 コニカミノルタオプト株式会社 Film mirror for solar power generation purposes and reflection device for solar power generation purposes
WO2012133517A1 (en) * 2011-03-31 2012-10-04 コニカミノルタアドバンストレイヤー株式会社 Mirror and reflective device for generating solar power
JP2012232538A (en) * 2011-05-09 2012-11-29 Konica Minolta Advanced Layers Inc Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170027307A1 (en) * 2014-06-30 2017-02-02 Komy Co., Ltd. Mirror for aircraft crew members
US10349726B2 (en) * 2014-06-30 2019-07-16 Komy Co., Ltd Mirror for aircraft crew members
WO2018128073A1 (en) * 2017-01-06 2018-07-12 コニカミノルタ株式会社 Self-repairing membrane, self-repairing film, and method for producing self-repairing membrane
US20220187194A1 (en) * 2019-03-28 2022-06-16 Carl Zeiss Spectroscopy Gmbh Measurement light source and measuring arrangement for detecting a reflection spectrum
US11953426B2 (en) * 2019-03-28 2024-04-09 Carl Zeiss Spectroscopy Gmbh Measurement light source and measuring arrangement for detecting a reflection spectrum

Also Published As

Publication number Publication date
JP2015054461A (en) 2015-03-23

Similar Documents

Publication Publication Date Title
WO2015037397A1 (en) Hard coat film, and film mirror
US20160170192A1 (en) Composite film and film mirror for solar light reflection
JP5211696B2 (en) Hard coat film, method for producing the same, and antireflection film
JP5741586B2 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
JP5924261B2 (en) Laminated polyester film and hard coat film
EP2660632A1 (en) Functional film, film mirror, and reflecting device for solar thermal power generation
JP6127956B2 (en) Protective film for touch panel
CN111149019A (en) Optical film and image display device
JP2010106061A (en) Weather-resistant hard-coat film, and ultraviolet-curable resin composition
KR20140060516A (en) Polymeric materials for external applications with self-healing surface properties after scratches or abrasion damage
JP2014199363A (en) Film mirror
JP5594509B2 (en) Laminate and method for producing laminate
US20150198753A1 (en) Film mirror
JP4787479B2 (en) Antifouling paint, antifouling sheet and method for producing the same
WO2015146314A1 (en) Laminate, method for producing same, reflection plate, mirror film, antibacterial coat, conductive film and heat conductive body
EP2634606A1 (en) Film mirror for solar power generation purposes and reflection device for solar power generation purposes
WO2015037549A1 (en) Composite film
JP2014133403A (en) Mirror film, production method of the same, and reflecting mirror using the same
JP6402952B2 (en) UV curable resin layer
JP2016190487A (en) Transfer sheet, hard coat laminate and manufacturing method of hard coat laminate
JPWO2012043606A1 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
JP2015049472A (en) Film mirror
WO2013054869A1 (en) Mirror for reflecting sunlight and reflecting device for solar power generation
WO2014155860A1 (en) Mirror unit and solar light reflection plate using same
JP2014194469A (en) Solar light collecting film mirror, manufacturing method therefor, and solar light reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843992

Country of ref document: EP

Kind code of ref document: A1