WO2011096284A1 - Film mirror for solar thermal power generation, method for producing film mirror for solar thermal power generation, and reflection device for solar thermal power generation - Google Patents

Film mirror for solar thermal power generation, method for producing film mirror for solar thermal power generation, and reflection device for solar thermal power generation Download PDF

Info

Publication number
WO2011096284A1
WO2011096284A1 PCT/JP2011/051082 JP2011051082W WO2011096284A1 WO 2011096284 A1 WO2011096284 A1 WO 2011096284A1 JP 2011051082 W JP2011051082 W JP 2011051082W WO 2011096284 A1 WO2011096284 A1 WO 2011096284A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
layer
absorber
film mirror
film
Prior art date
Application number
PCT/JP2011/051082
Other languages
French (fr)
Japanese (ja)
Inventor
望月 誠
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011552728A priority Critical patent/JPWO2011096284A1/en
Publication of WO2011096284A1 publication Critical patent/WO2011096284A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a novel film mirror for solar power generation, a method for producing the same, and a reflector for solar power generation using the film mirror.
  • a benztriazole-based ultraviolet absorber (hereinafter referred to as UV absorber) is applied to the resin layer located on the incident light side of the silver reflective layer from the viewpoint of obtaining a high reflectance.
  • UV absorber a benztriazole-based ultraviolet absorber
  • Patent Document 2 by adding a large amount of (also referred to as)) to suppress a decrease in light transmittance of the resin layer due to discoloration caused by light degradation due to UV light of the resin.
  • Japanese Patent Laid-Open No. 61-154942 discloses that a layer containing a silver corrosion inhibitor is laminated on the upper layer of the silver reflection layer to suppress a decrease in reflectance due to silver corrosion.
  • a method of suppressing a decrease in light transmittance of a resin layer by providing a benztriazole-based UV absorber layer as an upper layer is disclosed.
  • the present invention has been made in view of the above problems, and its purpose is to prevent a decrease in regular reflectance due to deterioration of the adhesive layer that is a reflective layer, and to be lightweight and flexible, and to have light resistance and weather resistance.
  • An object of the present invention is to provide a film mirror for solar power generation that is excellent and has a good regular reflectance with respect to sunlight, a manufacturing method thereof, and a reflector for solar power generation using the same.
  • the present inventors have determined that the deterioration of the adhesive layer constituting the film mirror for solar power generation is caused by the low molecular weight component of the resin contained in the adhesive layer, the residual polymerization initiator, or the residual monomer ultraviolet rays. It was found that the degradation was due. Furthermore, it has been found that the ultraviolet light for decomposing each of the above components is, in particular, light in the UV-B region (290-320 nm). Such a problem becomes particularly apparent when silver is used for the reflective layer. Although silver has an excellent reflectance in visible light compared to metals such as aluminum, it has a property that it cannot reflect light with a wavelength of 320 nm or less and transmits light in the UV-B region.
  • the organic UV absorber when the organic UV absorber is made to absorb light in the UV-B region, the organic UV absorber itself deteriorates, so that the UV absorption function gradually decreases, and the above-mentioned adhesive layer is decomposed. As a result, it has become clear that not only the problem of causing regularity of the regular reflectivity to occur, but also the deterioration of the reflectivity due to coloring due to alteration of the organic UV absorber itself or deformation of the layer to which the UV absorber is added, etc. .
  • a film mirror for solar power generation comprising:
  • the organic UV absorber layer is disposed on the incident light side with respect to the silver reflective layer, and the inorganic UV absorber layer is disposed on the side opposite to the incident light with respect to the silver reflective layer.
  • the inorganic UV absorber layer is disposed on the incident light side with respect to the silver reflective layer, and the organic UV absorber layer is disposed on the anti-incident light side with respect to the silver reflective layer. 5.
  • a solar power generation reflecting device wherein the solar power generation film mirror according to any one of 1 to 7 is bonded to a metal support through an adhesive layer.
  • the adhesive layer does not deteriorate, and solar heat capable of maintaining a high regular reflectance over a long period of time.
  • Film mirror for power generation This is considered to be an effect obtained by providing a layer containing an inorganic UV absorber having a refractive index of 2.4 or less on the incident side of the adhesive layer.
  • the present inventors have one or more UV absorbing layers containing an inorganic UV absorber having a refractive index of 2.4 or less, and a silver reflecting layer composed of silver, and the silver reflecting layer Due to the peeling or distortion of the adhesive layer by the film mirror for solar power generation, which has an adhesive layer for forming a solar power generation reflecting device by adhering to a metal support etc. on the side opposite to the incident light side It has been found that the problem of lowering the regular reflectance of the film mirror is solved.
  • the inorganic UV absorber having a refractive index of 2.4 or less absorbs the wavelength in the UV-B region without causing irregular reflection, and decomposes the low molecular weight component of the adhesive layer resin, the residual polymerization initiator or the residual monomer. This is thought to be due to the suppression of the above.
  • FIG. 1 shows an example of a typical configuration of a film mirror for solar power generation according to the present invention.
  • the hard coat layer 2 the UV absorbing layer 3 containing the inorganic UV absorber 8, the corrosion prevention layer 4, the silver reflection from the incident light side (upper part of the drawing).
  • Layer 5, resin support layer 6, and adhesive layer 7 are laminated in this order.
  • FIGS. 2 to 5 show examples of a more preferable configuration of the film mirror for solar power generation according to the present invention.
  • the film mirror 1 for solar power generation shown in FIG. 2 includes a hard coat layer 2, an inorganic UV absorber 8 and an organic UV absorber 9 containing a UV absorber layer 3 'and a corrosion inhibitor from the incident light side (upper part of the drawing).
  • the layer 4, the silver reflection layer 5, the resin support layer 6, and the adhesive layer 7 are laminated in this order.
  • the transmittance of the organic UV absorber 9 is suppressed while suppressing the deterioration of the adhesive layer 7. It is possible to reduce the content of the low inorganic UV absorber 8, and as a result, the reflectance is improved.
  • the hard coat layer 2 the organic UV absorber-containing layer 10 containing the organic UV absorber 9, the corrosion inhibitor layer 4, silver from the incident light side (upper part of the drawing)
  • the reflective layer 5 the inorganic UV absorber-containing layer 11 containing the inorganic UV absorber 8, the resin support layer 6, and the adhesive layer 7 are laminated in this order.
  • the inorganic UV absorber-containing layer 11 is present on the counter-incident light side (lower part of the drawing) with respect to the silver reflective layer 5, so that the reflectance is increased.
  • the organic UV absorber-containing layer 10 can prevent resin deterioration of the corrosion inhibitor layer 4 located below.
  • the inorganic UV absorber-containing layer 11 on the anti-incident light side of the silver reflecting layer 5 absorbs light having a wavelength of 320 nm or less that passes through the silver reflecting layer 5, deterioration of the adhesive layer 7 can be suppressed.
  • the inorganic UV absorber-containing layer 11 can contain a large amount of the inorganic UV absorber 8 as the transparency decreases, and the light resistance of the adhesive layer 7 is further improved.
  • the hard coat layer 2 In the film mirror 1 for solar thermal power generation shown in FIG. 4, from the incident light side, the hard coat layer 2, the inorganic UV absorber-containing layer 11 containing the inorganic UV absorber 8, the corrosion inhibitor layer 4, the silver reflecting layer 5, and the organic
  • the organic UV absorber-containing layer 10 containing the UV absorber 9, the resin support layer 6, and the adhesive layer 7 are laminated in this order.
  • the inorganic UV absorber 8 since there is a UV absorption contribution by the organic UV absorber-containing layer 10, the inorganic UV absorber 8 having a lower transmittance than the organic UV absorber 9 while suppressing deterioration of the adhesive layer 7 is contained. The amount can be reduced, and as a result, the reflectance is improved.
  • the hard coat layer 2 In the film mirror 1 for solar thermal power generation shown in FIG. 5, from the incident light side, the hard coat layer 2, the inorganic UV absorber-containing layer 11 containing the inorganic UV absorber 8, the corrosion inhibitor layer 4, the silver reflecting layer 5, and the resin It is the structure laminated
  • a hard coat layer in the film mirror for solar power generation of the present invention, a hard coat layer can be provided as the outermost layer.
  • the hard coat layer according to the present invention is provided for preventing scratches.
  • the hard coat layer according to the present invention can be composed of, for example, an acrylic resin, a urethane resin, a melamine resin, an epoxy resin, an organic silicate compound, a silicone resin, or the like as a binder.
  • silicone resins and acrylic resins are preferable in terms of hardness and durability.
  • the active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component.
  • Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
  • the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
  • Examples of commercially available polyfunctional acrylic cured paints include “Diabeam Series” manufactured by Mitsubishi Rayon Co., Ltd., “Denacol Series” manufactured by Nagase Sangyo Co., Ltd., and “NK Ester Series” manufactured by Shin Nakamura Co., Ltd. , "Unidic Series” manufactured by DIC Corporation, "Aronix Series” manufactured by Toagosei Co., Ltd., “Blemmer Series” manufactured by Nippon Oil & Fats Co., Ltd., “KAYARAD Series” manufactured by Nippon Kayaku Co., Ltd. Examples include “Light Ester Series” and “Light Acrylate Series” manufactured by the company.
  • various additives can be further blended as necessary within the range where the effects of the present invention are not impaired.
  • stabilizers such as antioxidants, light stabilizers, UV absorbers, surfactants, leveling agents, antistatic agents, and the like can be used.
  • the leveling agent is particularly effective in reducing surface irregularities when a hard coat layer is applied.
  • a dimethylpolysiloxane-polyoxyalkylene copolymer for example, SH190 manufactured by Toray Dow Corning Co., Ltd.
  • SH190 manufactured by Toray Dow Corning Co., Ltd. is suitable as the silicone leveling agent.
  • the UV absorbing layer according to the present invention has a constitution in which a UV absorber is dispersed in the form of particles in an inorganic oxide or resin.
  • the film mirror for solar power generation according to the present invention is characterized by having a UV absorbing layer containing an inorganic UV absorber having a refractive index of 2.4 or less.
  • the UV absorbing layer according to the present invention may be a layer containing both an inorganic UV absorber and an organic UV absorber, or an inorganic UV agent-containing layer containing an inorganic UV absorber and an organic UV absorber.
  • the organic UV agent containing layer to contain may be the structure which exists separately each independently.
  • the UV absorbing layer containing an inorganic UV absorber is preferably 3.0 ⁇ m or more and 150 ⁇ m or less from the viewpoint of UV cut ability and film rollability.
  • One form of the UV absorbing layer according to the present invention is a configuration in which UV absorber particles are dispersed in an inorganic oxide.
  • the inorganic oxide it is preferable to use an inorganic oxide formed by local heating from a sol using an organometallic compound as a raw material. Therefore, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound, An oxide of an element such as tin (Sn) or niobium (Nb) is preferable.
  • silicon oxide aluminum oxide, zirconium oxide, etc., preferably silicon oxide.
  • a method for forming an inorganic oxide from an organometallic compound it is preferable to use a so-called sol-gel method and a method of applying polysilazane.
  • the sol-gel method referred to in the present invention refers to obtaining a metal oxide or hydroxide sol from an organometallic compound solution such as a metal alkoxide or an inorganic compound solution, further gelling this, and heating this gel to produce ceramic or
  • a method for producing a silicon dioxide thin film comprising the steps of hydrolyzing silicon alkoxide in an alcohol solvent and subjecting it to condensation polymerization to obtain a sol, forming the sol into a thin film, and then heating and firing the sol thin film. It has already been known and put into practical use as a method for producing a silicon dioxide thin film by a gel method.
  • tetramethoxy silicon, tetraethoxy silicon, tetra-n-propoxy silicon, tetraisopropoxy silicon, tetra-n-butoxy silicon, tetraisobutoxy silicon, tetra- Tetraalkoxy silicon such as t-butoxy silicon or a derivative thereof is dissolved in a lower aliphatic alcohol solvent such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and water is added thereto.
  • the method of applying polysilazane is a method of forming a silicon oxide film by using a solution containing at least one perhydropolysilazane represented by the following formula (1) as a coating solution and curing it by light irradiation.
  • a solution containing at least one polysilazane represented by the following formula (2) is used.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an optionally substituted alkyl group, aryl group, vinyl group, or (trialkoxy). Silyl) alkyl group, where n and p are integers, and n is determined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • R 1 , R 3 and R 6 each represent a hydrogen atom
  • R 2 , R 4 and R 5 each represent a methyl group
  • R 1 , R 3 and R 6 are A compound in which each represents a hydrogen atom
  • R 2 , R 4 each represents a methyl group
  • R 5 represents a vinyl group
  • R 1 , R 3 , R 4 and R 6 each represent a hydrogen atom
  • R 2 and R 5 are compounds each representing a methyl group.
  • a solution containing at least one polysilazane represented by the following formula (3) is also preferable.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of one another a hydrogen atom or an optionally substituted alkyl group
  • R 1 , R 3 and R 6 each representing a hydrogen atom
  • R 2 , R 4 , R 5 and R 8 each representing a methyl group
  • R 9 representing a (triethoxysilyl) propyl group
  • R 7 represents an alkyl group or a hydrogen atom
  • the ratio of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, particularly preferably 10 to 40% by mass as polysilazane.
  • a solvent it is an organic system which does not contain water and a reactive group (for example, hydroxyl group or amine group), and is inactive with respect to polysilazane, and preferably an aprotic solvent.
  • esters such as ethyl acetate or butyl acetate
  • ketones such as acetone or methyl ethyl ketone
  • ethers such as tetrahydrofuran or dibutyl ether
  • mono- and polyalkylene glycol dialkyls Ether diglymes
  • binders such as those conventionally used in the production of paints.
  • cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
  • Still other components of the polysilazane formulation include, for example, additives that affect the formulation viscosity, substrate wetting, film formability, lubrication or exhaust properties, or inorganic nanoparticles such as SiO 2 , TiO 2 , It can be ZnO, ZrO 2 or Al 2 O 3 .
  • SiO 2 , TiO 2 It can be ZnO, ZrO 2 or Al 2 O 3 .
  • the silicon oxide layer, the alkyl group-containing silicon oxide layer, or the polymer layer containing silicon oxide may be formed by applying light having a wavelength of 150 nm to 250 nm after applying a polysilazane solution (liquid containing a silicon oxide precursor). preferable.
  • Suitable radiation sources include an excimer radiator having a maximum emission at about 172 nm, a low pressure mercury vapor lamp having an emission line at about 185 nm, and a medium and high pressure mercury vapor lamp having a wavelength component of 230 nm or less, and a maximum emission at about 222 nm. It is an excimer lamp.
  • a radiation source having a radiation component with a wavelength of 180 nm or less for example a Xe 2 * excimar radiator having a maximum emission at about 172 nm
  • the high of these gases in the above wavelength range in the presence of oxygen and / or water vapor Ozone and oxygen radicals and hydroxyl radicals are generated very efficiently by photolysis because of the extinction coefficient, which accelerates the oxidation of the polysilazane layer.
  • both mechanisms namely the cleavage of Si—N bonds and the action of ozone, oxygen radicals and hydroxyl radicals, can only occur after VUV radiation reaches the surface of the polysilazane layer.
  • the silicon oxide layer, the alkyl group-containing silicon oxide layer, or the polymer layer containing silicon oxide is formed by applying light having a wavelength of 1 ⁇ m to 3 ⁇ m after applying a polysilazane solution (liquid containing a silicon oxide precursor). May be. Specifically, it is cured by irradiation with infrared pulsed light. In this case, since the heat rays are reflected by the silver surface as the reflective layer, the film as the substrate can be efficiently cured without damage.
  • UV absorber resin containing UV absorber examples include films in which UV absorber particles are dispersed in various conventionally known resins.
  • the resin film used as the substrate include cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyester film such as polyethylene terephthalate and polyethylene naphthalate.
  • a polycarbonate film, a polyester film, a norbornene resin film, and a cellulose ester film are preferable.
  • an acrylic film it is preferable to use an acrylic film. Moreover, even if it is the film manufactured by melt casting film forming, the film manufactured by solution casting film forming may be sufficient.
  • the inorganic UV absorber according to the present invention is mainly a metal oxide pigment, and is dispersed in an acrylic resin at a concentration of 20% by mass or more to form a film having a thickness of 6 ⁇ m.
  • the UV-B region (290- A compound having a function of reducing the light transmittance in the region of 320 nm) to 10% or less is preferable.
  • the inorganic UV absorber applicable to the present invention is particularly preferably selected from zinc oxide, iron oxide, zirconium oxide, cerium oxide or a mixture thereof.
  • the inorganic UV absorber according to the present invention has a refractive index of 2.4 or less.
  • An inorganic UV absorber having a refractive index greater than 2.4 is not preferable as a UV absorber for a film mirror for solar power generation because irregular reflection is large and causes a decrease in the transparency and regular reflectance of the UV absorbing layer.
  • the inorganic UV absorber according to the present invention preferably has a refractive index of 1.5 or more and 2.4 or less.
  • the refractive index refers to a numerical value measured at a temperature of 25 ° C. at a wavelength of sodium D line (wavelength 589 nm).
  • the inorganic UV absorber-containing layer those having an average basic particle diameter of between 5 nm and 500 nm are preferable, and an average base between 10 nm and 100 nm is particularly preferable. It is a metal oxide particle having a particle size and a maximum particle size distribution of 150 nm or less. This type of coated or uncoated metal oxide pigment is described in more detail in patent application EP-A-0 518 773.
  • the inorganic UV absorber fine particles having an average particle diameter of 10 nm or more and 100 nm or less coated on the surface of the inorganic UV absorber. It is preferable that Moreover, since surface coating also has the effect of improving the dispersibility of inorganic UV absorber particles, it is still preferable.
  • the surface-coated inorganic UV absorbers herein include amino acids, beeswax, fatty acids, fatty alcohols, anionic surfactants, lecithins, sodium salts, potassium salts, zinc salts, iron salts or aluminum salts of fatty acids, metal alkoxides.
  • the surface coating has an effect of adjusting the refractive index of the inorganic UV absorber particles.
  • the refractive index of the surface-coated UV absorber particles themselves can be lowered by coating the surface of the inorganic UV absorber particles having a high refractive index with a material having a low refractive index.
  • the refractive index of the surface-coated UV absorber particles can be controlled mainly by the type and amount of the material to be surface-coated.
  • the amount of inorganic UV absorber used alone is 1 to 30% by mass, preferably 5 to 25% by mass, more preferably 15 to 20% by mass, based on the total mass of the UV absorbing layer.
  • the amount is more than 30% by mass, the adhesion is deteriorated, and when the amount is less than 1% by mass, the weather resistance improving effect is small.
  • the amount of the inorganic UV absorber used is 3 to 20% by mass, preferably 5 to 10% by mass, based on the total mass of the UV absorbing layer.
  • the organic UV absorber is used in an amount of 0.1 to 10% by mass, preferably 0.5 to 5% by mass.
  • Organic UV absorber examples include benzophenone-based, benzotriazole-based, phenyl salicylate-based, triazine-based and the like.
  • benzophenone ultraviolet absorbers examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2-hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4' -Tetrahydroxy-benzophenone and the like.
  • benzotriazole ultraviolet absorbers examples include 2- (2′-hydroxy-5-methylphenyl) benzotriazole and 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole. 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) benzotriazole and the like.
  • phenyl salicylate ultraviolet absorber examples include phenylsulcylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • hindered amine ultraviolet absorber examples include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy- 4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy- 4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- ( 2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5 Triazine, 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphen
  • Organic UV absorbers include compounds having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as heat energy or the like in addition to the above. Furthermore, a substance that exhibits an effect when used in combination with an antioxidant or a colorant, or a light stabilizer called a quencher that acts as a light energy converter can be used in combination. However, when the above organic UV absorber is used, it is necessary to select a material in which the light absorption wavelength of the organic UV absorber does not overlap with the effective wavelength of the photopolymerization initiator.
  • the amount of the organic UV absorber used is 0.1 to 20% by mass, preferably 1 to 15% by mass, and more preferably 3 to 10% by mass with respect to the total mass of the UV absorbing layer. When the amount is more than 20% by mass, the adhesion is deteriorated.
  • Examples of the structure of the corrosion prevention layer according to the present invention include a layer formed only from a corrosion inhibitor or a layer made of a resin containing a corrosion inhibitor, and is a resin layer containing a corrosion inhibitor. Is preferred. More preferably, a resin layer containing 0.01 to 10% by mass of a corrosion inhibitor is used.
  • the resin used for the corrosion inhibitor layer should preferably have a function also as an adhesive layer, and is particularly limited as long as it has a function of improving the adhesion between the silver reflective layer and the resin base material layer (resin film).
  • the resin used for the corrosion inhibitor layer is an adhesive that adheres the resin base material (resin film) and the silver reflective layer, heat resistance that can withstand heat when the silver reflective layer is formed by a vacuum deposition method, And the smoothness for extracting the high reflective performance which a silver reflective layer originally has is required.
  • the resin used for the corrosion inhibitor layer according to the present invention is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance and smoothness, and polyester resin, acrylic resin, melamine resin.
  • Epoxy resin, polyamide resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin, etc. can be used singly or as a mixed resin.
  • a mixed resin of polyester resin and melamine resin can be used. It is more preferable to use a thermosetting resin in which a curing agent such as isocyanate is further mixed.
  • the thickness of the corrosion inhibitor layer according to the present invention is preferably 0.01 to 3 ⁇ m, more preferably 0.1 to 1 ⁇ m, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
  • a method for forming the corrosion inhibitor layer conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • Corrosion inhibitors and antioxidants having an adsorptive group for silver are preferably used as the corrosion inhibitor used in the corrosion prevention layer according to the present invention for the purpose of preventing corrosion of the silver reflection layer.
  • corrosion refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by environmental materials surrounding it (see JIS Z0103-2004). .
  • the adhesion preventing layer described later contains an antioxidant, and the corrosion preventing layer contains a corrosion inhibiting agent having an adsorptive group for silver as an upper adjacent layer of the silver reflecting layer. It is preferable to provide an embodiment.
  • the optimum amount of the corrosion inhibitor varies depending on the compound to be used, but generally it is preferably in the range of 0.1 to 1.0 / m 2 .
  • ⁇ Corrosion inhibitor having an adsorptive group for silver examples include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, and compounds having a thiazole ring. It is desirable that the compound is selected from a compound having an imidazole ring, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene-based compound, or a mixture thereof.
  • amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N-dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate , Diisopropyl ammonium benzoate, diisopropyl ammonium nai Light, cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexy
  • Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3-methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3- Triazole, benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2, 4-triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'- Droxy-5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
  • Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, and 2-mercaptobenzo.
  • Examples include thiazole and the like, or a mixture thereof.
  • Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, and 1-benzyl-2.
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
  • copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and mixtures thereof.
  • thioureas examples include thiourea, guanylthiourea, and the like, or a mixture thereof.
  • the compound having a mercapto group if the materials described above are added, for example, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3 -Mercapto-1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, etc., or a mixture thereof.
  • the materials described above for example, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3 -Mercapto-1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, etc., or a mixture thereof.
  • naphthalene-based compounds examples include thionalide.
  • Silver reflection layer As a method for forming the silver reflective layer according to the present invention, either a wet method or a dry method can be applied.
  • the wet method is a general term for a plating method, which is a method of forming a silver film by depositing a metal from a solution. Specific examples thereof include a silver mirror reaction.
  • the dry method is a general term for a vacuum film-forming method, and specific examples include, for example, a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam. Examples include assisted vacuum deposition and sputtering.
  • a vapor deposition method capable of applying a roll-to-roll method of continuously forming a film is preferably used. That is, in the manufacturing method of the film mirror for solar power generation which manufactures the film mirror for solar power generation of this invention, it is an aspect formed using the process of forming the silver reflection layer which concerns on this invention by silver vapor deposition.
  • the thickness of the silver reflective layer according to the present invention is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
  • the silver reflective layer may be on the light incident side with respect to the support or on the opposite side, but since the support is a resin, for the purpose of preventing resin degradation due to light, It is preferable to be positioned on the light incident side with respect to the support.
  • resin substrate As the resin base material according to the present invention, various publicly known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films.
  • cellulose ester film polyester film
  • polycarbonate film polyarylate film
  • polycarbonate films polyester films, norbornene resin films, and cellulose ester films are preferred.
  • a polyester film or a cellulose ester film it is preferable to use a polyester film or a cellulose ester film, and it may be a film manufactured by melt casting or a film manufactured by solution casting.
  • the thickness of the resin base material is an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 ⁇ m. The thickness is preferably 20 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the configuration of the pressure-sensitive adhesive layer according to the present invention is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, a pressure-sensitive adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • polyester resin urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber, etc. are used.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 ⁇ m from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like.
  • the other base material to be bonded to the solar power generation film mirror of the present invention may be any material that can impart protection of the silver reflective layer, for example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or Sheet, polyethylene naphthalate film or sheet, polyethylene terephthalate film or sheet, plastic film or sheet such as fluorine film, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, or the like A resin film or sheet coated with a resin and subjected to surface processing such as metal deposition is used.
  • an acrylic film or sheet for example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or Sheet, polyethylene naphthalate film or sheet, polyethylene terephthalate film or sheet, plastic film or sheet such as fluorine film, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, or the like
  • the thickness of the laminated film or sheet is not particularly limited but is preferably in the range of 12 to 250 ⁇ m.
  • these other base materials may be bonded after providing recesses or projections before being bonded to the solar power generation film mirror of the present invention.
  • the bonding and the molding so as to have a concave portion or a convex portion may be performed at the same time.
  • the total thickness of the film mirror for solar power generation of the present invention is preferably from 75 to 250 ⁇ m, more preferably from 90 to 230 ⁇ m, particularly preferably from 100 to 220 ⁇ m, from the viewpoint of mirror deflection prevention, regular reflectance, handling properties, and the like. It is.
  • the film mirror for solar power generation of the present invention can be preferably used for the purpose of collecting sunlight. Although it can be used as a solar light collecting mirror by itself as a film mirror for solar thermal power generation, more preferably, an adhesive layer coated on the resin substrate surface opposite to the side having the silver reflective layer with the resin substrate interposed therebetween
  • the film mirror for solar power generation of the present invention is pasted on another substrate, particularly a metal support, and used as a reflector for solar power generation of the present invention.
  • the reflecting device When used as a solar power generation reflecting device, the reflecting device is shaped like a bowl (semi-cylindrical), and a cylindrical member having fluid inside is provided at the center of the semicircle, and sunlight is condensed on the cylindrical member.
  • the form which heats an internal fluid by this, converts the heat energy, and generates electric power is mentioned as one form.
  • flat reflectors were installed at multiple locations, and the sunlight reflected by each reflector was collected on one reflector (central reflector) and reflected by the reflector.
  • the film mirror for solar power generation of the present invention is particularly preferably used.
  • a metal plate, a resin plate, or a composite plate of metal and resin can be used.
  • a metal material having high thermal conductivity such as a steel plate, a copper plate, an aluminum plate, an aluminum-plated steel plate, an aluminum-based alloy-plated steel plate, a copper-plated steel plate, a tin-plated steel plate, a chrome-plated steel plate, or a stainless steel plate can be used.
  • resin plates acrylic resin plates, urethane resin plates, polystyrene resin plates, polyimide resin plates, phenolic resin plates, polycarbonate resin plates, alicyclic hydrocarbon resin plates, polypropylene resin plates
  • Polyolefin resin plates, melamine resin resin plates, and ABS resin plates can be used.
  • a composite board of a metal and resin what laminated
  • the foamable resin means a porous resin, and examples thereof include those composed of polystyrene, polyolefin, polyurethane, melamine resin, and polyimide compositions.
  • an acrylic resin and an iron oxide (made by Nippon Quantum Design Co., Ltd.) having an average particle diameter of 15% by mass with respect to the acrylic resin of 20 nm and a refractive index of 2.4 are manufactured under the condition that the solid content ratio is 10: 2.
  • the coating solution dissolved and dispersed using a methylene chloride solvent was coated by a gravure coating method to form a 30 ⁇ m thick UV absorbing layer.
  • Opstar manufactured by JSR
  • JSR which is a UV curable hard coat liquid, is applied onto the formed UV absorbing layer using an applicator, and irradiated with UV light having a wavelength of 350 nm for 30 seconds.
  • a 10 ⁇ m hard coat layer was formed.
  • an acrylic resin adhesive manufactured by Showa Polymer Co., Ltd.
  • a thickness of 10 ⁇ m as an adhesive layer is coated on the surface opposite to the surface on which the hard coat layer of the polyethylene terephthalate film of the base material is formed.
  • Film mirror 1 was prepared.
  • a 0.1 mm thick, 4 cm ⁇ 5 cm wide aluminum plate (manufactured by Sumitomo Light Metal Co., Ltd.) is attached via the adhesive layer of the solar thermal power generation film mirror 1 produced above, and a solar thermal power generation reflection device Sample 1 was prepared.
  • Example 2 In the preparation of Sample 1, the average particle size was 20 nm and the refractive index was replaced with iron oxide particles having an average particle size of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation.
  • a film mirror 2 for solar power generation was prepared in the same manner except that cerium oxide of 2.2 was used (manufactured by Big Chemie Japan Co., Ltd.), and a sample 2 that was a reflector for solar power generation was prepared using this. .
  • Example 3 In the preparation of Sample 1, the average particle size was 20 nm and the refractive index was replaced with iron oxide particles having an average particle size of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation.
  • Example 4 In the preparation of Sample 1, the average particle diameter was 500 nm and the refractive index was replaced with iron oxide particles having an average particle diameter of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation.
  • the film mirror 4 for solar power generation was produced in the same manner except that 2.4 iron oxide (manufactured by Nippon Quantum Design Co., Ltd.) was used, and the sample 4 which is a reflector for solar power generation was produced using this. .
  • Example 5 In the preparation of Sample 1, the average particle diameter was 500 nm and the refractive index was replaced with iron oxide particles having an average particle diameter of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation.
  • the film mirror 5 for solar power generation was produced in the same manner except that cerium oxide of 2.2 (made by Big Chemie Japan Co., Ltd.) was used, and the sample 5 which was a reflector for solar power generation was produced using this. .
  • Example 6 In the preparation of Sample 1, the average particle diameter was 500 nm and the refractive index was replaced with iron oxide particles having an average particle diameter of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation.
  • the film mirror 6 for solar power generation was produced in the same manner except that zinc oxide of 2.5 (manufactured by Sakai Chemical Industry Co., Ltd.) was used, and the sample 6 which was a reflector for solar power generation was produced using this. .
  • Example 7 In the preparation of Sample 1, the surface silica having an average particle diameter of 20 nm is used instead of the iron oxide particles having an average particle diameter of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation. A film mirror 7 for solar power generation was produced in the same manner except that the coated iron oxide was used, and a sample 7 which was a reflector for solar power generation was produced using this.
  • the surface-silica-coated iron oxide is prepared by stirring iron oxide (manufactured by Nippon Quantum Design Co., Ltd.) having an average particle size of 18 nm in a tetraethoxysilane (manufactured by Sigma Aldrich) for 30 minutes, followed by centrifugation and decantation. And pure water addition was repeated for washing.
  • Example 8 In the preparation of the sample 7, the surface silica-coated cerium oxide having an average particle size of 20 nm was used in place of the surface silica-coated iron oxide having an average particle size of 20 nm used for forming the UV absorbing layer of the film mirror 7 for solar power generation. Except for the above, a film mirror 8 for solar power generation was produced in the same manner, and a sample 8 as a reflector for solar power generation was produced using this.
  • the surface silica-coated cerium oxide was prepared in the same manner as the method for preparing the surface silica-coated iron oxide except that cerium oxide having an average particle size of 18 nm (manufactured by Big Chemie Japan Co., Ltd.) was used.
  • Example 9 In the preparation of Sample 7, the surface silica-coated zinc oxide having an average particle size of 20 nm was used in place of the surface silica-coated iron oxide having an average particle size of 20 nm used for forming the UV absorbing layer of the film mirror 7 for solar power generation.
  • the film mirror 9 for solar thermal power generation was produced in the same manner except that, and a sample 9 which was a reflector for solar thermal power generation was produced using this.
  • the surface silica-coated zinc oxide was prepared in the same manner as the above-described method for preparing surface silica-coated iron oxide, except that zinc oxide having an average particle size of 18 nm (manufactured by Sakai Chemical Industry Co., Ltd.) was used.
  • Example 10 In the preparation of the sample 7, the surface silica-coated titanium oxide having an average particle size of 20 nm was used instead of the surface silica-coated iron oxide having an average particle size of 20 nm used for forming the UV absorbing layer of the film mirror 7 for solar power generation. Except for the above, a film mirror 10 for solar power generation was produced in the same manner, and a sample 10 as a reflector for solar power generation was produced using this.
  • the surface silica-coated titanium oxide was prepared in the same manner as the above-described method for preparing the surface silica-coated iron oxide, except that titanium oxide having an average particle size of 18 nm (Maxlite TS, manufactured by Showa Denko KK) was used.
  • Example 11 In the formation of the UV absorbing layer of the film mirror 1 for solar power generation used for the production of the sample 1, the average particle size was changed to the condition that 15% by mass of iron oxide particles having an average particle size of 20 nm was added to the resin.
  • the condition was changed such that 20 nm surface silica-coated zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd.) was added to 6% by mass with respect to the resin, and TINUNIN234 (manufactured by BASF Japan) was added as an organic UV absorber at 3% by mass with respect to the resin
  • a film mirror 11 for solar power generation was produced in the same manner, and a sample 11 which was a reflector for solar power generation was produced using the film mirror 11.
  • Example 12 A biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 ⁇ m) was used as the resin substrate. On one side of the polyethylene terephthalate film, 3% by mass of TINUNIN234 (manufactured by BASF Japan) as an organic UV absorber is dissolved in a methylene chloride solvent so that the solid content ratio is 10: 2 with respect to the acrylic resin and the acrylic resin. And the coating liquid prepared by dispersing was coated by a gravure coating method to form an organic UV absorbing layer having a thickness of 30 ⁇ m which is arranged on the side opposite to the incident light side of the silver reflecting layer.
  • TINUNIN234 manufactured by BASF Japan
  • a silver reflective layer having a thickness of 80 nm is formed as a silver reflective layer on the formed organic UV absorbing layer by vacuum deposition, and a polyester resin and a toluene diisocyanate resin are formed on the silver reflective layer.
  • the resin mixed at a resin solid content ratio of 10: 2 glycol dimercaptoacetate is added as a corrosion inhibitor under the condition that the coating amount is 0.3 g / m 2, and coating is performed by the gravure coating method.
  • a corrosion prevention layer having a thickness of 0.1 ⁇ m was formed.
  • Opstar manufactured by JSR
  • JSR UV curable hard coat liquid
  • an acrylic resin adhesive manufactured by Showa Kogyo Co., Ltd.
  • a thickness of 10 ⁇ m was coated as an adhesive layer on the surface of the polyethylene terephthalate film on the side opposite to the surface on which the hard coat layer was formed.
  • a film mirror 12 for solar power generation having the layer configuration shown in FIG. 4 was produced.
  • a 0.1 mm thick, 4 cm ⁇ 5 cm wide aluminum plate (manufactured by Sumitomo Light Metal Co., Ltd.) is pasted via the adhesive layer of the solar thermal power generation film mirror 12 produced above, and a solar thermal power generation reflection device Sample 12 was prepared.
  • Example 13 In the film mirror 12 for solar thermal power generation, instead of the surface silica-coated zinc oxide having an average particle diameter of 20 nm, which is an inorganic UV absorber used for forming the inorganic UV absorbing layer (position 11 in FIG. 4), an organic Using 3% by mass of TINUNIN234 (manufactured by BASF Japan) as the UV absorber, the organic UV absorber layer 10 shown in FIG. 3 is used, and the organic UV absorber layer (position 10 shown in FIG. 4) is formed.
  • TINUNIN234 manufactured by BASF Japan
  • TINUNIN234 which was an organic UV absorber
  • 20 wt% surface silica-coated zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.
  • the inorganic UV absorber layer 11 shown in FIG. Except that, a solar power generation film mirror 13 having the configuration shown in FIG. 3 was produced in the same manner, and a sample 13 as a solar thermal power generation reflection device was produced using this.
  • Average value of regular reflectance is 85% or more 5: Average value of regular reflectance is 80% or more and less than 85% 4: Average value of regular reflectance is 75% or more, 80% 3: The average value of regular reflectance is 70% or more and less than 75% 2: The average value of regular reflectance is 65% or more and less than 70% 1: The average value of regular reflectance is Less than 65% [Evaluation of light resistance: regular reflectance stability] Each sample whose initial specular reflectance was measured by the above method was irradiated with ultraviolet rays in an environment of 65 ° C. for 7 days using an I-Super UV tester manufactured by Iwasaki Electric Co., Ltd., and then the regular reflectance was measured by the above method. The average value of the regular reflectance after ultraviolet irradiation when the initial regular reflectance before ultraviolet irradiation was 100% was calculated, and the light resistance was evaluated according to the following criteria.
  • the average value of regular reflectance after ultraviolet irradiation is 85% or more 5: The average value of regular reflectance after ultraviolet irradiation is 80% or more and less than 85% 4: Regular reflection after ultraviolet irradiation The average value of the rate is 75% or more and less than 80% 3: The average value of the regular reflectance after ultraviolet irradiation is 70% or more and less than 75% 2: The average value of the regular reflectance after ultraviolet irradiation Is 65% or more and less than 70% 1: The average value of the regular reflectance after ultraviolet irradiation is less than 65% [Evaluation of weather resistance of adhesive layer] After performing ultraviolet irradiation for 7 days in an environment of 65 ° C.
  • the adhesion of the adhesive layer was evaluated according to a grid cellophane tape peeling test of JIS K5400. That is, the sample surface after forced deterioration was cut into a grid pattern with a 1 mm interval with a cutter knife, peeled off after applying cellophane tape (manufactured by Nichiban Co., Ltd.), and the ratio of the peeled portion was measured. The weather resistance of the adhesive layer was evaluated.
  • A The ratio of the film peeling part is less than 2.0% after the deterioration test.
  • The ratio of the film peeling part is 2.0% or more and less than 3.0% after the deterioration test.
  • X The ratio of the film peeling part is 3 after the deterioration test. 0.0% or more
  • Samples 1 to 6 having a UV absorption layer containing an inorganic UV absorber having a refractive index of 2.4 or less as defined in the present invention are: It is clear that the samples 14 and 15 as comparative examples are excellent in the initial state (initial regular reflectance), light resistance (regular reflectance stability), and weather resistance (adhesion) of the adhesive layer. This is because the sample of the present invention uses an inorganic UV absorber having a refractive index of 2.4 or less to suppress a decrease in reflectance due to light scattering, and at the same time, UV-B region (290-320 nm) that causes deterioration of the adhesive layer.
  • samples 1 to 3 using an inorganic UV absorber having an average particle diameter of 20 nm are superior in reflection stability to samples 4 to 6 using an inorganic UV absorber having an average particle diameter of 500 nm. I understand. That is, the smaller the average particle diameter, the lower the regular reflectance due to light scattering of the inorganic UV absorber particles.
  • Sample 11 in which an inorganic UV absorber and an organic UV absorber are used in combination in the same UV absorption layer prepared above, sample 3 (example 3) using only an inorganic UV absorber, Table 3 shows the effects obtained by using the sample 15 (Comparative Example 2) using only the organic UV absorber and combining the inorganic UV absorber and the organic UV absorber in the same UV absorbing layer.
  • Sample 11 shown in Table 3 is a film mirror for solar power generation having a UV absorber layer containing the inorganic UV absorber and the organic UV absorber shown in FIG.
  • Table 3 the combined use of an inorganic UV absorber and an organic UV absorber reduces the amount of inorganic UV absorber that tends to cause a decrease in reflectance due to light scattering.
  • the change in regular reflectance after the deterioration treatment is small, and a high regular reflectance can be maintained.
  • Example 12 and Example 13 having a configuration in which an inorganic UV absorbing layer containing an inorganic UV absorber and an organic UV absorbing layer containing an organic UV absorber are separately provided are FIG. 4 is a film mirror for solar power generation having the layer configuration shown in FIGS. 4 and 3.
  • FIG. 4 is a film mirror for solar power generation having the layer configuration shown in FIGS. 4 and 3.
  • Example 12 having the configuration shown in FIG. 4, the amount of the inorganic UV absorber used can be reduced for the same reason as in Example 11, and thus it can be seen that the reflectance is higher.
  • Example 13 which is a structure shown in FIG.
  • Example 3 it has the structure which has arrange

Abstract

Disclosed is a film mirror for solar thermal power generation, which has good specular reflectance of sunlight and is prevented from decrease in the specular reflectance due to deterioration of an adhesive layer that serves as a reflective layer. The film mirror for solar thermal power generation is lightweight, while having flexibility, excellent light resistance and excellent weather resistance. Also disclosed are: a method for producing the film mirror for solar thermal power generation; and a reflection device for solar thermal power generation using the film mirror for solar thermal power generation. The film mirror for solar thermal power generation is characterized by comprising one or more UV absorbing layers that contain an inorganic UV absorbent having a refractive index of 2.4 or less and a silver reflective layer that is configured of silver. The film mirror for solar thermal power generation is also characterized by being provided with an adhesive layer, which is provided for the purpose of being bonded to a supporting body, on a side of the silver reflective layer counter to the light incident side thereof.

Description

太陽熱発電用フィルムミラー、太陽熱発電用フィルムミラーの製造方法及び太陽熱発電用反射装置Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
 本発明は、新規の太陽熱発電用フィルムミラーとその製造方法及びそれを用いた太陽熱発電用反射装置に関するものである。 The present invention relates to a novel film mirror for solar power generation, a method for producing the same, and a reflector for solar power generation using the film mirror.
 近年、石油、天然ガス等の化石燃料エネルギーに代わるエネルギーとしては現在、石炭エネルギー、バイオマスエネルギー、核エネルギー、風力エネルギー、太陽エネルギー等の自然エネルギーの検討がなされているが、化石燃料の代替エネルギーとして最も安定しており、且つ量の多い自然エネルギーは、太陽エネルギーであると考えられている。しかしながら、太陽エネルギーは非常に有力な代替エネルギーであるものの、これを活用する観点からは、(1)太陽エネルギーのエネルギー密度が低いこと、(2)太陽エネルギーの貯蔵及び移送が困難であること等が問題となると考えられる。 In recent years, as alternatives to fossil fuel energy such as oil and natural gas, natural energy such as coal energy, biomass energy, nuclear energy, wind energy and solar energy has been studied. The most stable and abundant natural energy is considered to be solar energy. However, although solar energy is a very powerful alternative energy, from the viewpoint of utilizing it, (1) the energy density of solar energy is low, (2) it is difficult to store and transfer solar energy, etc. Is considered to be a problem.
 太陽エネルギーの上記課題に対し、太陽エネルギーのエネルギー密度が低いという問題は、巨大な反射装置で太陽エネルギーを集めることによって解決する方法が提案されている。反射装置は、太陽光による紫外線や熱、風雨、砂嵐などに晒されるため、従来、ガラス製ミラーが用いられてきた。ガラス製ミラーは、環境に対する耐久性が高い反面、輸送時に破損すること、あるいは重いため、ミラーを設置する架台の強度を持たせる必要があり、その結果、プラントの建設費がかさむといった問題があった。 In response to the above-mentioned problem of solar energy, a method of solving the problem of low energy density of solar energy by collecting solar energy with a huge reflector has been proposed. Since the reflecting device is exposed to sunlight, ultraviolet rays, heat, wind and rain, sandstorms, etc., a glass mirror has been conventionally used. Glass mirrors are highly durable to the environment, but they are damaged during transportation or heavy, so it is necessary to increase the strength of the mount on which the mirrors are installed, resulting in increased plant construction costs. It was.
 上記問題を解決するため、ガラス製ミラーを樹脂製反射シートに置き換える方法が開示されている(例えば、特許文献1参照。)。しかしながら、提案されている方法では、使用している樹脂が外部環境に対して弱く、また反射層に銀などの金属を用いると、樹脂層を介して酸素や水蒸気、硫化水素などが透過し、銀を腐食してしまうといった問題もあり、樹脂製ミラーの適用は困難であった。 In order to solve the above problem, a method of replacing a glass mirror with a resin reflection sheet has been disclosed (for example, see Patent Document 1). However, in the proposed method, the resin used is weak against the external environment, and when a metal such as silver is used for the reflective layer, oxygen, water vapor, hydrogen sulfide, etc. are transmitted through the resin layer, Due to the problem of corroding silver, it was difficult to apply a resin mirror.
 一方、太陽光を集光する目的において、高い反射率を得るという観点から、銀反射層よりも入射光側に位置している樹脂層に、ベンズトリアゾール系の紫外線吸収剤(以下、UV吸収剤ともいう)を多量に添加することで、樹脂のUV光による光劣化で生じる変色による樹脂層の光透過率低下の抑制を行う方法が開示されている(例えば、特許文献2参照。)。また、特開昭61-154942号公報においては、銀反射層の上層に、銀の腐食防止剤を含む層を積層して、銀腐食による反射率低下の抑制を行い、さらに腐食防止剤層の上層にベンズトリアゾール系のUV吸収剤層を設けることで樹脂層の光透過率低下の抑制を行う方法が開示されている。 On the other hand, for the purpose of collecting sunlight, a benztriazole-based ultraviolet absorber (hereinafter referred to as UV absorber) is applied to the resin layer located on the incident light side of the silver reflective layer from the viewpoint of obtaining a high reflectance. (Referred to, for example, Patent Document 2), by adding a large amount of (also referred to as)) to suppress a decrease in light transmittance of the resin layer due to discoloration caused by light degradation due to UV light of the resin. Japanese Patent Laid-Open No. 61-154942 discloses that a layer containing a silver corrosion inhibitor is laminated on the upper layer of the silver reflection layer to suppress a decrease in reflectance due to silver corrosion. A method of suppressing a decrease in light transmittance of a resin layer by providing a benztriazole-based UV absorber layer as an upper layer is disclosed.
 しかしながら、上記特許文献2等に記載されている方法では、耐候性としては決して十分ではなく、太陽光の照射に伴い、フィルムミラーを支持体に貼り付けるために設けてある粘着層が劣化を起こし、粘着層の剥離や歪みが生じてしまうことが判明した。この粘着層の剥離や歪みは、フィルムミラーの正反射率の低下、しいては発電効率の低下につながる問題であり、早急な改良が求められていた。 However, in the method described in Patent Document 2 and the like, the weather resistance is never sufficient, and the adhesive layer provided for attaching the film mirror to the support is deteriorated with the irradiation of sunlight. It was found that peeling or distortion of the adhesive layer occurred. This peeling or distortion of the adhesive layer is a problem that leads to a decrease in the regular reflectance of the film mirror and a decrease in power generation efficiency, and an immediate improvement has been demanded.
特開2005-59382号公報JP 2005-59382 A 米国特許出願公開第7,507,776B2明細書US Patent Application Publication No. 7,507,776B2 Specification
 本発明は、上記課題に鑑みなされたものであり、その目的は、反射層である粘着層の劣化による正反射率の低下を防止すると共に、軽量で柔軟性があり、耐光性及び耐候性に優れ、太陽光に対して良好な正反射率を有する太陽熱発電用フィルムミラー、とその製造方法及びそれを用いた太陽熱発電用反射装置を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to prevent a decrease in regular reflectance due to deterioration of the adhesive layer that is a reflective layer, and to be lightweight and flexible, and to have light resistance and weather resistance. An object of the present invention is to provide a film mirror for solar power generation that is excellent and has a good regular reflectance with respect to sunlight, a manufacturing method thereof, and a reflector for solar power generation using the same.
 本発明者らは上記課題に関し鋭意検討を行った結果、太陽熱発電用フィルムミラーを構成する粘着層の劣化は、粘着層に含まれる樹脂の低分子量成分、残留重合開始剤また残留モノマーの紫外線による分解が起因であることが判明した。更には、上記各成分を分解させる紫外光としては、とりわけUV-B領域(290-320nm)の光線であることが分かった。このような課題は特に、反射層として銀を用いた場合に顕在化する。銀は、可視光における反射率はアルミニウム等の金属に対して優れているものの、波長320nm以下の光を反射できず、UV-B領域の光を透過してしまう性質がある。従って、従来は紫外線による劣化を考慮する際には、反射層の光入射側の層の劣化を考慮すればよかったが、銀反射層を用いた場合は、それでは十分ではなく、銀反射層を透過したUV-B領域の光線による反射層の反対側の層の劣化抑制も必要になることがわかった。そして、更なる検討を進めた結果、UV-B領域の光線をカットするには、有機UV吸収剤単独ではでは不十分であることが判明した。また、有機UV吸収剤にUV-B領域の光線に対して吸収性を持たせた場合、有機UV吸収剤自体が劣化することで、次第にUV吸収機能が低下して、上記の粘着層の分解を引き起こして正反射率を定価させる問題を引き起こすだけではなく、有機UV吸収剤自体の変質による着色やUV吸収剤の添加された層の変形等により反射率の低下を引き起こすことが明らかになった。そこで、更なる検討を行った結果、無機のUV吸収剤を含有する層を設けた場合には、UV-B領域の紫外線に対して、十分な吸収性を持たせることが可能であるとともに、UV-B領域の紫外線によるUV吸収剤自体の劣化を抑制することが可能となり、粘着層の劣化を抑えることができ、結果として正反射率の低下を抑制することができるということを見出し、本発明に至った次第である。 As a result of intensive studies on the above problems, the present inventors have determined that the deterioration of the adhesive layer constituting the film mirror for solar power generation is caused by the low molecular weight component of the resin contained in the adhesive layer, the residual polymerization initiator, or the residual monomer ultraviolet rays. It was found that the degradation was due. Furthermore, it has been found that the ultraviolet light for decomposing each of the above components is, in particular, light in the UV-B region (290-320 nm). Such a problem becomes particularly apparent when silver is used for the reflective layer. Although silver has an excellent reflectance in visible light compared to metals such as aluminum, it has a property that it cannot reflect light with a wavelength of 320 nm or less and transmits light in the UV-B region. Therefore, in the past, when considering deterioration due to ultraviolet rays, it was only necessary to consider the deterioration of the light incident side layer of the reflective layer. However, when a silver reflective layer is used, this is not sufficient, and the light passes through the silver reflective layer. It has been found that it is also necessary to suppress deterioration of the layer on the opposite side of the reflective layer by the light in the UV-B region. As a result of further studies, it has been found that an organic UV absorber alone is not sufficient to cut light in the UV-B region. In addition, when the organic UV absorber is made to absorb light in the UV-B region, the organic UV absorber itself deteriorates, so that the UV absorption function gradually decreases, and the above-mentioned adhesive layer is decomposed. As a result, it has become clear that not only the problem of causing regularity of the regular reflectivity to occur, but also the deterioration of the reflectivity due to coloring due to alteration of the organic UV absorber itself or deformation of the layer to which the UV absorber is added, etc. . Therefore, as a result of further studies, when a layer containing an inorganic UV absorber is provided, it is possible to provide sufficient absorption for ultraviolet rays in the UV-B region, It has been found that the deterioration of the UV absorber itself due to UV rays in the UV-B region can be suppressed, the deterioration of the adhesive layer can be suppressed, and as a result, the decrease in regular reflectance can be suppressed. It is up to the invention.
 すなわち、本発明の上記目的は、以下の構成により達成される。 That is, the above object of the present invention is achieved by the following configuration.
 1.屈折率が2.4以下の無機UV吸収剤を含む1層以上のUV吸収層と、銀から構成される銀反射層とを有し、該銀反射層に対し反入射光側に粘着層を有することを特徴とする太陽熱発電用フィルムミラー。 1. It has one or more UV absorbing layers containing an inorganic UV absorber having a refractive index of 2.4 or less, and a silver reflecting layer composed of silver, and an adhesive layer is provided on the side opposite to the incident light with respect to the silver reflecting layer. A film mirror for solar power generation, comprising:
 2.前記無機UV吸収剤が、平均粒径が10nm以上、100nm以下の微粒子であることを特徴とする前記1に記載の太陽熱発電用フィルムミラー。 2. 2. The film mirror for solar power generation as described in 1 above, wherein the inorganic UV absorber is fine particles having an average particle diameter of 10 nm or more and 100 nm or less.
 3.前記無機UV吸収剤が、表面被覆された平均粒径が、10nm以上、100nm以下の微粒子であることを特徴とする前記1に記載の太陽熱発電用フィルムミラー。 3. 2. The film mirror for solar power generation according to 1 above, wherein the inorganic UV absorber is fine particles having a surface-coated average particle diameter of 10 nm or more and 100 nm or less.
 4.前記UV吸収層が、更に有機UV吸収剤を含有していることを特徴とする前記1から3のいずれか1項に記載の太陽熱発電用フィルムミラー。 4. The film mirror for solar power generation according to any one of 1 to 3, wherein the UV absorption layer further contains an organic UV absorber.
 5.更に、有機UV吸収剤を含有した有機UV吸収剤層を有することを特徴とする前記1から4のいずれか1項に記載の太陽熱発電用フィルムミラー。 5. Furthermore, it has an organic UV absorber layer containing an organic UV absorber, The film mirror for solar thermal power generation of any one of said 1 to 4 characterized by the above-mentioned.
 6.前記有機UV吸収剤層が、前記銀反射層よりも入射光側に配置され、無機UV吸収剤層が、前記銀反射層よりも反入射光側に配置されていることを特徴とする前記5に記載の太陽熱発電用フィルムミラー。 6. The organic UV absorber layer is disposed on the incident light side with respect to the silver reflective layer, and the inorganic UV absorber layer is disposed on the side opposite to the incident light with respect to the silver reflective layer. A film mirror for solar power generation as described in 1.
 7.前記無機UV吸収剤層が、前記銀反射層よりも入射光側に配置され、前記有機UV吸収剤層が、前記銀反射層よりも反入射光側に配置されていることを特徴とする前記5に記載の太陽熱発電用フィルムミラー。 7. The inorganic UV absorber layer is disposed on the incident light side with respect to the silver reflective layer, and the organic UV absorber layer is disposed on the anti-incident light side with respect to the silver reflective layer. 5. A film mirror for solar power generation according to 5.
 8.前記1から7のいずれか1項に記載の太陽熱発電用フィルムミラーを製造する太陽熱発電用フィルムミラーの製造方法であって、銀反射層を銀の蒸着により形成することを特徴とする太陽熱発電用フィルムミラーの製造方法。 8. The method for manufacturing a solar power generation film mirror according to any one of 1 to 7 above, wherein the silver reflective layer is formed by vapor deposition of silver. A manufacturing method of a film mirror.
 9.前記1から7のいずれか1項に記載の太陽熱発電用フィルムミラーを、金属支持体上に粘着層を介して貼り合せて構成されたことを特徴とする太陽熱発電用反射装置。 9. A solar power generation reflecting device, wherein the solar power generation film mirror according to any one of 1 to 7 is bonded to a metal support through an adhesive layer.
 本発明により、非常に過酷な環境下で太陽熱発電用フィルムミラーとして用いられた場合であっても、粘着層は劣化することは無く、高い正反射率を長期間にわたり維持することが可能な太陽熱発電用フィルムミラーとなる。これは、屈折率が2.4以下の無機UV吸収剤を含有した層を粘着層よりも入射側に設けることで得られた効果であると考えられる。 According to the present invention, even when used as a film mirror for solar power generation in a very harsh environment, the adhesive layer does not deteriorate, and solar heat capable of maintaining a high regular reflectance over a long period of time. Film mirror for power generation. This is considered to be an effect obtained by providing a layer containing an inorganic UV absorber having a refractive index of 2.4 or less on the incident side of the adhesive layer.
本発明の太陽熱発電用フィルムミラーの構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the film mirror for solar power generation of this invention. 本発明の太陽熱発電用フィルムミラーの構成の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a structure of the film mirror for solar power generation of this invention. 本発明の太陽熱発電用フィルムミラーの構成の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a structure of the film mirror for solar power generation of this invention. 本発明の太陽熱発電用フィルムミラーの構成の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a structure of the film mirror for solar power generation of this invention. 本発明の太陽熱発電用フィルムミラーの構成の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a structure of the film mirror for solar power generation of this invention.
 以下本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, modes for carrying out the present invention will be described in detail, but the present invention is not limited to these.
 本発明者らは鋭意検討の結果、屈折率が2.4以下の無機UV吸収剤を含む1層以上のUV吸収層と、銀から構成される銀反射層とを有し、該銀反射層に対し反入射光側に、金属支持体等に接着させて太陽熱発電用反射装置を形成するための粘着層を有することを特徴とする太陽熱発電用フィルムミラーにより、粘着層の剥離やゆがみに起因するフィルムミラーの正反射率の低下という課題は解決されることが判明した。これは、屈折率が2.4以下の無機UV吸収剤が、乱反射を起こすことなく、UV-B領域の波長を吸収し、粘着層樹脂の低分子量成分、残留重合開始剤また残留モノマーの分解を抑制したことに起因するものと考えられる。 As a result of intensive studies, the present inventors have one or more UV absorbing layers containing an inorganic UV absorber having a refractive index of 2.4 or less, and a silver reflecting layer composed of silver, and the silver reflecting layer Due to the peeling or distortion of the adhesive layer by the film mirror for solar power generation, which has an adhesive layer for forming a solar power generation reflecting device by adhering to a metal support etc. on the side opposite to the incident light side It has been found that the problem of lowering the regular reflectance of the film mirror is solved. This is because the inorganic UV absorber having a refractive index of 2.4 or less absorbs the wavelength in the UV-B region without causing irregular reflection, and decomposes the low molecular weight component of the adhesive layer resin, the residual polymerization initiator or the residual monomer. This is thought to be due to the suppression of the above.
 以下、本発明の太陽熱発電用フィルムミラーの具体的な構成例について、図を用いて説明する。 Hereinafter, specific configuration examples of the film mirror for solar power generation according to the present invention will be described with reference to the drawings.
 図1には、本発明の太陽熱発電用フィルムミラーの代表的な構成の一例を示す。 FIG. 1 shows an example of a typical configuration of a film mirror for solar power generation according to the present invention.
 図1に記載の本発明の太陽熱発電用フィルムミラー1では、入射光側(図面の上部)からハードコート層2、無機UV吸収剤8を含有するUV吸収層3、腐食防止層4、銀反射層5、樹脂支持体層6、粘着層7の順で積層されている。 In the film mirror 1 for solar thermal power generation according to the present invention shown in FIG. 1, the hard coat layer 2, the UV absorbing layer 3 containing the inorganic UV absorber 8, the corrosion prevention layer 4, the silver reflection from the incident light side (upper part of the drawing). Layer 5, resin support layer 6, and adhesive layer 7 are laminated in this order.
 また、図2~図5に、より好ましい本発明の太陽熱発電用フィルムミラーの構成例を示す。 Further, FIGS. 2 to 5 show examples of a more preferable configuration of the film mirror for solar power generation according to the present invention.
 図2に記載の太陽熱発電用フィルムミラー1は、入射光側(図面の上部)からハードコート層2、無機UV吸収剤8及び有機UV吸収剤9を含有したUV吸収層3′、腐食防止剤層4、銀反射層5、樹脂支持体層6、粘着層7の順で積層された構成である。 The film mirror 1 for solar power generation shown in FIG. 2 includes a hard coat layer 2, an inorganic UV absorber 8 and an organic UV absorber 9 containing a UV absorber layer 3 'and a corrosion inhibitor from the incident light side (upper part of the drawing). The layer 4, the silver reflection layer 5, the resin support layer 6, and the adhesive layer 7 are laminated in this order.
 図2に記載の構成では、UV吸収層3′として無機UV吸収剤8及び有機UV吸収剤9を併用することにより、粘着層7の劣化を抑えつつ、有機UV吸収剤9よりも透過率が低い無機UV吸収剤8の含有量を減らすことが可能となり、結果として反射率の向上につながることになる。 In the configuration shown in FIG. 2, by using the inorganic UV absorber 8 and the organic UV absorber 9 together as the UV absorbing layer 3 ′, the transmittance of the organic UV absorber 9 is suppressed while suppressing the deterioration of the adhesive layer 7. It is possible to reduce the content of the low inorganic UV absorber 8, and as a result, the reflectance is improved.
 図3に記載の太陽熱発電用フィルムミラー1では、入射光側(図面の上部)からハードコート層2、有機UV吸収剤9を含有する有機UV吸収剤含有層10、腐食防止剤層4、銀反射層5、無機UV吸収剤8を含有する無機UV吸収剤含有層11、樹脂支持体層6、粘着層7の順で積層された構成である。図3に示す構成では、無機UV吸収剤含有層11が銀反射層5よりも反入射光側(図面の下部)に存在しているため、反射率は高まる。また、有機UV吸収剤含有層10により、下部に位置する腐食防止剤層4の樹脂劣化を防ぐことができる。さらに、銀反射層5を透過する320nm以下の光線を、銀反射層5の反入射光側にある無機UV吸収剤含有層11が吸収するため、粘着層7の劣化を抑えることができる。このとき、無機UV吸収剤含有層11においては、無機UV吸収剤8を透明度が低下するほど多量に含有させることができ、粘着層7の耐光性はより向上することになる。 In the film mirror 1 for solar thermal power generation shown in FIG. 3, the hard coat layer 2, the organic UV absorber-containing layer 10 containing the organic UV absorber 9, the corrosion inhibitor layer 4, silver from the incident light side (upper part of the drawing) The reflective layer 5, the inorganic UV absorber-containing layer 11 containing the inorganic UV absorber 8, the resin support layer 6, and the adhesive layer 7 are laminated in this order. In the configuration shown in FIG. 3, the inorganic UV absorber-containing layer 11 is present on the counter-incident light side (lower part of the drawing) with respect to the silver reflective layer 5, so that the reflectance is increased. In addition, the organic UV absorber-containing layer 10 can prevent resin deterioration of the corrosion inhibitor layer 4 located below. Furthermore, since the inorganic UV absorber-containing layer 11 on the anti-incident light side of the silver reflecting layer 5 absorbs light having a wavelength of 320 nm or less that passes through the silver reflecting layer 5, deterioration of the adhesive layer 7 can be suppressed. At this time, the inorganic UV absorber-containing layer 11 can contain a large amount of the inorganic UV absorber 8 as the transparency decreases, and the light resistance of the adhesive layer 7 is further improved.
 図4に記載の太陽熱発電用フィルムミラー1では、入射光側からハードコート層2、無機UV吸収剤8を含有する無機UV吸収剤含有層11、腐食防止剤層4、銀反射層5、有機UV吸収剤9を含有する有機UV吸収剤含有層10、樹脂支持体層6、粘着層7の順で積層された構成である。図4に記載の構成では、有機UV吸収剤含有層10によるUV吸収寄与があるので、粘着層7の劣化を抑えつつ、有機UV吸収剤9よりも透過率が低い無機UV吸収剤8の含有量を減らすことが可能となり、結果として反射率の向上につながることになる。 In the film mirror 1 for solar thermal power generation shown in FIG. 4, from the incident light side, the hard coat layer 2, the inorganic UV absorber-containing layer 11 containing the inorganic UV absorber 8, the corrosion inhibitor layer 4, the silver reflecting layer 5, and the organic The organic UV absorber-containing layer 10 containing the UV absorber 9, the resin support layer 6, and the adhesive layer 7 are laminated in this order. In the configuration shown in FIG. 4, since there is a UV absorption contribution by the organic UV absorber-containing layer 10, the inorganic UV absorber 8 having a lower transmittance than the organic UV absorber 9 while suppressing deterioration of the adhesive layer 7 is contained. The amount can be reduced, and as a result, the reflectance is improved.
 図5に記載の太陽熱発電用フィルムミラー1では、入射光側からハードコート層2、無機UV吸収剤8を含有する無機UV吸収剤含有層11、腐食防止剤層4、銀反射層5、樹脂支持体層6、有機UV吸収剤9を含有する有機UV吸収剤含有層10、粘着層7の順で積層された構成である。図5に記載の構成でも、有機UV吸収剤含有層10によるUV吸収寄与があるので、粘着層7の劣化を抑えつつ、有機UV吸収剤9よりも透過率が低い無機UV吸収剤8の含有量を減らすことが可能となり、結果として反射率の向上につながることになる。 In the film mirror 1 for solar thermal power generation shown in FIG. 5, from the incident light side, the hard coat layer 2, the inorganic UV absorber-containing layer 11 containing the inorganic UV absorber 8, the corrosion inhibitor layer 4, the silver reflecting layer 5, and the resin It is the structure laminated | stacked in order of the support body layer 6, the organic UV absorber content layer 10 containing the organic UV absorber 9, and the adhesion layer 7. FIG. Even in the configuration shown in FIG. 5, since there is a UV absorption contribution by the organic UV absorber-containing layer 10, the inorganic UV absorber 8 having a transmittance lower than that of the organic UV absorber 9 while suppressing deterioration of the adhesive layer 7 is contained. The amount can be reduced, and as a result, the reflectance is improved.
 以下、本発明の太陽熱発電用フィルムミラーの各構成要素の詳細について説明する。 Hereinafter, details of each component of the film mirror for solar power generation of the present invention will be described.
 〔ハードコート層〕
 本発明の太陽熱発電用フィルムミラーにおいては、最外層として、ハードコート層を設けることができる。本発明に係るハードコート層は、傷防止のために設けられる。
[Hard coat layer]
In the film mirror for solar power generation of the present invention, a hard coat layer can be provided as the outermost layer. The hard coat layer according to the present invention is provided for preventing scratches.
 本発明に係るハードコート層は、バインダーとして、例えば、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂などで構成することができる。特に、硬度と耐久性などの点で、シリコーン系樹脂やアクリル系樹脂が好ましい。更に、硬化性、可撓性及び生産性の点で、活性エネルギー線硬化型のアクリル系樹脂、または熱硬化型のアクリル系樹脂を適用することが好ましい。 The hard coat layer according to the present invention can be composed of, for example, an acrylic resin, a urethane resin, a melamine resin, an epoxy resin, an organic silicate compound, a silicone resin, or the like as a binder. In particular, silicone resins and acrylic resins are preferable in terms of hardness and durability. Furthermore, it is preferable to apply an active energy ray-curable acrylic resin or a thermosetting acrylic resin in terms of curability, flexibility, and productivity.
 活性エネルギー線硬化型のアクリル系樹脂または熱硬化型のアクリル系樹脂とは、重合硬化成分として多官能アクリレート、アクリルオリゴマーあるいは反応性希釈剤を含む組成物である。その他に必要に応じて光開始剤、光増感剤、熱重合開始剤あるいは改質剤等を含有しているものを用いてもよい。 The active energy ray-curable acrylic resin or thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer, or a reactive diluent as a polymerization curing component. In addition, you may use what contains a photoinitiator, a photosensitizer, a thermal-polymerization initiator, a modifier, etc. as needed.
 アクリルオリゴマーとは、アクリル系樹脂骨格に反応性のアクリル基が結合されたものを始めとして、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレートなどであり、また、メラミンやイソシアヌール酸などの剛直な骨格にアクリル基を結合したものなども用いられ得る。 Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
 また、反応性希釈剤とは、塗工剤の媒体として塗工工程での溶剤の機能を担うと共に、それ自体が一官能性あるいは多官能性のアクリルオリゴマーと反応する基を有し、塗膜の共重合成分となるものである。 In addition, the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
 市販されている多官能アクリル系硬化塗料としては、例えば、三菱レイヨン株式会社製の「ダイヤビームシリーズ」、長瀬産業株式会社製の「デナコールシリーズ」、新中村株式会社製の「NKエステルシリーズ」、DIC株式会社製の「UNIDICシリーズ」、東亞合成株式会社製の「アロニックスシリーズ」、日本油脂株式会社製の「ブレンマーシリーズ」、日本化薬株式会社製の「KAYARADシリーズ」、共栄社化学株式会社製の「ライトエステルシリーズ」、「ライトアクリレートシリーズ」等を挙げることができる。 Examples of commercially available polyfunctional acrylic cured paints include “Diabeam Series” manufactured by Mitsubishi Rayon Co., Ltd., “Denacol Series” manufactured by Nagase Sangyo Co., Ltd., and “NK Ester Series” manufactured by Shin Nakamura Co., Ltd. , "Unidic Series" manufactured by DIC Corporation, "Aronix Series" manufactured by Toagosei Co., Ltd., "Blemmer Series" manufactured by Nippon Oil & Fats Co., Ltd., "KAYARAD Series" manufactured by Nippon Kayaku Co., Ltd. Examples include “Light Ester Series” and “Light Acrylate Series” manufactured by the company.
 本発明に係るハードコート層中には、本発明の効果が損なわれない範囲で、さらに各種の添加剤を必要に応じて配合することができる。例えば、酸化防止剤、光安定剤、UV吸収剤などの安定剤、界面活性剤、レベリング剤及び帯電防止剤などを用いることができる。 In the hard coat layer according to the present invention, various additives can be further blended as necessary within the range where the effects of the present invention are not impaired. For example, stabilizers such as antioxidants, light stabilizers, UV absorbers, surfactants, leveling agents, antistatic agents, and the like can be used.
 レベリング剤は、特に、ハードコート層を塗工する際、表面凹凸低減に効果的である。レベリング剤としては、例えば、シリコーン系レベリング剤として、ジメチルポリシロキサン-ポリオキシアルキレン共重合体(例えば、東レダウコーニング(株)製SH190)が好適である。 The leveling agent is particularly effective in reducing surface irregularities when a hard coat layer is applied. As the leveling agent, for example, a dimethylpolysiloxane-polyoxyalkylene copolymer (for example, SH190 manufactured by Toray Dow Corning Co., Ltd.) is suitable as the silicone leveling agent.
 〔UV吸収層〕
 本発明に係るUV吸収層は、無機酸化物中または樹脂中にUV吸収剤を粒子状に分散した構成のものである。
[UV absorption layer]
The UV absorbing layer according to the present invention has a constitution in which a UV absorber is dispersed in the form of particles in an inorganic oxide or resin.
 本発明の太陽熱発電用フィルムミラーにおいては、少なくとも1層の屈折率が2.4以下の無機UV吸収剤を含有したUV吸収層を有していることを特徴とする。また、本発明に係るUV吸収層は、無機UV吸収剤と有機UV吸収剤の両者を含有した層であってもよいし、無機UV吸収剤を含む無機UV剤含有層と有機UV吸収剤を含有する有機UV剤含有層とが、それぞれ個別に独立して存在する構成であってもよい。 The film mirror for solar power generation according to the present invention is characterized by having a UV absorbing layer containing an inorganic UV absorber having a refractive index of 2.4 or less. The UV absorbing layer according to the present invention may be a layer containing both an inorganic UV absorber and an organic UV absorber, or an inorganic UV agent-containing layer containing an inorganic UV absorber and an organic UV absorber. The organic UV agent containing layer to contain may be the structure which exists separately each independently.
 また、無機UV吸収剤を含有するUV吸収層は、UVカット能とフィルムの巻き性の観点から、3.0μm以上、150μm以下であることが好ましい。 In addition, the UV absorbing layer containing an inorganic UV absorber is preferably 3.0 μm or more and 150 μm or less from the viewpoint of UV cut ability and film rollability.
 〈無機酸化物〉
 本発明に係るUV吸収層の1つの形態としては、UV吸収剤粒子が無機酸化物中に分散された構成である。無機酸化物としては、有機金属化合物を原料とするゾルから局所的加熱により形成されたものを用いることが好ましい。したがって、有機金属化合物に含有されているケイ素(Si)、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ニオブ(Nb)等の元素の酸化物であることが好ましい。
<Inorganic oxide>
One form of the UV absorbing layer according to the present invention is a configuration in which UV absorber particles are dispersed in an inorganic oxide. As the inorganic oxide, it is preferable to use an inorganic oxide formed by local heating from a sol using an organometallic compound as a raw material. Therefore, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound, An oxide of an element such as tin (Sn) or niobium (Nb) is preferable.
 例えば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等であり、好ましくは、酸化ケイ素である。 For example, silicon oxide, aluminum oxide, zirconium oxide, etc., preferably silicon oxide.
 本発明において、有機金属化合物から無機酸化物を形成する方法としては、いわゆるゾル-ゲル法及びポリシラザンを塗布する方法を用いることが好ましい。 In the present invention, as a method for forming an inorganic oxide from an organometallic compound, it is preferable to use a so-called sol-gel method and a method of applying polysilazane.
 〈ゾル-ゲル法〉
 本発明でいうゾル-ゲル法とは、金属アルコキシド等の有機金属化合物溶液や無機化合物溶液から金属酸化物もしくは水酸化物ゾルを得、さらにこれをゲル化し、このゲルを加熱することによりセラミックスやガラスを作製する方法である。シリコンアルコキシドをアルコール溶媒中で加水分解させ、縮合重合させてゾルを得たのち、このゾルを薄膜状に形成し、次いで該ゾル薄膜を加熱焼成する工程からなる二酸化ケイ素薄膜の製法は、ゾル-ゲル法による二酸化ケイ素薄膜の製法として既に知られ、実用化されている。
<Sol-gel method>
The sol-gel method referred to in the present invention refers to obtaining a metal oxide or hydroxide sol from an organometallic compound solution such as a metal alkoxide or an inorganic compound solution, further gelling this, and heating this gel to produce ceramic or This is a method for producing glass. A method for producing a silicon dioxide thin film comprising the steps of hydrolyzing silicon alkoxide in an alcohol solvent and subjecting it to condensation polymerization to obtain a sol, forming the sol into a thin film, and then heating and firing the sol thin film. It has already been known and put into practical use as a method for producing a silicon dioxide thin film by a gel method.
 ゾル-ゲル法による二酸化ケイ素薄膜の一般的な製造法では、テトラメトキシケイ素、テトラエトキシケイ素、テトラ-n-プロポキシケイ素、テトライソプロポキシケイ素、テトラ-n-ブトキシケイ素、テトライソブトキシケイ素、テトラ-t-ブトキシケイ素などのテトラアルコキシケイ素、或はその誘導体を、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノールなどの低級脂肪族アルコール溶媒に溶解させ、これに水を加えて、室温にて、あるいは所望により加温しながら、攪拌混合することにより、テトラアルコキシケイ素あるいはその誘導体の少なくとも一部が加水分解し、ついでその加水分解物間の縮合重合反応が生起し、縮合重合物が生成する。そして、その縮合重合の進展が充分でない状態である低粘度のゾルの状態にて、これを薄膜状に成形する方法である。 In general manufacturing method of silicon dioxide thin film by sol-gel method, tetramethoxy silicon, tetraethoxy silicon, tetra-n-propoxy silicon, tetraisopropoxy silicon, tetra-n-butoxy silicon, tetraisobutoxy silicon, tetra- Tetraalkoxy silicon such as t-butoxy silicon or a derivative thereof is dissolved in a lower aliphatic alcohol solvent such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, and water is added thereto. By stirring and mixing at room temperature or optionally with heating, at least a part of tetraalkoxysilicon or a derivative thereof is hydrolyzed, and then a condensation polymerization reaction occurs between the hydrolysates, resulting in a condensation polymer. Produces. And it is the method of shape | molding this in the form of a thin film in the state of the low-viscosity sol which is a state in which the progress of the condensation polymerization is not enough.
 〈ポリシラザンを塗布する方法〉
 ポリシラザンを塗布する方法とは、下記式(1)で表される少なくとも一種のパーヒドロポリシラザンを含む溶液を塗布液として使用し、光照射で硬化させることによって酸化ケイ素膜を形成する方法である。
<Method of applying polysilazane>
The method of applying polysilazane is a method of forming a silicon oxide film by using a solution containing at least one perhydropolysilazane represented by the following formula (1) as a coating solution and curing it by light irradiation.
 式(1)
   -(SiHNH)-
 このようにポリシラザンが溶媒中に分散した塗布液を塗布して光照射で硬化することによって、短時間で緻密な酸化ケイ素膜等とすることができる。
Formula (1)
-(SiH 2 NH)-
Thus, by applying a coating liquid in which polysilazane is dispersed in a solvent and curing it by light irradiation, a dense silicon oxide film or the like can be obtained in a short time.
 さらに、別の好ましい態様の一つとしては、下記式(2)で表される少なくとも一種のポリシラザンを含む溶液を使用する。 Furthermore, as another preferred embodiment, a solution containing at least one polysilazane represented by the following formula (2) is used.
 式(2)
   -(SiR-NR-(SiR-NR
 式中、R、R、R、R、R及びRは、互いに独立して、水素原子、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基、または(トリアルコキシシリル)アルキル基を表し、この際、n及びpは整数であり、そしてnは、当該ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
Formula (2)
-(SiR 1 R 2 -NR 3 ) n- (SiR 4 R 5 -NR 6 ) p-
In the formula, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom or an optionally substituted alkyl group, aryl group, vinyl group, or (trialkoxy). Silyl) alkyl group, where n and p are integers, and n is determined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
 特に好ましいものは、1)R、R及びRが各々水素原子を表し、そしてR、R及びRが各々メチル基を表す化合物、2)R、R及びRが各々水素原子を表し、そしてR、Rが各々メチル基を表し、そしてRがビニル基を表す化合物、3)R、R、R及びRが各々水素原子を表し、そしてR及びRが各々メチル基を表す化合物である。 Particularly preferred are 1) compounds in which R 1 , R 3 and R 6 each represent a hydrogen atom, and R 2 , R 4 and R 5 each represent a methyl group, and 2) R 1 , R 3 and R 6 are A compound in which each represents a hydrogen atom, and R 2 , R 4 each represents a methyl group, and R 5 represents a vinyl group, 3) R 1 , R 3 , R 4 and R 6 each represent a hydrogen atom, and R 2 and R 5 are compounds each representing a methyl group.
 また、次式(3)で表される少なくとも一種のポリシラザンを含有する溶液も同様に好ましい。 A solution containing at least one polysilazane represented by the following formula (3) is also preferable.
 式(3)
   -(SiR-NR-(SiR-NR-(SiR-NR
 式中、R、R、R、R、R、R、R、R及びRは、互いに独立して、水素原子、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基、または(トリアルコキシシリル)アルキル基を表し、この際、n、p及びqは整数であり、そしてnは、当該ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
Formula (3)
-(SiR 1 R 2 -NR 3 ) n- (SiR 4 R 5 -NR 6 ) p- (SiR 7 R 8 -NR 9 ) q-
In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of one another a hydrogen atom or an optionally substituted alkyl group, aryl Represents a group, a vinyl group or a (trialkoxysilyl) alkyl group, where n, p and q are integers, and n is such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol. Determined.
 特に好ましいものは、R、R及びRが各々水素原子を表し、そしてR、R、R及びRが各々メチル基を表し、Rが(トリエトキシシリル)プロピル基を表し、そしてRがアルキル基または水素原子を表す化合物である。 Particularly preferred are R 1 , R 3 and R 6 each representing a hydrogen atom, and R 2 , R 4 , R 5 and R 8 each representing a methyl group and R 9 representing a (triethoxysilyl) propyl group. And a compound in which R 7 represents an alkyl group or a hydrogen atom.
 溶剤中におけるポリシラザンの割合は、一般的にはポリシラザンとして1~80質量%、好ましくは5~50質量%、特に好ましくは10~40質量%である。溶剤としては、特に、水及び反応性基(例えば、ヒドロキシル基またはアミン基)を含まず、ポリシラザンに対して不活性の有機系で、好ましくは非プロトン性の溶剤である。これは、例えば、脂肪族または芳香族炭化水素、ハロゲン炭化水素、エステル、例えば、酢酸エチルまたは酢酸ブチル、ケトン、例えばアセトンまたはメチルエチルケトン、エーテル、例えばテトラヒドロフランまたはジブチルエーテル、並びにモノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)またはこれらの溶剤からなる混合物である。 The ratio of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, particularly preferably 10 to 40% by mass as polysilazane. Especially as a solvent, it is an organic system which does not contain water and a reactive group (for example, hydroxyl group or amine group), and is inactive with respect to polysilazane, and preferably an aprotic solvent. This includes, for example, aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters such as ethyl acetate or butyl acetate, ketones such as acetone or methyl ethyl ketone, ethers such as tetrahydrofuran or dibutyl ether, and mono- and polyalkylene glycol dialkyls Ether (diglymes) or a mixture of these solvents.
 上記ポリシラザン溶液の追加の成分としては、塗料の製造に慣用されているもののような更に別のバインダーである。これは、例えば、セルロースエーテル及びセルロースエステル、例えばエチルセルロース、ニトロセルロース、セルロースアセテートまたはセルロースアセトブチレート、天然樹脂、例えばゴムもしくはロジン樹脂、または合成樹脂、例えば重合樹脂もしくは縮合樹脂、例えばアミノプラスト、特に尿素樹脂及びメラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、またはポリシロキサンである。ポリシラザン調合物の更に別の成分としては、例えば、調合物の粘度、下地の濡れ、成膜性、潤滑作用または排気性に影響を与える添加剤、あるいは無機ナノ粒子、例えばSiO、TiO、ZnO、ZrOまたはAlであることができる。このような方法を用いることによって、亀裂及び孔が無いためにガスに対する高いバリア作用に優れる緻密なガラス用の層を製造することができる。酸化ケイ素層またはアルキル基含有酸化ケイ素層、酸化ケイ素を含むポリマー層は、ポリシラザン溶液(酸化ケイ素前駆体を含む液)を塗布した後、150nm~250nmの波長の光を照射させて形成することが好ましい。好適な放射線源は、約172nmに最大放射を有するエキシマラジエータ、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧及び高圧水銀蒸気ランプ、及び約222nmに最大放射を有するエキシマランプである。 Additional components of the polysilazane solution are further binders such as those conventionally used in the production of paints. For example, cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes. Still other components of the polysilazane formulation include, for example, additives that affect the formulation viscosity, substrate wetting, film formability, lubrication or exhaust properties, or inorganic nanoparticles such as SiO 2 , TiO 2 , It can be ZnO, ZrO 2 or Al 2 O 3 . By using such a method, it is possible to produce a dense glass layer that has a high barrier action against gas because there are no cracks and holes. The silicon oxide layer, the alkyl group-containing silicon oxide layer, or the polymer layer containing silicon oxide may be formed by applying light having a wavelength of 150 nm to 250 nm after applying a polysilazane solution (liquid containing a silicon oxide precursor). preferable. Suitable radiation sources include an excimer radiator having a maximum emission at about 172 nm, a low pressure mercury vapor lamp having an emission line at about 185 nm, and a medium and high pressure mercury vapor lamp having a wavelength component of 230 nm or less, and a maximum emission at about 222 nm. It is an excimer lamp.
 180nm以下の波長の放射線成分を有する放射線源、例えば、約172nmに最大放射を有するXe エキシマラジエータを使用すると、酸素及び/または水蒸気の存在下において、上記の波長範囲におけるこれらのガスの高い吸光係数の故に光分解によってオゾン並びに酸素ラジカル及びヒドロキシルラジカルが非常に効率よく生じ、これらがポリシラザン層の酸化を促進する。しかし、両機序、すなわちSi-N結合の解裂と、オゾン、酸素ラジカル及びヒドロキシルラジカルの作用は、ポリシラザン層の表面上にもVUV放射線が到達して初めて起こり得る。 Using a radiation source having a radiation component with a wavelength of 180 nm or less, for example a Xe 2 * excimar radiator having a maximum emission at about 172 nm, the high of these gases in the above wavelength range in the presence of oxygen and / or water vapor Ozone and oxygen radicals and hydroxyl radicals are generated very efficiently by photolysis because of the extinction coefficient, which accelerates the oxidation of the polysilazane layer. However, both mechanisms, namely the cleavage of Si—N bonds and the action of ozone, oxygen radicals and hydroxyl radicals, can only occur after VUV radiation reaches the surface of the polysilazane layer.
 また、酸化ケイ素層またはアルキル基含有酸化ケイ素層、酸化ケイ素を含むポリマー層は、ポリシラザン溶液(酸化ケイ素前駆体を含む液)を塗布した後、1μm~3μmの波長の光を照射させて形成してもよい。具体的には、赤外線パルス光で照射し硬化させる。この場合、反射層である銀面によって熱線は反射されるので基材であるフィルムにはダメージなく効率よく硬化することができる。 In addition, the silicon oxide layer, the alkyl group-containing silicon oxide layer, or the polymer layer containing silicon oxide is formed by applying light having a wavelength of 1 μm to 3 μm after applying a polysilazane solution (liquid containing a silicon oxide precursor). May be. Specifically, it is cured by irradiation with infrared pulsed light. In this case, since the heat rays are reflected by the silver surface as the reflective layer, the film as the substrate can be efficiently cured without damage.
 〈UV吸収剤含有のバインダー樹脂〉
 本発明に係るUV吸収層の他の形態としては、従来公知の種々の樹脂中にUV吸収剤粒子を分散させたフィルムを挙げることができる。基材となる樹脂フィルムとしては、例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルムが好ましい。
<Binder resin containing UV absorber>
Examples of other forms of the UV absorbing layer according to the present invention include films in which UV absorber particles are dispersed in various conventionally known resins. Examples of the resin film used as the substrate include cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyester film such as polyethylene terephthalate and polyethylene naphthalate. , Polyethylene film, polypropylene film, cellophane, cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene series Film, polycarbonate film, norbornene tree Films, polymethylpentene films, polyether ketone films, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, a polycarbonate film, a polyester film, a norbornene resin film, and a cellulose ester film are preferable.
 特に、アクリルフィルムを用いることが好ましい。また溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。 In particular, it is preferable to use an acrylic film. Moreover, even if it is the film manufactured by melt casting film forming, the film manufactured by solution casting film forming may be sufficient.
 〈無機UV吸収剤〉
 本発明に係る無機UV吸収剤とは、主には金属酸化物顔料であり、アクリル樹脂に20質量%以上の濃度で分散させて、6μm厚のフィルムを形成し、UV-B域(290-320nm)域における光線透過率を10%以下にする機能を備えた化合物が好ましい。本発明に適用可能な無機UV吸収剤としては、特に、酸化亜鉛、酸化鉄、酸化ジルコニウム、酸化セリウムまたはこれらの混合物から選択されることが好ましい。
<Inorganic UV absorber>
The inorganic UV absorber according to the present invention is mainly a metal oxide pigment, and is dispersed in an acrylic resin at a concentration of 20% by mass or more to form a film having a thickness of 6 μm. The UV-B region (290- A compound having a function of reducing the light transmittance in the region of 320 nm) to 10% or less is preferable. The inorganic UV absorber applicable to the present invention is particularly preferably selected from zinc oxide, iron oxide, zirconium oxide, cerium oxide or a mixture thereof.
 また、本発明に係る無機UV吸収剤は、屈折率が2.4以下であることを特徴とする。屈折率が2.4よりも大きい無機UV吸収剤では乱反射が大きく、UV吸収層の透明度の低下及び正反射率の低下を引き起こすため、太陽熱発電用フィルムミラーのUV吸収剤として好ましくない。また、本発明に係る無機UV吸収剤は、好ましくは屈折率が1.5以上2.4以下のものである。ここで、屈折率とは、ナトリウムD線(波長589nm)の波長で25℃の温度で測定した数値を指す。また、無機UV吸収剤含有層の透明性を向上させる点から、平均粒径が5nmと500nmとの間の平均基本粒子径であるものが好ましく、特に好ましくは10nmと100nmとの間の平均基本粒子径であって、粒径分布の最大粒径が150nm以下の金属酸化物粒子である。この種の被覆または非被覆金属酸化物顔料は、より詳細に、特許出願EP-A-0 518 773に記載されている。 Further, the inorganic UV absorber according to the present invention has a refractive index of 2.4 or less. An inorganic UV absorber having a refractive index greater than 2.4 is not preferable as a UV absorber for a film mirror for solar power generation because irregular reflection is large and causes a decrease in the transparency and regular reflectance of the UV absorbing layer. Further, the inorganic UV absorber according to the present invention preferably has a refractive index of 1.5 or more and 2.4 or less. Here, the refractive index refers to a numerical value measured at a temperature of 25 ° C. at a wavelength of sodium D line (wavelength 589 nm). In addition, from the viewpoint of improving the transparency of the inorganic UV absorber-containing layer, those having an average basic particle diameter of between 5 nm and 500 nm are preferable, and an average base between 10 nm and 100 nm is particularly preferable. It is a metal oxide particle having a particle size and a maximum particle size distribution of 150 nm or less. This type of coated or uncoated metal oxide pigment is described in more detail in patent application EP-A-0 518 773.
 また、本発明においては、無機酸化物の光触媒能による隣接樹脂の酸化劣化作用を抑える観点から、無機UV吸収剤が、表面被覆した平均粒径が、10nm以上、100nm以下の無機UV吸収剤微粒子であることが好ましい。また、表面被覆には無機UV吸収剤粒子の分散性を向上させる効果もあるため、なお好ましい。ここでいう表面被覆された無機UV吸収剤とは、アミノ酸、蜜蝋、脂肪酸、脂肪アルコール、陰イオン界面活性剤、レシチン、脂肪酸のナトリウム塩、カリウム塩、亜鉛塩、鉄塩またはアルミニウム塩、金属アルコキシド(チタンまたはアルミニウムの)、ポリエチレン、シリコーン、タンパク質(コラーゲン、エラスチン)、アルカノールアミン、酸化ケイ素、金属酸化物あるいはヘキサメタリン酸ナトリウムのような化合物により、化学的、電子工学的、メカノケミストリー的または機械的な特質の1つまたは複数の手段により表面処理を受けた無機UV吸収剤である。 Further, in the present invention, from the viewpoint of suppressing the oxidative degradation effect of the adjacent resin due to the photocatalytic ability of the inorganic oxide, the inorganic UV absorber fine particles having an average particle diameter of 10 nm or more and 100 nm or less coated on the surface of the inorganic UV absorber. It is preferable that Moreover, since surface coating also has the effect of improving the dispersibility of inorganic UV absorber particles, it is still preferable. The surface-coated inorganic UV absorbers herein include amino acids, beeswax, fatty acids, fatty alcohols, anionic surfactants, lecithins, sodium salts, potassium salts, zinc salts, iron salts or aluminum salts of fatty acids, metal alkoxides. Chemical, electronic, mechanochemical or mechanical, with compounds such as (titanium or aluminum), polyethylene, silicone, protein (collagen, elastin), alkanolamine, silicon oxide, metal oxide or sodium hexametaphosphate An inorganic UV absorber that has undergone surface treatment by one or more means of special nature.
 また、表面被覆には無機UV吸収剤粒子の屈折率を調整する効果がある。例えば、高屈折率の無機UV吸収剤粒子を、低屈折率の材料を用いて表面被覆することで、表面被覆UV吸収剤粒子自体の屈折率を下げることができる。表面被覆UV吸収剤粒子の屈折率は、主には、表面被覆する材料の種類と被覆量により制御することができる。 Also, the surface coating has an effect of adjusting the refractive index of the inorganic UV absorber particles. For example, the refractive index of the surface-coated UV absorber particles themselves can be lowered by coating the surface of the inorganic UV absorber particles having a high refractive index with a material having a low refractive index. The refractive index of the surface-coated UV absorber particles can be controlled mainly by the type and amount of the material to be surface-coated.
 無機UV吸収剤を単独で用いる場合の使用量は、UV吸収層の全質量に対し1~30質量%、好ましくは5~25質量%、さらに好ましくは15~20質量%である。30質量%よりも多いと密着性が悪くなり、1質量%より少ないと耐候性改良効果が小さい。 The amount of inorganic UV absorber used alone is 1 to 30% by mass, preferably 5 to 25% by mass, more preferably 15 to 20% by mass, based on the total mass of the UV absorbing layer. When the amount is more than 30% by mass, the adhesion is deteriorated, and when the amount is less than 1% by mass, the weather resistance improving effect is small.
 また、無機UV吸収剤を後述する有機UV吸収剤と併用して用いる場合、UV吸収層の全質量に対し、無機UV吸収剤の使用量は3~20質量%、好ましくは5~10質量%であり、有機UV吸収剤の使用量は0.1~10質量%、好ましくは0.5~5質量%である。前記の使用量の範囲で無機UV吸収剤と有機UV吸収剤とを併用すると、UV吸収層の透明度は高く、耐侯性も良好となる。 When the inorganic UV absorber is used in combination with the organic UV absorber described later, the amount of the inorganic UV absorber used is 3 to 20% by mass, preferably 5 to 10% by mass, based on the total mass of the UV absorbing layer. The organic UV absorber is used in an amount of 0.1 to 10% by mass, preferably 0.5 to 5% by mass. When an inorganic UV absorber and an organic UV absorber are used in combination within the above-mentioned range of use, the transparency of the UV absorbing layer is high and the weather resistance is also good.
 〈有機UV吸収剤〉
 本発明に適用可能な有機UV吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系等が挙げられる。
<Organic UV absorber>
Examples of the organic UV absorber applicable to the present invention include benzophenone-based, benzotriazole-based, phenyl salicylate-based, triazine-based and the like.
 ベンゾフェノン系紫外線吸収剤としては、例えば、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシ-ベンゾフェノン、2,2′,4,4′-テトラヒドロキシ-ベンゾフェノン等が挙げられる。 Examples of benzophenone ultraviolet absorbers include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2-hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4' -Tetrahydroxy-benzophenone and the like.
 ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(2′-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)ベンゾトリアゾール等が挙げられる。 Examples of benzotriazole ultraviolet absorbers include 2- (2′-hydroxy-5-methylphenyl) benzotriazole and 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole. 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) benzotriazole and the like.
 サリチル酸フェニル系紫外線吸収剤としては、例えば、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。 Examples of the phenyl salicylate ultraviolet absorber include phenylsulcylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
 ヒンダードアミン系紫外線吸収剤としては、例えば、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。 Examples of the hindered amine ultraviolet absorber include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
 トリアジン系紫外線吸収剤としては、例えば、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン等が挙げられる。 Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy- 4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy- 4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- ( 2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5 Triazine, 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine and the like.
 有機UV吸収剤としては、上記以外に紫外線の保有するエネルギーを、分子内で振動エネルギーに変換し、その振動エネルギーを、熱エネルギー等として放出する機能を有する化合物が含まれる。更には、酸化防止剤あるいは着色剤等との併用で効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。但し、上記の有機UV吸収剤を使用する場合は、有機UV吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。 Organic UV absorbers include compounds having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as heat energy or the like in addition to the above. Furthermore, a substance that exhibits an effect when used in combination with an antioxidant or a colorant, or a light stabilizer called a quencher that acts as a light energy converter can be used in combination. However, when the above organic UV absorber is used, it is necessary to select a material in which the light absorption wavelength of the organic UV absorber does not overlap with the effective wavelength of the photopolymerization initiator.
 通常の有機UV吸収剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。 When using an ordinary organic UV absorber, it is effective to use a photopolymerization initiator that generates radicals with visible light.
 有機UV吸収剤の使用量は、UV吸収層の全質量に対し0.1~20質量%、好ましくは1~15質量%、さらに好ましくは3~10質量%である。20質量%よりも多いと密着性が悪くなり、0.1質量%より少ないと耐候性改良効果が小さい。 The amount of the organic UV absorber used is 0.1 to 20% by mass, preferably 1 to 15% by mass, and more preferably 3 to 10% by mass with respect to the total mass of the UV absorbing layer. When the amount is more than 20% by mass, the adhesion is deteriorated.
 〔腐食防止層〕
 本発明に係る腐食防止層の構成としては、腐食防止剤のみから形成される層または腐食防止剤を含有した樹脂からなる層を挙げることができるが、腐食防止剤を含有した樹脂層であることが好ましい。さらに好ましくは、腐食防止剤が0.01質量%から10質量%含有した樹脂層を用いるのがよい。
(Corrosion prevention layer)
Examples of the structure of the corrosion prevention layer according to the present invention include a layer formed only from a corrosion inhibitor or a layer made of a resin containing a corrosion inhibitor, and is a resin layer containing a corrosion inhibitor. Is preferred. More preferably, a resin layer containing 0.01 to 10% by mass of a corrosion inhibitor is used.
 さらに、腐食防止剤層に用いる樹脂は、接着剤層としても機能を有するものがよく、銀反射層と樹脂基材層(樹脂フィルム)との接着性を高める機能があるものであれば特に限定はない。従って、腐食防止剤層に用いる樹脂は、樹脂基材(樹脂フィルム)と銀反射層とを密着する密着性、銀反射層を真空蒸着法等で形成する時の熱にも耐え得る耐熱性、及び銀反射層が本来有する高い反射性能を引き出すための平滑性が必要である。 Furthermore, the resin used for the corrosion inhibitor layer should preferably have a function also as an adhesive layer, and is particularly limited as long as it has a function of improving the adhesion between the silver reflective layer and the resin base material layer (resin film). There is no. Therefore, the resin used for the corrosion inhibitor layer is an adhesive that adheres the resin base material (resin film) and the silver reflective layer, heat resistance that can withstand heat when the silver reflective layer is formed by a vacuum deposition method, And the smoothness for extracting the high reflective performance which a silver reflective layer originally has is required.
 本発明に係る腐食防止剤層に使用する樹脂は、上記の密着性、耐熱性及び平滑性の条件を満足するものであれば、特に制限はなく、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。 The resin used for the corrosion inhibitor layer according to the present invention is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance and smoothness, and polyester resin, acrylic resin, melamine resin. Epoxy resin, polyamide resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin, etc. can be used singly or as a mixed resin. From the viewpoint of weather resistance, a mixed resin of polyester resin and melamine resin can be used. It is more preferable to use a thermosetting resin in which a curing agent such as isocyanate is further mixed.
 本発明に係る腐食防止剤層の厚さは、密着性、平滑性、反射材の反射率等の観点から、0.01~3μmが好ましく、より好ましくは0.1~1μmである。 The thickness of the corrosion inhibitor layer according to the present invention is preferably 0.01 to 3 μm, more preferably 0.1 to 1 μm, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
 腐食防止剤層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 As a method for forming the corrosion inhibitor layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 (腐食防止剤)
 銀反射層の腐食防止を目的とする本発明に係る腐食防止層に用いられる腐食防止剤としては、大別して、銀に対する吸着性基を有する腐食防止剤と酸化防止剤が好ましく用いられる。
(Corrosion inhibitor)
Corrosion inhibitors and antioxidants having an adsorptive group for silver are preferably used as the corrosion inhibitor used in the corrosion prevention layer according to the present invention for the purpose of preventing corrosion of the silver reflection layer.
 ここで、「腐食」とは、金属(銀)がそれをとり囲む環境物質によって、化学的または電気化学的に浸食されるか、若しくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。 Here, “corrosion” refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by environmental materials surrounding it (see JIS Z0103-2004). .
 本発明の太陽熱発電用フィルムミラーでは、後述する接着層が酸化防止剤を含有し、かつ銀反射層の上部隣接層として、銀に対する吸着性基を有する腐食防止剤を含有している腐食防止層を設ける態様であることが好ましい。 In the film mirror for solar thermal power generation of the present invention, the adhesion preventing layer described later contains an antioxidant, and the corrosion preventing layer contains a corrosion inhibiting agent having an adsorptive group for silver as an upper adjacent layer of the silver reflecting layer. It is preferable to provide an embodiment.
 なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には、0.1~1.0/mの範囲内であることが好ましい。 The optimum amount of the corrosion inhibitor varies depending on the compound to be used, but generally it is preferably in the range of 0.1 to 1.0 / m 2 .
 〈銀に対する吸着性基を有する腐食防止剤〉
 本発明に適用可能な銀に対する吸着性基を有する腐食防止剤としては、例えば、アミン類及びその誘導体、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系の少なくとも一種またはこれらの混合物から選ばれることが望ましい。
<Corrosion inhibitor having an adsorptive group for silver>
Examples of the corrosion inhibitor having an adsorptive group for silver applicable to the present invention include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, and compounds having a thiazole ring. It is desirable that the compound is selected from a compound having an imidazole ring, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene-based compound, or a mixture thereof.
 アミン類及びその誘導体としては、例えば、エチルアミン、ラウリルアミン、トリ-n-ブチルアミン、O-トルイジン、ジフェニルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2N-ジメチルエタノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール、アセトアミド、アクリルアミド、ベンズアミド、p-エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート等、あるいはこれらの混合物が挙げられる。 Examples of amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N-dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate , Diisopropyl ammonium benzoate, diisopropyl ammonium nai Light, cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexane carboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate, or mixtures thereof.
 ピロール環を有する物としては、N-ブチル-2,5-ジメチルピロール、N-フェニル-2,5-ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール、N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール等、あるいはこれらの混合物が挙げられる。 Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
 トリアゾール環を有する化合物としては、例えば、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3-methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3- Triazole, benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2, 4-triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'- Droxy-5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) ) Benzotriazole and the like, or a mixture thereof.
 ピラゾール環を有する化合物としては、例えば、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
 チアゾール環を有する化合物としては、例えば、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2-N,N-ジエチルチオベンゾチアゾール、P-ジメチルアミノベンザルロダニン、2-メルカプトベンゾチアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, and 2-mercaptobenzo. Examples include thiazole and the like, or a mixture thereof.
 イミダゾール環を有する化合物としては、例えば、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, and 1-benzyl-2. -Methylimidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2- Undecylimidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl Ru-4-formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzo Examples thereof include imidazole and the like, or a mixture thereof.
 インダゾール環を有する化合物としては、例えば、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
 銅キレート化合物類としては、例えば、アセチルアセトン銅、エチレンジアミン銅、フタロシアニン銅、エチレンジアミンテトラアセテート銅、ヒドロキシキノリン銅等、あるいはこれらの混合物が挙げられる。 Examples of copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and mixtures thereof.
 チオ尿素類としては、例えば、チオ尿素、グアニルチオ尿素等、あるいはこれらの混合物が挙げられる。 Examples of thioureas include thiourea, guanylthiourea, and the like, or a mixture thereof.
 メルカプト基を有する化合物としては、すでに上記に記載した材料も加えれば、例えば、メルカプト酢酸、チオフェノール、1,2-エタンジオール、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、グリコールジメルカプトアセテート、3-メルカプトプロピルトリメトキシシラン等、あるいはこれらの混合物が挙げられる。 As the compound having a mercapto group, if the materials described above are added, for example, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3 -Mercapto-1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, etc., or a mixture thereof.
 ナフタレン系としては、チオナリド等が挙げられる。 Examples of naphthalene-based compounds include thionalide.
 〔銀反射層〕
 本発明に係る銀反射層の形成方法としては、湿式法及び乾式法のいずれの方法も適用することができる。
[Silver reflection layer]
As a method for forming the silver reflective layer according to the present invention, either a wet method or a dry method can be applied.
 湿式法とは、めっき法の総称であり、溶液から金属を析出させて銀膜を形成する方法であり、具体例としては、銀鏡反応などを挙げることができる。 The wet method is a general term for a plating method, which is a method of forming a silver film by depositing a metal from a solution. Specific examples thereof include a silver mirror reaction.
 一方、乾式法とは、真空成膜法の総称であり、具体的な方法を例示するとすれば、例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などが挙げられる。とりわけ、本発明においては、連続的に成膜するロールツーロール方式を適用することが可能な蒸着法が好ましく用いられる。すなわち、本発明の太陽熱発電用フィルムミラーを製造する太陽熱発電用フィルムミラーの製造方法においては、本発明に係る銀反射層を銀蒸着によって形成する工程を用いて形成する態様である。 On the other hand, the dry method is a general term for a vacuum film-forming method, and specific examples include, for example, a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam. Examples include assisted vacuum deposition and sputtering. In particular, in the present invention, a vapor deposition method capable of applying a roll-to-roll method of continuously forming a film is preferably used. That is, in the manufacturing method of the film mirror for solar power generation which manufactures the film mirror for solar power generation of this invention, it is an aspect formed using the process of forming the silver reflection layer which concerns on this invention by silver vapor deposition.
 本発明に係る銀反射層の厚さは、反射率等の観点から、10~200nmが好ましく、より好ましくは30~150nmである。 The thickness of the silver reflective layer according to the present invention is preferably 10 to 200 nm, more preferably 30 to 150 nm, from the viewpoint of reflectivity and the like.
 本発明において、銀反射層は支持体に対して光線入射側にあっても、その反対側にあっても良いが、支持体が樹脂であることから、光線による樹脂劣化を防止する目的から、支持体に対し光線入射側に位置する方が好ましい。 In the present invention, the silver reflective layer may be on the light incident side with respect to the support or on the opposite side, but since the support is a resin, for the purpose of preventing resin degradation due to light, It is preferable to be positioned on the light incident side with respect to the support.
 〔樹脂基材〕
 本発明に係る樹脂基材としては、従来公地の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。
[Resin substrate]
As the resin base material according to the present invention, various publicly known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films.
 中でも、ポリカーボネート系フィルム、ポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルムが好ましい。特に、ポリエステル系フィルム、セルロースエステル系フィルムを用いることが好ましく、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。 Of these, polycarbonate films, polyester films, norbornene resin films, and cellulose ester films are preferred. In particular, it is preferable to use a polyester film or a cellulose ester film, and it may be a film manufactured by melt casting or a film manufactured by solution casting.
 樹脂基材の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10~300μmの範囲内である。好ましくは20~200μm、更に好ましくは30~100μmである。 It is preferable that the thickness of the resin base material is an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 μm. The thickness is preferably 20 to 200 μm, more preferably 30 to 100 μm.
 〔粘着層〕
 本発明に係る粘着層の構成としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤などのいずれもが用いられる。
(Adhesive layer)
The configuration of the pressure-sensitive adhesive layer according to the present invention is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, a pressure-sensitive adhesive, a heat seal agent, a hot melt agent, and the like is used.
 例えば、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴムなどが用いられる。 For example, polyester resin, urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber, etc. are used.
 ラミネート法は、特に制限されず、例えば、ロール式で連続的に行うのが経済性及び生産性の点から好ましい。 The laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
 粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~50μm程度の範囲であることが好ましい。 The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 μm from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like.
 本発明の太陽熱発電用フィルムミラーと貼り合せられる他基材としては、銀反射層層の保護性を付与できるものであればよく、例えば、アクリルフィルム又はシート、ポリカーボネートフィルム又はシート、ポリアリレートフィルム又はシート、ポリエチレンナフタレートフィルム又はシート、ポリエチレンテレフタレートフィルム又はシート、フッ素フィルムなどのプラスチックフィルム又はシート、又は酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルム又はシート、これらを練り込んだ樹脂をコーティングして金属蒸着などの表面加工を施した樹脂フィルム又はシートが用いられる。 The other base material to be bonded to the solar power generation film mirror of the present invention may be any material that can impart protection of the silver reflective layer, for example, an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or Sheet, polyethylene naphthalate film or sheet, polyethylene terephthalate film or sheet, plastic film or sheet such as fluorine film, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, or the like A resin film or sheet coated with a resin and subjected to surface processing such as metal deposition is used.
 貼り合わせフィルム又はシートの厚さは、特に制限はないが通常12~250μmの範囲であることが好ましい。 The thickness of the laminated film or sheet is not particularly limited but is preferably in the range of 12 to 250 μm.
 また、これらの他基材は本発明の太陽熱発電用フィルムミラーと貼り合わせる前に凹部や凸部を設けてから貼り合せてもよく、貼り合せた後で凹部や凸部を有するように成形してもよく、貼り合わせと凹部や凸部を有するように成形することを同時にしてもよいものである。 In addition, these other base materials may be bonded after providing recesses or projections before being bonded to the solar power generation film mirror of the present invention. Alternatively, the bonding and the molding so as to have a concave portion or a convex portion may be performed at the same time.
 〔太陽熱発電用フィルムミラーの厚さ〕
 本発明の太陽熱発電用フィルムミラーの全体の厚さは、ミラーのたわみ防止、正反射率、取り扱い性等の観点から、75~250μmが好ましく、更に好ましくは90~230μm、特に好ましくは100~220μmである。
[Thickness of film mirror for solar power generation]
The total thickness of the film mirror for solar power generation of the present invention is preferably from 75 to 250 μm, more preferably from 90 to 230 μm, particularly preferably from 100 to 220 μm, from the viewpoint of mirror deflection prevention, regular reflectance, handling properties, and the like. It is.
 〔太陽熱発電用反射装置〕
 本発明の太陽熱発電用フィルムミラーは、太陽光を集光する目的において、好ましく使用できる。太陽熱発電用フィルムミラー単体で太陽光集光ミラーとして用いることもできるが、より好ましくは、樹脂基材を挟んで銀反射層を有する側と反対側の樹脂基材面に塗設された粘着層を介して、他基材、特に金属支持体上に、本発明の太陽熱発電用フィルムミラーを貼り付けて、本発明の太陽熱発電用反射装置として用いることである。
[Reflector for solar thermal power generation]
The film mirror for solar power generation of the present invention can be preferably used for the purpose of collecting sunlight. Although it can be used as a solar light collecting mirror by itself as a film mirror for solar thermal power generation, more preferably, an adhesive layer coated on the resin substrate surface opposite to the side having the silver reflective layer with the resin substrate interposed therebetween The film mirror for solar power generation of the present invention is pasted on another substrate, particularly a metal support, and used as a reflector for solar power generation of the present invention.
 太陽熱発電用反射装置として用いる場合、反射装置の形状を樋状(半円筒状)として、半円の中心部分に内部に流体を有する筒状部材を設け、筒状部材に太陽光を集光させることで内部の流体を加熱し、その熱エネルギーを変換して発電する形態が一形態として挙げられる。また、平板状の反射装置を複数個所に設置し、それぞれの反射装置で反射された太陽光を一枚の反射鏡(中央反射鏡)に集光させて、反射鏡により反射して得られた熱エネルギーを発電部で変換することで発電する形態も一形態として挙げられる。特に後者の形態においては、用いられる反射装置に高い正反射率が求められる為、本発明の太陽熱発電用フィルムミラーが特に好適に用いられる。 When used as a solar power generation reflecting device, the reflecting device is shaped like a bowl (semi-cylindrical), and a cylindrical member having fluid inside is provided at the center of the semicircle, and sunlight is condensed on the cylindrical member. The form which heats an internal fluid by this, converts the heat energy, and generates electric power is mentioned as one form. In addition, flat reflectors were installed at multiple locations, and the sunlight reflected by each reflector was collected on one reflector (central reflector) and reflected by the reflector. The form which generate | occur | produces electricity by converting a thermal energy in a power generation part is also mentioned as one form. In particular, in the latter form, since a high regular reflectance is required for the reflection device used, the film mirror for solar power generation of the present invention is particularly preferably used.
 〈支持体〉
 本発明の太陽熱発電用反射装置に用いられる支持体としては、金属板、樹脂板または金属と樹脂の複合板を用いることができる。金属板としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板など熱伝導率の高い金属材料を用いることができる。また、樹脂板としては、アクリル系樹脂板、ウレタン系樹脂板、ポリスチレン系樹脂板、ポリイミド系樹脂板、フェノール系樹脂板、ポリカーボネート系樹脂板、脂環式炭化水素系樹脂板、ポリプロピレン系樹脂板、ポリオレフィン系樹脂板、メラミン樹脂系樹脂板、ABS系樹脂板を用いることができる。また、金属と樹脂の複合板としては、前記金属板および樹脂板を積層したものや、前記金属板と発泡性樹脂とを積層したもの等を用いることができる。ここで発泡性樹脂とは多孔質の樹脂を意味し、例えばポリスチレン系、ポリオレフィン系、ポリウレタン系、メラミン樹脂系、ポリイミド系の組成からなるものを挙げることができる。
<Support>
As the support used in the solar power generation reflecting device of the present invention, a metal plate, a resin plate, or a composite plate of metal and resin can be used. As the metal plate, a metal material having high thermal conductivity such as a steel plate, a copper plate, an aluminum plate, an aluminum-plated steel plate, an aluminum-based alloy-plated steel plate, a copper-plated steel plate, a tin-plated steel plate, a chrome-plated steel plate, or a stainless steel plate can be used. Also, as resin plates, acrylic resin plates, urethane resin plates, polystyrene resin plates, polyimide resin plates, phenolic resin plates, polycarbonate resin plates, alicyclic hydrocarbon resin plates, polypropylene resin plates Polyolefin resin plates, melamine resin resin plates, and ABS resin plates can be used. Moreover, as a composite board of a metal and resin, what laminated | stacked the said metal plate and the resin board, what laminated | stacked the said metal plate and foamable resin, etc. can be used. Here, the foamable resin means a porous resin, and examples thereof include those composed of polystyrene, polyolefin, polyurethane, melamine resin, and polyimide compositions.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 《太陽熱発電用反射装置の作製》
 〔試料1の作製:実施例1〕
 樹脂基材として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)を用いた。上記ポリエチレンテレフタレートフィルムの片面に、銀反射層として、真空蒸着法により厚さ80nmの銀反射層を形成し、この銀反射層上に、ポリエステル系樹脂とトルエンジイソシアナート系樹脂とを、樹脂固形分比率(質量比)で10:2に混合した樹脂中に、腐食防止剤としてグリコールジメルカプトアセテートを塗設量が0.3g/mとなる量を添加し、グラビアコート法によりコーティングして、厚さ0.1μmの腐食防止層を形成した。
《Preparation of solar power reflectors》
[Preparation of Sample 1: Example 1]
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 μm) was used as the resin substrate. A silver reflective layer having a thickness of 80 nm is formed as a silver reflective layer on one side of the polyethylene terephthalate film by a vacuum deposition method, and a polyester resin and a toluene diisocyanate resin are solidified on the silver reflective layer. Add a glycol dimercaptoacetate as an anti-corrosion agent in an amount of 0.3 g / m 2 in a resin mixed at a 10: 2 fractional ratio (mass ratio), and coat by gravure coating. Then, a corrosion prevention layer having a thickness of 0.1 μm was formed.
 続いて、アクリル樹脂と、アクリル樹脂に対し15質量%の平均粒径が20nm、屈折率が2.4の酸化鉄(日本カンタムデザイン株式会社製)を、固形分比率が10:2となる条件で、メチレンクロライド溶媒を用いて溶解および分散させた塗工液を、グラビアコート法によりコーティングして厚さ30μmのUV吸収層を形成した。次いで、形成したUV吸収層上に、UV硬化型のハードコート液であるオプスター(JSR社製)を、アプリケータを用いて塗布し、波長350nmのUV光を30秒照射することで、厚さ10μmのハードコート層を形成した。 Subsequently, an acrylic resin and an iron oxide (made by Nippon Quantum Design Co., Ltd.) having an average particle diameter of 15% by mass with respect to the acrylic resin of 20 nm and a refractive index of 2.4 are manufactured under the condition that the solid content ratio is 10: 2. The coating solution dissolved and dispersed using a methylene chloride solvent was coated by a gravure coating method to form a 30 μm thick UV absorbing layer. Next, Opstar (manufactured by JSR), which is a UV curable hard coat liquid, is applied onto the formed UV absorbing layer using an applicator, and irradiated with UV light having a wavelength of 350 nm for 30 seconds. A 10 μm hard coat layer was formed.
 次いで、基材のポリエチレンテレフタレートフィルムの上記ハードコート層を形成した面とは反対側の面に、粘着層としてアクリル樹脂接着剤(昭和高分子社製)を厚さ10μmでコートして、太陽熱発電用フィルムミラー1を作製した。 Next, an acrylic resin adhesive (manufactured by Showa Polymer Co., Ltd.) with a thickness of 10 μm as an adhesive layer is coated on the surface opposite to the surface on which the hard coat layer of the polyethylene terephthalate film of the base material is formed. Film mirror 1 was prepared.
 次いで、厚さ0.1mmで、たて4cm×よこ5cmのアルミ板(住友軽金属社製)上に、上記作製した太陽熱発電用フィルムミラー1の粘着層を介して貼り付け、太陽熱発電用反射装置である試料1を作製した。 Next, a 0.1 mm thick, 4 cm × 5 cm wide aluminum plate (manufactured by Sumitomo Light Metal Co., Ltd.) is attached via the adhesive layer of the solar thermal power generation film mirror 1 produced above, and a solar thermal power generation reflection device Sample 1 was prepared.
 〔試料2の作製:実施例2〕
 上記試料1の作製において、太陽熱発電用フィルムミラー1のUV吸収層の形成に用いた平均粒径が20nm、屈折率が2.4の酸化鉄粒子に代えて、平均粒径が20nm、屈折率が2.2の酸化セリウム(ビックケミー・ジャパン株式会社製)を用いた以外は同様にして、太陽熱発電用フィルムミラー2を作製し、これを用いて太陽熱発電用反射装置である試料2を作製した。
[Preparation of Sample 2: Example 2]
In the preparation of Sample 1, the average particle size was 20 nm and the refractive index was replaced with iron oxide particles having an average particle size of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation. A film mirror 2 for solar power generation was prepared in the same manner except that cerium oxide of 2.2 was used (manufactured by Big Chemie Japan Co., Ltd.), and a sample 2 that was a reflector for solar power generation was prepared using this. .
 〔試料3の作製:実施例3〕
 上記試料1の作製において、太陽熱発電用フィルムミラー1のUV吸収層の形成に用いた平均粒径が20nm、屈折率が2.4の酸化鉄粒子に代えて、平均粒径が20nm、屈折率が1.9の酸化亜鉛(堺化学工業株式会社製)を用いた以外は同様にして、太陽熱発電用フィルムミラー3を作製し、これを用いて太陽熱発電用反射装置である試料3を作製した。
[Production of Sample 3: Example 3]
In the preparation of Sample 1, the average particle size was 20 nm and the refractive index was replaced with iron oxide particles having an average particle size of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation. Was prepared in the same manner except that 1.9 zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd.) was used, and a solar power generation reflector 3 was prepared using this film mirror 3 for solar power generation. .
 〔試料4の作製:実施例4〕
 上記試料1の作製において、太陽熱発電用フィルムミラー1のUV吸収層の形成に用いた平均粒径が20nm、屈折率が2.4の酸化鉄粒子に代えて、平均粒径が500nm、屈折率が2.4の酸化鉄(日本カンタムデザイン株式会社製)を用いた以外は同様にして、太陽熱発電用フィルムミラー4を作製し、これを用いて太陽熱発電用反射装置である試料4を作製した。
[Preparation of Sample 4: Example 4]
In the preparation of Sample 1, the average particle diameter was 500 nm and the refractive index was replaced with iron oxide particles having an average particle diameter of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation. The film mirror 4 for solar power generation was produced in the same manner except that 2.4 iron oxide (manufactured by Nippon Quantum Design Co., Ltd.) was used, and the sample 4 which is a reflector for solar power generation was produced using this. .
 〔試料5の作製:実施例5〕
 上記試料1の作製において、太陽熱発電用フィルムミラー1のUV吸収層の形成に用いた平均粒径が20nm、屈折率が2.4の酸化鉄粒子に代えて、平均粒径が500nm、屈折率が2.2の酸化セリウム(ビックケミー・ジャパン株式会社製)を用いた以外は同様にして、太陽熱発電用フィルムミラー5を作製し、これを用いて太陽熱発電用反射装置である試料5を作製した。
[Preparation of Sample 5: Example 5]
In the preparation of Sample 1, the average particle diameter was 500 nm and the refractive index was replaced with iron oxide particles having an average particle diameter of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation. The film mirror 5 for solar power generation was produced in the same manner except that cerium oxide of 2.2 (made by Big Chemie Japan Co., Ltd.) was used, and the sample 5 which was a reflector for solar power generation was produced using this. .
 〔試料6の作製:実施例6〕
 上記試料1の作製において、太陽熱発電用フィルムミラー1のUV吸収層の形成に用いた平均粒径が20nm、屈折率が2.4の酸化鉄粒子に代えて、平均粒径が500nm、屈折率が2.5の酸化亜鉛(堺化学工業株式会社製)を用いた以外は同様にして、太陽熱発電用フィルムミラー6を作製し、これを用いて太陽熱発電用反射装置である試料6を作製した。
[Preparation of Sample 6: Example 6]
In the preparation of Sample 1, the average particle diameter was 500 nm and the refractive index was replaced with iron oxide particles having an average particle diameter of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation. The film mirror 6 for solar power generation was produced in the same manner except that zinc oxide of 2.5 (manufactured by Sakai Chemical Industry Co., Ltd.) was used, and the sample 6 which was a reflector for solar power generation was produced using this. .
 〔試料7の作製:実施例7〕
 上記試料1の作製において、太陽熱発電用フィルムミラー1のUV吸収層の形成に用いた平均粒径が20nm、屈折率が2.4の酸化鉄粒子に代えて、平均粒径が20nmの表面シリカ被覆酸化鉄を用いた以外は同様にして、太陽熱発電用フィルムミラー7を作製し、これを用いて太陽熱発電用反射装置である試料7を作製した。
[Preparation of Sample 7: Example 7]
In the preparation of Sample 1, the surface silica having an average particle diameter of 20 nm is used instead of the iron oxide particles having an average particle diameter of 20 nm and a refractive index of 2.4 used for forming the UV absorbing layer of the film mirror 1 for solar power generation. A film mirror 7 for solar power generation was produced in the same manner except that the coated iron oxide was used, and a sample 7 which was a reflector for solar power generation was produced using this.
 なお、表面シリカ被覆酸化鉄は、平均粒径が18nmの酸化鉄(日本カンタムデザイン株式会社製)を、テトラエトキシシラン(シグマアルドリッチ社製)溶液中で30分間撹拌した後、遠心分離とデカンテーションと純水添加を繰り返して洗浄を行うことにより調製した。 The surface-silica-coated iron oxide is prepared by stirring iron oxide (manufactured by Nippon Quantum Design Co., Ltd.) having an average particle size of 18 nm in a tetraethoxysilane (manufactured by Sigma Aldrich) for 30 minutes, followed by centrifugation and decantation. And pure water addition was repeated for washing.
 〔試料8の作製:実施例8〕
 上記試料7の作製において、太陽熱発電用フィルムミラー7のUV吸収層の形成に用いた平均粒径が20nmの表面シリカ被覆酸化鉄に代えて、平均粒径が20nmの表面シリカ被覆酸化セリウムを用いた以外は同様にして、太陽熱発電用フィルムミラー8を作製し、これを用いて太陽熱発電用反射装置である試料8を作製した。
[Preparation of Sample 8: Example 8]
In the preparation of the sample 7, the surface silica-coated cerium oxide having an average particle size of 20 nm was used in place of the surface silica-coated iron oxide having an average particle size of 20 nm used for forming the UV absorbing layer of the film mirror 7 for solar power generation. Except for the above, a film mirror 8 for solar power generation was produced in the same manner, and a sample 8 as a reflector for solar power generation was produced using this.
 なお、表面シリカ被覆酸化セリウムは、平均粒径が18nmの酸化セリウム(ビックケミー・ジャパン株式会社製)を用いた以外は上記表面シリカ被覆酸化鉄の調製方法と同様にして調製した。 The surface silica-coated cerium oxide was prepared in the same manner as the method for preparing the surface silica-coated iron oxide except that cerium oxide having an average particle size of 18 nm (manufactured by Big Chemie Japan Co., Ltd.) was used.
 〔試料9の作製:実施例9〕
 上記試料7の作製において、太陽熱発電用フィルムミラー7のUV吸収層の形成に用いた平均粒径が20nmの表面シリカ被覆酸化鉄に代えて、平均粒径が20nmの表面シリカ被覆酸化亜鉛を用いた以外は同様にして、太陽熱発電用フィルムミラー9を作製し、これを用いて太陽熱発電用反射装置である試料9を作製した。
[Preparation of Sample 9: Example 9]
In the preparation of Sample 7, the surface silica-coated zinc oxide having an average particle size of 20 nm was used in place of the surface silica-coated iron oxide having an average particle size of 20 nm used for forming the UV absorbing layer of the film mirror 7 for solar power generation. The film mirror 9 for solar thermal power generation was produced in the same manner except that, and a sample 9 which was a reflector for solar thermal power generation was produced using this.
 なお、表面シリカ被覆酸化亜鉛は、平均粒径が18nmの酸化亜鉛(堺化学工業株式会社製)を用いた以外は上記表面シリカ被覆酸化鉄の調製方法と同様にして調製した。 The surface silica-coated zinc oxide was prepared in the same manner as the above-described method for preparing surface silica-coated iron oxide, except that zinc oxide having an average particle size of 18 nm (manufactured by Sakai Chemical Industry Co., Ltd.) was used.
 〔試料10の作製:実施例10〕
 上記試料7の作製において、太陽熱発電用フィルムミラー7のUV吸収層の形成に用いた平均粒径が20nmの表面シリカ被覆酸化鉄に代えて、平均粒径が20nmの表面シリカ被覆酸化チタンを用いた以外は同様にして、太陽熱発電用フィルムミラー10を作製し、これを用いて太陽熱発電用反射装置である試料10を作製した。
[Production of Sample 10: Example 10]
In the preparation of the sample 7, the surface silica-coated titanium oxide having an average particle size of 20 nm was used instead of the surface silica-coated iron oxide having an average particle size of 20 nm used for forming the UV absorbing layer of the film mirror 7 for solar power generation. Except for the above, a film mirror 10 for solar power generation was produced in the same manner, and a sample 10 as a reflector for solar power generation was produced using this.
 なお、表面シリカ被覆酸化チタンは、平均粒径が18nmの酸化チタン(マックスライト TS 昭和電工株式会社製)を用いた以外は、上記表面シリカ被覆酸化鉄の調製方法と同様にして調製した。 The surface silica-coated titanium oxide was prepared in the same manner as the above-described method for preparing the surface silica-coated iron oxide, except that titanium oxide having an average particle size of 18 nm (Maxlite TS, manufactured by Showa Denko KK) was used.
 〔試料11の作製:実施例11〕
 上記試料1の作製に用いた太陽熱発電用フィルムミラー1のUV吸収層の形成において、平均粒径が20nmの酸化鉄粒子を樹脂に対して15質量%添加した条件に代えて、平均粒径が20nmの表面シリカ被覆酸化亜鉛(堺化学工業株式会社製)を樹脂に対して6質量%,有機UV吸収剤としてTINUNIN234(BASFジャパン社製)を樹脂に対して3質量%添加する条件に変更した以外は同様にして、太陽熱発電用フィルムミラー11を作製し、これを用いて太陽熱発電用反射装置である試料11を作製した。
[Preparation of Sample 11: Example 11]
In the formation of the UV absorbing layer of the film mirror 1 for solar power generation used for the production of the sample 1, the average particle size was changed to the condition that 15% by mass of iron oxide particles having an average particle size of 20 nm was added to the resin. The condition was changed such that 20 nm surface silica-coated zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd.) was added to 6% by mass with respect to the resin, and TINUNIN234 (manufactured by BASF Japan) was added as an organic UV absorber at 3% by mass with respect to the resin In the same manner, a film mirror 11 for solar power generation was produced in the same manner, and a sample 11 which was a reflector for solar power generation was produced using the film mirror 11.
 〔試料12の作製:実施例12〕
 樹脂基材として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)を用いた。上記ポリエチレンテレフタレートフィルムの片面に、アクリル樹脂とアクリル樹脂に対して、有機UV吸収剤として3質量%のTINUNIN234(BASFジャパン社製)を固形分比率で10:2となるようにメチレンクロライド溶媒で溶解および分散させて調製した塗工液を、グラビアコート法によりコーティングすることで、銀反射層よりも反入射光側に配置となる厚さ30μmの有機UV吸収層を形成した。次いで、形成した有機UV吸収層上に、銀反射層として、真空蒸着法により厚さ80nmの銀反射層を形成し、この銀反射層上に、ポリエステル系樹脂とトルエンジイソシアナート系樹脂とを、樹脂固形分比率で10:2に混合した樹脂中に、腐食防止剤としてグリコールジメルカプトアセテートを塗設量が0.3g/mとなる条件で添加し、グラビアコート法によりコーティングして、厚さ0.1μmの腐食防止層を形成した。続いて、アクリル樹脂とアクリル樹脂に対して無機UV吸収剤として6質量%の平均粒径が20nmの表面シリカ被覆酸化亜鉛(堺化学工業株式会社製)を固形分比率で10:2となるようにメチレンクロライド溶媒で溶解および分散させた塗工液を、グラビアコート法によりコーティングすることで厚さ30μmの無機UV吸収層を、銀反射層よりも入射光側に配置して形成した。続いて、UV吸収層の上に、UV硬化型のハードコート液であるオプスター(JSR社製)をアプリケータにより塗布し、波長350nmのUV光を30秒照射することで、厚さ10μmのハードコート層を形成した。
[Preparation of Sample 12: Example 12]
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 μm) was used as the resin substrate. On one side of the polyethylene terephthalate film, 3% by mass of TINUNIN234 (manufactured by BASF Japan) as an organic UV absorber is dissolved in a methylene chloride solvent so that the solid content ratio is 10: 2 with respect to the acrylic resin and the acrylic resin. And the coating liquid prepared by dispersing was coated by a gravure coating method to form an organic UV absorbing layer having a thickness of 30 μm which is arranged on the side opposite to the incident light side of the silver reflecting layer. Next, a silver reflective layer having a thickness of 80 nm is formed as a silver reflective layer on the formed organic UV absorbing layer by vacuum deposition, and a polyester resin and a toluene diisocyanate resin are formed on the silver reflective layer. In the resin mixed at a resin solid content ratio of 10: 2, glycol dimercaptoacetate is added as a corrosion inhibitor under the condition that the coating amount is 0.3 g / m 2, and coating is performed by the gravure coating method. A corrosion prevention layer having a thickness of 0.1 μm was formed. Subsequently, surface silica-coated zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd.) having an average particle diameter of 6% by mass as an inorganic UV absorber with respect to the acrylic resin and the acrylic resin is 10: 2 in a solid content ratio. A coating solution dissolved and dispersed in a methylene chloride solvent was coated by a gravure coating method to form an inorganic UV absorbing layer having a thickness of 30 μm on the incident light side of the silver reflecting layer. Subsequently, Opstar (manufactured by JSR), which is a UV curable hard coat liquid, is applied onto the UV absorbing layer with an applicator and irradiated with UV light having a wavelength of 350 nm for 30 seconds, thereby forming a hard 10 μm thick A coat layer was formed.
 続いて、基材のポリエチレンテレフタレートフィルムの上記ハードコート層を形成した面とは反対側の面に、粘着層としてアクリル樹脂接着剤(昭和高分子社製)を厚さ10μmの厚さでコートして、図4に記載の層構成からなる太陽熱発電用フィルムミラー12を作製した。 Subsequently, an acrylic resin adhesive (manufactured by Showa Kogyo Co., Ltd.) with a thickness of 10 μm was coated as an adhesive layer on the surface of the polyethylene terephthalate film on the side opposite to the surface on which the hard coat layer was formed. Thus, a film mirror 12 for solar power generation having the layer configuration shown in FIG. 4 was produced.
 次いで、厚さ0.1mmで、たて4cm×よこ5cmのアルミ板(住友軽金属社製)上に、上記作製した太陽熱発電用フィルムミラー12の粘着層を介して貼り付け、太陽熱発電用反射装置である試料12を作製した。 Next, a 0.1 mm thick, 4 cm × 5 cm wide aluminum plate (manufactured by Sumitomo Light Metal Co., Ltd.) is pasted via the adhesive layer of the solar thermal power generation film mirror 12 produced above, and a solar thermal power generation reflection device Sample 12 was prepared.
 〔試料13の作製:実施例13〕
 上記太陽熱発電用フィルムミラー12において、無機UV吸収層(図4に記載の11の位置)の形成に用いた無機UV吸収剤である平均粒径が20nmの表面シリカ被覆酸化亜鉛に代えて、有機UV吸収剤として3質量%のTINUNIN234(BASFジャパン社製)を用いて、図3に記載の有機UV吸収剤層10とし、有機UV吸収層(図4に記載の10の位置)の形成の用いた有機UV吸収剤であるTINUNIN234に代えて、無機UV吸収剤として20質量%の表面シリカ被覆酸化亜鉛(堺化学工業株式会社製)を用いて、図3に記載の無機UV吸収剤層11とした以外は同様にして、図3に記載の構成からなる太陽熱発電用フィルムミラー13を作製し、これを用いて太陽熱発電用反射装置である試料13を作製した。
[Preparation of Sample 13: Example 13]
In the film mirror 12 for solar thermal power generation, instead of the surface silica-coated zinc oxide having an average particle diameter of 20 nm, which is an inorganic UV absorber used for forming the inorganic UV absorbing layer (position 11 in FIG. 4), an organic Using 3% by mass of TINUNIN234 (manufactured by BASF Japan) as the UV absorber, the organic UV absorber layer 10 shown in FIG. 3 is used, and the organic UV absorber layer (position 10 shown in FIG. 4) is formed. In place of TINUNIN234, which was an organic UV absorber, 20 wt% surface silica-coated zinc oxide (manufactured by Sakai Chemical Industry Co., Ltd.) was used as the inorganic UV absorber, and the inorganic UV absorber layer 11 shown in FIG. Except that, a solar power generation film mirror 13 having the configuration shown in FIG. 3 was produced in the same manner, and a sample 13 as a solar thermal power generation reflection device was produced using this.
 〔試料14の作製:比較例1〕
 前記試料1の作製において、太陽熱発電用フィルムミラー1のUV吸収層の形成に用いた平均粒径が20nm、屈折率が2.4の酸化鉄粒子に代えて、平均粒径が20nm、屈折率が2.5の酸化チタン(堺化学工業株式会社製)を用いた以外は同様にして、太陽熱発電用フィルムミラー14を作製し、これを用いて太陽熱発電用反射装置である試料14を作製した。
[Production of Sample 14: Comparative Example 1]
In the preparation of the sample 1, instead of the iron oxide particles having an average particle diameter of 20 nm and a refractive index of 2.4 used for forming the UV absorption layer of the solar power generation film mirror 1, the average particle diameter of 20 nm and the refractive index. The film mirror 14 for solar power generation was produced in the same manner except that titanium oxide of 2.5 (manufactured by Sakai Chemical Industry Co., Ltd.) was used, and the sample 14 as a solar power generation reflection device was produced using this. .
 〔試料15の作製:比較例2〕
 上記試料1の作製において、太陽熱発電用フィルムミラー1のUV吸収層の形成に用いた平均粒径が20nm、屈折率が2.4の酸化鉄粒子に代えて、有機UV吸収剤として5質量%のTINUNIN234(BASFジャパン社製)を用いた以外は同様にして、太陽熱発電用フィルムミラー15を作製し、これを用いて太陽熱発電用反射装置である試料15を作製した。
[Production of Sample 15: Comparative Example 2]
In preparation of the sample 1, in place of the iron oxide particles having an average particle diameter of 20 nm and a refractive index of 2.4 used for forming the UV absorption layer of the film mirror 1 for solar power generation, 5 mass% as an organic UV absorber. Except for using TINUNIN234 (manufactured by BASF Japan Ltd.), a film mirror 15 for solar power generation was produced in the same manner, and a sample 15 as a reflector for solar power generation was produced using this.
 《太陽熱発電用フィルムミラーの作製に用いた無機UV吸収剤の特性値の測定》
 〔無機UV吸収剤の屈折率測定〕
 無機UV吸収剤の10質量%水分散液を用意した。続いて、各水分散液にポリビニルピロリドンを無機UV吸収剤に対する質量比が1となるように加え、この液をスピンコートして120℃で乾燥後、25℃下でナトリウムD線(波長589nm)の波長の屈折率を、エリプソメータであるVASE(ウーラム社製)を用いて測定した。なお、屈折率は、含有される固形分の体積分率から固形分の屈折率として求めた。
<< Measurement of characteristic values of inorganic UV absorber used for production of film mirror for solar power generation >>
[Refractive index measurement of inorganic UV absorber]
A 10% by mass aqueous dispersion of an inorganic UV absorber was prepared. Subsequently, polyvinyl pyrrolidone was added to each aqueous dispersion so that the mass ratio with respect to the inorganic UV absorber was 1, this solution was spin-coated, dried at 120 ° C., and sodium D line (wavelength 589 nm) at 25 ° C. The refractive index at the wavelength of was measured using an ellipsometer VASE (Woolum). In addition, the refractive index was calculated | required as a refractive index of solid content from the volume fraction of contained solid content.
 〔無機UV吸収剤の粒径測定〕
 無機UV吸収剤の0.01質量%水分散液を用意した。続いて、各水分散液を動的光散乱粒形測定装置であるLB-550(HORIBA社製)を用いて粒子径分布を測定し、このときのピークトップの値を粒径として求めた。
[Measurement of particle size of inorganic UV absorber]
A 0.01% by mass aqueous dispersion of an inorganic UV absorber was prepared. Subsequently, the particle size distribution of each aqueous dispersion was measured using LB-550 (manufactured by HORIBA), which is a dynamic light scattering particle shape measuring device, and the peak top value at this time was determined as the particle size.
 《各試料の評価》
 上記作製した各太陽熱発電用反射装置について、下記の方法に従って、初期状態の評価(初期正反射率)、耐光性の評価(正反射率安定性)及び粘着層の耐候性の評価を行った。
<< Evaluation of each sample >>
About each produced said solar power generation reflective apparatus, evaluation of an initial state (initial regular reflectance), evaluation of light resistance (regular reflectance stability), and the weather resistance of the adhesion layer were performed according to the following method.
 〔初期状態の評価:初期正反射率〕
 島津製作所社製の分光光度計UV265に、積分球反射付属装置を取り付けたものに改造し、反射面の法線に対して、入射光の入射角を5°となるように調整し、各試料について劣化処理前の反射角5°での初期正反射率を測定した。評価は、350nmから700nmまでの平均反射率として測定した。
[Evaluation of initial state: Initial regular reflectance]
The spectrophotometer UV265 manufactured by Shimadzu Corporation was remodeled with an integrating sphere reflection accessory, and the incident light incident angle was adjusted to 5 ° with respect to the normal of the reflecting surface. The initial regular reflectance at a reflection angle of 5 ° before the deterioration treatment was measured. Evaluation was measured as an average reflectance from 350 nm to 700 nm.
 6:正反射率の平均値が、85%以上である
 5:正反射率の平均値が、80%以上、85%未満である
 4:正反射率の平均値が、75%以上、80%未満である
 3:正反射率の平均値が、70%以上、75%未満である
 2:正反射率の平均値が、65%以上、70%未満である
 1:正反射率の平均値が、65%未満である
 〔耐光性の評価:正反射率安定性〕
 上記方法で初期正反射率を測定した各試料を、岩崎電気製アイスーパーUVテスターを用いて、65℃の環境下で7日間紫外線照射を行ったのち、上記方法により正反射率を測定し、紫外線照射前の初期正反射率を100%としたときの紫外線照射後の正反射率の平均値を算出し、下記の基準に従って、耐光性を評価した。
6: Average value of regular reflectance is 85% or more 5: Average value of regular reflectance is 80% or more and less than 85% 4: Average value of regular reflectance is 75% or more, 80% 3: The average value of regular reflectance is 70% or more and less than 75% 2: The average value of regular reflectance is 65% or more and less than 70% 1: The average value of regular reflectance is Less than 65% [Evaluation of light resistance: regular reflectance stability]
Each sample whose initial specular reflectance was measured by the above method was irradiated with ultraviolet rays in an environment of 65 ° C. for 7 days using an I-Super UV tester manufactured by Iwasaki Electric Co., Ltd., and then the regular reflectance was measured by the above method. The average value of the regular reflectance after ultraviolet irradiation when the initial regular reflectance before ultraviolet irradiation was 100% was calculated, and the light resistance was evaluated according to the following criteria.
 6:紫外線照射後の正反射率の平均値が、85%以上である
 5:紫外線照射後の正反射率の平均値が、80%以上、85%未満である
 4:紫外線照射後の正反射率の平均値が、75%以上、80%未満である
 3:紫外線照射後の正反射率の平均値が、70%以上、75%未満である
 2:紫外線照射後の正反射率の平均値が、65%以上、70%未満である
 1:紫外線照射後の正反射率の平均値が、65%未満である
 〔粘着層の耐候性の評価〕
 岩崎電気製アイスーパーUVテスターを用いて、65℃の環境下で7日間紫外線照射を行ったのち、粘着層の密着性の評価を、JIS K5400の碁盤目セロハンテープ剥離試験に従って評価した。即ち、強制劣化後のサンプル表面にカッターナイフで1mm間隔の碁盤目状に切り込みを入れ、セロハンテープ(ニチバン社製)を貼り付けた後にはく離し、はく離部の割合を測定し、下記の基準に従って、接着層の耐候性を評価した。
6: The average value of regular reflectance after ultraviolet irradiation is 85% or more 5: The average value of regular reflectance after ultraviolet irradiation is 80% or more and less than 85% 4: Regular reflection after ultraviolet irradiation The average value of the rate is 75% or more and less than 80% 3: The average value of the regular reflectance after ultraviolet irradiation is 70% or more and less than 75% 2: The average value of the regular reflectance after ultraviolet irradiation Is 65% or more and less than 70% 1: The average value of the regular reflectance after ultraviolet irradiation is less than 65% [Evaluation of weather resistance of adhesive layer]
After performing ultraviolet irradiation for 7 days in an environment of 65 ° C. using an I-superior eye super UV tester manufactured by Iwasaki Electric Co., Ltd., the adhesion of the adhesive layer was evaluated according to a grid cellophane tape peeling test of JIS K5400. That is, the sample surface after forced deterioration was cut into a grid pattern with a 1 mm interval with a cutter knife, peeled off after applying cellophane tape (manufactured by Nichiban Co., Ltd.), and the ratio of the peeled portion was measured. The weather resistance of the adhesive layer was evaluated.
 ◎:劣化試験後に膜はく離部の割合が2.0%未満
 ○:劣化試験後に膜はく離部の割合が2.0%以上、3.0%未満
 ×:劣化試験後に膜はく離部の割合が3.0%以上
 〔技術的特徴の実証結果〕
 上記方法に従って、各試料について評価した結果を、各太陽熱発電用反射装置(太陽熱発電用フィルムミラー)の構成技術の効果が判定できる組み合わせにて、以下順次説明する。
A: The ratio of the film peeling part is less than 2.0% after the deterioration test. ○: The ratio of the film peeling part is 2.0% or more and less than 3.0% after the deterioration test. X: The ratio of the film peeling part is 3 after the deterioration test. 0.0% or more [Results of demonstration of technical features]
The results of evaluation for each sample according to the above method will be sequentially described below in a combination that can determine the effect of the construction technology of each solar power generation reflection device (solar power generation film mirror).
 (UV吸収層に適用する無機UV吸収剤の平均粒径、屈折率の効果の確認)
 上記作製した試料1~6(本発明 実施例1~6)及び試料14、15(比較例1、2)を用いて、本発明で規定するUV吸収層に適用する無機UV吸収剤の平均粒径、屈折率の効果の実証結果について、表1に示す。
(Confirmation of the effect of the average particle diameter and refractive index of the inorganic UV absorber applied to the UV absorbing layer)
Using the produced samples 1 to 6 (Examples 1 to 6 of the present invention) and samples 14 and 15 (Comparative Examples 1 and 2), the average particle size of the inorganic UV absorber applied to the UV absorbing layer defined in the present invention Table 1 shows the verification results of the effects of diameter and refractive index.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載の結果より明らかな様に、本発明で規定する屈折率が2.4以下の無機UV吸収剤を含むUV吸収層を有する試料1~6(本発明 実施例1~6)は、比較例である試料14、15に対し、初期状態(初期正反射率)、耐光性(正反射率安定性)及び粘着層の耐候性(密着性)に優れていることが明かである。これは、本発明の試料が、屈折率2.4以下の無機UV吸収剤を用いることで光散乱による反射率の低下を抑えつつ、粘着層劣化の原因であるUV-B域(290-320nm)の光線を効果的に吸収できていることを示す結果である。また、平均粒径500nmの無機UV吸収剤を用いた試料4~6よりも、平均粒径が20nmの無機UV吸収剤を用いた試料1~3の方が、反射安定性により優れていることが分かる。すなわち、平均粒径がより小さいほど、無機UV吸収剤粒子の光散乱による正反射率の低下が抑えられている結果を示している。 As is clear from the results shown in Table 1, Samples 1 to 6 (invention examples 1 to 6) having a UV absorption layer containing an inorganic UV absorber having a refractive index of 2.4 or less as defined in the present invention are: It is clear that the samples 14 and 15 as comparative examples are excellent in the initial state (initial regular reflectance), light resistance (regular reflectance stability), and weather resistance (adhesion) of the adhesive layer. This is because the sample of the present invention uses an inorganic UV absorber having a refractive index of 2.4 or less to suppress a decrease in reflectance due to light scattering, and at the same time, UV-B region (290-320 nm) that causes deterioration of the adhesive layer. It is a result which shows that the light ray of) can be absorbed effectively. In addition, samples 1 to 3 using an inorganic UV absorber having an average particle diameter of 20 nm are superior in reflection stability to samples 4 to 6 using an inorganic UV absorber having an average particle diameter of 500 nm. I understand. That is, the smaller the average particle diameter, the lower the regular reflectance due to light scattering of the inorganic UV absorber particles.
 (UV吸収層に適用する無機UV吸収剤の表面被覆による効果の確認)
 上記作製した試料1~3(本発明 実施例1~6)及び試料7~10(本発明 実施例7~10)を用いて、本発明で規定するUV吸収層に適用する無機UV吸収剤の表面被覆効果の実証結果について、表2に示す。
(Confirmation of effect by surface coating of inorganic UV absorber applied to UV absorbing layer)
Samples 1 to 3 (Invention Examples 1 to 6) and Samples 7 to 10 (Invention Examples 7 to 10) prepared as described above were used for the inorganic UV absorber applied to the UV absorbing layer defined in the present invention. Table 2 shows the verification results of the surface coating effect.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に記載の結果より明らかな様に、表面を被覆した無機UV吸収剤粒子を用いた試料7~10は、被覆していない無機UV吸収剤粒子を用いた試料1~3に対し、劣化処理後の正反射率変動が小さく、高い正反射率を維持していることが分かる。この結果は、無機UV吸収剤粒子の表面をシリカで被覆することにより、無機UV吸収剤粒子の光触媒活性は抑制され、隣接樹脂の劣化を抑えることができることを実証することができた。 As is apparent from the results shown in Table 2, the samples 7 to 10 using the inorganic UV absorber particles coated on the surface were deteriorated compared to the samples 1 to 3 using the inorganic UV absorber particles not coated. It can be seen that the variation in regular reflectance after the treatment is small and a high regular reflectance is maintained. This result demonstrated that the photocatalytic activity of the inorganic UV absorber particles can be suppressed and the deterioration of the adjacent resin can be suppressed by coating the surface of the inorganic UV absorber particles with silica.
 (UV吸収層での無機UV吸収剤、有機UV吸収剤の併用による効果)
 上記作製した同一のUV吸収層で無機UV吸収剤と有機UV吸収剤との併用した試料11(本発明 実施例11)と、無機UV吸収剤のみを用いた試料3(実施例3)と、有機UV吸収剤のみを用いた試料15(比較例2)を用いて、同一UV吸収層に無機UV吸収剤、有機UV吸収剤を併用することによる効果について、表3に示す。
(Effects of combined use of inorganic UV absorber and organic UV absorber in UV absorbing layer)
Sample 11 (invention example 11) in which an inorganic UV absorber and an organic UV absorber are used in combination in the same UV absorption layer prepared above, sample 3 (example 3) using only an inorganic UV absorber, Table 3 shows the effects obtained by using the sample 15 (Comparative Example 2) using only the organic UV absorber and combining the inorganic UV absorber and the organic UV absorber in the same UV absorbing layer.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に記載の試料11(実施例11)は、図2に記載した無機UV吸収剤と有機UV吸収剤とを含有したUV吸収剤層を有する形態の太陽熱発電用フィルムミラーである。表3に記載の結果より明らかな様に、無機UV吸収剤と有機UV吸収剤とを併用することにより、光散乱による反射率低下を起こす傾向にある無機UV吸収剤の使用量を低減させることができ、その結果、劣化処理後の正反射率変動が小さく、高い正反射率を維持できることがわかる。 Sample 11 shown in Table 3 (Example 11) is a film mirror for solar power generation having a UV absorber layer containing the inorganic UV absorber and the organic UV absorber shown in FIG. As is clear from the results shown in Table 3, the combined use of an inorganic UV absorber and an organic UV absorber reduces the amount of inorganic UV absorber that tends to cause a decrease in reflectance due to light scattering. As a result, it can be seen that the change in regular reflectance after the deterioration treatment is small, and a high regular reflectance can be maintained.
 (無機UV吸収剤層及び有機UV吸収剤層を独立に形成することによる効果)
 無機UV吸収剤層と有機UV吸収剤層とを、それぞれ独立した位置に配置した試料12、13と、無機UV吸収剤層のみを形成した試料9を用いて、無機UV吸収剤層及び有機UV吸収剤層を独立に形成したことによる効果を、表4に示す。
(Effect by independently forming an inorganic UV absorber layer and an organic UV absorber layer)
Using the samples 12 and 13 in which the inorganic UV absorber layer and the organic UV absorber layer are arranged at independent positions, and the sample 9 in which only the inorganic UV absorber layer is formed, the inorganic UV absorber layer and the organic UV absorber are formed. Table 4 shows the effect of forming the absorbent layer independently.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に記載の結果より明らかな様に、無機UV吸収剤を含有する無機UV吸収層と有機UV吸収剤を含有する有機UV吸収層を別々に有する構成である実施例12および実施例13は、図4、図3に記載した層構成の太陽熱発電用フィルムミラーである。図4に示す構成である実施例12は、実施例11と同様の理由で無機UV吸収剤の使用量を低減させることができるため、反射率がより高くなっていることがわかる。また、図3に示す構成である実施例13では、銀反射層よりも反入射光側に無機UV吸収剤を含有した無機UV吸収剤層11を配置した構成となっており、着色が起こるほど多量に無機UV吸収剤を添加しても問題が無い構成である。実際、実施例13では無機UV吸収剤使用量を増やしたところ、粘着層剥離耐性がより向上したという結果が得られた。 As is clear from the results shown in Table 4, Example 12 and Example 13 having a configuration in which an inorganic UV absorbing layer containing an inorganic UV absorber and an organic UV absorbing layer containing an organic UV absorber are separately provided are FIG. 4 is a film mirror for solar power generation having the layer configuration shown in FIGS. 4 and 3. FIG. In Example 12 having the configuration shown in FIG. 4, the amount of the inorganic UV absorber used can be reduced for the same reason as in Example 11, and thus it can be seen that the reflectance is higher. Moreover, in Example 13 which is a structure shown in FIG. 3, it has the structure which has arrange | positioned the inorganic UV absorber layer 11 containing the inorganic UV absorber in the anti-incident light side rather than a silver reflection layer, and coloration arises so that it may occur. Even if a large amount of inorganic UV absorber is added, there is no problem. In fact, in Example 13, when the amount of the inorganic UV absorber used was increased, the result that the adhesion layer peeling resistance was further improved was obtained.
 1 太陽熱発電用フィルムミラー
 2 ハードコート層
 3、3′ UV吸収層
 4 腐食防止層
 5 銀反射層
 6 樹脂支持体層
 7 粘着層
 8 無機UV吸収剤
 9 有機UV吸収剤
 10 有機UV吸収剤層
 11 無機UV吸収剤層
DESCRIPTION OF SYMBOLS 1 Solar power film mirror 2 Hard coat layer 3, 3 'UV absorption layer 4 Corrosion prevention layer 5 Silver reflection layer 6 Resin support layer 7 Adhesive layer 8 Inorganic UV absorber 9 Organic UV absorber 10 Organic UV absorber layer 11 Inorganic UV absorber layer

Claims (9)

  1.  屈折率が2.4以下の無機UV吸収剤を含む1層以上のUV吸収層と、銀から構成される銀反射層とを有し、該銀反射層に対し反入射光側に粘着層を有することを特徴とする太陽熱発電用フィルムミラー。 It has one or more UV absorbing layers containing an inorganic UV absorber having a refractive index of 2.4 or less, and a silver reflecting layer composed of silver, and an adhesive layer on the side opposite to the incident light with respect to the silver reflecting layer A film mirror for solar power generation, comprising:
  2.  前記無機UV吸収剤が、平均粒径が10nm以上、100nm以下の微粒子であることを特徴とする請求項1に記載の太陽熱発電用フィルムミラー。 The film mirror for solar power generation according to claim 1, wherein the inorganic UV absorber is a fine particle having an average particle diameter of 10 nm or more and 100 nm or less.
  3.  前記無機UV吸収剤が、表面被覆された平均粒径が、10nm以上、100nm以下の微粒子であることを特徴とする請求項1に記載の太陽熱発電用フィルムミラー。 The film mirror for solar power generation according to claim 1, wherein the inorganic UV absorber is a fine particle having a surface-coated average particle diameter of 10 nm or more and 100 nm or less.
  4.  前記UV吸収層が、更に有機UV吸収剤を含有していることを特徴とする請求項1から3のいずれか1項に記載の太陽熱発電用フィルムミラー。 The film mirror for solar power generation according to any one of claims 1 to 3, wherein the UV absorbing layer further contains an organic UV absorber.
  5.  更に、有機UV吸収剤を含有した有機UV吸収剤層を有することを特徴とする請求項1から4のいずれか1項に記載の太陽熱発電用フィルムミラー。 Furthermore, it has an organic UV absorber layer containing an organic UV absorber, The film mirror for solar power generation of any one of Claim 1 to 4 characterized by the above-mentioned.
  6.  前記有機UV吸収剤層が、前記銀反射層よりも入射光側に配置され、無機UV吸収剤層が、前記銀反射層よりも反入射光側に配置されていることを特徴とする請求項5に記載の太陽熱発電用フィルムミラー。 The organic UV absorber layer is disposed on the incident light side with respect to the silver reflective layer, and the inorganic UV absorber layer is disposed on the side opposite to the incident light with respect to the silver reflective layer. 5. A film mirror for solar power generation according to 5.
  7.  前記無機UV吸収剤層が、前記銀反射層よりも入射光側に配置され、前記有機UV吸収剤層が、前記銀反射層よりも反入射光側に配置されていることを特徴とする請求項5に記載の太陽熱発電用フィルムミラー。 The inorganic UV absorber layer is disposed on the incident light side with respect to the silver reflective layer, and the organic UV absorber layer is disposed on the side opposite to the incident light with respect to the silver reflective layer. Item 6. The film mirror for solar power generation according to Item 5.
  8.  請求項1から7のいずれか1項に記載の太陽熱発電用フィルムミラーを製造する太陽熱発電用フィルムミラーの製造方法であって、銀反射層を銀の蒸着により形成することを特徴とする太陽熱発電用フィルムミラーの製造方法。 It is a manufacturing method of the film mirror for solar power generation which manufactures the film mirror for solar power generation of any one of Claim 1 to 7, Comprising: A silver reflective layer is formed by vapor deposition of silver, The solar thermoelectric power generation characterized by the above-mentioned Film mirror manufacturing method.
  9.  請求項1から7のいずれか1項に記載の太陽熱発電用フィルムミラーを、支持体上に粘着層を介して貼り合せて構成されたことを特徴とする太陽熱発電用反射装置。 A reflector for solar power generation, comprising the film mirror for solar power generation according to any one of claims 1 to 7 bonded to a support via an adhesive layer.
PCT/JP2011/051082 2010-02-02 2011-01-21 Film mirror for solar thermal power generation, method for producing film mirror for solar thermal power generation, and reflection device for solar thermal power generation WO2011096284A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011552728A JPWO2011096284A1 (en) 2010-02-02 2011-01-21 Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010021059 2010-02-02
JP2010-021059 2010-08-31

Publications (1)

Publication Number Publication Date
WO2011096284A1 true WO2011096284A1 (en) 2011-08-11

Family

ID=44355286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051082 WO2011096284A1 (en) 2010-02-02 2011-01-21 Film mirror for solar thermal power generation, method for producing film mirror for solar thermal power generation, and reflection device for solar thermal power generation

Country Status (2)

Country Link
JP (1) JPWO2011096284A1 (en)
WO (1) WO2011096284A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232538A (en) * 2011-05-09 2012-11-29 Konica Minolta Advanced Layers Inc Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power
WO2015050217A1 (en) * 2013-10-04 2015-04-09 コニカミノルタ株式会社 Manufacturing method for film mirror
KR20180116536A (en) * 2017-04-17 2018-10-25 고려대학교 산학협력단 Flexible solar thermal absorber and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JP2006326971A (en) * 2005-05-25 2006-12-07 Toray Ind Inc Weatherable resin film
JP2008020525A (en) * 2006-07-11 2008-01-31 Japan Carlit Co Ltd:The Heat-ray shielding film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974850B2 (en) * 2003-05-30 2005-12-13 3M Innovative Properties Company Outdoor weatherable photopolymerizable coatings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JP2006326971A (en) * 2005-05-25 2006-12-07 Toray Ind Inc Weatherable resin film
JP2008020525A (en) * 2006-07-11 2008-01-31 Japan Carlit Co Ltd:The Heat-ray shielding film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012232538A (en) * 2011-05-09 2012-11-29 Konica Minolta Advanced Layers Inc Film mirror, solar light reflecting mirror, and reflection apparatus for generating solar power
WO2015050217A1 (en) * 2013-10-04 2015-04-09 コニカミノルタ株式会社 Manufacturing method for film mirror
KR20180116536A (en) * 2017-04-17 2018-10-25 고려대학교 산학협력단 Flexible solar thermal absorber and method of manufacturing the same
KR101978550B1 (en) * 2017-04-17 2019-08-28 고려대학교 산학협력단 Flexible solar thermal absorber and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2011096284A1 (en) 2013-06-10

Similar Documents

Publication Publication Date Title
JP5747823B2 (en) Film mirror, film mirror for solar power generation and reflector for solar power generation
JP5742726B2 (en) Film mirror, method for manufacturing the same, and mirror for reflecting sunlight
JP5920211B2 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
WO2012057004A1 (en) Film mirror, process for manufacturing film mirror, and reflection device for solar power generation purposes
WO2012098971A1 (en) Film mirror and reflecting apparatus for solar power generation
JPWO2012133517A1 (en) Mirror and reflector for solar power generation
JP2011128501A (en) Film mirror, method of manufacturing film mirror and mirror for condensing sunlight
JPWO2013015112A1 (en) Solar reflective mirror, solar thermal power reflector, functional film and outdoor antistatic composition
JP5516603B2 (en) FILM MIRROR, METHOD FOR MANUFACTURING THE SAME, AND REFLECTOR FOR SOLAR THERMAL POWER GENERATION
JP5962014B2 (en) Film mirror and manufacturing method thereof
JPWO2011078156A1 (en) FILM MIRROR, MANUFACTURING METHOD THEREOF, AND SOLAR POWER GENERATOR REFLECTOR USING THE SAME
WO2011096284A1 (en) Film mirror for solar thermal power generation, method for producing film mirror for solar thermal power generation, and reflection device for solar thermal power generation
JP2015121806A (en) Film mirror, film mirror manufacturing method, and film mirror for sunlight collection
JP5660051B2 (en) FILM MIRROR, MANUFACTURING METHOD THEREOF, AND SOLAR POWER GENERATOR REFLECTOR USING THE SAME
WO2011096151A1 (en) Film mirror and process for production thereof, and sunlight collection mirror
JP2012047861A (en) Film mirror, manufacturing method thereof, and film mirror for condensing solar light
JP5794232B2 (en) Film mirror for solar power generation, manufacturing method thereof, and reflector for solar power generation
JP5672071B2 (en) Film mirror manufacturing method, film mirror, and solar power generation reflector
WO2013141304A1 (en) Film mirror, and reflection device for solar power generation
JP2011203553A (en) Film mirror, method of producing the same and solar light reflecting mirror
JP2015161826A (en) Film mirror and reflection device for solar thermal power generation
WO2011096248A1 (en) Light reflecting film for solar thermal power generation, method for producing same, and reflection device for solar thermal power generation using same
JP2016170279A (en) Light reflection film, and light reflection body and sunlight reflection device having the same
WO2013094577A1 (en) Film mirror, method for producing film mirror, and reflection device for solar thermal power generation
JP2012048006A (en) Method for manufacturing film mirror and solar light reflecting mirror

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739633

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552728

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739633

Country of ref document: EP

Kind code of ref document: A1