WO2015050217A1 - Manufacturing method for film mirror - Google Patents

Manufacturing method for film mirror Download PDF

Info

Publication number
WO2015050217A1
WO2015050217A1 PCT/JP2014/076431 JP2014076431W WO2015050217A1 WO 2015050217 A1 WO2015050217 A1 WO 2015050217A1 JP 2014076431 W JP2014076431 W JP 2014076431W WO 2015050217 A1 WO2015050217 A1 WO 2015050217A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film mirror
film
resin
sealing
Prior art date
Application number
PCT/JP2014/076431
Other languages
French (fr)
Japanese (ja)
Inventor
江黒 弥生
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015050217A1 publication Critical patent/WO2015050217A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a method for manufacturing a film mirror for solar heat collection having a sealing structure on a side surface portion, and more specifically, for solar heat collection having excellent sealing performance and durability (delamination resistance) and a wide reflective area.
  • the present invention relates to a method for manufacturing a film mirror.
  • a solar thermal power generation method that generates power using heat obtained by reflecting and condensing sunlight with a mirror as a medium is attracting attention. Using this method, it is possible to generate electricity regardless of day and night by storing the obtained heat, and from a long-term perspective, the power generation efficiency is higher than that of solar cells, It is considered to be a method that can effectively use sunlight.
  • glass mirrors using glass as a base material are used as mirrors used in solar thermal power generation, and sunlight is collected by supporting such glass mirrors with a metal support member. Used as a reflector.
  • the glass substrate of a large format is made thin, the mirror will be damaged during installation, or the mirror may be damaged due to the impact of flying objects due to strong winds. If it is thick, it becomes very heavy, making it difficult to handle during installation and increasing the transportation cost.
  • a film mirror for solar thermal condensing As a manufacturing method of a resin film mirror, as a first step, after laminating each constituent layer on a large size resin base material to produce a large area film mirror, a film mirror for solar thermal condensing In order to apply to, it is used by cutting to any size.
  • the film mirror laminate (hereinafter also referred to as “film mirror unit”) cut in this way may have one of its constituent layers due to the stress applied to the cut surface of the film mirror laminate during cutting. Slight peeling occurs at the part, and this peeling part is the starting point, and when stored for a long period of time in various usage environments, the delamination increases and causes the quality of the film mirror to deteriorate.
  • This delamination is caused by external stress such as sliding stress or alternating load, and by decrement of interlaminar adhesion due to corrosion of the photothermal reflective layer composed of silver etc. due to intrusion of moisture etc. from the cut surface There is.
  • the functions required for the sealing means are mainly a high sealing force (barrier property) and a high adhesiveness with the cut surface of the film mirror unit.
  • a method for sealing the end portion of such a solar heat collecting film mirror for example, a method using a sealing tape made of resin or aluminum foil is known.
  • a sealing tape made of resin or aluminum foil
  • weathering tapes described in 3M company application guides and sealing tapes such as aluminum edge tapes described in Refletech company application guides have been widely put into practical use.
  • a method has been proposed in which a sealing tape is provided so as to surround the periphery of the solar panel or photovoltaic device to prevent the ingress of oxygen and moisture from the edges. (For example, refer to Patent Document 2).
  • the adhesive force of the sealing tape to the hard coat layer surface is low. It is not sufficient, and as time passes, the sealing tape peels off on the hard coat layer surface, moisture penetrates from the peeled gap, and delamination advances on the cut surface due to the penetrated moisture. Eventually, the photothermal reflection layer is corroded. In addition, there is a method for preventing corrosion by applying a wide sealing tape to the end portion, but in this method, the end portion of the film mirror becomes wide and the reflection area is lost. There is.
  • Patent Document 3 discloses a method of applying an end protection member made of silicone, polyurethane, or acrylic different from the constituent members to the end portions of the reflecting constituent members in the solar energy reflecting device having the reflecting mirrors. ing.
  • the method described in Patent Document 3 requires a step of newly providing an end protection member, which has a problem in terms of productivity, and is made of a material different from that of the reflector constituent member, and has a sealing structure. Therefore, there is a problem in terms of adhesion or compatibility with the end portion, and the durability of the sealing portion is insufficient.
  • the present invention has been made in view of the above problems, and its solution is to produce a film mirror that is excellent in sealing performance and durability (delamination resistance) at the side surface and has a small loss of reflection area due to sealing. Is to provide a method.
  • the present inventor has obtained a film mirror for producing a film mirror composed of an adhesive layer, a photothermal reflection layer, a support for forming a photothermal reflection layer, an ultraviolet absorption layer, and a hard coat layer.
  • the ultraviolet absorbing layer contains a thermoplastic resin having light permeability
  • a heating member is pressure-bonded to the end of the film mirror, heated within a temperature range of 80 to 120 ° C.
  • at least The side surface portion is produced by the method for producing a film mirror, wherein the adhesive layer and the ultraviolet absorbing layer containing a light-transmitting thermoplastic resin are softened, and a sealing portion is formed by the softened component that flows out to the end portion.
  • a film mirror manufacturing method that can manufacture a film mirror that is excellent in sealing performance and durability (delamination resistance) and has a small loss of reflection area due to sealing. Found that can bets, leading to the present invention.
  • a method for producing a film mirror comprising at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer and a hard coat layer,
  • the ultraviolet absorbing layer contains a thermoplastic resin having light permeability
  • a heating member is pressure-bonded to the end of the film mirror and heated within a temperature range of 80 to 120 ° C. to soften at least the adhesive layer and the ultraviolet absorbing layer containing a light-transmitting thermoplastic resin.
  • a wide raw fabric composed of at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer containing a light-transmitting thermoplastic resin, and a hard coat layer is prepared and cut into a predetermined size. Then, the sealing part is formed on the cut surface.
  • FIG. 3 is a schematic cross-sectional view showing an example of the configuration of a solar power generation reflecting mirror having a structure in which an end of a conventional method is sealed with a sealing tape.
  • the bonding area of the sealing tape 14 at the end is set. be widened is required, therefore, is considerably wider end bonding width L 1.
  • the area of the sealing tape 14 that fills the entire area of the reflecting mirror is increased, and the area of the film mirror unit FMU in the reflecting mirror 20 for solar thermal power generation is reduced.
  • the hard coat layer 9 constituting the outermost layer of the film mirror unit FMU is a layer that requires transparency, weather resistance, scratch resistance, and antifouling properties. From the viewpoint, silicone resins and acrylic resins are used. However, it was difficult to say that the adhesion between the surface of these constituent materials and the sealing tape was sufficient.
  • the manufacturing method of the film mirror of the present invention is made to solve the problems caused by the conventional sealing tape method, and without applying a new sealing member, the film mirror has an extremely small area at the end.
  • the end portion In the state where the heating member is pressed and the end portion is sandwiched, the end portion is at a specific temperature, for example, the glass transition temperature Tg or higher of the light-transmitting thermoplastic resin material constituting the adhesive layer or the ultraviolet absorbing layer.
  • Tg or higher of the light-transmitting thermoplastic resin material constituting the adhesive layer or the ultraviolet absorbing layer By heating to soften the material constituting the adhesive layer or UV absorbing layer containing a light-transmitting thermoplastic resin, and seal the side surface with the softened material that has flowed out by pressurizing the edge. It is characterized by.
  • the film mirror area is not reduced at the end of the film mirror.
  • the sealing portion formed at the end is supplied by a member constituting the film mirror. That is, the member that forms the sealing portion is made of the same material as the constituent layer of the film mirror and can be formed in a structure continuous with the constituent layer of the film mirror. It is possible to develop a difficult effect.
  • Schematic sectional view showing an example of the configuration of the film mirror unit before sealing processing Schematic sectional view showing another example of the configuration of the film mirror unit before sealing processing
  • Schematic sectional view showing an example of a method for forming a sealing structure on the side surface Schematic sectional view showing an example of the configuration of a film mirror unit in which a sealing structure is formed on the side surface
  • the method for producing a film mirror of the present invention is a method for producing a film mirror comprising at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer and a hard coat layer, and the ultraviolet absorbing layer Contains a light-transmitting thermoplastic resin, a heating member is pressure-bonded to the end of the film mirror, and is heated within a temperature range of 80 to 120 ° C., so that at least the adhesive layer and the light-transmitting heat
  • the ultraviolet absorbing layer containing the plastic resin is softened, and the sealing portion is formed by the softened component that flows out to the end portion.
  • an ultraviolet ray containing at least a pressure-sensitive adhesive layer, a photothermal reflection layer, a support for forming a photothermal reflection layer, and a light-transmitting thermoplastic resin from the viewpoint that the effects of the present invention can be further expressed.
  • the cutting process is performed. This is a preferred embodiment from the viewpoint of covering fine cracks and peeled portions generated on the side surfaces of the film and forming a strong sealing structure.
  • the reflectance at the end portion of the film mirror can be maintained by pressing the heating member to the end portion and then slowly cooling in a pressurized state to form the sealing portion.
  • the sealing portion may be formed by pressing a sealing portion molding member against the softened portion of the ultraviolet absorbing layer containing the adhesive layer and the light-transmitting thermoplastic resin that have flowed out to the end portion. From the viewpoint of preventing the occurrence of flatness and cracks in the formed sealing portion.
  • the light-transmitting thermoplastic resin contained in the ultraviolet absorbing layer is an acrylic resin from the viewpoint of being able to soften within a specified temperature range and stably forming a sealing structure. .
  • the adhesive layer is made of an acrylic resin, and when the heating member is pressure-bonded, the light-transmitting thermoplastic resin that is a constituent material of the ultraviolet absorbing layer supplied from the other, and a softening property Are approximate or the same, and the compatibility is improved when the two are combined to form a sealing structure, which is preferable from the viewpoint that a uniform and stable sealing portion can be formed.
  • the pressure condition by the heating member at the time of forming the sealing portion is preferably in the range of 0.1 to 1.0 MPa from the viewpoint of stably forming the sealing structure.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the film mirror of the present invention includes at least an adhesive layer, a light heat reflection layer, a support for forming a light heat reflection layer, a light-transmitting thermoplastic resin (hereinafter also simply referred to as a thermoplastic resin), and a hard layer. It is a film mirror unit composed of a coat layer, and is bonded to a metal substrate or a resin substrate via an adhesive layer of the film mirror unit to constitute a solar power generation reflecting mirror.
  • a thermoplastic resin hereinafter also simply referred to as a thermoplastic resin
  • the film mirror unit according to the present invention comprises at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer containing a light-transmitting thermoplastic resin, particularly preferably an ultraviolet absorbing material containing an acrylic resin. It is comprised from a layer (henceforth an acrylic resin layer) and a hard-coat layer, You may provide another functional layer as needed.
  • the light-transmitting thermoplastic resin referred to in the present invention refers to a thermoplastic resin having a 50 ⁇ m-thick coating film and having an average light transmittance of 70% or more in the visible light region measured for the coating film. It is defined as a thermoplastic resin capable of obtaining an average light transmittance of 85% or more, preferably 80% or more.
  • the light transmittance can be measured using a commercially available spectrophotometer.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the film mirror unit FMU1 before the sealing structure is formed. Such a configuration is referred to as Type A.
  • the film mirror unit FMU1 before forming the Type A sealing structure shown in FIG. 1 includes, as main constituent layers, an adhesive layer 3, a topcoat layer 4, a photothermal reflective layer 5, an anchor layer 6, and a photothermal reflective layer forming support 7.
  • the second anchor layer 6A, the ultraviolet absorbing layer 8 containing a light-transmitting thermoplastic resin, the hard coat layer 9 and the like are laminated.
  • the ultraviolet absorbing layer 8 containing the light-transmitting thermoplastic resin according to the present invention is preferably formed by a coating method.
  • the configuration from the top coat layer 4 to the anchor layer 6A is referred to as a photothermal reflection unit 2A.
  • the film mirror unit FMU1 is bonded to the back side of the adhesive layer 3 and, for example, a metal substrate surface or a resin substrate surface to constitute a solar power generation reflecting mirror.
  • FIG. 2 is a schematic cross-sectional view showing another example of the configuration of the film mirror unit FMU2 before the sealing structure is formed. Such a configuration is referred to as Type B.
  • the type B film mirror unit FMU2 has a pressure-sensitive adhesive layer 3, a photothermal reflective layer forming support 7, an anchor layer 6, a photothermal reflective layer 5, a top coat layer 4, an adhesive layer 3A, and light transparency.
  • An ultraviolet absorbing layer 8A containing a thermoplastic resin and a hard coat layer 9 are laminated.
  • the configuration between the light heat reflecting layer forming support 7 and the adhesive layer 3A is referred to as a light heat reflecting unit 2B.
  • An ultraviolet absorbing layer 8A containing a light-transmitting thermoplastic resin used in the configuration shown in FIG. 2 is an acrylic film laminated via an adhesive layer (3A), for example, an adhesive layer (3A) by a dry lamination process.
  • an acrylic film for example, Technoloy S001GU (manufactured by Sumitomo Chemical Co., Ltd., thickness: 100 ⁇ m)
  • an ultraviolet absorber in an acrylic resin layer (8A) which is a thermoplastic resin having optical transparency, as a laminating temperature.
  • a method of bonding at 60 ° C. and forming an adhesive layer (3A) and an ultraviolet absorbing layer (8A) containing a light-transmitting thermoplastic resin can also be applied.
  • FIG. 3 is a schematic cross-sectional view showing an example of the configuration of a solar power generation reflecting mirror having a structure in which a side surface portion of a conventional method is sealed with a sealing tape.
  • the Type A film unit FMU1 illustrated in FIG. 1 is shown as an example.
  • the sealing tape used in such a system is a weatherproof tape 10386-ND (tape width: 2.54 cm (1 inch), thickness: 87 ⁇ m, adhesive: acrylic resin) manufactured by 3M, Teraoka Seisakusho Aluminum foil tape No. 833, an aluminum edge tape manufactured by Reflec Tech.
  • the tape covering width L 1 in the end region is Since the width is about 5 to 12 mm, the ratio shown in the surface area of the film mirror is increased, leading to a reduction in the reflection area.
  • the hard coat layer 9 forming the outermost surface of the film mirror unit FMU is formed of, for example, a silicone resin
  • the surface characteristics of the hard coat layer 9 The adhesiveness with the sealing tape 14 cannot be sufficiently maintained, and when stored for a long period of time in a high temperature and high humidity environment, a peeling portion P is generated from the adhesive surface, and further, moisture and Oxygen penetrates and sealability is lowered. As a result, peeling or the like is caused between the constituent layers of the film mirror unit FMU.
  • a heating member is pressure-bonded to the end of the film mirror and heated within a temperature range of 80 to 120 ° C., and the adhesive layer, a light-transmitting thermoplastic resin,
  • the adhesive layer a light-transmitting thermoplastic resin
  • a sealing portion is formed on the side surface by the softened component of the eluted adhesive layer and the ultraviolet absorbing layer containing a light-transmitting thermoplastic resin. It is characterized by doing.
  • FIG. 4 shows a sealing method for a side surface portion that can be applied to the method for manufacturing a film mirror of the present invention, using the type A shown in FIG. It is.
  • the adhesive layer 3 to the hard coat layer 9 are laminated in the order shown in FIG. 4 to produce a Type A film mirror unit FMU.
  • the end of the film mirror unit FMU to cover a distance range of L 2, after placing a pair of heating members 10A and 10B, by performing the crimping and heat, among the constituent layers of the film mirror unit FMU
  • the light-transmitting thermoplastic resin material constituting the adhesive layer 3 and the ultraviolet absorbing layer 8 formed of a material having a relatively low glass transition temperature Tg is softened and eluted to the side surface, and sealed Part 11 is formed.
  • the eluted softened material is left as it is, the surface of the sealing portion becomes an uneven structure, and therefore the sealing portion molding member 12 is pressed against the side surface portion in the softened state to smooth the surface.
  • the method is preferred.
  • the slow cooling referred to in the present invention means that the film mirror unit end is softened by a heating member to form a sealing portion, and then each component member (heating members 10A and 10B, sealing portion molding member 12). 4) while maintaining the pressurized state shown in FIG. 4, heating is stopped, natural cooling is performed, and in some cases forced cooling is performed, and a predetermined time is required, and the softened sealed portion is kept at a room temperature of about 25 ° C. The temperature is gradually lowered until solidification.
  • the specific device provided with the heating members 10A and 10B used for the crimping step and heating of the end portion there are no particular limitations on the specific device provided with the heating members 10A and 10B used for the crimping step and heating of the end portion, but typical devices include a heat sealer, pulse Examples thereof include a heating device and an electromagnetic induction heating bonding device. Among these, it is preferable to use a heat sealer from the viewpoint of easy operation.
  • heat sealers applicable to the present invention include thicker gusset bag sealers T-130K and T-230K (both of which are heated up and down), such as policy impulser P-200 (one side lower heating method) manufactured by Fuji Impulse. Method), AZ-200W, AZ-300W (all up and down heating methods), heating temperature control auto sealer OPL series (one side lower heating method, up and down heating method), Fi-WA series (one side lower heating method and up and down heating method) ), CA series, CV series ((one side lower heating method, upper and lower heating method), etc.
  • the seal width (L 2 + L 3 in FIG. 4) of these heat sealers is in the range of 2 to 10 mm.
  • Other examples include heat sealers HS-300, HS-400, HS-400 manufactured by Taiyo Electric Industry Co., Ltd.
  • the end of the film mirror is sandwiched between the heating members 10 ⁇ / b> A and 10 ⁇ / b> B, and the thermocompression treatment is performed, but the heating is performed by one or both of the heating members 10 ⁇ / b> A and 10 ⁇ / b> B. Heating may be performed.
  • the sealing portion 11 is formed on the side surface portion by heating and pressurizing the end portion.
  • the heating temperature is mainly used. , Pressure conditions and processing time thereof.
  • the heating temperature which is the first control factor is characterized in that it is carried out in a temperature range of 80 to 120 ° C., preferably in the temperature range of 100 to 120 ° C.
  • the end portion is heated to a temperature range of 80 to 120 ° C. by the heating member to soften the adhesive layer and the ultraviolet absorbing layer, and the resin component is oozed out on the side surface portion to It is characterized by forming. Therefore, in the pressure-sensitive adhesive layer and the ultraviolet absorbing layer constituting the sealing portion, as a guideline for satisfying the conditions for softening, the light transmission with the softening temperature or the glass transition temperature Tg within the range of 80 to 120 ° C. It is important to select a thermoplastic resin material having properties.
  • the heating condition of the end portion within the temperature range specified above, as a material constituting the adhesive layer and the ultraviolet absorbing layer, for example, an acrylic resin is remolded without thermal deterioration. It is preferable in that it can be softened and a desired sealing shape can be formed. Accordingly, it is preferable to heat at a temperature not lower than the glass transition temperature Tg of the applied resin material and not causing coloring, foaming, baking, or the like.
  • the pressurizing condition as the second control factor is not particularly limited, but is preferably in the range of 0.1 to 1.0 MPa, more preferably in the range of 0.2 to 0.5 MPa. More preferably, it is in the range of 0.2 to 0.4 MPa.
  • the heating and pressurizing time which is the third control factor, varies depending on the heating temperature to be set, but is generally within the range of 0.1 to 30 seconds, preferably within the range of 1 to 20 seconds. In consideration of efficiency and the like, it is more preferably in the range of 1 to 10 seconds.
  • the width (L 2 + L 3 ) of the heating members 10A and 10B is approximately in the range of 2 to 10 mm.
  • Such heating member the end heating area L 2 in the case of contacting the end portion of the film mirror unit FMU, preferably in the range of 0.1 ⁇ 5 mm, more preferably 0.5 ⁇ 3 mm And particularly preferably within the range of 0.5 to 1.5 mm.
  • the constituent material of the softened adhesive layer 3 and the ultraviolet absorbing layer 8 is eluted in the space V from the end of the film mirror unit FMU to the sealing portion molding member 12 to form the sealing portion 11.
  • the thickness L 3 of the sealing portion 11 is preferably in the range of 0.5 to 5 mm, more preferably in the range of 0.5 to 3 mm, and particularly preferably 1.0. Within 3 mm.
  • the thickness L 3 of the sealing portion 11, the width of the heating member 10A and 10B and the end heating area L 2, is determined by the thickness hd1 and thickness hd2 acrylic resin layer 8 of adhesive layer 3.
  • FIG. 5 shows a film mirror in which the sealing portion 11 is formed on the side surface portion after the heating members 10A and 10B and the sealing portion molding member 12 are removed after the sealing portion 11 is formed and cooled in FIG. shows the form of a unit FMU, L 3 is a thickness of the sealing portion.
  • FIG. 6 is a schematic diagram showing an example of the process of the method for producing a film mirror of the present invention in which a sealing structure is formed on the side surface.
  • the edge of the TypeA film mirror unit FMU which consists of the adhesion layer 3, the photothermal reflection unit 2A, the ultraviolet absorption layer 8 containing the thermoplastic resin which has a light transmittance, and the hard-coat layer 9
  • a pair of heating members 10 ⁇ / b > A and 10 ⁇ / b > B are disposed at a predetermined end width (L 2 ) position.
  • the end portion of the film mirror unit FMU is sandwiched between a pair of heating members 10A and 10B and heated in a pressurized state to heat the pressure-sensitive adhesive layer 3 and light transmissive.
  • the end softening component of the ultraviolet absorbing layer 8 containing a plastic resin is extruded in the direction of the arrow to form the sealing portion 11.
  • FIG. 6 although it divided
  • extruding the softening component as shown in c of FIG. 6, it may be performed in a state where the sealing portion forming member 12 is provided in advance.
  • FIG. 7 shows a state in which the sealing portion 11 is formed on the Type B film mirror unit FMU shown in FIG. 2.
  • the method for forming the sealing portion 11 includes the method described in FIGS. It is the same.
  • the film mirror unit according to the present invention includes at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, a light transmitting thermoplastic resin, preferably an ultraviolet absorbing layer and a hard coat layer containing an acrylic resin.
  • the thickness of the film mirror unit is preferably in the range of 50 to 500 ⁇ m, more preferably in the range of 80 to 300 ⁇ m, and still more preferably in the range of 80 to 170 ⁇ m.
  • the thickness of the film mirror unit is preferably in the range of 50 to 500 ⁇ m, more preferably in the range of 80 to 300 ⁇ m, and still more preferably in the range of 80 to 170 ⁇ m.
  • the film mirror unit can be said to be very lightweight because the material used and the thickness are in the range of 50 to 500 ⁇ m. Further, unlike the glass, the film mirror unit does not have a problem such as cracking and has flexibility. That is, the film mirror unit has the characteristics that it is lightweight and flexible, and can be manufactured with a large area and mass production while suppressing manufacturing costs.
  • the film mirror unit may have a layer other than an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer containing a light-transmitting thermoplastic resin, and a hard coat layer. .
  • the surface roughness Ra of the film mirror unit is preferably in the range of 0.01 to 0.1 ⁇ m, more preferably in the range of 0.02 to 0.07 ⁇ m. If the surface roughness of the film mirror unit is 0.01 ⁇ m or more, even if the surface is accidentally touched with a finger during transportation or when assembling or adjusting the solar reflective mirror, fingerprints will adhere. It is possible to prevent the reflection efficiency from being lowered. Further, it is assumed that the film mirror unit is used in a concave shape. In that case, even if the surface roughness Ra is rough, the reflection shape can be prevented from being lowered by the concave shape. In addition, the roughness of the surface of the film mirror unit and the mirror for sunlight reflection and the roughness of each layer constituting the film mirror unit include not only the roughness of the layer but also the influence of the layer separated from the adjacent layer. It depends on the overall influence.
  • the shape of the film mirror unit viewed from the direction perpendicular to the center is not particularly limited, but is preferably a circle, an ellipse, a quadrangle such as a square or a rectangle, or a regular hexagon.
  • the central portion of the film mirror unit is preferably near the center of the circle in the case of a circle, near the intersection of diagonal lines in the case of a square shape, and near the intersection of diagonal lines in the case of a regular hexagon.
  • Photothermal reflection layer forming support 7 As the photothermal reflective layer forming support 7 used in the film mirror unit FMU, conventionally known supports having various flexibility can be used.
  • polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable.
  • a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
  • the surface of the support may be subjected to corona discharge treatment, plasma treatment or the like in order to improve adhesion with a layer or the like provided on the surface.
  • the support preferably contains any one of benzotriazole, benzophenone, triazine, cyanoacrylate, and polymer type ultraviolet absorbers.
  • the ultraviolet absorber which can also use the ultraviolet absorption layer mentioned later can be mentioned.
  • the thickness of the photothermal reflective layer forming support 7 is an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 250 ⁇ m. The thickness is preferably 20 to 200 ⁇ m.
  • the photothermal reflection layer (hereinafter also simply referred to as “reflection layer”) according to the present invention is a layer composed of a metal or the like having a function of reflecting sunlight.
  • the surface reflectance of the photothermal reflection layer is preferably 80% or more, more preferably 90% or more.
  • the light heat reflecting layer is preferably disposed on the light incident side for the purpose of preventing the resin base material from being deteriorated by sunlight.
  • the thickness of the photothermal reflection layer is preferably in the range of 10 to 200 nm, more preferably in the range of 30 to 150 nm, from the viewpoint of reflectivity and the like. It is preferable that the thickness of the reflective layer be 10 nm or more because the film thickness is sufficient, so that light is not transmitted and sufficient reflectivity in the visible light region of the film mirror unit can be secured. Further, the reflectance increases in proportion to the film thickness up to about 200 nm. However, when the thickness exceeds 200 nm, the reflectance does not depend on the film thickness.
  • the surface roughness Ra of the reflective layer is preferably in the range of 0.01 to 0.1 ⁇ m, more preferably in the range of 0.02 to 0.07 ⁇ m.
  • the surface of the film mirror unit also becomes rough due to the roughness. Even when the roll method is used, sticking such as blocking in the reflective layer of the film mirror unit and the adjacent layer on the incident light side can be prevented. Further, when the surface becomes rough, the reflected light may be scattered.
  • the film mirror unit having the reflective layer has a concave shape, the film mirror unit has a surface roughness Ra of 0.1 ⁇ m or less. By making the surface into a concave shape, it is possible to prevent a reduction in reflection efficiency.
  • the reflective layer is formed as a material containing any element selected from the group consisting of aluminum, silver, chromium, nickel, titanium, magnesium, rhodium, platinum, palladium, tin, gallium, indium, bismuth and gold. It is preferable.
  • aluminum or silver is preferably the main component from the viewpoint of reflectance and corrosion resistance, and two or more such metal thin films may be formed. By doing so, the reflectance from the infrared region to the visible light region of the film mirror unit can be increased, and the dependency of the reflectance on the incident angle can be reduced. From the infrared region to the visible light region means a wavelength region of 2500 to 400 nm.
  • the incident angle means an angle with respect to a line (normal line) perpendicular to the film surface. Among these, it is particularly preferable to use a silver reflective layer mainly composed of silver.
  • a wet method or a dry method can be used as a method for forming the reflective layer.
  • the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method is a general term for a vacuum film forming method, and specifically includes a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method. and so on.
  • a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used.
  • the manufacturing method of the film mirror unit for sunlight reflection it is preferable that it is a manufacturing method which forms a reflection layer by vapor deposition.
  • two or more metals may be selected from the above element group and used as an alloy.
  • silver is 90 to 99.8 atomic% in the total (100 atomic%) of silver and other metals in the reflective layer. It is preferable to be within the range.
  • the other metal is preferably 0.2 to 10 atomic% from the viewpoint of durability.
  • gold is particularly preferable from the viewpoint of high temperature humidity resistance and reflectance.
  • a silver reflective layer as the photothermal reflective layer according to the present invention.
  • anchor layer When the anchor layers 6 and 6A are each made of a resin material and are provided adjacent to the photothermal reflection layer 5, for example, the adhesion between the photothermal reflection layer forming support 7 and the photothermal reflection layer 5 is improved. Can do. Moreover, the adhesiveness at the time of closely_contact
  • the resin material used for the anchor layers 6 and 6A is not particularly limited as long as it satisfies the above adhesiveness, heat resistance, and smoothness conditions.
  • the polyester resin, acrylic resin, melamine resin, epoxy Resins, polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, or the like, or a mixture thereof can be used.
  • a mixed resin of a polyester resin and a melamine resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
  • the anchor layers 6 and 6A can be formed by a conventionally known coating method such as a gravure coating method, a reverse coating method, a die coating method, or the like in which a predetermined resin material is applied and applied.
  • the thickness of the anchor layers 6 and 6A is preferably 0.01 to 3 ⁇ m, more preferably 0.1 to 1 ⁇ m.
  • the thickness 0.01 ⁇ m or more adhesion can be maintained, and by covering up the unevenness on the surface of the photothermal reflection layer forming support 7, smoothness is improved, and as a result, the photothermal reflection layer 5 The reflectance can be increased.
  • the thickness is 3 ⁇ m or less, sufficient adhesion can be exhibited, delamination does not easily occur, and deterioration of smoothness due to occurrence of coating unevenness can be prevented.
  • the ultraviolet absorbing layer 8 is a layer containing an ultraviolet absorber for the purpose of preventing deterioration of the film mirror due to sunlight or ultraviolet rays, and further containing a light-transmitting thermoplastic resin as a constituent component, and preferably an acrylic type It is a layer containing a resin.
  • the ultraviolet absorbing layer 8 is preferably provided on the light incident side with respect to the photothermal reflection layer forming support 6, and is preferably provided on the light incident side with respect to the photothermal reflection layer 5.
  • the ultraviolet absorber layer may contain fine particles of a plasticizer in order to obtain an ultraviolet absorber layer that is difficult to block.
  • the plasticizer fine particles include butyl rubber and butyl acrylate fine particles.
  • the thickness of the ultraviolet absorbing layer is preferably 20 to 150 ⁇ m because it can provide an appropriate transmittance to the incident light and a suitable surface roughness to the film mirror. More preferably, it is 20 to 100 ⁇ m.
  • an antioxidant or the like may be added to the ultraviolet absorbing layer.
  • thermoplastic resin applicable to the present invention is not particularly limited, and various conventionally known synthetic resins that can maintain transparency when a thin film is formed can be used.
  • polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, and cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propio Nate (abbreviation: CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, poly Ether ketone, polyimide, polyethersulfone (abbreviation: PES), polysulfones, polyetherke N'imido,
  • the ultraviolet absorbing layer according to the present invention preferably contains an acrylic resin as the light-transmitting thermoplastic resin, and more specifically, methacrylic resin as the main constituent resin is the interface reflection due to the refractive index. It is preferable from the viewpoint of reducing loss, ensuring transmittance, and suppressing light deterioration.
  • the methacrylic resin is a polymer mainly composed of methacrylic acid ester, and may be a homopolymer of methacrylic acid ester, 50% by mass or more of methacrylic acid ester, and 50% by mass or less of other monomers.
  • the copolymer may be used.
  • the methacrylic acid ester an alkyl ester of methacrylic acid is usually used.
  • a particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA).
  • the preferred monomer composition of the methacrylic resin is 50 to 100% by weight of methacrylic acid ester, 0 to 50% by weight of acrylic acid ester, and 0 to 49% by weight of other monomers based on the total monomers. More preferably, methacrylic acid ester is 50 to 99.9% by mass, acrylic acid ester is 0.1 to 50% by mass, and other monomers are 0 to 49% by mass.
  • examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and the like, and the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. It is. Of these, methyl methacrylate is preferably used.
  • alkyl acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like.
  • the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. is there.
  • the monomer other than alkyl methacrylate and alkyl acrylate may be a monofunctional monomer, that is, a compound having one polymerizable carbon-carbon double bond in the molecule, or a polyfunctional monofunctional monomer. Although it may be a monomer, that is, a compound having at least two polymerizable carbon-carbon double bonds in the molecule, a monofunctional monomer is preferably used.
  • the monofunctional monomer include aromatic alkenyl compounds such as styrene, ⁇ -methylstyrene, and vinyl toluene, and alkenyl cyan compounds such as acrylonitrile and methacrylonitrile.
  • polyfunctional monomers examples include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon.
  • Alkenyl esters of unsaturated carboxylic acids such as allyl acids
  • polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate
  • aromatic polyalkenyl compounds such as divinylbenzene, etc.
  • alkyl methacrylate alkyl methacrylate
  • alkyl acrylate and monomers other than these, respectively, you may use those 2 or more types as needed.
  • the glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film mirror. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
  • the methacrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization, or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization.
  • the amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
  • the ultraviolet absorber added to the ultraviolet absorbing layer is not particularly limited, but examples of the organic type include benzophenone type, benzotriazole type, phenyl salicylate type, triazine type, benzoate type, and inorganic type. Examples include titanium, zinc oxide, cerium oxide, and iron oxide.
  • a polymeric ultraviolet absorber having a molecular weight of 1000 or more. Preferably, the molecular weight is in the range of 1000 to 3000.
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
  • benzotriazole ultraviolet absorbers examples include 2- (2'-hydroxy-5-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) benzotriazole 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1, 1,3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercially available products are LA31 manufactured by ADEKA), 2- (2H-benzotriazol-2-yl) -4,6-bis (1 -Methyl-1-phenylethyl) phenol (molecular weight 447.6; an example of a commercially available product is Tinuvin 234 manufactured by BASF Japan Ltd.).
  • phenyl salicylate ultraviolet absorber examples include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • hindered amine ultraviolet absorber examples include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxy
  • benzoate-based ultraviolet absorber examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; examples of commercially available products) Sumisorb 400) manufactured by Sumitomo Chemical Co., Ltd.
  • the ultraviolet absorber a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as heat energy or the like can be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers that act as light energy conversion agents, called quenchers, can be used in combination.
  • quenchers light stabilizers that act as light energy conversion agents
  • the said ultraviolet absorber can also use those 2 or more types as needed, respectively.
  • an ultraviolet absorber other than the above-described ultraviolet absorber for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, a benzophenone-based ultraviolet absorber, a triazine-based ultraviolet absorber, or the like can be contained.
  • the addition amount of the ultraviolet absorber to the ultraviolet absorbing layer is preferably within a range of 0.1 to 20% by mass, more preferably within a range of 1 to 15% by mass with respect to the total mass of the ultraviolet absorbing layer. More preferably, it is in the range of 3 to 10% by mass.
  • the addition amount of the ultraviolet absorber to the ultraviolet absorption layer is preferably in the range of 0.17 to 2.28 g / m 2 , more preferably 0.4 to 2 per film unit area. Within the range of .28 g / m 2 .
  • the antioxidant added to the ultraviolet absorbing layer the antioxidants described in the hard coat layer described later, including the description of the light stabilizer, can be used in the same manner.
  • an antioxidant it is possible to prevent deterioration of the acrylic resin layer during melt film formation.
  • the hard coat layer 9 is mainly a transparent layer which is disposed at the outermost surface position of the film mirror unit and is provided for the purpose of adding scratch resistance, antifouling property and the like on the surface of the film mirror unit.
  • the hard coat layer reduces the metal used in the photothermal reflective layer, especially corrosion of silver film by oxygen, water vapor, hydrogen sulfide, etc., deterioration of the resin layer by ultraviolet rays, discoloration of the film mirror unit and film peeling. Can do.
  • the hard coat layer can reduce scratches on the surface of the film mirror unit caused by washing away dirt adhering to the film mirror unit with a brush or the like, and as a result, a reduction in reflection efficiency can also be prevented.
  • the position of the hard coat layer is preferably provided on the outermost surface portion on the sunlight incident side of the film mirror unit.
  • Another thin layer (preferably a thickness of 1 ⁇ m or less) may be provided on the hard coat layer.
  • the layer thickness of the hard coat layer is preferably in the range of 0.05 to 10 ⁇ m, more preferably in the range of 1.0 to 4 ⁇ m, and still more preferably in the range of 1.5 to 3.0 ⁇ m. Is within the range.
  • the thickness of the hard coat layer is 0.05 ⁇ m or more, sufficient scratch resistance can be obtained. Moreover, if the layer thickness of a hard-coat layer is 10 micrometers or less, it can prevent that a stress becomes too strong and a hard-coat layer cracks. Furthermore, from the viewpoint of preventing electrostatic adhesion of dirt such as dust, the thickness is preferably 10 ⁇ m or less in order to reduce the electric resistance value.
  • the pencil hardness is in a range of H to 5H, and the number of scratches in a steel wool test with a load of 500 g / cm 2 is 30 or less.
  • the electric resistance value of the outermost surface of the film mirror unit is 1.0 ⁇ 10 ⁇ 3 to 1.0 ⁇ 10 12 ⁇ / ⁇ . More preferably, it is 3.0 ⁇ 10 9 to 2.0 ⁇ 10 11 ⁇ / ⁇ .
  • the falling angle of the hard coat layer is larger than 0 ° and not larger than 30 ° because water droplets adhering to the surface of the film mirror unit are likely to fall due to rain or condensation.
  • the falling angle refers to a value obtained by dropping a water drop on a horizontal mirror, and then gradually increasing the tilt angle of the mirror, and measuring the minimum angle at which a stationary water drop of a predetermined mass falls. Say. It can be said that the smaller the tumbling angle, the easier it is for the water droplets to roll off the surface and the hydrophobic surface to which the water droplets are less likely to adhere.
  • the material for forming the hard coat layer is preferably a material that can form a layer that can provide transparency, weather resistance, scratch resistance, and antifouling properties.
  • Examples of materials applicable to the formation of the hard coat layer include acrylic resins, urethane resins, melamine resins, epoxy resins, organic silicate compounds, and silicone resins.
  • acrylic resins urethane resins, melamine resins, epoxy resins, organic silicate compounds, and silicone resins.
  • silicone resins and acrylic resins are preferable.
  • an active energy ray-curable acrylic resin or a thermosetting acrylic resin is also preferable in terms of curability, flexibility, and productivity.
  • thermosetting resin composed of a partially hydrolyzed oligomer of an alkoxysilane compound, a heat A hard coat made of a curable polysiloxane resin, an ultraviolet curable acrylic hard coat made of an acrylic compound having an unsaturated group, and a thermosetting inorganic material are preferable.
  • materials that can be used for the hard coat layer include aqueous colloidal silica-containing acrylic resins (for example, compounds described in JP-A-2005-66824), polyurethane-based resin compositions (for example, JP-A-2005-110918).
  • a resin film using an aqueous silicone compound as a binder for example, a compound described in JP-A-2004-142161
  • a photocatalytic oxide-containing silica film such as titanium oxide or alumina
  • a high aspect ratio Photocatalyst film such as titanium oxide or niobium oxide (for example, compounds described in JP-A-2009-62216), photocatalyst-containing fluororesin coating (for example, manufactured by Pyrex Technologies), organic / inorganic polysilazane film, organic / inorganic Polysilazane and hydrophilization promoter (for example, Z Electronics Co.) membrane was used, and the like can also be mentioned.
  • thermosetting silicone hard coat layer a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used.
  • An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with.
  • an acid catalyst such as hydrochloric acid or nitric acid
  • the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction.
  • a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid.
  • a hard coat layer can be formed by applying this to the outer surface of a film mirror unit or the like by a coating method using a normal paint, followed by heat curing at a temperature of 80 to 140 ° C.
  • a polysiloxane hard coat layer can be produced in the same manner by using di (alkyl or aryl) dialkoxysilane or mono (alkyl or aryl) trialkoxysilane instead of tetraalkoxysilane. It is.
  • the ultraviolet curable acrylic hard coat layer as an acrylic compound having an unsaturated group, for example, pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylol
  • a polyfunctional (meth) acrylate mixture such as tetra (meth) acrylate or the like can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, or benzophenone is blended and used. And this is apply
  • a hydrophilic property by subjecting the hard coat layer to a surface treatment.
  • a surface treatment for example, corona treatment (for example, the method described in JP-A-11-172028), plasma surface treatment, ultraviolet ray / ozone treatment, surface projection formation (for example, the method described in JP-A-2009-226613), A surface fine processing treatment can be exemplified.
  • wet coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the hard coat layer may contain various additives such as conventionally known ultraviolet absorbers and antioxidants.
  • UV absorber applicable to the hard coat layer
  • examples of the ultraviolet absorber applicable to the hard coat layer include the same ultraviolet absorbers listed in the above-described ultraviolet absorbing layer.
  • the UV compound 1 exemplified below in the hard coat layer.
  • the amount of the UV absorber used in the hard coat layer is preferably in the range of 0.1 to 20% by mass in order to improve the weather resistance while maintaining good adhesion. More preferably, it is in the range of 0.25 to 15% by mass, more preferably 0.5 to 10% by mass.
  • antioxidant it is preferable to use organic antioxidants such as phenolic antioxidants, hindered amine antioxidants, thiol antioxidants, and phosphite antioxidants. Further, an antioxidant and a light stabilizer may be used in combination.
  • antioxidant and the light stabilizer for example, compounds described in paragraphs (0063) to (0070) of International Publication No. 2013/103139 can be used.
  • the hard coat layer particularly the hard coat layer containing a polyfunctional acrylic monomer and a silicone resin, preferably contains a polymerization initiator for initiating polymerization.
  • a polymerization initiator for initiating polymerization.
  • a photopolymerization initiator of an active energy ray-curable resin such as ultraviolet rays is preferably used. Examples include benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and the like.
  • various additives can be further blended as necessary.
  • a surfactant, a leveling agent, an antistatic agent, and the like can be used.
  • each constituent layer described below can be formed on the outer surface side of the photothermal reflection layer 5.
  • the topcoat layer 4 constituting the film mirror unit according to the present invention is a resin layer containing a corrosion inhibitor and is also referred to as a corrosion prevention layer, and in particular, may be provided adjacent to the photothermal reflection layer 5. preferable.
  • the top coat layer 4 may be composed of only one layer, or may be composed of a plurality of layers.
  • the layer thickness of the top coat layer 4 is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 2 to 8 ⁇ m.
  • Examples of the resin used for forming the top coat layer 4 include cellulose ester, polyester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyester such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, Cellulose diacetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene, polymethylpentene, polyetherketone, polyether Ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic It can be exemplified Le resins. Of these, acrylic resins are preferred.
  • the top coat layer 4 can be formed by applying these resin materials (binders) adjacent to the photothermal reflection layer 5.
  • the corrosion inhibitor contained in the top coat layer 4 preferably has an adsorptive group for silver.
  • corrosion refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
  • the optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 / m 2 .
  • Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and having an imidazole ring It is desirable to be selected from a compound, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene-based compound, or a mixture thereof.
  • the ultraviolet absorber may also serve as a corrosion inhibitor.
  • a silicone-modified resin It does not specifically limit as a silicone modified resin. As these compounds, for example, compounds described in paragraphs (0057) to (0062) of International Publication No. 2013/103139 can be used.
  • the adhesive layer 3 of the film mirror unit FMU is a layer for joining the film mirror unit FMU to the base material by the adhesive layer 3 to form a sunlight reflecting mirror.
  • the film mirror unit FMU may have a layer made of a release sheet on the side opposite to the sunlight incident side of the adhesive layer 3.
  • the adhesive layer 3 is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • a dry laminating agent for example, polyester resins, urethane resins, polyvinyl acetate resins, acrylic resins, silicone resins, nitrile rubbers, and the like are used, and acrylic resins are particularly preferable.
  • the laminating method for joining the adhesive layer and the substrate is not particularly limited. For example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer 3 is preferably in the range of usually about 1 to 100 ⁇ m from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like. When the thickness is larger than 1 ⁇ m, it is preferable because a sufficient adhesive effect can be obtained. On the other hand, when the thickness is smaller than 100 ⁇ m, the pressure-sensitive adhesive layer is not too thick and the drying speed is not slowed, which is efficient. In addition, the original adhesive strength can be obtained, and no adverse effects such as residual solvent can occur.
  • Adhesive layer In this invention, as shown in FIG. 2, it can be set as the structure which adhere
  • the adhesive layer 3A is not particularly limited as long as it has a function of improving the adhesion between the layers.
  • Adhesive layer has adhesion to adhere the layers, heat resistance that can withstand heat when the silver reflective layer is formed by vacuum deposition, etc., and smoothness to bring out the high reflective performance that the silver reflective layer originally has. It is preferable to have.
  • the adhesive layer may be composed of only one layer, or may be composed of a plurality of layers.
  • the layer thickness of the adhesive layer is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 3 to 8 ⁇ m, from the viewpoints of adhesion, smoothness, reflectance of the reflector, and the like.
  • the resin for forming the adhesive layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness.
  • polyester resin, urethane resin, acrylic resin, melamine resin , Epoxy resins, polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc., or a mixture of these resins can be used.
  • polyester resins and melamine resins or polyester resins And a urethane-based resin mixed resin are preferable, and a thermosetting resin in which a curing agent such as isocyanate is mixed such that an isocyanate is mixed with an acrylic resin is more preferable.
  • a method for forming the adhesive layer conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • a gas barrier layer may be provided on the sunlight incident side of the photothermal reflection layer. It is preferable to provide a gas barrier layer between the hard coat layer or the ultraviolet absorbing layer containing a light-transmitting thermoplastic resin and the light-heat reflecting layer.
  • the gas barrier layer is intended to prevent deterioration of humidity, in particular, deterioration of the photothermal reflection layer forming support 7 and each component layer supported by the photothermal reflection layer forming support 7 due to high humidity.
  • the gas barrier layer may be provided with a function and an application, and various types of gas barrier layers can be provided as long as it has the above-described deterioration preventing function.
  • the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 ⁇ day or less, more preferably 0.5 g / m 2 ⁇ day or less, still more preferably It is 0.2 g / m 2 ⁇ day or less.
  • the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 ⁇ day ⁇ atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
  • the gas barrier layer may be composed of only one layer or may be composed of a plurality of layers.
  • the thickness of the gas barrier layer is preferably in the range of 10 to 500 nm, more preferably in the range of 50 to 200 nm.
  • Examples of the method for forming the gas barrier layer include a method of forming an inorganic oxide by a method such as vacuum deposition, sputtering, ion beam assist, chemical vapor deposition, etc., but a precursor of an inorganic oxide by a sol-gel method
  • a method of forming an inorganic oxide film by applying a heat treatment and / or a modification treatment by ultraviolet irradiation to the coating film after coating is preferably used.
  • the resin coat layer is preferably provided between the ultraviolet absorption layer and the photothermal reflection layer.
  • a corrosion inhibitor is preferably added so that the resin coat layer prevents corrosion of the light heat reflective layer.
  • the resin coat layer may have an ultraviolet absorbing ability.
  • the resin coat layer may be composed of only one layer or may be composed of a plurality of layers.
  • the layer thickness of the resin coat layer is preferably in the range of 0.1 to 10 ⁇ m, more preferably in the range of 2 to 8 ⁇ m.
  • the binder of the resin coat layer for example, the resins mentioned as the resin used for forming the top coat layer 4 described above can be used.
  • an antistatic layer can be provided as necessary.
  • the film mirror unit has a support made of a resin film or the like as compared with a glass mirror or the like, and since the surface is often formed of a resin, the film mirror unit is easily charged, and sand or dust. It is easy to attract dirt. Therefore, sand, dust, etc. adhere and it is mentioned as a problem that reflection efficiency falls.
  • the antistatic layer is preferably present through an extremely thin layer between the outermost layer adjacent to the outermost layer of the film mirror unit.
  • Example 1 ⁇ Production of film mirror unit> [Production of Film Mirror Unit 1 Having Sealing Section] (Production of film mirror unit) A film mirror unit having the structure of Type A shown in FIG. 1 was produced according to the following procedure.
  • a polyester resin (Polyester SP-181 manufactured by Nippon Synthetic Chemical), a melamine resin (manufactured by Superbeccamin J-820 DIC), a TDI-based isocyanate is formed on one side of the prepared support for forming a light heat reflective layer (7).
  • (2,4-tolylene diisocyanate) and HMDI isocyanate (1,6-hexamethylene diisocyanate) were mixed in toluene at a resin solid content ratio of 20: 1: 1: 2 and a solid content concentration of 10%.
  • the obtained resin was coated by a gravure coating method to form an anchor layer (6) having a thickness of 100 nm.
  • topcoat layer (4) Formation of topcoat layer (4)>
  • the sample on which the photothermal reflection layer (5) was formed was taken out from the vacuum deposition apparatus, and a polyester resin and TDI (tolylene diisocyanate) isocyanate were mixed at a resin solid content ratio of 10: 2 on the photothermal reflection layer (5).
  • 2-mercaptobenzothiazole as a silver corrosion inhibitor was added so as to be 10% by mass with respect to the resin, and a coating solution in which the solid content was adjusted to 5% by mass with methyl ethyl ketone was obtained by a gravure coating method. Coating was performed to form a topcoat layer (4) having a thickness of 4.0 ⁇ m.
  • a polyester resin (polyester) is formed on the surface opposite to the surface on which the anchor layer (6), the light heat reflection layer (5) and the top coat layer (4) of the prepared support (7) for light heat reflection layer formation are formed.
  • a UV curable functional hard coat agent LIODURAS TYZ series (filler component: ZrO 2 , solvent: ketone / alcohol / glycol system) manufactured by Toyo Ink Co., Ltd. is used on the ultraviolet absorbing layer (8) using an extrusion coater. Application and drying were performed to form a hard coat layer (9) having a dry film thickness of 3.0 ⁇ m.
  • an adhesive layer (3) composed of an acrylic resin adhesive (SZ-7543, manufactured by Nippon Carbide Industries Co., Ltd.) having a thickness of 25 ⁇ m is formed on the top coat layer (4), and a Type A film mirror is formed. A unit was made.
  • heating members 10A and 2mm ends the heating width L 2 by 10B, the left end portion of the heating member 10A and 10B
  • the pressure-sensitive adhesive layer (3) and the ultraviolet absorbing layer (with the holding pressure of the film mirror unit of 0.35 MPa and the heating temperature of 130 ° C.)
  • the softening component of 8) was softened and extruded, and the sealing part 11 having a thickness of 3 mm was formed while the side part of the sealing part 11 was regulated by the sealing part molding member 12.
  • the cooling member 11 was slowly cooled in a state where the sealing member 11 was held by the heating members 10A and 10B and the sealing member forming member 12 for 30 minutes.
  • a polyester resin (Polyester SP-181 manufactured by Nippon Synthetic Chemical), a melamine resin (manufactured by Superbeccamin J-820 DIC), a TDI-based isocyanate is formed on one side of the prepared support for forming a light heat reflective layer (7).
  • the resin mixed in toluene was coated by a gravure coating method to form an anchor layer (6) having a thickness of 100 nm.
  • topcoat layer (4) Formation of topcoat layer (4)>
  • the sample on which the photothermal reflection layer (5) was formed was taken out from the vacuum deposition apparatus, and a polyester resin and TDI (tolylene diisocyanate) isocyanate were mixed at a resin solid content ratio of 10: 2 on the photothermal reflection layer (5).
  • 2-mercaptobenzothiazole as a silver corrosion inhibitor was added so as to be 10% by mass with respect to the resin, and a coating solution in which the solid content was adjusted to 5% by mass with methyl ethyl ketone was obtained by a gravure coating method. Coating was performed to form a topcoat layer (4) having a thickness of 3.0 ⁇ m.
  • an adhesive layer (3) composed of an acrylic resin adhesive (SZ-7543, manufactured by Nippon Carbide Industries Co., Ltd.) having a thickness of 25 ⁇ m is formed on the back side of the support for forming a light heat reflective layer (7).
  • SZ-7543 acrylic resin adhesive
  • a Type B film mirror unit was produced.
  • heating members 10A and 2mm ends the heating width L 2 by 10B, the left end portion of the heating member 10A and 10B
  • the pressure-sensitive adhesive layer (3) and the ultraviolet absorbing layer (with the holding pressure of the film mirror unit of 0.35 MPa and the heating temperature of 130 ° C.)
  • the softened material of 8A) was extruded, and the sealing portion 11 having a thickness of 3 mm was formed while the side portion of the sealing portion 11 was regulated by the sealing portion molding member 12.
  • the cooling member 11 was slowly cooled in a state where the sealing member 11 was held by the heating members 10A and 10B and the sealing member forming member 12 for 30 minutes.
  • a weather-resistant tape 10386-ND (tape width: 24.5 mm (1 inch)) manufactured by 3M was cut in half and a tape having a width of 12.3 mm was used. It bonded by the pressure and sealed with the structure which surrounds each edge part of the film mirror unit FMU in a U shape as shown in FIG. Incidentally, it is shown in FIG. 3, the tape width L 1 at the end was 6 mm.
  • sealing tape aluminum foil tape No. Using 833 (tape width: 12.3 mm (1/2 inch)), bonding is performed at a pressure of 0.35 MPa, and each end of the film mirror unit FMU is formed into a U shape as shown in FIG. Sealed with a surrounding structure. Incidentally, FIG. 3, the tape width L 1 at the end was 6 mm.
  • Table 1 shows a typical configuration of each film mirror unit produced as described above.
  • the acrylic resin (Dainar ENB457 manufactured by Mitsubishi Rayon Co., Ltd.) and the ultraviolet absorber-containing acrylic film (Technoloy S001GU) constituting Type A and Type B used for the production of the film mirror units 1 to 33 have a layer thickness.
  • Samples having a thickness of 50 ⁇ m were prepared, and the light transmittance in the visible light region (400 to 700 nm) of each sample was measured with a commercially available spectrophotometer, and the average value was obtained. It was within the range of 94%.
  • The formed sealing part is in a good state with no non-adhered part or coloration.
  • Very weak peeling or coloring is observed at the end of the sealing part, but acceptable quality in practical use.
  • X The sealing part is not completely bonded to the film mirror unit, and peeling occurs [Evaluation of reflection area loss of film mirror] The reflection area of each produced film mirror unit after sealing was measured, and the reflection area loss was evaluated according to the following criteria.
  • The loss rate of the reflection mirror area with respect to the total film mirror unit area (10000 mm 2 ) is less than 5%.
  • The loss rate of the reflection mirror area with respect to the entire film mirror unit area (10000 mm 2 ) is 5% or more and less than 15%.
  • X The loss rate of the reflection mirror area with respect to the total film mirror unit area (10000 mm 2 ) is 15% or more [Evaluation of Barrier Properties]
  • Each film mirror unit with its end sealed is immersed in 25 ° C., 3% by weight saline solution for 5 days, and then the corrosion state of the photothermal reflective layer (silver reflective layer) is visually observed, according to the following criteria: The barrier property was evaluated.
  • No occurrence of corrosion area is observed.
  • The rate of occurrence of the corroded area is 1% or more and less than 5% of the total area.
  • The rate of occurrence of the corroded area is Although it is 5% or more and less than 15% of the total area, it is within a practically acceptable range.
  • X The rate of occurrence of the corroded area is 15% or more of the total area, which is a practical problem.
  • Table 2 shows the results obtained as described above.
  • the film mirror of the present invention having the sealing part produced by the production method defined in the present invention on the side part is superior to the comparative example in the formation state of the sealing part. It can be seen that the reflection area loss as a film mirror is small, and the barrier property, the peel resistance after the friction treatment, and the durability are excellent.
  • Example 2 In the production of the film mirror units 2 to 17, 22, 24 to 28, and 31 described in Example 1, acrylic resin (Mitsubishi Rayon) was used as the light-transmitting thermoplastic resin used to form the ultraviolet absorbing layer (8).
  • ABS resin styrene / butadiene / acrylonitrile copolymer
  • PS polystyrene resin
  • Example 1 the same evaluation was performed for the formation state of the sealing portion, the presence or absence of a reflection area loss as a film mirror, barrier properties, peeling resistance after friction treatment, and durability. As a result, the same result as in Example 1 could be obtained, but the effect was slightly less than the level to which the acrylic resin was applied.
  • the film mirror manufactured by the method for manufacturing a film mirror of the present invention has a small reflection area loss, has characteristics of excellent barrier properties, peeling resistance after friction treatment, and durability, and is applied to, for example, a reflector for solar power generation. It can be suitably used as a film mirror for concentrating solar heat.

Abstract

The present invention addresses the problem of providing a manufacturing method for a film mirror that excels in the sealability and durability (delamination resistance) of a lateral surface part, and for which there is little loss of reflective area due to sealing. This manufacturing method for a film mirror is for manufacturing a film mirror comprising at least an adhesive layer, a light and heat reflecting layer, a support for formation of the light and heat reflecting layer, an ultraviolet absorbing layer, and a hard coat layer, wherein the manufacturing method is characterized by the following: the ultraviolet absorbing layer contains a thermoplastic resin having light transmitting properties, a heating member is press bonded to an end of the film mirror, the film mirror is heated within a temperature range of 80-120°C to soften the adhesive layer and the ultraviolet absorbing layer containing an acrylic resin, and a seal part is formed by a softened component which has flowed out to the end part.

Description

フィルムミラーの製造方法Manufacturing method of film mirror
 本発明は、側面部に封止構造を有する太陽熱集光用のフィルムミラーの製造方法に関し、詳しくは、封止性及び耐久性(層間剥離耐性)が優れ、広い反射面積を有する太陽熱集光用のフィルムミラーの製造方法に関する。 The present invention relates to a method for manufacturing a film mirror for solar heat collection having a sealing structure on a side surface portion, and more specifically, for solar heat collection having excellent sealing performance and durability (delamination resistance) and a wide reflective area. The present invention relates to a method for manufacturing a film mirror.
 石油、天然ガス等の化石燃料エネルギーの代替エネルギーとして、自然エネルギーの利用が検討されている。その中でも、化石燃料の代替エネルギーとして最も安定しており、エネルギー量の多い太陽エネルギーが注目されている。 The use of natural energy is being studied as an alternative to fossil fuel energy such as oil and natural gas. Among them, solar energy, which is the most stable alternative energy for fossil fuels and has a large amount of energy, is attracting attention.
 しかしながら、太陽エネルギーは有力な代替エネルギーであるものの、これを活用する観点からは問題を抱えており、例えば、(1)太陽エネルギーのエネルギー密度が低いこと、あるいは(2)太陽エネルギーの貯蔵及び移送が困難であること等の問題を抱えている。 However, although solar energy is a powerful alternative energy, it has problems from the viewpoint of utilizing it. For example, (1) the energy density of solar energy is low, or (2) storage and transfer of solar energy. Have problems such as difficulty.
 現在では、太陽電池の研究及び開発が盛んに行われており、太陽光の利用効率も上昇してきているが、未だ十分な回収効率には達していない。 Currently, research and development of solar cells are actively carried out, and the use efficiency of sunlight has been increasing, but it has not yet reached sufficient recovery efficiency.
 太陽光をエネルギーに変換する太陽電池以外の方式として、太陽光をミラーで反射及び集光して得られた熱を媒体として発電する、太陽熱発電方式が注目されている。この方式を用いれば、得られた熱を蓄熱しておくことで、昼夜を問わず発電が可能である上、長期的な視野でみれば、発電効率は太陽電池よりも高い発電方式であり、太陽光を有効に利用できる方式であると考えられている。 As a method other than a solar cell that converts sunlight into energy, a solar thermal power generation method that generates power using heat obtained by reflecting and condensing sunlight with a mirror as a medium is attracting attention. Using this method, it is possible to generate electricity regardless of day and night by storing the obtained heat, and from a long-term perspective, the power generation efficiency is higher than that of solar cells, It is considered to be a method that can effectively use sunlight.
 現在、太陽熱発電に用いられているミラーとして、ガラスを基材として利用したガラスミラーが用いられており、このようなガラスミラーを金属製の支持部材で支持することで、太陽光を集光させる反射体として用いている。しかし、大判のガラスミラーはガラス基材を薄くすると、設置の際にミラーが破損する、あるいは強風による飛翔物の衝突等によりミラーが破損する等の問題が発生し、逆に、ガラス基材を厚くした場合は、非常に重くなるため、設置の際の取り扱い性が困難であるとともに、輸送コストもより掛かるようになる。 Currently, glass mirrors using glass as a base material are used as mirrors used in solar thermal power generation, and sunlight is collected by supporting such glass mirrors with a metal support member. Used as a reflector. However, if the glass substrate of a large format is made thin, the mirror will be damaged during installation, or the mirror may be damaged due to the impact of flying objects due to strong winds. If it is thick, it becomes very heavy, making it difficult to handle during installation and increasing the transportation cost.
 また、太陽熱を効率よく集光させるためには、集光用の反射体を太陽の動きに追従させて駆動させる必要があるため、反射体の質量が大きいと駆動電力が大きくなり、非効率となるという問題があった。そこで、ガラスミラーの代替として、フレキシブル性を備えた樹脂基材上に光熱反射層を設けたフィルムミラーの使用が注目されている(例えば、特許文献1参照。)。 In addition, in order to efficiently collect solar heat, it is necessary to drive the reflector for collecting light by following the movement of the sun. Therefore, if the mass of the reflector is large, the driving power becomes large, which is inefficient. There was a problem of becoming. Then, use of the film mirror which provided the photothermal reflective layer on the resin base material provided with flexibility as an alternative of a glass mirror attracts attention (for example, refer patent document 1).
 従来、樹脂製のフィルムミラーの製造方法としては、第一段階として、大判サイズの樹脂基材上に各構成層を積層して、大面積のフィルムミラーを作製した後、太陽熱集光用フィルムミラーに適用するため、任意のサイズにカットして使用されている。 Conventionally, as a manufacturing method of a resin film mirror, as a first step, after laminating each constituent layer on a large size resin base material to produce a large area film mirror, a film mirror for solar thermal condensing In order to apply to, it is used by cutting to any size.
 このようにしてカットされたフィルムミラー積層体(以下、「フィルムミラーユニット」ともいう。)は、その断裁方法によっては、フィルムミラー積層体の切断面が断裁時に受ける応力により、その構成層の一部で僅かな剥離が生じ、この剥離部が起点となって、様々な使用環境で長期間にわたり保存した際に、層間剥離が拡大し、フィルムミラーの品質低下を引き起こす。 Depending on the cutting method, the film mirror laminate (hereinafter also referred to as “film mirror unit”) cut in this way may have one of its constituent layers due to the stress applied to the cut surface of the film mirror laminate during cutting. Slight peeling occurs at the part, and this peeling part is the starting point, and when stored for a long period of time in various usage environments, the delamination increases and causes the quality of the film mirror to deteriorate.
 この層間剥離は、摺動応力や交番荷重等の外部応力により生じる場合と、切断面からの水分等の浸入による銀等で構成されている光熱反射層の腐食による層間密着性の低下により生じる場合がある。 This delamination is caused by external stress such as sliding stress or alternating load, and by decrement of interlaminar adhesion due to corrosion of the photothermal reflective layer composed of silver etc. due to intrusion of moisture etc. from the cut surface There is.
 このような切断面における層間剥離等を防止するため、端部に封止手段を付与する方法が検討されている。当該封止手段に対して求められる機能は、主に、高い封止力(バリアー性)とフィルムミラーユニット切断面との高い接着性である。 In order to prevent delamination or the like on such a cut surface, a method of providing a sealing means at the end has been studied. The functions required for the sealing means are mainly a high sealing force (barrier property) and a high adhesiveness with the cut surface of the film mirror unit.
 このような太陽熱集光用フィルムミラーの端部を封止する方法としては、例えば、樹脂製やアルミ箔製の封止テープを用いる方法が知られている。例えば、3M社のアプリケーションガイドに記載されている耐候テープや、Refletech社製のアプリケーションガイドに記載されているアルミニウムエッジテープ等の封止テープが広く実用化されている。更に、太陽電池あるいは光起電性デバイスにおいて、ソーラーパネル又は光起電性デバイスの周囲を取り巻くように封止テープを付与して、端部からの酸素及び水分の浸入を阻止する方法が提案されている(例えば、特許文献2参照。)。しかしながら、上記のような封止テープを用いて断面部を封止する方法では、特に、最表面にハードコート層を有するフィルムミラー積層体においては、ハードコート層表面に対する封止テープの接着力が十分ではなく、時間の経過に伴い、ハードコート層面で、封止テープの剥離が生じ、その剥離した間隙より、水分等が浸入し、更に浸入した水分により、切断面での層間剥離が進行し、最終的には、光熱反射層の腐食にまで至る結果となる。また、上記問題に対し、端部に幅広の封止テープを付与することにより腐食を防止する方法もあるが、この方法では、フィルムミラーの端部が幅広となり、反射面積にロスが生じるという問題がある。 As a method for sealing the end portion of such a solar heat collecting film mirror, for example, a method using a sealing tape made of resin or aluminum foil is known. For example, weathering tapes described in 3M company application guides and sealing tapes such as aluminum edge tapes described in Refletech company application guides have been widely put into practical use. Furthermore, in solar cells or photovoltaic devices, a method has been proposed in which a sealing tape is provided so as to surround the periphery of the solar panel or photovoltaic device to prevent the ingress of oxygen and moisture from the edges. (For example, refer to Patent Document 2). However, in the method of sealing a cross section using the sealing tape as described above, particularly in a film mirror laminate having a hard coat layer on the outermost surface, the adhesive force of the sealing tape to the hard coat layer surface is low. It is not sufficient, and as time passes, the sealing tape peels off on the hard coat layer surface, moisture penetrates from the peeled gap, and delamination advances on the cut surface due to the penetrated moisture. Eventually, the photothermal reflection layer is corroded. In addition, there is a method for preventing corrosion by applying a wide sealing tape to the end portion, but in this method, the end portion of the film mirror becomes wide and the reflection area is lost. There is.
 また、特許文献3には、反射鏡を有する太陽エネルギー反射装置において、反射鏡構成部材の端部に、構成部材とは異なるシリコーン、ポリウレタン又はアクリルからなる端部保護部材を付与する方法が開示されている。しかしながら、特許文献3に記載の方法では、新たに端部保護部材を付与する工程が必要となり、生産性の点で問題を抱えていると共に、反射鏡構成部材とは異なる材料で、封止構造を形成するため、密着性あるいは端部との相溶性という観点で問題があり、封止部の耐久性としても不十分であった。 Patent Document 3 discloses a method of applying an end protection member made of silicone, polyurethane, or acrylic different from the constituent members to the end portions of the reflecting constituent members in the solar energy reflecting device having the reflecting mirrors. ing. However, the method described in Patent Document 3 requires a step of newly providing an end protection member, which has a problem in terms of productivity, and is made of a material different from that of the reflector constituent member, and has a sealing structure. Therefore, there is a problem in terms of adhesion or compatibility with the end portion, and the durability of the sealing portion is insufficient.
米国特許第4645714号明細書US Pat. No. 4,645,714 特開2013-120926号公報JP 2013-120926 A 欧州特許第2271879号明細書European Patent No. 2271879
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、側面部における封止性及び耐久性(層間剥離耐性)に優れ、封止による反射面積のロスが少ないフィルムミラーの製造方法を提供することである。 The present invention has been made in view of the above problems, and its solution is to produce a film mirror that is excellent in sealing performance and durability (delamination resistance) at the side surface and has a small loss of reflection area due to sealing. Is to provide a method.
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、粘着層、光熱反射層、光熱反射層形成用支持体、紫外線吸収層及びハードコート層より構成されるフィルムミラーを製造するフィルムミラーの製造方法であって、当該紫外線吸収層は、光透過性を有する熱可塑性樹脂を含有し、フィルムミラーの端部に加熱部材を圧着し、80~120℃の温度範囲内で加熱して、少なくとも前記粘着層及び光透過性を有する熱可塑性樹脂を含有する紫外線吸収層を軟化させ、端部に流出した軟化成分により封止部を形成することを特徴とするフィルムミラーの製造方法により、側面部における封止性及び耐久性(層間剥離耐性)に優れ、封止による反射面積のロスが少ないフィルムミラーを製造することができるフィルムミラーの製造方法を提供することができることを見出し、本発明に至った。 As a result of intensive studies in view of the above problems, the present inventor has obtained a film mirror for producing a film mirror composed of an adhesive layer, a photothermal reflection layer, a support for forming a photothermal reflection layer, an ultraviolet absorption layer, and a hard coat layer. In the production method, the ultraviolet absorbing layer contains a thermoplastic resin having light permeability, a heating member is pressure-bonded to the end of the film mirror, heated within a temperature range of 80 to 120 ° C., and at least The side surface portion is produced by the method for producing a film mirror, wherein the adhesive layer and the ultraviolet absorbing layer containing a light-transmitting thermoplastic resin are softened, and a sealing portion is formed by the softened component that flows out to the end portion. Provided is a film mirror manufacturing method that can manufacture a film mirror that is excellent in sealing performance and durability (delamination resistance) and has a small loss of reflection area due to sealing. Found that can bets, leading to the present invention.
 すなわち、本発明の上記課題は、下記の手段により解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 1.少なくとも粘着層、光熱反射層、光熱反射層形成用支持体、紫外線吸収層及びハードコート層より構成されるフィルムミラーの製造方法であって、
 当該紫外線吸収層は、光透過性を有する熱可塑性樹脂を含有し、
 フィルムミラーの端部に加熱部材を圧着し、80~120℃の温度範囲内で加熱して、少なくとも前記粘着層及び光透過性を有する熱可塑性樹脂を含有する紫外線吸収層を軟化させ、端部に流出した軟化成分により封止部を形成することを特徴とするフィルムミラーの製造方法。
1. A method for producing a film mirror comprising at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer and a hard coat layer,
The ultraviolet absorbing layer contains a thermoplastic resin having light permeability,
A heating member is pressure-bonded to the end of the film mirror and heated within a temperature range of 80 to 120 ° C. to soften at least the adhesive layer and the ultraviolet absorbing layer containing a light-transmitting thermoplastic resin. A method for producing a film mirror, wherein a sealing portion is formed by a softening component that has flowed out of the film.
 2.少なくとも粘着層、光熱反射層、光熱反射層形成用支持体、光透過性を有する熱可塑性樹脂を含有する紫外線吸収層及びハードコート層より構成される広幅原反を作製し、所定のサイズに断裁した後、断裁面に封止部を形成することを特徴とする第1項に記載のフィルムミラーの製造方法。 2. A wide raw fabric composed of at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer containing a light-transmitting thermoplastic resin, and a hard coat layer is prepared and cut into a predetermined size. Then, the sealing part is formed on the cut surface. The method for producing a film mirror according to item 1 above.
 3.端部に加熱部材を圧着した後、加圧した状態で徐冷して、前記封止部を形成することを特徴とする第1項又は第2項に記載のフィルムミラーの製造方法。 3. 3. The method of manufacturing a film mirror according to claim 1 or 2, wherein the sealing member is formed by pressure-bonding a heating member to an end portion and then slowly cooling in a pressurized state.
 4.端部に流出した前記粘着層及び紫外線吸収層の軟化部に対し、封止部成形部材を押し当てて、前記封止部を形成することを特徴とする第1項から第3項までのいずれか一項に記載のフィルムミラーの製造方法。 4. Any one of Items 1 to 3, wherein the sealing portion is formed by pressing a sealing portion molding member against the softened portion of the adhesive layer and the ultraviolet absorbing layer that has flowed out to the end portion. A method for producing a film mirror according to claim 1.
 5.前記紫外線吸収層が含有する光透過性を有する熱可塑性樹脂が、アクリル系樹脂であることを特徴とする第1項から第4項までのいずれか一項に記載のフィルムミラーの製造方法。 5. The method for producing a film mirror according to any one of claims 1 to 4, wherein the light-transmitting thermoplastic resin contained in the ultraviolet absorbing layer is an acrylic resin.
 6.前記粘着層が、アクリル系樹脂で構成されていることを特徴とする第1項から第5項までのいずれか一項に記載のフィルムミラーの製造方法。 6. The method for manufacturing a film mirror according to any one of claims 1 to 5, wherein the adhesive layer is made of an acrylic resin.
 7.前記封止部形成時の前記加熱部材による圧力条件が、0.1~1.0MPaの範囲内であることを特徴とする第1項から第6項までのいずれか一項に記載のフィルムミラーの製造方法。 7. The film mirror according to any one of claims 1 to 6, wherein a pressure condition by the heating member at the time of forming the sealing portion is in a range of 0.1 to 1.0 MPa. Manufacturing method.
 本発明の上記手段により、側面部における封止性及び耐久性(層間剥離耐性)に優れ、封止による反射面積のロスが少ないフィルムミラーの製造方法を提供することができる。 By the above means of the present invention, it is possible to provide a method for producing a film mirror that is excellent in sealing performance and durability (delamination resistance) in the side surface portion and has a small reflection area loss due to sealing.
 本発明で規定する構成により、上記問題を解決することができたのは、以下の理由によるものと推測している。 It is presumed that the above problem could be solved by the configuration defined in the present invention for the following reason.
 上述のように、従来、フィルムミラー端部の封止方法としては、主に、封止テープを用いた方法が広く用いられてきた。 As described above, conventionally, a method using a sealing tape has been widely used as a method for sealing a film mirror end.
 図3は、従来方式の端部を封止テープにより封止した構造を有する太陽熱発電用反射鏡の構成の一例を示す概略断面図である。 FIG. 3 is a schematic cross-sectional view showing an example of the configuration of a solar power generation reflecting mirror having a structure in which an end of a conventional method is sealed with a sealing tape.
 太陽熱発電用反射鏡20の構成の詳細は後述するが、従来型の封止テープ14を用いた方法では、十分な接着性を確保するためには、端部における封止テープ14の接着面積を広く取ることが必要となり、そのため、端部接着幅Lがかなり広くなる。その結果、反射鏡の全面積にしめる封止テープ14の面積が高くなり、太陽熱発電用反射鏡20におけるフィルムミラーユニットFMUの面積が低下するという問題があった。 Although the details of the configuration of the solar power generation reflecting mirror 20 will be described later, in the method using the conventional sealing tape 14, in order to ensure sufficient adhesion, the bonding area of the sealing tape 14 at the end is set. be widened is required, therefore, is considerably wider end bonding width L 1. As a result, there is a problem in that the area of the sealing tape 14 that fills the entire area of the reflecting mirror is increased, and the area of the film mirror unit FMU in the reflecting mirror 20 for solar thermal power generation is reduced.
 フィルムミラーユニットFMUの最表層を構成するハードコート層9は、透明性、耐候性、耐傷性、防汚性が要求されている層であり、ハードコート層の形成には、特に、耐傷性の観点から、シリコーン系樹脂やアクリル系樹脂が用いられている。しかし、これらの構成材料表面と封止テープ間の密着性に関しては、十分であるとは言い難かった。 The hard coat layer 9 constituting the outermost layer of the film mirror unit FMU is a layer that requires transparency, weather resistance, scratch resistance, and antifouling properties. From the viewpoint, silicone resins and acrylic resins are used. However, it was difficult to say that the adhesion between the surface of these constituent materials and the sealing tape was sufficient.
 例えば、フィルムミラーが、高温高湿等の過酷な環境下で長期間にわたり使用されると、図3のPに示すように、封止テープ14とハードコート層9との密着端部より剥離が生じる。生じた剥離部Pに水分や酸素等が浸入し、フィルムミラーユニットFMUの側面部から各構成層間に水分や酸素が浸透し、その結果、光熱反射層5等の劣化を引き起こし、反射率の低下等が生じるという問題を引き起こす。 For example, when a film mirror is used over a long period of time in a harsh environment such as high temperature and high humidity, as shown in P of FIG. 3, peeling occurs from the close end of the sealing tape 14 and the hard coat layer 9. Arise. Moisture, oxygen, etc. permeate into the resulting peeled portion P, and moisture and oxygen permeate into each constituent layer from the side surface of the film mirror unit FMU, resulting in deterioration of the photothermal reflective layer 5 and the like, resulting in a decrease in reflectivity Cause problems such as.
 本発明のフィルムミラーの製造方法は、従来型の封止テープ方式による問題を解決すべくなされたものであり、新たな封止部材を適用することなく、フィルムミラーの端部の極めて狭い面積に、加熱部材を押し当て、端部を挟持した状態で、端部を特定の温度、例えば、粘着層あるいは紫外線吸収層を構成する光透過性を有する熱可塑性樹脂材料のガラス転移温度Tg以上の温度に加熱することにより、粘着層、あるいは光透過性を有する熱可塑性樹脂を含有する紫外線吸収層を構成する材料を軟化させ、端部の加圧で流出した軟化物により側面部を封止することを特徴とするものである。このような封止構造の形成方法を適用することにより、フィルムミラーの端部において、フィルムミラー面積の低下を引き起こすことがない。 The manufacturing method of the film mirror of the present invention is made to solve the problems caused by the conventional sealing tape method, and without applying a new sealing member, the film mirror has an extremely small area at the end. In the state where the heating member is pressed and the end portion is sandwiched, the end portion is at a specific temperature, for example, the glass transition temperature Tg or higher of the light-transmitting thermoplastic resin material constituting the adhesive layer or the ultraviolet absorbing layer. By heating to soften the material constituting the adhesive layer or UV absorbing layer containing a light-transmitting thermoplastic resin, and seal the side surface with the softened material that has flowed out by pressurizing the edge. It is characterized by. By applying such a method for forming a sealing structure, the film mirror area is not reduced at the end of the film mirror.
 また、本発明においては、端部に形成する封止部は、フィルムミラーを構成する部材により供給される。すなわち、封止部を形成する部材は、フィルムミラーの構成層と同種の材料で、フィルムミラーの構成層と連続した構造で形成することができるため、封止構造として極めて密着性に優れ、剥離し難い効果を発現させることができる。 In the present invention, the sealing portion formed at the end is supplied by a member constituting the film mirror. That is, the member that forms the sealing portion is made of the same material as the constituent layer of the film mirror and can be formed in a structure continuous with the constituent layer of the film mirror. It is possible to develop a difficult effect.
封止加工前のフィルムミラーユニットの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the film mirror unit before sealing processing 封止加工前のフィルムミラーユニットの構成の他の一例を示す概略断面図Schematic sectional view showing another example of the configuration of the film mirror unit before sealing processing 従来方式の側面部を封止テープにより封止した構造を有する太陽熱発電用反射鏡の構成の一例を示す概略断面図Schematic sectional view showing an example of a configuration of a solar power generation reflecting mirror having a structure in which a side surface portion of a conventional method is sealed with a sealing tape 側面部に封止構造を形成する方法の一例を示す概略断面図Schematic sectional view showing an example of a method for forming a sealing structure on the side surface 側面部に封止構造を形成したフィルムミラーユニットの構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of a film mirror unit in which a sealing structure is formed on the side surface 側面部に封止構造を形成する本発明のフィルムミラーの製造方法のプロセスの一例を示す模式図The schematic diagram which shows an example of the process of the manufacturing method of the film mirror of this invention which forms a sealing structure in a side part 側面部に封止構造を形成したフィルムミラーユニットの構成の他の一例を示す概略断面図Schematic sectional view showing another example of the configuration of the film mirror unit having a sealing structure formed on the side surface
 本発明のフィルムミラーの製造方法は、少なくとも粘着層、光熱反射層、光熱反射層形成用支持体、紫外線吸収層及びハードコート層より構成されるフィルムミラーの製造方法であって、当該紫外線吸収層は、光透過性を有する熱可塑性樹脂を含有し、フィルムミラーの端部に加熱部材を圧着し、80~120℃の温度範囲内で加熱して、少なくとも前記粘着層及び光透過性を有する熱可塑性樹脂を含有する紫外線吸収層を軟化させ、端部に流出した軟化成分により封止部を形成することを特徴とする。この特徴は、請求項1から請求項7に係る発明に共通する技術的特徴である。 The method for producing a film mirror of the present invention is a method for producing a film mirror comprising at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer and a hard coat layer, and the ultraviolet absorbing layer Contains a light-transmitting thermoplastic resin, a heating member is pressure-bonded to the end of the film mirror, and is heated within a temperature range of 80 to 120 ° C., so that at least the adhesive layer and the light-transmitting heat The ultraviolet absorbing layer containing the plastic resin is softened, and the sealing portion is formed by the softened component that flows out to the end portion. This feature is a technical feature common to the inventions according to claims 1 to 7.
 本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、少なくとも粘着層、光熱反射層、光熱反射層形成用支持体、光透過性を有する熱可塑性樹脂を含有する紫外線吸収層及びハードコート層から構成される広幅原反を作製し、所定のサイズに断裁するような製造過程において、本発明の断裁面に封止部を形成する方法を適用することにより、断裁時の側面部に生じた微細なクラックや剥離箇所を被覆し、強固な封止構造を形成することができる観点から好ましい態様である。 As an embodiment of the present invention, an ultraviolet ray containing at least a pressure-sensitive adhesive layer, a photothermal reflection layer, a support for forming a photothermal reflection layer, and a light-transmitting thermoplastic resin from the viewpoint that the effects of the present invention can be further expressed. In the manufacturing process in which a wide original fabric composed of an absorption layer and a hard coat layer is produced and cut into a predetermined size, by applying the method for forming a sealing portion on the cut surface of the present invention, the cutting process is performed. This is a preferred embodiment from the viewpoint of covering fine cracks and peeled portions generated on the side surfaces of the film and forming a strong sealing structure.
 また、端部に加熱部材を圧着した後、加圧した状態で徐冷して、前記封止部を形成することが、フィルムミラーの端部における反射率を維持することができる観点から好ましい。 In addition, it is preferable from the viewpoint that the reflectance at the end portion of the film mirror can be maintained by pressing the heating member to the end portion and then slowly cooling in a pressurized state to form the sealing portion.
 また、端部に流出した前記粘着層及び光透過性を有する熱可塑性樹脂を含有する紫外線吸収層の軟化部に対し、封止部成形部材を押し当てて、前記封止部を形成することが、形成した封止部の平面性やクラック等の発生を防止することができる観点から好ましい。 Further, the sealing portion may be formed by pressing a sealing portion molding member against the softened portion of the ultraviolet absorbing layer containing the adhesive layer and the light-transmitting thermoplastic resin that have flowed out to the end portion. From the viewpoint of preventing the occurrence of flatness and cracks in the formed sealing portion.
 また、紫外線吸収層が含有する光透過性を有する熱可塑性樹脂が、アクリル系樹脂であることが、規定する温度範囲内で軟化でき、安定して封止構造を形成することができる観点から好ましい。 Further, it is preferable that the light-transmitting thermoplastic resin contained in the ultraviolet absorbing layer is an acrylic resin from the viewpoint of being able to soften within a specified temperature range and stably forming a sealing structure. .
 また、前記粘着層が、アクリル系樹脂で構成されていることが、加熱部材を圧着した際に他方より供給される紫外線吸収層の構成材料である光透過性を有する熱可塑性樹脂と、軟化特性が近似又は同一となり、両者が会合して封止構造を形成する際の相溶性が高まり、均質で安定した封止部を形成することができる観点から好ましい。 In addition, the adhesive layer is made of an acrylic resin, and when the heating member is pressure-bonded, the light-transmitting thermoplastic resin that is a constituent material of the ultraviolet absorbing layer supplied from the other, and a softening property Are approximate or the same, and the compatibility is improved when the two are combined to form a sealing structure, which is preferable from the viewpoint that a uniform and stable sealing portion can be formed.
 また、封止部形成時の前記加熱部材による圧力条件として、0.1~1.0MPaの範囲内とすることが、安定して封止構造を形成することができる観点から好ましい。 Further, the pressure condition by the heating member at the time of forming the sealing portion is preferably in the range of 0.1 to 1.0 MPa from the viewpoint of stably forming the sealing structure.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the following description, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《フィルムミラーの製造方法》
 〔フィルムミラーの基本構成〕
 本発明のフィルムミラーは、少なくとも粘着層、光熱反射層、光熱反射層形成用支持体、光透過性を有する熱可塑性樹脂(以下、単に熱可塑性樹脂ともいう。)を含有する紫外線吸収層及びハードコート層から構成されるフィルムミラーユニットであり、このフィルムミラーユニットの粘着層を介して、金属基材や樹脂基材に貼合して、太陽熱発電用反射鏡を構成する。
<< Film mirror manufacturing method >>
[Basic structure of film mirror]
The film mirror of the present invention includes at least an adhesive layer, a light heat reflection layer, a support for forming a light heat reflection layer, a light-transmitting thermoplastic resin (hereinafter also simply referred to as a thermoplastic resin), and a hard layer. It is a film mirror unit composed of a coat layer, and is bonded to a metal substrate or a resin substrate via an adhesive layer of the film mirror unit to constitute a solar power generation reflecting mirror.
 本発明に係るフィルムミラーユニットは、少なくとも粘着層、光熱反射層、光熱反射層形成用支持体、光透過性を有する熱可塑性樹脂を含有する紫外線吸収層、特に好ましくはアクリル樹脂を含有する紫外線吸収層(以下、アクリル樹脂層ともいう。)及びハードコート層から構成され、必要に応じて、その他の機能層を設けても良い。 The film mirror unit according to the present invention comprises at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer containing a light-transmitting thermoplastic resin, particularly preferably an ultraviolet absorbing material containing an acrylic resin. It is comprised from a layer (henceforth an acrylic resin layer) and a hard-coat layer, You may provide another functional layer as needed.
 本発明でいう光透過性を有する熱可塑性樹脂とは、厚さ50μmの塗膜を形成し、その塗膜について測定した可視光領域における平均光透過率が70%以上である熱可塑性樹脂をいい、好ましくは80%以上、さらに好ましくは平均光透過率として85%以上を得ることができる熱熱可塑性樹脂であると定義する。光透過率の測定には、市販の分光光度計を用いて求めることができる。 The light-transmitting thermoplastic resin referred to in the present invention refers to a thermoplastic resin having a 50 μm-thick coating film and having an average light transmittance of 70% or more in the visible light region measured for the coating film. It is defined as a thermoplastic resin capable of obtaining an average light transmittance of 85% or more, preferably 80% or more. The light transmittance can be measured using a commercially available spectrophotometer.
 図1は、封止構造を形成する前のフィルムミラーユニットFMU1の構成の一例を示す概略断面図である。このような構成を、TypeAと称す。 FIG. 1 is a schematic cross-sectional view showing an example of the configuration of the film mirror unit FMU1 before the sealing structure is formed. Such a configuration is referred to as Type A.
 図1に示すTypeAの封止構造を形成する前のフィルムミラーユニットFMU1は、主要構成層として、接着層3、トップコート層4、光熱反射層5、アンカー層6、光熱反射層形成支持体7、第2のアンカー層6A、光透過性を有する熱可塑性樹脂を含有する紫外線吸収層8、ハードコート層9等が積層配置されている。この構成において、本発明に係る光透過性を有する熱可塑性樹脂を含有する紫外線吸収層8は、塗布方式で形成することが好ましい。 The film mirror unit FMU1 before forming the Type A sealing structure shown in FIG. 1 includes, as main constituent layers, an adhesive layer 3, a topcoat layer 4, a photothermal reflective layer 5, an anchor layer 6, and a photothermal reflective layer forming support 7. The second anchor layer 6A, the ultraviolet absorbing layer 8 containing a light-transmitting thermoplastic resin, the hard coat layer 9 and the like are laminated. In this configuration, the ultraviolet absorbing layer 8 containing the light-transmitting thermoplastic resin according to the present invention is preferably formed by a coating method.
 図1に示す構成において、トップコート層4~アンカー層6Aまでの構成を、光熱反射ユニット2Aと称す。 In the configuration shown in FIG. 1, the configuration from the top coat layer 4 to the anchor layer 6A is referred to as a photothermal reflection unit 2A.
 このフィルムミラーユニットFMU1は、粘着層3の裏面側と、例えば、金属基材面あるいは樹脂基材面と接着して、太陽熱発電用反射鏡を構成する。 The film mirror unit FMU1 is bonded to the back side of the adhesive layer 3 and, for example, a metal substrate surface or a resin substrate surface to constitute a solar power generation reflecting mirror.
 図2は、封止構造を形成する前のフィルムミラーユニットFMU2の構成の他の一例を示す概略断面図である。このような構成を、TypeBと称す。 FIG. 2 is a schematic cross-sectional view showing another example of the configuration of the film mirror unit FMU2 before the sealing structure is formed. Such a configuration is referred to as Type B.
 図2において、TypeBのフィルムミラーユニットFMU2の構成としては、粘着層3、光熱反射層形成支持体7、アンカー層6、光熱反射層5、トップコート層4、接着層3A、光透過性を有する熱可塑性樹脂を含有する紫外線吸収層8A及びハードコート層9が積層している。 In FIG. 2, the type B film mirror unit FMU2 has a pressure-sensitive adhesive layer 3, a photothermal reflective layer forming support 7, an anchor layer 6, a photothermal reflective layer 5, a top coat layer 4, an adhesive layer 3A, and light transparency. An ultraviolet absorbing layer 8A containing a thermoplastic resin and a hard coat layer 9 are laminated.
 上記構成において、光熱反射層形成支持体7~接着層3A間での構成を、光熱反射ユニット2Bと称す。 In the above configuration, the configuration between the light heat reflecting layer forming support 7 and the adhesive layer 3A is referred to as a light heat reflecting unit 2B.
 図2に示す構成で用いられる光透過性を有する熱可塑性樹脂を含有する紫外線吸収層8Aとしては、接着層(3A)を介してラミネートしたアクリルフィルム、例えば、ドライラミネーションプロセスにより、接着層(3A)と、光透過性を有する熱可塑性樹脂であるアクリル樹脂層(8A)に紫外線吸収剤を含有したアクリルフィルム(例えば、テクノロイ S001GU(住友化学株式会社製、厚さ100μm))を、ラミネート温度として60℃で貼合し、接着層(3A)及び光透過性を有する熱可塑性樹脂を含有する紫外線吸収層(8A)を形成する方法を適用することもできる。 An ultraviolet absorbing layer 8A containing a light-transmitting thermoplastic resin used in the configuration shown in FIG. 2 is an acrylic film laminated via an adhesive layer (3A), for example, an adhesive layer (3A) by a dry lamination process. ) And an acrylic film (for example, Technoloy S001GU (manufactured by Sumitomo Chemical Co., Ltd., thickness: 100 μm)) containing an ultraviolet absorber in an acrylic resin layer (8A) which is a thermoplastic resin having optical transparency, as a laminating temperature. A method of bonding at 60 ° C. and forming an adhesive layer (3A) and an ultraviolet absorbing layer (8A) containing a light-transmitting thermoplastic resin can also be applied.
 〔封止構造の形成方法〕
 (従来型の封止テープによる端部封止方法)
 本発明のフィルムミラーの封止方法を説明する前に、従来から用いられてきた封止テープによる端部の封止方法(比較例)について説明する。
[Method of forming sealing structure]
(End sealing method with conventional sealing tape)
Before describing the method for sealing a film mirror of the present invention, an end sealing method (comparative example) using a sealing tape that has been conventionally used will be described.
 図3は、従来方式の側面部を封止テープにより封止した構造を有する太陽熱発電用反射鏡の構成の一例を示す概略断面図である。 FIG. 3 is a schematic cross-sectional view showing an example of the configuration of a solar power generation reflecting mirror having a structure in which a side surface portion of a conventional method is sealed with a sealing tape.
 図3において、フィルムミラーユニットFMUとしては、図1で例示したTypeAのフィルムユニットFMU1を一例として示してある。 In FIG. 3, as the film mirror unit FMU, the Type A film unit FMU1 illustrated in FIG. 1 is shown as an example.
 図3に示す封止方法では、太陽熱発電用反射鏡20の端部を、封止テープ14で封止する構成である。このような方式で使用される封止テープとしては、3M社製の耐候テープ 10386-ND(テープ幅:2.54cm(1インチ)、厚さ:87μm、粘着剤:アクリル系樹脂)、寺岡製作所製 アルミ箔テープ No.833、Reflec Tech社製 アルミニウムエッジテープ等が挙げられる。 3 is a configuration in which the end portion of the solar power generation reflecting mirror 20 is sealed with the sealing tape 14. The sealing tape used in such a system is a weatherproof tape 10386-ND (tape width: 2.54 cm (1 inch), thickness: 87 μm, adhesive: acrylic resin) manufactured by 3M, Teraoka Seisakusho Aluminum foil tape No. 833, an aluminum edge tape manufactured by Reflec Tech.
 このような封止テープを用いて、端部の封止を行う際には、例えば、25.4mmのテープを用いる場合、図3に示すように、端部領域でのテープ被覆幅Lは、5~12mm程度の幅となるため、フィルムミラーの表面面積に示す比率が高くなり、反射面積の低下を招いている。 When sealing the end portion using such a sealing tape, for example, when using a 25.4 mm tape, as shown in FIG. 3, the tape covering width L 1 in the end region is Since the width is about 5 to 12 mm, the ratio shown in the surface area of the film mirror is increased, leading to a reduction in the reflection area.
 更に、図3で例示したように、フィルムミラーユニットFMUの最表面を形成しているハードコート層9が、例えば、シリコーン樹脂等で形成されている場合には、ハードコート層9の表面特性により、封止テープ14との接着性を十分に維持することができなくなり、高温高湿環境下で長期間保存された際、その接着面より剥離部Pが生じ、更にその剥離部Pから水分や酸素が侵入し、封止性が低下する。その結果、フィルムミラーユニットFMUの構成層間で剥離等を引き起こすことになる。 Furthermore, as illustrated in FIG. 3, when the hard coat layer 9 forming the outermost surface of the film mirror unit FMU is formed of, for example, a silicone resin, the surface characteristics of the hard coat layer 9 , The adhesiveness with the sealing tape 14 cannot be sufficiently maintained, and when stored for a long period of time in a high temperature and high humidity environment, a peeling portion P is generated from the adhesive surface, and further, moisture and Oxygen penetrates and sealability is lowered. As a result, peeling or the like is caused between the constituent layers of the film mirror unit FMU.
 (本発明の側面部封止方法)
 次いで、本発明のフィルムミラーの製造方法による側面部封止方法について、その詳細を説明する。
(Side surface sealing method of the present invention)
Next, details of the side surface sealing method according to the method for producing a film mirror of the present invention will be described.
 本発明のフィルムミラーの製造方法においては、フィルムミラーの端部に加熱部材を圧着し、80~120℃の温度範囲内で加熱して、前記粘着層と、光透過性を有する熱可塑性樹脂、例えば、アクリル系樹脂を含有する紫外線吸収層とを軟化させた後、溶出した前記粘着層及び光透過性を有する熱可塑性樹脂を含有する紫外線吸収層の軟化成分により、側面に封止部を形成することを特徴とする。 In the method for producing a film mirror of the present invention, a heating member is pressure-bonded to the end of the film mirror and heated within a temperature range of 80 to 120 ° C., and the adhesive layer, a light-transmitting thermoplastic resin, For example, after softening an ultraviolet absorbing layer containing an acrylic resin, a sealing portion is formed on the side surface by the softened component of the eluted adhesive layer and the ultraviolet absorbing layer containing a light-transmitting thermoplastic resin. It is characterized by doing.
 図4は、本発明のフィルムミラーの製造方法に適用することができる代表的な側面部の封止方法として、フィルムミラーユニットの構成が図1に示すTypeAを用い、その封止方法を記載してある。 FIG. 4 shows a sealing method for a side surface portion that can be applied to the method for manufacturing a film mirror of the present invention, using the type A shown in FIG. It is.
 はじめに、粘着層3~ハードコート層9までを、図4に示す構成順で積層して、TypeAのフィルムミラーユニットFMUを作製する。 First, the adhesive layer 3 to the hard coat layer 9 are laminated in the order shown in FIG. 4 to produce a Type A film mirror unit FMU.
 次いで、フィルムミラーユニットFMUの端部から、Lの距離範囲をカバーするように、一対の加熱部材10A及び10Bを配置した後、圧着及び加熱を行って、フィルムミラーユニットFMUの構成層のうち、相対的にガラス転移温度Tgが低い材料により形成されている粘着層3及び紫外線吸収層8を構成している光透過性を有する熱可塑性樹脂材料を軟化して側面部へ溶出させ、封止部11を形成する。この時、溶出した軟化物をそのままの状態にすると、封止部表面が凹凸構造となるため、軟化した状態で、側面部に封止部成形部材12を押し当てて、その表面を平滑化させる方法が好ましい。また、封止部11を形成し、加熱を停止した後、加圧した状態で徐冷することが好ましい。すなわち、徐冷が完了するまでは、図4に示す端部の構成部材をその状態で保持させることが好ましい態様である、このような方法を適用することにより、フィルムミラーの反射率を損なうことなく、反射性に優れたフィルムミラーを得ることができる。 Then, the end of the film mirror unit FMU, to cover a distance range of L 2, after placing a pair of heating members 10A and 10B, by performing the crimping and heat, among the constituent layers of the film mirror unit FMU The light-transmitting thermoplastic resin material constituting the adhesive layer 3 and the ultraviolet absorbing layer 8 formed of a material having a relatively low glass transition temperature Tg is softened and eluted to the side surface, and sealed Part 11 is formed. At this time, if the eluted softened material is left as it is, the surface of the sealing portion becomes an uneven structure, and therefore the sealing portion molding member 12 is pressed against the side surface portion in the softened state to smooth the surface. The method is preferred. Moreover, after forming the sealing part 11 and stopping a heating, it is preferable to cool slowly in the pressurized state. That is, until the slow cooling is completed, it is preferable to hold the constituent members at the end portions shown in FIG. 4 in that state. By applying such a method, the reflectance of the film mirror is impaired. And a film mirror excellent in reflectivity can be obtained.
 本発明でいう徐冷とは、フィルムミラーユニット端部に対し、加熱部材による軟化処理を施して、封止部を形成した後、各構成部材(加熱部材10A及び10B、封止部成形部材12)を図4に示す加圧状態を維持しながら、加熱を停止し、自然冷却、場合によっては強制冷却を行い、所定の時間を要して、軟化状態の封止部を25℃前後の室温まで徐々に温度低下させて、固化する方法をいう。 The slow cooling referred to in the present invention means that the film mirror unit end is softened by a heating member to form a sealing portion, and then each component member ( heating members 10A and 10B, sealing portion molding member 12). 4) while maintaining the pressurized state shown in FIG. 4, heating is stopped, natural cooling is performed, and in some cases forced cooling is performed, and a predetermined time is required, and the softened sealed portion is kept at a room temperature of about 25 ° C. The temperature is gradually lowered until solidification.
 本発明のフィルムミラーの製造方法において、端部の圧着工程及び加熱に用いる加熱部材10A及び10Bを具備する具体的な装置としては、特に制限はないが、代表的な装置として、ヒートシーラー、パルスヒート装置、電磁誘導加熱接着装置を挙げることができる。その中でも、操作の簡便さの観点から、ヒートシーラーを用いることが好ましい。 In the method for producing a film mirror of the present invention, there are no particular limitations on the specific device provided with the heating members 10A and 10B used for the crimping step and heating of the end portion, but typical devices include a heat sealer, pulse Examples thereof include a heating device and an electromagnetic induction heating bonding device. Among these, it is preferable to use a heat sealer from the viewpoint of easy operation.
 本発明に適用可能なヒートシーラーとしては、例えば、富士インパルス社製のポリシーラーP-200(片側下加熱方式)等、厚物ガゼット袋用シーラーT-130K、T-230K(いずれも、上下加熱方式)、AZ-200W、AZ-300W(いずれも、上下加熱方式)、加熱温度コントロールオートシーラー OPLシリーズ(片側下加熱方式、上下加熱方式)、Fi-WAシリーズ(片側下加熱方式、上下加熱方式)、CAシリーズ、CVシリーズ((片側下加熱方式、上下加熱方式)等が挙げられる。これらのヒートシーラーのシール幅(図4におけるL+L)は、2~10mmの範囲内である。その他には、太陽電気産業社製のヒートシーラーHS-300、HS-400、HS-400等を挙げることができる。 Examples of heat sealers applicable to the present invention include thicker gusset bag sealers T-130K and T-230K (both of which are heated up and down), such as policy impulser P-200 (one side lower heating method) manufactured by Fuji Impulse. Method), AZ-200W, AZ-300W (all up and down heating methods), heating temperature control auto sealer OPL series (one side lower heating method, up and down heating method), Fi-WA series (one side lower heating method and up and down heating method) ), CA series, CV series ((one side lower heating method, upper and lower heating method), etc. The seal width (L 2 + L 3 in FIG. 4) of these heat sealers is in the range of 2 to 10 mm. Other examples include heat sealers HS-300, HS-400, HS-400 manufactured by Taiyo Electric Industry Co., Ltd.
 本発明においては、図4に示すように、加熱部材10A及び10Bにより、フィルムミラー端部を挟持して加熱圧着処理を行うが、加熱は、加熱部材10A及び10Bのいずれか一方、あるいは双方で加熱を行っても良い。 In the present invention, as shown in FIG. 4, the end of the film mirror is sandwiched between the heating members 10 </ b> A and 10 </ b> B, and the thermocompression treatment is performed, but the heating is performed by one or both of the heating members 10 </ b> A and 10 </ b> B. Heating may be performed.
 本発明のフィルムミラーの製造方法において、端部の加熱及び加圧により側面部に封止部11を形成するが、封止部11を形成する際の制御因子としては、主には、加熱温度、加圧条件及びその処理時間が挙げられる。 In the manufacturing method of the film mirror of the present invention, the sealing portion 11 is formed on the side surface portion by heating and pressurizing the end portion. As a control factor when forming the sealing portion 11, the heating temperature is mainly used. , Pressure conditions and processing time thereof.
 第1の制御因子である加熱温度として、本発明では80~120℃の温度範囲で行うことを特徴とするが、好ましくは100~120℃の温度範囲である。 In the present invention, the heating temperature which is the first control factor is characterized in that it is carried out in a temperature range of 80 to 120 ° C., preferably in the temperature range of 100 to 120 ° C.
 すなわち、本発明においては、端部を加熱部材により80~120℃の温度範囲に加熱して、粘着層及び紫外線吸収層を軟化させ、その側面部に樹脂成分を滲みださせて、封止部を形成することを特徴としている。従って、封止部を構成する粘着層及び紫外線吸収層においては、軟化させるための条件を満たすための指針としては、軟化温度、あるいはガラス転移温度Tgが80~120℃の範囲内にある光透過性を有する熱可塑性樹脂材料を選択することが重要である。 That is, in the present invention, the end portion is heated to a temperature range of 80 to 120 ° C. by the heating member to soften the adhesive layer and the ultraviolet absorbing layer, and the resin component is oozed out on the side surface portion to It is characterized by forming. Therefore, in the pressure-sensitive adhesive layer and the ultraviolet absorbing layer constituting the sealing portion, as a guideline for satisfying the conditions for softening, the light transmission with the softening temperature or the glass transition temperature Tg within the range of 80 to 120 ° C. It is important to select a thermoplastic resin material having properties.
 すなわち、端部の加熱条件を、上記で規定する温度範囲内に設定することにより、粘着層及び紫外線吸収層を構成する材料としては、例えば、アクリル系樹脂が、熱劣化することなく、再成形可能な軟化状態となり、所望の封止形状を形成することができる点で好ましい。従って、適用している樹脂材料のガラス転移温度Tg以上で、かつ着色、発泡、あるいは焼付け等が生じない温度以下で加熱することが好ましい。 That is, by setting the heating condition of the end portion within the temperature range specified above, as a material constituting the adhesive layer and the ultraviolet absorbing layer, for example, an acrylic resin is remolded without thermal deterioration. It is preferable in that it can be softened and a desired sealing shape can be formed. Accordingly, it is preferable to heat at a temperature not lower than the glass transition temperature Tg of the applied resin material and not causing coloring, foaming, baking, or the like.
 第2の制御因子である加圧条件としては、特に制限はないが、0.1~1.0MPaの範囲内であることが好ましく、より好ましくは0.2~0.5MPaの範囲内であり、更に好ましくは0.2~0.4MPaの範囲内である。 The pressurizing condition as the second control factor is not particularly limited, but is preferably in the range of 0.1 to 1.0 MPa, more preferably in the range of 0.2 to 0.5 MPa. More preferably, it is in the range of 0.2 to 0.4 MPa.
 第3の制御因子である加熱加圧時間としては、設定する加熱温度により変化するが、概ね0.1~30秒の範囲内であり、1~20秒の範囲内であることが好ましく、生産効率等を考慮すると、より好ましくは1~10秒の範囲内である。 The heating and pressurizing time, which is the third control factor, varies depending on the heating temperature to be set, but is generally within the range of 0.1 to 30 seconds, preferably within the range of 1 to 20 seconds. In consideration of efficiency and the like, it is more preferably in the range of 1 to 10 seconds.
 図4において、加熱部材10A及び10Bの幅(L+L)は、概ね2~10mmの範囲内である。 In FIG. 4, the width (L 2 + L 3 ) of the heating members 10A and 10B is approximately in the range of 2 to 10 mm.
 このような加熱部材を、フィルムミラーユニットFMUの端部に接触させる場合の端部加熱領域Lとしては、0.1~5mmの範囲内であることが好ましく、より好ましくは0.5~3mmの範囲内であり、特に好ましくは0.5~1.5mmの範囲内である。 Such heating member, the end heating area L 2 in the case of contacting the end portion of the film mirror unit FMU, preferably in the range of 0.1 ~ 5 mm, more preferably 0.5 ~ 3 mm And particularly preferably within the range of 0.5 to 1.5 mm.
 図4で示すように、フィルムミラーユニットFMUの端部から封止部成形部材12までの空間Vに、軟化した粘着層3及び紫外線吸収層8の構成材料が溶出して封止部11を形成するが、その封止部11の厚さLとしては、0.5~5mmの範囲内であることが好ましく、より好ましくは0.5~3mmの範囲内であり、特に好ましくは1.0~3mmの範囲内である。 As shown in FIG. 4, the constituent material of the softened adhesive layer 3 and the ultraviolet absorbing layer 8 is eluted in the space V from the end of the film mirror unit FMU to the sealing portion molding member 12 to form the sealing portion 11. However, the thickness L 3 of the sealing portion 11 is preferably in the range of 0.5 to 5 mm, more preferably in the range of 0.5 to 3 mm, and particularly preferably 1.0. Within 3 mm.
 封止部11の厚さLは、加熱部材10A及び10Bの幅と端部加熱領域Lと、粘着層3の厚さhd1及びアクリル樹脂層8の厚さhd2により決定される。 The thickness L 3 of the sealing portion 11, the width of the heating member 10A and 10B and the end heating area L 2, is determined by the thickness hd1 and thickness hd2 acrylic resin layer 8 of adhesive layer 3.
 図5は、図4において、封止部11を形成し、冷却した後、加熱部材10A及び10Bと封止部成形部材12を取り除いた状態で、側面部に封止部11を形成したフィルムミラーユニットFMUの形態を示しており、Lが封止部の厚さである。 FIG. 5 shows a film mirror in which the sealing portion 11 is formed on the side surface portion after the heating members 10A and 10B and the sealing portion molding member 12 are removed after the sealing portion 11 is formed and cooled in FIG. shows the form of a unit FMU, L 3 is a thickness of the sealing portion.
 次いで、図を用いて、上記説明した封止部形成の工程フローについて、更に手順を追ってその詳細を説明する。 Next, the details of the above-described process flow for forming the sealing portion will be described with reference to the drawings.
 図6は、側面部に封止構造を形成する本発明のフィルムミラーの製造方法のプロセスの一例を示す模式図である。 FIG. 6 is a schematic diagram showing an example of the process of the method for producing a film mirror of the present invention in which a sealing structure is formed on the side surface.
 図6のaに示すように、粘着層3、光熱反射ユニット2A、光透過性を有する熱可塑性樹脂を含有する紫外線吸収層8及びハードコート層9から構成されるTypeAのフィルムミラーユニットFMUの端部に、一対の加熱部材10A及び10Bを、所定の端部幅(L)位置に配置する。 As shown to a of FIG. 6, the edge of the TypeA film mirror unit FMU which consists of the adhesion layer 3, the photothermal reflection unit 2A, the ultraviolet absorption layer 8 containing the thermoplastic resin which has a light transmittance, and the hard-coat layer 9 A pair of heating members 10 </ b > A and 10 </ b > B are disposed at a predetermined end width (L 2 ) position.
 次いで、図6のbに示すように、フィルムミラーユニットFMUの端部を、一対の加熱部材10A及び10Bで挟持し、加圧した状態で加熱して、粘着層3及び光透過性を有する熱可塑性樹脂を含有する紫外線吸収層8の端部軟化成分を、矢印方向に押し出しして、封止部11を形成する。 Next, as shown in FIG. 6b, the end portion of the film mirror unit FMU is sandwiched between a pair of heating members 10A and 10B and heated in a pressurized state to heat the pressure-sensitive adhesive layer 3 and light transmissive. The end softening component of the ultraviolet absorbing layer 8 containing a plastic resin is extruded in the direction of the arrow to form the sealing portion 11.
 このような状態では、封止部11の表面は、図6のbに示すように不定形を呈しているため、図6のcに示すように、封止部成形部材12を押し当てて、平滑化処理を施す。 In such a state, since the surface of the sealing portion 11 has an indefinite shape as shown in FIG. 6 b, as shown in FIG. A smoothing process is performed.
 図6においては、工程bと工程cとに分割して説明したが、加圧した状態で加熱して、粘着層3及び光透過性を有する熱可塑性樹脂を含有する紫外線吸収層8の端部軟化成分を押し出しする際に、予め図6のcに示すように、封止部成形部材12を設けた状態で行っても良い。 In FIG. 6, although it divided | segmented and demonstrated to the process b and the process c, it heated in the pressurized state, and the edge part of the ultraviolet absorption layer 8 containing the adhesive layer 3 and the thermoplastic resin which has a light transmittance When extruding the softening component, as shown in c of FIG. 6, it may be performed in a state where the sealing portion forming member 12 is provided in advance.
 封止部11を形成した後は、図6のdに示すように、加熱部材10A及び10Bと封止部成形部材12を取り除いた状態で、側面部に封止部11を形成したフィルムミラーユニットFMUが得られる。 After forming the sealing part 11, as shown in FIG. 6 d, the film mirror unit in which the sealing part 11 is formed on the side surface part with the heating members 10 </ b> A and 10 </ b> B and the sealing part forming member 12 removed. FMU is obtained.
 図7は、図2で示したTypeBのフィルムミラーユニットFMUに封止部11を形成した状態を示しており、封止部11の形成方法としては、上記図4~図6で説明した方法と同様である。 FIG. 7 shows a state in which the sealing portion 11 is formed on the Type B film mirror unit FMU shown in FIG. 2. The method for forming the sealing portion 11 includes the method described in FIGS. It is the same.
 〔フィルムミラーの構成要素〕
 本発明に係るフィルムミラーユニットとは、少なくとも粘着層、光熱反射層、光熱反射層形成用支持体、光透過性を有する熱可塑性樹脂、好ましくはアクリル系樹脂を含有する紫外線吸収層及びハードコート層から構成されているフィルム状のミラーをいう。
[Components of film mirror]
The film mirror unit according to the present invention includes at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, a light transmitting thermoplastic resin, preferably an ultraviolet absorbing layer and a hard coat layer containing an acrylic resin. A film-like mirror composed of
 フィルムミラーユニットの厚さは50~500μmの範囲内であることが好ましく、より好ましくは80~300μmの範囲内であり、更に好ましくは80~170μmの範囲内である。フィルムミラーユニットの厚さを50μm以上にすることにより、フィルムミラーユニットを樹脂基材あるいは金属基材等に接合させた時に、ミラーが撓むことなく、良好な反射効率を得やすくなる。また、フィルムミラーユニットの厚さを500μm以下とすることにより、取り扱い性が良好になる。フィルムミラーユニットには平面性があるため、ロール・to・ロールで製造することも可能であり、製造費用の観点から好ましく用いられる方式である。また、フィルムミラーユニットは、用いられる材質や、厚さが50~500μmの範囲内であることから、非常に軽量であるといえる。更に、フィルムミラーユニットは、ガラスとは異なり割れる等の問題が発生せず、柔軟性を有する。つまり、フィルムミラーユニットは、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することができるという特徴を有している。 The thickness of the film mirror unit is preferably in the range of 50 to 500 μm, more preferably in the range of 80 to 300 μm, and still more preferably in the range of 80 to 170 μm. By setting the thickness of the film mirror unit to 50 μm or more, when the film mirror unit is bonded to a resin base material or a metal base material, it is easy to obtain good reflection efficiency without the mirror being bent. Moreover, handling property becomes favorable by the thickness of a film mirror unit being 500 micrometers or less. Since the film mirror unit has flatness, it can be manufactured in a roll-to-roll manner, which is preferably used from the viewpoint of manufacturing cost. The film mirror unit can be said to be very lightweight because the material used and the thickness are in the range of 50 to 500 μm. Further, unlike the glass, the film mirror unit does not have a problem such as cracking and has flexibility. That is, the film mirror unit has the characteristics that it is lightweight and flexible, and can be manufactured with a large area and mass production while suppressing manufacturing costs.
 また、フィルムミラーユニットは、粘着層、光熱反射層、光熱反射層形成用支持体、光透過性を有する熱可塑性樹脂を含有する紫外線吸収層、ハードコート層以外の層を有していてもよい。 Further, the film mirror unit may have a layer other than an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer containing a light-transmitting thermoplastic resin, and a hard coat layer. .
 フィルムミラーユニットの表面粗さRaは、0.01~0.1μmの範囲内が好ましく、より好ましくは0.02~0.07μmの範囲内である。フィルムミラーユニットの表面粗さが0.01μm以上であれば、輸送時や太陽光反射用ミラーの組み立て時や調整時に、誤って指でその表面を触ってしまったとしても、指紋が付着して、反射効率が低下することを防止できる。また、フィルムミラーユニットは、凹面状の形状にして用いる場合が想定される。その場合、表面粗さRaが粗くても凹面状の形状によって反射効率の低下を防止することができる。なお、フィルムミラーユニットや太陽光反射用ミラーの表面の粗さやフィルムミラーユニットを構成する各層の粗さは、その層の粗さだけでなく、隣接する層から離れている層の影響を含めた総合的な影響によって決まる。 The surface roughness Ra of the film mirror unit is preferably in the range of 0.01 to 0.1 μm, more preferably in the range of 0.02 to 0.07 μm. If the surface roughness of the film mirror unit is 0.01 μm or more, even if the surface is accidentally touched with a finger during transportation or when assembling or adjusting the solar reflective mirror, fingerprints will adhere. It is possible to prevent the reflection efficiency from being lowered. Further, it is assumed that the film mirror unit is used in a concave shape. In that case, even if the surface roughness Ra is rough, the reflection shape can be prevented from being lowered by the concave shape. In addition, the roughness of the surface of the film mirror unit and the mirror for sunlight reflection and the roughness of each layer constituting the film mirror unit include not only the roughness of the layer but also the influence of the layer separated from the adjacent layer. It depends on the overall influence.
 また、フィルムミラーユニットを中心部直交方向から見た形状は、特に制限されないが、円状、楕円状、正方形や長方形等の四角形状、正六角形状等の形状であることが好ましい。フィルムミラーユニットの中心部とは、円状の場合はその中心近辺、四角形状の場合は対角線の交点近辺、正六角形状の場合も対角線の交点近辺であることが好ましい。 The shape of the film mirror unit viewed from the direction perpendicular to the center is not particularly limited, but is preferably a circle, an ellipse, a quadrangle such as a square or a rectangle, or a regular hexagon. The central portion of the film mirror unit is preferably near the center of the circle in the case of a circle, near the intersection of diagonal lines in the case of a square shape, and near the intersection of diagonal lines in the case of a regular hexagon.
 (光熱反射層形成支持体)
 フィルムミラーユニットFMUで用いる光熱反射層形成支持体7としては、従来公知の種々の可撓性を有する支持体を用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエチレンテレフタレート等のポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルム、アクリルフィルムが好ましい。特にポリエチレンテレフタレート等のポリエステル系フィルム又はアクリルフィルムを用いることが好ましく、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
(Photothermal reflection layer forming support)
As the photothermal reflective layer forming support 7 used in the film mirror unit FMU, conventionally known supports having various flexibility can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, polycarbonate films, polyester films such as polyethylene terephthalate, norbornene resin films, cellulose ester films, and acrylic films are preferable. In particular, it is preferable to use a polyester film such as polyethylene terephthalate or an acrylic film, and it may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
 支持体表面には、面上に設けられる層等との密着性を向上させるために、コロナ放電処理、プラズマ処理等が施されていてもよい。 The surface of the support may be subjected to corona discharge treatment, plasma treatment or the like in order to improve adhesion with a layer or the like provided on the surface.
 また、支持体には、ベンゾトリアゾール系、ベンゾフェノン系、トリアジン系、シアノアクリレート系、ポリマー型の紫外線吸収剤のうちいずれかを含むことが好ましい。なお、紫外線吸収剤の具体的化合物としては、後述する紫外線吸収層も用いることができる紫外線吸収剤を挙げることができる。 The support preferably contains any one of benzotriazole, benzophenone, triazine, cyanoacrylate, and polymer type ultraviolet absorbers. In addition, as a specific compound of an ultraviolet absorber, the ultraviolet absorber which can also use the ultraviolet absorption layer mentioned later can be mentioned.
 光熱反射層形成支持体7の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10~250μmの範囲内である。好ましくは20~200μmである。 It is preferable that the thickness of the photothermal reflective layer forming support 7 is an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 250 μm. The thickness is preferably 20 to 200 μm.
 (光熱反射層)
 本発明に係る光熱反射層(以下、単に「反射層」ともいう)は、太陽光を反射する機能を有する金属等から構成される層である。光熱反射層の表面反射率は、好ましくは80%以上、より好ましくは90%以上である。光熱反射層は、樹脂基材が、太陽光線により樹脂が劣化することを防止する目的から、光入射側に配置することが好ましい。
(Photothermal reflection layer)
The photothermal reflection layer (hereinafter also simply referred to as “reflection layer”) according to the present invention is a layer composed of a metal or the like having a function of reflecting sunlight. The surface reflectance of the photothermal reflection layer is preferably 80% or more, more preferably 90% or more. The light heat reflecting layer is preferably disposed on the light incident side for the purpose of preventing the resin base material from being deteriorated by sunlight.
 光熱反射層の厚さは、反射率等の観点から、10~200nmの範囲内が好ましく、より好ましくは30~150nmの範囲内である。反射層の膜厚が10nm以上とすることは、膜厚が十分なため、光を透過してしまうことがなく、フィルムミラーユニットの可視光領域での反射率を十分確保できるため好ましい。また、200nm程度までは膜厚に比例して反射率も大きくなるが、200nm以上になると、反射率は膜厚に依存しない。 The thickness of the photothermal reflection layer is preferably in the range of 10 to 200 nm, more preferably in the range of 30 to 150 nm, from the viewpoint of reflectivity and the like. It is preferable that the thickness of the reflective layer be 10 nm or more because the film thickness is sufficient, so that light is not transmitted and sufficient reflectivity in the visible light region of the film mirror unit can be secured. Further, the reflectance increases in proportion to the film thickness up to about 200 nm. However, when the thickness exceeds 200 nm, the reflectance does not depend on the film thickness.
 反射層の表面粗さRaは0.01~0.1μmの範囲内であることが好ましく、更に好ましくは0.02~0.07μmの範囲内である。反射層の表面粗さRaが0.01μm以上とすることにより、その粗さに起因してフィルムミラーユニット表面も粗くなるため、フィルムミラーユニットの生産段階において、連続的に製膜するロール・トゥ・ロール方式を用いた場合でも、フィルムミラーユニットの反射層とその入射光側の隣接層におけるブロッキングなどの貼りつきを防止することができる。また、表面が粗くなると反射光が散乱する恐れがあるが、反射層を有するフィルムミラーユニットは凹面状の形状を有しているので、表面粗さRaが0.1μm以下であればフィルムミラーユニットを凹面状の形状にすることによって反射効率の低下を防止することができる。 The surface roughness Ra of the reflective layer is preferably in the range of 0.01 to 0.1 μm, more preferably in the range of 0.02 to 0.07 μm. By setting the surface roughness Ra of the reflective layer to 0.01 μm or more, the surface of the film mirror unit also becomes rough due to the roughness. Even when the roll method is used, sticking such as blocking in the reflective layer of the film mirror unit and the adjacent layer on the incident light side can be prevented. Further, when the surface becomes rough, the reflected light may be scattered. However, since the film mirror unit having the reflective layer has a concave shape, the film mirror unit has a surface roughness Ra of 0.1 μm or less. By making the surface into a concave shape, it is possible to prevent a reduction in reflection efficiency.
 反射層は、アルミニウム、銀、クロム、ニッケル、チタン、マグネシウム、ロジウム、プラチナ、パラジウム、スズ、ガリウム、インジウム、ビスマス及び金からなる元素群の中から選ばれるいずれかの元素を含む材料として形成されることが好ましい。中でも、反射率、耐食性の観点からアルミニウム又は銀を主成分としていることが好ましく、このような金属の薄膜を二層以上形成するようにしてもよい。そうすることにより、フィルムミラーユニットの赤外域から可視光領域での反射率を高め、入射角による反射率の依存性を低減できる。赤外域から可視光領域とは、2500~400nmの波長領域を意味する。入射角とは、膜面に対して垂直な線(法線)に対する角度を意味する。その中でも、特に、銀を主成分とする銀反射層とすることが好ましい。 The reflective layer is formed as a material containing any element selected from the group consisting of aluminum, silver, chromium, nickel, titanium, magnesium, rhodium, platinum, palladium, tin, gallium, indium, bismuth and gold. It is preferable. Among these, aluminum or silver is preferably the main component from the viewpoint of reflectance and corrosion resistance, and two or more such metal thin films may be formed. By doing so, the reflectance from the infrared region to the visible light region of the film mirror unit can be increased, and the dependency of the reflectance on the incident angle can be reduced. From the infrared region to the visible light region means a wavelength region of 2500 to 400 nm. The incident angle means an angle with respect to a line (normal line) perpendicular to the film surface. Among these, it is particularly preferable to use a silver reflective layer mainly composed of silver.
 反射層の形成法としては、湿式法及び乾式法のどちらも使用することができる。 As a method for forming the reflective layer, either a wet method or a dry method can be used.
 湿式法とは、めっき法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例を挙げるとすれば、銀鏡反応などがある。 The wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
 一方、乾式法とは、真空製膜法の総称であり、具体的には、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。とりわけ、本発明には、連続的に製膜するロール・トゥ・ロール方式が可能な蒸着法が好ましく用いられる。例えば、太陽光反射用のフィルムミラーユニットの製造方法においては、反射層を蒸着によって形成する製造方法であることが好ましい。 On the other hand, the dry method is a general term for a vacuum film forming method, and specifically includes a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method. and so on. In particular, in the present invention, a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used. For example, in the manufacturing method of the film mirror unit for sunlight reflection, it is preferable that it is a manufacturing method which forms a reflection layer by vapor deposition.
 また、光熱反射層の耐久性を向上させる観点から、上記元素群から2種以上の金属を選び合金としてもよい。反射率の観点を考慮し、反射層を銀合金からなる膜とする場合には、反射層における銀と他の金属との合計(100原子%)中、銀は90~99.8原子%の範囲内とすることが好ましい。また、他の金属は、耐久性の点から0.2~10原子%が好ましい。この場合の他の金属としては、高温耐湿性、反射率の点から、特に金が好ましい。 Also, from the viewpoint of improving the durability of the photothermal reflection layer, two or more metals may be selected from the above element group and used as an alloy. Considering the viewpoint of reflectivity, when the reflective layer is a film made of a silver alloy, silver is 90 to 99.8 atomic% in the total (100 atomic%) of silver and other metals in the reflective layer. It is preferable to be within the range. Further, the other metal is preferably 0.2 to 10 atomic% from the viewpoint of durability. As the other metal in this case, gold is particularly preferable from the viewpoint of high temperature humidity resistance and reflectance.
 本発明に係る光熱反射層としては、特に銀反射層を適用することが好ましい。銀反射層を形成する際には、乾式法や湿式法以外に、配位子が気化・脱離しうる銀錯体化合物を含有する塗布膜を加熱焼成することにより形成方法を適用してもよい。 It is particularly preferable to apply a silver reflective layer as the photothermal reflective layer according to the present invention. When forming a silver reflective layer, you may apply the formation method by heat-baking the coating film containing the silver complex compound which a ligand can vaporize and detach | desorb other than a dry method or a wet method.
 なお、この湿式方法による光熱反射層の形成方法としては、例えば、国際公開第2013/103139号の段落(0035)~同(0056)に記載されている内容を参照することができる。 In addition, as a formation method of the photothermal reflective layer by this wet method, the content described in the paragraph (0035)-the same (0056) of international publication 2013/103139 can be referred, for example.
 (アンカー層)
 アンカー層6及び6Aは、それぞれ樹脂材料より構成され、光熱反射層5に隣接して設ける場合には、例えば、光熱反射層形成支持体7と光熱反射層5とを密着する密着性を高めることができる。また、紫外線吸収層8と光熱反射層形成支持体7とを密着する際の密着性を高めることができる。
(Anchor layer)
When the anchor layers 6 and 6A are each made of a resin material and are provided adjacent to the photothermal reflection layer 5, for example, the adhesion between the photothermal reflection layer forming support 7 and the photothermal reflection layer 5 is improved. Can do. Moreover, the adhesiveness at the time of closely_contact | adhering the ultraviolet absorption layer 8 and the photothermal reflective layer formation support body 7 can be improved.
 アンカー層6及び6Aに使用する樹脂材料は、上記の密着性、耐熱性、及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用できる。耐候性の点からポリエステル系樹脂とメラミン系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂がより好ましい。 The resin material used for the anchor layers 6 and 6A is not particularly limited as long as it satisfies the above adhesiveness, heat resistance, and smoothness conditions. The polyester resin, acrylic resin, melamine resin, epoxy Resins, polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, or the like, or a mixture thereof can be used. From the viewpoint of weather resistance, a mixed resin of a polyester resin and a melamine resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
 アンカー層6及び6Aは、所定の樹脂材料を塗布、塗工するグラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法等により形成できる。 The anchor layers 6 and 6A can be formed by a conventionally known coating method such as a gravure coating method, a reverse coating method, a die coating method, or the like in which a predetermined resin material is applied and applied.
 アンカー層6及び6Aの厚さは、0.01~3μmが好ましく、より好ましくは0.1~1μmである。厚さを0.01μm以上とすることにより、密着性を維持でき、また、光熱反射層形成支持体7表面の凹凸を覆い隠すことで、平滑性が向上し、結果的に光熱反射層5の反射率を高くすることができる。また、厚さが3μm以下であれば、十分な密着性を発現でき、層間剥離を起こし難くなり、かつ塗りムラの発生による平滑性の劣化を防止できる。 The thickness of the anchor layers 6 and 6A is preferably 0.01 to 3 μm, more preferably 0.1 to 1 μm. By making the thickness 0.01 μm or more, adhesion can be maintained, and by covering up the unevenness on the surface of the photothermal reflection layer forming support 7, smoothness is improved, and as a result, the photothermal reflection layer 5 The reflectance can be increased. In addition, when the thickness is 3 μm or less, sufficient adhesion can be exhibited, delamination does not easily occur, and deterioration of smoothness due to occurrence of coating unevenness can be prevented.
 (紫外線吸収層)
 紫外線吸収層8は、太陽光や紫外線によるフィルムミラーの劣化防止の目的で紫外線吸収剤を含有し、更に構成成分として光透過性を有する熱可塑性樹脂を含有する層であり、好ましくは、アクリル系樹脂を含有する層である。紫外線吸収層8は、光熱反射層形成支持体6よりも光入射側に設けることが好ましく、光熱反射層5よりも光入射側に設けることが好ましい。
(UV absorbing layer)
The ultraviolet absorbing layer 8 is a layer containing an ultraviolet absorber for the purpose of preventing deterioration of the film mirror due to sunlight or ultraviolet rays, and further containing a light-transmitting thermoplastic resin as a constituent component, and preferably an acrylic type It is a layer containing a resin. The ultraviolet absorbing layer 8 is preferably provided on the light incident side with respect to the photothermal reflection layer forming support 6, and is preferably provided on the light incident side with respect to the photothermal reflection layer 5.
 紫外線吸収剤層は、タッキング性を有する場合が多いため、ブロッキングしにくい紫外線吸収剤層を得るためには、可塑剤の微粒子を含有させてもよい。可塑剤の微粒子の好ましい例としては、例えば、ブチルゴムやブチルアクリレートの微粒子などが挙げられる。紫外線吸収層の厚さは、20~150μmであると入射光の透過率やフィルムミラーに適度な表面粗さを付与することができるため好ましい。より好ましくは、20~100μmである。また、紫外線吸収層には、紫外線吸収剤のほかに、酸化防止剤等を添加してもよい。 Since the ultraviolet absorber layer often has tackiness, it may contain fine particles of a plasticizer in order to obtain an ultraviolet absorber layer that is difficult to block. Preferable examples of the plasticizer fine particles include butyl rubber and butyl acrylate fine particles. The thickness of the ultraviolet absorbing layer is preferably 20 to 150 μm because it can provide an appropriate transmittance to the incident light and a suitable surface roughness to the film mirror. More preferably, it is 20 to 100 μm. In addition to the ultraviolet absorber, an antioxidant or the like may be added to the ultraviolet absorbing layer.
 本発明に適用可能な熱可塑性樹脂としては、特に制限されないが、薄膜を形成した際に透明性を維持しうる、従来公知の種々の合成樹脂を用いることができる。例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、及びセルロースジアセテート、セルローストリアセテート(略称:TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(略称:CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(略称:PES)、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。 The thermoplastic resin applicable to the present invention is not particularly limited, and various conventionally known synthetic resins that can maintain transparency when a thin film is formed can be used. For example, polyesters such as polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN), polyethylene, polypropylene, cellophane, and cellulose diacetate, cellulose triacetate (abbreviation: TAC), cellulose acetate butyrate, cellulose acetate propio Nate (abbreviation: CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, poly Ether ketone, polyimide, polyethersulfone (abbreviation: PES), polysulfones, polyetherke N'imido, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, cycloolefin resins such as ARTON (trade name JSR Corp.) or APEL (trade name Mitsui Chemicals, Inc.).
 本発明に係る紫外線吸収層においては、光透過性を有する熱可塑性樹脂として、好ましくはアクリル系樹脂を含有し、更に詳しくは、メタクリル樹脂を主要構成樹脂とすることが、屈折率起因による界面反射損失を少なくし、透過率を確保すると共に、光劣化を抑制することができる観点から好ましい。 The ultraviolet absorbing layer according to the present invention preferably contains an acrylic resin as the light-transmitting thermoplastic resin, and more specifically, methacrylic resin as the main constituent resin is the interface reflection due to the refractive index. It is preferable from the viewpoint of reducing loss, ensuring transmittance, and suppressing light deterioration.
 メタクリル樹脂は、メタクリル酸エステルを主体とする重合体であり、メタクリル酸エステルの単独重合体であってもよいし、メタクリル酸エステル50質量%以上と、これ以外の単量体50質量%以下との共重合体であってもよい。ここで、メタクリル酸エステルとしては、通常、メタクリル酸のアルキルエステルが用いられる。特に好ましく用いられるメタクリル樹脂は、ポリメタクリル酸メチル樹脂(PMMA)である。 The methacrylic resin is a polymer mainly composed of methacrylic acid ester, and may be a homopolymer of methacrylic acid ester, 50% by mass or more of methacrylic acid ester, and 50% by mass or less of other monomers. The copolymer may be used. Here, as the methacrylic acid ester, an alkyl ester of methacrylic acid is usually used. A particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA).
 メタクリル樹脂の好ましい単量体組成は、全単量体を基準として、メタクリル酸エステルが50~100質量%、アクリル酸エステルが0~50質量%、これら以外の単量体が0~49質量%であり、より好ましくは、メタクリル酸エステルが50~99.9質量%、アクリル酸エステルが0.1~50質量%、これら以外の単量体が0~49質量%である。 The preferred monomer composition of the methacrylic resin is 50 to 100% by weight of methacrylic acid ester, 0 to 50% by weight of acrylic acid ester, and 0 to 49% by weight of other monomers based on the total monomers. More preferably, methacrylic acid ester is 50 to 99.9% by mass, acrylic acid ester is 0.1 to 50% by mass, and other monomers are 0 to 49% by mass.
 ここで、メタクリル酸アルキルの例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1~8、好ましくは1~4である。中でもメタクリル酸メチルが好ましく用いられる。 Here, examples of the alkyl methacrylate include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate and the like, and the alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. It is. Of these, methyl methacrylate is preferably used.
 また、アクリル酸アルキルの例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルなどが挙げられ、そのアルキル基の炭素数は通常1~8、好ましくは1~4である。 Examples of alkyl acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and the like. The alkyl group usually has 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms. is there.
 また、メタクリル酸アルキル及びアクリル酸アルキル以外の単量体は、単官能単量体、すなわち分子内に重合性の炭素-炭素二重結合を1個有する化合物であってもよいし、多官能単量体、すなわち分子内に重合性の炭素-炭素二重結合を少なくとも2個有する化合物であってもよいが、単官能単量体が好ましく用いられる。そして、この単官能単量体の例としては、スチレン、α-メチルスチレン、ビニルトルエンの如き芳香族アルケニル化合物、アクリロニトリル、メタクリロニトリルの如きアルケニルシアン化合物などが挙げられる。また、多官能単量体の例としては、エチレングリコールジメタクリレート、ブタンジオールジメタクリレート、トリメチロールプロパントリアクリレートの如き多価アルコールのポリ不飽和カルボン酸エステル、アクリル酸アリル、メタクリル酸アリル、ケイ皮酸アリルの如き不飽和カルボン酸のアルケニルエステル、フタル酸ジアリル、マレイン酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレートの如き多塩基酸のポリアルケニルエステル、ジビニルベンゼンの如き芳香族ポリアルケニル化合物などが挙げられる。 The monomer other than alkyl methacrylate and alkyl acrylate may be a monofunctional monomer, that is, a compound having one polymerizable carbon-carbon double bond in the molecule, or a polyfunctional monofunctional monomer. Although it may be a monomer, that is, a compound having at least two polymerizable carbon-carbon double bonds in the molecule, a monofunctional monomer is preferably used. Examples of the monofunctional monomer include aromatic alkenyl compounds such as styrene, α-methylstyrene, and vinyl toluene, and alkenyl cyan compounds such as acrylonitrile and methacrylonitrile. Examples of polyfunctional monomers include polyunsaturated carboxylic acid esters of polyhydric alcohols such as ethylene glycol dimethacrylate, butanediol dimethacrylate, trimethylolpropane triacrylate, allyl acrylate, allyl methacrylate, and cinnamon. Alkenyl esters of unsaturated carboxylic acids such as allyl acids, polyalkenyl esters of polybasic acids such as diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, aromatic polyalkenyl compounds such as divinylbenzene, etc. Can be mentioned.
 なお、上記のメタクリル酸アルキル、アクリル酸アルキル、及びこれら以外の単量体は、それぞれ、必要に応じてそれらの2種以上を用いてもよい。 In addition, as for said alkyl methacrylate, alkyl acrylate, and monomers other than these, respectively, you may use those 2 or more types as needed.
 メタクリル樹脂は、フィルムミラーの耐熱性の点から、そのガラス転移温度が40℃以上であるのが好ましく、60℃以上であるのがより好ましい。このガラス転移温度は、単量体の種類やその割合を調整することにより、適宜設定することができる。 The glass transition temperature of the methacrylic resin is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, from the viewpoint of heat resistance of the film mirror. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
 メタクリル樹脂は、その単量体成分を、懸濁重合、乳化重合、塊状重合などの方法により重合させることにより、調製することができる。その際、好適なガラス転移温度を得るため、又は好適なフィルムへの成形性を示す粘度を得るため、重合時に連鎖移動剤を使用することが好ましい。連鎖移動剤の量は、単量体の種類やその割合などに応じて、適宜決定すればよい。 The methacrylic resin can be prepared by polymerizing the monomer component by a method such as suspension polymerization, emulsion polymerization, or bulk polymerization. At that time, in order to obtain a suitable glass transition temperature or to obtain a viscosity showing a formability to a suitable film, it is preferable to use a chain transfer agent during the polymerization. The amount of the chain transfer agent may be appropriately determined according to the type of monomer and the ratio thereof.
 紫外線吸収層に添加される紫外線吸収剤としては、特に制限は無いが、有機系として、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系、ベンゾエート系等が挙げられ、また無機系として、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄等が挙げられる。なお、紫外線吸収剤を多量に含有させた際にブリードアウトしてしまうという問題を低減するためには、分子量の1000以上の高分子の紫外線吸収剤を用いることが好ましい。好ましくは、分子量1000~3000の範囲内である。 The ultraviolet absorber added to the ultraviolet absorbing layer is not particularly limited, but examples of the organic type include benzophenone type, benzotriazole type, phenyl salicylate type, triazine type, benzoate type, and inorganic type. Examples include titanium, zinc oxide, cerium oxide, and iron oxide. In order to reduce the problem of bleeding out when a large amount of ultraviolet absorber is contained, it is preferable to use a polymeric ultraviolet absorber having a molecular weight of 1000 or more. Preferably, the molecular weight is in the range of 1000 to 3000.
 ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシ-ベンゾフェノン、2,2′,4,4′-テトラヒドロキシ-ベンゾフェノン等が挙げられる。 Examples of the benzophenone ultraviolet absorber include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
 ベンゾトリアゾール系紫外線吸収剤の例としては、2-(2′-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2,2′-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659;市販品の例としては、ADEKA社製のLA31)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(分子量447.6;市販品の例としてはBASFジャパン社製のチヌビン234)などが挙げられる。 Examples of benzotriazole ultraviolet absorbers include 2- (2'-hydroxy-5-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) benzotriazole 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1, 1,3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercially available products are LA31 manufactured by ADEKA), 2- (2H-benzotriazol-2-yl) -4,6-bis (1 -Methyl-1-phenylethyl) phenol (molecular weight 447.6; an example of a commercially available product is Tinuvin 234 manufactured by BASF Japan Ltd.).
 サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。 Examples of the phenyl salicylate ultraviolet absorber include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like. Examples of the hindered amine ultraviolet absorber include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
 トリアジン系紫外線吸収剤としては、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、〔2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシル)オキシフェノール〕(チヌビン1577FF、商品名、BASFジャパン社製)、〔2-[4,6-ビス(2,4ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール〕(CYASORB UV-1164、商品名、サイテックインダストリーズ社製)等が挙げられる。 Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine, [2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyl) oxyphenol] (Tinuvine 1577FF, trade name, manufactured by BASF Japan Ltd.) ), [2- [4,6-bis (2,4 dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol] (CYASORB UV-1164, trade name, Cytec) Industries, Inc.).
 また、上記ベンゾエート系紫外線吸収剤の例としては、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(分子量438.7;市販品の例としては住友化学社製のSumisorb400)等が挙げられる。 Examples of the benzoate-based ultraviolet absorber include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; examples of commercially available products) Sumisorb 400) manufactured by Sumitomo Chemical Co., Ltd.
 また、紫外線吸収剤としては上記以外に、紫外線の保有するエネルギーを分子内で振動エネルギーに変換し、その振動エネルギーを熱エネルギー等として放出する機能を有する化合物を用いることもできる。更に、酸化防止剤あるいは着色剤等との併用により効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。但し、上記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。通常の紫外線吸収剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。 In addition to the above, as the ultraviolet absorber, a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as heat energy or the like can be used. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers that act as light energy conversion agents, called quenchers, can be used in combination. However, when using the above-mentioned ultraviolet absorber, it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator. When a normal ultraviolet absorber is used, it is effective to use a photopolymerization initiator that generates radicals with visible light.
 なお、上記紫外線吸収剤は、それぞれ必要に応じてそれらの2種以上を用いることもできる。また、必要により、上記紫外線吸収剤以外の紫外線吸収剤、例えば、サリチル酸誘導体、置換アクリロニトリル、ニッケル錯体、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤などを含有させることもできる。 In addition, the said ultraviolet absorber can also use those 2 or more types as needed, respectively. Further, if necessary, an ultraviolet absorber other than the above-described ultraviolet absorber, for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, a benzophenone-based ultraviolet absorber, a triazine-based ultraviolet absorber, or the like can be contained.
 紫外線吸収剤の紫外線吸収層への添加量は、紫外線吸収層全質量に対し、0.1~20質量%の範囲内であることが好ましく、より好ましくは1~15質量%の範囲内であり、さらに好ましくは3~10質量%の範囲内である。また、紫外線吸収剤の紫外線吸収層への添加量は、フィルム単位面積当たりの添加量が0.17~2.28g/mの範囲内であることが好ましく、より好ましくは0.4~2.28g/mの範囲内である。添加量を上記の範囲にすることによって、耐候性能を十分発揮しつつ、紫外線吸収剤のブリードアウトによる、ローラーやフィルムミラーの汚れを防止できる。 The addition amount of the ultraviolet absorber to the ultraviolet absorbing layer is preferably within a range of 0.1 to 20% by mass, more preferably within a range of 1 to 15% by mass with respect to the total mass of the ultraviolet absorbing layer. More preferably, it is in the range of 3 to 10% by mass. The addition amount of the ultraviolet absorber to the ultraviolet absorption layer is preferably in the range of 0.17 to 2.28 g / m 2 , more preferably 0.4 to 2 per film unit area. Within the range of .28 g / m 2 . By making the addition amount in the above range, it is possible to prevent the roller and the film mirror from being soiled by bleeding out of the ultraviolet absorber while sufficiently exhibiting the weather resistance.
 紫外線吸収層に添加される酸化防止剤としては、光安定剤についての記載も含め、後述のハードコート層にて記載した酸化防止剤を同様に用いることができる。酸化防止剤を添加することにより、アクリル樹脂層の溶融製膜時の劣化を防止することができる。また、酸化防止剤がラジカルを捕捉することにより、アクリル樹脂層が劣化することも防止できる。 As the antioxidant added to the ultraviolet absorbing layer, the antioxidants described in the hard coat layer described later, including the description of the light stabilizer, can be used in the same manner. By adding an antioxidant, it is possible to prevent deterioration of the acrylic resin layer during melt film formation. Moreover, it can also prevent that an acrylic resin layer deteriorates because an antioxidant capture | acquires a radical.
 (ハードコート層)
 ハードコート層9は、主には、フィルムミラーユニットの最表面位置に配置され、フィルムミラーユニット表面の耐傷性、防汚性などを付加する目的で設けられる透明の層である。
(Hard coat layer)
The hard coat layer 9 is mainly a transparent layer which is disposed at the outermost surface position of the film mirror unit and is provided for the purpose of adding scratch resistance, antifouling property and the like on the surface of the film mirror unit.
 フィルムミラーユニットは、砂漠等で使用されることが多いため、紫外線や熱や風雨、砂嵐といった様々な外因に対する耐性を具備していることが好ましい。ハードコート層により、光熱反射層に用いられている金属、特に、銀膜の酸素、水蒸気、硫化水素などによる腐食、紫外線による樹脂層の劣化、フィルムミラーユニットの変色や膜剥がれなどを低減することができる。また、ハードコート層により、フィルムミラーユニットに付着した汚れをブラシなどで洗い流すことによるフィルムミラーユニット表面の傷つきも低減することができ、結果として反射効率の低下も防止できる。 Since film mirror units are often used in deserts and the like, it is preferable to have resistance to various external factors such as ultraviolet rays, heat, wind and rain, and sandstorms. The hard coat layer reduces the metal used in the photothermal reflective layer, especially corrosion of silver film by oxygen, water vapor, hydrogen sulfide, etc., deterioration of the resin layer by ultraviolet rays, discoloration of the film mirror unit and film peeling. Can do. In addition, the hard coat layer can reduce scratches on the surface of the film mirror unit caused by washing away dirt adhering to the film mirror unit with a brush or the like, and as a result, a reduction in reflection efficiency can also be prevented.
 ハードコート層の位置としてはフィルムミラーユニットの太陽光入射側の最表面部に設けられることが好ましい。ハードコート層の上に更に別の薄い層(1μm以下の厚さが好ましい)を設けてもよい。なお、ハードコート層の層厚は、0.05~10μmの範囲内であることが好ましく、より好ましくは、1.0~4μmの範囲内であり、更に好ましくは、1.5~3.0μmの範囲内である。 The position of the hard coat layer is preferably provided on the outermost surface portion on the sunlight incident side of the film mirror unit. Another thin layer (preferably a thickness of 1 μm or less) may be provided on the hard coat layer. The layer thickness of the hard coat layer is preferably in the range of 0.05 to 10 μm, more preferably in the range of 1.0 to 4 μm, and still more preferably in the range of 1.5 to 3.0 μm. Is within the range.
 ハードコート層の層厚が0.05μm以上であれば,十分な耐傷性を得ることができる。また、ハードコート層の層厚が10μm以下であれば、応力が強くなり過ぎてハードコート層が割れることを防止できる。更に、砂塵等の汚れの静電的な付着を防止する観点からも電気抵抗値を低くするため、厚さが10μm以下であることが好ましい。 If the thickness of the hard coat layer is 0.05 μm or more, sufficient scratch resistance can be obtained. Moreover, if the layer thickness of a hard-coat layer is 10 micrometers or less, it can prevent that a stress becomes too strong and a hard-coat layer cracks. Furthermore, from the viewpoint of preventing electrostatic adhesion of dirt such as dust, the thickness is preferably 10 μm or less in order to reduce the electric resistance value.
 ハードコート層の耐傷性は、鉛筆硬度がH~5Hの範囲内であり、加重500g/cmのスチールウール試験における傷が30本以下であることが好ましい。防汚性に関しては、フィルムミラーユニットの最表面の電気抵抗値が、1.0×10-3~1.0×1012Ω/□であることが好ましい。より好ましくは、3.0×10~2.0×1011Ω/□である。防汚性に関するもう一つの指標としては、ハードコート層の転落角が0°より大きく30°以下であれば、雨や結露などによってフィルムミラーユニット表面に付着する水滴が落ちやすくなるため好ましい。なお、転落角とは、水平なミラー上に水滴を滴下し、その後、当該ミラーの傾斜角を徐々に上げていき、静止していた所定質量の水滴が転落する最小の角度を計測したものをいう。転落角が小さければ小さい程、水滴が表面から転がり落ちやすく、水滴が付着しにくい疎水性表面であると言える。 Regarding the scratch resistance of the hard coat layer, it is preferable that the pencil hardness is in a range of H to 5H, and the number of scratches in a steel wool test with a load of 500 g / cm 2 is 30 or less. Regarding the antifouling property, it is preferable that the electric resistance value of the outermost surface of the film mirror unit is 1.0 × 10 −3 to 1.0 × 10 12 Ω / □. More preferably, it is 3.0 × 10 9 to 2.0 × 10 11 Ω / □. As another index regarding the antifouling property, it is preferable that the falling angle of the hard coat layer is larger than 0 ° and not larger than 30 ° because water droplets adhering to the surface of the film mirror unit are likely to fall due to rain or condensation. The falling angle refers to a value obtained by dropping a water drop on a horizontal mirror, and then gradually increasing the tilt angle of the mirror, and measuring the minimum angle at which a stationary water drop of a predetermined mass falls. Say. It can be said that the smaller the tumbling angle, the easier it is for the water droplets to roll off the surface and the hydrophobic surface to which the water droplets are less likely to adhere.
 〈ハードコート層の形成材料〉
 ハードコート層の形成材料としては、透明性、耐候性、耐傷性、防汚性が得られる層を形成できる材料であることが好ましい。
<Material for hard coat layer>
The material for forming the hard coat layer is preferably a material that can form a layer that can provide transparency, weather resistance, scratch resistance, and antifouling properties.
 ハードコート層の形成に適用可能な材料としては、例えば、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂などを挙げることができる。特に、耐傷性の観点から、シリコーン系樹脂やアクリル系樹脂が好ましい。更に、硬化性、可撓性及び生産性の点で、活性エネルギー線硬化型のアクリル系樹脂、又は熱硬化型のアクリル系樹脂も好ましい。 Examples of materials applicable to the formation of the hard coat layer include acrylic resins, urethane resins, melamine resins, epoxy resins, organic silicate compounds, and silicone resins. In particular, from the viewpoint of scratch resistance, silicone resins and acrylic resins are preferable. Furthermore, an active energy ray-curable acrylic resin or a thermosetting acrylic resin is also preferable in terms of curability, flexibility, and productivity.
 更に具体的には、例えば、電子線や紫外線の照射により硬化する樹脂や熱硬化性の樹脂等を使用でき、特にアルコキシシラン系化合物の部分加水分解オリゴマーからなる熱硬化型シリコーン系ハードコート、熱硬化型のポリシロキサン樹脂からなるハードコート、不飽和基を有するアクリル系化合物からなる紫外線硬化型アクリル系ハードコート、熱硬化型無機材料であることが好ましい。また、ハードコート層に用いることができる材料として、水性コロイダルシリカ含有アクリル樹脂(例えば、特開2005-66824号公報に記載の化合物)、ポリウレタン系樹脂組成物(例えば、特開2005-110918号公報に記載の化合物)、水性シリコーン化合物をバインダーとして用いた樹脂膜(例えば、特開2004-142161号公報に記載の化合物)、酸化チタン等の光触媒性酸化物含有シリカ膜もしくはアルミナ、アスペクト比の高い酸化チタンもしくは酸化ニオブなどの光触媒膜(例えば、特開2009-62216号公報に記載の化合物)、光触媒含有フッ素樹脂コーティング(例えば、ピアレックス・テクノロジーズ社製)、有機/無機ポリシラザン膜、有機/無機ポリシラザンに親水化促進剤(例えば、AZエレクトロニクス社製)を用いた膜、等も挙げることができる。 More specifically, for example, a resin curable by electron beam or ultraviolet irradiation, a thermosetting resin, or the like can be used. In particular, a thermosetting silicone hard coat composed of a partially hydrolyzed oligomer of an alkoxysilane compound, a heat A hard coat made of a curable polysiloxane resin, an ultraviolet curable acrylic hard coat made of an acrylic compound having an unsaturated group, and a thermosetting inorganic material are preferable. Examples of materials that can be used for the hard coat layer include aqueous colloidal silica-containing acrylic resins (for example, compounds described in JP-A-2005-66824), polyurethane-based resin compositions (for example, JP-A-2005-110918). Compound), a resin film using an aqueous silicone compound as a binder (for example, a compound described in JP-A-2004-142161), a photocatalytic oxide-containing silica film such as titanium oxide or alumina, and a high aspect ratio Photocatalyst film such as titanium oxide or niobium oxide (for example, compounds described in JP-A-2009-62216), photocatalyst-containing fluororesin coating (for example, manufactured by Pyrex Technologies), organic / inorganic polysilazane film, organic / inorganic Polysilazane and hydrophilization promoter (for example, Z Electronics Co.) membrane was used, and the like can also be mentioned.
 熱硬化型シリコーン系のハードコート層には公知の方法によって合成したアルコキシシラン化合物の部分加水分解オリゴマーを使用できる。その合成方法の一例は以下の通りである。まず、アルコキシシラン化合物としてテトラメトキシシラン、又はテトラエトキシシランを用い、これを塩酸、硝酸等の酸触媒の存在下に所定量の水を加えて、副生するアルコールを除去しながら室温から80℃で反応させる。この反応によりアルコキシシランは加水分解し、更に縮合反応により一分子中にシラノール基又はアルコキシ基を2個以上有し、平均重合度4~8のアルコキシシラン化合物の部分加水分解オリゴマーが得られる。次にこれに酢酸、マレイン酸等の硬化触媒を添加し、アルコール、グリコールエーテル系の有機溶剤に溶解させて熱硬化型シリコーン系ハードコート液が得られる。そしてこれを通常の塗料における塗装方法によりフィルムミラーユニット等の外面に塗布し、80~140℃の温度で加熱硬化することによってハードコート層を形成することができる。ただし、この場合、フィルムミラーユニットの熱変形温度以下での硬化温度の設定が前提となる。なお、テトラアルコキシシランの代わりに、ジ(アルキル又はアリール)ジアルコキシシラン、又はモノ(アルキル又はアリール)トリアルコキシシランを使用することにより、同様にポリシロキサン系のハードコート層を製造することが可能である。 For the thermosetting silicone hard coat layer, a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used. An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added to the alkoxysilane compound in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React with. By this reaction, the alkoxysilane is hydrolyzed, and further, a partially hydrolyzed oligomer of the alkoxysilane compound having an average polymerization degree of 4 to 8 having two or more silanol groups or alkoxy groups in one molecule is obtained by the condensation reaction. Next, a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. A hard coat layer can be formed by applying this to the outer surface of a film mirror unit or the like by a coating method using a normal paint, followed by heat curing at a temperature of 80 to 140 ° C. However, in this case, the setting of the curing temperature below the heat deformation temperature of the film mirror unit is a prerequisite. A polysiloxane hard coat layer can be produced in the same manner by using di (alkyl or aryl) dialkoxysilane or mono (alkyl or aryl) trialkoxysilane instead of tetraalkoxysilane. It is.
 紫外線硬化型アクリル系のハードコート層には、不飽和基を有するアクリル系化合物として、例えば、ペンタエリスリトールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールテトラ(メタ)アクリレート等の多官能(メタ)アクリレート混合物等を使用することができ、これにベンゾイン、ベンゾインメチルエーテル、ベンゾフェノン等の光重合開始剤を配合して用いる。そしてこれをフィルムミラーユニットの外面に塗布し、紫外線硬化することによってハードコート層が形成される。 For the ultraviolet curable acrylic hard coat layer, as an acrylic compound having an unsaturated group, for example, pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylol A polyfunctional (meth) acrylate mixture such as tetra (meth) acrylate or the like can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, or benzophenone is blended and used. And this is apply | coated to the outer surface of a film mirror unit, and a hard-coat layer is formed by carrying out ultraviolet curing.
 また、ハードコート層に表面処理を施して、親水性を付与することが好ましい。例えば、コロナ処理(例えば、特開平11-172028号公報に記載の方法等)、プラズマ表面処理、紫外線・オゾン処理、表面突起物形成(例えば、特開2009-226613号公報に記載の方法)、表面微細加工処理などを挙げることができる。 Further, it is preferable to impart a hydrophilic property by subjecting the hard coat layer to a surface treatment. For example, corona treatment (for example, the method described in JP-A-11-172028), plasma surface treatment, ultraviolet ray / ozone treatment, surface projection formation (for example, the method described in JP-A-2009-226613), A surface fine processing treatment can be exemplified.
 ハードコート層の形成方法としては、グラビアコート法、リバースコート法、ダイコート法等、従来公知の湿式コーティング方法が使用できる。 As a method for forming the hard coat layer, conventionally known wet coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 〈ハードコート層に適用可能な添加剤〉
 ハードコート層には、その他に、従来公知の紫外線吸収剤や酸化防止剤などの各種添加剤を含有させてもよい。
<Additives applicable to hard coat layer>
In addition, the hard coat layer may contain various additives such as conventionally known ultraviolet absorbers and antioxidants.
 〈紫外線吸収剤〉
 ハードコート層に適用可能な紫外線吸収剤としては、前述の紫外線吸収層で列挙したのと同様の紫外線吸収剤を挙げることができる。
<Ultraviolet absorber>
Examples of the ultraviolet absorber applicable to the hard coat layer include the same ultraviolet absorbers listed in the above-described ultraviolet absorbing layer.
 特に、下記に例示するUV化合物1をハードコート層に含有させることが好ましい。 In particular, it is preferable to contain the UV compound 1 exemplified below in the hard coat layer.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 なお、ハードコート層における紫外線吸収剤の使用量は、密着性を良好に保ちつつ、耐候性を良好にするために、0.1~20質量%の範囲内であることが好ましい。更に好ましくは0.25~15質量%、より好ましくは0.5~10質量%の範囲内である。 It should be noted that the amount of the UV absorber used in the hard coat layer is preferably in the range of 0.1 to 20% by mass in order to improve the weather resistance while maintaining good adhesion. More preferably, it is in the range of 0.25 to 15% by mass, more preferably 0.5 to 10% by mass.
 〈酸化防止剤〉
 酸化防止剤としては、フェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、チオール系酸化防止剤及びホスファイト系酸化防止剤など、有機系酸化防止剤を使用することが好ましい。また、酸化防止剤と光安定剤を併用してもよい。
<Antioxidant>
As the antioxidant, it is preferable to use organic antioxidants such as phenolic antioxidants, hindered amine antioxidants, thiol antioxidants, and phosphite antioxidants. Further, an antioxidant and a light stabilizer may be used in combination.
 酸化防止剤及び光安定剤としては、例えば、国際公開第2013/103139号の段落(0063)~同(0070)に記載されている化合物が使用可能である。 As the antioxidant and the light stabilizer, for example, compounds described in paragraphs (0063) to (0070) of International Publication No. 2013/103139 can be used.
 〈重合開始剤〉
 ハードコート層、特に、多官能アクリルモノマーとシリコーン樹脂を含有するハードコート層は、重合を開始するための重合開始剤を含有することが好ましい。重合開始剤には、紫外線などの活性エネルギー線硬化性樹脂の光重合開始剤が好ましく用いられる。例えば、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができる。また、重合開始剤を光増感剤と共に使用してもよい。
<Polymerization initiator>
The hard coat layer, particularly the hard coat layer containing a polyfunctional acrylic monomer and a silicone resin, preferably contains a polymerization initiator for initiating polymerization. As the polymerization initiator, a photopolymerization initiator of an active energy ray-curable resin such as ultraviolet rays is preferably used. Examples include benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and the like. Moreover, you may use a polymerization initiator with a photosensitizer.
 〈その他の添加剤〉
 ハードコート層中には、更に各種の添加剤を必要に応じて配合することができる。例えば、界面活性剤、レベリング剤及び帯電防止剤などを用いることができる。
<Other additives>
In the hard coat layer, various additives can be further blended as necessary. For example, a surfactant, a leveling agent, an antistatic agent, and the like can be used.
 また、図1に示すように、光熱反射層5の外面側には、下記に説明する各構成層を形成することができる。 Further, as shown in FIG. 1, each constituent layer described below can be formed on the outer surface side of the photothermal reflection layer 5.
 (トップコート層)
 本発明に係るフィルムミラーユニットを構成するトップコート層4は、腐食防止剤を含有している樹脂層であり、腐食防止層とも称され、特に、光熱反射層5に隣接して設けられることが好ましい。
(Topcoat layer)
The topcoat layer 4 constituting the film mirror unit according to the present invention is a resin layer containing a corrosion inhibitor and is also referred to as a corrosion prevention layer, and in particular, may be provided adjacent to the photothermal reflection layer 5. preferable.
 トップコート層4は、1層のみから構成されていてもよいし、複数層から構成されていてもよい。トップコート層4の層厚は、1~10μmの範囲内が好ましく、より好ましくは2~8μmの範囲内である。 The top coat layer 4 may be composed of only one layer, or may be composed of a plurality of layers. The layer thickness of the top coat layer 4 is preferably in the range of 1 to 10 μm, more preferably in the range of 2 to 8 μm.
 トップコート層4の形成に用いる樹脂としては、例えば、セルロースエステル、ポリエステル、ポリカーボネート、ポリアリレート、ポリスルホン(ポリエーテルスルホンも含む)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール、シンジオタクティックポリスチレン系、ポリカーボネート、ノルボルネン系、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル系樹脂等を挙げることができる。中でも、アクリル系樹脂が好ましい。 Examples of the resin used for forming the top coat layer 4 include cellulose ester, polyester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyester such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, Cellulose diacetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene, polymethylpentene, polyetherketone, polyether Ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic It can be exemplified Le resins. Of these, acrylic resins are preferred.
 これら樹脂材料(バインダー)を光熱反射層5に隣接して塗布するなどして、トップコート層4を形成することができる。 The top coat layer 4 can be formed by applying these resin materials (binders) adjacent to the photothermal reflection layer 5.
 トップコート層4が含有する腐食防止剤としては、銀に対する吸着性基を有することが好ましい。ここで、「腐食」とは、金属(銀)がそれをとり囲む環境物質によって、化学的または電気化学的に浸食されるか若しくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。 The corrosion inhibitor contained in the top coat layer 4 preferably has an adsorptive group for silver. Here, the term “corrosion” refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
 なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には0.1~1.0/mの範囲内であることが好ましい。 The optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 / m 2 .
 銀に対する吸着性基を有する腐食防止剤としては、アミン類およびその誘導体、ピロール環を有する化合物、ベンゾトリアゾール等トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系の少なくとも一種またはこれらの混合物から選ばれることが望ましい。ベンゾトリアゾール等の化合物においては、紫外線吸収剤が腐食防止剤を兼ねる場合もある。また、シリコーン変性樹脂を用いることも可能である。シリコーン変性樹脂として特に限定されない。これらの化合物としては、例えば、国際公開第2013/103139号の段落(0057)~同(0062)に記載されている化合物が使用可能である。 Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and having an imidazole ring It is desirable to be selected from a compound, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene-based compound, or a mixture thereof. In compounds such as benzotriazole, the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. It does not specifically limit as a silicone modified resin. As these compounds, for example, compounds described in paragraphs (0057) to (0062) of International Publication No. 2013/103139 can be used.
 (粘着層)
 フィルムミラーユニットFMUの粘着層3は、当該粘着層3によってフィルムミラーユニットFMUを基材に接合して、太陽光反射用ミラーを形成するための層である。なお、フィルムミラーユニットFMUは粘着層3の太陽光入射側とは逆側に、剥離シートによる層を有していてもよい。フィルムミラーユニットFMUが剥離シートによる層を有する場合、剥離シートを粘着層3から剥離した後、粘着層3を介してフィルムミラーユニットFMUを基材に接合させることができる。
(Adhesive layer)
The adhesive layer 3 of the film mirror unit FMU is a layer for joining the film mirror unit FMU to the base material by the adhesive layer 3 to form a sunlight reflecting mirror. The film mirror unit FMU may have a layer made of a release sheet on the side opposite to the sunlight incident side of the adhesive layer 3. When film mirror unit FMU has a layer by a peeling sheet, after peeling a peeling sheet from adhesion layer 3, film mirror unit FMU can be joined to a substrate via adhesion layer 3.
 粘着層3としては、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤等のいずれもが用いられる。粘着剤としては、例えば、ポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、シリコーン系樹脂、ニトリルゴム等が用いられ、特に好ましくは、アクリル系樹脂である。粘着層と基材とを接合するためのラミネート法は、特に制限されず、例えば、ロール式で連続的に行うのが経済性及び生産性の点から好ましい。また、粘着層3の厚さは、粘着効果、乾燥速度等の観点から、通常1~100μm程度の範囲であることが好ましい。厚さが1μmより大きいと充分な粘着効果が得られるため好ましく、一方100μm未満であると粘着剤層が厚すぎて乾燥速度が遅くなるということがなく、能率的である。しかも本来の粘着力が得られ、溶剤が残留するなどの弊害が生じることもない。 The adhesive layer 3 is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used. As the pressure-sensitive adhesive, for example, polyester resins, urethane resins, polyvinyl acetate resins, acrylic resins, silicone resins, nitrile rubbers, and the like are used, and acrylic resins are particularly preferable. The laminating method for joining the adhesive layer and the substrate is not particularly limited. For example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity. The thickness of the pressure-sensitive adhesive layer 3 is preferably in the range of usually about 1 to 100 μm from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like. When the thickness is larger than 1 μm, it is preferable because a sufficient adhesive effect can be obtained. On the other hand, when the thickness is smaller than 100 μm, the pressure-sensitive adhesive layer is not too thick and the drying speed is not slowed, which is efficient. In addition, the original adhesive strength can be obtained, and no adverse effects such as residual solvent can occur.
 (接着層)
 本発明では、図2に示すように、紫外線吸収層8Aとトップコート層4とを接着層3Aを介して接着する構成とすることができる。
(Adhesive layer)
In this invention, as shown in FIG. 2, it can be set as the structure which adhere | attaches the ultraviolet absorption layer 8A and the topcoat layer 4 through the contact bonding layer 3A.
 接着層3Aは、層同士の接着性を高める機能があるものであれば特に限定はない。接着層は、層同士を密着する密着性、銀反射層を真空蒸着法等で形成する時の熱にも耐え得る耐熱性、及び銀反射層が本来有する高い反射性能を引き出すための平滑性を有することが好ましい。 The adhesive layer 3A is not particularly limited as long as it has a function of improving the adhesion between the layers. Adhesive layer has adhesion to adhere the layers, heat resistance that can withstand heat when the silver reflective layer is formed by vacuum deposition, etc., and smoothness to bring out the high reflective performance that the silver reflective layer originally has. It is preferable to have.
 接着層は、1層のみから構成されていてもよいし、複数層から構成されていてもよい。接着層の層厚は、密着性、平滑性、反射材の反射率等の観点から、1~10μmの範囲内であることが好ましく、より好ましくは3~8μmの範囲内である。 The adhesive layer may be composed of only one layer, or may be composed of a plurality of layers. The layer thickness of the adhesive layer is preferably in the range of 1 to 10 μm, more preferably in the range of 3 to 8 μm, from the viewpoints of adhesion, smoothness, reflectance of the reflector, and the like.
 接着層を形成する樹脂としては、上記の密着性、耐熱性及び平滑性の条件を満足するものであれば特に制限はなく、例えば、ポリエステル系樹脂、ウレタン系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独またはこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂とメラミン系樹脂又はポリエステル系樹脂とウレタン系樹脂の混合樹脂が好ましく、さらにアクリル系樹脂にイソシアネートを混合させるような、イソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。 The resin for forming the adhesive layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness. For example, polyester resin, urethane resin, acrylic resin, melamine resin , Epoxy resins, polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, etc., or a mixture of these resins can be used. From the viewpoint of weather resistance, polyester resins and melamine resins or polyester resins And a urethane-based resin mixed resin are preferable, and a thermosetting resin in which a curing agent such as isocyanate is mixed such that an isocyanate is mixed with an acrylic resin is more preferable.
 接着層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 As a method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 (その他の構成層)
 〈ガスバリアー層〉
 光熱反射層よりも太陽光入射側にガスバリアー層を設けてもよい。ハードコート層又は光透過性を有する熱可塑性樹脂を含有する紫外線吸収層と、光熱反射層の間にガスバリアー層を設けることが好ましい。
(Other component layers)
<Gas barrier layer>
A gas barrier layer may be provided on the sunlight incident side of the photothermal reflection layer. It is preferable to provide a gas barrier layer between the hard coat layer or the ultraviolet absorbing layer containing a light-transmitting thermoplastic resin and the light-heat reflecting layer.
 ガスバリアー層は、湿度の変動、特に高湿度による光熱反射層形成支持体7及び光熱反射層形成支持体7に支持される各構成層等の劣化を防止するためのものであるが、特別の機能及び用途を持たせたものであってもよく、上記劣化防止機能を有する限りにおいて、種々の態様のガスバリアー層を設けることができる。 The gas barrier layer is intended to prevent deterioration of humidity, in particular, deterioration of the photothermal reflection layer forming support 7 and each component layer supported by the photothermal reflection layer forming support 7 due to high humidity. The gas barrier layer may be provided with a function and an application, and various types of gas barrier layers can be provided as long as it has the above-described deterioration preventing function.
 ガスバリアー層の防湿性としては、40℃、90%RHにおける水蒸気透過度が、1g/m・day以下であることが好ましく、より好ましくは0.5g/m・day以下、更に好ましくは0.2g/m・day以下である。また、ガスバリアー層の酸素透過度としては、測定温度23℃、湿度90%RHの条件下で、0.6ml/m・day・atm以下であることが好ましい。 As the moisture resistance of the gas barrier layer, the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 · day or less, more preferably 0.5 g / m 2 · day or less, still more preferably It is 0.2 g / m 2 · day or less. In addition, the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 · day · atm or less under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH.
 ガスバリアー層は、1層のみから構成されていてもよいし、複数層から構成されていてもよい。ガスバリアー層の層厚は、10~500nmの範囲内が好ましく、より好ましくは50~200nmの範囲内である。 The gas barrier layer may be composed of only one layer or may be composed of a plurality of layers. The thickness of the gas barrier layer is preferably in the range of 10 to 500 nm, more preferably in the range of 50 to 200 nm.
 ガスバリアー層の形成方法は、真空蒸着法、スパッタリング、イオンビームアシスト、化学気相成長法等の方法により無機酸化物を形成する方法が挙げられるが、ゾル-ゲル法による無機酸化物の前駆体を塗布した後に、その塗布膜に加熱処理及び/又は紫外線照射による改質処理を施して、無機酸化物膜を形成する方法も好ましく用いられる。 Examples of the method for forming the gas barrier layer include a method of forming an inorganic oxide by a method such as vacuum deposition, sputtering, ion beam assist, chemical vapor deposition, etc., but a precursor of an inorganic oxide by a sol-gel method A method of forming an inorganic oxide film by applying a heat treatment and / or a modification treatment by ultraviolet irradiation to the coating film after coating is preferably used.
 〈樹脂コート層〉
 樹脂コート層は、紫外線吸収層と光熱反射層の間に設けられていることが好ましい。樹脂コート層が光熱反射層に隣接している場合、樹脂コート層が光熱反射層の腐食を防止するよう、腐食防止剤が添加されていることが好ましい。また、樹脂コート層が紫外線吸収能を有していても良い。
<Resin coat layer>
The resin coat layer is preferably provided between the ultraviolet absorption layer and the photothermal reflection layer. When the resin coat layer is adjacent to the light heat reflective layer, a corrosion inhibitor is preferably added so that the resin coat layer prevents corrosion of the light heat reflective layer. Further, the resin coat layer may have an ultraviolet absorbing ability.
 樹脂コート層は、1層のみから構成されていてもよいし、複数層から構成されていてもよい。樹脂コート層の層厚は、0.1~10μmの範囲内が好ましく、より好ましくは2~8μmの範囲内である。 The resin coat layer may be composed of only one layer or may be composed of a plurality of layers. The layer thickness of the resin coat layer is preferably in the range of 0.1 to 10 μm, more preferably in the range of 2 to 8 μm.
 樹脂コート層のバインダーとしては、例えば、前述のトップコート層4の形成に用いる樹脂として挙げた樹脂を用いることができる。 As the binder of the resin coat layer, for example, the resins mentioned as the resin used for forming the top coat layer 4 described above can be used.
 〈帯電防止層〉
 本発明に係るフィルムミラーユニットにおいては、必要に応じて帯電防止層を設けることもできる。フィルムミラーユニットは、ガラスミラーなどと比較して、樹脂フィルム等から構成される支持体を有しており、また、表面が樹脂で形成されていることが多いため、帯電しやすく、砂や埃などの汚れを引き寄せやすい。そのため、砂や埃などが付着し、反射効率が低下することが問題として挙げられる。フィルムミラーユニットの最表層の近い層に帯電防止層を設けることにより、フィルムミラーの表面における帯電を抑えることができ、砂やほこりなどの塵の汚れ等の付着を抑えることができ、長時間にわたって、高い反射効率を維持することができるため好ましい。帯電防止層は、フィルムミラーユニットの最表層に隣接する層と最表層との間に極薄い層を介して存在していることが好ましい。
<Antistatic layer>
In the film mirror unit according to the present invention, an antistatic layer can be provided as necessary. The film mirror unit has a support made of a resin film or the like as compared with a glass mirror or the like, and since the surface is often formed of a resin, the film mirror unit is easily charged, and sand or dust. It is easy to attract dirt. Therefore, sand, dust, etc. adhere and it is mentioned as a problem that reflection efficiency falls. By providing an antistatic layer near the outermost layer of the film mirror unit, charging on the surface of the film mirror can be suppressed, adhesion of dirt such as sand and dust, etc. can be suppressed, and for a long time. It is preferable because high reflection efficiency can be maintained. The antistatic layer is preferably present through an extremely thin layer between the outermost layer adjacent to the outermost layer of the film mirror unit.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 実施例1
 《フィルムミラーユニットの作製》
 〔封止部を有するフィルムミラーユニット1の作製〕
 (フィルムミラーユニットの作製)
 下記の手順に従って、図1に示すTypeAの構成からなるフィルムミラーユニットを作製した。
Example 1
<Production of film mirror unit>
[Production of Film Mirror Unit 1 Having Sealing Section]
(Production of film mirror unit)
A film mirror unit having the structure of Type A shown in FIG. 1 was produced according to the following procedure.
 〈1:光熱反射層形成用支持体(7)の準備〉
 光熱反射層形成用支持体(7)として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ25μm)を用いた。
<1: Preparation of Photothermal Reflective Layer Forming Support (7)>
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 μm) was used as the support for forming the photothermal reflection layer (7).
 〈2:アンカー層(6)の形成〉
 上記準備した光熱反射層形成用支持体(7)の一方の面側に、ポリエステル樹脂(ポリエスター SP-181 日本合成化学製)、メラミン樹脂(スーパーベッカミンJ-820 DIC製)、TDI系イソシアネート(2,4-トリレンジイソシアネート)、HMDI系イソシアネート(1,6-ヘキサメチレンジイソシアネート)を樹脂固形分比率で20:1:1:2に、固形分濃度10%となるようにトルエン中に混合した樹脂を、グラビアコート法によりコーティングして、厚さ100nmのアンカー層(6)を形成した。
<2: Formation of anchor layer (6)>
A polyester resin (Polyester SP-181 manufactured by Nippon Synthetic Chemical), a melamine resin (manufactured by Superbeccamin J-820 DIC), a TDI-based isocyanate is formed on one side of the prepared support for forming a light heat reflective layer (7). (2,4-tolylene diisocyanate) and HMDI isocyanate (1,6-hexamethylene diisocyanate) were mixed in toluene at a resin solid content ratio of 20: 1: 1: 2 and a solid content concentration of 10%. The obtained resin was coated by a gravure coating method to form an anchor layer (6) having a thickness of 100 nm.
 〈3:光熱反射層(5)の形成〉
 次いで、アンカー層(6)まで形成した試料を真空蒸着装置内に設置した後、上記形成したアンカー層(6)上に、光熱反射層(5)として、金属銀を用い、真空蒸着法により厚さ80nmの銀反射層(5)を形成した。
<3: Formation of photothermal reflection layer (5)>
Next, after the sample formed up to the anchor layer (6) is placed in a vacuum deposition apparatus, metallic silver is used as the photothermal reflective layer (5) on the formed anchor layer (6), and is thickened by vacuum deposition. A silver reflective layer (5) having a thickness of 80 nm was formed.
 〈4:トップコート層(4)の形成〉
 光熱反射層(5)を形成した試料を真空蒸着装置から取り出し、光熱反射層(5)上に、ポリエステル系樹脂とTDI(トリレンジイソシアネート)系イソシアネートを樹脂固形分比率で10:2に混合した樹脂に対して、銀の腐食防止剤として2-メルカプトベンゾチアゾールを樹脂に対して10質量%となるように添加し、メチルエチルケトンにより固形分を5質量%に調整した塗布液を、グラビアコート法によりコーティングして、厚さ4.0μmのトップコート層(4)を形成した。
<4: Formation of topcoat layer (4)>
The sample on which the photothermal reflection layer (5) was formed was taken out from the vacuum deposition apparatus, and a polyester resin and TDI (tolylene diisocyanate) isocyanate were mixed at a resin solid content ratio of 10: 2 on the photothermal reflection layer (5). To the resin, 2-mercaptobenzothiazole as a silver corrosion inhibitor was added so as to be 10% by mass with respect to the resin, and a coating solution in which the solid content was adjusted to 5% by mass with methyl ethyl ketone was obtained by a gravure coating method. Coating was performed to form a topcoat layer (4) having a thickness of 4.0 μm.
 〈5:アンカー層(6A)の形成〉
 上記準備した光熱反射層形成用支持体(7)のアンカー層(6)、光熱反射層(5)及びトップコート層(4)を形成した面とは反対側の面に、ポリエステル樹脂(ポリエスター SP-181 日本合成化学製)、メラミン樹脂(スーパーベッカミンJ-820 DIC製)、TDI系イソシアネート(2,4-トリレンジイソシアネート)、HDMI(登録商標)系イソシアネート(1,6-ヘキサメチレンジイソシアネート)を樹脂固形分比率で20:1:1:2に、固形分濃度10%となるようにトルエン中に混合した樹脂を、グラビアコート法によりコーティングして、厚さ100nmのアンカー層(6A)を形成した。
<5: Formation of anchor layer (6A)>
A polyester resin (polyester) is formed on the surface opposite to the surface on which the anchor layer (6), the light heat reflection layer (5) and the top coat layer (4) of the prepared support (7) for light heat reflection layer formation are formed. SP-181 Nippon Synthetic Chemical Co., Ltd.), melamine resin (manufactured by Superbecamine J-820 DIC), TDI isocyanate (2,4-tolylene diisocyanate), HDMI (registered trademark) isocyanate (1,6-hexamethylene diisocyanate) ) At a resin solid content ratio of 20: 1: 1: 2, and a resin mixed in toluene so as to have a solid content concentration of 10% is coated by a gravure coating method, and an anchor layer (6A) having a thickness of 100 nm is coated. Formed.
 〈6:紫外線吸収層(8)の形成〉
 次いで、アンカー層(6A)上に、アクリル樹脂(三菱レイヨン社製 ダイヤナール ENB457)と、紫外線吸収剤(BASFジャパン社製 Tinuvin477、ヒドロキシフェニルトリアジン系紫外線吸収剤)とを固形分比(アクリル樹脂:紫外線吸収剤、質量比)=95:5で、メチルエチルケトン中に固形分で20質量%となる条件で溶解して紫外線吸収層形成用塗布液を調製し、この紫外線吸収層形成用塗布液を、押し出しコーターを用いて塗布・乾燥(90℃、1分間)を行い、乾燥膜厚が25μmのアクリル系樹脂を含有する紫外線吸収層(8)を形成した。
<6: Formation of UV absorbing layer (8)>
Next, on the anchor layer (6A), an acrylic resin (Dianar ENB457 manufactured by Mitsubishi Rayon Co., Ltd.) and an ultraviolet absorber (Tinvin 477, hydroxyphenyltriazine-based ultraviolet absorber manufactured by BASF Japan) are mixed in a solid content ratio (acrylic resin: UV absorber, mass ratio) = 95: 5, dissolved in methyl ethyl ketone under the condition that the solid content is 20% by mass to prepare an ultraviolet absorbing layer forming coating solution. Application and drying (90 ° C., 1 minute) were performed using an extrusion coater to form an ultraviolet absorbing layer (8) containing an acrylic resin having a dry film thickness of 25 μm.
 〈7:ハードコート層(9)の形成〉
 次いで、紫外線吸収層(8)上に、東洋インキ社製のUV硬化型機能性ハードコート剤 LIODURAS TYZシリーズ(フィラー成分:ZrO、溶媒:ケトン/アルコール/グリコール系)を、押し出しコーターを用いて塗布・乾燥を行い、乾燥膜厚が3.0μmのハードコート層(9)を形成した。
<7: Formation of hard coat layer (9)>
Next, a UV curable functional hard coat agent LIODURAS TYZ series (filler component: ZrO 2 , solvent: ketone / alcohol / glycol system) manufactured by Toyo Ink Co., Ltd. is used on the ultraviolet absorbing layer (8) using an extrusion coater. Application and drying were performed to form a hard coat layer (9) having a dry film thickness of 3.0 μm.
 〈8:粘着層(3)の形成〉
 次いで、トップコート層(4)上に、厚さ25μmのアクリル樹脂系粘着剤(SZ-7543、日本カーバイト工業社製)から構成される粘着層(3)を形成して、TypeAのフィルムミラーユニットを作製した。
<8: Formation of adhesive layer (3)>
Next, an adhesive layer (3) composed of an acrylic resin adhesive (SZ-7543, manufactured by Nippon Carbide Industries Co., Ltd.) having a thickness of 25 μm is formed on the top coat layer (4), and a Type A film mirror is formed. A unit was made.
 (フィルムミラーユニットの封止)
 上記作製したTypeAのフィルムミラーユニットについて、100mm×100mmのサイズに断裁した後、各4辺について、図4~図6に記載の方法に従って、側部に封止部11を有するフィルムミラーユニット1を作製した。
(Sealing of film mirror unit)
About the produced Type A film mirror unit, after cutting into a size of 100 mm × 100 mm, the film mirror unit 1 having the sealing portion 11 on the side is formed on each of the four sides in accordance with the method described in FIGS. Produced.
 側面部形成装置として、富士インパルス社製の加熱温度コントロールオートシーラー OPLシリーズ(上下加熱方式)を用い、加熱部材10A及び10Bによる端部加熱幅Lを2mm、加熱部材10A及び10Bの左側端部に図6のcに示すように封止部成形部材12をセットした状態で、フィルムミラーユニットの挟持圧力を0.35MPa、加熱温度130℃の条件で、粘着層(3)及び紫外線吸収層(8)の軟化成分を軟化して押し出し、封止部成形部材12で封止部11の側部を規制しながら、厚さ3mmの封止部11を形成した。 As a side portion forming apparatus, using a Fuji Impulse Co. heating temperature control automatic sealer OPL series (heating method), heating members 10A and 2mm ends the heating width L 2 by 10B, the left end portion of the heating member 10A and 10B In the state where the sealing member forming member 12 is set as shown in FIG. 6c, the pressure-sensitive adhesive layer (3) and the ultraviolet absorbing layer (with the holding pressure of the film mirror unit of 0.35 MPa and the heating temperature of 130 ° C.) The softening component of 8) was softened and extruded, and the sealing part 11 having a thickness of 3 mm was formed while the side part of the sealing part 11 was regulated by the sealing part molding member 12.
 次いで、加熱を停止した後、加熱部材10A及び10Bと、封止部成形部材12で封止部11を保持した状態で、30分を要して、徐冷を行った。 Next, after heating was stopped, the cooling member 11 was slowly cooled in a state where the sealing member 11 was held by the heating members 10A and 10B and the sealing member forming member 12 for 30 minutes.
 最後に、加熱部材10A及び10Bと、封止部成形部材12を外して、図5に示す構成からなる封止部を有するフィルムミラーユニット1を作製した。 Finally, the heating members 10A and 10B and the sealing portion molding member 12 were removed, and a film mirror unit 1 having a sealing portion having the configuration shown in FIG. 5 was produced.
 〔フィルムミラーユニット2~21の作製〕
 上記フィルムミラーユニット1の作製において、加熱温度(℃)、加熱時間(秒)、及び徐冷時間(分)を、表1に記載の組み合わせに変更した以外は同様にして、フィルムミラーユニット2~21を作製した。
[Production of film mirror units 2 to 21]
In the production of the film mirror unit 1, the heating temperature (° C.), the heating time (second), and the slow cooling time (minute) were similarly changed except that the combinations shown in Table 1 were used. 21 was produced.
 〔フィルムミラーユニット22の作製〕
 上記フィルムミラーユニット6の作製において、封止部形成時に、封止部成形部材12を用いない図6のbに示す方法で封止部11を形成した以外は同様にして、フィルムミラーユニット22を作製した。
[Production of Film Mirror Unit 22]
In the production of the film mirror unit 6, the film mirror unit 22 is formed in the same manner except that the sealing part 11 is formed by the method shown in FIG. Produced.
 〔フィルムミラーユニット23の作製〕
 (フィルムミラーユニットの作製)
 下記の手順に従って、図2に示すTypeBの構成からなるフィルムミラーユニットを作製した。
[Production of Film Mirror Unit 23]
(Production of film mirror unit)
According to the following procedure, the film mirror unit which consists of TypeB structure shown in FIG. 2 was produced.
 〈1:光熱反射層形成用支持体(7)の準備〉
 光熱反射層形成用支持体(7)として、二軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ25μm)を用いた。
<1: Preparation of Photothermal Reflective Layer Forming Support (7)>
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 25 μm) was used as the support for forming the photothermal reflection layer (7).
 〈2:アンカー層(6)の形成〉
 上記準備した光熱反射層形成用支持体(7)の一方の面側に、ポリエステル樹脂(ポリエスター SP-181 日本合成化学製)、メラミン樹脂(スーパーベッカミンJ-820 DIC製)、TDI系イソシアネート(2,4-トリレンジイソシアネート)、HDMI(登録商標)系イソシアネート(1,6-ヘキサメチレンジイソシアネート)を樹脂固形分比率で20:1:1:2に、固形分濃度10%となるようにトルエン中に混合した樹脂を、グラビアコート法によりコーティングして、厚さ100nmのアンカー層(6)を形成した。
<2: Formation of anchor layer (6)>
A polyester resin (Polyester SP-181 manufactured by Nippon Synthetic Chemical), a melamine resin (manufactured by Superbeccamin J-820 DIC), a TDI-based isocyanate is formed on one side of the prepared support for forming a light heat reflective layer (7). (2,4-tolylene diisocyanate) and HDMI (registered trademark) -based isocyanate (1,6-hexamethylene diisocyanate) at a resin solid content ratio of 20: 1: 1: 2 and a solid content concentration of 10%. The resin mixed in toluene was coated by a gravure coating method to form an anchor layer (6) having a thickness of 100 nm.
 〈3:光熱反射層(5)の形成〉
 次いで、アンカー層(6)まで形成した試料を真空蒸着装置内に設置した後、上記形成したアンカー層(6)上に、光熱反射層(5)として、金属銀を用い、真空蒸着法により厚さ100nmの銀反射層(5)を形成した。
<3: Formation of photothermal reflection layer (5)>
Next, after the sample formed up to the anchor layer (6) is placed in a vacuum deposition apparatus, metallic silver is used as the photothermal reflective layer (5) on the formed anchor layer (6), and is thickened by vacuum deposition. A silver reflective layer (5) having a thickness of 100 nm was formed.
 〈4:トップコート層(4)の形成〉
 光熱反射層(5)を形成した試料を真空蒸着装置から取り出し、光熱反射層(5)上に、ポリエステル系樹脂とTDI(トリレンジイソシアネート)系イソシアネートを樹脂固形分比率で10:2に混合した樹脂に対して、銀の腐食防止剤として2-メルカプトベンゾチアゾールを樹脂に対して10質量%となるように添加し、メチルエチルケトンにより固形分を5質量%に調整した塗布液を、グラビアコート法によりコーティングして、厚さ3.0μmのトップコート層(4)を形成した。
<4: Formation of topcoat layer (4)>
The sample on which the photothermal reflection layer (5) was formed was taken out from the vacuum deposition apparatus, and a polyester resin and TDI (tolylene diisocyanate) isocyanate were mixed at a resin solid content ratio of 10: 2 on the photothermal reflection layer (5). To the resin, 2-mercaptobenzothiazole as a silver corrosion inhibitor was added so as to be 10% by mass with respect to the resin, and a coating solution in which the solid content was adjusted to 5% by mass with methyl ethyl ketone was obtained by a gravure coating method. Coating was performed to form a topcoat layer (4) having a thickness of 3.0 μm.
 〈5:接着層(3A)及び紫外線吸収層(8A)の形成〉
 次に、トップコート層(4)上に、ドライラミネーションプロセスにより、接着層(3A)と、紫外線吸収層(8A)として紫外線吸収剤を含有したアクリルフィルム、 テクノロイ S001GU(住友化学株式会社製、厚さ100μm))を、ラミネート温度60℃にて貼合して、接着層(3A)及びアクリル系樹脂を含有する紫外線吸収層(8A)を形成した。
<5: Formation of adhesive layer (3A) and ultraviolet absorbing layer (8A)>
Next, on the topcoat layer (4), an acrylic film containing an ultraviolet absorber as an ultraviolet absorbing layer (8A), Technoloy S001GU (manufactured by Sumitomo Chemical Co., Ltd., thickness) by a dry lamination process. 100 μm)) was laminated at a lamination temperature of 60 ° C. to form an adhesive layer (3A) and an ultraviolet absorbing layer (8A) containing an acrylic resin.
 〈6: ハードコート層(9)の形成〉
 次いで、紫外線吸収層(8A)上に、東洋インキ社製のUV硬化型機能性ハードコート剤 LIODURAS TYZシリーズ(フィラー成分:ZrO、溶媒:ケトン/アルコール/グリコール系)を、押し出しコーターを用いて塗布・乾燥を行い、乾燥膜厚が3.0μmのハードコート層(9)を形成した。
<6: Formation of hard coat layer (9)>
Next, a UV curable functional hard coat agent LIODURAS TYZ series (filler component: ZrO 2 , solvent: ketone / alcohol / glycol system) manufactured by Toyo Ink Co., Ltd. is used on the ultraviolet absorbing layer (8A) using an extrusion coater. Application and drying were performed to form a hard coat layer (9) having a dry film thickness of 3.0 μm.
 〈7:粘着層(3)の形成〉
 次いで、光熱反射層形成用支持体(7)の裏面側に、厚さ25μmのアクリル樹脂系粘着剤(SZ-7543、日本カーバイト工業社製)から構成される粘着層(3)を形成して、TypeBのフィルムミラーユニットを作製した。
<7: Formation of adhesive layer (3)>
Next, an adhesive layer (3) composed of an acrylic resin adhesive (SZ-7543, manufactured by Nippon Carbide Industries Co., Ltd.) having a thickness of 25 μm is formed on the back side of the support for forming a light heat reflective layer (7). Thus, a Type B film mirror unit was produced.
 (フィルムミラーユニットの封止)
 上記作製したTypeBのフィルムミラーユニットについて、100mm×100mmのサイズに断裁した後、各4辺について、図4~図6に記載の方法に従って、側部に封止部11を有するフィルムミラーユニット23を作製した。
(Sealing of film mirror unit)
About the produced Type B film mirror unit, after cutting into a size of 100 mm × 100 mm, the film mirror unit 23 having the sealing portion 11 on the side is formed on each of the four sides according to the method described in FIGS. 4 to 6. Produced.
 側面部形成装置として、富士インパルス社製の加熱温度コントロールオートシーラー OPLシリーズ(上下加熱方式)を用い、加熱部材10A及び10Bによる端部加熱幅Lを2mm、加熱部材10A及び10Bの左側端部に図6のcに示すように封止部成形部材12をセットした状態で、フィルムミラーユニットの挟持圧力を0.35MPa、加熱温度130℃の条件で、粘着層(3)及び紫外線吸収層(8A)の軟化物を押し出しし、封止部成形部材12で封止部11の側部を規制しながら、厚さ3mmの封止部11を形成した。 As a side portion forming apparatus, using a Fuji Impulse Co. heating temperature control automatic sealer OPL series (heating method), heating members 10A and 2mm ends the heating width L 2 by 10B, the left end portion of the heating member 10A and 10B In the state where the sealing member forming member 12 is set as shown in FIG. 6c, the pressure-sensitive adhesive layer (3) and the ultraviolet absorbing layer (with the holding pressure of the film mirror unit of 0.35 MPa and the heating temperature of 130 ° C.) The softened material of 8A) was extruded, and the sealing portion 11 having a thickness of 3 mm was formed while the side portion of the sealing portion 11 was regulated by the sealing portion molding member 12.
 次いで、加熱を停止した後、加熱部材10A及び10Bと、封止部成形部材12で封止部11を保持した状態で、30分を要して、徐冷を行った。 Next, after heating was stopped, the cooling member 11 was slowly cooled in a state where the sealing member 11 was held by the heating members 10A and 10B and the sealing member forming member 12 for 30 minutes.
 最後に、加熱部材10A及び10Bと、封止部成形部材12を外して、図7に示す構成からなる封止部を有するフィルムミラーユニット1を作製した。 Finally, the heating members 10A and 10B and the sealing portion molding member 12 were removed, and a film mirror unit 1 having a sealing portion having the configuration shown in FIG. 7 was produced.
 〔フィルムミラーユニット24~30の作製〕
 上記フィルムミラーユニット23の作製において、加熱温度(℃)、加熱時間(秒)、及び徐冷時間(分)を、表1に記載の組み合わせに変更した以外は同様にして、フィルムミラーユニット24~30を作製した。
[Production of film mirror units 24 to 30]
In the production of the film mirror unit 23, the film mirror units 24 to 24 were similarly prepared except that the heating temperature (° C.), the heating time (seconds), and the slow cooling time (minutes) were changed to the combinations shown in Table 1. 30 was produced.
 〔フィルムミラーユニット31の作製〕
 上記フィルムミラーユニット25の作製において、封止部形成時に、封止部成形部材12を用いない図6のbに示す方法で封止部11を形成した以外は同様にして、フィルムミラーユニット31を作製した。
[Production of Film Mirror Unit 31]
In the production of the film mirror unit 25, the film mirror unit 31 was formed in the same manner except that the sealing part 11 was formed by the method shown in FIG. Produced.
 〔フィルムミラーユニット32の作製〕
 フィルムミラーユニット1にて作製した封止部形成前のTypeAのフィルムミラーユニットFMUを用い、100mm×100mmのサイズに断裁した後、各4辺について、図3に示す構成で、下記の封止テープを用いて端部の封止を行い、フィルムミラーユニット32を作製した。
[Production of Film Mirror Unit 32]
Using the Type A film mirror unit FMU of the type A before forming the sealing part produced by the film mirror unit 1 and cutting it to a size of 100 mm × 100 mm, each of the four sides is configured as shown in FIG. The edge part was sealed using and the film mirror unit 32 was produced.
 封止テープとしては、3M社製の耐候性テープ 10386-ND(テープ幅:24.5mm(1インチ))を、1/2に断裁し、幅12.3mmのテープを用い、0.35MPaの圧力で貼合して、図3に記載のようにフィルムミラーユニットFMUの各端部をコの字型に囲む構造で封止した。なお、図3に示す、端部でのテープ幅Lは6mmとした。 As the sealing tape, a weather-resistant tape 10386-ND (tape width: 24.5 mm (1 inch)) manufactured by 3M was cut in half and a tape having a width of 12.3 mm was used. It bonded by the pressure and sealed with the structure which surrounds each edge part of the film mirror unit FMU in a U shape as shown in FIG. Incidentally, it is shown in FIG. 3, the tape width L 1 at the end was 6 mm.
 〔フィルムミラーユニット33の作製〕
 フィルムミラーユニット1にて作製した封止部形成前のTypeAのフィルムミラーユニットFMUを用い、100mm×100mmのサイズに断裁した後、各4辺について、図3に示す構成で、下記の封止テープを用いて端部の封止を行い、フィルムミラーユニット33を作製した。
[Production of Film Mirror Unit 33]
Using the Type A film mirror unit FMU of the type A before forming the sealing part produced by the film mirror unit 1 and cutting it to a size of 100 mm × 100 mm, each of the four sides is configured as shown in FIG. The edge part was sealed using and the film mirror unit 33 was produced.
 封止テープとしては、寺岡製作所社製のアルミニウム箔テープ No.833(テープ幅:12.3mm(1/2インチ))を用い、0.35MPaの圧力で貼合して、図3に記載のようにフィルムミラーユニットFMUの各端部をコの字型に囲む構造で封止した。なお、図3に示す、端部でのテープ幅Lは6mmとした。 As the sealing tape, aluminum foil tape No. Using 833 (tape width: 12.3 mm (1/2 inch)), bonding is performed at a pressure of 0.35 MPa, and each end of the film mirror unit FMU is formed into a U shape as shown in FIG. Sealed with a surrounding structure. Incidentally, FIG. 3, the tape width L 1 at the end was 6 mm.
 以上により作製した各フィルムミラーユニットの代表的な構成を、表1に示す。 Table 1 shows a typical configuration of each film mirror unit produced as described above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、上記フィルムミラーユニット1~33の作製に用いたTypeA及びTypeBを構成するアクリル樹脂(三菱レイヨン社製 ダイヤナール ENB457)及び紫外線吸収剤を含有したアクリルフィルム(テクノロイ S001GU)について、それぞれ層厚が50μmとなる試料を作製し、それぞれの試料の可視光領域(400~700nm)における光透過率を市販の分光光度計で測定し、その平均値を求めた結果、いずれ平均光透過率が92~94%の範囲内であった。 It should be noted that the acrylic resin (Dainar ENB457 manufactured by Mitsubishi Rayon Co., Ltd.) and the ultraviolet absorber-containing acrylic film (Technoloy S001GU) constituting Type A and Type B used for the production of the film mirror units 1 to 33 have a layer thickness. Samples having a thickness of 50 μm were prepared, and the light transmittance in the visible light region (400 to 700 nm) of each sample was measured with a commercially available spectrophotometer, and the average value was obtained. It was within the range of 94%.
 《フィルムミラーユニットの評価》
 〔封止状態の観察〕
 作製した各フィルムミラーユニットの封止箇所について、封止部の状態を目視観察し、下記の基準に従って、封止状態の評価を行った。
<Evaluation of film mirror unit>
[Observation of sealed state]
About the sealing location of each produced film mirror unit, the state of the sealing part was visually observed, and the sealing state was evaluated according to the following criteria.
 ○:形成した封止部は、未接着部あるいは着色の発生が全くなく、良好な状態である
 △:封止部端部にごく弱い剥離や着色が認められるが、実用上は許容される品質である
 ×:封止部が、フィルムミラーユニットに完全に結合しておらず、剥離が生じている
 〔フィルムミラーの反射面積ロスの評価〕
 作製した各封止後のフィルムミラーユニットの反射面積を測定し、下記の基準に従って、反射面積ロスの評価を行った。
○: The formed sealing part is in a good state with no non-adhered part or coloration. Δ: Very weak peeling or coloring is observed at the end of the sealing part, but acceptable quality in practical use. X: The sealing part is not completely bonded to the film mirror unit, and peeling occurs [Evaluation of reflection area loss of film mirror]
The reflection area of each produced film mirror unit after sealing was measured, and the reflection area loss was evaluated according to the following criteria.
 ○:全フィルムミラーユニット面積(10000mm)に対する反射ミラー面積のロス率が5%未満である
 △:全フィルムミラーユニット面積(10000mm)に対する反射ミラー面積のロス率が5%以上、15%未満である
 ×:全フィルムミラーユニット面積(10000mm)に対する反射ミラー面積のロス率が15%以上である
 〔バリアー性の評価〕
 端部を封止した各フィルムミラーユニットを、25℃、3質量%の濃度の食塩水に5日間浸漬した後、光熱反射層(銀反射層)の腐食状態を目視観察し、下記の基準に従ってバリアー性の評価を行った。
○: The loss rate of the reflection mirror area with respect to the total film mirror unit area (10000 mm 2 ) is less than 5%. Δ: The loss rate of the reflection mirror area with respect to the entire film mirror unit area (10000 mm 2 ) is 5% or more and less than 15%. X: The loss rate of the reflection mirror area with respect to the total film mirror unit area (10000 mm 2 ) is 15% or more [Evaluation of Barrier Properties]
Each film mirror unit with its end sealed is immersed in 25 ° C., 3% by weight saline solution for 5 days, and then the corrosion state of the photothermal reflective layer (silver reflective layer) is visually observed, according to the following criteria: The barrier property was evaluated.
 ◎:腐食領域の発生は、全く認められない
 ○;発生している腐食面積の発生率が、全面積の1%以上、5%未満である
 △;発生している腐食面積の発生率が、全面積の5%以上、15%未満であるが、実用上、許容される範囲内である
 ×;発生している腐食面積の発生率が、全面積の15%以上であり、実用上問題となる品質である
 〔耐久性の評価:磨耗試験による剥離耐性〕
 (磨耗試験後の剥離耐性の評価)
 各フィルムミラーユニットの端部を、往復摩耗試験機(新東科学(株)製、HEIDON-14DR)を用い、摩耗材としてスチールウール(#0000)を取り付け、荷重500g/cmの条件で速度10mm/secで10回往復させた。次いで、各端部における封止部材の密着状態を目視観察し、下記の基準に従って剥離耐性の評価を行った。
◎: No occurrence of corrosion area is observed. ○: The rate of occurrence of the corroded area is 1% or more and less than 5% of the total area. △: The rate of occurrence of the corroded area is Although it is 5% or more and less than 15% of the total area, it is within a practically acceptable range. X: The rate of occurrence of the corroded area is 15% or more of the total area, which is a practical problem. [Evaluation of durability: peeling resistance by wear test]
(Evaluation of peel resistance after wear test)
At the end of each film mirror unit, using a reciprocating wear tester (manufactured by Shinto Kagaku Co., Ltd., HEIDON-14DR), steel wool (# 0000) was attached as a wear material, and the speed was set under a load of 500 g / cm 2. It was reciprocated 10 times at 10 mm / sec. Subsequently, the adhesion state of the sealing member at each end was visually observed, and peeling resistance was evaluated according to the following criteria.
 ◎:磨耗試験後で、封止部の変化は全く認められない
 ○:磨耗試験後で、封止部の変化はほぼ認められない
 △:磨耗試験後で、一部の封止部で剥離が認められるが、実用上許容される品質である
 ×:磨耗試験後で、封止部で剥離や封止テープの剥がれが認められる
 (耐久性の評価:磨耗試験後の塩水への浸漬試験)
 上記の方法で磨耗試験を行った各フィルムミラーユニットを、上記バリアー性の評価と同様にし、同じ評価基準にて評価を行った。
◎: After the wear test, no change in the sealing part is observed. ○: After the wear test, almost no change in the sealing part is observed. △: After the wear test, peeling occurs in some of the sealing parts. Although it is recognized, it is a quality that is practically acceptable. ×: After the wear test, peeling or peeling of the sealing tape is observed in the sealing portion (durability evaluation: immersion test in salt water after the wear test)
Each film mirror unit subjected to the abrasion test by the above method was evaluated in the same evaluation criteria as in the evaluation of the barrier property.
 以上により得られた結果を、表2に示す。 Table 2 shows the results obtained as described above.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に記載の結果より明らかなように、本発明で規定する製造方法により作製した封止部を側面部に有する本発明のフィルムミラーは、比較例に対し、封止部の形成状態に優れ、フィルムミラーとしての反射面積ロスが少なく、バリアー性、摩擦処理後の剥離耐性、耐久性に優れていることが分かる。 As is clear from the results shown in Table 2, the film mirror of the present invention having the sealing part produced by the production method defined in the present invention on the side part is superior to the comparative example in the formation state of the sealing part. It can be seen that the reflection area loss as a film mirror is small, and the barrier property, the peel resistance after the friction treatment, and the durability are excellent.
 実施例2
 実施例1に記載のフィルムミラーユニット2~17、22、24~28、31の作製において、紫外線吸収層(8)の形成に用いた光透過性を有する熱可塑性樹脂として、アクリル樹脂(三菱レイヨン社製 ダイヤナール ENB457)に代えて、スチレン・ブタジエン・アクリロニトリル共重合体(ABS樹脂)、ポリスチレン樹脂(PS)をそれぞれ用いた以外は同様にして、ABS樹脂を用いたフィルムミラーユニット2B~17B、22B、24B~28B、31B、ポリスチレン樹脂を用いたフィルムミラーユニット2C~17C、22C、24C~28C、31Cを作製した。
Example 2
In the production of the film mirror units 2 to 17, 22, 24 to 28, and 31 described in Example 1, acrylic resin (Mitsubishi Rayon) was used as the light-transmitting thermoplastic resin used to form the ultraviolet absorbing layer (8). Film mirror units 2B to 17B using ABS resin in the same manner except that styrene / butadiene / acrylonitrile copolymer (ABS resin) and polystyrene resin (PS) were used instead of Dianar ENB457) Film mirror units 2C-17C, 22C, 24C-28C, 31C using 22B, 24B-28B, 31B and polystyrene resin were produced.
 次いで、実施例1に記載の方法と同様にして、封止部の形成状態、フィルムミラーとしての反射面積ロスの有無、バリアー性、摩擦処理後の剥離耐性、耐久性について同様の評価を行った結果、実施例1と同様の結果を得ることができたが、アクリル樹脂を適用した水準に対しては、その効果がやや及ばない結果となった。 Subsequently, in the same manner as in the method described in Example 1, the same evaluation was performed for the formation state of the sealing portion, the presence or absence of a reflection area loss as a film mirror, barrier properties, peeling resistance after friction treatment, and durability. As a result, the same result as in Example 1 could be obtained, but the effect was slightly less than the level to which the acrylic resin was applied.
 本発明のフィルムミラーの製造方法により製造したフィルムミラーは、反射面積ロスが少なく、バリアー性、摩擦処理後の剥離耐性、耐久性に優れた特徴を備え、例えば、太陽熱発電用反射鏡に適用する太陽熱集光用のフィルムミラーとして好適に利用できる。 The film mirror manufactured by the method for manufacturing a film mirror of the present invention has a small reflection area loss, has characteristics of excellent barrier properties, peeling resistance after friction treatment, and durability, and is applied to, for example, a reflector for solar power generation. It can be suitably used as a film mirror for concentrating solar heat.
 2A、2B 光熱反射ユニット
 3 粘着層
 3A 接着層
 4 トップコート層
 5 光熱反射層
 6、6A アンカー層
 7 光熱反射層形成支持体
 8、8A 紫外線吸収層
 9 ハードコート層
 10、10A、10B 加熱部材
 11 封止部
 12 封止部成形部材
 14 封止テープ
 FMU、FMU1、FMU2 フィルムミラーユニット
 L 封止テープの被覆幅
 L 端部加熱領域
 L 封止部の厚さ
 P 剥離部
2A, 2B Photothermal reflection unit 3 Adhesive layer 3A Adhesive layer 4 Topcoat layer 5 Photothermal reflection layer 6, 6A Anchor layer 7 Photothermal reflection layer forming support 8, 8A Ultraviolet absorbing layer 9 Hard coat layer 10, 10A, 10B Heating member 11 Sealing part 12 Sealing part molding member 14 Sealing tape FMU, FMU1, FMU2 Film mirror unit L 1 Covering width of sealing tape L 2 End heating area L 3 Sealing part thickness P Peeling part

Claims (7)

  1.  少なくとも粘着層、光熱反射層、光熱反射層形成用支持体、紫外線吸収層及びハードコート層より構成されるフィルムミラーの製造方法であって、
     当該紫外線吸収層は、光透過性を有する熱可塑性樹脂を含有し、
     フィルムミラーの端部に加熱部材を圧着し、80~120℃の温度範囲内で加熱して、少なくとも前記粘着層及び光透過性を有する熱可塑性樹脂を含有する紫外線吸収層を軟化させ、端部に流出した軟化成分により封止部を形成することを特徴とするフィルムミラーの製造方法。
    A method for producing a film mirror comprising at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer and a hard coat layer,
    The ultraviolet absorbing layer contains a thermoplastic resin having light permeability,
    A heating member is pressure-bonded to the end of the film mirror and heated within a temperature range of 80 to 120 ° C. to soften at least the adhesive layer and the ultraviolet absorbing layer containing a light-transmitting thermoplastic resin. A method for producing a film mirror, wherein a sealing portion is formed by a softening component that has flowed out of the film.
  2.  少なくとも粘着層、光熱反射層、光熱反射層形成用支持体、光透過性を有する熱可塑性樹脂を含有する紫外線吸収層及びハードコート層より構成される広幅原反を作製し、所定のサイズに断裁した後、断裁面に封止部を形成することを特徴とする請求項1に記載のフィルムミラーの製造方法。 A wide raw fabric composed of at least an adhesive layer, a light heat reflecting layer, a support for forming a light heat reflecting layer, an ultraviolet absorbing layer containing a light-transmitting thermoplastic resin, and a hard coat layer is prepared and cut into a predetermined size. The manufacturing method of the film mirror of Claim 1 which forms a sealing part in a cutting surface after doing.
  3.  端部に加熱部材を圧着した後、加圧した状態で徐冷して、前記封止部を形成することを特徴とする請求項1又は請求項2に記載のフィルムミラーの製造方法。 3. The method for manufacturing a film mirror according to claim 1, wherein after the heating member is pressure-bonded to the end portion, the sealing portion is formed by gradually cooling in a pressurized state.
  4.  端部に流出した前記粘着層及び紫外線吸収層の軟化部に対し、封止部成形部材を押し当てて、前記封止部を形成することを特徴とする請求項1から請求項3までのいずれか一項に記載のフィルムミラーの製造方法。 The sealing portion is formed by pressing a sealing portion molding member against the softened portion of the adhesive layer and the ultraviolet absorbing layer that has flowed out to the end portion. A method for producing a film mirror according to claim 1.
  5.  前記紫外線吸収層が含有する光透過性を有する熱可塑性樹脂が、アクリル系樹脂であることを特徴とする請求項1から請求項4までのいずれか一項に記載のフィルムミラーの製造方法。 The method for producing a film mirror according to any one of claims 1 to 4, wherein the light-transmitting thermoplastic resin contained in the ultraviolet absorbing layer is an acrylic resin.
  6.  前記粘着層が、アクリル系樹脂で構成されていることを特徴とする請求項1から請求項5までのいずれか一項に記載のフィルムミラーの製造方法。 The method for producing a film mirror according to any one of claims 1 to 5, wherein the adhesive layer is made of an acrylic resin.
  7.  前記封止部形成時の前記加熱部材による圧力条件が、0.1~1.0MPaの範囲内であることを特徴とする請求項1から請求項6までのいずれか一項に記載のフィルムミラーの製造方法。 The film mirror according to any one of claims 1 to 6, wherein a pressure condition by the heating member when forming the sealing portion is in a range of 0.1 to 1.0 MPa. Manufacturing method.
PCT/JP2014/076431 2013-10-04 2014-10-02 Manufacturing method for film mirror WO2015050217A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-208729 2013-10-04
JP2013208729A JP2016203376A (en) 2013-10-04 2013-10-04 Method for producing film mirror

Publications (1)

Publication Number Publication Date
WO2015050217A1 true WO2015050217A1 (en) 2015-04-09

Family

ID=52778801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076431 WO2015050217A1 (en) 2013-10-04 2014-10-02 Manufacturing method for film mirror

Country Status (2)

Country Link
JP (1) JP2016203376A (en)
WO (1) WO2015050217A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102116375B1 (en) * 2018-04-10 2020-05-29 이창석 Coating film for glass improving durability and construct ability
JP2022144910A (en) * 2021-03-19 2022-10-03 昭和電工パッケージング株式会社 Heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515833A (en) * 1978-07-20 1980-02-04 Toppan Printing Co Ltd Laminatetube manufacturing method
JP2010113325A (en) * 2008-10-09 2010-05-20 Hitachi Cable Ltd Mirror-embedded light transmission medium and fabrication method of same
WO2011096284A1 (en) * 2010-02-02 2011-08-11 コニカミノルタオプト株式会社 Film mirror for solar thermal power generation, method for producing film mirror for solar thermal power generation, and reflection device for solar thermal power generation
JP2011158751A (en) * 2010-02-02 2011-08-18 Konica Minolta Opto Inc Film mirror, method of manufacturing the same, and reflecting device for solar power generation using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515833A (en) * 1978-07-20 1980-02-04 Toppan Printing Co Ltd Laminatetube manufacturing method
JP2010113325A (en) * 2008-10-09 2010-05-20 Hitachi Cable Ltd Mirror-embedded light transmission medium and fabrication method of same
WO2011096284A1 (en) * 2010-02-02 2011-08-11 コニカミノルタオプト株式会社 Film mirror for solar thermal power generation, method for producing film mirror for solar thermal power generation, and reflection device for solar thermal power generation
JP2011158751A (en) * 2010-02-02 2011-08-18 Konica Minolta Opto Inc Film mirror, method of manufacturing the same, and reflecting device for solar power generation using the same

Also Published As

Publication number Publication date
JP2016203376A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
US10894765B2 (en) Solar energy devices
WO2014024873A1 (en) Light-reflective film, and light reflector produced using same
US20090283133A1 (en) Solar concentrating mirror
WO2014199990A1 (en) Derivative multilayer film
JPWO2012026312A1 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
JP2013507663A (en) Concentrator for solar energy harvesting and its manufacture from polymer raw materials
JP2011158751A (en) Film mirror, method of manufacturing the same, and reflecting device for solar power generation using the same
JP2006261288A (en) Surface protection film for solar cell and solar cell laminate employing it
CN110734710B (en) window film
WO2015146655A1 (en) Light reflecting film
WO2015050217A1 (en) Manufacturing method for film mirror
JP2015011271A (en) Light-reflecting film, and light-reflecting body and light-reflecting device using the same
WO2014188831A1 (en) Ultraviolet shielding film
EP3491432B1 (en) Light redirecting constructions and methods for sealing edges thereof
JP2015087625A (en) Reflector and manufacturing method therefor
JP2015125168A (en) Dielectric multilayer film
WO2015064312A1 (en) Film mirror and light reflection device for solar heat reflection using same
JPWO2012057003A1 (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflector for solar power generation
JP6540161B2 (en) Laminated glass
JP2016170279A (en) Light reflection film, and light reflection body and sunlight reflection device having the same
JP6414081B2 (en) Optical reflective film
JP2014012366A (en) Method of manufacturing highly elastic transparent resin laminate
WO2011096248A1 (en) Light reflecting film for solar thermal power generation, method for producing same, and reflection device for solar thermal power generation using same
WO2015029746A1 (en) Reflecting mirror for solar thermal power generation and reflective device for solar thermal power generation
WO2015122337A1 (en) Film mirror and reflection device for solar power generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP