WO2015146655A1 - Light reflecting film - Google Patents

Light reflecting film Download PDF

Info

Publication number
WO2015146655A1
WO2015146655A1 PCT/JP2015/057588 JP2015057588W WO2015146655A1 WO 2015146655 A1 WO2015146655 A1 WO 2015146655A1 JP 2015057588 W JP2015057588 W JP 2015057588W WO 2015146655 A1 WO2015146655 A1 WO 2015146655A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
film
light reflecting
light
Prior art date
Application number
PCT/JP2015/057588
Other languages
French (fr)
Japanese (ja)
Inventor
力 安井
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015146655A1 publication Critical patent/WO2015146655A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/28Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer comprising a deformed thin sheet, i.e. the layer having its entire thickness deformed out of the plane, e.g. corrugated, crumpled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a light reflecting film.
  • Solar power generation is a power generation method that collects sunlight and uses it as a heat source. Compared with solar cells, solar power generation has the advantage of being able to generate electricity regardless of day and night by storing heat, and the cost of manufacturing and maintenance is low. It is considered that power generation efficiency is high.
  • a condensing device that reflects sunlight by a reflector (mirror) and condenses it in one place is used. Since the reflector is exposed to ultraviolet rays, heat, wind and rain, sandstorms, and the like caused by sunlight, conventionally, a glass light reflector has been used from the viewpoint of durability. However, the glass light reflector has problems such as being heavy, large in volume, expensive in transportation, difficult to install, and easy to break.
  • the conventional method has a problem that the manufacturing cost increases in order to improve the smoothness of the surface of the supporting substrate.
  • the light reflecting film is light, flexible, and easy to handle. There was a problem that the advantages could not be fully utilized.
  • an object of the present invention is to provide a light reflecting film capable of making the metal reflecting layer sufficiently smooth in the light reflector.
  • the present inventor conducted intensive research to solve the above problems. As a result, the thickness of the resin support layer provided on the support base side of the metal reflective layer (the side opposite to the light incident side) and the thickness of the adhesive layer are set within predetermined ranges, respectively. The inventors have found that the smoothness of the metal reflective layer can be sufficiently secured without increasing the smoothness, and have completed the present invention.
  • a resin support layer An adhesive layer provided on one surface side of the resin support layer; A metal reflective layer provided on the other surface side of the resin support layer; A light reflecting film comprising: The resin support layer has a thickness of 200 to 1000 ⁇ m; A light reflecting film, wherein the adhesive layer has a thickness of 30 to 200 ⁇ m. 2.
  • the light reflective film according to 1 or 2 wherein the pressure-sensitive adhesive layer has a shear storage elastic modulus G ′ of 1 ⁇ 10 7 Pa or less. 4).
  • 10 is a light reflection film
  • 11 is a resin support layer
  • 12 is an adhesion layer
  • 13 is a metal reflection layer
  • 14 is a corrosion preventing layer
  • 15 is an ultraviolet absorbing layer
  • 16 is an adhesive layer
  • 17 is an acrylic layer
  • 18 is a hard coat layer.
  • X to Y indicating a range means “X or more and Y or less”.
  • measurements such as operation and physical properties are performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • a light reflecting film includes a resin support layer, an adhesive layer provided on one surface side of the resin support layer, and a metal reflection layer provided on the other surface side of the resin support layer.
  • the thickness of the resin support layer is 200 to 1000 ⁇ m, and the thickness of the adhesive layer is 30 to 200 ⁇ m.
  • the light reflecting film of the present embodiment has the above-described configuration, so that the smoothness of the metal reflecting layer can be made sufficient when the light reflecting film is attached to a support substrate to form a light reflector.
  • the mechanism by which the light reflecting film of the present embodiment can exert such an effect is not clear, the present inventor presumes as follows.
  • the present invention is not limited by the following mechanism.
  • Conventional light-reflecting films have been designed so that the thickness of each layer is as thin as possible within the range in which the function of each layer can be fully exerted, mainly from a cost standpoint.
  • the unevenness of the surface of the supporting substrate to which the film is bonded affects the smoothness of the metal reflecting layer, so that the smoothness of the surface of the supporting substrate can be increased or concentrated.
  • an operation such as pasting a light reflecting film on a supporting substrate in advance was necessary prior to mounting in the apparatus.
  • a resin base material layer and an adhesive layer are sequentially provided on the support base material side (the side opposite to the light incident side) of the metal reflective layer, and the thickness of these two layers is conventionally increased. Is also characterized by its thickening. Increasing the thickness of the resin base layer suppresses the impact on the smoothness of the metal reflective layer due to the unevenness of the surface of the support base, and increasing the thickness of the adhesive layer alleviates the unevenness of the surface of the support base, thereby reflecting light. It is considered that the smoothness of the metal reflection layer can be made sufficient in the body. Therefore, the light reflecting film of this embodiment is useful in that the smoothness of the metal reflecting layer can be made sufficiently even when the surface of the supporting substrate is not sufficiently smooth.
  • the surface roughness Ra of the surface of the supporting substrate to which the light reflecting film of this embodiment is applied is preferably 0.2 ⁇ m or more, more preferably 0.3 ⁇ m or more, and further preferably 0.4 ⁇ m or more.
  • the effects of the present invention are further exhibited.
  • FIG. 1 is a schematic cross-sectional view showing a light reflecting film according to an embodiment of the present invention.
  • 1 includes a resin support layer 11, an adhesive layer 12 provided on one surface side of the resin support layer 11, and a metal reflection layer 13 provided on the other surface side of the resin support layer 11. And have. That is, the metal reflective layer 13, the resin support layer 11, and the adhesive layer 12 are sequentially laminated from the light incident side.
  • the light reflecting film 10 of FIG. 1 has a corrosion preventing layer 14 between the metal reflecting layer 13 and the resin support layer 11 in addition to the above layers. Furthermore, functional layers such as an ultraviolet absorbing layer 15, an adhesive layer 16, an acrylic layer 17, and a hard coat layer 18 are laminated in this order from the metal reflecting layer 13 side to the light incident side from the metal reflecting layer 13.
  • the thickness of the entire light reflecting film is not particularly limited, but is preferably 250 to 2000 ⁇ m, more preferably 300 to 1500 ⁇ m, and further preferably 500 to 1000 ⁇ m. If the total thickness is 250 ⁇ m or more, the self-supporting property is high and the support can be used even if the rigidity is low. On the other hand, when the total thickness is 2000 ⁇ m or less, winding with a small-diameter core is possible during production, and production efficiency is increased.
  • each component of the light reflection film of this form is demonstrated in detail.
  • the resin support layer has a function as a base material when the layers are laminated in the production of the light reflecting film.
  • the light reflecting film of this embodiment is characterized in that it essentially includes a resin support layer having a thickness of 200 to 1000 ⁇ m.
  • the thickness of the resin support layer is preferably 250 to 600 ⁇ m, and more preferably 300 to 400 ⁇ m.
  • the thickness of the resin support layer is less than 200 ⁇ m, the unevenness of the support base material in the light reflector affects the metal reflection layer, and the smoothness of the metal reflection layer may be reduced.
  • the thickness of the resin support layer is more than 1000 ⁇ m, the flexibility of the light reflecting film is impaired, and roll-to-roll winding may be difficult.
  • the resin material constituting the resin support layer is not particularly limited, and various conventionally known materials can be appropriately employed.
  • resin materials include polycarbonate, polyarylate, polysulfone, polyethersulfone, polyethylene terephthalate, polyethylene naphthalate, polyester such as modified polyester, polyolefin such as polyethylene and polypropylene, cellulose, diacetylcellulose, triacetylcellulose, Cellulose esters such as cellulose acetate propionate and cellulose acetate butyrate, polyvinyl chloride (soft polyvinyl chloride, hard polyvinyl chloride), polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polystyrene, syndiotactic Polystyrene, styrene / acrylonitrile copolymer, polyacetal, epoxy resin, phenol resin, Examples include olefin polymers, polynorbornene, polymethylpentene, poly
  • the Young's modulus of the resin support layer is preferably 3 GPa or more, and more preferably 3.5 GPa or more.
  • the upper limit of the Young's modulus is not particularly limited, but is preferably 6 GPa or less, and more preferably 5.5 GPa or less from the viewpoint of maintaining the flexibility of the light reflecting film. In this specification, the value measured by the method described in the examples is adopted as the Young's modulus.
  • the resin having such Young's modulus is not particularly limited, but is hard polyvinyl chloride, polystyrene, styrene / acrylonitrile copolymer, polyacetal, epoxy resin, phenol resin, methacrylic resin such as polymethyl methacrylate, polyethylene terephthalate, polyethylene Examples thereof include polyesters such as naphthalate and modified polyester. Of these, polyethylene terephthalate, epoxy resin, and phenol resin are more preferable.
  • the resin support layer may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation.
  • the resin substrate may be an unstretched film or a stretched film.
  • An adhesion layer is a layer provided in order to stick a light reflection film on the support base material in a light reflector.
  • the light reflecting film of this embodiment is characterized in that an adhesive layer having a thickness of 30 to 200 ⁇ m is essential on one surface side of the resin support layer.
  • the thickness of the adhesive layer is preferably 100 to 200 ⁇ m, and more preferably 150 to 200 ⁇ m. If the thickness of the adhesive layer is less than 30 ⁇ m, the unevenness of the support material in the light reflector cannot be sufficiently relaxed, and the smoothness of the metal reflective layer may be reduced. On the other hand, if the thickness of the pressure-sensitive adhesive layer exceeds 200 ⁇ m, it becomes difficult to sufficiently dry the pressure-sensitive adhesive layer in the production process, which may reduce the production efficiency.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is not particularly limited, and for example, known pressure-sensitive adhesives such as a dry laminating agent, a wet laminating agent, a heat sealing agent, and a hot melt agent can be appropriately employed.
  • a material for the pressure-sensitive adhesive for example, a polyester resin, a polyurethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or a combination of these materials is used.
  • the adhesive layer preferably has a shear storage elastic modulus G ′ at 23 ° C. of 1 ⁇ 10 7 Pa or less, and 1.2 ⁇ 10 6. More preferably, it is Pa or less.
  • the lower limit value of the shear storage modulus G ′ is not particularly limited, but is preferably 1 ⁇ 10 4 Pa or more and more preferably 1 ⁇ 10 5 Pa or more from the viewpoint of tackiness.
  • the value measured by the method as described in an Example shall be employ
  • the shear storage modulus G ′ of the pressure-sensitive adhesive layer can be easily adjusted by those skilled in the art. Specifically, the shear storage modulus G ′ is desired by adjusting the glass transition point (Tg), molecular weight (weight average molecular weight, molecular weight distribution) of the resin constituting the pressure-sensitive adhesive, and the type and blending amount of the curing agent. It is possible to control to the value of.
  • Tg glass transition point
  • molecular weight weight average molecular weight, molecular weight distribution
  • the adhesive layer is formed by laminating on the resin support layer.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the metal reflection layer is a layer made of a metal having a function of reflecting sunlight.
  • a metal reflective layer is provided on the other surface side of the resin support layer (the surface side opposite to the surface side on which the pressure-sensitive adhesive layer is provided).
  • the surface reflectance of the metal reflective layer is preferably 80% or more, more preferably 90% or more.
  • the metal reflective layer is made of aluminum (Al), silver (Ag), chromium (Cr), copper (Cu), nickel (Ni), titanium (Ti), magnesium (Mg), rhodium (Rh), platinum (Pt) and It is preferably formed of a material containing at least one element selected from the element group consisting of gold (Au).
  • aluminum (Al) or silver (Ag) is a main component from viewpoints of a reflectance, corrosion resistance, etc., and it is more preferable to consist of silver (Ag).
  • the main component means that the content of a certain atom exceeds 50 atomic% when the total amount of metal atoms contained in the metal reflective layer is 100 atomic%.
  • the metal reflective layer may be composed of two or more layers of the above metal thin film. Further, a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided in this order on the metal reflective layer to further improve the reflectance.
  • a metal oxide such as SiO 2 or TiO 2
  • the thickness of the metal reflective layer is preferably 10 to 200 nm, more preferably 30 to 150 nm from the viewpoint of reflectivity and the like.
  • the formation method of the metal reflective layer is not particularly limited, and both a wet method and a dry method can be used.
  • the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method is a general term for a vacuum film forming method, and specifically includes a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method. and so on. In the manufacturing method of the light reflection film of this form, it is preferable to form a metal reflection layer by a vapor deposition method.
  • the light reflective film of the present embodiment includes, as necessary, a hard coat layer, an acrylic layer, an adhesive layer, an ultraviolet absorption layer, a corrosion prevention layer, a gas barrier layer, You may have other functional layers, such as an anchor layer and a peeling layer. Hereinafter, these layers will be described.
  • the hard coat layer is preferably provided on the outermost layer on the light incident side.
  • the “hard coat layer” means a layer having a pencil hardness of H or more according to JIS K 5600-5-4: 1999.
  • the hard coat layer functions as a surface protective layer for enhancing the scratch resistance of the optical reflective film.
  • the material for forming the hard coat layer is not particularly limited as long as transparency, weather resistance, hardness, mechanical strength, and the like can be obtained.
  • a resin curable by electron beam or ultraviolet irradiation, a thermosetting resin, or the like can be used.
  • a thermosetting silicone hard coat composed of a partially hydrolyzed oligomer of an alkoxysilane compound, a thermosetting polysiloxane resin.
  • a hard coat made of, an ultraviolet curable acrylic hard coat made of an acrylic compound having an unsaturated group, and a thermosetting inorganic material are preferred.
  • the hard coat layer preferably contains an antioxidant or an ultraviolet absorber.
  • Specific materials that can be used for the hard coat layer include an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane resin composition (Japanese Patent Laid-Open No. 2005-110918), and an aqueous silicone compound.
  • Resin film used as binder Japanese Patent Laid-Open No. 2004-142161
  • photocatalytic oxide-containing silica film or alumina such as titanium oxide
  • photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio
  • the hard-coat layer of this form is comprised from an inorganic substance.
  • thermosetting silicone hard coat a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used.
  • An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React in range.
  • an acid catalyst such as hydrochloric acid or nitric acid
  • the alkoxysilane is hydrolyzed and further subjected to a condensation reaction to obtain a partially hydrolyzed oligomer of an alkoxysilane compound having two or more silanol groups or alkoxy groups in one molecule and an average polymerization degree of 4 to 8. It is done.
  • a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid.
  • coating method for example, gravure coat method, reverse coat method, die coat method etc.
  • a hard-coat layer is formed by heat-curing at the temperature of the range of 80-140 degreeC.
  • an acrylic compound having an unsaturated group includes, for example, pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethyloltetra (A polyfunctional (meth) acrylate mixture such as (meth) acrylate can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, and benzophenone is blended and used. And this is apply
  • the hard coat layer is made of an inorganic material formed by a dry method
  • silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like can be formed by vacuum film formation.
  • the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
  • the hard coat layer is made of an inorganic material formed by a wet method, it is preferably made of a film obtained by applying polysilazane to a film and then heat-curing it.
  • the hard coat precursor contains polysilazane, for example, after applying a solution of polysilazane represented by the following general formula (1) and an organic solvent, if necessary, the solvent is evaporated.
  • a polysilazane layer having a thickness of 0.05 to 3.0 ⁇ m is formed on the surface of the light reflecting film.
  • a glass-like transparent hard coat film is formed on the surface of the light reflecting film.
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, an aryl group, a vinyl group, or a (trialkoxysilyl) alkyl group.
  • a group consisting of a hydrogen atom, methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, phenyl, vinyl, 3- (triethoxysilyl) propyl, 3- (trimethoxysilyl) propyl Is preferably a group selected from:
  • n is an integer, and n is determined so that the polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
  • catalysts preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N-heterocyclic compounds are used.
  • the catalyst concentration is usually 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
  • a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 in the general formula (1) are hydrogen atoms is used.
  • At least one polysilazane represented by the following general formula (2) is used.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, an aryl group, a vinyl group, Represents a (trialkoxysilyl) alkyl group.
  • n and p are integers, and in particular, n is determined so that polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
  • R 1, R 3 and R 6 is a hydrogen atom and R 2, R 4 and R 5 are methyl; R 1, R 3 and R 6 is a hydrogen atom and R 2, R A compound in which 4 is methyl and R 5 is vinyl; a compound in which R 1 , R 3 , R 4 and R 6 are hydrogen atoms and R 2 and R 5 are methyl is preferable.
  • At least one polysilazane represented by the following general formula (3) is used.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, substituted or unsubstituted
  • An alkyl group, an aryl group, a vinyl group, or a (trialkoxysilyl) alkyl group is represented.
  • n, p and q are integers, and in particular, n is determined so that the polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
  • R 1 , R 3 and R 6 are hydrogen atoms
  • R 2 , R 4 , R 5 and R 8 are methyl
  • R 9 is (triethoxysilyl) propyl
  • R 7 is alkyl.
  • the compound which is hydrogen is preferable.
  • the concentration of polysilazane in the polysilazane solution is generally 1 to 80% by mass, preferably 5 to 50% by mass, and more preferably 10 to 40% by mass.
  • an organic solvent which does not contain water or a reactive group (for example, a hydroxy group or an amine group) and is inert to the polysilazane is suitable.
  • organic solvents include aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters (eg, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, dibutyl ether). , Mono- or polyalkylene glycol dialkyl ethers (diglymes), or a mixed solvent thereof.
  • the polysilazane solution may contain a known binder.
  • the binder include cellulose ether, cellulose ester (for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate), natural resin (for example, rubber, rosin resin), synthetic resin (for example, polymerization resin, condensation resin). ) And the like.
  • the synthetic resin include aminoplasts (particularly urea resins and melamine formaldehyde resins), alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, and polysiloxanes.
  • the polysilazane solution includes additives for controlling the viscosity of the solution, wetting of the substrate, film-forming properties, lubricating action, and exhaust properties, or inorganic nanoparticles such as SiO 2 , TiO 2 , ZnO, ZrO 2 or Al 2 O 3 may be added.
  • the thickness of the hard coat layer is preferably in the range of 10 nm to 3 ⁇ m.
  • the polysilazane hard coat layer can also be used as an oxygen / water vapor barrier layer.
  • the hard coat layer is preferably flexible and does not warp. On the surface of the hard coat layer, a dense cross-linked structure may be formed. At this time, the film may bend or bend easily and may be cracked, making handling difficult. In such a case, it is preferable to design the hard coat layer so as to obtain flexibility and flatness by adjusting the amount of the inorganic substance in the composition.
  • an acrylic layer may be provided on the light incident surface side of the metal reflecting layer.
  • the acrylic layer has a function of preventing deterioration or discoloration of the layer provided in the lower layer (that is, the lower layer of the acrylic layer viewed from the light incident side) or film peeling.
  • it can function as a layer that protects the metal reflective layer from external factors such as water, chlorine, or sulfur in the air.
  • the resin support layer etc. which are provided in the lower layer can be functioned as a layer which protects from an ultraviolet-ray by containing a ultraviolet absorber or using resin etc. which have an ultraviolet-absorbing group.
  • the thickness of the acrylic layer is not particularly limited, but is preferably 20 to 100 ⁇ m, and more preferably 30 to 80 ⁇ m.
  • the thickness of the acrylic layer is 20 ⁇ m or more, moisture permeation is suppressed, so that a sufficient amount of an ultraviolet absorber can be contained, and a desired ultraviolet absorption effect can be obtained.
  • the absorption amount of the sunlight in an acrylic layer can be suppressed as the thickness of an acrylic layer is 100 micrometers or less, while being able to suppress that a reflectance falls, maintaining the softness
  • the acrylic layer according to this embodiment mainly includes an acrylic resin as a base resin, and may further include additives such as an ultraviolet absorber and an antioxidant.
  • an ultraviolet absorber A benzophenone type, a benzotriazole type, a phenyl salicylate type, a triazine type, a hindered amine type, a benzoate type etc. are mentioned as an organic type, Moreover, a titanium oxide, a zinc oxide is mentioned as an inorganic type. , Cerium oxide, iron oxide and the like. More specifically, compounds exemplified as ultraviolet absorbers contained in the ultraviolet absorbing layer described later can be mentioned. In order to reduce the problem of bleeding out when a large amount of the ultraviolet absorber is contained, it is preferable to use a high molecular weight ultraviolet absorber having a weight average molecular weight of 1000 or more. The weight average molecular weight is preferably 1000 or more and 3000 or less. In addition, in this specification, the value measured on condition of the following measurement using a gel permeation chromatography (GPC) is employ
  • GPC gel permeation chromatography
  • the content of the ultraviolet absorber is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass with respect to 100% by mass of the total amount of the acrylic resin contained in the acrylic layer. More preferably, it is ⁇ 8% by mass.
  • an organic antioxidant such as a hindered amine antioxidant, a hindered phenol antioxidant, and a phosphoric acid antioxidant.
  • the content of the antioxidant is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, with respect to 100% by mass of the total amount of the acrylic resin contained in the acrylic layer. More preferably, it is ⁇ 6% by mass.
  • the adhesive layer is not particularly limited as long as it has a function of improving the adhesion between the layers.
  • the adhesive layer may consist of only one layer or may consist of a plurality of layers.
  • the thickness of the adhesive layer is preferably 1 to 10 ⁇ m, and more preferably 3 to 8 ⁇ m, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
  • the material is not particularly limited, and a single material such as polyester resin, polyurethane resin, acrylic resin, melamine resin, epoxy resin, polyamide resin, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer resin, etc. Alternatively, these mixed resins can be used.
  • a mixed resin of polyester resin and melamine resin or a mixed resin of polyester resin and urethane resin is preferable from the viewpoint of weather resistance, and if it is a thermosetting resin in which a curing agent such as isocyanate is mixed with an acrylic resin. More preferred.
  • a method for forming the adhesive layer conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the adhesive layer is made of a metal oxide
  • a metal oxide for example, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, etc.
  • the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
  • the ultraviolet absorbing layer is a layer containing an ultraviolet absorber for the purpose of preventing deterioration of the light reflecting film caused by sunlight or ultraviolet rays.
  • the ultraviolet absorbing layer is preferably provided between the metal reflective layer and the hard coat layer.
  • the thickness of the ultraviolet absorbing layer is preferably 20 ⁇ m or more, more preferably 20 to 100 ⁇ m, from the viewpoint of ultraviolet absorbing power.
  • UV absorbers examples include benzophenone, benzotriazole, phenyl salicylate, hindered amine, triazine, and benzoate as organic materials, and inorganic materials such as titanium oxide, zinc oxide, cerium oxide, and iron oxide. Etc. Especially, it is preferable to use a triazine type ultraviolet absorber.
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
  • benzotriazole ultraviolet absorber examples include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1, 3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercial products are LA31 from ADEKA Corporation), 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl- 1-Phenylethyl) phenol (molecular weight 447.6; examples of commercially available products include Tinuvin 234 from Ciba Specialty Chemicals) It is.
  • phenyl salicylate ultraviolet absorber examples include phenyl saltylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • hindered amine ultraviolet absorbers examples include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • triazine ultraviolet absorber examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy -4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy -4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5 Triazine, 2,4-diphenyl-6- (2-hydroxy-4-dodec
  • benzoate UV absorbers examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; Sumisorb 400).
  • a compound having a function of converting the energy held by ultraviolet light into vibrational energy in the molecule and releasing the vibrational energy as heat energy can be used as the ultraviolet absorber.
  • those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers that act as light energy conversion agents, such as quenchers, can be used in combination.
  • said ultraviolet absorber may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, when using a normal ultraviolet absorber, it is effective to use a photopolymerization initiator that generates radicals with visible light.
  • the content of the ultraviolet absorber in the ultraviolet absorbing layer is preferably from 0.1 to 20% by mass, more preferably from 1 to 15% by mass, and even more preferably from 3 to 10% by mass. By making the content within the above range, it is possible to prevent soiling of the roll and film and deterioration of adhesion due to bleeding out of the ultraviolet absorber while sufficiently exhibiting weather resistance.
  • the light reflection film of this embodiment may have a corrosion prevention layer adjacent to the metal reflection layer for the purpose of preventing the metal reflection layer from corroding.
  • the corrosion protection layer can include a corrosion inhibitor and a binder.
  • the corrosion prevention layer may consist of only one layer or a plurality of layers.
  • the thickness of the corrosion prevention layer is preferably 30 to 200 nm, more preferably 20 to 100 nm.
  • binder for the corrosion prevention layer examples include cellulose ester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyethylene terephthalate, polyester such as polyethylene naphthalate, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, Cellulose acetate propionate, cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, polynorbornene, polymethylpentene, polyether ketone, polyether ketone imide, polyamide, fluororesin, List nylon, polymethyl methacrylate, or acrylic resin Door can be. Of these, acrylic resins are preferred. Further, the corrosion prevention layer may include a curing agent such as 2,4-tolylene diisocyanate.
  • corrosion inhibitor As a corrosion inhibitor, it is preferable to have an adsorptive group with respect to the metal which comprises a metal reflective layer.
  • corrosion refers to a phenomenon in which a metal is chemically or electrochemically eroded or deteriorated in material by an environmental substance surrounding it (see JIS Z0103: 2004).
  • the optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 g / m 2 .
  • Examples of the corrosion inhibitor having an adsorptive group for metals include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and imidazole rings. It is preferable to be selected from at least one of a compound having an indazole ring, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene compound, or a mixture of two or more thereof.
  • the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. More specifically, the corrosion inhibitors described in paragraphs “0063” to “0073” of JP2012-232538A can be used.
  • the light reflecting film of this embodiment may have a gas barrier layer on the light incident side of the metal reflecting layer.
  • the gas barrier layer is intended to prevent deterioration of the humidity, especially the deterioration of the resin base material and each component layer supported by the resin base material due to high humidity, but it has special functions and uses. As long as it has the function of preventing deterioration, a gas barrier layer of various modes can be provided.
  • the moisture-proof barrier layer, 40 ° C., the water vapor permeability at 90% RH is preferably not more than 1g / m 2 ⁇ day, more preferably at most 0.5g / m 2 ⁇ day, 0 More preferably, it is 2 g / m 2 ⁇ day or less.
  • the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and 90% RH.
  • Examples of the method for forming the gas barrier layer include a method of forming an inorganic oxide by a method such as vacuum deposition, sputtering, ion beam assist, chemical vapor deposition, and the like.
  • An inorganic oxide precursor by a sol-gel method is used.
  • a method of forming an inorganic oxide film by applying heat treatment and / or ultraviolet irradiation treatment to the coating film after coating is also preferably used.
  • the inorganic oxide is formed by local heating from a sol using an organometallic compound as a raw material.
  • an organometallic compound for example, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound,
  • An oxide of an element such as tin (Sn) or niobium (Nb), such as silicon oxide, aluminum oxide, or zirconium oxide. Of these, silicon oxide is preferred.
  • the inorganic oxide As a method for forming the inorganic oxide, it is preferable to use a so-called sol-gel method or a polysilazane method.
  • the sol-gel method is a method of forming an inorganic oxide from an organometallic compound that is a precursor of an inorganic oxide
  • the polysilazane method is a method of forming an inorganic oxide from a polysilazane that is a precursor of an inorganic oxide.
  • the compounds and methods described in paragraphs “0174” to “0191” of JP2012-232538A can be appropriately employed.
  • the anchor layer is made of a resin, and is a layer provided for closely attaching the resin base material and the metal reflective layer, or the support base material (resin film) of the metal reflective layer and the metal reflective layer. Therefore, the anchor layer has an adhesion property that allows the resin base material (support base material) and the metal reflective layer to adhere to each other, heat resistance that can withstand heat when the metal reflective layer is formed by a vacuum deposition method, and the metal reflective layer. It is preferable to have smoothness to bring out the high reflection performance inherent in the.
  • the resin used for the anchor layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness.
  • polyester resin, polyurethane resin, acrylic resin, melamine resin, epoxy resin, Polyamide resin, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer resin, etc. can be used alone or in combination.
  • a mixed resin of a polyester resin and a melamine resin or a mixed resin of a polyester resin and a urethane resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
  • the thickness of the anchor layer is preferably 0.01 to 3 ⁇ m, more preferably 0.1 to 2 ⁇ m. By satisfying this range, the unevenness on the surface of the resin substrate can be covered while maintaining the adhesion, the smoothness can be improved, and the anchor layer can be sufficiently cured, resulting in the reflection of the light reflecting film. The rate can be increased.
  • the anchor layer can contain the corrosion inhibitor described in the above section (Corrosion prevention layer).
  • a method for forming the anchor layer conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the light reflecting film of this embodiment may have a release layer on the side opposite to the light incident side of the adhesive layer.
  • a light reflecting film when a light reflecting film is shipped, it is shipped with the release layer attached to the adhesive layer, the light reflecting film having the adhesive layer is peeled from the release layer, and the light reflecting film is attached to a support substrate and light from a solar reflective device or the like. Used as a reflector.
  • the release layer may be any layer that can impart protection to the metal reflective layer, such as an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film or sheet.
  • Plastic film or sheet such as fluororesin film, resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc., coating the resin kneaded with these, or metal deposition such as aluminum by metal vapor deposition, etc.
  • a resin film or sheet that has been subjected to surface treatment is used.
  • the thickness of the release layer is not particularly limited, but is usually preferably in the range of 12 to 250 ⁇ m.
  • a light reflector in which the above-described light reflection film is attached to a support substrate.
  • the light reflector has a structure in which a light reflecting film is bonded to a self-supporting base material (support base material) through an adhesive layer.
  • self-supporting in the case of “self-supporting base material” means that, when cut to a size used as a base material for a light reflector, the opposite edge portions are supported. By this, it means that it has the rigidity of the grade which can carry
  • the base material of the light reflector has self-supporting properties, it can be easily handled when installed in the solar light reflection device described later, and the holding member for holding the light reflector can have a simple configuration. Therefore, it is possible to reduce the weight of the solar reflective device. For example, when the solar reflective device is used as a solar reflective device for solar thermal power generation, power consumption during solar tracking can be suppressed.
  • the substrate may be a single layer or a shape in which a plurality of layers are laminated. Moreover, a single structure may be sufficient and it may be divided
  • the shape of the substrate is preferably a concave shape or can be a concave shape. Therefore, a base material that is variable from a flat shape to a concave shape may be used, or a base material that is fixed to a concave shape may be used.
  • the base material that can be changed into the concave shape can adjust the curvature of the film mirror that is bonded by adjusting the curvature of the base material. It is preferable because a rate can be obtained.
  • the base material having the concave shape fixed is preferable from the viewpoint of adjustment cost because it is not necessary to adjust the curvature.
  • the base material includes steel plates, copper plates, aluminum plates, aluminum-plated steel plates, aluminum-based alloy-plated steel plates, copper-plated steel plates, tin-plated steel plates, chrome-plated steel plates, stainless steel plates, and veneer plates (preferably waterproofed) Wood board, fiber reinforced plastic (FRP) board, resin board, and the like.
  • a metal plate from the viewpoint of high thermal conductivity. More preferably, it is a plated steel plate, stainless steel plate, aluminum plate or the like having not only high thermal conductivity but also good corrosion resistance. Most preferably, a steel plate combining a resin and a metal plate is used.
  • the material for the resin film as the surface layer various conventionally known resin films can be used.
  • a polycarbonate film, a polyester film such as polyethylene terephthalate, a norbornene resin film, a cellulose ester film, and an acrylic film are preferable, and a polyester film such as polyethylene terephthalate or an acrylic film is particularly preferable.
  • the thickness of the resin film is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally 10 to 250 ⁇ m, preferably 20 to 200 ⁇ m.
  • a sunlight reflecting device having a light reflector.
  • the solar light reflection device of this embodiment is suitably used for condensing sunlight in solar thermal power generation.
  • the solar light reflection device of this embodiment includes a light reflector and a holding member that holds the light reflector.
  • a cylindrical member having a fluid inside is provided as a heat collecting part in the vicinity of the film mirror, and sunlight is reflected on the cylindrical member so as to reflect the inside.
  • a form generally called a trough type that heats a fluid and converts the heat energy to generate electric power can be given.
  • mold is also mentioned as another form.
  • the tower-type configuration has at least one heat collecting part and at least one solar power solar reflection device for reflecting sunlight and irradiating the heat collecting part, and is collected in the heat collecting part. There is one that uses liquid heat to heat a liquid and turn a turbine to generate electricity.
  • a plurality of solar power generation solar reflective devices are arranged around the heat collection unit.
  • a plurality of solar reflective devices for solar thermal power generation are arranged concentrically or in a concentric fan shape.
  • sunlight is reflected to the collector mirror by the sunlight reflecting mirrors installed around the support tower, and then reflected further by the collector mirror and sent to the heat collector and sent to the heat exchange facility. It is done.
  • the solar light reflection device of this embodiment can be used for both trough type and tower type. Of course, it can be used for various other types of solar thermal power generation.
  • the sunlight reflecting device has a holding member that holds the light reflector.
  • the holding member is preferably held in a state in which the light reflector can track the sun.
  • the holding member preferably has a configuration for holding the light reflector in a state where the sun can be tracked. However, when the sun is tracked, it may be driven manually, or a separate driving device may be provided to automatically track the sun. It is good also as composition to do.
  • Example 1 A biaxially stretched polyethylene terephthalate (PET) film (thickness: 200 ⁇ m, Young's modulus: 3.8 GPa) was used as the resin support layer.
  • PET polyethylene terephthalate
  • a polyester resin (Polyester SP-181, manufactured by Nippon Synthetic Chemical Co., Ltd.) and 2,4-tolylene diisocyanate are mixed at a resin solid content ratio (mass ratio) of 10: 2, and methyl ethyl ketone (MEK) is used as a solvent.
  • MEK methyl ethyl ketone
  • an amount prepared to be 10% by mass of glycol dimercaptoacetate (manufactured by Wako Pure Chemical Industries, Ltd.) as a corrosion inhibitor was mixed to prepare a mixed solution.
  • This mixed solution was coated on one surface of a PET film as a resin support layer by a gravure coating method to form a corrosion prevention layer having a thickness of 60 nm.
  • a metal reflective layer made of silver was formed on the surface of the corrosion prevention layer so as to have a thickness of 80 nm by vacuum deposition.
  • the surface of the metal reflective layer was coated with an ultraviolet absorbing polymer “New Coat UVA-204W” (manufactured by Shin-Nakamura Chemical) by the gravure coating method to form an ultraviolet absorbing layer having a thickness of 5 ⁇ m.
  • the surface of the UV absorbing layer is coated with an adhesive TBS-730 (Dainippon Ink Co., Ltd.) by a gravure coating method to form a 5 ⁇ m thick adhesive layer, and the UV absorber (BASF Tinuvin 477 triazine type) is formed on the surface.
  • An acrylic layer having a thickness of 30 ⁇ m containing 5% was formed.
  • a 30 wt% coating solution was prepared by diluting Sircoat BP-16N (manufactured by Kinken Co., Ltd .: 45 wt% methanol solution) of acrylic silicone thermosetting resin with MEK.
  • the MEK in the coating solution was 32% by mass.
  • the coating liquid was applied to the surface of the acrylic layer, dried at 80 ° C. for 90 seconds, and then heated at 45 ° C. for 48 hours to form a hard coat layer having a dry film thickness of 3 ⁇ m.
  • an acrylic pressure-sensitive adhesive SZ-7543, manufactured by Nippon Carbide Industry Co., Ltd.
  • a curing agent Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.
  • the addition amount was adjusted to 2 ⁇ 10 6 Pa, and an adhesive layer having a thickness of 30 ⁇ m was formed by applying with an applicator to complete a light reflecting film.
  • the thickness of the resin support layer was determined by cutting the film with a laser cutter and measuring the thickness of the cross section using a transmission electron microscope (SEM).
  • the Young's modulus of the resin support layer was determined as follows. The resin support layer was cut into a 1 cm ⁇ 5 cm strip. Using this sample, a tensile test was performed at a speed of 50 mm / min using a Tensilon universal material tester, RTF-2430, manufactured by A & D Co., Ltd., and the Young's modulus was obtained.
  • the shear storage elastic modulus G ′ of the adhesive layer was determined as follows. An adhesive was applied on a polyethylene terephthalate film to form an adhesive layer, which was peeled off. About the peeled adhesive layer, using a dynamic viscoelasticity measuring device (“ARES” manufactured by Rheometric Co., Ltd.), shear storage elasticity at 23 ° C. in a temperature rising mode (temperature rising rate 5 ° C./min, frequency 10 Hz). The rate G ′ was measured.
  • ROS dynamic viscoelasticity measuring device
  • Example 2 A light reflecting film was produced in the same manner as in Example 1 except that the thickness of the resin support layer was 500 ⁇ m.
  • Example 3 A light reflecting film was produced in the same manner as in Example 1 except that the thickness of the resin support layer was 1000 ⁇ m.
  • Example 4 to 6 A light reflecting film was prepared in the same manner as in Examples 1 to 3 except that the thickness of the adhesive layer was 100 ⁇ m.
  • Example 7 to 9 A light reflecting film was prepared in the same manner as in Examples 1 to 3, except that the thickness of the adhesive layer was 200 ⁇ m.
  • Example 10 A light reflecting film was produced in the same manner as in Example 5 except that the ultraviolet absorbing layer was not provided.
  • Example 11 By adding a curing agent (Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.) to an acrylic pressure-sensitive adhesive (SZ-7543, manufactured by Nippon Carbide Industry Co., Ltd.) on the other surface of the resin support layer, shear storage modulus G ′: 5 A light reflecting film was produced in the same manner as in Example 2 except that the pressure layer was adjusted to ⁇ 10 4 Pa and an adhesive layer having a thickness of 200 ⁇ m was formed.
  • a curing agent Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.
  • SZ-7543 acrylic pressure-sensitive adhesive
  • Example 12 By adding a curing agent (Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.) to an acrylic pressure-sensitive adhesive (SZ-7543, manufactured by Nippon Carbide Industry Co., Ltd.) on the other surface of the resin support layer, shear storage modulus G ′: A light reflecting film was produced in the same manner as in Example 2, except that the pressure was adjusted to 1 ⁇ 10 5 Pa and an adhesive layer having a thickness of 30 ⁇ m was formed.
  • a curing agent Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.
  • SZ-7543 acrylic pressure-sensitive adhesive
  • Example 13 By adding a curing agent (Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.) to an acrylic pressure-sensitive adhesive (SZ-7543, manufactured by Nippon Carbide Industry Co., Ltd.) on the other surface of the resin support layer, shear storage modulus G ′: A light reflecting film was produced in the same manner as in Example 2 except that the amount of the curing agent was adjusted to 1.2 ⁇ 10 7 Pa and a 30 ⁇ m thick adhesive layer was formed.
  • a curing agent Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.
  • SZ-7543 acrylic pressure-sensitive adhesive
  • Example 14 A light reflecting film was produced in the same manner as in Example 1 except that a biaxially stretched soft vinyl chloride film (thickness: 500 ⁇ m, Young's modulus: 1.7 GPa) was used as the resin support layer.
  • Example 15 A light reflecting film was produced in the same manner as in Example 1 except that a biaxially stretched epoxy resin film (thickness: 500 ⁇ m, Young's modulus: 5 GPa) was used as the resin support layer.
  • Example 16 A light reflecting film was produced in the same manner as in Example 1 except that a biaxially stretched soft vinyl chloride film (thickness: 1000 ⁇ m, Young's modulus: 1.7 GPa) was used as the resin support layer.
  • Example 17 A light reflecting film was produced in the same manner as in Example 1 except that a biaxially stretched phenol resin film (thickness: 1000 ⁇ m, Young's modulus: 5.2 GPa) was used as the resin support layer.
  • a comparative light reflecting film was prepared in the same manner as in Examples 2 to 3 except that the thickness of the adhesive layer was 25 ⁇ m.
  • Comparative Example 3 A comparative light reflecting film was produced in the same manner as in Example 7 except that the thickness of the resin support layer was 150 ⁇ m.
  • Comparative Example 4 A comparative light reflecting film was produced in the same manner as in Example 7 except that the thickness of the resin support layer was 1100 ⁇ m.
  • Comparative Example 5 A comparative light reflecting film was produced in the same manner as in Example 3 except that the thickness of the adhesive layer was 300 ⁇ m.
  • each light reflecting film was made of a support substrate made of stainless steel (SUS) (surface roughness Ra: 0.5 ⁇ m in Examples 1A, 2A, 3 to 11, 12A, and 13 to 17, Example 1B, In 2B and 12B, the surface roughness Ra is 0.1 ⁇ m), and the surface roughness Ra of the metal reflective layer of the light reflecting film is measured using an ultra-precision non-contact three-dimensional measuring device (NH-3SP from Mitaka Kogyo). Measured.
  • the measurement conditions were a measurement range of 2 mm, a measurement pitch of 2 ⁇ m, an objective lens of 100 times, and a cutoff value of 0.250 mm. Based on the obtained value, it evaluated in four steps as follows.
  • the light resistance of the light reflecting films prepared in Examples 1 to 10 and Comparative Examples 1 to 7 was evaluated.
  • the regular reflectance (5 ° regular reflectance) when the incident angle of incident light is 5 ° with respect to the normal of the reflective surface of the light reflecting film attached to the support substrate made of SUS is the wavelength range 250. Measurements were made at ⁇ 2500 nm to determine the initial average reflectance. For the measurement, a spectrophotometer U-4100 (manufactured by Shimadzu Corporation) was used.
  • the light reflecting film is irradiated with a xenon lamp on the light incident surface side of the film (using a Suga test machine SX75, under a black panel temperature of 63 ° C. and a relative humidity of 50%, with a radiation intensity of 180 W / m 2 , 5000 hours) and a light resistance test was conducted. And 5 degree regular reflectance was measured by the method similar to the above after the light resistance test, and the average reflectance was calculated
  • Degree of decrease is less than 10% ⁇ Degree of decrease is 10% or more.
  • the light reflecting films produced in Examples 2 and 11 to 13 were evaluated for scratch resistance. Specifically, according to the scratch hardness (pencil method) test (JIS K5600-5-4: 1999), the outermost layer of the light reflecting film is scratched 5 times under the conditions of a pencil angle of 45 ° and a load of 500 g. The hardness of the pencils that were not scratched four times or more was evaluated in three stages as follows.
  • the light reflective films produced in Examples 1 to 17 and Comparative Examples 1 to 7 were evaluated for manufacturing suitability. Specifically, in the case where a core having a diameter of about 30 cm is manufactured at 40 m / min by a roll-to-roll manufacturing method, the case where there is no problem in the manufacturing is ⁇ , manufacturing failure (winding failure or adhesive is not dried). When it became, it was set as x.
  • the light reflecting films of Examples 1 to 17 in which the thicknesses of the resin support layer and the pressure-sensitive adhesive layer are within a predetermined range are applied to a support substrate having a surface roughness Ra of 0.5 ⁇ m. Even when affixed, the surface roughness Ra of the metal reflective layer was less than 0.1 ⁇ m, indicating that sufficient smoothness was exhibited.

Abstract

[Problem] The purpose of the present invention is to provide a light reflecting film which enables a metal reflective layer to have sufficient smoothness in a light reflecting body. [Solution] A light reflecting film according to the present invention comprises: a resin supporting layer; an adhesive layer that is provided on one surface side of the resin supporting layer; and a metal reflective layer that is provided on the other surface side of the resin supporting layer. This light reflecting film is characterized in that the resin supporting layer has a thickness of 200-1,000 μm and the adhesive layer has a thickness of 30-200 μm.

Description

光反射フィルムLight reflection film
 本発明は、光反射フィルムに関する。 The present invention relates to a light reflecting film.
 近年、化石燃料の代替エネルギーとして、太陽光、風力、地熱などの自然エネルギーを利用した発電技術の開発が行われている。なかでも、太陽光は、安定性およびエネルギー量の豊富さから特に注目されている。 In recent years, power generation technology that uses natural energy such as sunlight, wind power, and geothermal heat has been developed as alternative energy for fossil fuels. Among these, sunlight is particularly attracting attention because of its stability and abundant energy.
 一方で、太陽光は、エネルギー密度が低く、エネルギーとしての貯蔵および移送が困難であるという性質を有する。現在、太陽光を電気エネルギーへと変換する技術(太陽熱発電、太陽電池)の研究・開発が盛んに行われている。 On the other hand, sunlight has a low energy density and is difficult to store and transfer as energy. Currently, research and development of technologies for converting sunlight into electrical energy (solar thermal power generation, solar cells) are being actively conducted.
 太陽熱発電は、太陽光を集光して熱源として利用する発電方式である。太陽熱発電は、太陽電池と比較して、蓄熱により昼夜を問わず発電が可能であることや、製造・保守のコストが低いという長所を有し、長期的視野で見れば、太陽電池よりも、発電効率が高いと考えられている。 Solar power generation is a power generation method that collects sunlight and uses it as a heat source. Compared with solar cells, solar power generation has the advantage of being able to generate electricity regardless of day and night by storing heat, and the cost of manufacturing and maintenance is low. It is considered that power generation efficiency is high.
 太陽熱発電では、太陽光を反射体(鏡)により反射させて一か所に集光する集光装置が用いられる。当該反射体は太陽光による紫外線や熱、風雨、砂嵐などに晒されるため、耐久性の観点から、従来は、ガラス製光反射体が用いられてきた。しかしながら、ガラス製光反射体は、重い、体積が大きい、輸送時コストがかかる、設置が困難、破損しやすいなどの問題点を有していた。 In solar thermal power generation, a condensing device that reflects sunlight by a reflector (mirror) and condenses it in one place is used. Since the reflector is exposed to ultraviolet rays, heat, wind and rain, sandstorms, and the like caused by sunlight, conventionally, a glass light reflector has been used from the viewpoint of durability. However, the glass light reflector has problems such as being heavy, large in volume, expensive in transportation, difficult to install, and easy to break.
 上記問題を解決するために、国際公開2013/036220号では、銀などの金属反射層を含む樹脂製光反射フィルムを、支持基材に貼付した光反射体(フィルムミラー)が提案されている。 In order to solve the above problems, International Publication No. 2013/036220 proposes a light reflector (film mirror) in which a resin light reflecting film including a metal reflecting layer such as silver is attached to a support base material.
 太陽熱発電では、上述のように太陽光を集光して熱媒を加熱し、熱エネルギーを得る。したがって、発電効率を高めるためには、太陽光を高い精度で集光する必要があり、反射体における金属反射層の平滑性が重要となる。そこで、従来は、金属反射層の平滑性を確保するために、支持基材表面の平滑性を高める、という手法が用いられていた。 In solar thermal power generation, sunlight is collected as described above to heat the heat medium and obtain thermal energy. Therefore, in order to increase the power generation efficiency, it is necessary to collect sunlight with high accuracy, and the smoothness of the metal reflection layer in the reflector is important. Therefore, conventionally, in order to ensure the smoothness of the metal reflective layer, a technique of increasing the smoothness of the surface of the supporting base has been used.
 しかしながら、従来の手法では、支持基材表面の平滑性を高めるために、製造コストが増大してしまうという問題を有していた。また、光反射体を集光装置に搭載する前に、予め光反射フィルムを支持基材に貼付しておく必要が生じ得るため、軽く、フレキシブルで、取り扱いが容易である、といった光反射フィルムの長所が十分に生かせない、という問題があった。 However, the conventional method has a problem that the manufacturing cost increases in order to improve the smoothness of the surface of the supporting substrate. In addition, since it may be necessary to affix the light reflecting film to the support substrate in advance before mounting the light reflecting body on the light collecting device, the light reflecting film is light, flexible, and easy to handle. There was a problem that the advantages could not be fully utilized.
 そこで本発明は、光反射体において、金属反射層の平滑性を十分なものとすることができる光反射フィルムを提供することを目的とする。 Therefore, an object of the present invention is to provide a light reflecting film capable of making the metal reflecting layer sufficiently smooth in the light reflector.
 本発明者は、上記の問題を解決すべく、鋭意研究を行った。その結果、金属反射層の支持基材側(光入射側とは反対側)に設けられる樹脂支持層の厚さと、粘着層の厚さとを、それぞれ所定の範囲とすることにより、支持基材の平滑性を高めずとも、金属反射層の平滑性を十分に確保できることを見出し、本発明を完成させた。 The present inventor conducted intensive research to solve the above problems. As a result, the thickness of the resin support layer provided on the support base side of the metal reflective layer (the side opposite to the light incident side) and the thickness of the adhesive layer are set within predetermined ranges, respectively. The inventors have found that the smoothness of the metal reflective layer can be sufficiently secured without increasing the smoothness, and have completed the present invention.
 本発明の上記課題は、以下の手段により達成される。
1.樹脂支持層と、
 前記樹脂支持層の一方の面側に設けられた粘着層と、
 前記樹脂支持層の他方の面側に設けられた金属反射層と、
を有する光反射フィルムであって、
 前記樹脂支持層の厚さが200~1000μmであり、
 前記粘着層の厚さが30~200μmである、光反射フィルム。
2.前記樹脂支持層のヤング率は、3GPa以上である、1に記載の光反射フィルム。
3.前記粘着剤層のせん断貯蔵弾性率G’は、1×10Pa以下である、1または2に記載の光反射フィルム。
4.表面粗さRaが0.2μm以上である支持基材の表面に貼付する用途に用いられる、1~3のいずれかに記載の光反射フィルム。
5.1~4のいずれかに記載の光反射フィルムが支持基材に貼付されてなる、光反射体。6.5に記載の光反射体を有する、太陽光反射装置。
The above object of the present invention is achieved by the following means.
1. A resin support layer;
An adhesive layer provided on one surface side of the resin support layer;
A metal reflective layer provided on the other surface side of the resin support layer;
A light reflecting film comprising:
The resin support layer has a thickness of 200 to 1000 μm;
A light reflecting film, wherein the adhesive layer has a thickness of 30 to 200 μm.
2. 2. The light reflecting film according to 1, wherein the resin support layer has a Young's modulus of 3 GPa or more.
3. The light reflective film according to 1 or 2, wherein the pressure-sensitive adhesive layer has a shear storage elastic modulus G ′ of 1 × 10 7 Pa or less.
4). 4. The light reflecting film according to any one of 1 to 3, which is used for application to a surface of a supporting substrate having a surface roughness Ra of 0.2 μm or more.
5. A light reflector obtained by attaching the light reflecting film according to any one of 1 to 4 to a support substrate. A sunlight reflecting device having the light reflector according to 6.5.
本発明の一実施形態に係る光反射フィルムを表す概略断面図であり、10は光反射フィルムであり、11は樹脂支持層であり、12は粘着層であり、13は金属反射層であり、14は腐食防止層であり、15は紫外線吸収層であり、16は接着層であり、17はアクリル層であり、18はハードコート層である。It is a schematic sectional drawing showing the light reflection film which concerns on one Embodiment of this invention, 10 is a light reflection film, 11 is a resin support layer, 12 is an adhesion layer, 13 is a metal reflection layer, 14 is a corrosion preventing layer, 15 is an ultraviolet absorbing layer, 16 is an adhesive layer, 17 is an acrylic layer, and 18 is a hard coat layer.
 以下、本発明の実施の形態について説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみに制限されない。なお、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性などの測定は室温(20~25℃)/相対湿度40~50%RHの条件で行う。 Hereinafter, embodiments of the present invention will be described. However, the technical scope of the present invention should be determined based on the description of the scope of claims, and is not limited to the following embodiments. In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, measurements such as operation and physical properties are performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 <光反射フィルム>
 本発明の一実施形態に係る光反射フィルムは、樹脂支持層と、樹脂支持層の一方の面側に設けられた粘着層と、樹脂支持層の他方の面側に設けられた金属反射層とを有する。そして、樹脂支持層の厚さが200~1000μmであり、粘着層の厚さが30~200μmであることを特徴とする。
<Light reflection film>
A light reflecting film according to an embodiment of the present invention includes a resin support layer, an adhesive layer provided on one surface side of the resin support layer, and a metal reflection layer provided on the other surface side of the resin support layer. Have The thickness of the resin support layer is 200 to 1000 μm, and the thickness of the adhesive layer is 30 to 200 μm.
 本形態の光反射フィルムは、上記構成とすることにより、支持基材に貼付して光反射体としたとき、金属反射層の平滑性を十分なものとすることができる。本形態の光反射フィルムがこのような効果を発揮することができるメカニズムは定かではないが、本発明者は以下のように推測している。なお、本発明は、以下のメカニズムにより限定されるものではない。 The light reflecting film of the present embodiment has the above-described configuration, so that the smoothness of the metal reflecting layer can be made sufficient when the light reflecting film is attached to a support substrate to form a light reflector. Although the mechanism by which the light reflecting film of the present embodiment can exert such an effect is not clear, the present inventor presumes as follows. The present invention is not limited by the following mechanism.
 従来の光反射フィルムは、主にコスト面から、各層の厚さは、各層の機能が十分に発揮できる範囲において、できる限り薄くなるように設計されていた。このような従来の光反射フィルムでは、フィルムを貼り合わせる支持基材の表面の凹凸が、金属反射層の平滑性に影響してしまうため、支持基材の表面の平滑性を高めたり、集光装置に搭載する前に、予め光反射フィルムを支持基材に貼付しておく、といった操作が必要であった。 Conventional light-reflecting films have been designed so that the thickness of each layer is as thin as possible within the range in which the function of each layer can be fully exerted, mainly from a cost standpoint. In such a conventional light reflecting film, the unevenness of the surface of the supporting substrate to which the film is bonded affects the smoothness of the metal reflecting layer, so that the smoothness of the surface of the supporting substrate can be increased or concentrated. Prior to mounting in the apparatus, an operation such as pasting a light reflecting film on a supporting substrate in advance was necessary.
 本形態の光反射フィルムは、金属反射層の支持基材側(光入射側とは反対側)に、樹脂基材層と粘着剤層とを順次設け、これらの2つの層の厚みを従来よりも厚くする点に特徴を有する。樹脂基材層を厚くすることにより支持基材の表面の凹凸による金属反射層の平滑性への影響が抑えられ、粘着層を厚くすることにより支持基材の表面の凹凸が緩和され、光反射体において、金属反射層の平滑性を十分なものとすることができると考えられる。したがって、本形態の光反射フィルムは、特に、支持基材の表面の平滑性が十分でない場合であっても、金属反射層の平滑性を十分なものとすることができる点で有用である。特に、本形態の光反射フィルムを貼付する対象となる支持基材の表面の表面粗さRaが、好ましくは0.2μm以上、より好ましくは0.3μm以上、さらに好ましくは0.4μm以上の場合に、本発明の効果がより一層発揮される。 In the light reflecting film of this embodiment, a resin base material layer and an adhesive layer are sequentially provided on the support base material side (the side opposite to the light incident side) of the metal reflective layer, and the thickness of these two layers is conventionally increased. Is also characterized by its thickening. Increasing the thickness of the resin base layer suppresses the impact on the smoothness of the metal reflective layer due to the unevenness of the surface of the support base, and increasing the thickness of the adhesive layer alleviates the unevenness of the surface of the support base, thereby reflecting light. It is considered that the smoothness of the metal reflection layer can be made sufficient in the body. Therefore, the light reflecting film of this embodiment is useful in that the smoothness of the metal reflecting layer can be made sufficiently even when the surface of the supporting substrate is not sufficiently smooth. In particular, when the surface roughness Ra of the surface of the supporting substrate to which the light reflecting film of this embodiment is applied is preferably 0.2 μm or more, more preferably 0.3 μm or more, and further preferably 0.4 μm or more. In addition, the effects of the present invention are further exhibited.
 以下、本形態の光反射フィルムの全体の構成について、図面を参照しながら説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the overall configuration of the light reflecting film of the present embodiment will be described with reference to the drawings. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
 図1は、本発明の一実施形態に係る光反射フィルムを表す概略断面図である。図1の光反射フィルム10は、樹脂支持層11と、樹脂支持層11の一方の面側に設けられた粘着層12と、樹脂支持層11の他方の面側に設けられた金属反射層13とを有する。すなわち、光入射側から、金属反射層13、樹脂支持層11、粘着層12が順次積層された構成を有する。 FIG. 1 is a schematic cross-sectional view showing a light reflecting film according to an embodiment of the present invention. 1 includes a resin support layer 11, an adhesive layer 12 provided on one surface side of the resin support layer 11, and a metal reflection layer 13 provided on the other surface side of the resin support layer 11. And have. That is, the metal reflective layer 13, the resin support layer 11, and the adhesive layer 12 are sequentially laminated from the light incident side.
 また、図1の光反射フィルム10は、上記の層以外に、金属反射層13と樹脂支持層11との間に腐食防止層14を有する。さらに、金属反射層13よりも光入射側に、金属反射層13側から順に、紫外線吸収層15、接着層16、アクリル層17、ハードコート層18といった機能層が積層されている。 Further, the light reflecting film 10 of FIG. 1 has a corrosion preventing layer 14 between the metal reflecting layer 13 and the resin support layer 11 in addition to the above layers. Furthermore, functional layers such as an ultraviolet absorbing layer 15, an adhesive layer 16, an acrylic layer 17, and a hard coat layer 18 are laminated in this order from the metal reflecting layer 13 side to the light incident side from the metal reflecting layer 13.
 本形態において、光反射フィルム全体の厚さは、特に制限されないが、250~2000μmであることが好ましく、300~1500μmであることがより好ましく500~1000μmであることがさらに好ましい。全体の厚さが250μm以上であると、自己支持性が高く、支持体の剛性が低くても使用することができる。一方、全体の厚さが2000μm以下であると、生産時に、小径コアでの巻き取りが可能となり生産効率が高くなる。以下、本形態の光反射フィルムの各構成要素について、詳細に説明する。 In this embodiment, the thickness of the entire light reflecting film is not particularly limited, but is preferably 250 to 2000 μm, more preferably 300 to 1500 μm, and further preferably 500 to 1000 μm. If the total thickness is 250 μm or more, the self-supporting property is high and the support can be used even if the rigidity is low. On the other hand, when the total thickness is 2000 μm or less, winding with a small-diameter core is possible during production, and production efficiency is increased. Hereafter, each component of the light reflection film of this form is demonstrated in detail.
 [樹脂支持層]
 樹脂支持層は、光反射フィルムの製造において、各層を積層させていく際の基材としての機能を有する。本形態の光反射フィルムは、厚さが200~1000μmである樹脂支持層を必須に含む点に特徴を有する。当該樹脂支持層の厚さは、250~600μmであることが好ましく、300~400μmであることがより好ましい。樹脂支持層の厚さが200μm未満であると、光反射体における支持基材の凹凸が金属反射層に影響し、金属反射層の平滑性が低下するおそれがある。また、樹脂支持層の厚さを1000μm超とすると、光反射フィルムのフレキシブル性が損なわれ、ロール・ツー・ロールでの巻取が困難になるおそれがある。
[Resin support layer]
The resin support layer has a function as a base material when the layers are laminated in the production of the light reflecting film. The light reflecting film of this embodiment is characterized in that it essentially includes a resin support layer having a thickness of 200 to 1000 μm. The thickness of the resin support layer is preferably 250 to 600 μm, and more preferably 300 to 400 μm. When the thickness of the resin support layer is less than 200 μm, the unevenness of the support base material in the light reflector affects the metal reflection layer, and the smoothness of the metal reflection layer may be reduced. On the other hand, if the thickness of the resin support layer is more than 1000 μm, the flexibility of the light reflecting film is impaired, and roll-to-roll winding may be difficult.
 樹脂支持層を構成する樹脂材料は、特に制限されず、従来公知の種々の材料を適宜採用することができる。このような樹脂材料としては、例えば、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、変性ポリエステルなどのポリエステル、ポリエチレン、ポリプロピレンなどのポリオレフィン、セルロース、ジアセチルセルロース、トリアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどのセルロースエステル、ポリ塩化ビニル(軟質ポリ塩化ビニル、硬質ポリ塩化ビニル)、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリスチレン、シンジオタクティックポリスチレン、スチレン・アクリロニトリル共重合体、ポリアセタール、エポキシ樹脂、フェノール樹脂、シクロオレフィンポリマー、ポリノルボルネン、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンイミド、ポリアミド、ポリイミド、ポリスルホン、ポリエーテルスルホン、フッ素樹脂、ポリメチルメタクリレートなどのメタクリル樹脂、アクリル樹脂などを挙げることができる。なお、これらの樹脂は、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。 The resin material constituting the resin support layer is not particularly limited, and various conventionally known materials can be appropriately employed. Examples of such resin materials include polycarbonate, polyarylate, polysulfone, polyethersulfone, polyethylene terephthalate, polyethylene naphthalate, polyester such as modified polyester, polyolefin such as polyethylene and polypropylene, cellulose, diacetylcellulose, triacetylcellulose, Cellulose esters such as cellulose acetate propionate and cellulose acetate butyrate, polyvinyl chloride (soft polyvinyl chloride, hard polyvinyl chloride), polyvinylidene chloride, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polystyrene, syndiotactic Polystyrene, styrene / acrylonitrile copolymer, polyacetal, epoxy resin, phenol resin, Examples include olefin polymers, polynorbornene, polymethylpentene, polyetherketone, polyetheretherketone, polyetherketoneimide, polyamide, polyimide, polysulfone, polyethersulfone, fluororesin, methacrylic resin such as polymethylmethacrylate, acrylic resin, etc. be able to. In addition, these resin may be used individually by 1 type, and may be used in combination of 2 or more type.
 本形態では、金属反射層の平滑性をより向上させる観点から、樹脂支持層のヤング率が、3GPa以上であることが好ましく、3.5GPa以上であることがより好ましい。当該ヤング率の上限値は、特に制限されないが、光反射フィルムのフレキシブル性を維持する観点からは、6GPa以下とすることが好ましく、5.5GPa以下とすることがより好ましい。なお、本明細書において、ヤング率は、実施例に記載の方法により測定された値を採用するものとする。 In this embodiment, from the viewpoint of further improving the smoothness of the metal reflection layer, the Young's modulus of the resin support layer is preferably 3 GPa or more, and more preferably 3.5 GPa or more. The upper limit of the Young's modulus is not particularly limited, but is preferably 6 GPa or less, and more preferably 5.5 GPa or less from the viewpoint of maintaining the flexibility of the light reflecting film. In this specification, the value measured by the method described in the examples is adopted as the Young's modulus.
 このようなヤング率を有する樹脂としては、特に制限されないが、硬質ポリ塩化ビニル、ポリスチレン、スチレン・アクリロニトリル共重合体、ポリアセタール、エポキシ樹脂、フェノール樹脂、ポリメチルメタクリレートなどのメタクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、変性ポリエステルなどのポリエステルが挙げられる。なかでも、ポリエチレンテレフタレート、エポキシ樹脂、フェノール樹脂がより好ましい。 The resin having such Young's modulus is not particularly limited, but is hard polyvinyl chloride, polystyrene, styrene / acrylonitrile copolymer, polyacetal, epoxy resin, phenol resin, methacrylic resin such as polymethyl methacrylate, polyethylene terephthalate, polyethylene Examples thereof include polyesters such as naphthalate and modified polyester. Of these, polyethylene terephthalate, epoxy resin, and phenol resin are more preferable.
 本形態において、樹脂支持層は、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。また、該樹脂基材は、未延伸フィルムでもよく、延伸フィルムでもよい。 In this embodiment, the resin support layer may be a film manufactured by melt casting film formation or a film manufactured by solution casting film formation. The resin substrate may be an unstretched film or a stretched film.
 [粘着層]
 粘着層は、光反射フィルムを光反射体における支持基材に貼付するために設けられる層である。本形態の光反射フィルムは、上記樹脂支持層の一方の面側に厚さが30~200μmである粘着層を必須に含む点に特徴を有する。当該粘着層の厚さは、100~200μmであることが好ましく、150~200μmであることがより好ましい。粘着層の厚さが30μm未満であると、光反射体における支持材の凹凸を十分に緩和させることができず、金属反射層の平滑性が低下するおそれがある。また、粘着層の厚さを200μm超とすると、製造工程において粘着層を十分に乾燥させることが難しくなるため、製造効率が低下するおそれがある。
[Adhesive layer]
An adhesion layer is a layer provided in order to stick a light reflection film on the support base material in a light reflector. The light reflecting film of this embodiment is characterized in that an adhesive layer having a thickness of 30 to 200 μm is essential on one surface side of the resin support layer. The thickness of the adhesive layer is preferably 100 to 200 μm, and more preferably 150 to 200 μm. If the thickness of the adhesive layer is less than 30 μm, the unevenness of the support material in the light reflector cannot be sufficiently relaxed, and the smoothness of the metal reflective layer may be reduced. On the other hand, if the thickness of the pressure-sensitive adhesive layer exceeds 200 μm, it becomes difficult to sufficiently dry the pressure-sensitive adhesive layer in the production process, which may reduce the production efficiency.
 粘着層を構成する粘着剤は、特に制限されず、例えば、ドライラミネート剤、ウエットラミネート剤、ヒートシール剤、ホットメルト剤などの公知の粘着剤を適宜採用することができる。粘着剤の材料としては、例えば、ポリエステル樹脂、ポリウレタン樹脂、ポリ酢酸ビニル樹脂、アクリル樹脂、ニトリルゴムなど、およびこれらを組み合わせた材料が用いられる。 The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is not particularly limited, and for example, known pressure-sensitive adhesives such as a dry laminating agent, a wet laminating agent, a heat sealing agent, and a hot melt agent can be appropriately employed. As a material for the pressure-sensitive adhesive, for example, a polyester resin, a polyurethane resin, a polyvinyl acetate resin, an acrylic resin, a nitrile rubber, or a combination of these materials is used.
 本形態では、光反射フィルムの耐傷性をより向上させる観点から、粘着剤層の23℃におけるせん断貯蔵弾性率G’が、1×10Pa以下であることが好ましく、1.2×10Pa以下であることがより好ましい。当該せん断貯蔵弾性率G’の下限値は、特に制限されないが、粘着性の観点からは、1×10Pa以上とすることが好ましく、1×10Pa以上とすることがより好ましい。なお、本明細書において、せん断貯蔵弾性率G’は、実施例に記載の方法により測定された値を採用するものとする。 In this embodiment, from the viewpoint of further improving the scratch resistance of the light reflecting film, the adhesive layer preferably has a shear storage elastic modulus G ′ at 23 ° C. of 1 × 10 7 Pa or less, and 1.2 × 10 6. More preferably, it is Pa or less. The lower limit value of the shear storage modulus G ′ is not particularly limited, but is preferably 1 × 10 4 Pa or more and more preferably 1 × 10 5 Pa or more from the viewpoint of tackiness. In addition, in this specification, the value measured by the method as described in an Example shall be employ | adopted for shear storage elastic modulus G '.
 粘着剤層のせん断貯蔵弾性率G’は、当業者によって容易に調整することができる。具体的には、粘着剤を構成する樹脂のガラス転移点(Tg)、分子量(重量平均分子量、分子量分布)、硬化剤の種類や配合量を調整することにより、せん断貯蔵弾性率G’を所望の値に制御することが可能である。 The shear storage modulus G ′ of the pressure-sensitive adhesive layer can be easily adjusted by those skilled in the art. Specifically, the shear storage modulus G ′ is desired by adjusting the glass transition point (Tg), molecular weight (weight average molecular weight, molecular weight distribution) of the resin constituting the pressure-sensitive adhesive, and the type and blending amount of the curing agent. It is possible to control to the value of.
 粘着層は上記樹脂支持層上にラミネートすることによって形成される。ラミネート法は、特に制限されず、例えば、ロール式で連続的に行うのが経済性および生産性の点から好ましい。 The adhesive layer is formed by laminating on the resin support layer. The laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
 [金属反射層]
 金属反射層は、太陽光を反射する機能を有する金属からなる層である。本形態において、上記樹脂支持層の他方の面側(上記粘着剤層が設けられた面側とは反対の面側)に、金属反射層が設けられる。金属反射層の表面反射率は好ましくは80%以上、さらに好ましくは90%以上である。
[Metal reflective layer]
The metal reflection layer is a layer made of a metal having a function of reflecting sunlight. In this embodiment, a metal reflective layer is provided on the other surface side of the resin support layer (the surface side opposite to the surface side on which the pressure-sensitive adhesive layer is provided). The surface reflectance of the metal reflective layer is preferably 80% or more, more preferably 90% or more.
 金属反射層は、アルミニウム(Al)、銀(Ag)、クロム(Cr)、銅(Cu)、ニッケル(Ni)、チタン(Ti)、マグネシウム(Mg)、ロジウム(Rh)、白金(Pt)および金(Au)からなる元素群の中から選ばれる少なくとも1種の元素を含む材料により形成されることが好ましい。なかでも、反射率、耐食性などの観点からアルミニウム(Al)または銀(Ag)を主成分としていることが好ましく、銀(Ag)からなることがより好ましい。ここで、主成分とは、金属反射層に含まれる金属原子の全量を100原子%とした場合において、ある原子の含有量が50原子%超であることを意味する。 The metal reflective layer is made of aluminum (Al), silver (Ag), chromium (Cr), copper (Cu), nickel (Ni), titanium (Ti), magnesium (Mg), rhodium (Rh), platinum (Pt) and It is preferably formed of a material containing at least one element selected from the element group consisting of gold (Au). Especially, it is preferable that aluminum (Al) or silver (Ag) is a main component from viewpoints of a reflectance, corrosion resistance, etc., and it is more preferable to consist of silver (Ag). Here, the main component means that the content of a certain atom exceeds 50 atomic% when the total amount of metal atoms contained in the metal reflective layer is 100 atomic%.
 金属反射層は、上記の金属の薄膜2層以上から構成されていてもよい。また、金属反射層上にSiO、TiOなどの金属酸化物からなる層をこの順に設けてさらに反射率を向上させてもよい。 The metal reflective layer may be composed of two or more layers of the above metal thin film. Further, a layer made of a metal oxide such as SiO 2 or TiO 2 may be provided in this order on the metal reflective layer to further improve the reflectance.
 金属反射層の厚さは、反射率などの観点から、10~200nmが好ましく、30~150nmがより好ましい。 The thickness of the metal reflective layer is preferably 10 to 200 nm, more preferably 30 to 150 nm from the viewpoint of reflectivity and the like.
 金属反射層の形成方法は、特に制限されず、湿式法および乾式法のどちらも使用することができる。湿式法とは、めっき法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例を挙げると銀鏡反応などがある。一方、乾式法とは、真空成膜法の総称であり、具体的には、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。本形態の光反射フィルムの製造方法では、金属反射層を蒸着法により形成することが好ましい。 The formation method of the metal reflective layer is not particularly limited, and both a wet method and a dry method can be used. The wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction. On the other hand, the dry method is a general term for a vacuum film forming method, and specifically includes a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method. and so on. In the manufacturing method of the light reflection film of this form, it is preferable to form a metal reflection layer by a vapor deposition method.
 [その他の機能層]
 本形態の光反射フィルムは、上述の樹脂支持層、粘着層、金属反射層の他に、必要に応じて、ハードコート層、アクリル層、接着層、紫外線吸収層、腐食防止層、ガスバリア層、アンカー層、剥離層などのその他の機能層を有していてもよい。以下、これらの層について説明する。
[Other functional layers]
In addition to the above-mentioned resin support layer, adhesive layer, and metal reflective layer, the light reflective film of the present embodiment includes, as necessary, a hard coat layer, an acrylic layer, an adhesive layer, an ultraviolet absorption layer, a corrosion prevention layer, a gas barrier layer, You may have other functional layers, such as an anchor layer and a peeling layer. Hereinafter, these layers will be described.
 (ハードコート層)
 本形態では、ハードコート層を光入射側の最表層に設けることが好ましい。なお、本明細書において「ハードコート層」とは、JIS K 5600-5-4:1999に準じた鉛筆硬度がH以上の層を意味する。ハードコート層は、光学反射フィルムの耐擦過性を高めるための表面保護層として機能する。
(Hard coat layer)
In this embodiment, the hard coat layer is preferably provided on the outermost layer on the light incident side. In the present specification, the “hard coat layer” means a layer having a pencil hardness of H or more according to JIS K 5600-5-4: 1999. The hard coat layer functions as a surface protective layer for enhancing the scratch resistance of the optical reflective film.
 ハードコート層を形成する材料は、透明性、耐候性、硬度、機械的強度などが得られるものであれば、特に限定されない。例えば、電子線や紫外線の照射により硬化する樹脂や熱硬化性の樹脂などを使用でき、特にアルコキシシラン系化合物の部分加水分解オリゴマーからなる熱硬化型シリコーン系ハードコート、熱硬化型のポリシロキサン樹脂からなるハードコート、不飽和基を有するアクリル系化合物からなる紫外線硬化型アクリル系ハードコート、熱硬化型無機材料であることが好ましい。また、ハードコート層には、酸化防止剤や、紫外線吸収剤を含有させることが好ましい。 The material for forming the hard coat layer is not particularly limited as long as transparency, weather resistance, hardness, mechanical strength, and the like can be obtained. For example, a resin curable by electron beam or ultraviolet irradiation, a thermosetting resin, or the like can be used. In particular, a thermosetting silicone hard coat composed of a partially hydrolyzed oligomer of an alkoxysilane compound, a thermosetting polysiloxane resin. A hard coat made of, an ultraviolet curable acrylic hard coat made of an acrylic compound having an unsaturated group, and a thermosetting inorganic material are preferred. The hard coat layer preferably contains an antioxidant or an ultraviolet absorber.
 ハードコート層に用いることができる具体的な材料としては、水性コロイダルシリカ含有アクリル樹脂(特開2005-66824号公報)、ポリウレタン系樹脂組成物(特開2005-110918号公報)、水性シリコーン化合物をバインダーとして用いた樹脂膜(特開2004-142161号公報)、酸化チタンなどの光触媒性酸化物含有シリカ膜もしくはアルミナ、アスペクト比の高い酸化チタンもしくは酸化ニオブなどの光触媒膜(特開2009-62216)、光触媒含有フッ素樹脂コーティング(ピアレックス・テクノロジーズ社製)、有機/無機ポリシラザン膜、有機/無機ポリシラザンなどが挙げられる。なかでも、本形態のハードコート層は、無機物から構成されることが好ましい。 Specific materials that can be used for the hard coat layer include an aqueous colloidal silica-containing acrylic resin (Japanese Patent Laid-Open No. 2005-66824), a polyurethane resin composition (Japanese Patent Laid-Open No. 2005-110918), and an aqueous silicone compound. Resin film used as binder (Japanese Patent Laid-Open No. 2004-142161), photocatalytic oxide-containing silica film or alumina such as titanium oxide, photocatalytic film such as titanium oxide or niobium oxide having a high aspect ratio (Japanese Patent Laid-Open No. 2009-62216) And photocatalyst-containing fluororesin coating (manufactured by Pyrex Technologies), organic / inorganic polysilazane film, organic / inorganic polysilazane and the like. Especially, it is preferable that the hard-coat layer of this form is comprised from an inorganic substance.
 熱硬化型シリコーン系ハードコートとしては、公知の方法によって合成したアルコキシシラン化合物の部分加水分解オリゴマーを使用できる。その合成方法の一例は以下のとおりである。まず、アルコキシシラン化合物としてテトラメトキシシランまたはテトラエトキシシランを用い、これを塩酸、硝酸などの酸触媒の存在下、所定量の水を加えて、副生するアルコールを除去しながら室温から80℃の範囲で反応させる。この反応によりアルコキシシランが加水分解し、さらに縮合反応することにより、一分子中にシラノール基またはアルコキシ基を2個以上有し、平均重合度4~8のアルコキシシラン化合物の部分加水分解オリゴマーが得られる。次に、これに酢酸、マレイン酸などの硬化触媒を添加し、アルコール、グリコールエーテル系の有機溶媒に溶解させて熱硬化型シリコーン系ハードコート液が得られる。そしてこれを通常の塗布法(例えば、グラビアコート法、リバースコート法、ダイコート法など)を用いて塗布し、80~140℃の範囲の温度で加熱硬化することによってハードコート層が形成させる。ただし、この場合、光反射フィルムの熱変形温度以下での硬化温度の設定が前提となる。なお、テトラアルコキシシランの代わりにジ(アルキルまたはアリール)ジアルコキシシランならびに/あるいはモノ(アルキルまたはアリール)トリアルコキシシランを使用することにより、同様にポリシロキサン系のハードコート層を製造することが可能である。 As the thermosetting silicone hard coat, a partially hydrolyzed oligomer of an alkoxysilane compound synthesized by a known method can be used. An example of the synthesis method is as follows. First, tetramethoxysilane or tetraethoxysilane is used as an alkoxysilane compound, and a predetermined amount of water is added in the presence of an acid catalyst such as hydrochloric acid or nitric acid to remove by-produced alcohol from room temperature to 80 ° C. React in range. By this reaction, the alkoxysilane is hydrolyzed and further subjected to a condensation reaction to obtain a partially hydrolyzed oligomer of an alkoxysilane compound having two or more silanol groups or alkoxy groups in one molecule and an average polymerization degree of 4 to 8. It is done. Next, a curing catalyst such as acetic acid or maleic acid is added to this and dissolved in an alcohol or glycol ether organic solvent to obtain a thermosetting silicone hard coat liquid. And this is apply | coated using a normal apply | coating method (for example, gravure coat method, reverse coat method, die coat method etc.), and a hard-coat layer is formed by heat-curing at the temperature of the range of 80-140 degreeC. However, in this case, the setting of the curing temperature below the heat distortion temperature of the light reflecting film is a prerequisite. By using di (alkyl or aryl) dialkoxysilane and / or mono (alkyl or aryl) trialkoxysilane instead of tetraalkoxysilane, a polysiloxane hard coat layer can be produced in the same manner. It is.
 紫外線硬化型アクリル系ハードコートとしては、不飽和基を有するアクリル系化合物として、例えば、ペンタエリスリトールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールテトラ(メタ)アクリレートなどの多官能(メタ)アクリレート混合物などを使用することができ、これにベンゾイン、ベンゾインメチルエーテル、ベンゾフェノンなどの光重合開始剤を配合して用いる。そしてこれを上記と同様の通常の塗布法を用いて塗布し、紫外線硬化することによってハードコート層が形成される。 As an ultraviolet curable acrylic hard coat, an acrylic compound having an unsaturated group includes, for example, pentaerythritol di (meth) acrylate, diethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethyloltetra ( A polyfunctional (meth) acrylate mixture such as (meth) acrylate can be used, and a photopolymerization initiator such as benzoin, benzoin methyl ether, and benzophenone is blended and used. And this is apply | coated using the normal application | coating method similar to the above, and a hard-coat layer is formed by carrying out ultraviolet curing.
 ハードコート層が乾式法で形成した無機物からなる場合、例えば、酸化ケイ素、酸化アルミニウム、窒化ケイ素、窒化アルミニウム、酸化ランタン、窒化ランタンなどを、真空製膜法により製膜することで形成できる。真空製膜法としては、例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。 When the hard coat layer is made of an inorganic material formed by a dry method, for example, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, or the like can be formed by vacuum film formation. Examples of the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
 また、ハードコート層が湿式法で形成した無機物からなる場合、ポリシラザンを塗布製膜し、加熱硬化した膜からなることが好ましい。ハードコートの前駆体が、ポリシラザンを含有する場合は、例えば、下記の一般式(1)で表されるポリシラザンおよび有機溶媒に必要に応じて触媒を加えた溶液を塗布した後、溶媒を蒸発させて除去し、それによって光反射フィルム表面に0.05~3.0μm厚さのポリシラザン層を形成する。そして、水蒸気を含む雰囲気中で、酸素、活性酸素、場合によっては窒素の存在下で、上記のポリシラザン層を局所的加熱することによって、光反射フィルム表面にガラス様の透明なハードコートの被膜を形成する。 Further, when the hard coat layer is made of an inorganic material formed by a wet method, it is preferably made of a film obtained by applying polysilazane to a film and then heat-curing it. When the hard coat precursor contains polysilazane, for example, after applying a solution of polysilazane represented by the following general formula (1) and an organic solvent, if necessary, the solvent is evaporated. Thus, a polysilazane layer having a thickness of 0.05 to 3.0 μm is formed on the surface of the light reflecting film. Then, by heating the polysilazane layer locally in an atmosphere containing water vapor in the presence of oxygen, active oxygen, or, in some cases, nitrogen, a glass-like transparent hard coat film is formed on the surface of the light reflecting film. Form.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、R、R、およびRは、互いに独立して、水素原子、置換されたまたは無置換のアルキル基、アリール基、ビニル基、(トリアルコキシシリル)アルキル基を表す。なかでも、水素原子、メチル、エチル、プロピル、iso-プロピル、ブチル、iso-ブチル、tert-ブチル、フェニル、ビニル、3-(トリエトキシシリル)プロピル、3-(トリメトキシシリル)プロピルからなる群から選択される基であることが好ましい。この際、nは整数であり、nは、ポリシラザンが150~150,000g/モルの範囲の数平均分子量を有するように定められる。 In general formula (1), R 1 , R 2 , and R 3 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, an aryl group, a vinyl group, or a (trialkoxysilyl) alkyl group. To express. Among them, a group consisting of a hydrogen atom, methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, phenyl, vinyl, 3- (triethoxysilyl) propyl, 3- (trimethoxysilyl) propyl Is preferably a group selected from: In this case, n is an integer, and n is determined so that the polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
 触媒としては、好ましくは、塩基性触媒、特にN,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N-複素環式化合物が使用される。触媒濃度は、ポリシラザンを基準にして通常0.1~10モル%であり、好ましくは0.5~7モル%である。 As catalysts, preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N-heterocyclic compounds are used. . The catalyst concentration is usually 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
 なお、好ましい態様の一つでは、一般式(1)中のR、RおよびRの全てが水素原子であるパーヒドロポリシラザンを含む溶液が使用される。 In one preferred embodiment, a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 in the general formula (1) are hydrogen atoms is used.
 また、別の好ましい態様の一つでは、下記の一般式(2)で表される少なくとも一種のポリシラザンが使用される。 In another preferred embodiment, at least one polysilazane represented by the following general formula (2) is used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中、R、R、R、R、RおよびRは、互いに独立して、水素原子、置換されたまたは無置換のアルキル基、アリール基、ビニル基、(トリアルコキシシリル)アルキル基を表す。この際、nおよびpは整数であり、特にnは、ポリシラザンが150~150,000g/モルの範囲の数平均分子量を有するように定められる。 In general formula (2), R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, an aryl group, a vinyl group, Represents a (trialkoxysilyl) alkyl group. In this case, n and p are integers, and in particular, n is determined so that polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
 なかでも、R、RおよびRが水素原子であり、R、RおよびRがメチルである化合物;R、RおよびRが水素原子であり、そしてR、Rがメチルであり、Rがビニルである化合物;R、R、RおよびRが水素原子であり、RおよびRがメチルである化合物;が好ましい。 Among them, R 1, R 3 and R 6 is a hydrogen atom and R 2, R 4 and R 5 are methyl; R 1, R 3 and R 6 is a hydrogen atom and R 2, R A compound in which 4 is methyl and R 5 is vinyl; a compound in which R 1 , R 3 , R 4 and R 6 are hydrogen atoms and R 2 and R 5 are methyl is preferable.
 さらに、別の好ましい態様の一つでは、下記の一般式(3)で表される少なくとも一種のポリシラザンが使用される。 Furthermore, in another preferred embodiment, at least one polysilazane represented by the following general formula (3) is used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(3)中、R、R、R、R、R、R、R、RおよびRは、互いに独立して、水素原子、置換されたまたは無置換のアルキル基、アリール基、ビニル基、(トリアルコキシシリル)アルキル基を表す。この際、n、pおよびqは整数であり、特にnは、ポリシラザンが150~150,000g/モルの範囲の数平均分子量を有するように定められる。 In general formula (3), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom, substituted or unsubstituted An alkyl group, an aryl group, a vinyl group, or a (trialkoxysilyl) alkyl group is represented. In this case, n, p and q are integers, and in particular, n is determined so that the polysilazane has a number average molecular weight in the range of 150 to 150,000 g / mol.
 なかでも、R、RおよびRが水素原子であり、R、R、RおよびRがメチルであり、Rが(トリエトキシシリル)プロピルであり、そしてRがアルキルまたは水素である化合物が好ましい。 Among them, R 1 , R 3 and R 6 are hydrogen atoms, R 2 , R 4 , R 5 and R 8 are methyl, R 9 is (triethoxysilyl) propyl, and R 7 is alkyl. Or the compound which is hydrogen is preferable.
 ポリシラザン溶液中のポリシラザンの濃度は、一般的には1~80質量%であり、好ましくは5~50質量%であり、より好ましくは10~40質量%である。 The concentration of polysilazane in the polysilazane solution is generally 1 to 80% by mass, preferably 5 to 50% by mass, and more preferably 10 to 40% by mass.
 ポリシラザン溶液に使用される溶媒としては、水または反応性基(例えばヒドロキシ基またはアミン基)を含まず、ポリシラザンに対して不活性の有機溶媒(非プロトン性有機溶媒)が好適である。このような有機溶媒としては、例えば、脂肪族または芳香族炭化水素、ハロゲン炭化水素、エステル(例えば、酢酸エチル、酢酸ブチル)、ケトン(例えば、アセトン、メチルエチルケトン)、エーテル(例えば、テトラヒドロフラン、ジブチルエーテル、モノ-またはポリアルキレングリコールジアルキルエーテル(ジグライム類)、または、これらの混合溶媒が挙げられる。 As the solvent used in the polysilazane solution, an organic solvent (aprotic organic solvent) which does not contain water or a reactive group (for example, a hydroxy group or an amine group) and is inert to the polysilazane is suitable. Examples of such organic solvents include aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters (eg, ethyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, dibutyl ether). , Mono- or polyalkylene glycol dialkyl ethers (diglymes), or a mixed solvent thereof.
 上記ポリシラザン溶液には、公知のバインダーを含有させてもよい。バインダーとしては、例えば、セルロースエーテル、セルロースエステル(例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート)、天然樹脂、(例えば、ゴム、ロジン樹脂)、合成樹脂(例えば、重合樹脂、縮合樹脂)等が挙げられる。上記合成樹脂としては、例えばアミノプラスト(特に尿素樹脂、メラミンホルムアルデヒド樹脂)、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、またはポリシロキサンなどが挙げられる。 The polysilazane solution may contain a known binder. Examples of the binder include cellulose ether, cellulose ester (for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate), natural resin (for example, rubber, rosin resin), synthetic resin (for example, polymerization resin, condensation resin). ) And the like. Examples of the synthetic resin include aminoplasts (particularly urea resins and melamine formaldehyde resins), alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, and polysiloxanes.
 また、上記ポリシラザン溶液には、溶液の粘度、下地の濡れ、成膜性、潤滑作用、排気性を制御するための添加剤、あるいは無機ナノ粒子、例えばSiO、TiO、ZnO、ZrOまたはAlを添加してもよい。 In addition, the polysilazane solution includes additives for controlling the viscosity of the solution, wetting of the substrate, film-forming properties, lubricating action, and exhaust properties, or inorganic nanoparticles such as SiO 2 , TiO 2 , ZnO, ZrO 2 or Al 2 O 3 may be added.
 本形態において、ハードコート層の厚さは、10nm~3μmの範囲内にすることが好ましい。なお、ポリシラザンのハードコート層は、酸素・水蒸気バリア層としても用いることができる。 In this embodiment, the thickness of the hard coat layer is preferably in the range of 10 nm to 3 μm. The polysilazane hard coat layer can also be used as an oxygen / water vapor barrier layer.
 ハードコート層は、屈曲性があり、反りが生じないことが好ましい。ハードコート層の表面では、密な架橋構造を形成する場合があり、その際、フィルムが反り曲がることや、屈曲性がなくクラックが入りやすいようなことがあり、取り扱いが困難になる。このような場合、組成中の無機物の量を調整するなどで、柔軟性があり、平面性が得られるようにハードコート層を設計することが好ましい。 The hard coat layer is preferably flexible and does not warp. On the surface of the hard coat layer, a dense cross-linked structure may be formed. At this time, the film may bend or bend easily and may be cracked, making handling difficult. In such a case, it is preferable to design the hard coat layer so as to obtain flexibility and flatness by adjusting the amount of the inorganic substance in the composition.
 (アクリル層)
 本形態の光反射フィルムは、金属反射層の光入射面側にアクリル層を設けてもよい。アクリル層は、その下層(すなわち、光入射側から見るアクリル層の下層)に設けられる層の劣化や変色、または膜剥がれなどを防止する機能を有する。例えば、空気中の水、塩素、または硫黄などの外的因子から金属反射層を保護する層として機能することができる。また、紫外線吸収剤を含有させる、もしくは、紫外線吸収性基を有する樹脂などを用いることにより、その下層に設けられている樹脂支持層などを紫外線から保護する層として機能することもできる。
(Acrylic layer)
In the light reflecting film of this embodiment, an acrylic layer may be provided on the light incident surface side of the metal reflecting layer. The acrylic layer has a function of preventing deterioration or discoloration of the layer provided in the lower layer (that is, the lower layer of the acrylic layer viewed from the light incident side) or film peeling. For example, it can function as a layer that protects the metal reflective layer from external factors such as water, chlorine, or sulfur in the air. Moreover, the resin support layer etc. which are provided in the lower layer can be functioned as a layer which protects from an ultraviolet-ray by containing a ultraviolet absorber or using resin etc. which have an ultraviolet-absorbing group.
 アクリル層の厚さは、特に制限されないが、20~100μmであることが好ましく、30~80μmであることがより好ましい。アクリル層の厚さが20μm以上であると、水分の透過が抑制されるため、十分な量の紫外線吸収剤を含有させることができ、所望の紫外線吸収効果が得ることができる。また、アクリル層の厚さが100μm以下であると、アクリル層における太陽光の吸収量を抑えられるため、反射率が低下するのを抑制することができるとともに、層自体の柔軟性を維持することができる、という利点も有する。 The thickness of the acrylic layer is not particularly limited, but is preferably 20 to 100 μm, and more preferably 30 to 80 μm. When the thickness of the acrylic layer is 20 μm or more, moisture permeation is suppressed, so that a sufficient amount of an ultraviolet absorber can be contained, and a desired ultraviolet absorption effect can be obtained. Moreover, since the absorption amount of the sunlight in an acrylic layer can be suppressed as the thickness of an acrylic layer is 100 micrometers or less, while being able to suppress that a reflectance falls, maintaining the softness | flexibility of the layer itself. It also has the advantage of being able to
 本形態に係るアクリル層は、主にアクリル樹脂を基材樹脂として含み、さらに紫外線吸収剤、酸化防止剤などの添加剤を含んでもよい。 The acrylic layer according to this embodiment mainly includes an acrylic resin as a base resin, and may further include additives such as an ultraviolet absorber and an antioxidant.
 紫外線吸収剤としては、特に制限は無いが、有機系として、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系、ヒンダードアミン系、ベンゾエート系などが挙げられ、また無機系として、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄などが挙げられる。より具体的には、後述の紫外線吸収層に含まれる紫外線吸収剤として例示される化合物が挙げられる。尚、紫外線吸収剤を多量に含有させた際にブリードアウトしてしまうという問題を低減するためには、重量平均分子量1000以上の高分子の紫外線吸収剤を用いることが好ましい。好ましくは、重量平均分子量1000以上、3000以下である。なお、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて下記測定条件下で測定した値を採用する。 Although there is no restriction | limiting in particular as an ultraviolet absorber, A benzophenone type, a benzotriazole type, a phenyl salicylate type, a triazine type, a hindered amine type, a benzoate type etc. are mentioned as an organic type, Moreover, a titanium oxide, a zinc oxide is mentioned as an inorganic type. , Cerium oxide, iron oxide and the like. More specifically, compounds exemplified as ultraviolet absorbers contained in the ultraviolet absorbing layer described later can be mentioned. In order to reduce the problem of bleeding out when a large amount of the ultraviolet absorber is contained, it is preferable to use a high molecular weight ultraviolet absorber having a weight average molecular weight of 1000 or more. The weight average molecular weight is preferably 1000 or more and 3000 or less. In addition, in this specification, the value measured on condition of the following measurement using a gel permeation chromatography (GPC) is employ | adopted for a weight average molecular weight.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 紫外線吸収剤の含有量は、アクリル層に含まれるアクリル樹脂の全量100質量%に対して、0.1~20質量%であることが好ましく、1~10質量%であることがより好ましく、2~8質量%であることがさらに好ましい。紫外線吸収剤の含有量を上記範囲とすることにより、光反射フィルムに含まれる樹脂の黄変を長期に亘って抑制することができ、また、アクリル樹脂の伸度、靱性を維持し、かつ、紫外線吸収剤のブリードアウトを防止することができる。 The content of the ultraviolet absorber is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass with respect to 100% by mass of the total amount of the acrylic resin contained in the acrylic layer. More preferably, it is ˜8% by mass. By setting the content of the ultraviolet absorber in the above range, yellowing of the resin contained in the light reflecting film can be suppressed over a long period of time, and the elongation and toughness of the acrylic resin are maintained, and Bleed out of the ultraviolet absorber can be prevented.
 酸化防止剤としては、ヒンダードアミン系酸化防止剤、ヒンダードフェノール系酸化防止剤、リン酸系酸化防止剤など、有機系酸化防止剤を使用することが好ましい。 As the antioxidant, it is preferable to use an organic antioxidant such as a hindered amine antioxidant, a hindered phenol antioxidant, and a phosphoric acid antioxidant.
 酸化防止剤の含有量は、アクリル層に含まれるアクリル樹脂の全量100質量%に対して、0.1~20質量%であることが好ましく、1~10質量%であることがより好ましく、1~6質量%であることがさらに好ましい。酸化防止剤の含有量を上記範囲とすることにより、アクリル樹脂の伸度、靱性を維持し、かつ、酸化防止剤のブリードアウトを防止することができる。 The content of the antioxidant is preferably 0.1 to 20% by mass, more preferably 1 to 10% by mass, with respect to 100% by mass of the total amount of the acrylic resin contained in the acrylic layer. More preferably, it is ˜6% by mass. By setting the content of the antioxidant within the above range, the elongation and toughness of the acrylic resin can be maintained, and bleeding out of the antioxidant can be prevented.
 (接着層)
 接着層は、層同士の接着性を高める機能があるものであれば特に限定はない。接着層は、1層のみからなっていてもよいし、複数層からなっていてもよい。接着層の厚さは、密着性、平滑性、反射材の反射率などの観点から、1~10μmが好ましく、3~8μmがより好ましい。
(Adhesive layer)
The adhesive layer is not particularly limited as long as it has a function of improving the adhesion between the layers. The adhesive layer may consist of only one layer or may consist of a plurality of layers. The thickness of the adhesive layer is preferably 1 to 10 μm, and more preferably 3 to 8 μm, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
 接着層が樹脂からなる場合、材料としては特に制限はなく、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体樹脂などの単独またはこれらの混合樹脂などが使用できる。 When the adhesive layer is made of a resin, the material is not particularly limited, and a single material such as polyester resin, polyurethane resin, acrylic resin, melamine resin, epoxy resin, polyamide resin, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer resin, etc. Alternatively, these mixed resins can be used.
 なかでも、耐候性の点からポリエステル樹脂とメラミン樹脂との混合樹脂またはポリエステル樹脂とウレタン樹脂との混合樹脂が好ましく、さらにアクリル樹脂にイソシアネートなどの硬化剤を混合させた熱硬化型樹脂とすればより好ましい。接着層の形成方法は、グラビアコート法、リバースコート法、ダイコート法など、従来公知のコーティング方法が使用できる。 Among these, a mixed resin of polyester resin and melamine resin or a mixed resin of polyester resin and urethane resin is preferable from the viewpoint of weather resistance, and if it is a thermosetting resin in which a curing agent such as isocyanate is mixed with an acrylic resin. More preferred. As a method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 また、接着層が金属酸化物からなる場合、例えば、酸化ケイ素、酸化アルミニウム、窒化ケイ素、窒化アルミニウム、酸化ランタン、窒化ランタンなどを、各種真空製膜法により製膜することができる。真空製膜法としては、例えば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。 When the adhesive layer is made of a metal oxide, for example, silicon oxide, aluminum oxide, silicon nitride, aluminum nitride, lanthanum oxide, lanthanum nitride, etc. can be formed by various vacuum film forming methods. Examples of the vacuum film forming method include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, an ion beam assisted vacuum deposition method, and a sputtering method.
 (紫外線吸収層)
 紫外線吸収層は、太陽光や紫外線による光反射フィルムの劣化防止の目的で紫外線吸収剤を含有してなる層である。紫外線吸収層は、金属反射層とハードコート層の間に設けることが好ましい。紫外線吸収層の厚さは、紫外線吸収力の観点から、20μm以上が好ましく、20~100μmがより好ましい。
(UV absorbing layer)
The ultraviolet absorbing layer is a layer containing an ultraviolet absorber for the purpose of preventing deterioration of the light reflecting film caused by sunlight or ultraviolet rays. The ultraviolet absorbing layer is preferably provided between the metal reflective layer and the hard coat layer. The thickness of the ultraviolet absorbing layer is preferably 20 μm or more, more preferably 20 to 100 μm, from the viewpoint of ultraviolet absorbing power.
 紫外線吸収剤としては、有機系として、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、ヒンダードアミン系、トリアジン系、ベンゾエート系などが挙げられ、また無機系として、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄などが挙げられる。なかでも、トリアジン系紫外線吸収剤を用いることが好ましい。 Examples of UV absorbers include benzophenone, benzotriazole, phenyl salicylate, hindered amine, triazine, and benzoate as organic materials, and inorganic materials such as titanium oxide, zinc oxide, cerium oxide, and iron oxide. Etc. Especially, it is preferable to use a triazine type ultraviolet absorber.
 ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-ベンゾフェノン、2,2’,4,4’-テトラヒドロキシ-ベンゾフェノンなどが挙げられる。 Examples of the benzophenone ultraviolet absorber include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
 ベンゾトリアゾール系紫外線吸収剤としては、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659;市販品の例としては株式会社ADEKAのLA31)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(分子量447.6;市販品の例としてはチバ・スペシャリティ・ケミカルズ株式会社のチヌビン234)などが挙げられる。 Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1, 3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercial products are LA31 from ADEKA Corporation), 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl- 1-Phenylethyl) phenol (molecular weight 447.6; examples of commercially available products include Tinuvin 234 from Ciba Specialty Chemicals) It is.
 サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートなどが挙げられる。 Examples of the phenyl salicylate ultraviolet absorber include phenyl saltylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
 ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケートなどが挙げられる。 Examples of hindered amine ultraviolet absorbers include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
 トリアジン系紫外線吸収剤の具体例としては、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、〔2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシル)オキシフェノール〕(チヌビン1577FF、商品名、チバ・スペシャルティーケミカルズ製)、〔2-[4,6-ビス(2,4ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール〕(CYASORB UV-1164、商品名、サイテックインダストリーズ製)などが挙げられる。 Specific examples of the triazine ultraviolet absorber include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy -4-ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy -4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5 Triazine, 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine, [2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyl) oxyphenol] (Tinuvine 1577FF, trade name, Ciba Specialty) Chemicals), [2- [4,6-bis (2,4dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol] (CYASORB UV-1164, trade name) , Made by Cytec Industries).
 ベンゾエート系紫外線吸収剤としては、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(分子量438.7;市販品の例としては住友化学株式会社のSumisorb400)などが挙げられる。 Examples of benzoate UV absorbers include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; Sumisorb 400).
 また、紫外線吸収剤として、上記以外に、紫外線の保有するエネルギーを分子内で振動エネルギーに変換し、その振動エネルギーを熱エネルギーなどとして放出する機能を有する化合物を用いることもできる。さらに、酸化防止剤あるいは着色剤などとの併用により効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤なども併用することができる。ただし、上記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。 In addition to the above, a compound having a function of converting the energy held by ultraviolet light into vibrational energy in the molecule and releasing the vibrational energy as heat energy can be used as the ultraviolet absorber. Furthermore, those that exhibit an effect when used in combination with an antioxidant or a colorant, or light stabilizers that act as light energy conversion agents, such as quenchers, can be used in combination. However, when using the above-described ultraviolet absorber, it is necessary to select a material in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator.
 なお、上記の紫外線吸収剤は、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用しても構わない。また、通常の紫外線吸収剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。 In addition, said ultraviolet absorber may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, when using a normal ultraviolet absorber, it is effective to use a photopolymerization initiator that generates radicals with visible light.
 紫外線吸収層における紫外線吸収剤の含有量は、0.1~20質量%であることが好ましく、1~15質量%であることがより好ましく、3~10質量%であることがさらに好ましい。含有量を上記の範囲にすることによって、耐候性能を十分発揮しつつ、紫外線吸収剤のブリードアウトによるロールやフィルムの汚れ、密着性の低下を防止できる。 The content of the ultraviolet absorber in the ultraviolet absorbing layer is preferably from 0.1 to 20% by mass, more preferably from 1 to 15% by mass, and even more preferably from 3 to 10% by mass. By making the content within the above range, it is possible to prevent soiling of the roll and film and deterioration of adhesion due to bleeding out of the ultraviolet absorber while sufficiently exhibiting weather resistance.
 (腐食防止層)
 本形態の光反射フィルムは、金属反射層の腐食を防止する目的で、金属反射層に隣接するように腐食防止層を有していてもよい。腐食防止層は、腐食防止剤およびバインダーを含みうる。
(Corrosion prevention layer)
The light reflection film of this embodiment may have a corrosion prevention layer adjacent to the metal reflection layer for the purpose of preventing the metal reflection layer from corroding. The corrosion protection layer can include a corrosion inhibitor and a binder.
 腐食防止層は、1層のみからなっていてもよいし、複数層からなっていてもよい。腐食防止層の厚さは、好ましくは30~200nm、より好ましくは20nm~100nmである。 The corrosion prevention layer may consist of only one layer or a plurality of layers. The thickness of the corrosion prevention layer is preferably 30 to 200 nm, more preferably 20 to 100 nm.
 腐食防止層のバインダーとしては、例えば、セルロースエステル、ポリカーボネート、ポリアリレート、ポリスルホン(ポリエーテルスルホンも含む)、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ポリ塩化ビニリデン、ポリビニルアルコール、エチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ポリノルボルネン、ポリメチルペンテン、ポリエーテルケトン、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、またはアクリル樹脂などを挙げることができる。なかでも、アクリル樹脂が好ましい。さらに、腐食防止層は、2,4-トリレンジイソシアネートなどの硬化剤を含んでもよい。 Examples of the binder for the corrosion prevention layer include cellulose ester, polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyethylene terephthalate, polyester such as polyethylene naphthalate, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, Cellulose acetate propionate, cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, polynorbornene, polymethylpentene, polyether ketone, polyether ketone imide, polyamide, fluororesin, List nylon, polymethyl methacrylate, or acrylic resin Door can be. Of these, acrylic resins are preferred. Further, the corrosion prevention layer may include a curing agent such as 2,4-tolylene diisocyanate.
 腐食防止剤としては、金属反射層を構成する金属に対する吸着性基を有することが好ましい。ここで、「腐食」とは、金属がそれをとり囲む環境物質によって、化学的もしくは電気化学的に浸食されるかまたは材質的に劣化する現象をいう(JIS Z0103:2004参照)。なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には0.1~1.0g/mの範囲内であることが好ましい。 As a corrosion inhibitor, it is preferable to have an adsorptive group with respect to the metal which comprises a metal reflective layer. Here, “corrosion” refers to a phenomenon in which a metal is chemically or electrochemically eroded or deteriorated in material by an environmental substance surrounding it (see JIS Z0103: 2004). The optimum content of the corrosion inhibitor varies depending on the compound used, but is generally preferably in the range of 0.1 to 1.0 g / m 2 .
 金属に対する吸着性基を有する腐食防止剤としては、例えば、アミン類およびその誘導体、ピロール環を有する化合物、ベンゾトリアゾールなどトリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系化合物の少なくとも1種またはこれらの2種以上の混合物から選ばれることが好ましい。ベンゾトリアゾールなどの化合物においては、紫外線吸収剤が腐食防止剤を兼ねる場合もある。また、シリコーン変性樹脂を用いることも可能である。さらに具体的には、特開2012-232538号公報の段落「0063」~「0073」に記載の腐食防止剤を使用することができる。 Examples of the corrosion inhibitor having an adsorptive group for metals include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring such as benzotriazole, compounds having a pyrazole ring, compounds having a thiazole ring, and imidazole rings. It is preferable to be selected from at least one of a compound having an indazole ring, a compound having an indazole ring, a copper chelate compound, a thiourea, a compound having a mercapto group, a naphthalene compound, or a mixture of two or more thereof. In compounds such as benzotriazole, the ultraviolet absorber may also serve as a corrosion inhibitor. It is also possible to use a silicone-modified resin. More specifically, the corrosion inhibitors described in paragraphs “0063” to “0073” of JP2012-232538A can be used.
 (ガスバリア層)
 本形態の光反射フィルムは、金属反射層よりも光入射側にガスバリア層を有していてもよい。ガスバリア層は、湿度の変動、特に高湿度による樹脂基材および樹脂基材に支持される各構成層などの劣化を防止するためのものであるが、特別の機能・用途を持たせたものであってもよく、上記劣化防止機能を有する限りにおいて、種々の態様のガスバリア層を設けることができる。
(Gas barrier layer)
The light reflecting film of this embodiment may have a gas barrier layer on the light incident side of the metal reflecting layer. The gas barrier layer is intended to prevent deterioration of the humidity, especially the deterioration of the resin base material and each component layer supported by the resin base material due to high humidity, but it has special functions and uses. As long as it has the function of preventing deterioration, a gas barrier layer of various modes can be provided.
 ガスバリア層の防湿性としては、40℃、90%RHにおける水蒸気透過度が、1g/m・day以下であることが好ましく、0.5g/m・day以下であることがより好ましく、0.2g/m・day以下であることがさらに好ましい。また、ガスバリア層の酸素透過度としては、測定温度23℃、90%RHの条件下で、0.6ml/m/day/atm以下であることが好ましい。 The moisture-proof barrier layer, 40 ° C., the water vapor permeability at 90% RH, is preferably not more than 1g / m 2 · day, more preferably at most 0.5g / m 2 · day, 0 More preferably, it is 2 g / m 2 · day or less. In addition, the oxygen permeability of the gas barrier layer is preferably 0.6 ml / m 2 / day / atm or less under the conditions of a measurement temperature of 23 ° C. and 90% RH.
 ガスバリア層の形成方法は、真空蒸着法、スパッタリング、イオンビームアシスト、化学気相成長法などの方法により無機酸化物を形成する方法が挙げられるが、ゾル-ゲル法による無機酸化物の前駆体を塗布した後に、その塗布膜に加熱処理および/または紫外線照射処理を施して、無機酸化物膜を形成する方法も好ましく用いられる。 Examples of the method for forming the gas barrier layer include a method of forming an inorganic oxide by a method such as vacuum deposition, sputtering, ion beam assist, chemical vapor deposition, and the like. An inorganic oxide precursor by a sol-gel method is used. A method of forming an inorganic oxide film by applying heat treatment and / or ultraviolet irradiation treatment to the coating film after coating is also preferably used.
 無機酸化物は、有機金属化合物を原料とするゾルから局所的加熱により形成されたものである。例えば、有機金属化合物に含有されているケイ素(Si)、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ニオブ(Nb)などの元素の酸化物であり、例えば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウムなどである。これらのうち、好ましくは酸化ケイ素である。 The inorganic oxide is formed by local heating from a sol using an organometallic compound as a raw material. For example, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound, An oxide of an element such as tin (Sn) or niobium (Nb), such as silicon oxide, aluminum oxide, or zirconium oxide. Of these, silicon oxide is preferred.
 無機酸化物を形成する方法としては、いわゆるゾル-ゲル法またはポリシラザン法を用いることが好ましい。ゾル-ゲル法は無機酸化物の前駆体である有機金属化合物から無機酸化物を形成する方法であり、ポリシラザン法は無機酸化物の前駆体であるポリシラザンから無機酸化物を形成する方法である。ゾル-ゲル法に用いられる化合物や詳細については、特開2012-232538号公報の段落「0174」~「0191」に記載の化合物や方法を適宜採用することができる。 As a method for forming the inorganic oxide, it is preferable to use a so-called sol-gel method or a polysilazane method. The sol-gel method is a method of forming an inorganic oxide from an organometallic compound that is a precursor of an inorganic oxide, and the polysilazane method is a method of forming an inorganic oxide from a polysilazane that is a precursor of an inorganic oxide. For the compounds and details used in the sol-gel method, the compounds and methods described in paragraphs “0174” to “0191” of JP2012-232538A can be appropriately employed.
 (アンカー層)
 アンカー層は樹脂からなり、樹脂基材および金属反射層、または金属反射層の支持基材(樹脂フィルム)および金属反射層を密着させるために設けられる層である。したがって、アンカー層は、樹脂基材(支持基材)と金属反射層とを密着させる密着性、金属反射層を真空蒸着法などで形成する時の熱にも耐え得る耐熱性、および金属反射層が本来有する高い反射性能を引き出すための平滑性を有することが好ましい。
(Anchor layer)
The anchor layer is made of a resin, and is a layer provided for closely attaching the resin base material and the metal reflective layer, or the support base material (resin film) of the metal reflective layer and the metal reflective layer. Therefore, the anchor layer has an adhesion property that allows the resin base material (support base material) and the metal reflective layer to adhere to each other, heat resistance that can withstand heat when the metal reflective layer is formed by a vacuum deposition method, and the metal reflective layer. It is preferable to have smoothness to bring out the high reflection performance inherent in the.
 アンカー層に使用する樹脂は、上記の密着性、耐熱性、および平滑性の条件を満足するものであれば特に制限はなく、例えば、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体樹脂などの単独またはこれらの混合樹脂などが使用できる。耐候性の点からポリエステル樹脂とメラミン樹脂との混合樹脂またはポリエステル樹脂とウレタン樹脂との混合樹脂が好ましく、さらにイソシアネートなどの硬化剤を混合した熱硬化型樹脂とすればより好ましい。 The resin used for the anchor layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness. For example, polyester resin, polyurethane resin, acrylic resin, melamine resin, epoxy resin, Polyamide resin, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer resin, etc. can be used alone or in combination. From the viewpoint of weather resistance, a mixed resin of a polyester resin and a melamine resin or a mixed resin of a polyester resin and a urethane resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
 アンカー層の厚さは、好ましくは0.01~3μm、より好ましくは0.1~2μmである。この範囲を満たすことにより、密着性を保ちつつ、樹脂基材表面の凹凸を覆い隠すことができ、平滑性を良好にでき、アンカー層の硬化も十分に行えるため、結果として光反射フィルムの反射率を高めることが可能となる。 The thickness of the anchor layer is preferably 0.01 to 3 μm, more preferably 0.1 to 2 μm. By satisfying this range, the unevenness on the surface of the resin substrate can be covered while maintaining the adhesion, the smoothness can be improved, and the anchor layer can be sufficiently cured, resulting in the reflection of the light reflecting film. The rate can be increased.
 また、アンカー層には、上述の(腐食防止層)の項に記載の腐食防止剤を含有させることができる。 Further, the anchor layer can contain the corrosion inhibitor described in the above section (Corrosion prevention layer).
 アンカー層の形成方法は、グラビアコート法、リバースコート法、ダイコート法など、従来公知のコーティング方法が使用できる。 As a method for forming the anchor layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 (剥離層)
 本形態の光反射フィルムは、粘着層の光入射側とは反対側に剥離層を有していてもよい。例えば、光反射フィルムの出荷時には剥離層が粘着層に張り付いた状態で出荷し、剥離層から粘着層を有する光反射フィルムを剥離し、支持基材に貼り合わせて太陽光反射装置などの光反射体として用いられる。
(Peeling layer)
The light reflecting film of this embodiment may have a release layer on the side opposite to the light incident side of the adhesive layer. For example, when a light reflecting film is shipped, it is shipped with the release layer attached to the adhesive layer, the light reflecting film having the adhesive layer is peeled from the release layer, and the light reflecting film is attached to a support substrate and light from a solar reflective device or the like. Used as a reflector.
 剥離層としては、金属反射層の保護性を付与できるものであればよく、例えば、アクリルフィルムもしくはシート、ポリカーボネートフィルムもしくはシート、ポリアリレートフィルムもしくはシート、ポリエチレンナフタレートフィルムもしくはシート、ポリエチレンテレフタレートフィルムもしくはシート、フッ素樹脂フィルムなどのプラスチックフィルムもしくはシート、または酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルムもしくはシート、これらを練り込んだ樹脂をコーティングしたりアルミニウムなどの金属を金属蒸着などの表面加工を施したりした樹脂フィルムもしくはシートが用いられる。 The release layer may be any layer that can impart protection to the metal reflective layer, such as an acrylic film or sheet, a polycarbonate film or sheet, a polyarylate film or sheet, a polyethylene naphthalate film or sheet, a polyethylene terephthalate film or sheet. , Plastic film or sheet such as fluororesin film, resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc., coating the resin kneaded with these, or metal deposition such as aluminum by metal vapor deposition, etc. A resin film or sheet that has been subjected to surface treatment is used.
 剥離層の厚さは、特に制限はないが通常12~250μmの範囲であることが好ましい。 The thickness of the release layer is not particularly limited, but is usually preferably in the range of 12 to 250 μm.
 <光反射体>
 本発明の他の一形態によると、上述の光反射フィルムが支持基材に貼付されてなる光反射体が提供される。光反射体は、光反射フィルムが粘着層を介してフィルムミラーが自己支持性の基材(支持基材)に接合されてなる構造を有する。ここで、「自己支持性の基材」という場合の、「自己支持性」とは、光反射体の基材として用いられる大きさに断裁された場合において、その対向する端縁部分を支持することで、基材を担持することが可能な程度の剛性を有することを意味する。光反射体の基材が自己支持性を有することで、後述の太陽光反射装置に設置する際に取り扱い性に優れるとともに、光反射体を保持するための保持部材を簡素な構成とすることが可能となるため、太陽光反射装置を軽量化することが可能となり、例えば、太陽熱発電の太陽光反射装置として用いた際、太陽追尾の際の消費電力を抑制することが可能となる。
<Light reflector>
According to another aspect of the present invention, there is provided a light reflector in which the above-described light reflection film is attached to a support substrate. The light reflector has a structure in which a light reflecting film is bonded to a self-supporting base material (support base material) through an adhesive layer. Here, the term “self-supporting” in the case of “self-supporting base material” means that, when cut to a size used as a base material for a light reflector, the opposite edge portions are supported. By this, it means that it has the rigidity of the grade which can carry | support a base material. When the base material of the light reflector has self-supporting properties, it can be easily handled when installed in the solar light reflection device described later, and the holding member for holding the light reflector can have a simple configuration. Therefore, it is possible to reduce the weight of the solar reflective device. For example, when the solar reflective device is used as a solar reflective device for solar thermal power generation, power consumption during solar tracking can be suppressed.
 当該基材は、単層であってもよく、複数の層を積層させた形状であってもよい。また、単一構造であってもよく、複数に分割されていてもよい。基材の形状としては、凹面状の形状を有するまたは凹面状の形状になり得ることが好ましい。そのために、平板状から凹面状の形状に可変である基材を用いてもよいし、凹面状の形状に固定されている基材を用いてもよい。凹面状の形状に可変である基材は、基材の曲率を調整することで、接合されているフィルムミラーの曲率も任意に調整することが可能となるため、反射効率を調整し高い正反射率を得ることができるため好ましい。凹面状の形状が固定されている基材は曲率を調整する必要がなくなるため、調整費用の観点から好ましい。 The substrate may be a single layer or a shape in which a plurality of layers are laminated. Moreover, a single structure may be sufficient and it may be divided | segmented into plurality. The shape of the substrate is preferably a concave shape or can be a concave shape. Therefore, a base material that is variable from a flat shape to a concave shape may be used, or a base material that is fixed to a concave shape may be used. The base material that can be changed into the concave shape can adjust the curvature of the film mirror that is bonded by adjusting the curvature of the base material. It is preferable because a rate can be obtained. The base material having the concave shape fixed is preferable from the viewpoint of adjustment cost because it is not necessary to adjust the curvature.
 基材の素材としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板などの金属板、ベニヤ板(好ましくは防水処理がされたもの)などの木板、繊維強化プラスチック(FRP)板、樹脂板、などが挙げられる。前記材料のなかでも金属板を用いることが、熱伝導率が高いという観点から好ましい。さらに好ましくは、高い熱伝導率だけでなく耐腐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板などにすることである。最も好ましくは、樹脂と金属板を組み合わせた鋼板を用いることである。 The base material includes steel plates, copper plates, aluminum plates, aluminum-plated steel plates, aluminum-based alloy-plated steel plates, copper-plated steel plates, tin-plated steel plates, chrome-plated steel plates, stainless steel plates, and veneer plates (preferably waterproofed) Wood board, fiber reinforced plastic (FRP) board, resin board, and the like. Among these materials, it is preferable to use a metal plate from the viewpoint of high thermal conductivity. More preferably, it is a plated steel plate, stainless steel plate, aluminum plate or the like having not only high thermal conductivity but also good corrosion resistance. Most preferably, a steel plate combining a resin and a metal plate is used.
 表面層としての樹脂フィルムの材料としては、従来公知の種々の樹脂フィルムを用いることができる。例えば、ポリカーボネート系フィルム、ポリエチレンテレフタレートなどのポリエステル系フィルム、ノルボルネン系樹脂フィルム、およびセルロースエステル系フィルム、アクリルフィルムが好ましく、特にポリエチレンテレフタレートなどのポリエステル系フィルムまたはアクリルフィルムを用いることが好ましい。この樹脂フィルムの厚さは、樹脂の種類および目的などに応じて適切な厚さにすることが好ましい。例えば、一般的には、10~250μmであり、好ましくは20~200μmである。 As the material for the resin film as the surface layer, various conventionally known resin films can be used. For example, a polycarbonate film, a polyester film such as polyethylene terephthalate, a norbornene resin film, a cellulose ester film, and an acrylic film are preferable, and a polyester film such as polyethylene terephthalate or an acrylic film is particularly preferable. The thickness of the resin film is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally 10 to 250 μm, preferably 20 to 200 μm.
 <太陽光反射装置>
 本発明の他の一形態によれば、光反射体を有する、太陽光反射装置が提供される。本形態の太陽光反射装置は、太陽熱発電において太陽光を集光に好適に用いられる。本形態の太陽光反射装置は、光反射体および光反射体を保持する保持部材を有する。
<Sunlight reflector>
According to another aspect of the present invention, there is provided a sunlight reflecting device having a light reflector. The solar light reflection device of this embodiment is suitably used for condensing sunlight in solar thermal power generation. The solar light reflection device of this embodiment includes a light reflector and a holding member that holds the light reflector.
 好ましい形態としては、当該太陽光反射装置を太陽熱発電用として場合、内部に流体を有する筒状部材を集熱部としてフィルムミラーの近傍に設け、筒状部材に太陽光を反射させることで内部の流体を加熱し、その熱エネルギーを変換して発電する、一般的にトラフ型と呼ばれる形態が挙げられる。また、その他の形態として、タワー型と呼ばれる形態も挙げられる。タワー型の形態は、少なくとも一つの集熱部と、太陽光を反射して集熱部に照射するための少なくとも一つの太陽熱発電用太陽光反射装置を有しており、集熱部に集められた熱を用いて液体を加熱しタービンを回して発電するものがある。なお、集熱部の周囲に、太陽熱発電用太陽光反射装置が複数配置されていることが好ましい。また、それぞれの太陽熱発電用太陽光反射装置が同心円状や、同心の扇状に複数配置されていることが好ましい。また、支持タワーの周囲に設置された太陽光反射用ミラーにより、太陽光が集光鏡へと反射され、その後、集光鏡によりさらに反射し、集熱部へと送られ熱交換施設へ送られる。本形態の太陽光反射装置はトラフ型、タワー型のどちらにも用いることができる。もちろん、それ以外の種々の太陽熱発電に用いることができる。 As a preferable form, when the solar light reflection device is used for solar thermal power generation, a cylindrical member having a fluid inside is provided as a heat collecting part in the vicinity of the film mirror, and sunlight is reflected on the cylindrical member so as to reflect the inside. A form generally called a trough type that heats a fluid and converts the heat energy to generate electric power can be given. Moreover, the form called a tower type | mold is also mentioned as another form. The tower-type configuration has at least one heat collecting part and at least one solar power solar reflection device for reflecting sunlight and irradiating the heat collecting part, and is collected in the heat collecting part. There is one that uses liquid heat to heat a liquid and turn a turbine to generate electricity. In addition, it is preferable that a plurality of solar power generation solar reflective devices are arranged around the heat collection unit. Moreover, it is preferable that a plurality of solar reflective devices for solar thermal power generation are arranged concentrically or in a concentric fan shape. In addition, sunlight is reflected to the collector mirror by the sunlight reflecting mirrors installed around the support tower, and then reflected further by the collector mirror and sent to the heat collector and sent to the heat exchange facility. It is done. The solar light reflection device of this embodiment can be used for both trough type and tower type. Of course, it can be used for various other types of solar thermal power generation.
 太陽光反射装置は、光反射体を保持する保持部材を有する。保持部材は、光反射体が太陽を追尾可能な状態で保持する事が好ましい。保持部材の形態としては、特に制限はないが、例えば、光反射体が所望の形状を保持できるように、複数個所を棒状の保持部材により、保持する形態が好ましい。保持部材は太陽を追尾可能な状態で光反射体を保持する構成を有することが好ましいが、太陽追尾に際しては、手動で駆動させてもよいし、別途駆動装置を設けて自動的に太陽を追尾する構成としてもよい。 The sunlight reflecting device has a holding member that holds the light reflector. The holding member is preferably held in a state in which the light reflector can track the sun. Although there is no restriction | limiting in particular as a form of a holding member, For example, the form which hold | maintains several places with a rod-shaped holding member is preferable so that a light reflector can hold | maintain a desired shape. The holding member preferably has a configuration for holding the light reflector in a state where the sun can be tracked. However, when the sun is tracked, it may be driven manually, or a separate driving device may be provided to automatically track the sun. It is good also as composition to do.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
 <光反射フィルムの作製>
 [実施例1]
 樹脂支持層として、二軸延伸ポリエチレンテレフタレート(PET)フィルム(厚さ:200μm、ヤング率:3.8GPa)を用いた。
<Production of light reflecting film>
[Example 1]
A biaxially stretched polyethylene terephthalate (PET) film (thickness: 200 μm, Young's modulus: 3.8 GPa) was used as the resin support layer.
 ポリエステル系樹脂(ポリエスター SP-181、日本合成化学社製)と、2,4-トリレンジイソシアネートとを、樹脂固形分比(質量比)10:2で混合し、溶媒としてメチルエチルケトン(MEK)を加え、腐食防止剤としてグリコールジメルカプトアセテート(和光純薬製)10質量%となるよう調製した量を混合し混合液を調製した。この混合液を、樹脂支持層であるPETフィルムの一方の面に、グラビアコート法によりコーティングして、厚さ60nmの腐食防止層を形成した。 A polyester resin (Polyester SP-181, manufactured by Nippon Synthetic Chemical Co., Ltd.) and 2,4-tolylene diisocyanate are mixed at a resin solid content ratio (mass ratio) of 10: 2, and methyl ethyl ketone (MEK) is used as a solvent. In addition, an amount prepared to be 10% by mass of glycol dimercaptoacetate (manufactured by Wako Pure Chemical Industries, Ltd.) as a corrosion inhibitor was mixed to prepare a mixed solution. This mixed solution was coated on one surface of a PET film as a resin support layer by a gravure coating method to form a corrosion prevention layer having a thickness of 60 nm.
 腐食防止層の表面に、真空蒸着によって銀からなる金属反射層を厚さ80nmになるように製膜した。 A metal reflective layer made of silver was formed on the surface of the corrosion prevention layer so as to have a thickness of 80 nm by vacuum deposition.
 金属反射層の表面に、紫外線吸収ポリマー「ニューコートUVA-204W」(新中村化学製)をグラビアコート法によりコーティングして、厚さ5μmの紫外線吸収層を形成した。 The surface of the metal reflective layer was coated with an ultraviolet absorbing polymer “New Coat UVA-204W” (manufactured by Shin-Nakamura Chemical) by the gravure coating method to form an ultraviolet absorbing layer having a thickness of 5 μm.
 紫外線吸収層の表面に、接着剤TBS‐730(大日本インキ社製)をグラビアコート法によりコーティングして、厚さ5μmの接着層を形成し、その表面に紫外線吸収剤(BASF Tinuvin477 トリアジン系)を5%含有した厚さ30μmのアクリル層を形成した。 The surface of the UV absorbing layer is coated with an adhesive TBS-730 (Dainippon Ink Co., Ltd.) by a gravure coating method to form a 5 μm thick adhesive layer, and the UV absorber (BASF Tinuvin 477 triazine type) is formed on the surface. An acrylic layer having a thickness of 30 μm containing 5% was formed.
 続いて、アクリルシリコーン系熱硬化性樹脂のサーコートBP-16N(動研社製:45質量%のメタノール溶液)をMEKで希釈した、30質量%の塗工液を調製した。なお、塗工液中のMEKは32質量%であった。当該塗工液をアクリル層の表面に塗布し、80℃で90秒間乾燥した後、45℃で48時間加熱処理を行い、乾燥膜厚3μmのハードコート層を形成した。 Subsequently, a 30 wt% coating solution was prepared by diluting Sircoat BP-16N (manufactured by Kinken Co., Ltd .: 45 wt% methanol solution) of acrylic silicone thermosetting resin with MEK. The MEK in the coating solution was 32% by mass. The coating liquid was applied to the surface of the acrylic layer, dried at 80 ° C. for 90 seconds, and then heated at 45 ° C. for 48 hours to form a hard coat layer having a dry film thickness of 3 μm.
 最後に、樹脂支持層の他方の面に、アクリル系粘着剤(SZ-7543、日本カーバイド工業社製)に硬化剤(コロネートHX、日本ポリウレタン工業社製)をせん断貯蔵弾性率G’:1.2×10Paになるように添加量を調節し、アプリケーターで塗布して厚さ30μmの粘着層を形成し、光反射フィルムを完成させた。 Finally, on the other surface of the resin support layer, an acrylic pressure-sensitive adhesive (SZ-7543, manufactured by Nippon Carbide Industry Co., Ltd.) and a curing agent (Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.) were obtained. The addition amount was adjusted to 2 × 10 6 Pa, and an adhesive layer having a thickness of 30 μm was formed by applying with an applicator to complete a light reflecting film.
 なお、上記樹脂支持層の厚さは、フィルムをレーザーカッターで切断し、断面の厚さを透過型電子顕微鏡(SEM)を用いて測定することにより求めた。 The thickness of the resin support layer was determined by cutting the film with a laser cutter and measuring the thickness of the cross section using a transmission electron microscope (SEM).
 上記樹脂支持層のヤング率は、以下のようにして求めた。樹脂支持層を1cm×5cmの短冊状に切り出した。この試料を用いて、株式会社エー・アンド・デイ製のテンシロン万能材料試験機、RTF-2430を用いて、50mm/分の速さで引っ張り試験を行い、ヤング率を求めた。 The Young's modulus of the resin support layer was determined as follows. The resin support layer was cut into a 1 cm × 5 cm strip. Using this sample, a tensile test was performed at a speed of 50 mm / min using a Tensilon universal material tester, RTF-2430, manufactured by A & D Co., Ltd., and the Young's modulus was obtained.
 上記粘着層のせん断貯蔵弾性率G’は、以下のようにして求めた。粘着剤をポリエチレンテレフタレートフィルム上に塗布して粘着層を形成し、これを剥離した。剥離した粘着層について、動的粘弾性測定装置(レオメトリック社製の「ARES」)を用いて、昇温モード(昇温速度5℃/分、周波数10Hz)で、23℃でのせん断貯蔵弾性率G’を測定した。 The shear storage elastic modulus G ′ of the adhesive layer was determined as follows. An adhesive was applied on a polyethylene terephthalate film to form an adhesive layer, which was peeled off. About the peeled adhesive layer, using a dynamic viscoelasticity measuring device (“ARES” manufactured by Rheometric Co., Ltd.), shear storage elasticity at 23 ° C. in a temperature rising mode (temperature rising rate 5 ° C./min, frequency 10 Hz). The rate G ′ was measured.
 [実施例2]
 樹脂支持層の厚さを500μmとしたこと以外は、実施例1と同様の方法で、光反射フィルムを作製した。
[Example 2]
A light reflecting film was produced in the same manner as in Example 1 except that the thickness of the resin support layer was 500 μm.
 [実施例3]
 樹脂支持層の厚さを1000μmとしたこと以外は、実施例1と同様の方法で、光反射フィルムを作製した。
[Example 3]
A light reflecting film was produced in the same manner as in Example 1 except that the thickness of the resin support layer was 1000 μm.
 [実施例4~6]
 粘着層の厚さを100μmとしたこと以外は、それぞれ実施例1~3と同様の方法で、光反射フィルムを作製した。
[Examples 4 to 6]
A light reflecting film was prepared in the same manner as in Examples 1 to 3 except that the thickness of the adhesive layer was 100 μm.
 [実施例7~9]
 粘着層の厚さを200μmとしたこと以外は、それぞれ実施例1~3と同様の方法で、光反射フィルムを作製した。
[Examples 7 to 9]
A light reflecting film was prepared in the same manner as in Examples 1 to 3, except that the thickness of the adhesive layer was 200 μm.
 [実施例10]
 紫外線吸収層を設けなかったこと以外は、実施例5と同様の方法で、光反射フィルムを作製した。
[Example 10]
A light reflecting film was produced in the same manner as in Example 5 except that the ultraviolet absorbing layer was not provided.
 [実施例11]
 樹脂支持層の他方の面に、アクリル系粘着剤(SZ-7543、日本カーバイド工業社製)に硬化剤(コロネートHX、日本ポリウレタン工業社製)を添加することでせん断貯蔵弾性率G’:5×10Paに調節し、厚さ200μmの粘着層を形成したこと以外は、実施例2と同様の方法で、光反射フィルムを作製した。
[Example 11]
By adding a curing agent (Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.) to an acrylic pressure-sensitive adhesive (SZ-7543, manufactured by Nippon Carbide Industry Co., Ltd.) on the other surface of the resin support layer, shear storage modulus G ′: 5 A light reflecting film was produced in the same manner as in Example 2 except that the pressure layer was adjusted to × 10 4 Pa and an adhesive layer having a thickness of 200 μm was formed.
 [実施例12]
 樹脂支持層の他方の面に、アクリル系粘着剤(SZ-7543、日本カーバイド工業社製)に硬化剤(コロネートHX、日本ポリウレタン工業社製)を添加することで、せん断貯蔵弾性率G’:1×10Paに調節し、厚さ30μmの粘着層を形成したこと以外は、実施例2と同様の方法で、光反射フィルムを作製した。
[Example 12]
By adding a curing agent (Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.) to an acrylic pressure-sensitive adhesive (SZ-7543, manufactured by Nippon Carbide Industry Co., Ltd.) on the other surface of the resin support layer, shear storage modulus G ′: A light reflecting film was produced in the same manner as in Example 2, except that the pressure was adjusted to 1 × 10 5 Pa and an adhesive layer having a thickness of 30 μm was formed.
 [実施例13]
 樹脂支持層の他方の面に、アクリル系粘着剤(SZ-7543、日本カーバイド工業社製)に硬化剤(コロネートHX、日本ポリウレタン工業社製)を添加することで、せん断貯蔵弾性率G’:1.2×10Paになるように硬化剤量を調節し、厚さ30μmの粘着層を形成したこと以外は、実施例2と同様の方法で、光反射フィルムを作製した。
[Example 13]
By adding a curing agent (Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.) to an acrylic pressure-sensitive adhesive (SZ-7543, manufactured by Nippon Carbide Industry Co., Ltd.) on the other surface of the resin support layer, shear storage modulus G ′: A light reflecting film was produced in the same manner as in Example 2 except that the amount of the curing agent was adjusted to 1.2 × 10 7 Pa and a 30 μm thick adhesive layer was formed.
 [実施例14]
 樹脂支持層として、二軸延伸軟質塩化ビニルフィルム(厚さ:500μm、ヤング率:1.7GPa)を用いたこと以外は、実施例1と同様の方法で、光反射フィルムを作製した。
[Example 14]
A light reflecting film was produced in the same manner as in Example 1 except that a biaxially stretched soft vinyl chloride film (thickness: 500 μm, Young's modulus: 1.7 GPa) was used as the resin support layer.
 [実施例15]
 樹脂支持層として、二軸延伸エポキシ樹脂フィルム(厚さ:500μm、ヤング率:5GPa)を用いたこと以外は、実施例1と同様の方法で、光反射フィルムを作製した。
[Example 15]
A light reflecting film was produced in the same manner as in Example 1 except that a biaxially stretched epoxy resin film (thickness: 500 μm, Young's modulus: 5 GPa) was used as the resin support layer.
 [実施例16]
 樹脂支持層として、二軸延伸軟質塩化ビニルフィルム(厚さ:1000μm、ヤング率:1.7GPa)を用いたこと以外は、実施例1と同様の方法で、光反射フィルムを作製した。
[Example 16]
A light reflecting film was produced in the same manner as in Example 1 except that a biaxially stretched soft vinyl chloride film (thickness: 1000 μm, Young's modulus: 1.7 GPa) was used as the resin support layer.
 [実施例17]
 樹脂支持層として、二軸延伸フェノール樹脂フィルム(厚さ:1000μm、ヤング率:5.2GPa)を用いたこと以外は、実施例1と同様の方法で、光反射フィルムを作製した。
[Example 17]
A light reflecting film was produced in the same manner as in Example 1 except that a biaxially stretched phenol resin film (thickness: 1000 μm, Young's modulus: 5.2 GPa) was used as the resin support layer.
 [比較例1~2]
 粘着層の厚さを25μmとしたこと以外は、それぞれ実施例2~3と同様の方法で、比較用光反射フィルムを作製した。
[Comparative Examples 1 and 2]
A comparative light reflecting film was prepared in the same manner as in Examples 2 to 3 except that the thickness of the adhesive layer was 25 μm.
 [比較例3]
 樹脂支持層の厚さを150μmとしたこと以外は、実施例7と同様の方法で、比較用光反射フィルムを作製した。
[Comparative Example 3]
A comparative light reflecting film was produced in the same manner as in Example 7 except that the thickness of the resin support layer was 150 μm.
 [比較例4]
 樹脂支持層の厚さを1100μmとしたこと以外は、実施例7と同様の方法で、比較用光反射フィルムを作製した。
[Comparative Example 4]
A comparative light reflecting film was produced in the same manner as in Example 7 except that the thickness of the resin support layer was 1100 μm.
 [比較例5]
 粘着層の厚さを300μmとしたこと以外は、実施例3と同様の方法で、比較用光反射フィルムを作製した。
[Comparative Example 5]
A comparative light reflecting film was produced in the same manner as in Example 3 except that the thickness of the adhesive layer was 300 μm.
 [比較例6]
 樹脂支持層の他方の面にアクリル系粘着剤(SZ-7543、日本カーバイド工業社製)に硬化剤(コロネートHX、日本ポリウレタン工業社製)を添加することで、せん断貯蔵弾性率G’:1.2×10Paに調節し、厚さ250μmの粘着層を形成したこと以外は、実施例2と同様の方法で、比較用光反射フィルムを作製した。
[Comparative Example 6]
By adding a curing agent (Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.) to an acrylic pressure-sensitive adhesive (SZ-7543, manufactured by Nippon Carbide Industries Co., Ltd.) on the other surface of the resin support layer, shear storage modulus G ′: 1 A comparative light reflecting film was produced in the same manner as in Example 2 except that the pressure-sensitive adhesive layer was adjusted to 2 × 10 6 Pa and a 250 μm thick adhesive layer was formed.
 [比較例7]
 樹脂支持層の他方の面に、アクリル系粘着剤(SZ-7543、日本カーバイド工業社製)に硬化剤(コロネートHX、日本ポリウレタン工業社製)を添加することで、せん断貯蔵弾性率G’:1×10Paに調節し、厚さ25μmの粘着層を形成したこと以外は、実施例2と同様の方法で、比較用光反射フィルムを作製した。
[Comparative Example 7]
By adding a curing agent (Coronate HX, manufactured by Nippon Polyurethane Industry Co., Ltd.) to an acrylic pressure-sensitive adhesive (SZ-7543, manufactured by Nippon Carbide Industry Co., Ltd.) on the other surface of the resin support layer, shear storage modulus G ′: A comparative light reflecting film was produced in the same manner as in Example 2 except that the pressure-sensitive adhesive layer was adjusted to 1 × 10 4 Pa and a 25 μm thick adhesive layer was formed.
 <光反射フィルムの性能評価>
 実施例1~17、比較例1~7で作製した光反射フィルムについて、下記の性能評価を行った。
<Performance evaluation of light reflecting film>
The following performance evaluation was performed on the light reflecting films prepared in Examples 1 to 17 and Comparative Examples 1 to 7.
 (金属反射層の平滑性評価)
 実施例1~17、比較例1~7で作製した光反射フィルムについて、金属反射層の平滑性を評価した。具体的には、それぞれの光反射フィルムを、ステンレス(SUS)製支持基材(実施例1A、2A、3~11、12A、13~17では表面粗さRa:0.5μm、実施例1B、2B、12Bでは表面粗さRa:0.1μm)に貼付し、光反射フィルムの金属反射層の表面粗さRaを、超精密非接触三次元測定装置(三鷹光機のNH-3SP)を用いて測定した。測定条件は、測定範囲を2mmとし、測定ピッチを2μmとし、対物レンズを100倍とし、カットオフ値を0.250mmとした。得られた値を基に、下記のように4段階で評価した。
(Evaluation of smoothness of metal reflective layer)
The smoothness of the metal reflecting layer was evaluated for the light reflecting films produced in Examples 1 to 17 and Comparative Examples 1 to 7. Specifically, each light reflecting film was made of a support substrate made of stainless steel (SUS) (surface roughness Ra: 0.5 μm in Examples 1A, 2A, 3 to 11, 12A, and 13 to 17, Example 1B, In 2B and 12B, the surface roughness Ra is 0.1 μm), and the surface roughness Ra of the metal reflective layer of the light reflecting film is measured using an ultra-precision non-contact three-dimensional measuring device (NH-3SP from Mitaka Kogyo). Measured. The measurement conditions were a measurement range of 2 mm, a measurement pitch of 2 μm, an objective lens of 100 times, and a cutoff value of 0.250 mm. Based on the obtained value, it evaluated in four steps as follows.
          0.05μm未満  ◎
 0.05μm以上 0.1μm未満   ○
 0.1μm以上  0.2μm未満   △
 0.2μm以上            ×。
Less than 0.05μm ◎
0.05μm or more and less than 0.1μm ○
0.1μm or more and less than 0.2μm △
0.2 μm or more x.
 (耐光性評価)
 実施例1~10、比較例1~7で作製した光反射フィルムについて、耐光性を評価した。まず、SUS製支持基材に貼付した光反射フィルムの、反射面の法線に対して入射光の入射角を5°とした際の正反射率(5°正反射率)を、波長範囲250~2500nmで測定し、初期の平均反射率を求めた。測定には、分光光度計U-4100(島津製作所社製)を用いた。
(Light resistance evaluation)
The light resistance of the light reflecting films prepared in Examples 1 to 10 and Comparative Examples 1 to 7 was evaluated. First, the regular reflectance (5 ° regular reflectance) when the incident angle of incident light is 5 ° with respect to the normal of the reflective surface of the light reflecting film attached to the support substrate made of SUS is the wavelength range 250. Measurements were made at ˜2500 nm to determine the initial average reflectance. For the measurement, a spectrophotometer U-4100 (manufactured by Shimadzu Corporation) was used.
 次に、上記光反射フィルムを、フィルムの光入射面側に対しキセノンランプ照射(スガ試験機SX75を用いて、ブラックパネル温度63℃、相対湿度50%の環境下で放射強度180W/m、5000時間)し、耐光性試験を行った。そして、耐光性試験後に上記と同様の方法で5°正反射率を測定し、平均反射率を求めた。 Next, the light reflecting film is irradiated with a xenon lamp on the light incident surface side of the film (using a Suga test machine SX75, under a black panel temperature of 63 ° C. and a relative humidity of 50%, with a radiation intensity of 180 W / m 2 , 5000 hours) and a light resistance test was conducted. And 5 degree regular reflectance was measured by the method similar to the above after the light resistance test, and the average reflectance was calculated | required.
 得られた値より、[初期の平均反射率(%)]-[耐光性試験後の平均反射率(%)]を算出し、平均反射率の低下度合いを、下記のように2段階で評価した。 From the obtained value, [initial average reflectance (%)] − [average reflectance after light resistance test (%)] is calculated, and the degree of decrease in average reflectance is evaluated in two stages as follows. did.
 低下度合いが10%未満   ○
 低下度合いが10%以上   ×。
Degree of decrease is less than 10% ○
Degree of decrease is 10% or more.
 (耐傷性評価)
 実施例2、11~13で作製した光反射フィルムについて、耐傷性を評価した。具体的には、引っ掻き硬度(鉛筆法)試験(JIS K5600-5-4:1999)に準じて、鉛筆の角度を45°、荷重500gの条件で、光反射フィルムの最表層を引っ掻き、5回のうち4回以上傷が付かなかった鉛筆の固さを、下記のように3段階で評価した。
(Scratch resistance evaluation)
The light reflecting films produced in Examples 2 and 11 to 13 were evaluated for scratch resistance. Specifically, according to the scratch hardness (pencil method) test (JIS K5600-5-4: 1999), the outermost layer of the light reflecting film is scratched 5 times under the conditions of a pencil angle of 45 ° and a load of 500 g. The hardness of the pencils that were not scratched four times or more was evaluated in three stages as follows.
 3H   ◎
 2H   ○
  H   △。
3H ◎
2H ○
H Δ.
 (製造適正評価)
 実施例1~17、比較例1~7で作製した光反射フィルムについて、製造適正を評価した。具体的には、ロール・ツー・ロール製法により直径約30cmのコアに40m/分で製造した場合において、製造に問題が無い場合を○、製造不良(巻取不良または粘着剤が未乾燥)となった場合を×とした。
(Manufacturing suitability evaluation)
The light reflective films produced in Examples 1 to 17 and Comparative Examples 1 to 7 were evaluated for manufacturing suitability. Specifically, in the case where a core having a diameter of about 30 cm is manufactured at 40 m / min by a roll-to-roll manufacturing method, the case where there is no problem in the manufacturing is ○, manufacturing failure (winding failure or adhesive is not dried). When it became, it was set as x.
 結果を下記表2~4に示す。 The results are shown in Tables 2 to 4 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2~4に示すように、樹脂支持層および粘着層の厚さが所定の範囲内である実施例1~17の光反射フィルムは、表面粗さRaが0.5μmである支持基材に貼付しても、金属反射層の表面粗さRaが0.1μm未満であり、十分な平滑性が発揮されることが示された。 As shown in Tables 2 to 4, the light reflecting films of Examples 1 to 17 in which the thicknesses of the resin support layer and the pressure-sensitive adhesive layer are within a predetermined range are applied to a support substrate having a surface roughness Ra of 0.5 μm. Even when affixed, the surface roughness Ra of the metal reflective layer was less than 0.1 μm, indicating that sufficient smoothness was exhibited.
 また、表3の結果より、樹脂支持層のヤング率が3GPa以上である実施例2、3、15、17では、金属反射層の平滑性が向上することが示された。 Further, from the results of Table 3, in Examples 2, 3, 15, and 17 where the Young's modulus of the resin support layer is 3 GPa or more, it was shown that the smoothness of the metal reflective layer was improved.
 さらに、表4の結果より、粘着層のせん断貯蔵弾性率G’が1.0×10Pa以下である実施例2、11、12は、耐傷性に優れることが示された。 Furthermore, from the results of Table 4, it was shown that Examples 2, 11, and 12 in which the shear storage elastic modulus G ′ of the adhesive layer was 1.0 × 10 7 Pa or less were excellent in scratch resistance.
 なお、本出願は、2014年3月26日に出願された日本特許出願第2014-064630号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2014-066430 filed on March 26, 2014, the disclosure of which is incorporated by reference in its entirety.

Claims (6)

  1.  樹脂支持層と、
     前記樹脂支持層の一方の面側に設けられた粘着層と、
     前記樹脂支持層の他方の面側に設けられた金属反射層と、
    を有する光反射フィルムであって、
     前記樹脂支持層の厚さが200~1000μmであり、
     前記粘着層の厚さが30~200μmである、光反射フィルム。
    A resin support layer;
    An adhesive layer provided on one surface side of the resin support layer;
    A metal reflective layer provided on the other surface side of the resin support layer;
    A light reflecting film comprising:
    The resin support layer has a thickness of 200 to 1000 μm;
    A light reflecting film, wherein the adhesive layer has a thickness of 30 to 200 μm.
  2.  前記樹脂支持層のヤング率は、3GPa以上である、請求項1に記載の光反射フィルム。 The light reflective film according to claim 1, wherein the Young's modulus of the resin support layer is 3 GPa or more.
  3.  前記粘着剤層のせん断貯蔵弾性率G’は、1×10Pa以下である、請求項1または2に記載の光反射フィルム。 The light reflective film according to claim 1 or 2, wherein the pressure-sensitive adhesive layer has a shear storage elastic modulus G 'of 1 x 10 7 Pa or less.
  4.  表面粗さRaが0.2μm以上である支持基材の表面に貼付する用途に用いられる、請求項1~3のいずれか1項に記載の光反射フィルム。 The light reflecting film according to any one of claims 1 to 3, which is used for application to a surface of a supporting substrate having a surface roughness Ra of 0.2 µm or more.
  5.  請求項1~4のいずれか1項に記載の光反射フィルムが支持基材に貼付されてなる、光反射体。 A light reflector comprising the light reflecting film according to any one of claims 1 to 4 adhered to a supporting substrate.
  6.  請求項5に記載の光反射体を有する、太陽光反射装置。 A sunlight reflecting device having the light reflector according to claim 5.
PCT/JP2015/057588 2014-03-26 2015-03-13 Light reflecting film WO2015146655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-064630 2014-03-26
JP2014064630A JP2017096987A (en) 2014-03-26 2014-03-26 Light reflection film

Publications (1)

Publication Number Publication Date
WO2015146655A1 true WO2015146655A1 (en) 2015-10-01

Family

ID=54195178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057588 WO2015146655A1 (en) 2014-03-26 2015-03-13 Light reflecting film

Country Status (2)

Country Link
JP (1) JP2017096987A (en)
WO (1) WO2015146655A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509349A (en) * 2015-12-18 2016-04-20 九格能源科技(天津)有限公司 Vacuum high-temperature solar heat collecting tube
WO2018116598A1 (en) * 2016-12-22 2018-06-28 富士フイルム株式会社 Optical film and manufacturing method for optical film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7358041B2 (en) * 2018-10-12 2023-10-10 積水化学工業株式会社 Anticorrosive adhesive, anticorrosive adhesive layer, and anticorrosive adhesive tape
JPWO2021251475A1 (en) * 2020-06-12 2021-12-16
WO2023054282A1 (en) * 2021-09-28 2023-04-06 日東電工株式会社 Multi-layer structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085858A (en) * 2008-10-01 2010-04-15 Nippon Zeon Co Ltd Optical member and liquid crystal display device
JP2011128501A (en) * 2009-12-21 2011-06-30 Konica Minolta Opto Inc Film mirror, method of manufacturing film mirror and mirror for condensing sunlight
WO2012176650A1 (en) * 2011-06-21 2012-12-27 コニカミノルタアドバンストレイヤー株式会社 Solar light collecting mirror and solar thermal power generation system having solar light collecting mirror

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085858A (en) * 2008-10-01 2010-04-15 Nippon Zeon Co Ltd Optical member and liquid crystal display device
JP2011128501A (en) * 2009-12-21 2011-06-30 Konica Minolta Opto Inc Film mirror, method of manufacturing film mirror and mirror for condensing sunlight
WO2012176650A1 (en) * 2011-06-21 2012-12-27 コニカミノルタアドバンストレイヤー株式会社 Solar light collecting mirror and solar thermal power generation system having solar light collecting mirror

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509349A (en) * 2015-12-18 2016-04-20 九格能源科技(天津)有限公司 Vacuum high-temperature solar heat collecting tube
WO2018116598A1 (en) * 2016-12-22 2018-06-28 富士フイルム株式会社 Optical film and manufacturing method for optical film
KR20190087504A (en) * 2016-12-22 2019-07-24 후지필름 가부시키가이샤 Optical film and manufacturing method of optical film
CN110100192A (en) * 2016-12-22 2019-08-06 富士胶片株式会社 The manufacturing method of optical film and optical film
JPWO2018116598A1 (en) * 2016-12-22 2019-10-24 富士フイルム株式会社 Optical film and optical film manufacturing method
CN110100192B (en) * 2016-12-22 2021-02-09 富士胶片株式会社 Optical film and method for producing optical film
KR102269381B1 (en) * 2016-12-22 2021-06-28 후지필름 가부시키가이샤 Optical film and method of manufacturing optical film
KR20210080589A (en) * 2016-12-22 2021-06-30 후지필름 가부시키가이샤 Optical film and manufacturing method for optical film
KR102342126B1 (en) * 2016-12-22 2021-12-22 후지필름 가부시키가이샤 Optical film and manufacturing method for optical film
JP7027337B2 (en) 2016-12-22 2022-03-01 富士フイルム株式会社 Manufacturing method of optical film for flexible display and optical film for flexible display
US11306188B2 (en) 2016-12-22 2022-04-19 Fujifilm Corporation Optical film and method for manufacturing optical film

Also Published As

Publication number Publication date
JP2017096987A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2015146655A1 (en) Light reflecting film
JP5742726B2 (en) Film mirror, method for manufacturing the same, and mirror for reflecting sunlight
WO2012057004A1 (en) Film mirror, process for manufacturing film mirror, and reflection device for solar power generation purposes
WO2015041015A1 (en) Composite film and film mirror for solar light reflection
WO2012098971A1 (en) Film mirror and reflecting apparatus for solar power generation
JP2013507663A (en) Concentrator for solar energy harvesting and its manufacture from polymer raw materials
JP5962014B2 (en) Film mirror and manufacturing method thereof
JP5516603B2 (en) FILM MIRROR, METHOD FOR MANUFACTURING THE SAME, AND REFLECTOR FOR SOLAR THERMAL POWER GENERATION
WO2011078156A1 (en) Film mirror, method for producing same, and reflecting device for solar thermal power generator using said film mirror
JP2015121806A (en) Film mirror, film mirror manufacturing method, and film mirror for sunlight collection
JP5660051B2 (en) FILM MIRROR, MANUFACTURING METHOD THEREOF, AND SOLAR POWER GENERATOR REFLECTOR USING THE SAME
JP2012047861A (en) Film mirror, manufacturing method thereof, and film mirror for condensing solar light
JP2016137666A (en) Light reflection film, and light reflector and light reflection device using the same
JP2015210335A (en) Film mirror and reflection device
JP2011203553A (en) Film mirror, method of producing the same and solar light reflecting mirror
WO2013141304A1 (en) Film mirror, and reflection device for solar power generation
JP2016170279A (en) Light reflection film, and light reflection body and sunlight reflection device having the same
JP2016080948A (en) Light reflection film, light reflection body having the same, and solar light reflection device
WO2012057005A1 (en) Film mirror for solar power generation purposes, process for manufacturing film mirror for solar power generation purposes, and reflection device for solar power generation purposes
JP2014214986A (en) Mirror for solar thermal power generation and reflection device for solar thermal power generation equipped with the same
JP2015161826A (en) Film mirror and reflection device for solar thermal power generation
WO2011114861A1 (en) Solar concentrating mirror, and trough solar thermal power generation device and trough solar power generation device using same
WO2013094577A1 (en) Film mirror, method for producing film mirror, and reflection device for solar thermal power generation
JP2016009034A (en) Light reflection film
JP2016200781A (en) Light reflecting film, and light reflecting body and sunlight reflecting device having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP