WO2011114861A1 - Solar concentrating mirror, and trough solar thermal power generation device and trough solar power generation device using same - Google Patents

Solar concentrating mirror, and trough solar thermal power generation device and trough solar power generation device using same Download PDF

Info

Publication number
WO2011114861A1
WO2011114861A1 PCT/JP2011/054297 JP2011054297W WO2011114861A1 WO 2011114861 A1 WO2011114861 A1 WO 2011114861A1 JP 2011054297 W JP2011054297 W JP 2011054297W WO 2011114861 A1 WO2011114861 A1 WO 2011114861A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
mirror
collecting mirror
solar light
film
Prior art date
Application number
PCT/JP2011/054297
Other languages
French (fr)
Japanese (ja)
Inventor
村上 修二
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012505591A priority Critical patent/JPWO2011114861A1/en
Publication of WO2011114861A1 publication Critical patent/WO2011114861A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a solar light collecting mirror, a trough solar power generator and a trough solar power generator provided with the mirror. More specifically, the present invention relates to a sunlight collecting mirror for a trough-type sunlight collecting device that receives reflected light while collecting reflected sunlight at a specific position.
  • Natural energy such as coal energy, biomass energy, nuclear energy, wind energy, and solar energy is currently being considered as alternative energy to replace fossil fuel energy such as oil and natural gas.
  • fossil fuel energy such as oil and natural gas.
  • the most stable and abundant amount of natural energy is considered to be solar energy.
  • the problem that the energy density of solar energy is low has been proposed to be solved by collecting solar energy with a huge reflecting device.
  • sunlight is collected by the reflecting device to generate power.
  • various types of devices have been developed for devices such as solar power generation devices and solar power generation devices that are used as energy sources for heat generation and the like. Such a device has a high degree of attention as a clean device having little influence on the environment.
  • a glass mirror As a reflection device, a glass mirror has been conventionally used because it is exposed to ultraviolet rays, heat, wind and rain, sandstorms, etc. due to solar heat. Glass mirrors are highly durable against the environment, but they are damaged during transportation or heavy, so there is a problem that the construction cost of the plant is increased because of the strength of the mount on which the mirrors are installed. In order to solve this problem, it is considered to replace the glass mirror with a resin reflective film (sheet) (see, for example, Patent Document 1).
  • sheet resin reflective film
  • the inner surface side of a casing having a parabolic cross-sectional shape is used as a light reflecting mirror for collecting sunlight (simply referred to as “reflecting mirror” or “reflecting mirror”).
  • a parabolic trough type reflection / condensing device in which a condenser tube or a heat collecting tube is disposed in the longitudinal direction of the focal portion (see, for example, Patent Document 2).
  • a resin film (sheet) is used as a light reflecting film mirror for collecting sunlight (hereinafter referred to as “sunlight collecting mirror”, “light reflecting film mirror”, “film”).
  • sunlight hereinafter referred to as “sunlight collecting mirror”, “light reflecting film mirror”, “film”.
  • mirror or “reflecting mirror”
  • air pollutants, sand, mud, dust, etc. adhere to the resin reflecting mirror as compared with a glass mirror. There is a problem that the reflectance deteriorates.
  • the degree of contamination that is, the degree of decrease in reflectance and regular reflectance may vary from part to part in a direction perpendicular to the longitudinal direction (curved surface direction).
  • the water droplets flow downward from above.
  • the dirt adhering to the surface is also caused to flow to the center of the reflecting mirror, thereby causing a problem that the dirt is concentrated on the center of the reflecting mirror.
  • the reflection mirror is continuous to the inner surface side of the casing having the parabolic cross section perpendicular to the longitudinal direction (in the curved surface direction). Because it is attached, that is, it is vertically attached, it is necessary to replace the reflecting mirror according to the dirt or deterioration part in the center (bottom part), and the part that has not deteriorated so much It was also inefficient because it was replaced together.
  • the present invention has been made in view of the above-described problems and situations, and the solution is to have high antifouling properties, easy partial replacement, and can maintain high reflectivity at low cost. It is to provide a solar light collecting mirror. Moreover, it is providing the trough type solar thermal power generation apparatus and solar power generation apparatus which provided the said mirror for sunlight condensing.
  • a long sunlight collecting mirror whose cross section parallel to the longitudinal direction is linear and whose cross section perpendicular to the longitudinal direction is macroscopically curved, and the length of the solar collecting mirror is long.
  • a solar light collecting mirror comprising a plurality of discontinuous long film mirrors divided in a direction perpendicular to the direction.
  • each of the plurality of long film mirrors has a lower end of the upper long mirror positioned outside the upper end of the lower long film mirror.
  • Each of the plurality of elongate film mirrors is attached so as to be replaceable on a support, and the sunlight condensing unit according to any one of the first to third aspects. For mirror.
  • Each of the plurality of long film mirrors is bonded to a support, and the solar light collecting mirror according to any one of the first to fourth items.
  • the long film mirror is characterized in that at least an adhesive layer, a metal reflection layer, and a protective layer are provided on the light source side of the metal reflection layer as a constituent layer on a resin substrate.
  • Item 6 The solar light collecting mirror according to any one of items 1 to 5.
  • a curved solar collecting mirror that collects light in a straight line, a solar light receiving / heating portion arranged so as to be parallel to the longitudinal direction of the solar collecting mirror,
  • a trough solar thermal power generation apparatus including a thermoelectric conversion unit that converts thermal energy transmitted from a heat transfer unit into electrical energy, wherein the solar light collecting mirror includes the first to sixth items.
  • a trough solar thermal power generation apparatus comprising the solar light collecting mirror according to any one of the above.
  • a curved sunlight collecting mirror that collects light in a straight line, and a photoelectric conversion unit that is arranged so as to be parallel to the longitudinal direction of the sunlight collecting mirror and that converts photothermal energy into electrical energy
  • a solar light collecting mirror according to any one of items 1 to 6 as the solar light collecting mirror.
  • a trough-type solar power generation device characterized in that
  • a solar light collecting mirror that has high antifouling properties, is easy to be partially replaced, and can maintain the light reflectance at low cost.
  • a trough solar thermal power generation device and a solar power generation device including the solar light collecting mirror can be provided.
  • the groove by horizontally sticking the light reflecting film mirror, the groove can be moved sideways, and dirty water can be released to the outside.
  • only the dirty light reflection film mirror in the lower center portion can be replaced, and can be efficiently installed by sticking it sideways.
  • FIG. 1 Perspective view of a conventional solar light collecting mirror equipped with a solar light receiving and heat transfer section
  • the solar light collecting mirror of the present invention is a long solar light collecting mirror whose cross section parallel to the longitudinal direction is linear and whose cross section perpendicular to the longitudinal direction is macroscopically curved.
  • the solar light collecting mirror is constituted by a plurality of discontinuous long film mirrors that are divided in a direction perpendicular to the longitudinal direction of the solar light collecting mirror. This feature is a technical feature common to the inventions according to claims 1 to 8.
  • the cross section perpendicular to the longitudinal direction is macroscopically substantially parabolic.
  • Each of the plurality of long film mirrors is adjacent to each other, and the lower end of the upper long mirror is outside the upper end of the lower long film mirror. It is preferable that they are positioned so as to be stepped.
  • each of the plurality of long film mirrors is mounted on the support so that it can be replaced.
  • each of the plurality of long film mirrors is bonded onto the support.
  • the long film mirror according to the present invention is a film mirror in an aspect in which a protective layer is provided on the resin substrate on at least an adhesive layer, a metal reflective layer, and the metal reflective layer as a constituent layer. Preferably there is.
  • the solar light collecting mirror of the present invention is a curved surface solar light collecting mirror that collects light in a straight line, and the sun disposed so as to be parallel to the longitudinal direction of the solar light collecting mirror.
  • the present invention can be suitably used for a trough solar power generation apparatus including a light receiving / heat transfer unit and a thermoelectric conversion unit that converts thermal energy transmitted from the solar light receiving / heat transfer unit into electric energy.
  • the solar light collecting mirror of the present invention is arranged so as to be parallel to the longitudinal direction of the solar light collecting mirror having a curved surface shape for collecting light in a straight line and the solar light collecting mirror. Moreover, it can use suitably for the trough type
  • formula solar power generation device which comprised the photoelectric conversion part which converts photothermal energy into electrical energy.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • FIG. 1 is a perspective view of a mirror for collecting sunlight of a conventional reflecting / condensing device.
  • FIG. 2 is a diagram showing a cross section parallel to the longitudinal direction of a conventional solar light collecting mirror and a cross section perpendicular to the longitudinal direction. As shown in these figures, in the conventional solar light collecting mirror, the reflecting mirror is perpendicular to the longitudinal direction (in the curved surface direction) on the inner surface side of the casing having a parabolic cross section. ) Installed continuously.
  • FIG. 3 is a perspective view of an example of the solar light collecting mirror of the present invention
  • FIG. 4 is a view showing a cross section parallel to the longitudinal direction and a cross section perpendicular to the longitudinal direction of the solar light collecting mirror. is there.
  • the solar light collecting mirror of the present invention has a long section in which a cross section parallel to the longitudinal direction is linear and a cross section perpendicular to the longitudinal direction is macroscopically curved.
  • the solar light collecting mirror is formed of a plurality of discontinuous long film mirrors that are divided in a direction perpendicular to the longitudinal direction of the solar light collecting mirror. .
  • the cross section perpendicular to the longitudinal direction is a macroscopic curved surface
  • the solar light collecting mirror is constituted by a plurality of elongated mirrors in the direction perpendicular to the longitudinal direction. If there is a discontinuous portion when viewed microscopically in a cross section perpendicular to the longitudinal direction, the surface becomes a curved surface shape assuming that the discontinuous portion is connected so as to maintain the curved surface shape.
  • the shape of the cross section perpendicular to the longitudinal direction of the curved surface is preferably a substantially parabolic shape, and this case is expressed as “macroscopically a substantially parabolic shape”.
  • substantially parabolic means that a parabolic shape in which 70% or more of the light incident on the condensing mirror having the parabolic cross section is condensed on the solar light receiving / heat transfer section is assumed.
  • Each condensing mirror does not necessarily have to have a curved surface shape, and may be a flat plate, as long as the whole including discontinuous portions is macroscopically arranged along the curved surface shape.
  • each of the plurality of long film mirrors is the long mirror on the upper side among the long film mirrors adjacent to each other. It is preferable that the lower end of the film is positioned outside the upper end of the lower long film mirror and is provided with a step. That is, an aspect in which the end of the cross section of each long film mirror is arranged to be stepped from the end of the cross section of the adjacent long film mirror is also preferable. According to such a configuration, the dirt on the surface of the outer long film mirror does not flow down on the adjacent long mirror and is discharged to the outside. It becomes possible to raise.
  • each of the plurality of long film mirrors is mounted on the support so as to be replaced. In this case, it is preferable that each of the plurality of long film mirrors is bonded onto the support.
  • the solar light collecting mirror of the present invention has the form shown in FIGS. 3 to 5, the antifouling property is high, and therefore, the deterioration of reflectance and regular reflectance is prevented, and Replacement is easy and the cost can be reduced. That is, in this invention, a groove
  • the film mirror constituting the solar light collecting mirror of the present invention it is preferable to use a film mirror described later. Further, it is preferable to adjust the length, width, thickness and the like of the long film mirror according to the use conditions.
  • the long film mirror according to the present invention is a film mirror in an aspect in which a protective layer is provided on the resin substrate on at least an adhesive layer, a metal reflective layer, and the metal reflective layer as a constituent layer. Preferably there is.
  • a metal corrosion prevention layer and other various functional layers may be provided depending on the purpose.
  • resin base material As the resin base material according to the present invention, various publicly known resin films can be used.
  • acrylate films such as polyethylene tere
  • the thickness of the resin base material is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 ⁇ m. The thickness is preferably 20 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the adhesive layer according to the present invention is not particularly limited as long as it has a function of improving the adhesion between the metal reflective layer and the resin base material (resin film), but is preferably made of a resin. Therefore, the adhesive layer has an adhesive property for closely adhering the resin base material (resin film) and the metal reflective layer, heat resistance that can withstand heat when the metal reflective layer is formed by a vacuum deposition method, and the metal reflective layer. Smoothness is required to bring out the high reflection performance inherent in
  • the resin used as the binder for the adhesive layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness, and polyester resin, acrylate resin, melamine resin, epoxy Resin, polyamide resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin, etc. can be used singly or as a mixed resin. From the point of weather resistance, acrylate resin, polyester resin and melamine resin are mixed. A resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
  • an acrylate tree it is particularly preferable to use an acrylate tree.
  • Specific examples include polyacrylates and polymethacrylates such as poly (methyl methacrylate) (“PMMA”).
  • the thickness of the adhesive layer is preferably from 0.01 to 3 ⁇ m, more preferably from 0.1 to 1 ⁇ m, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
  • a method for forming the adhesive layer conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the metal reflective layer according to the present invention is a layer made of a metal or the like having a function of reflecting sunlight.
  • the surface reflectance of the metal reflective layer is preferably 80% or more, more preferably 90% or more.
  • the metal reflective layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au.
  • Al or Ag is a main component from the viewpoint of reflectivity and corrosion resistance, and two or more such metal thin films may be formed.
  • a silver reflective layer mainly composed of silver it is particularly preferable to use.
  • a layer made of a metal oxide such as SiO 2 and TiO 2 may be provided in this order on the metal reflective layer to further improve the reflectance.
  • a metal reflection layer for example, a silver reflection layer
  • a wet method or a dry method can be used as a method for forming a metal reflection layer according to the present invention.
  • the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method is a general term for a vacuum film-forming method.
  • Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method.
  • sputtering method a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. That is, it is preferable that it is a manufacturing method of the aspect which has the process of forming the said metal reflection layer (silver reflection layer) by metal (silver) vapor deposition as a manufacturing method of the film mirror for sunlight condensing based on this invention.
  • the thickness of the metal (silver) reflective layer is preferably 10 to 200 nm, more preferably 30 to 150 nm from the viewpoint of reflectivity and the like.
  • the metal (silver) reflective layer may be on the light incident side or on the opposite side with respect to the support.
  • the metal corrosion prevention layer is provided adjacent to the metal reflection layer, contains a corrosion inhibitor, prevents corrosion of the metal of the metal reflection layer, and contributes to prevention of scratches on the metal reflection layer. is there.
  • the resin used as the binder for the metal corrosion prevention layer can be a polyester resin, an acrylic resin, a melamine resin, an epoxy resin, or a mixture of these resins. From the viewpoint of weather resistance, a polyester resin, An acrylic resin is preferable, and a thermosetting resin mixed with a curing agent such as isocyanate is more preferable.
  • isocyanate various conventionally used isocyanates such as TDI (tolylene diisocyanate), XDI (xylene diisocyanate), MDI (methylene diisocyanate), and HMDI (hexamethylene diisocyanate) can be used. From the viewpoint of properties, XDI, MDI, and HMDI isocyanates are preferably used.
  • the thickness of the metal corrosion prevention layer is preferably from 0.01 to 3 ⁇ m, more preferably from 0.1 to 1 ⁇ m, from the viewpoints of adhesion, weather resistance and the like.
  • a conventionally known coating method such as a gravure coating method, a reverse coating method, or a die coating method can be used.
  • the corrosion inhibitor for the metal reflective layer used in the solar light collecting film mirror according to the present invention is roughly classified into a corrosion inhibitor and an antioxidant having an adsorbing group for a metal.
  • corrosion refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
  • the adhesive layer may contain an antioxidant, and the upper adjacent layer may contain a corrosion inhibitor having an adsorbing group for a metal. preferable.
  • the optimum content of the corrosion inhibitor varies depending on the compound used, but generally it is preferably in the range of 0.1 to 1.0 g / m 2 .
  • Corrosion inhibitors having an adsorptive group for metals include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, indazole Desirably, the compound is selected from a compound having a ring, copper chelate compounds, thioureas, a compound having a mercapto group, at least one naphthalene-based compound, or a mixture thereof.
  • amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium
  • Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
  • Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
  • Compounds having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl.
  • Imidazole 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc., or These mixtures are mentioned.
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
  • copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
  • thioureas examples include thiourea, guanylthiourea, and the like, or a mixture thereof.
  • mercaptoacetic acid thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto
  • naphthalene-based compounds examples include thionalide.
  • An antioxidant can also be used as the corrosion inhibitor for the metal reflective layer used in the solar light collecting film mirror according to the present invention.
  • the antioxidant it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.
  • phenolic antioxidants examples include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propi , Triethylene glycol bis [3- (3-
  • thiol-based antioxidant examples include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), and the like.
  • phosphite antioxidant examples include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol.
  • Diphosphite bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4'-biphenylene-diphosphonite 2,2'-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
  • the above antioxidant and the following light stabilizer can be used in combination.
  • hindered amine light stabilizer examples include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,6,6
  • nickel-based UV stabilizers include [2,2'-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4- Hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, etc. can also be used.
  • a hindered amine light stabilizer containing only a tertiary amine is preferable.
  • bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable.
  • a condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferred.
  • Gas barrier layer It is also preferable to provide a gas barrier layer in the present invention. This is to prevent deterioration of the humidity, in particular, deterioration of the resin base material and various functional elements protected by the resin base material due to high humidity.
  • the moisture barrier property of the gas barrier layer it is preferable to adjust the moisture barrier property of the gas barrier layer so that the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 ⁇ day / ⁇ m or less.
  • the gas barrier layer according to the present invention is not particularly limited in its formation method, but an inorganic film layer may be formed by vapor deposition. After coating the ceramic precursor of the inorganic oxide film, the coating film is heated and / or Alternatively, it is also preferable to form an inorganic oxide film by ultraviolet irradiation.
  • the gas barrier layer according to the present invention can be formed by applying a general heating method after applying a ceramic precursor that forms an inorganic oxide film by heating, but is preferably formed by local heating.
  • the ceramic precursor is preferably a sol-like organometallic compound or polysilazane.
  • the protective layer of the present invention can preferably contain an inorganic oxide. Silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In), tin (Sn), niobium (Nb), etc. It is characterized by being an oxide of the element.
  • silicon oxide aluminum oxide, zirconium oxide and the like.
  • silicon oxide is preferable, and particles having an average particle diameter of less than 50 nm are preferably used.
  • the protective layer in the present invention is provided for preventing scratches.
  • the protective layer may have a two-layer structure.
  • the protective layer closest to the metal reflective layer does not need to be easily peeled off, but it is also preferable that the protective layer placed closer to the sunlight incident side than the protective layer is placed so as to be easily peeled off.
  • the outermost protective layer is deteriorated by ultraviolet rays or by scratches, the performance can be maintained for a long time by peeling the deteriorated protective layer and making the inner intact protective layer a resurface layer.
  • the protective layer can be composed of an acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicone resin, or the like.
  • silicone resins and acrylic resins are preferable in terms of hardness and durability.
  • an active energy ray-curable acrylic resin or a thermosetting acrylic resin is also preferably used.
  • an acrylic resin containing a rubber polymerization component having a glass transition temperature Tg of room temperature or lower is excellent in impact resistance.
  • the active energy ray-curable acrylic resin or the thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer or a reactive diluent as a polymerization curing component.
  • Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
  • the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
  • polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc. ), Shin-Nakamura Co., Ltd. (trade name “NK Ester” series, etc.), DIC Corporation; (trade name “UNIDIC (registered trademark)” series, etc.), Toagosei Co., Ltd.
  • plastic films such as thermoplastic acrylic film, polycarbonate film, polyarylate film, polyethylene naphthalate film, polyethylene terephthalate film, fluorine film, or resin kneaded with titanium oxide, silica, aluminum powder, copper powder, etc.
  • a resin film subjected to surface treatment such as metal deposition is also used. It is preferable to use an acrylic film.
  • the thickness of the film is not particularly limited but is usually preferably in the range of 10 to 125 ⁇ m.
  • various additives can be further blended in the protective layer as necessary within the range where the effects of the present invention are not impaired.
  • stabilizers such as antioxidants and light stabilizers, surfactants, leveling agents and antistatic agents can be used.
  • an ultraviolet absorber in order to protect the reflective layer of resin, silver or the like from the ultraviolet rays of sunlight, and it is more preferred to contain it in the entire protective layer.
  • the leveling agent is effective in reducing surface irregularities, particularly when the functional layer is applied.
  • a dimethylpolysiloxane-polyoxyalkylene copolymer for example, SH190 manufactured by Toray Dow Corning Co., Ltd.
  • silicone leveling agent for example, SH190 manufactured by Toray Dow Corning Co., Ltd.
  • an ultraviolet absorber can be added for the purpose of preventing deterioration due to sunlight or ultraviolet rays.
  • the protective layer preferably contains an ultraviolet absorber.
  • ultraviolet absorbers examples include benzophenone, benzotriazole, phenyl salicylate, and triazine.
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
  • benzotriazole ultraviolet absorber examples include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole and the like.
  • phenyl salicylate ultraviolet absorber examples include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • hindered amine ultraviolet absorber examples include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxy
  • the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy. Furthermore, those that exhibit an effect when used in combination with an antioxidant, a colorant, or the like, or a light stabilizer that acts as a light energy conversion agent, called a quencher, can be used in combination. However, when using the above-mentioned ultraviolet absorber, it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator.
  • the amount of the ultraviolet absorber used is 0.1 to 20% by mass, preferably 1 to 15% by mass, and more preferably 3 to 10% by mass. When the amount is more than 20% by mass, the adhesion is deteriorated.
  • the total thickness of the solar light collecting film mirror according to the present invention is preferably from 75 to 250 ⁇ m, more preferably from 90 to 230 ⁇ m, and even more preferably from the viewpoints of preventing the mirror from bending, regular reflectance, and handling properties. ⁇ 220 ⁇ m. Mix in toluene to a solids concentration of 10%.
  • thermoplastic polymethyl methacrylate resin film weight average molecular weight 100,000, number average molecular weight 50000; hereinafter simply referred to as “acrylic film”
  • an ultraviolet absorber (Comparative Compound 1, TINUVIN 928, manufactured by BASF Japan Ltd.) is acrylic.
  • a resin base film is prepared by containing 5% by mass in the film and serving as a protective layer having a thickness of 50 ⁇ m.
  • polyester resin Polyethylene SP-181, manufactured by Nippon Synthetic Chemical Co., Ltd.
  • melamine resin Super Becamine J-820, manufactured by DIC
  • TDI-based isocyanate (2,4-tolylene diisocyanate
  • HDMI -Based isocyanate (1,6-hexamethylene diisocyanate) in a resin solid content ratio of 20: 1: 1: 2 and a solid content concentration of 10% by mass
  • an antioxidant (1,2,2′-methylenebis ( 4,6-di-t-butylphenyl) octyl phosphite) is added in an amount of 0.3% by mass to the resin in the layer, and the resin mixed in toluene is coated by a gravure coating method to have a thickness of 0.1 ⁇ m.
  • a metal corrosion protection layer On this metal corrosion prevention layer, a silver reflection layer having a thickness of 80 nm is formed as a metal reflection layer by vacuum deposition. On this silver reflective layer, as an adjacent layer far from the light incident side of the silver reflective layer, a resin in which a polyester resin and TDI (tolylene diisocyanate) isocyanate are mixed at a resin solid content ratio of 10: 2 is gravure. Coating is performed by a coating method to form a layer having a thickness of 0.1 ⁇ m, and a solar light collecting film mirror is produced.
  • TDI tolylene diisocyanate
  • the film mirror for collecting sunlight according to the present invention can be preferably used for the purpose of collecting sunlight. Although it can be used as a solar light collecting mirror by itself, the film mirror for solar light collecting is more preferably coated on the resin base material surface opposite to the side having the metal reflective layer with the resin base material interposed therebetween. This is to use the solar light collecting film mirror as a solar light collecting mirror by attaching the solar light collecting film mirror on the support of the solar light collecting film mirror, particularly on the metal support, through the adhesive layer.
  • the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • polyester resin urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber and the like are used.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 ⁇ m from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like.
  • the other substrate to be bonded to the solar light collecting film mirror of the present invention may be any material that can impart protection of the metal reflective layer, for example, an acrylic film or sheet, Polycarbonate film or sheet, polyarylate film or sheet, polyethylene naphthalate film or sheet, polyethylene terephthalate film or sheet, plastic film or sheet such as fluorine film, or resin kneaded with titanium oxide, silica, aluminum powder, copper powder, etc.
  • a film or sheet, or a resin film or sheet coated with a resin kneaded with these or subjected to surface processing such as metal deposition is used.
  • the thickness of the laminated film or sheet is not particularly limited but is preferably in the range of 12 to 250 ⁇ m.
  • these other base materials may be bonded after providing a concave portion or a convex portion before being bonded to the solar light collecting film mirror of the present invention. Molding may be performed, and bonding and molding so as to have a concave portion or a convex portion may be performed at the same time.
  • Metal support of the solar light collecting mirror steel plate, copper plate, aluminum plate, aluminum plated steel plate, aluminum alloy plated steel plate, copper plated steel plate, tin plated steel plate, chrome plated steel plate, stainless steel plate, etc.
  • a metal material having high conductivity can be used.
  • a plated steel plate In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate or the like having good corrosion resistance.
  • the solar light collecting mirror of the present invention can be suitably used for various forms of solar thermal power generation apparatuses.
  • a curved sunlight collecting mirror that condenses light in a straight line
  • a solar light receiving and heat transfer unit disposed so as to be parallel to the longitudinal direction of the sunlight collecting mirror, and the sun
  • the present invention can be suitably used for a trough solar thermal power generation apparatus including a thermoelectric conversion unit that converts thermal energy transmitted from the light receiving / heat transfer unit into electric energy.
  • FIG. 6 shows, as an example, a system diagram of a solar thermal power generation apparatus (system) 10 using the solar light collecting mirror of the present invention.
  • the liquid air is pressurized from 1 to 100 MPa by the pump 11 from the liquid air tank 15.
  • the heated liquid air is heated to near room temperature by the regenerative heat exchanger 12, and then further heated by the solar heat collector 13 (the solar light collecting mirror 13a and the solar light receiving / heat transfer portion 13b), and 950 It reaches a high temperature of ⁇ 1050 ° C.
  • the high-temperature and high-pressure air generates power by driving the turbine 14, and then passes through the regenerative heat exchanger 2 and is released to the atmosphere. Most of the motive power obtained from the regenerative heat exchanger 2 is converted into electric energy or mechanical energy by the thermoelectric converter 16 (generator or load device) while turning a part of the power to the pump drive.
  • the turbine 14 and the pump 11 are mechanically coupled.
  • the pump 11 can be driven electrically by a motor and coupled electrically.
  • liquid air is produced and stored with surplus electric power at night or the like, and power generation is performed when sunlight in the daytime can be collected.
  • cryogenic fluid such as liquid nitrogen or liquid hydrogen may be used instead of liquid air.
  • the solar light collecting mirror of the present invention can be suitably used for various types of solar power generation apparatuses.
  • a curved solar collector mirror that condenses light in a straight line
  • a photoelectric conversion device that converts photothermal energy into electrical energy, arranged parallel to the longitudinal direction of the solar collector mirror. It can use suitably for the trough type solar power generation device which comprises the conversion part.
  • FIG. 7 shows a schematic diagram of a parabolic reflecting surface linear concentrator of a concentrating solar power generation device as an example.
  • the parabolic reflecting surface linear concentrator of the concentrating solar power generation device is a focal line (collection of focal points) of a solar condensing mirror having a reflecting surface that includes the apex of the parabola and is symmetric with respect to the main axis that is the optical axis
  • the solar cells are arranged in the upper major axis direction.
  • the antifouling property is high, so that the deterioration of the reflectance and the regular reflectance is prevented, the partial replacement is easy, and the light reflectance can be maintained at a low cost.
  • a solar light collecting mirror can be provided.
  • a trough solar thermal power generation apparatus and a solar power generation apparatus provided with the solar light collecting mirror can be provided.
  • the groove can be moved sideways, and dirty water can be released to the outside. Moreover, only the dirty light reflection film mirror in the lower center portion can be replaced, and can be efficiently installed by sticking it sideways.

Abstract

Disclosed is a solar concentrating mirror that has excellent antifouling properties, facilitates partial replacement, and can maintain high reflectivity at a low cost. Also disclosed are a trough solar thermal power generation device and a trough solar power generation device that are equipped with said solar concentrating mirror. The solar concentrating mirror has an elongated shape in which a cross section parallel to the lengthwise direction has a linear shape and a cross section perpendicular to the lengthwise direction has a macroscopically curved shape, and is characterized by being formed from a plurality of discrete elongated film mirrors divided in a direction perpendicular to the lengthwise direction of said solar concentrating mirror.

Description

太陽光集光用ミラー、それを用いたトラフ式太陽熱発電装置及びトラフ式太陽光発電装置Sunlight collecting mirror, trough solar power generator and trough solar power generator using the same
 本発明は、太陽光集光用ミラー、それが具備されたトラフ式太陽熱発電装置及びトラフ式太陽光発電装置に関する。より詳しくは、反射した太陽光を特定位置に集光しつつ受光するトラフ式の太陽光集光装置のための太陽光集光用ミラー等に関する。 The present invention relates to a solar light collecting mirror, a trough solar power generator and a trough solar power generator provided with the mirror. More specifically, the present invention relates to a sunlight collecting mirror for a trough-type sunlight collecting device that receives reflected light while collecting reflected sunlight at a specific position.
 石油、天然ガス等の化石燃料エネルギーに代わる代替エネルギーとしては、現在、石炭エネルギー、バイオマスエネルギー、核エネルギー、風力エネルギー、及び太陽エネルギー等の自然エネルギーが検討されているが、化石燃料の代替エネルギーとして最も安定しており、かつ量の多い自然エネルギーは、太陽エネルギーであると考えられる。 Natural energy such as coal energy, biomass energy, nuclear energy, wind energy, and solar energy is currently being considered as alternative energy to replace fossil fuel energy such as oil and natural gas. The most stable and abundant amount of natural energy is considered to be solar energy.
 しかしながら、太陽エネルギーは非常に有力な代替エネルギーであるものの、これを活用する観点からは、(1)太陽エネルギーのエネルギー密度が低いこと、及び(2)太陽エネルギーの貯蔵及び移送が困難であることが問題となると考えられる。 However, although solar energy is a very powerful alternative energy, from the viewpoint of utilizing it, (1) the energy density of solar energy is low, and (2) it is difficult to store and transfer solar energy. Is considered to be a problem.
 これに対して、太陽エネルギーのエネルギー密度が低いという問題は、巨大な反射装置で太陽エネルギーを集めることによって解決することが提案されており、従来、太陽光を当該反射装置により集光して発電又は発熱等のエネルギー源として利用する太陽光発電装置、太陽熱発電装置等の装置については種々の方式の装置が開発されている。かかる装置は、環境へ与える影響が少ないクリーンな装置として昨今の注目度も高いものである。 On the other hand, the problem that the energy density of solar energy is low has been proposed to be solved by collecting solar energy with a huge reflecting device. Conventionally, sunlight is collected by the reflecting device to generate power. Alternatively, various types of devices have been developed for devices such as solar power generation devices and solar power generation devices that are used as energy sources for heat generation and the like. Such a device has a high degree of attention as a clean device having little influence on the environment.
 反射装置としては、太陽熱による紫外線や熱、風雨、砂嵐等に晒されるため、従来、ガラス製ミラーが用いられてきた。ガラス製ミラーは環境に対する耐久性が高い反面、輸送時に破損したり、重いために、ミラーを設置する架台の強度を持たせるために、プラントの建設費がかさむといった問題があった。この問題を解決するために、ガラス製ミラーを樹脂製反射フィルム(シート)に置き換えることが考えられている(例えば特許文献1参照。)。 As a reflection device, a glass mirror has been conventionally used because it is exposed to ultraviolet rays, heat, wind and rain, sandstorms, etc. due to solar heat. Glass mirrors are highly durable against the environment, but they are damaged during transportation or heavy, so there is a problem that the construction cost of the plant is increased because of the strength of the mount on which the mirrors are installed. In order to solve this problem, it is considered to replace the glass mirror with a resin reflective film (sheet) (see, for example, Patent Document 1).
 一方、太陽光を利用する装置の一方式の装置として、放物線の断面形を有する樋体の内面側を太陽光集光用の光反射ミラー(単に、「反射ミラー」、又は「反射鏡」ともいう。)とすると共に、焦点部分の長手方向に集光管又は集熱管を配置する、所謂パラボラ・トラフ(Parabolic trough)式反射・集光装置がある(例えば特許文献2参照。)。 On the other hand, as one type of device using sunlight, the inner surface side of a casing having a parabolic cross-sectional shape is used as a light reflecting mirror for collecting sunlight (simply referred to as “reflecting mirror” or “reflecting mirror”). In addition, there is a so-called parabolic trough type reflection / condensing device in which a condenser tube or a heat collecting tube is disposed in the longitudinal direction of the focal portion (see, for example, Patent Document 2).
 しかしながら、このようなパラボラ・トラフ型の装置において、樹脂フィルム(シート)を太陽光集光用の光反射フィルムミラー(以下、「太陽光集光用ミラー」、「光反射フィルムミラー」、「フィルムミラー」、又は「反射ミラー」ともいう。)として用いる場合、ガラス製ミラーに比べて、大気汚染物質や、砂、泥、埃等が当該樹脂製反射ミラーに付着することにより、反射率及び正反射率が劣化するという問題がある。 However, in such a parabolic trough type apparatus, a resin film (sheet) is used as a light reflecting film mirror for collecting sunlight (hereinafter referred to as “sunlight collecting mirror”, “light reflecting film mirror”, “film”). When used as a “mirror” or “reflecting mirror”), air pollutants, sand, mud, dust, etc. adhere to the resin reflecting mirror as compared with a glass mirror. There is a problem that the reflectance deteriorates.
 特に、従来のパラボラ・トラフ式の装置においては、長手方向に対して垂直な方向(曲面方向)では部分毎に汚染の度合い、すなわち、反射率及び正反射率の低下の度合いが異なる場合がある。例えば、環境温度変動により急激に冷却されるような条件下において、反射ミラー面に結露が発生して水滴が付着した場合には、水滴は上から下方に流れる。その際に、表面に付着した汚れも、反射ミラーの中心部に流されることで反射ミラーの中心部に汚れが集中するという問題が生じる。また、表面への汚れ付着に対しては、表面を水やブラシ等を用いて定期的に清掃する必要が生じるが、砂粒やほこりなどの付着が激しい部分は入念に清掃を行う必要があり、清掃により表面に傷や膜剥がれ等の劣化が生じることとなる。従って、さらに、反射ミラーの長手方向に対して垂直な方向において、汚染度合だけではなく、反射率や正反射率の違いが大きくなる要因となる。しかしながら、図1及び図2に示した反射・集光装置のように、反射ミラーが前記放物線の断面形を有する樋体の内面側に、長手方向に対して、垂直に(曲面方向に)連続的に取り付けられているため、すなわち、縦貼りされているため、反射ミラーの交換は、中央部(底部)の汚れや劣化の顕著な部分に合わせて行う必要があり、さほど劣化していない部分についても一緒に張り替えられることとなり、非効率であった。 In particular, in a conventional parabolic trough type device, the degree of contamination, that is, the degree of decrease in reflectance and regular reflectance may vary from part to part in a direction perpendicular to the longitudinal direction (curved surface direction). . For example, when condensation occurs on the reflecting mirror surface and water droplets adhere to the reflecting mirror surface under conditions that cause rapid cooling due to environmental temperature fluctuations, the water droplets flow downward from above. At this time, the dirt adhering to the surface is also caused to flow to the center of the reflecting mirror, thereby causing a problem that the dirt is concentrated on the center of the reflecting mirror. In addition, for the adhesion of dirt to the surface, it is necessary to clean the surface regularly using water or a brush, etc., but it is necessary to carefully clean the parts that are heavily adhered such as sand particles and dust, The cleaning causes deterioration such as scratches and film peeling on the surface. Therefore, in the direction perpendicular to the longitudinal direction of the reflecting mirror, not only the degree of contamination but also the difference in reflectance and regular reflectance becomes a factor. However, like the reflection / condensing device shown in FIG. 1 and FIG. 2, the reflection mirror is continuous to the inner surface side of the casing having the parabolic cross section perpendicular to the longitudinal direction (in the curved surface direction). Because it is attached, that is, it is vertically attached, it is necessary to replace the reflecting mirror according to the dirt or deterioration part in the center (bottom part), and the part that has not deteriorated so much It was also inefficient because it was replaced together.
特開2005-59382号公報JP 2005-59382 A 米国特許出願公開第2010/0032016号明細書US Patent Application Publication No. 2010/0032016
 本発明は、上記問題・状況にかんがみてなされたものであり、その解決課題は、防汚性が高く、かつ部分的交換が容易で、低コストで高い反射率を維持することが可能である太陽光集光用ミラーを提供することである。また、当該太陽光集光用ミラーを具備したトラフ式の太陽熱発電装置及び太陽光発電装置を提供することである。 The present invention has been made in view of the above-described problems and situations, and the solution is to have high antifouling properties, easy partial replacement, and can maintain high reflectivity at low cost. It is to provide a solar light collecting mirror. Moreover, it is providing the trough type solar thermal power generation apparatus and solar power generation apparatus which provided the said mirror for sunlight condensing.
 本発明に係る上記課題は、以下の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 1.長手方向に平行な断面が直線状であり、かつ長手方向に垂直な断面が巨視的に曲面形状である長尺状の太陽光集光用ミラーであって、当該太陽光集光用ミラーの長手方向に垂直な方向に分割されて不連続な複数の長尺状フィルムミラーにより構成されてなることを特徴とする太陽光集光用ミラー。 1. A long sunlight collecting mirror whose cross section parallel to the longitudinal direction is linear and whose cross section perpendicular to the longitudinal direction is macroscopically curved, and the length of the solar collecting mirror is long. A solar light collecting mirror comprising a plurality of discontinuous long film mirrors divided in a direction perpendicular to the direction.
 2.前記長手方向に垂直な断面が、巨視的に略放物線状であることを特徴とする前記第1項に記載の太陽光集光用ミラー。 2. 2. The solar light collecting mirror according to claim 1, wherein a cross section perpendicular to the longitudinal direction is macroscopically substantially parabolic.
 3.前記複数の長尺状フィルムミラーの各々が、相互に隣接する長尺状フィルムミラーのうち、上側にある長尺ミラーの下端が、下側の長尺状フィルムミラーの上端よりも外側に位置し、段差が付くように配置されていることを特徴とする前記第1項又は第2項に記載の太陽光集光用ミラー。 3. Of the long film mirrors adjacent to each other, each of the plurality of long film mirrors has a lower end of the upper long mirror positioned outside the upper end of the lower long film mirror. The solar light collecting mirror according to claim 1 or 2, wherein the solar light collecting mirror is arranged so as to have a step.
 4.前記複数の長尺状フィルムミラーの各々が、支持体上に取り替えできるように取り付けられていることを特徴とする前記第1項から第3項までのいずれか一項に記載の太陽光集光用ミラー。 4. Each of the plurality of elongate film mirrors is attached so as to be replaceable on a support, and the sunlight condensing unit according to any one of the first to third aspects. For mirror.
 5.前記複数の長尺状フィルムミラーの各々が、支持体上に接着されていることを特徴とする前記第1項から第4項までのいずれか一項に記載の太陽光集光用ミラー。 5. Each of the plurality of long film mirrors is bonded to a support, and the solar light collecting mirror according to any one of the first to fourth items.
 6.前記長尺状フィルムミラーが、樹脂基材上に、構成層として少なくとも、接着層、金属反射層、及び当該金属反射層より光源側に保護層が設けられてなることを特徴とする前記第1項から第5項までのいずれか一項に記載の太陽光集光用ミラー。 6. The long film mirror is characterized in that at least an adhesive layer, a metal reflection layer, and a protective layer are provided on the light source side of the metal reflection layer as a constituent layer on a resin substrate. Item 6. The solar light collecting mirror according to any one of items 1 to 5.
 7.光を直線状に集光する曲面形状の太陽光集光用ミラーと、当該太陽光集光用ミラーの長手方向に平行となるように配置された太陽受光・伝熱部と、当該太陽受光・伝熱部から伝達された熱エネルギーを電気エネルギーに変換する熱電変換部とを具備したトラフ式太陽熱発電装置であって、当該太陽光集光用ミラーとして、前記第1項から第6項までのいずれか一項に記載の太陽光集光用ミラーが具備されていることを特徴とするトラフ式太陽熱発電装置。 7. A curved solar collecting mirror that collects light in a straight line, a solar light receiving / heating portion arranged so as to be parallel to the longitudinal direction of the solar collecting mirror, A trough solar thermal power generation apparatus including a thermoelectric conversion unit that converts thermal energy transmitted from a heat transfer unit into electrical energy, wherein the solar light collecting mirror includes the first to sixth items. A trough solar thermal power generation apparatus comprising the solar light collecting mirror according to any one of the above.
 8.光を直線状に集光する曲面形状の太陽光集光用ミラーと、当該太陽光集光用ミラーの長手方向に平行となるように配置された、光熱エネルギーを電気エネルギーに変換する光電変換部とを具備したトラフ式太陽光発電装置であって、当該太陽光集光用ミラーとして、前記第1項から第6項までのいずれか一項に記載の太陽光集光用ミラーが具備されていることを特徴とするトラフ式太陽光発電装置。 8. A curved sunlight collecting mirror that collects light in a straight line, and a photoelectric conversion unit that is arranged so as to be parallel to the longitudinal direction of the sunlight collecting mirror and that converts photothermal energy into electrical energy A solar light collecting mirror according to any one of items 1 to 6 as the solar light collecting mirror. A trough-type solar power generation device characterized in that
 本発明の上記手段により、防汚性の高く、かつ部分的交換が容易で、低コストで光反射率の維持が可能な太陽光集光用ミラーを提供することができる。また、当該太陽光集光用ミラーを具備したトラフ式の太陽熱発電装置及び太陽光発電装置を提供することができる。 By the above means of the present invention, it is possible to provide a solar light collecting mirror that has high antifouling properties, is easy to be partially replaced, and can maintain the light reflectance at low cost. In addition, a trough solar thermal power generation device and a solar power generation device including the solar light collecting mirror can be provided.
 すなわち、本発明においては、光反射フィルムミラーを横貼りすることで、溝を横にきることができ、汚れた水を外に逃がすことができる。これは、結露等により発生する水分が反射ミラー中心部に流れることで汚れが中心部に集中することを避けるとともに、清掃時に水をかける場合においても、清掃に使われた水を早期に外部に排出することが可能となり、除去された汚れが再度反射ミラーの別の部分に付着して汚れることを効果的に抑制することが可能となる。また、下方中心部の汚れた光反射フィルムミラーのみを貼り替えることができ、かつ、横に貼ることで効率よく設置することができる。 That is, in the present invention, by horizontally sticking the light reflecting film mirror, the groove can be moved sideways, and dirty water can be released to the outside. This prevents moisture generated due to condensation from flowing into the center of the reflecting mirror, so that dirt does not concentrate on the center, and even when water is applied during cleaning, the water used for cleaning is quickly released to the outside. It becomes possible to discharge, and it is possible to effectively suppress the removed dirt from adhering again to another portion of the reflecting mirror and becoming dirty. Moreover, only the dirty light reflection film mirror in the lower center portion can be replaced, and can be efficiently installed by sticking it sideways.
太陽受光・伝熱部を備えた従来型太陽光集光用ミラーの透視図Perspective view of a conventional solar light collecting mirror equipped with a solar light receiving and heat transfer section 従来型太陽光集光用ミラーの長手方向に垂直な断面(a)と長手方向に平行な断面(b)を示す図The figure which shows the cross section (a) perpendicular | vertical to the longitudinal direction of a conventional solar light collecting mirror, and the cross section (b) parallel to a longitudinal direction 太陽受光・伝熱部を備えた本発明の太陽光集光用ミラーの一例の透視図Perspective view of an example of the solar light collecting mirror of the present invention provided with a solar light receiving / heating part 図3に示した本発明の太陽光集光用ミラーの長手方向に垂直な断面(a)と長手方向に平行な断面(b)を示す図The figure which shows the cross section (a) perpendicular | vertical to the longitudinal direction and the cross section (b) parallel to a longitudinal direction of the solar light collecting mirror of this invention shown in FIG. 本発明の太陽光集光用ミラーの一例の長手方向に垂直な断面(a)と長手方向に平行な断面(b)を示す図The figure which shows the cross section (a) perpendicular | vertical to the longitudinal direction of an example of the mirror for sunlight condensing of this invention, and the cross section (b) parallel to a longitudinal direction トラフ式太陽熱発電装置(システム)の一例の系統図System diagram of an example of trough solar power generation system (system) トラフ式太陽光発電装置の一例の放物反射面線形集光器の模式図Schematic diagram of a parabolic reflector linear concentrator as an example of a trough solar power generation device
 本発明の太陽光集光用ミラーは、長手方向に平行な断面が直線状であり、かつ長手方向に垂直な断面が巨視的に曲面形状である長尺状の太陽光集光用ミラーであって、当該太陽光集光用ミラーの長手方向に垂直な方向に分割されて不連続な複数の長尺状フィルムミラーにより構成されてなることを特徴とする。この特徴は、請求項1から請求項8までの請求項に係る発明に共通する技術的特徴である。 The solar light collecting mirror of the present invention is a long solar light collecting mirror whose cross section parallel to the longitudinal direction is linear and whose cross section perpendicular to the longitudinal direction is macroscopically curved. The solar light collecting mirror is constituted by a plurality of discontinuous long film mirrors that are divided in a direction perpendicular to the longitudinal direction of the solar light collecting mirror. This feature is a technical feature common to the inventions according to claims 1 to 8.
 本発明の実施態様としては、本発明の効果発現の観点から、前記長手方向に垂直な断面が、巨視的に略放物線状であることが好ましい。また、前記複数の長尺状フィルムミラーの各々が、相互に隣接する長尺状フィルムミラーのうち、上側にある長尺ミラーの下端が、下側の長尺状フィルムミラーの上端よりも外側に位置し、段差が付くように配置されていることが好ましい。 As an embodiment of the present invention, it is preferable from the viewpoint of the effect of the present invention that the cross section perpendicular to the longitudinal direction is macroscopically substantially parabolic. Each of the plurality of long film mirrors is adjacent to each other, and the lower end of the upper long mirror is outside the upper end of the lower long film mirror. It is preferable that they are positioned so as to be stepped.
 さらに、前記複数の長尺状フィルムミラーの各々が、支持体上に取り替えできるように取り付けられていることが好ましい。この場合、当該複数の長尺状フィルムミラーの各々が、支持体上に接着されていることが好ましい。 Furthermore, it is preferable that each of the plurality of long film mirrors is mounted on the support so that it can be replaced. In this case, it is preferable that each of the plurality of long film mirrors is bonded onto the support.
 本発明に係る長尺状フィルムミラーは、樹脂基材上に、構成層として少なくとも、接着層、金属反射層、及び当該金属反射層より光源側に保護層が設けられてなる態様のフィルムミラーであることが好ましい。 The long film mirror according to the present invention is a film mirror in an aspect in which a protective layer is provided on the resin substrate on at least an adhesive layer, a metal reflective layer, and the metal reflective layer as a constituent layer. Preferably there is.
 本発明の太陽光集光用ミラーは、光を直線状に集光する曲面形状の太陽光集光用ミラーと、当該太陽光集光用ミラーの長手方向に平行となるように配置された太陽受光・伝熱部と、当該太陽受光・伝熱部から伝達された熱エネルギーを電気エネルギーに変換する熱電変換部とを具備したトラフ式太陽熱発電装置に好適に用いることができる。 The solar light collecting mirror of the present invention is a curved surface solar light collecting mirror that collects light in a straight line, and the sun disposed so as to be parallel to the longitudinal direction of the solar light collecting mirror. The present invention can be suitably used for a trough solar power generation apparatus including a light receiving / heat transfer unit and a thermoelectric conversion unit that converts thermal energy transmitted from the solar light receiving / heat transfer unit into electric energy.
 また、本発明の太陽光集光用ミラーは、光を直線状に集光する曲面形状の太陽光集光用ミラーと、当該太陽光集光用ミラーの長手方向に平行となるように配置された、光熱エネルギーを電気エネルギーに変換する光電変換部とを具備したトラフ式太陽光発電装置に好適に用いることができる。 Further, the solar light collecting mirror of the present invention is arranged so as to be parallel to the longitudinal direction of the solar light collecting mirror having a curved surface shape for collecting light in a straight line and the solar light collecting mirror. Moreover, it can use suitably for the trough type | formula solar power generation device which comprised the photoelectric conversion part which converts photothermal energy into electrical energy.
 以下、本発明を実施するための形態及び本発明の構成要素等について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, a detailed description will be given of a mode for carrying out the present invention and components of the present invention. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 (太陽光集光用ミラーの形態)
 本発明の太陽光集光用ミラーの形態について、図1~図6を参照しながら説明する。
(Solar condensing mirror configuration)
The form of the solar light collecting mirror of the present invention will be described with reference to FIGS.
 図1は、従来の反射・集光装置の太陽光集光用ミラーの透視図である。図2は、従来の太陽光集光用ミラーの長手方向に平行な断面と長手方向に垂直な断面を示す図である。これらの図に示されているように、従来の太陽光集光用ミラーにおいては、反射ミラーが放物線の断面形を有する樋体の内面側に、長手方向に対して、垂直に(曲面方向に)連続的に取り付けられている。 FIG. 1 is a perspective view of a mirror for collecting sunlight of a conventional reflecting / condensing device. FIG. 2 is a diagram showing a cross section parallel to the longitudinal direction of a conventional solar light collecting mirror and a cross section perpendicular to the longitudinal direction. As shown in these figures, in the conventional solar light collecting mirror, the reflecting mirror is perpendicular to the longitudinal direction (in the curved surface direction) on the inner surface side of the casing having a parabolic cross section. ) Installed continuously.
 一方、図3は本発明の太陽光集光用ミラーの一例の透視図であり、図4は当該太陽光集光用ミラーの長手方向に平行な断面と長手方向に垂直な断面を示す図である。本発明の太陽光集光用ミラーは、図3及び図4に示すように、長手方向に平行な断面が直線状であり、かつ長手方向に垂直な断面が巨視的に曲面形状である長尺状の太陽光集光用ミラーであって、当該太陽光集光用ミラーの長手方向に垂直な方向に分割されて不連続な複数の長尺状フィルムミラーにより構成されてなることを特徴とする。 On the other hand, FIG. 3 is a perspective view of an example of the solar light collecting mirror of the present invention, and FIG. 4 is a view showing a cross section parallel to the longitudinal direction and a cross section perpendicular to the longitudinal direction of the solar light collecting mirror. is there. As shown in FIGS. 3 and 4, the solar light collecting mirror of the present invention has a long section in which a cross section parallel to the longitudinal direction is linear and a cross section perpendicular to the longitudinal direction is macroscopically curved. The solar light collecting mirror is formed of a plurality of discontinuous long film mirrors that are divided in a direction perpendicular to the longitudinal direction of the solar light collecting mirror. .
 なお、本願において、太陽光集光用ミラーの「長手方向に垂直な断面が、巨視的に曲面形状である」とは、長手方向に垂直な方向において、複数の長尺状ミラーにより構成されている場合において、長手方向に垂直な断面において、微視的に見ると不連続部分があるが、不連続部分が曲面形状を維持するように接続されていると想定した場合に、曲面形状となることを意味する。特に、当該曲面の長手方向に垂直な断面の形状が略放物線状となる場合が好ましく、この場合を「巨視的に略放物線状である」と表現する。「略放物線である」とは、当該放物線状断面を有する集光用ミラーに入射した光の70%以上が、太陽受光・伝熱部に集光する放物線形状であることを意味するものとする。なお、各々の集光用ミラーは、必ずしも曲面形状を取る必要はなく、平板であっても良く、不連続部分を含む全体が巨視的に曲面形状に沿って配置されていればよい。 In the present application, “the cross section perpendicular to the longitudinal direction is a macroscopic curved surface” of the solar light collecting mirror is constituted by a plurality of elongated mirrors in the direction perpendicular to the longitudinal direction. If there is a discontinuous portion when viewed microscopically in a cross section perpendicular to the longitudinal direction, the surface becomes a curved surface shape assuming that the discontinuous portion is connected so as to maintain the curved surface shape. Means that. In particular, the shape of the cross section perpendicular to the longitudinal direction of the curved surface is preferably a substantially parabolic shape, and this case is expressed as “macroscopically a substantially parabolic shape”. The phrase “substantially parabolic” means that a parabolic shape in which 70% or more of the light incident on the condensing mirror having the parabolic cross section is condensed on the solar light receiving / heat transfer section is assumed. . Each condensing mirror does not necessarily have to have a curved surface shape, and may be a flat plate, as long as the whole including discontinuous portions is macroscopically arranged along the curved surface shape.
 本発明の太陽光集光用ミラーは、前記の特徴を満たす限りにおいて、種々の形態を採用し得る。例えば、図5に示すように、長手方向に垂直な断面を見た場合に、複数の長尺状フィルムミラーの各々が、相互に隣接する長尺状フィルムミラーのうち、上側にある長尺ミラーの下端が、下側の長尺状フィルムミラーの上端よりも外側に位置し、段差が付くように配置されていることが好ましい。すなわち、各長尺状フィルムミラーの断面の端が、隣接する長尺状フィルムミラーの断面の端と段違い状になるよう配置する態様も好ましい。このような構成によれば、外側の長尺状フィルムミラーの表面についた汚れが、隣接する長尺状ミラーの上に流れ落ちることがなく、外部に排出されることとなる為、防汚性を高めることが可能となる。 The solar light collecting mirror of the present invention can adopt various forms as long as the above characteristics are satisfied. For example, as shown in FIG. 5, when a cross section perpendicular to the longitudinal direction is viewed, each of the plurality of long film mirrors is the long mirror on the upper side among the long film mirrors adjacent to each other. It is preferable that the lower end of the film is positioned outside the upper end of the lower long film mirror and is provided with a step. That is, an aspect in which the end of the cross section of each long film mirror is arranged to be stepped from the end of the cross section of the adjacent long film mirror is also preferable. According to such a configuration, the dirt on the surface of the outer long film mirror does not flow down on the adjacent long mirror and is discharged to the outside. It becomes possible to raise.
 また、本発明においては、前記複数の長尺状フィルムミラーの各々が、支持体上に取り替えできるように取り付けられていることが好ましい。この場合、当該複数の長尺状フィルムミラーの各々が、支持体上に接着されていることが好ましい。 In the present invention, it is preferable that each of the plurality of long film mirrors is mounted on the support so as to be replaced. In this case, it is preferable that each of the plurality of long film mirrors is bonded onto the support.
 本発明の太陽光集光用ミラーは、図3~図5に示される形態を有していることにより、防汚性の高く、このため反射率及び正反射率の劣化が防止され、かつ部分的交換が容易で、低コスト化が可能である。すなわち、本発明においては、光反射フィルムミラーを横貼りすることで、溝を横にきることができ、汚れた水を外に逃がすことができる。また、下方中心部の汚れた光反射フィルムミラーのみを貼り替えることができ、かつ、横に貼ることで効率よく設置することができる。 Since the solar light collecting mirror of the present invention has the form shown in FIGS. 3 to 5, the antifouling property is high, and therefore, the deterioration of reflectance and regular reflectance is prevented, and Replacement is easy and the cost can be reduced. That is, in this invention, a groove | channel can be put sideways by sticking a light reflection film mirror sideways, and dirty water can be escaped outside. Moreover, only the dirty light reflection film mirror in the lower center portion can be replaced, and can be efficiently installed by sticking it sideways.
 本発明の太陽光集光用ミラーを構成するフィルムミラーについては、後述するフィルムミラーを用いることが好ましい。また、長尺のフィルムミラーの長さ、幅、厚さ等については、使用条件に応じて、調整することが好ましい。 For the film mirror constituting the solar light collecting mirror of the present invention, it is preferable to use a film mirror described later. Further, it is preferable to adjust the length, width, thickness and the like of the long film mirror according to the use conditions.
 以下、本発明の太陽光集光用ミラーを構成するフィルムミラーの構成要素について詳細な説明をする。 Hereinafter, the constituent elements of the film mirror constituting the solar light collecting mirror of the present invention will be described in detail.
 (太陽光集光用フィルムミラーの構成概要)
 本発明に係る長尺状フィルムミラーは、樹脂基材上に、構成層として少なくとも、接着層、金属反射層、及び当該金属反射層より光源側に保護層が設けられてなる態様のフィルムミラーであることが好ましい。本発明においては、接着層、金属反射層、及び保護層の他に、目的に応じて、金属腐食防止層、その他の各種機能層を設けて良い。
(Summary of the configuration of the film mirror for collecting sunlight)
The long film mirror according to the present invention is a film mirror in an aspect in which a protective layer is provided on the resin substrate on at least an adhesive layer, a metal reflective layer, and the metal reflective layer as a constituent layer. Preferably there is. In the present invention, in addition to the adhesive layer, the metal reflective layer, and the protective layer, a metal corrosion prevention layer and other various functional layers may be provided depending on the purpose.
 (樹脂基材)
 本発明に係る樹脂基材としては、従来公地の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、シクロオレフィン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、アクリレート系フィルム、シクロオレフィン系樹脂フィルムが好ましく用いられる。溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。
(Resin base material)
As the resin base material according to the present invention, various publicly known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyester film such as polyethylene terephthalate, polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, cycloolefin resin Film, polymethylpente It is a film, a polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, acrylate films and cycloolefin resin films are preferably used. Even a film manufactured by melt casting film formation may be a film manufactured by solution casting film formation.
 当該樹脂基材の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10~300μmの範囲内である。好ましくは20~200μm、更に好ましくは30~100μmである。 The thickness of the resin base material is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 μm. The thickness is preferably 20 to 200 μm, more preferably 30 to 100 μm.
 (接着層)
 本発明に係る接着層は、金属反射層と樹脂基材(樹脂フィルム)との接着性を高める機能があるものであれば特に限定はないが、樹脂からなることが好ましい。したがって、当該接着層は、樹脂基材(樹脂フィルム)と金属反射層とを密着する密着性、金属反射層を真空蒸着法等で形成する時の熱にも耐え得る耐熱性、及び金属反射層が本来有する高い反射性能を引き出すための平滑性が必要である。
(Adhesive layer)
The adhesive layer according to the present invention is not particularly limited as long as it has a function of improving the adhesion between the metal reflective layer and the resin base material (resin film), but is preferably made of a resin. Therefore, the adhesive layer has an adhesive property for closely adhering the resin base material (resin film) and the metal reflective layer, heat resistance that can withstand heat when the metal reflective layer is formed by a vacuum deposition method, and the metal reflective layer. Smoothness is required to bring out the high reflection performance inherent in
 当該接着層に使用するバインダーとしての樹脂は、上記の密着性、耐熱性、及び平滑性の条件を満足するものであれば特に制限はなく、ポリエステル系樹脂、アクリレート系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等の単独又はこれらの混合樹脂が使用でき、耐候性の点からアクリレート系樹、ポリエステル系樹脂とメラミン系樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。 The resin used as the binder for the adhesive layer is not particularly limited as long as it satisfies the above conditions of adhesion, heat resistance, and smoothness, and polyester resin, acrylate resin, melamine resin, epoxy Resin, polyamide resin, vinyl chloride resin, vinyl chloride vinyl acetate copolymer resin, etc. can be used singly or as a mixed resin. From the point of weather resistance, acrylate resin, polyester resin and melamine resin are mixed. A resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
 本発明においては、特にアクリレート系樹を用いることが好ましい。具体的には、ポリアクリレート、ポリ(メチルメタクリレート)(「PMMA」)のようなポリメタクリレートなどが挙げられる。 In the present invention, it is particularly preferable to use an acrylate tree. Specific examples include polyacrylates and polymethacrylates such as poly (methyl methacrylate) (“PMMA”).
 当該接着層の厚さは、密着性、平滑性、反射材の反射率等の観点から、0.01~3μmが好ましく、より好ましくは0.1~1μmである。 The thickness of the adhesive layer is preferably from 0.01 to 3 μm, more preferably from 0.1 to 1 μm, from the viewpoints of adhesion, smoothness, reflectance of the reflecting material, and the like.
 接着層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 As a method for forming the adhesive layer, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 (金属反射層)
 本発明に係る金属反射層は、太陽光を反射する機能を有する金属等からなる層である。金属反射層の表面反射率は好ましくは80%以上、さらに好ましくは90%以上である。当該金属反射層は、Al,Ag,Cr,Cu,Ni,Ti,Mg,Rh,Pt及びAuからなる元素群の中から選ばれるいずれかの元素を含む材料により形成されることが好ましい。
(Metal reflective layer)
The metal reflective layer according to the present invention is a layer made of a metal or the like having a function of reflecting sunlight. The surface reflectance of the metal reflective layer is preferably 80% or more, more preferably 90% or more. The metal reflective layer is preferably formed of a material containing any element selected from the element group consisting of Al, Ag, Cr, Cu, Ni, Ti, Mg, Rh, Pt, and Au.
 中でも、反射率、耐食性の観点からAl又はAgを主成分としていることが好ましく、このような金属の薄膜を二層以上形成するようにしても良い。本発明においては、特に銀を主成分とする銀反射層とすることが好ましい。 Above all, it is preferable that Al or Ag is a main component from the viewpoint of reflectivity and corrosion resistance, and two or more such metal thin films may be formed. In the present invention, it is particularly preferable to use a silver reflective layer mainly composed of silver.
 また、金属反射層上にSiO2、TiO2等の金属酸化物からなる層をこの順に設けてさらに反射率を向上させても良い。 Further, a layer made of a metal oxide such as SiO 2 and TiO 2 may be provided in this order on the metal reflective layer to further improve the reflectance.
 例えば、本発明に係る金属反射層(例えば銀反射層)の形成法としては、湿式法及び乾式法のどちらも使用することができる。 For example, as a method for forming a metal reflection layer (for example, a silver reflection layer) according to the present invention, either a wet method or a dry method can be used.
 湿式法とは、めっき法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例をあげるとすれば、銀鏡反応などがある。 The wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
 一方、乾式法とは、真空成膜法の総称であり、具体的に例示するとすれば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。とりわけ、本発明には連続的に成膜するロールツーロール方式が可能な蒸着法が好ましく用いられる。すなわち、本発明に係る太陽光集光用フィルムミラーの製造方法としては、当該金属反射層(銀反射層)を金属(銀)蒸着によって形成する工程を有する態様の製造方法であることが好ましい。 On the other hand, the dry method is a general term for a vacuum film-forming method. Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method. And sputtering method. In particular, a vapor deposition method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention. That is, it is preferable that it is a manufacturing method of the aspect which has the process of forming the said metal reflection layer (silver reflection layer) by metal (silver) vapor deposition as a manufacturing method of the film mirror for sunlight condensing based on this invention.
 当該金属(銀)反射層の厚さは、反射率等の観点から、10~200nmが好ましく、より好ましくは30~150nmである。 The thickness of the metal (silver) reflective layer is preferably 10 to 200 nm, more preferably 30 to 150 nm from the viewpoint of reflectivity and the like.
 本発明において、金属(銀)反射層は支持体に対して光線入射側にあっても、その反対側にあっても良い。 In the present invention, the metal (silver) reflective layer may be on the light incident side or on the opposite side with respect to the support.
 (金属腐食防止層)
 本発明において、金属腐食防止層は、金属反射層に隣接して設けられ、腐食防止剤を含有し、金属反射層の金属の腐食劣化を防ぐとともに、金属反射層の傷防止に寄与するものである。
(Metal corrosion prevention layer)
In the present invention, the metal corrosion prevention layer is provided adjacent to the metal reflection layer, contains a corrosion inhibitor, prevents corrosion of the metal of the metal reflection layer, and contributes to prevention of scratches on the metal reflection layer. is there.
 当該金属腐食防止層に使用するバインダーとしての樹脂は、ポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂等の単独又はこれらの混合樹脂が使用でき、耐候性の点からポリエステル系樹脂、アクリル系樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂とすればより好ましい。 The resin used as the binder for the metal corrosion prevention layer can be a polyester resin, an acrylic resin, a melamine resin, an epoxy resin, or a mixture of these resins. From the viewpoint of weather resistance, a polyester resin, An acrylic resin is preferable, and a thermosetting resin mixed with a curing agent such as isocyanate is more preferable.
 イソシアネートは、TDI(トリレンジイソシアネート)系、XDI(キシレンジイソシアネート)系、MDI(メチレンジイソシアネート)系、HMDI(ヘキサメチレンジイソシアネート)系等の従来から使用されてきた各種イソシアネートが使用可能であるが、耐候性の点から、XDI系、MDI系、HMDI系のイソシアネートを使用するのが好ましい。 As the isocyanate, various conventionally used isocyanates such as TDI (tolylene diisocyanate), XDI (xylene diisocyanate), MDI (methylene diisocyanate), and HMDI (hexamethylene diisocyanate) can be used. From the viewpoint of properties, XDI, MDI, and HMDI isocyanates are preferably used.
 金属腐食防止層の厚さは、密着性、耐候性等の観点から、0.01~3μmが好ましく、より好ましくは0.1~1μmである。 The thickness of the metal corrosion prevention layer is preferably from 0.01 to 3 μm, more preferably from 0.1 to 1 μm, from the viewpoints of adhesion, weather resistance and the like.
 金属腐食防止層の形成方法は、グラビアコート法、リバースコート法、ダイコート法等、従来公知のコーティング方法が使用できる。 As a method for forming the metal corrosion prevention layer, a conventionally known coating method such as a gravure coating method, a reverse coating method, or a die coating method can be used.
 (腐食防止剤)
 本発明に係る太陽光集光用フィルムミラーに用いられる金属反射層の腐食防止剤には、大別して、金属に対する吸着性基を有する腐食防止剤と酸化防止剤が好ましく用いられる。
(Corrosion inhibitor)
The corrosion inhibitor for the metal reflective layer used in the solar light collecting film mirror according to the present invention is roughly classified into a corrosion inhibitor and an antioxidant having an adsorbing group for a metal.
 ここで、「腐食」とは、金属(銀)がそれをとり囲む環境物質によって、化学的又は電気化学的に浸食されるか若しくは材質的に劣化する現象をいう(JIS Z0103-2004参照)。 Here, “corrosion” refers to a phenomenon in which metal (silver) is chemically or electrochemically eroded or deteriorated by the environmental material surrounding it (see JIS Z0103-2004).
 本発明に係る太陽光集光用フィルムミラーは、前記接着層が酸化防止剤を含有し、かつ前記上部隣接層が金属に対する吸着性基を有する腐食防止剤を含有している態様であることが好ましい。 In the solar light collecting film mirror according to the present invention, the adhesive layer may contain an antioxidant, and the upper adjacent layer may contain a corrosion inhibitor having an adsorbing group for a metal. preferable.
 なお、腐食防止剤の含有量は、使用する化合物によって最適量は異なるが、一般的には、0.1~1.0g/m2の範囲内であることが好ましい。 The optimum content of the corrosion inhibitor varies depending on the compound used, but generally it is preferably in the range of 0.1 to 1.0 g / m 2 .
 〈金属に対する吸着性基を有する腐食防止剤〉
 金属に対する吸着性基を有する腐食防止剤としては、アミン類及びその誘導体、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系の少なくとも一種又はこれらの混合物から選ばれることが望ましい。
<Corrosion inhibitor with adsorptive group for metal>
Corrosion inhibitors having an adsorptive group for metals include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, indazole Desirably, the compound is selected from a compound having a ring, copper chelate compounds, thioureas, a compound having a mercapto group, at least one naphthalene-based compound, or a mixture thereof.
 アミン類及びその誘導体としては、エチルアミン、ラウリルアミン、トリ-n-ブチルアミン、O-トルイジン、ジフェニルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2N-ジメチルエタノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール、アセトアミド、アクリルアミド、ベンズアミド、p-エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート等、あるいはこれらの混合物が挙げられる。 Examples of amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexane carboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate, or mixtures thereof.
 ピロール環を有する物としては、N-ブチル-2,5-ジメチルピロール、N-フェニル-2,5-ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール、N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール等、あるいはこれらの混合物が挙げられる。 Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole, etc., or a mixture thereof.
 トリアゾール環を有する化合物としては、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) Examples thereof include benzotriazole and a mixture thereof.
 ピラゾール環を有する化合物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and a mixture thereof.
 チアゾール環を有する化合物としては、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2-N,N-ジエチルチオベンゾチアゾール、P-ジメチルアミノベンザルロダニン、2-メルカプトベンゾチアゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof.
 イミダゾール環を有する化合物としては、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等、あるいはこれらの混合物が挙げられる。 Compounds having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl. Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydromethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl-4 Formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc., or These mixtures are mentioned.
 インダゾール環を有する化合物としては、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等、あるいはこれらの混合物が挙げられる。 Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
 銅キレート化合物類としては、アセチルアセトン銅、エチレンジアミン銅、フタロシアニン銅、エチレンジアミンテトラアセテート銅、ヒドロキシキノリン銅等、あるいはこれらの混合物が挙げられる。 Examples of copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and the like, or a mixture thereof.
 チオ尿素類としては、チオ尿素、グアニルチオ尿素等、あるいはこれらの混合物が挙げられる。 Examples of thioureas include thiourea, guanylthiourea, and the like, or a mixture thereof.
 メルカプト基を有する化合物としては、すでに上記に記載した材料も加えれば、メルカプト酢酸、チオフェノール、1,2-エタンジオール、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、グリコールジメルカプトアセテート、3-メルカプトプロピルトリメトキシシラン等、あるいはこれらの混合物が挙げられる。 As a compound having a mercapto group, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto can be used by adding the above-described materials. -1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, etc., or a mixture thereof.
 ナフタレン系としては、チオナリド等が挙げられる。 Examples of naphthalene-based compounds include thionalide.
 〈酸化防止剤〉
 本発明に係る太陽光集光用フィルムミラーに用いられる金属反射層の腐食防止剤としては、酸化防止剤を用いることもできる。
<Antioxidant>
An antioxidant can also be used as the corrosion inhibitor for the metal reflective layer used in the solar light collecting film mirror according to the present invention.
 酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤及びホスファイト系酸化防止剤を使用することが好ましい。 As the antioxidant, it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, and a phosphite-based antioxidant.
 フェノール系酸化防止剤としては、例えば、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、2,2′-メチレンビス(4-エチル-6-t-ブチルフェノール)、テトラキス-〔メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート〕メタン、2,6-ジ-t-ブチル-p-クレゾール、4,4′-チオビス(3-メチル-6-t-ブチルフェノール)、4,4′-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,3,5-トリス(3′,5′-ジ-t-ブチル-4′-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、3,9-ビス[1,1-ジ-メチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル]-2,4,8,10-テトラオキオキサスピロ〔5,5〕ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。 Examples of phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 2,2′-methylenebis (4-ethyl-6-t- Butylphenol), tetrakis- [methylene-3- (3 ', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 '-Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3', 5'-di-t -Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propi , Triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis [1,1-dimethyl-2- [β- (3- t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4 And 6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene. In particular, the phenolic antioxidant preferably has a molecular weight of 550 or more.
 チオール系酸化防止剤としては、例えば、ジステアリル-3,3′-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)等を挙げられる。 Examples of the thiol-based antioxidant include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thiopropionate), and the like.
 ホスファイト系酸化防止剤としては、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス-(2,6-ジ-t-ブチル-4-メチルフェニル)-ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4′-ビフェニレン-ジホスホナイト、2,2′-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト等が挙げられる。 Examples of the phosphite antioxidant include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol. Diphosphite, bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4'-biphenylene-diphosphonite 2,2'-methylenebis (4,6-di-t-butylphenyl) octyl phosphite and the like.
 なお、本発明においては、上記酸化防止剤と下記の光安定剤を併用することもできる。 In the present invention, the above antioxidant and the following light stabilizer can be used in combination.
 ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、1-メチル-8-(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、1-[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、トリエチレンジアミン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4,5]デカン-2,4-ジオン等が挙げられる。 Examples of the hindered amine light stabilizer include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6 6-Tetrame Lupiperidine, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, triethylenediamine, 8-acetyl-3-dodecyl-7,7,9 , 9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4-dione.
 その他ニッケル系紫外線安定剤として、〔2,2′-チオビス(4-t-オクチルフェノレート)〕-2-エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス-3,5-ジ-t-ブチル-4-ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル-ジチオカーバメート等も使用することが可能である。 Other nickel-based UV stabilizers include [2,2'-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4- Hydroxybenzyl phosphate monoethylate, nickel dibutyl dithiocarbamate, etc. can also be used.
 特にヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的には、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、又は1,2,2,6,6-ペンタメチル-4-ピペリジノール/トリデシルアルコールと1,2,3,4-ブタンテトラカルボン酸との縮合物が好ましい。 In particular, as the hindered amine light stabilizer, a hindered amine light stabilizer containing only a tertiary amine is preferable. Specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable. Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate, or A condensate of 1,2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid is preferred.
 (ガスバリア層)
 本発明にガスバリア層を設けることも好ましい。湿度の変動、特に高湿度による樹脂基材及び当該樹脂基材で保護される各種機能素子等の劣化を防止するためのものである。
(Gas barrier layer)
It is also preferable to provide a gas barrier layer in the present invention. This is to prevent deterioration of the humidity, in particular, deterioration of the resin base material and various functional elements protected by the resin base material due to high humidity.
 当該ガスバリア層の防湿性としては、40℃、90%RHにおける水蒸気透過度が、好ましくは1g/m2・day/μm以下となるように当該ガスバリア層の防湿性を調整することが好ましい。本発明に係るガスバリア層に関しては、その形成方法において特に制約は無いが、蒸着による無機膜層を形成してもよく、無機酸化物膜のセラミック前駆体を塗布した後に、塗布膜を加熱及び/又は紫外線照射により、無機酸化物膜を形成することも好ましく用いられる。 As the moisture barrier property of the gas barrier layer, it is preferable to adjust the moisture barrier property of the gas barrier layer so that the water vapor permeability at 40 ° C. and 90% RH is preferably 1 g / m 2 · day / μm or less. The gas barrier layer according to the present invention is not particularly limited in its formation method, but an inorganic film layer may be formed by vapor deposition. After coating the ceramic precursor of the inorganic oxide film, the coating film is heated and / or Alternatively, it is also preferable to form an inorganic oxide film by ultraviolet irradiation.
 〈セラミック前駆体〉
 本発明に係るガスバリア層は、加熱により無機酸化物膜を形成するセラミック前駆体を塗布した後に、一般的な加熱方法が適用して形成することできるが、局所的加熱により形成することが好ましい。当該セラミック前駆体は、ゾル状の有機金属化合物又はポリシラザンが好ましい。
<Ceramic precursor>
The gas barrier layer according to the present invention can be formed by applying a general heating method after applying a ceramic precursor that forms an inorganic oxide film by heating, but is preferably formed by local heating. The ceramic precursor is preferably a sol-like organometallic compound or polysilazane.
 〈無機酸化物〉
 本発明の保護層には、無機酸化物を好ましく含有させることができる。ケイ素(Si)、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ニオブ(Nb)等の元素の酸化物であることを特徴とする。
<Inorganic oxide>
The protective layer of the present invention can preferably contain an inorganic oxide. Silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In), tin (Sn), niobium (Nb), etc. It is characterized by being an oxide of the element.
 例えば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等である。これらのうち、好ましくは、酸化ケイ素であり、平均粒径50nm未満の粒子を使用することが好ましい。 For example, silicon oxide, aluminum oxide, zirconium oxide and the like. Of these, silicon oxide is preferable, and particles having an average particle diameter of less than 50 nm are preferably used.
 (保護層)
 本発明における保護層は、傷防止のために設けられる。当該保護層は二層構成にしても良い。金属反射層に最も近い保護層は、容易に剥離できるようにする必要はないが、当該保護層より太陽光入射側に設置する保護層は、容易に剥離できるように設置することも好ましい。最表面の保護層が紫外線により劣化あるいは傷により劣化した場合、劣化した保護層を剥離し、内側の無傷の保護層を再表面層にすることで性能を長期間維持することができる。
(Protective layer)
The protective layer in the present invention is provided for preventing scratches. The protective layer may have a two-layer structure. The protective layer closest to the metal reflective layer does not need to be easily peeled off, but it is also preferable that the protective layer placed closer to the sunlight incident side than the protective layer is placed so as to be easily peeled off. When the outermost protective layer is deteriorated by ultraviolet rays or by scratches, the performance can be maintained for a long time by peeling the deteriorated protective layer and making the inner intact protective layer a resurface layer.
 当該保護層は、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂などで構成することができる。特に、硬度と耐久性などの点で、シリコーン系樹脂やアクリル系樹脂が好ましい。さらに、硬化性、可撓性及び生産性の点で、活性エネルギー線硬化型のアクリル系樹脂、又は熱硬化型のアクリル系樹脂からなるものも好ましく用いられる。また、ガラス転移温度Tgが室温以下のゴム重合成分を含んだアクリル樹脂を含むことも衝撃耐性に優れて好ましい。 The protective layer can be composed of an acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicone resin, or the like. In particular, silicone resins and acrylic resins are preferable in terms of hardness and durability. Further, from the viewpoint of curability, flexibility, and productivity, an active energy ray-curable acrylic resin or a thermosetting acrylic resin is also preferably used. In addition, it is preferable that an acrylic resin containing a rubber polymerization component having a glass transition temperature Tg of room temperature or lower is excellent in impact resistance.
 活性エネルギー線硬化型のアクリル系樹脂又は熱硬化型のアクリル系樹脂とは、重合硬化成分として多官能アクリレート、アクリルオリゴマーあるいは反応性希釈剤を含む組成物である。その他に必要に応じて光開始剤、光増感剤、熱重合開始剤あるいは改質剤等を含有しているものを用いてもよい。 The active energy ray-curable acrylic resin or the thermosetting acrylic resin is a composition containing a polyfunctional acrylate, an acrylic oligomer or a reactive diluent as a polymerization curing component. In addition, you may use what contains a photoinitiator, a photosensitizer, a thermal-polymerization initiator, a modifier, etc. as needed.
 アクリルオリゴマーとは、アクリル系樹脂骨格に反応性のアクリル基が結合されたものを始めとして、ポリエステルアクリレート、ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレートなどであり、また、メラミンやイソシアヌール酸などの剛直な骨格にアクリル基を結合したものなども用いられ得る。 Acrylic oligomers include polyester acrylates, urethane acrylates, epoxy acrylates, polyether acrylates, etc., including those in which a reactive acrylic group is bonded to an acrylic resin skeleton, and rigid materials such as melamine and isocyanuric acid. A structure in which an acrylic group is bonded to a simple skeleton can also be used.
 また、反応性希釈剤とは、塗工剤の媒体として塗工工程での溶剤の機能を担うと共に、それ自体が一官能性あるいは多官能性のアクリルオリゴマーと反応する基を有し、塗膜の共重合成分となるものである。 In addition, the reactive diluent has a function of a solvent in the coating process as a medium of the coating agent, and has a group that itself reacts with a monofunctional or polyfunctional acrylic oligomer. It becomes a copolymerization component.
 市販されている多官能アクリル系硬化塗料としては、三菱レイヨン株式会社;(商品名“ダイヤビーム(登録商標)”シリーズなど)、長瀬産業株式会社;(商品名“デナコール(登録商標)”シリーズなど)、新中村株式会社;(商品名“NKエステル”シリーズなど)、DIC株式会社;(商品名“UNIDIC(登録商標)”シリーズなど)、東亞合成株式会社;(商品名“アロニックス(登録商標)”シリーズなど)、日本油脂株式会社;(商品名“ブレンマー(登録商標)”シリーズなど)、日本化薬株式会社;(商品名“KAYARAD(登録商標)”シリーズなど)、共栄社化学株式会社;(商品名“ライトエステル”シリーズ、“ライトアクリレート”シリーズなど)などの製品を利用することができる。 Commercially available polyfunctional acrylic cured paints include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam (registered trademark)” series, etc.), Nagase Sangyo Co., Ltd. (trade name “Denacol (registered trademark)” series, etc. ), Shin-Nakamura Co., Ltd. (trade name “NK Ester” series, etc.), DIC Corporation; (trade name “UNIDIC (registered trademark)” series, etc.), Toagosei Co., Ltd. (trade name “Aronix (registered trademark)” ("Series etc."), Nippon Oil & Fats Co., Ltd .; (trade name "Blemmer (registered trademark)" series, etc.), Nippon Kayaku Co., Ltd .; (trade name "KAYARAD (registered trademark)" series, etc.), Products such as “light ester” series, “light acrylate” series, etc.) can be used.
 また、熱可塑性のアクリルフィルム、ポリカーボネートフィルム、ポリアリレートフィルム、ポリエチレンナフタレートフィルム、ポリエチレンテレフタレートフィルム、フッ素フィルムなどのプラスチックフィルム、又は酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂をコーティングしたり金属蒸着などの表面加工を施した樹脂フィルムも用いられる。好ましくはアクリル系フィルムを用いるのが、好ましい。フィルムの厚さは、特に制限はないが通常10~125μmの範囲であることが好ましい。 Also coated with plastic films such as thermoplastic acrylic film, polycarbonate film, polyarylate film, polyethylene naphthalate film, polyethylene terephthalate film, fluorine film, or resin kneaded with titanium oxide, silica, aluminum powder, copper powder, etc. A resin film subjected to surface treatment such as metal deposition is also used. It is preferable to use an acrylic film. The thickness of the film is not particularly limited but is usually preferably in the range of 10 to 125 μm.
 本発明において、保護層中には、本発明の効果が損なわれない範囲で、さらに各種の添加剤を必要に応じて配合することができる。例えば、酸化防止剤、光安定剤などの安定剤、界面活性剤、レベリング剤及び帯電防止剤などを用いることができる。特に太陽光の紫外線から樹脂、銀等の反射層を保護するために紫外線吸収剤を含有させることが好ましく、特に全保護層に含有することがより好ましい。レベリング剤は、特に機能層を塗工する際、表面凹凸低減に効果的である。レベリング剤としては、例えば、シリコーン系レベリング剤として、ジメチルポリシロキサン-ポリオキシアルキレン共重合体(例えば東レダウコーニング(株)製SH190)が好適である。 In the present invention, various additives can be further blended in the protective layer as necessary within the range where the effects of the present invention are not impaired. For example, stabilizers such as antioxidants and light stabilizers, surfactants, leveling agents and antistatic agents can be used. In particular, it is preferable to contain an ultraviolet absorber in order to protect the reflective layer of resin, silver or the like from the ultraviolet rays of sunlight, and it is more preferred to contain it in the entire protective layer. The leveling agent is effective in reducing surface irregularities, particularly when the functional layer is applied. As the leveling agent, for example, a dimethylpolysiloxane-polyoxyalkylene copolymer (for example, SH190 manufactured by Toray Dow Corning Co., Ltd.) is suitable as the silicone leveling agent.
 (紫外線吸収剤)
 本発明においては、太陽光や紫外線による劣化防止の目的で、紫外線吸収剤を添加することができる。保護層が、紫外線吸収剤を含有することが好ましい。また、前記樹脂基材上に設けられた構成層のうち、保護層以外の少なくともいずれか一層にも、紫外線吸収剤を含有することも好ましい。
(UV absorber)
In the present invention, an ultraviolet absorber can be added for the purpose of preventing deterioration due to sunlight or ultraviolet rays. The protective layer preferably contains an ultraviolet absorber. Moreover, it is also preferable that at least any one layer other than the protective layer among the constituent layers provided on the resin base material contains an ultraviolet absorber.
 紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系等が挙げられる。 Examples of ultraviolet absorbers include benzophenone, benzotriazole, phenyl salicylate, and triazine.
 ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシ-ベンゾフェノン、2,2′,4,4′-テトラヒドロキシ-ベンゾフェノン等が挙げられる。 Examples of the benzophenone ultraviolet absorber include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
 ベンゾトリアゾール系紫外線吸収剤としては、2-(2′-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)ベンゾトリアゾール等が挙げられる。 Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-t-butylphenyl) benzotriazole, 2 -(2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole and the like.
 サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。 Examples of the phenyl salicylate ultraviolet absorber include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like. Examples of the hindered amine ultraviolet absorber include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
 トリアジン系紫外線吸収剤としては、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン等が挙げられる。 Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-). Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-) Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2- Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5-tria 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine and the like.
 紫外線吸収剤としては、上記以外に紫外線の保有するエネルギーを、分子内で振動エネルギーに変換し、その振動エネルギーを、熱エネルギー等として放出する機能を有する化合物が含まれる。さらに、酸化防止剤あるいは着色剤等との併用で効果を発現するもの、あるいはクエンチャーと呼ばれる、光エネルギー変換剤的に作用する光安定剤等も併用することができる。但し、上記の紫外線吸収剤を使用する場合は、紫外線吸収剤の光吸収波長が、光重合開始剤の有効波長と重ならないものを選択する必要がある。 In addition to the above, the ultraviolet absorber includes a compound having a function of converting the energy held by ultraviolet rays into vibrational energy in the molecule and releasing the vibrational energy as thermal energy. Furthermore, those that exhibit an effect when used in combination with an antioxidant, a colorant, or the like, or a light stabilizer that acts as a light energy conversion agent, called a quencher, can be used in combination. However, when using the above-mentioned ultraviolet absorber, it is necessary to select one in which the light absorption wavelength of the ultraviolet absorber does not overlap with the effective wavelength of the photopolymerization initiator.
 通常の紫外線防止剤を使用する場合は、可視光でラジカルを発生する光重合開始剤を使用することが有効である。 In the case of using an ordinary ultraviolet light inhibitor, it is effective to use a photopolymerization initiator that generates radicals with visible light.
 紫外線吸収剤の使用量は、0.1~20質量%、好ましくは1~15質量%、さらに好ましくは3~10質量%である。20質量%よりも多いと密着性が悪くなり、0.1質量%より少ないと耐候性改良効果が小さい。 The amount of the ultraviolet absorber used is 0.1 to 20% by mass, preferably 1 to 15% by mass, and more preferably 3 to 10% by mass. When the amount is more than 20% by mass, the adhesion is deteriorated.
 (太陽光集光用フィルムミラー全体の厚さ)
 本発明に係る太陽光集光用フィルムミラー全体の厚さは、ミラーがたわみ防止、正反射率、取り扱い性等の観点から、75~250μmが好ましく、更に好ましくは90~230μm、更に好ましくは100~220μmである。固形分濃度10%となるようにトルエン中に混合する。
(Thickness of the film mirror for collecting sunlight)
The total thickness of the solar light collecting film mirror according to the present invention is preferably from 75 to 250 μm, more preferably from 90 to 230 μm, and even more preferably from the viewpoints of preventing the mirror from bending, regular reflectance, and handling properties. ~ 220 μm. Mix in toluene to a solids concentration of 10%.
 (太陽光集光用フィルムミラーの作製方法)
 本発明に係る太陽光集光用フィルムミラーは、上記の各種構成要素に関する説明を参照して作製することができるが、以下において、本発明の実施態様の一例を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
(Production method of sunlight collecting film mirror)
Although the film mirror for sunlight condensing concerning the present invention can be produced with reference to the explanation about the above various constituent elements, an example of the embodiment of the present invention will be specifically described below. However, the present invention is not limited to these.
 熱可塑性ポリメタクリル酸メチル樹脂フィルム(重量平均分子量100000、数平均分子量50000;以下、単に「アクリルフィルム」という。)の製膜時に紫外線吸収剤(比較化合物1、TINUVIN928、BASFジャパン社製)をアクリルフィルムに5質量%含有させて、50μmの厚さの保護層となる樹脂基材フィルムを作製する。 When forming a thermoplastic polymethyl methacrylate resin film (weight average molecular weight 100,000, number average molecular weight 50000; hereinafter simply referred to as “acrylic film”), an ultraviolet absorber (Comparative Compound 1, TINUVIN 928, manufactured by BASF Japan Ltd.) is acrylic. A resin base film is prepared by containing 5% by mass in the film and serving as a protective layer having a thickness of 50 μm.
 このフィルム上に、ポリエステル樹脂(ポリエスター SP-181、日本合成化学社製)、メラミン樹脂(スーパーベッカミンJ-820、DIC社製)、TDI系イソシアネート(2,4-トリレンジイソシアネート)、HDMI系イソシアネート(1,6-ヘキサメチレンジイソシアネート)を樹脂固形分比率で20:1:1:2に、固形分濃度10質量%となるようにし、酸化防止剤(1,2,2′-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト)を層内樹脂に対し0.3質量%加え、トルエン中に混合した樹脂を、グラビアコート法によりコーティングして、厚さ0.1μmの金属腐食防止層を形成する。この金属腐食防止層上に、金属反射層として、真空蒸着法により厚さ80nmの銀反射層を形成する。この銀反射層上に、銀反射層の光入射側から遠い側の隣接層として、ポリエステル系樹脂とTDI(トリレンジイソシアネート)系イソシアネートを樹脂固形分比率で10:2に混合した樹脂を、グラビアコート法によりコーティングして、厚さ0.1μmの層を形成し、太陽光集光用フィルムミラーを作製する。 On this film, polyester resin (Polyester SP-181, manufactured by Nippon Synthetic Chemical Co., Ltd.), melamine resin (Super Becamine J-820, manufactured by DIC), TDI-based isocyanate (2,4-tolylene diisocyanate), HDMI -Based isocyanate (1,6-hexamethylene diisocyanate) in a resin solid content ratio of 20: 1: 1: 2 and a solid content concentration of 10% by mass, and an antioxidant (1,2,2′-methylenebis ( 4,6-di-t-butylphenyl) octyl phosphite) is added in an amount of 0.3% by mass to the resin in the layer, and the resin mixed in toluene is coated by a gravure coating method to have a thickness of 0.1 μm. Form a metal corrosion protection layer. On this metal corrosion prevention layer, a silver reflection layer having a thickness of 80 nm is formed as a metal reflection layer by vacuum deposition. On this silver reflective layer, as an adjacent layer far from the light incident side of the silver reflective layer, a resin in which a polyester resin and TDI (tolylene diisocyanate) isocyanate are mixed at a resin solid content ratio of 10: 2 is gravure. Coating is performed by a coating method to form a layer having a thickness of 0.1 μm, and a solar light collecting film mirror is produced.
 〈粘着層〉
 本発明に係る太陽光集光用フィルムミラーは、太陽光を集光する目的において、好ましく使用できる。太陽光集光用フィルムミラー単体で太陽光集光ミラーとして用いることもできるが、より好ましくは、樹脂基材を挟んで金属反射層を有する側と反対側の樹脂基材面に塗設された粘着層を介して、太陽光集光用フィルムミラーの支持体上に、特に金属支持体上に、当該太陽光集光用フィルムミラーを貼り付けて太陽光集光用ミラーとして用いることである。
<Adhesive layer>
The film mirror for collecting sunlight according to the present invention can be preferably used for the purpose of collecting sunlight. Although it can be used as a solar light collecting mirror by itself, the film mirror for solar light collecting is more preferably coated on the resin base material surface opposite to the side having the metal reflective layer with the resin base material interposed therebetween. This is to use the solar light collecting film mirror as a solar light collecting mirror by attaching the solar light collecting film mirror on the support of the solar light collecting film mirror, particularly on the metal support, through the adhesive layer.
 粘着層としては、特に制限されず、例えばドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤などのいずれもが用いられる。 The adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
 例えばポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴムなどが用いられる。 For example, polyester resin, urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber and the like are used.
 ラミネート方法は特に制限されず、例えばロール式で連続的に行うのが経済性及び生産性の点から好ましい。 The laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
 粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~50μm程度の範囲であることが好ましい。 The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 μm from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like.
 本発明に適宜採用される本発明の太陽光集光用フィルムミラーと貼り合せられる他基材としては、金属反射層層の保護性を付与できるものであればよく、例えば、アクリルフィルム又はシート、ポリカーボネートフィルム又はシート、ポリアリレートフィルム又はシート、ポリエチレンナフタレートフィルム又はシート、ポリエチレンテレフタレートフィルム又はシート、フッ素フィルムなどのプラスチックフィルム又はシート、又は酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルム又はシート、これらを練り込んだ樹脂をコーティングしたり金属蒸着などの表面加工を施した樹脂フィルム又はシートが用いられる。 The other substrate to be bonded to the solar light collecting film mirror of the present invention, which is appropriately employed in the present invention, may be any material that can impart protection of the metal reflective layer, for example, an acrylic film or sheet, Polycarbonate film or sheet, polyarylate film or sheet, polyethylene naphthalate film or sheet, polyethylene terephthalate film or sheet, plastic film or sheet such as fluorine film, or resin kneaded with titanium oxide, silica, aluminum powder, copper powder, etc. A film or sheet, or a resin film or sheet coated with a resin kneaded with these or subjected to surface processing such as metal deposition is used.
 貼り合わせフィルム又はシートの厚さは、特に制限はないが通常12~250μmの範囲であることが好ましい。 The thickness of the laminated film or sheet is not particularly limited but is preferably in the range of 12 to 250 μm.
 また、これらの他基材は本発明の太陽光集光用フィルムミラーと貼り合わせる前に凹部や凸部を設けてから貼り合せてもよく、貼り合せた後で凹部や凸部を有するように成形してもよく、貼り合わせと凹部や凸部を有するように成形することを同時にしてもよいものである。 In addition, these other base materials may be bonded after providing a concave portion or a convex portion before being bonded to the solar light collecting film mirror of the present invention. Molding may be performed, and bonding and molding so as to have a concave portion or a convex portion may be performed at the same time.
 〈金属支持体〉
 本発明に係る太陽光集光用ミラーの金属支持体としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板など熱伝導率の高い金属材料を用いることができる。
<Metal support>
As the metal support of the solar light collecting mirror according to the present invention, steel plate, copper plate, aluminum plate, aluminum plated steel plate, aluminum alloy plated steel plate, copper plated steel plate, tin plated steel plate, chrome plated steel plate, stainless steel plate, etc. A metal material having high conductivity can be used.
 本発明においては、特に耐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板などにすることが好ましい。 In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate or the like having good corrosion resistance.
 (太陽熱発電装置)
 本発明の太陽光集光用ミラーは、種々の態様の太陽熱発電装置に好適に用いることができる。
(Solar thermal power generator)
The solar light collecting mirror of the present invention can be suitably used for various forms of solar thermal power generation apparatuses.
 特に、光を直線状に集光する曲面形状の太陽光集光用ミラーと、当該太陽光集光用ミラーの長手方向に平行となるように配置された太陽受光・伝熱部と、当該太陽受光・伝熱部から伝達された熱エネルギーを電気エネルギーに変換する熱電変換部とを具備したトラフ式太陽熱発電装置に好適に用いることができる。 In particular, a curved sunlight collecting mirror that condenses light in a straight line, a solar light receiving and heat transfer unit disposed so as to be parallel to the longitudinal direction of the sunlight collecting mirror, and the sun The present invention can be suitably used for a trough solar thermal power generation apparatus including a thermoelectric conversion unit that converts thermal energy transmitted from the light receiving / heat transfer unit into electric energy.
 図6に、一例として、本発明の太陽光集光用ミラーを用いた太陽熱発電装置(システム)10の系統図を示す。 FIG. 6 shows, as an example, a system diagram of a solar thermal power generation apparatus (system) 10 using the solar light collecting mirror of the present invention.
 図6において、液体空気は液体空気タンク15からポンプ11で1~100Mpaまで加圧される。高温になった液体空気は再生熱交換器12で常温付近まで加温された後、太陽熱集光器13(太陽光集光用ミラー13aと太陽受光・伝熱部13b)で更に加熱され、950~1050℃程度の高温にまで達する。 In FIG. 6, the liquid air is pressurized from 1 to 100 MPa by the pump 11 from the liquid air tank 15. The heated liquid air is heated to near room temperature by the regenerative heat exchanger 12, and then further heated by the solar heat collector 13 (the solar light collecting mirror 13a and the solar light receiving / heat transfer portion 13b), and 950 It reaches a high temperature of ~ 1050 ° C.
 高温・高圧の空気はタービン14を駆動することにより動力を発生させた後、再生熱交換器2を通過して大気に放出される。再生熱交換器2から得られた動力は一部をポンプ駆動に回しながら、そのほとんどを熱電変換部16(発電機あるいは負荷装置)により電気エネルギーあるいは機械エネルギーに変換される。 The high-temperature and high-pressure air generates power by driving the turbine 14, and then passes through the regenerative heat exchanger 2 and is released to the atmosphere. Most of the motive power obtained from the regenerative heat exchanger 2 is converted into electric energy or mechanical energy by the thermoelectric converter 16 (generator or load device) while turning a part of the power to the pump drive.
 図6では、タービン14とポンプ11が機械的に結合されたものになっているが、ポンプ11の駆動をモータで行い電気的に結合させることも可能である。運転方法としては、夜間等の余剰となっている電力等で液体空気を製造・貯蔵しておき、昼間の太陽光を集光できるときに発電を行うという使い方をする。 In FIG. 6, the turbine 14 and the pump 11 are mechanically coupled. However, the pump 11 can be driven electrically by a motor and coupled electrically. As an operation method, liquid air is produced and stored with surplus electric power at night or the like, and power generation is performed when sunlight in the daytime can be collected.
 上記例では、作動流体に空気を用いるためタービン14などのコンポーネント設計が簡単になる。なお、このシステムでは液体空気の代わりに液体窒素、液体水素などの極低温流体を用いてもよい。 In the above example, since air is used as the working fluid, the design of components such as the turbine 14 is simplified. In this system, a cryogenic fluid such as liquid nitrogen or liquid hydrogen may be used instead of liquid air.
 (太陽光発電装置)
 本発明の太陽光集光用ミラーは、種々の態様の太陽光発電装置にも好適に用いることができる。
(Solar power generator)
The solar light collecting mirror of the present invention can be suitably used for various types of solar power generation apparatuses.
 特に、光を直線状に集光する曲面形状の太陽光集光用ミラーと、当該太陽光集光用ミラーの長手方向に平行となるように配置された、光熱エネルギーを電気エネルギーに変換する光電変換部とを具備したトラフ式太陽光発電装置に好適に用いることができる。 In particular, a curved solar collector mirror that condenses light in a straight line, and a photoelectric conversion device that converts photothermal energy into electrical energy, arranged parallel to the longitudinal direction of the solar collector mirror. It can use suitably for the trough type solar power generation device which comprises the conversion part.
 図7に、一例として、集光型太陽光発電装置の放物反射面線形集光器の模式図を示す。 FIG. 7 shows a schematic diagram of a parabolic reflecting surface linear concentrator of a concentrating solar power generation device as an example.
 当該集光型太陽光発電装置の放物反射面線形集光器は、放物線の頂点を含み光軸である主軸に対称な反射面を有する太陽光集光用ミラーの焦線(焦点の集合)上の長軸方向に太陽電池を並べたものである。 The parabolic reflecting surface linear concentrator of the concentrating solar power generation device is a focal line (collection of focal points) of a solar condensing mirror having a reflecting surface that includes the apex of the parabola and is symmetric with respect to the main axis that is the optical axis The solar cells are arranged in the upper major axis direction.
 (総括:本発明の効果)
 本発明の前記手段により、前述のように、防汚性の高く、このため反射率及び正反射率の劣化が防止され、かつ部分的交換が容易で、低コストで光反射率の維持が可能な太陽光集光用ミラーを提供することができる。
(Summary: Effects of the present invention)
By the means of the present invention, as described above, the antifouling property is high, so that the deterioration of the reflectance and the regular reflectance is prevented, the partial replacement is easy, and the light reflectance can be maintained at a low cost. A solar light collecting mirror can be provided.
 また、当該太陽光集光用ミラーを具備したトラフ式の太陽熱発電装置及び太陽光発電装置を提供することができる。 In addition, a trough solar thermal power generation apparatus and a solar power generation apparatus provided with the solar light collecting mirror can be provided.
 すなわち、本発明においては、光反射フィルムミラーを横貼りすることで、溝を横にきることができ、汚れた水を外に逃がすことができる。また、下方中心部の汚れた光反射フィルムミラーのみを貼り替えることができ、かつ、横に貼ることで効率よく設置することができる。 That is, in the present invention, by horizontally sticking the light reflecting film mirror, the groove can be moved sideways, and dirty water can be released to the outside. Moreover, only the dirty light reflection film mirror in the lower center portion can be replaced, and can be efficiently installed by sticking it sideways.
 1a 太陽受光・伝熱部を備えた従来型太陽光集光用ミラー
 1b 太陽受光・伝熱部を備えた本発明の太陽光集光用ミラー
 2 太陽受光・伝熱部
 3 太陽光集光用ミラー
 4 太陽受光・伝熱部の支柱
 5 太陽光集光用ミラーの支持体
 6 太陽光集光用ミラー間の溝
 10 太陽熱発電装置(システム)
 11 ポンプ
 12 再生熱交換器
 13 太陽熱集光器
 13a 太陽光集光用ミラー
 13b 太陽受光・伝熱部
 14 タービン
 15 液体空気タンク
 16 熱電変換部(発電機或いは負荷装置)
 17 液体空気製造装置
 A 太陽光
 B 主軸
 C 焦線
 D 太陽電池
 E 反射板
 F 頂点
 G 横軸方向
DESCRIPTION OF SYMBOLS 1a The conventional solar condensing mirror provided with the solar light reception / heat transfer part 1b The solar condensing mirror of the present invention provided with the solar light reception / heat transfer part 2 The solar reception / heat transfer part 3 For solar condensing Mirror 4 Solar light receiving / heat transfer section support 5 Solar collector mirror support 6 Groove between solar collector mirrors 10 Solar power generator (system)
DESCRIPTION OF SYMBOLS 11 Pump 12 Regenerative heat exchanger 13 Solar heat collector 13a Solar condensing mirror 13b Solar light reception / heat transfer part 14 Turbine 15 Liquid air tank 16 Thermoelectric conversion part (generator or load device)
17 Liquid air production equipment A Sunlight B Main axis C Focal line D Solar cell E Reflector F Vertex G Horizontal axis direction

Claims (8)

  1.  長手方向に平行な断面が直線状であり、かつ長手方向に垂直な断面が巨視的に曲面形状である長尺状の太陽光集光用ミラーであって、当該太陽光集光用ミラーの長手方向に垂直な方向に分割されて不連続な複数の長尺状フィルムミラーにより構成されてなることを特徴とする太陽光集光用ミラー。 A long sunlight collecting mirror whose cross section parallel to the longitudinal direction is linear and whose cross section perpendicular to the longitudinal direction is macroscopically curved, and the length of the solar collecting mirror is long. A solar light collecting mirror comprising a plurality of discontinuous long film mirrors divided in a direction perpendicular to the direction.
  2.  前記長手方向に垂直な断面が、巨視的に略放物線状であることを特徴とする請求項1に記載の太陽光集光用ミラー。 The solar light collecting mirror according to claim 1, wherein a cross section perpendicular to the longitudinal direction is macroscopically substantially parabolic.
  3.  前記複数の長尺状フィルムミラーの各々が、相互に隣接する長尺状フィルムミラーのうち、上側にある長尺ミラーの下端が、下側の長尺状フィルムミラーの上端よりも外側に位置し、段差が付くように配置されていることを特徴とする請求項1又は請求項2に記載の太陽光集光用ミラー。 Of the long film mirrors adjacent to each other, each of the plurality of long film mirrors has a lower end of the upper long mirror positioned outside the upper end of the lower long film mirror. The solar light collecting mirror according to claim 1, wherein the solar light collecting mirror is disposed so as to have a step.
  4.  前記複数の長尺状フィルムミラーの各々が、支持体上に取り替えできるように取り付けられていることを特徴とする請求項1から請求項3までのいずれか一項に記載の太陽光集光用ミラー。 The solar light concentrating device according to any one of claims 1 to 3, wherein each of the plurality of long film mirrors is mounted on a support so as to be replaced. mirror.
  5.  前記複数の長尺状フィルムミラーの各々が、支持体上に接着されていることを特徴とする請求項1から請求項4までのいずれか一項に記載の太陽光集光用ミラー。 The solar light collecting mirror according to any one of claims 1 to 4, wherein each of the plurality of long film mirrors is bonded onto a support.
  6.  前記長尺状フィルムミラーが、樹脂基材上に、構成層として少なくとも、接着層、金属反射層、及び当該金属反射層より光源側に保護層が設けられてなることを特徴とする請求項1から請求項5までのいずれか一項に記載の太陽光集光用ミラー。 2. The long film mirror is provided with at least an adhesive layer, a metal reflective layer, and a protective layer on the light source side of the metal reflective layer as a constituent layer on a resin base material. The solar light collecting mirror according to any one of claims 1 to 5.
  7.  光を直線状に集光する曲面形状の太陽光集光用ミラーと、当該太陽光集光用ミラーの長手方向に平行となるように配置された太陽受光・伝熱部と、当該太陽受光・伝熱部から伝達された熱エネルギーを電気エネルギーに変換する熱電変換部とを具備したトラフ式太陽熱発電装置であって、当該太陽光集光用ミラーとして、請求項1から請求項6までのいずれか一項に記載の太陽光集光用ミラーが具備されていることを特徴とするトラフ式太陽熱発電装置。 A curved solar collecting mirror that collects light in a straight line, a solar light receiving / heating portion arranged so as to be parallel to the longitudinal direction of the solar collecting mirror, A trough solar thermal power generation apparatus including a thermoelectric conversion unit that converts thermal energy transmitted from a heat transfer unit into electrical energy, wherein the solar light collecting mirror is any one of claims 1 to 6. A trough solar thermal power generator, comprising the solar light collecting mirror according to claim 1.
  8.  光を直線状に集光する曲面形状の太陽光集光用ミラーと、当該太陽光集光用ミラーの長手方向に平行となるように配置された、光熱エネルギーを電気エネルギーに変換する光電変換部とを具備したトラフ式太陽光発電装置であって、当該太陽光集光用ミラーとして、請求項1から請求項6までのいずれか一項に記載の太陽光集光用ミラーが具備されていることを特徴とするトラフ式太陽光発電装置。 A curved sunlight collecting mirror that collects light in a straight line, and a photoelectric conversion unit that is arranged so as to be parallel to the longitudinal direction of the sunlight collecting mirror and that converts photothermal energy into electrical energy A solar light collecting mirror according to any one of claims 1 to 6, wherein the solar light collecting mirror is provided as the solar light collecting mirror. A trough solar power generation device characterized by that.
PCT/JP2011/054297 2010-03-18 2011-02-25 Solar concentrating mirror, and trough solar thermal power generation device and trough solar power generation device using same WO2011114861A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012505591A JPWO2011114861A1 (en) 2010-03-18 2011-02-25 Sunlight collecting mirror, trough solar power generator and trough solar power generator using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-062104 2010-03-18
JP2010062104 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011114861A1 true WO2011114861A1 (en) 2011-09-22

Family

ID=44648967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054297 WO2011114861A1 (en) 2010-03-18 2011-02-25 Solar concentrating mirror, and trough solar thermal power generation device and trough solar power generation device using same

Country Status (2)

Country Link
JP (1) JPWO2011114861A1 (en)
WO (1) WO2011114861A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016828A1 (en) 2011-08-04 2013-02-07 6637418 Canada Inc. Carrying On Business As Rackam Solar concentrators, method of manufacturing and uses thereof
CN105759412A (en) * 2016-05-03 2016-07-13 山东理工大学 Solar light concentration system formed by 190 aspheric-surface reflectors
JP2018011459A (en) * 2016-07-14 2018-01-18 株式会社カネカ Concentrating solar battery system and power generation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159746A (en) * 1974-06-14 1975-12-24
JPS51146246A (en) * 1975-02-13 1976-12-15 Unisearch Ltd Condensing apparatus for solar radiation
JPS5725305U (en) * 1980-07-21 1982-02-09
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JP2002286916A (en) * 2001-03-28 2002-10-03 Sekisui Jushi Co Ltd Self-cleanable beam-condensing reflector and solar light collecting power generator
WO2011001545A1 (en) * 2009-07-02 2011-01-06 三井造船株式会社 Solar photovoltaic power generator, and light collecting method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4081546B2 (en) * 2003-05-27 2008-04-30 独立行政法人産業技術総合研究所 Air purification method and apparatus using sunlight
US20080178927A1 (en) * 2007-01-30 2008-07-31 Thomas Brezoczky Photovoltaic apparatus having an elongated photovoltaic device using an involute-based concentrator
WO2009046606A1 (en) * 2007-10-11 2009-04-16 Shanghai Institute Of Materia Medica, Cas Pyrimidinyl-propionic acid derivatives and their use as ppar agonists

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50159746A (en) * 1974-06-14 1975-12-24
JPS51146246A (en) * 1975-02-13 1976-12-15 Unisearch Ltd Condensing apparatus for solar radiation
JPS5725305U (en) * 1980-07-21 1982-02-09
JPS61154942A (en) * 1984-12-24 1986-07-14 ミネソタ マイニング アンド マニユフアクチユアリング コンパニー Corrosion-resistant reflecting mirror
JP2002286916A (en) * 2001-03-28 2002-10-03 Sekisui Jushi Co Ltd Self-cleanable beam-condensing reflector and solar light collecting power generator
WO2011001545A1 (en) * 2009-07-02 2011-01-06 三井造船株式会社 Solar photovoltaic power generator, and light collecting method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016828A1 (en) 2011-08-04 2013-02-07 6637418 Canada Inc. Carrying On Business As Rackam Solar concentrators, method of manufacturing and uses thereof
CN105759412A (en) * 2016-05-03 2016-07-13 山东理工大学 Solar light concentration system formed by 190 aspheric-surface reflectors
CN105759412B (en) * 2016-05-03 2020-12-01 山东理工大学 Solar energy condensing system composed of 190 aspheric surface reflectors
JP2018011459A (en) * 2016-07-14 2018-01-18 株式会社カネカ Concentrating solar battery system and power generation method

Also Published As

Publication number Publication date
JPWO2011114861A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
WO2012176650A1 (en) Solar light collecting mirror and solar thermal power generation system having solar light collecting mirror
WO2012057004A1 (en) Film mirror, process for manufacturing film mirror, and reflection device for solar power generation purposes
JP2013507663A (en) Concentrator for solar energy harvesting and its manufacture from polymer raw materials
WO2012105351A1 (en) Solar light collecting mirror, and solar thermal power generation system comprising the solar light collecting mirror
JP2011158751A (en) Film mirror, method of manufacturing the same, and reflecting device for solar power generation using the same
WO2011122241A1 (en) Film mirror for generation of solar power, process for production of film mirror for generation of solar power, and reflecting device for generation of solar power
JP5516603B2 (en) FILM MIRROR, METHOD FOR MANUFACTURING THE SAME, AND REFLECTOR FOR SOLAR THERMAL POWER GENERATION
JP5962014B2 (en) Film mirror and manufacturing method thereof
JP5660051B2 (en) FILM MIRROR, MANUFACTURING METHOD THEREOF, AND SOLAR POWER GENERATOR REFLECTOR USING THE SAME
WO2011096151A1 (en) Film mirror and process for production thereof, and sunlight collection mirror
JP2015121806A (en) Film mirror, film mirror manufacturing method, and film mirror for sunlight collection
JPWO2011078156A1 (en) FILM MIRROR, MANUFACTURING METHOD THEREOF, AND SOLAR POWER GENERATOR REFLECTOR USING THE SAME
WO2011114861A1 (en) Solar concentrating mirror, and trough solar thermal power generation device and trough solar power generation device using same
JP2012047861A (en) Film mirror, manufacturing method thereof, and film mirror for condensing solar light
WO2013015190A1 (en) Solar light collecting mirror and solar thermal power generation system using said solar light collecting mirror
JP5794232B2 (en) Film mirror for solar power generation, manufacturing method thereof, and reflector for solar power generation
JP2011203553A (en) Film mirror, method of producing the same and solar light reflecting mirror
WO2011096248A1 (en) Light reflecting film for solar thermal power generation, method for producing same, and reflection device for solar thermal power generation using same
JPWO2012026311A1 (en) Film mirror, film mirror manufacturing method, and solar power generation reflector
JP2011158752A (en) Film mirror, method of manufacturing the same, and reflecting apparatus for solar thermal power generation
JP2012053382A (en) Light-reflecting film for solar power generation and reflecting device for solar power generation
JP2012251695A (en) Solar light collection system and mirror
JP5593970B2 (en) Reflector for solar power generation
JP2013015612A (en) Method for manufacturing solar collection mirror, solar collection mirror, and solar thermal power generation system
JP2016009034A (en) Light reflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756050

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505591

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11756050

Country of ref document: EP

Kind code of ref document: A1