JP2018011459A - Concentrating solar battery system and power generation method - Google Patents

Concentrating solar battery system and power generation method Download PDF

Info

Publication number
JP2018011459A
JP2018011459A JP2016139665A JP2016139665A JP2018011459A JP 2018011459 A JP2018011459 A JP 2018011459A JP 2016139665 A JP2016139665 A JP 2016139665A JP 2016139665 A JP2016139665 A JP 2016139665A JP 2018011459 A JP2018011459 A JP 2018011459A
Authority
JP
Japan
Prior art keywords
solar cell
receiving surface
light receiving
cell system
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016139665A
Other languages
Japanese (ja)
Other versions
JP6854096B2 (en
Inventor
恒 宇津
Hisashi Uzu
恒 宇津
満 市川
Mitsuru Ichikawa
満 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2016139665A priority Critical patent/JP6854096B2/en
Publication of JP2018011459A publication Critical patent/JP2018011459A/en
Application granted granted Critical
Publication of JP6854096B2 publication Critical patent/JP6854096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a concentrating solar battery system and a power generation method in which the solar battery is allowed to excellently receive scattered light reflected by a reflecting mirror, by which power can be generated at high output.SOLUTION: A concentrating solar battery system comprises: a reflecting mirror 20 which is parallel with an optical axis and includes at least one cross section having a macroscopically parabolic shape; and a receiver 30 which is parallel with the optical axis and has a built-in solar battery 10, in which the parabolic shape is in a shape which is expressed by a formula y=axand a is 0.8 or more and 8.0 or less, and a first light-receiving surface and a second light-receiving surface being both primary surfaces of receiver are irradiated with incident light reflected by the reflecting mirror 20.SELECTED DRAWING: Figure 1

Description

本発明は、集光型太陽電池システムと、当該集光型太陽電池システムを用いる発電方法とに関する。   The present invention relates to a concentrating solar cell system and a power generation method using the concentrating solar cell system.

トラフ型集光太陽電池システムは、トラフ(雨樋)形状に設置された反射鏡を用いて太陽光を太陽電池に集光することにより、通常のパネル型による太陽電池モジュールよりも少ない太陽電池セルで、同程度の光電変換を行うことが可能である。また、集光された光を受けるレシーバ部に冷媒等を通すことで、熱エネルギーを収集することも可能である。   The trough-type concentrating solar cell system collects sunlight on a solar cell using a reflector installed in the shape of a trough (rain gutter), thereby reducing the number of solar cells compared to a normal panel type solar cell module. Thus, the same degree of photoelectric conversion can be performed. It is also possible to collect thermal energy by passing a refrigerant or the like through a receiver that receives the condensed light.

このようなトラフ型集光太陽電池システムについて多数報告されている(例えば特許文献1)。一般的に、トラフ型集光太陽電池システムは、放物線形状に反射鏡を設置することで、放物線の光軸に対して平行に入射した太陽光を、放物線の焦点付近に設置した太陽電池に集光、照射することが可能である。太陽電池は集光することにより開放電圧が向上することが知られており、太陽電池の出力向上も見込める。   Many such trough-type concentrating solar cell systems have been reported (for example, Patent Document 1). Generally, a trough-type concentrating solar cell system collects sunlight incident parallel to the optical axis of a parabola in a solar cell installed near the focal point of the parabola by installing a reflecting mirror in a parabolic shape. It is possible to irradiate with light. Solar cells are known to improve open circuit voltage by condensing, and the output of solar cells can be expected to improve.

国際公開第2011/114861号International Publication No. 2011/114861

R. Perez, R. Seals, J. Michalsky, All−weather model for sky luminance distribution − preliminary configuration and validation, Solar Energy, 50, (1993), p.235−245.R. Perez, R.A. Seals, J.M. Michalsky, All-weather model for sky luminance distribution-preliminary configuration and validation, Solar Energy, 50, (1993), p. 235-245.

しかしながら、トラフ型集光太陽電池システムは、放物線の光軸に対して平行な入射光(直達光)を焦点位置に集光することは可能であるが、光軸に平行でない入射光(散乱光)を、焦点位置にほとんど集光、照射することができない。
具体的には、雲や周辺の建築物等により太陽光が散乱され散乱光が生じるが、このような散乱光のほとんどは、トラフ型集光太陽電池システムの焦点位置に配置される太陽電池へ照射されないという課題がある。
However, the trough-type concentrating solar cell system can collect incident light (direct light) parallel to the optical axis of the parabola at the focal position, but incident light (scattered light) not parallel to the optical axis. ) Can hardly be focused and irradiated at the focal position.
Specifically, sunlight is scattered by clouds and surrounding buildings to generate scattered light, and most of such scattered light is directed to the solar cell disposed at the focal position of the trough-type concentrating solar cell system. There is a problem that it is not irradiated.

本発明は、上記の課題に鑑みなされたものであって、反射鏡により反射される散乱光を太陽電池に良好に受光させることができ、それにより高出力で発電できる集光型太陽電池システムと、当該集光型太陽電池システムを用いる発電方法とを提供することを目的とする。   The present invention has been made in view of the above-described problems, and allows a solar cell to favorably receive scattered light reflected by a reflecting mirror, and thereby a concentrating solar cell system capable of generating electric power at a high output. An object of the present invention is to provide a power generation method using the concentrating solar cell system.

本発明者らは、集光型太陽電池システムを、光軸に対して平行であって、巨視的に放物線形状である断面を少なくとも1つ含む反射鏡と、光軸に対して平行であって、太陽電池を内蔵するレシーバとを備える構成とし、前述の放物線形状を、式y=axで表され、且つaが0.8以上8.0以下である形状とし、反射鏡により反射された入射光をレシーバの両主面である第1受光面と、第2受光面とに照射することにより、上記の課題を解決できることを見出し、本発明を完成するに至った。具体的には、本発明は以下のものを提供する。 The inventors have made a concentrating solar cell system parallel to the optical axis and a reflecting mirror including at least one cross section that is macroscopically parabolic, parallel to the optical axis, The above-mentioned parabolic shape is expressed by the equation y = ax 2 and a is 0.8 or more and 8.0 or less, and is reflected by the reflecting mirror. It has been found that the above problems can be solved by irradiating incident light onto the first light receiving surface and the second light receiving surface, which are both main surfaces of the receiver, and the present invention has been completed. Specifically, the present invention provides the following.

すなわち、本発明は、
(i)反射鏡とレシーバとを備える集光型太陽電池システムであって、
反射鏡は、光軸に対して平行であって、巨視的に放物線形状である断面を少なくとも1つ含み、
放物線形状が、式y=axで表され、且つaが0.8以上8.0以下である形状であって、
レシーバは、光軸に対して平行な板状であって、且つ前述の断面の少なくとも1つに対して垂直な方向に延在し、
レシーバは、第1受光面と、第1受光面の裏側の第2受光面とを有し、且つ内部に太陽電池が配置されており、
反射鏡により反射された入射光が、集光されたうえで、第1受光面及び第2受光面の両面を通じて太陽電池に照射される、集光型太陽電池システム、及び、
(ii)(i)に記載の集光型太陽電池システムに太陽光を照射して発電を行うことを含む、発電方法、を提供する。
That is, the present invention
(I) A concentrating solar cell system including a reflecting mirror and a receiver,
The reflector includes at least one cross section that is parallel to the optical axis and macroscopically parabolic,
A parabolic shape is a shape represented by the formula y = ax 2 and a is 0.8 or more and 8.0 or less,
The receiver has a plate shape parallel to the optical axis, and extends in a direction perpendicular to at least one of the aforementioned cross sections.
The receiver has a first light receiving surface and a second light receiving surface on the back side of the first light receiving surface, and a solar cell is disposed therein,
A concentrating solar cell system in which incident light reflected by the reflecting mirror is collected and then irradiated to the solar cell through both the first light receiving surface and the second light receiving surface, and
(Ii) Provided is a power generation method including performing power generation by irradiating sunlight to the concentrating solar cell system according to (i).

本発明によれば、反射鏡により反射される散乱光を太陽電池に良好に受光させることができ、それにより高出力で発電できる集光型太陽電池システムと、当該集光型太陽電池システムを用いる発電方法とを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the scattered light reflected by a reflective mirror can be favorably received by a solar cell, and thereby the concentrating solar cell system which can generate electric power with high output, and the said concentrating solar cell system are used. And a power generation method.

トラフ型の反射鏡を備える集光型太陽電池システムの概略を示す図である。It is a figure which shows the outline of a concentrating solar cell system provided with a trough-type reflective mirror. 複数の短冊状の鏡から構成される反射鏡を備える集光型太陽電池システムの断面を模式的に示す図である。It is a figure which shows typically the cross section of a concentrating solar cell system provided with the reflective mirror comprised from a some strip-shaped mirror. 反射鏡を構成する短冊状の鏡の幅Wmと、太陽電池の光軸方向の幅Wsとの関係を模式的に示す図である。It is a figure which shows typically the relationship between the width Wm of the strip-shaped mirror which comprises a reflective mirror, and the width Ws of the optical axis direction of a solar cell. 反射鏡の形状と、太陽電池で受光可能な散乱光の範囲との関係を模式的に示す図である。It is a figure which shows typically the relationship between the shape of a reflective mirror, and the range of the scattered light which can be received with a solar cell. 内部に単一の太陽電池を備えるレシーバと、複数の短冊状の鏡から構成される反射鏡を備える集光型太陽電池システムの断面を模式的に示す図である。It is a figure which shows typically the cross section of a concentrating solar cell system provided with the receiver provided with a single solar cell inside, and the reflective mirror comprised from a some strip-shaped mirror. 内部に単一の太陽電池を備えるレシーバの断面を模式的に示す図である。It is a figure which shows typically the cross section of a receiver provided with a single solar cell inside. 内部に2つ太陽電池を備えるレシーバと、複数の短冊状の鏡から構成される反射鏡を備える集光型太陽電池システムの断面を模式的に示す図である。It is a figure which shows typically the cross section of a concentrating solar cell system provided with the receiver provided with two solar cells inside, and the reflective mirror comprised from a some strip-shaped mirror. 内部に、2つの太陽電池と、2つの太陽電池間の冷却部とを備えるレシーバの断面を模式的に示す図である。It is a figure which shows typically the cross section of a receiver provided with two solar cells and the cooling part between two solar cells inside. 反射鏡の形状のバリエーションを示す図である。It is a figure which shows the variation of the shape of a reflective mirror. 放物線の形状と、散乱光の取り込み率との関係を示す図である。It is a figure which shows the relationship between the shape of a parabola and the taking-in rate of scattered light. 天候毎の、放物線の形状と、散乱光の取り込み率との関係を示す図である。It is a figure which shows the relationship between the shape of the parabola for every weather, and the taking-in rate of scattered light.

以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. can do.

≪集光型太陽電池システム≫
集光型太陽電池システムは、反射鏡とレシーバとを備える。
反射鏡は、光軸に対して平行であって、巨視的に放物線形状である断面を少なくとも1つ含む。
放物線形状である断面について、当該放物線形状は、式y=axで表され、且つaが0.8以上8.0以下である形状である。
レシーバは、光軸に対して平行な板状であって、且つ前述の断面の少なくとも1つに対して垂直な方向に延在する。
レシーバは、第1受光面と、第1受光面の裏側の第2受光面とを有し、且つ内部に太陽電池が配置されている。
反射鏡により反射された入射光は、集光されたうえで、第1受光面及び第2受光面の両面を通じて太陽電池に照射される。
≪Concentrated solar cell system≫
The concentrating solar cell system includes a reflecting mirror and a receiver.
The reflecting mirror includes at least one cross section that is parallel to the optical axis and macroscopically parabolic.
For a cross section having a parabolic shape, the parabolic shape is a shape represented by the formula y = ax 2 and a is 0.8 or more and 8.0 or less.
The receiver has a plate shape parallel to the optical axis and extends in a direction perpendicular to at least one of the aforementioned cross sections.
The receiver has a first light receiving surface and a second light receiving surface on the back side of the first light receiving surface, and a solar cell is disposed inside.
Incident light reflected by the reflecting mirror is collected and then applied to the solar cell through both the first light receiving surface and the second light receiving surface.

前述の通り、反射鏡は、光軸に対して平行な断面として、巨視的に放物線形状である断面を少なくとも1つ含む。
なお、本明細書において「巨視的に放物線形状である断面」を「放物線断面」と記す場合がある。
また、「巨視的に放物線形状である断面」又は「放物線断面」について、特段説明が無い場合、かかる断面は「光軸に対して平行な断面」である。
さらに、本明細書及び特許請求の範囲における「平行」又は「垂直」は、幾何学的な平行又は垂直のみならず、目視にて平行又は垂直と認識できる程度の略平行又は略垂直を含む。
As described above, the reflecting mirror includes at least one cross section that is macroscopically parabolic as a cross section parallel to the optical axis.
In the present specification, “a cross section that is macroscopically parabolic” may be referred to as a “parabolic cross section”.
Moreover, when there is no special description about "macroscopic parabolic shape" or "parabolic cross section", such a cross section is "a cross section parallel to the optical axis".
Furthermore, “parallel” or “vertical” in the present specification and claims includes not only geometrical parallel or vertical but also substantially parallel or substantially vertical to the extent that it can be recognized as parallel or vertical visually.

ここで、反射鏡が含む放物線断面が、全て、互いに平行であり且つ同一の形状である場合について、反射鏡が放物線断面を1つ含むとする。
また、
・反射鏡が、同一の放物線形状であるが、互いに平行でないn種の放物線断面を含む場合、
・反射鏡が、互いに平行であるが、異なる形状であるn種の放物線断面を含む場合、及び、
・反射鏡が、互いに平行でなく、且つ異なる形状であるn種の放物線断面を含む場合、
について、反射鏡が放物線断面をn個含むとする。
なお、放物線断面の形状が連続的に変化する場合等、反射鏡が巨視的に放物線形状である断面を少なくとも1つ含むことが明らかである一方で、放物線断面の種類の数を特定できない場合がある。
Here, when all the parabolic cross sections included in the reflecting mirror are parallel to each other and have the same shape, the reflecting mirror includes one parabolic cross section.
Also,
-When the reflecting mirror has the same parabolic shape, but includes n types of parabolic sections that are not parallel to each other,
The reflector includes n parabolic sections that are parallel to each other but of different shapes; and
When the reflector includes n kinds of parabolic sections that are not parallel to each other and have different shapes,
Suppose that the reflector includes n parabolic cross sections.
In addition, when the shape of the parabolic cross section changes continuously, it is clear that the reflector includes at least one macroscopic parabolic cross section, while the number of types of parabolic cross sections may not be specified. is there.

前述の特許文献1に記載されるような従来知られる集光型太陽電池システムでは、光軸と平行な方向に入射する直達光が反射鏡の焦点位置に集光される(特許文献1の図2、図4、及び図5を参照。)。このため、従来の集光型太陽電池システムでは、集光された直達光からの高効率の発電のみに着目され、反射鏡の焦点位置に円柱型のロッド状の太陽電池が配置されている。
しかし、反射鏡で反射された散乱光は、反射鏡の焦点位置からずれた箇所に反射される。このため、従来の集光型太陽電池システムでは、散乱光を十分に発電に利用できなかった。
この点、集光型太陽電池システムにおいて、光軸に対して平行な板状であって太陽電池を内蔵するレシーバを用いると、反射された直達光のみならず、反射された散乱光もレシーバの両主面である第1受光面と第2受光面とに受光可能である。
また、レシーバは光軸に対して平行な板状であるため、反射鏡への入射光のレシーバによる遮光の影響がほとんどない。
このため、放物線断面を有する反射鏡と、光軸に対して平行な板状であって太陽電池を内蔵するレシーバとを組み合わせて用いることにより、集光型太陽電池システムの発電効率が向上する。
In the conventional concentrating solar cell system described in Patent Document 1 described above, direct light incident in a direction parallel to the optical axis is collected at the focal position of the reflecting mirror (see FIG. 1). 2, see FIG. 4 and FIG. For this reason, in the conventional concentrating solar cell system, attention is paid only to high-efficiency power generation from the condensed direct light, and a cylindrical rod-shaped solar cell is arranged at the focal position of the reflecting mirror.
However, the scattered light reflected by the reflecting mirror is reflected at a location shifted from the focal position of the reflecting mirror. For this reason, in the conventional concentrating solar cell system, the scattered light cannot be sufficiently utilized for power generation.
In this regard, in a concentrating solar cell system, when a receiver that is plate-shaped parallel to the optical axis and incorporates a solar cell is used, not only reflected direct light but also reflected scattered light is reflected by the receiver. Light can be received by the first light receiving surface and the second light receiving surface which are both main surfaces.
In addition, since the receiver has a plate shape parallel to the optical axis, there is almost no influence of the light incident on the reflecting mirror by the receiver.
For this reason, the power generation efficiency of the concentrating solar cell system is improved by using a combination of a reflecting mirror having a parabolic cross section and a receiver having a plate shape parallel to the optical axis and incorporating a solar cell.

上記の通り、放物線断面を含む反射鏡を利用する集光型太陽電池システムでは、直達光の集光が可能である一方で、散乱光の多くを集光できないことが課題である。
このため、レシーバにおける散乱光の取り込み効率の向上が、システムにおける出力向上において必要である。
散乱光の取り込み効率の向上のためには、集光型太陽電池システムの集光倍率は2倍から20倍の範囲内が好ましい。このような低い集光倍率で集光することで、反射鏡の形成する放物線に対して、レシーバがある程度の幅を有する。このため、放物線に対して、概ね点で集光する集光倍率が高いシステムと比較して、より多くの散乱光を取り込みやすい。なお、ここでの集光倍率とは、AM1.5G(1sun)下に太陽電池を置いた際の電流量を基準とし、同じ光源下での集光型太陽電池システムにおいて得られた電流が何倍になっているかで定義する。
As described above, in a concentrating solar cell system that uses a reflecting mirror including a parabolic cross section, it is possible to condense direct light, but it is difficult to condense much of scattered light.
For this reason, it is necessary to improve the efficiency of capturing scattered light in the receiver in order to improve the output in the system.
In order to improve the efficiency of capturing scattered light, the condensing magnification of the concentrating solar cell system is preferably in the range of 2 to 20 times. By collecting light with such a low light collection magnification, the receiver has a certain width with respect to the parabola formed by the reflecting mirror. For this reason, it is easier to capture more scattered light than a system with a high condensing magnification that collects light with respect to a parabola. The light collection magnification here is based on the amount of current when a solar cell is placed under AM 1.5G (1 sun), and what is the current obtained in the concentrating solar cell system under the same light source. Define by doubling.

上記の反射鏡によれば、主には、光軸に対して平行な直達光が焦点に集光されることで、良好な発電が行われる。短時間の発電でも問題ない場合は、直達光を受光しやすい位置及び方向に固定された反射鏡を備える集光型太陽電池システムを用いてもよい。
他方で、一般的には、できるだけ長い時間良好な発電が行われることが望まれる場合が多い。このため、太陽からの直達光の入射方向である光軸と、放射線断面の対称軸とが常時一致するように、集光型太陽電池システムが太陽を追尾可能であるのが好ましい。
追尾の方法は特に限定されない。例えば、一日の太陽追尾において、南北方向に沿わせた回転軸に従って反射鏡とレシーバとを回転させて、東から西へ太陽を追尾する方法が好ましい。
かかる追尾は、南北方向に沿わせた回転軸を地面と平行に設置させた1軸追尾であってよい。
また、追尾は、南北方向に沿い、且つ地軸と平行に設置される第1の回転軸に従った追尾に加え、太陽高度の季節変動に合わせて光軸と直達光の入射方向とが概ね一致するように反射鏡とレシーバとを第2の回転軸に従って回転させる、2軸追尾であってもよい。
このような2軸追尾としては、天体望遠鏡の架台に適用される追尾方式として周知である赤道儀方式を用いるのが好ましい。
According to the above-described reflecting mirror, good power generation is performed mainly by converging direct light parallel to the optical axis at the focal point. If there is no problem even with short-time power generation, a concentrating solar cell system including a reflecting mirror fixed in a position and direction in which direct light is easily received may be used.
On the other hand, in general, it is often desired that good power generation be performed for as long a time as possible. For this reason, it is preferable that the concentrating solar cell system can track the sun so that the optical axis, which is the incident direction of the direct light from the sun, and the symmetry axis of the radiation section always coincide.
The tracking method is not particularly limited. For example, a method of tracking the sun from the east to the west by rotating the reflecting mirror and the receiver according to the rotation axis along the north-south direction is preferable in the day sun tracking.
Such tracking may be uniaxial tracking in which a rotation axis along the north-south direction is installed parallel to the ground.
In addition to tracking according to the first rotation axis installed along the north-south direction and parallel to the earth's axis, the optical axis and the incident direction of the direct light coincide with the seasonal variation of the solar altitude. As described above, two-axis tracking may be used in which the reflecting mirror and the receiver are rotated according to the second rotation axis.
As such two-axis tracking, it is preferable to use an equatorial mount method that is well-known as a tracking method applied to the base of the astronomical telescope.

以下、図面を参照しながら、集光型太陽電池システムについて説明する。なお、各図において、厚みや長さ等の寸法関係は、図面の明瞭化及び簡略化のため適宜変更されており、実際の寸法関係を表していない。   Hereinafter, the concentrating solar cell system will be described with reference to the drawings. In each figure, dimensional relationships such as thickness and length are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships.

図1は、集光型太陽電池システムの好ましい一実施形態である、トラフ型(雨樋型)の反射鏡20を備える集光太陽電池システムの概略を示す図である。トラフ型の反射鏡20を備える集光太陽電池システムは、反射鏡20及びレシーバ30の形成が容易であり、低コストで製造可能な点で好ましい。なお、反射鏡20の形状は、トラフ型には限定されない。
トラフ型の反射鏡20は、図1中に図示される第1の方向に直線的に延在している。また、トラフ型の反射鏡20の第1の方向に対して垂直な断面Aの形状は、いずれの位置においても、第1の方向に対して垂直な光軸を対称軸とする巨視的に放物線形状である。
さらに、トラフ型の反射鏡20に含まれる複数の放物線断面はいずれも同一の形状である。
反射鏡20が形成する凹部の内部には、反射鏡20により反射された入射光が集光されたうえで、レシーバ30の両主面である第1受光面と第2受光面とに照射されるように、反射鏡20の焦点付近に、第1の方向に直線的に延在し且つ内部に太陽電池10を備えるレシーバ30が配置される。
これにより、第1受光面から入射する反射光と、第2受光面から入射する反射光とを、太陽電池10が効率的に利用でき、高効率で発電できる。
FIG. 1 is a diagram showing an outline of a concentrating solar cell system including a trough-type (rain gutter) reflecting mirror 20, which is a preferred embodiment of the concentrating solar cell system. The concentrating solar cell system including the trough-type reflecting mirror 20 is preferable in that the reflecting mirror 20 and the receiver 30 can be easily formed and can be manufactured at low cost. The shape of the reflecting mirror 20 is not limited to the trough type.
The trough-type reflecting mirror 20 extends linearly in the first direction shown in FIG. In addition, the shape of the cross section A perpendicular to the first direction of the trough-type reflecting mirror 20 is macroscopically a parabola having an optical axis perpendicular to the first direction as an axis of symmetry at any position. Shape.
Further, the plurality of parabolic sections included in the trough-type reflecting mirror 20 have the same shape.
The incident light reflected by the reflecting mirror 20 is collected inside the recess formed by the reflecting mirror 20 and then irradiated to the first light receiving surface and the second light receiving surface which are both main surfaces of the receiver 30. As described above, a receiver 30 that extends linearly in the first direction and includes the solar cell 10 therein is disposed near the focal point of the reflecting mirror 20.
Thereby, the solar cell 10 can utilize efficiently the reflected light which injects from a 1st light-receiving surface, and the reflected light which injects from a 2nd light-receiving surface, and can generate electric power with high efficiency.

図1に示される集光型太陽電池システムにおいて、反射鏡20と、レシーバ30とは、第1の方向にどのような長さに延在していてもよい。
特に一軸追尾を行う場合は、反射鏡20と、レシーバ30との第1の方向の長さが、例えば数十メートルのように十分に長いことにより、季節変動による太陽光の収集ロスを低減できる。
季節変動による太陽光の収集ロスについて説明する。例えば冬季においては、南中時刻においても太陽高度が低い。太陽高度が低いと、南北方向に回転軸を設定した一軸追尾トラフ型集光太陽電池システムにおいては、南側の反射鏡には南北面において斜めから太陽光が照射されるため、南側の一部の太陽電池に光が照射されず太陽光の収集ロスが生じる場合がある。このため、図1に示されるようなトラフ型の集光型太陽電池システムでは、反射鏡20とレシーバ30とを十分に長くすることで、主に冬季に生じる太陽光の収集ロスの割合を減少させることができる。
In the concentrating solar cell system shown in FIG. 1, the reflecting mirror 20 and the receiver 30 may extend in any length in the first direction.
In particular, when performing uniaxial tracking, the length of the reflecting mirror 20 and the receiver 30 in the first direction is sufficiently long, for example, several tens of meters, so that the collection loss of sunlight due to seasonal variation can be reduced. .
Explain the solar collection loss due to seasonal variations. For example, in the winter season, the solar altitude is low even at the time of South and Central. When the solar altitude is low, in the uniaxial tracking trough type concentrating solar cell system in which the rotation axis is set in the north-south direction, the south-side reflector is irradiated with sunlight from an oblique angle on the north-south surface. There is a case where the solar cell is not irradiated with light and a collection loss of sunlight occurs. For this reason, in the trough-type concentrating solar cell system as shown in FIG. 1, the ratio of the collection loss of sunlight mainly generated in winter is reduced by making the reflector 20 and the receiver 30 sufficiently long. Can be made.

以上説明した、反射鏡20と、太陽電池10を内蔵するレシーバ30とは、図1中不図示の架台に設置される。前述の通り、架台は太陽を追尾するための追尾機構を備えていてもよい。
以下、集光型太陽電池システムの主要な構成である、反射鏡20と、レシーバ30とについて説明する。
The reflecting mirror 20 and the receiver 30 incorporating the solar cell 10 described above are installed on a gantry not shown in FIG. As described above, the gantry may include a tracking mechanism for tracking the sun.
Hereinafter, the reflecting mirror 20 and the receiver 30 which are main components of the concentrating solar cell system will be described.

<反射鏡>
前述の通り、反射鏡20は、光軸に対して平行な断面として、巨視的に放物線形状である断面(放物線断面)を少なくとも1つ含む。
反射鏡20において、放物線断面は連続しているのが好ましいが、必ずしも連続していなくてもよい。
例えば、前述のトラフ型の反射鏡20では、架台への反射鏡20の設置の都合等により、反射鏡の少なくとも一部に、凹部や凸部を設けてもよい。この場合、凹部や凸部に該当する位置における断面の形状は放物線形状でなく、反射鏡20において放物線断面は不連続である。
<Reflector>
As described above, the reflecting mirror 20 includes at least one macroscopic parabolic cross section (parabolic cross section) as a cross section parallel to the optical axis.
In the reflecting mirror 20, the parabolic cross section is preferably continuous, but it is not always necessary.
For example, in the trough-type reflecting mirror 20 described above, a concave portion or a convex portion may be provided on at least a part of the reflecting mirror for the convenience of installing the reflecting mirror 20 on the gantry. In this case, the shape of the cross section at the position corresponding to the concave portion or the convex portion is not a parabolic shape, and the parabolic cross section of the reflecting mirror 20 is discontinuous.

前述のトラフ型の反射鏡20のように、反射鏡20の形状は、放物線形状が連続的に移動する際の軌跡の形状であるのが好ましい。反射鏡20の形状としては、曲線状に移動して形成された軌跡の形状であってもよいが、直線状に移動して形成された軌跡の形状(つまり、トラフ型)であるのが、反射鏡20の製造が容易である点や、反射鏡20が小型である点から好ましい。   Like the trough-type reflector 20 described above, the shape of the reflector 20 is preferably the shape of a trajectory when the parabolic shape continuously moves. The shape of the reflecting mirror 20 may be the shape of a trajectory formed by moving in a curved line, but the shape of the trajectory formed by moving in a straight line (that is, trough type) The reflecting mirror 20 is preferable because it is easy to manufacture and the reflecting mirror 20 is small.

例えば図2に示されるように、反射鏡20は、複数の短冊状の平面鏡から構成されてもよい。図2は、複数の短冊状の平面鏡から構成される反射鏡を備える集光型太陽電池システムの放物線断面を含む断面を、放物線断面に対して垂直な方向から見た模式図である。
反射鏡20は、短辺の長さの異なる2種以上の短冊状の平面鏡から構成されるのが好ましい。図2では、7種計14枚の短冊状の平面鏡20a〜21gから反射鏡20が構成されている。
この場合、平面鏡20a〜21gは、放物線断面と同断面上において当該放物線に対する接線を構成しており、且つ各平面鏡が重ならないように配置されるのが好ましい。そうすることで、平面鏡上に他の平面鏡による影が生じることなく、効率よく太陽光をレシーバ30に集光できる。
For example, as shown in FIG. 2, the reflecting mirror 20 may be composed of a plurality of strip-shaped plane mirrors. FIG. 2 is a schematic view of a cross section including a parabolic cross section of a concentrating solar cell system including a reflecting mirror composed of a plurality of strip-shaped plane mirrors, as viewed from a direction perpendicular to the parabolic cross section.
The reflecting mirror 20 is preferably composed of two or more types of strip-shaped flat mirrors having different short side lengths. In FIG. 2, the reflecting mirror 20 is comprised from the strip type plane mirrors 20a-21g of a total of seven types.
In this case, it is preferable that the plane mirrors 20a to 21g constitute a tangent to the parabola on the same cross section as the parabola cross section, and are arranged so that the plane mirrors do not overlap. By doing so, sunlight can be efficiently condensed on the receiver 30 without causing a shadow by another plane mirror on the plane mirror.

図2に示されるように、反射鏡20が複数種の平面鏡を用いて構成される場合、複数の平面鏡20a〜20gは、それぞれ異なる短辺幅Wmを有することが好ましい。
以下、図3を用いて、短冊状の反射鏡の短辺幅Wmの好ましい範囲を説明する。図3は図2の一部を拡大した図である。また、図3では、便宜上、レシーバ30中の太陽電池10のみを図示し、レシーバ30の図示を省略している。
図3において、太陽電池10の光軸方向の幅をWsとし、短冊状の平面鏡20cの短辺の幅をWmとし、平面鏡20cへの直達光1及び直達光2の入射角をαとし、太陽電池10への反射光の入射角をβとすると、WmとWsとが下式:
Wm≦2sin(α)×Ws
の関係を満たすのが好ましい。
図3では、一例として平面鏡20cの短辺幅と、太陽電池10の光軸方向の幅との関係について説明したが、平面鏡20c以外の平面鏡の短辺幅と、太陽電池10の光軸方向の幅との関係についても同様である。
平面鏡の短辺幅と、太陽電池10の光軸方向の幅とが上記の関係であれば、直達光の反射光が太陽電池10の主面に均等に照射され、光の収集ロスや、太陽電池10内での電気抵抗ロス等を抑制できる。
As shown in FIG. 2, when the reflecting mirror 20 is configured using a plurality of types of plane mirrors, the plurality of plane mirrors 20a to 20g preferably have different short side widths Wm.
Hereinafter, a preferable range of the short side width Wm of the strip-shaped reflecting mirror will be described with reference to FIG. FIG. 3 is an enlarged view of a part of FIG. In FIG. 3, for convenience, only the solar cell 10 in the receiver 30 is illustrated, and the receiver 30 is not illustrated.
In FIG. 3, the width in the optical axis direction of the solar cell 10 is Ws, the width of the short side of the strip-shaped flat mirror 20c is Wm, the incident angles of the direct light 1 and the direct light 2 to the flat mirror 20c are α, When the incident angle of the reflected light to the battery 10 is β, Wm and Ws are expressed by the following formula:
Wm ≦ 2sin (α) × Ws
It is preferable to satisfy this relationship.
In FIG. 3, the relationship between the short side width of the plane mirror 20c and the width in the optical axis direction of the solar cell 10 is described as an example, but the short side width of the plane mirror other than the plane mirror 20c and the optical axis direction of the solar cell 10 The same applies to the relationship with the width.
If the short side width of the plane mirror and the width in the optical axis direction of the solar cell 10 are in the above relationship, the reflected light of the direct light is evenly applied to the main surface of the solar cell 10, and light collection loss, Electric resistance loss and the like in the battery 10 can be suppressed.

放物線断面に関する放物線の形状は、当該放物線を式y=axで表す場合に、0.8≦a≦8.0である放物線の形状である。前述のaの範囲としては、1.0≦a≦6.0が好ましく、2.0≦a≦4.5がより好ましい。
図4(a)に示すように、放物線の形状について、上記式におけるaが小さいと、放物線の焦点付近に設置される太陽電池10と、平面鏡20a〜20mで構成される反射鏡20との距離が長い。そうすると、図4(a)中破線矢印で示された狭い範囲の散乱光しか、太陽電池10へ集光できない。
他方、図4(b)に示されるように、放物線の形状について、上記式におけるaが大きいと、平面鏡20a〜20gで構成される反射鏡20と太陽電池10との距離が近いため、より広い範囲の散乱光を取り込みやすい。その結果、太陽電池出力の向上が見込まれる。
しかし、上記式におけるaが過大であると、反射鏡の開口が狭まることにより、多量の直達光と散乱光とを反射鏡20に入射させにくい。直達光と散乱光が十分に反射鏡20に入射しないと、太陽電池10への十分な集光が困難である。
以上説明した理由により、放物線断面に関する放物線の形状について、上記式において、0.8≦a≦8.0であると、直達光と散乱光との双方を良好に太陽電池10に集光させやすく、高出力で発電しやすい。
The shape of the parabola with respect to the parabola cross section is the shape of a parabola that satisfies 0.8 ≦ a ≦ 8.0 when the parabola is expressed by the equation y = ax 2 . The range of a described above is preferably 1.0 ≦ a ≦ 6.0, and more preferably 2.0 ≦ a ≦ 4.5.
As shown in FIG. 4A, with respect to the shape of the parabola, when a in the above formula is small, the distance between the solar cell 10 installed near the focal point of the parabola and the reflecting mirror 20 composed of the plane mirrors 20a to 20m. Is long. If it does so, only the narrow range scattered light shown by the broken-line arrow in Fig.4 (a) can condense to the solar cell 10. FIG.
On the other hand, as shown in FIG. 4B, the shape of the parabola is wider because the distance between the reflecting mirror 20 formed by the plane mirrors 20a to 20g and the solar cell 10 is shorter when a in the above formula is large. Easy to capture scattered light in the range. As a result, improvement in solar cell output is expected.
However, if “a” in the above equation is excessive, the opening of the reflecting mirror is narrowed, so that a large amount of direct light and scattered light are hardly incident on the reflecting mirror 20. If direct light and scattered light do not sufficiently enter the reflecting mirror 20, it is difficult to sufficiently collect light on the solar cell 10.
For the reason described above, regarding the shape of the parabola with respect to the parabolic cross section, in the above formula, if 0.8 ≦ a ≦ 8.0, both the direct light and the scattered light can be favorably condensed on the solar cell 10. High power and easy power generation.

反射鏡20の材質としては、太陽電池10の感度波長領域において高反射特性を有し、屋外暴露に対する高信頼性を有する材質であれば特に限定されない。反射鏡20の材質の好適な具体例としては、アルミ及び銀や、アルミ及び/又は銀を含む合金等が挙げられる。   The material of the reflecting mirror 20 is not particularly limited as long as it is a material having high reflection characteristics in the sensitivity wavelength region of the solar cell 10 and high reliability against outdoor exposure. Preferable specific examples of the material of the reflecting mirror 20 include aluminum and silver, an alloy containing aluminum and / or silver, and the like.

<レシーバ>
レシーバ30は、光軸に対して平行な板状であって、放物線断面の少なくとも1つに対して垂直な方向に延在する。レシーバ30は、第1受光面と、第1受光面の裏側の第2受光面とを2つの主面として有する。そして、レシーバ30の内部には太陽電池10が配置されている。
<Receiver>
The receiver 30 is plate-shaped parallel to the optical axis and extends in a direction perpendicular to at least one of the parabolic cross sections. The receiver 30 has a first light receiving surface and a second light receiving surface on the back side of the first light receiving surface as two main surfaces. And the solar cell 10 is arrange | positioned inside the receiver 30. FIG.

以下、図5及び図6により、レシーバ30について説明する。
図5に、集光型太陽電池システムの放物線断面を含む断面を、放物線断面に対して垂直な方向から見た模式図を示す。
図5に示される集光型太陽電池システムは、複数の短冊状の平面鏡20a〜20gからなる反射鏡20と、太陽電池10を内蔵するレシーバ30とを備える。
太陽からの直達光は、理想的には、図5中の光軸に平行に反射鏡20へ入射する。この際、反射鏡20で反射された直達光と散乱光とは、板状のレシーバ30の内部に配置される板状の太陽電池10の両主面(第1主面及び第2主面)へ照射される。
Hereinafter, the receiver 30 will be described with reference to FIGS. 5 and 6.
FIG. 5 shows a schematic diagram of a cross section including a parabolic cross section of the concentrating solar cell system as viewed from a direction perpendicular to the parabolic cross section.
The concentrating solar cell system shown in FIG. 5 includes a reflecting mirror 20 including a plurality of strip-shaped flat mirrors 20 a to 20 g and a receiver 30 in which the solar cell 10 is built.
The direct light from the sun is ideally incident on the reflecting mirror 20 parallel to the optical axis in FIG. At this time, the direct light and scattered light reflected by the reflecting mirror 20 are both main surfaces (first main surface and second main surface) of the plate-like solar cell 10 disposed inside the plate-like receiver 30. Is irradiated.

図6に、図5中のレシーバ30の断面を拡大した図を示す。レシーバ30内に配置される太陽電池10の種類は、太陽電池10の両面(第1主面及び第2主面)で受光して発電可能であれば特に限定されない。
好ましい太陽電池の例としては、両面にグリッド電極を形成した結晶シリコン系太陽電池、及び、片面のみに電極が集中したバックコンタクト型の結晶シリコン系太陽電池等が挙げられる。バックコンタクト型結晶シリコン系太陽電池は、片面にp型及びn型両方の半導体層が配置されており、金属電極も片面のみに配置されているが、金属電極間の間隔を十分に設けることで、両面で受光することが可能となる。
以下、バックコンタクト型結晶シリコン系太陽電池について、より具体的に説明する。バックコンタクト型結晶シリコン系太陽電池は、結晶シリコン基板の一方の主面上に、p型半導体層と、n型半導体層とが互いに接して配置された、裏面接合型の太陽電池である。
バックコンタクト型結晶シリコン系太陽電池の好ましい一例としては、結晶シリコン基板の一方の主面上に、互いに離間した複数のp型半導体層と、互いに離間した複数のn型半導体層とが配置されたものが挙げられる。ここで、p型半導体層及びn型半導体層は、それぞれ実質的に真性i型半導体層を介して、結晶シリコン基板の一方の主面上に形成される。
かかるバックコンタクト型結晶シリコン系太陽電池は、例えば国際公開第2013/133005号等に記載される。
この好ましいバックコンタクト型結晶シリコン系太陽電池では、複数のn型半導体層は、結晶シリコン基板の主面中のp型半導体層で被覆されていない領域を、p型半導体層の表面の一部露出させつつ、p型半導体層に接しながら被覆する。この場合、n型半導体層の端部は、p型半導体層の端部の直上に配される。
以上説明したパックコンタクト型結晶シリコン系太陽電池では、複数のp型半導体層と複数のn型半導体層とのそれぞれの表面に金属電極が設けられ、金属電極から電流が取出される。
太陽電池10は、両面にグリッド電極を備えた結晶シリコン系太陽電池や、金属電極間の間隔が十分に設けられたバックコンタクト型結晶シリコン系太陽電池の様に、両面から受光可能なものが好ましい。また、レシーバ30内には、レシーバ30が延在する方向に沿って、複数の太陽電池10が連続して配置されてもよい。
太陽電池10は、受光可能な面が表面保護材50a及び50b側になるように、2つの太陽電池を近接する位置に配置して構成されてもよい。この場合、片面のみで受光可能な太陽電池を用いることができる。
FIG. 6 is an enlarged view of the cross section of the receiver 30 in FIG. The type of the solar cell 10 disposed in the receiver 30 is not particularly limited as long as it can receive light and generate power on both surfaces (first main surface and second main surface) of the solar cell 10.
Examples of preferable solar cells include a crystalline silicon solar cell in which grid electrodes are formed on both sides, a back contact type crystalline silicon solar cell in which electrodes are concentrated on only one side, and the like. In the back contact type crystalline silicon solar cell, both p-type and n-type semiconductor layers are arranged on one side, and the metal electrodes are also arranged only on one side, but by providing a sufficient space between the metal electrodes. It is possible to receive light on both sides.
Hereinafter, the back contact type crystalline silicon solar cell will be described more specifically. The back contact type crystalline silicon solar cell is a back junction type solar cell in which a p-type semiconductor layer and an n-type semiconductor layer are disposed in contact with each other on one main surface of a crystalline silicon substrate.
As a preferable example of the back contact type crystalline silicon solar cell, a plurality of p-type semiconductor layers spaced apart from each other and a plurality of n-type semiconductor layers spaced apart from each other are disposed on one main surface of the crystalline silicon substrate. Things. Here, each of the p-type semiconductor layer and the n-type semiconductor layer is formed on one main surface of the crystalline silicon substrate substantially via the intrinsic i-type semiconductor layer.
Such a back contact type crystalline silicon solar cell is described in, for example, International Publication No. 2013/133005.
In this preferable back contact type crystalline silicon solar cell, the plurality of n-type semiconductor layers are formed by exposing portions of the surface of the p-type semiconductor layer that are not covered with the p-type semiconductor layer in the main surface of the crystalline silicon substrate. And covering the p-type semiconductor layer in contact therewith. In this case, the end portion of the n-type semiconductor layer is disposed immediately above the end portion of the p-type semiconductor layer.
In the pack contact type crystalline silicon solar cell described above, metal electrodes are provided on the respective surfaces of the plurality of p-type semiconductor layers and the plurality of n-type semiconductor layers, and current is extracted from the metal electrodes.
The solar cell 10 is preferably a solar cell that can receive light from both sides, such as a crystalline silicon solar cell having grid electrodes on both sides, and a back contact type crystalline silicon solar cell having a sufficient space between metal electrodes. . Further, a plurality of solar cells 10 may be continuously arranged in the receiver 30 along the direction in which the receiver 30 extends.
The solar cell 10 may be configured by arranging two solar cells at positions close to each other so that the light-receiving surface is on the surface protective material 50a and 50b side. In this case, a solar cell that can receive light only on one side can be used.

レシーバ30内において、太陽電池10は、透明な封止材40で封止されているのが好ましい。封止材40は、有機材料であっても無機材料であってもよいが、加工が容易である点や軽量である点等から、樹脂等の有機材料が挙げられる。封止材40として用いることができる透明な樹脂材料としては例えばEVA(エチレンビニルアルコール共重合体)等が挙げられる。封止材40として使用される透明な樹脂材料は、透明性を著しく損なわない範囲で、紫外線吸収剤、酸化防止剤、難燃剤、難燃助剤、可塑剤等の種々の添加剤を含んでいてもよい。   In the receiver 30, the solar cell 10 is preferably sealed with a transparent sealing material 40. Although the sealing material 40 may be an organic material or an inorganic material, an organic material such as a resin can be used because it is easy to process and is lightweight. Examples of the transparent resin material that can be used as the sealing material 40 include EVA (ethylene vinyl alcohol copolymer). The transparent resin material used as the sealing material 40 includes various additives such as an ultraviolet absorber, an antioxidant, a flame retardant, a flame retardant aid, and a plasticizer as long as the transparency is not significantly impaired. May be.

太陽電池10を内包する板状の封止材40の両主面上には、表面保護材50a及び50bを設けるのが好ましい。表面保護材50a及び50bを設けることにより、レシーバ30が有する第1受光面と第2受光面とにおける傷の発生や、レシーバ30内の太陽電池10の損傷を抑制しやすい。
表面保護材50a及び50bの材質は、屋外での長期間の暴露に耐え得る耐久性を備える材料であれば、有機材料であっても無機材料であってもよい。例えば、表面保護材50a及び50bとしてはガラス板を好ましく使用することができる。また、表面保護材50a及び50bの材質としては、種々の目的で使用されているハードコート材料用の樹脂を用いることもできる。表面保護材50a及び50bは、ハードコート用のフィルムを用いて形成してもよいし、ハードコート形成用の塗布液を封止材40の両主面に塗布した後、塗布膜に対して加熱や露光等を行って形成してもよい。
It is preferable to provide surface protective materials 50a and 50b on both main surfaces of the plate-shaped sealing material 40 enclosing the solar cell 10. By providing the surface protection members 50a and 50b, it is easy to suppress the occurrence of scratches on the first light receiving surface and the second light receiving surface of the receiver 30 and damage to the solar cell 10 in the receiver 30.
The material of the surface protective materials 50a and 50b may be an organic material or an inorganic material as long as the material has durability that can withstand long-term exposure outdoors. For example, glass plates can be preferably used as the surface protective materials 50a and 50b. Further, as the material of the surface protective materials 50a and 50b, a resin for a hard coat material used for various purposes can be used. The surface protective materials 50a and 50b may be formed using a hard coat film, or after the hard coat forming coating liquid is applied to both main surfaces of the sealing material 40, the coating film is heated. Or may be formed by exposure or the like.

図6に示される構造のレシーバ30は、簡単な構造であるため、形成が容易であって低コストである。   Since the receiver 30 having the structure shown in FIG. 6 has a simple structure, it can be easily formed and is low in cost.

以上、両面で受光可能である単一の太陽電池10か、近接して配置された複数の太陽電池10を内部に備えるレシーバ30について以上説明したが、レシーバ30は2つの太陽電池10を内部に備えていてもよい。
具体的には、レシーバ30は、その2つの主面である第1受光面側と第2受光面側とに、それぞれ第1太陽電池10a及び第2太陽電池10bを備えていてもよい。
かかる構成のレシーバ30と、複数の短冊状の平面鏡20a〜20gからなる反射鏡20とを備える集光型太陽システムの放物線断面を含む断面を、放物線断面に対して垂直な方向から見た模式図を、図8に示す。
As described above, the single solar cell 10 capable of receiving light on both sides or the receiver 30 including the plurality of solar cells 10 arranged close to each other has been described above. However, the receiver 30 includes two solar cells 10 inside. You may have.
Specifically, the receiver 30 may include a first solar cell 10a and a second solar cell 10b on the first light receiving surface side and the second light receiving surface side, which are the two main surfaces, respectively.
The schematic diagram which looked at the cross section containing the parabolic cross section of a concentrating solar system provided with the receiver 30 of this structure and the reflective mirror 20 which consists of several strip-shaped plane mirrors 20a-20g from the perpendicular | vertical direction with respect to the parabolic cross section. Is shown in FIG.

図8において、第1太陽電池10aは、第1受光面を通じて入射する入射光が、第1太陽電池10aの第1主面で受光されるようにレシーバ内30に配置される。
また、第2太陽電池10bは、第2受光面を通じて入射する入射光が、第2太陽電池の第1主面で受光されるようにレシーバ30内に配置される。
集光型太陽電池システムにおいて、理想的には、太陽からの直達光が光軸に平行に反射鏡20に入射する。この場合、反射鏡20で反射された直達光及び散乱光は、前述の通り、レシーバ30の第1受光面と、第2受光面とに入射する。
この点、第1太陽電池10a及び第2太陽電池10bが、図8に示されるようにレシーバ内に配置されると、第1受光面に入射する光と、第2受光面に入射する光とから高効率で発電できる。
In FIG. 8, the first solar cell 10a is arranged in the receiver 30 so that incident light incident through the first light receiving surface is received by the first main surface of the first solar cell 10a.
The second solar cell 10b is disposed in the receiver 30 so that incident light incident through the second light receiving surface is received by the first main surface of the second solar cell.
In the concentrating solar cell system, ideally, direct light from the sun enters the reflecting mirror 20 parallel to the optical axis. In this case, the direct light and scattered light reflected by the reflecting mirror 20 are incident on the first light receiving surface and the second light receiving surface of the receiver 30 as described above.
In this regard, when the first solar cell 10a and the second solar cell 10b are arranged in the receiver as shown in FIG. 8, the light incident on the first light receiving surface and the light incident on the second light receiving surface Power generation with high efficiency.

レシーバ30内に第1太陽電池10aと第2太陽電池10bとを設ける場合、第1太陽電池10a及び第2太陽電池10bとしては、特に制限なく種々の太陽電池を用いることができる。
好ましい太陽電池の例としては、結晶シリコン系太陽電池、薄膜シリコン系太陽電池、III−V族太陽電池、CdTe太陽電池、ペロブスカイト型太陽電池、カルコパイライト系太陽電池(例えばCIGS太陽電池)、色素増感太陽電池、及び有機太陽電池等が挙げられる。特に結晶シリコン系太陽電池は、バックコンタクト型の太陽電池を使用することが、金属電極による遮光ロス分が低減する観点から好ましい。
When providing the 1st solar cell 10a and the 2nd solar cell 10b in the receiver 30, various solar cells can be used as a 1st solar cell 10a and a 2nd solar cell 10b without a restriction | limiting in particular.
Examples of preferred solar cells include crystalline silicon solar cells, thin film silicon solar cells, III-V group solar cells, CdTe solar cells, perovskite solar cells, chalcopyrite solar cells (for example, CIGS solar cells), dye enhancement A sensitive solar cell, an organic solar cell, etc. are mentioned. In particular, a crystalline silicon solar cell is preferably a back contact solar cell from the viewpoint of reducing a light shielding loss due to a metal electrode.

レシーバ30が第1受光面側及び第2受光面側にそれぞれ第1太陽電池10a及び第2太陽電池10bを備える場合、封止材40a及び封止材40b中にそれぞれ封止された第1太陽電池10a及び第2太陽電池10bをその両面に支持する基材60が、その内部に冷却部70を備えているのも好ましい。かかるレシーバ30の断面を、図8に模式的に示す。   When the receiver 30 includes the first solar cell 10a and the second solar cell 10b on the first light receiving surface side and the second light receiving surface side, respectively, the first sun sealed in the sealing material 40a and the sealing material 40b, respectively. It is also preferable that the base material 60 that supports the battery 10a and the second solar battery 10b on both surfaces thereof includes the cooling unit 70 therein. A cross section of the receiver 30 is schematically shown in FIG.

レシーバ30がその内部に冷却部70を備える場合、冷却部70中に冷媒を流通させることができる。この場合、第1太陽電池10aと第2太陽電池10bとに入射した入射光により発生した熱が基材60を介して冷媒に伝わり、冷却部70中を流通する冷媒が加熱される。これにより、レシーバ30で発生した熱エネルギーが、集光型太陽電池システム外に取り出される。
冷媒が水である場合、熱エネルギーの取出しにより温水が得られる。得られた温水は、特に制限無く、従来より温水が利用されている種々の用途に使用できる。
熱エネルギーの取出しにより得られる温水は、例えば、冬季の作物の発育促進の目的等で農業において使用され得る。また、温水は、集合住宅での暖房(例えば床暖房)や、浴室等への給湯の目的でも使用され得る。
温水の温度が所望する程度に高くない場合、温水を給湯器(ボイラー)等の装置を用いて所望する温度まで加熱してから利用してもよい。
When the receiver 30 includes the cooling unit 70 therein, the refrigerant can be circulated in the cooling unit 70. In this case, the heat generated by the incident light incident on the first solar cell 10a and the second solar cell 10b is transmitted to the refrigerant through the substrate 60, and the refrigerant flowing through the cooling unit 70 is heated. Thereby, the thermal energy generated in the receiver 30 is taken out of the concentrating solar cell system.
When the refrigerant is water, hot water is obtained by extracting heat energy. The obtained hot water is not particularly limited and can be used for various applications in which hot water has been conventionally used.
The hot water obtained by taking out the thermal energy can be used in agriculture for the purpose of promoting the growth of crops in winter, for example. The hot water can also be used for the purpose of heating (for example, floor heating) in an apartment house or hot water supply to a bathroom or the like.
When the temperature of the hot water is not as high as desired, the hot water may be used after being heated to a desired temperature using an apparatus such as a water heater (boiler).

冷媒は、特に限定されず気体でも液体でもよく、伝熱効率の点で液体が好ましい。液体としては、従来より種々の装置において冷媒として使用されている液体を特に制限なく使用することができる。低価格であって、引火や発火の危険が無く、漏えい時の問題が少ないこと等から、冷媒として使用される液体としては水が好ましい。冷却部70に水を流通させる場合、当該水には、スケール抑制剤、pH調整剤、キレート剤、消泡剤、スライムコントロール剤、防カビ剤、及び防腐剤等の種々の薬剤を加えてもよい。   The refrigerant is not particularly limited and may be gas or liquid, and liquid is preferable in terms of heat transfer efficiency. As the liquid, a liquid that has been conventionally used as a refrigerant in various apparatuses can be used without particular limitation. Water is preferable as the liquid used as the refrigerant because it is inexpensive, has no danger of ignition or ignition, and has few problems at the time of leakage. When water is circulated through the cooling unit 70, various agents such as a scale inhibitor, a pH adjuster, a chelating agent, an antifoaming agent, a slime control agent, an antifungal agent, and an antiseptic can be added to the water. Good.

基材60の材質は、アルミやステンレス等の熱伝導性の高い材質であるのが好ましい。
レシーバの組み立てが容易であることから、図8に示されるように、基材60が、基材60aと基材60bとの2つのパーツに分割されているのが好ましい。かかる場合、基材60aと基材60bとを接合して、両者の内部に冷却部70が形成される。
The material of the substrate 60 is preferably a material having high thermal conductivity such as aluminum or stainless steel.
Since the assembly of the receiver is easy, it is preferable that the base material 60 is divided into two parts, that is, a base material 60a and a base material 60b, as shown in FIG. In such a case, the base material 60a and the base material 60b are joined, and the cooling unit 70 is formed inside of both.

冷却部70の形状は特に限定されない。冷却部70の形成が容易である点からは、基材60中に単一の冷却部70を設けてもよい。また、伝熱面積が広げ伝熱効率を高められることから、基材60中に2以上の複数の冷却部70を設けてもよい。なお、図8では、単一の冷却部70を有するレシーバ30の断面を示す。   The shape of the cooling unit 70 is not particularly limited. From the viewpoint that the cooling unit 70 can be easily formed, a single cooling unit 70 may be provided in the substrate 60. Further, since the heat transfer area is increased and the heat transfer efficiency can be increased, two or more cooling units 70 may be provided in the base material 60. In addition, in FIG. 8, the cross section of the receiver 30 which has the single cooling unit 70 is shown.

また、基材60の冷却部70を規定する表面に、微細な凹凸のパターンを形成して、冷却部70を流通する冷媒と基材60との間の伝熱効率を高めてもよい。凹凸のパターンの形状は特に限定されない。好ましいパターン形状としては、ライン(凸部)とスペース(凹部)とからなるラインアンドスペースパターンや、基材60の表面(凹部)にドット(凸部)が点在するドットパターンや、基材60の表面(凸部)にホール(凹部)が点在するホールパターンであってもよい。   In addition, a fine uneven pattern may be formed on the surface defining the cooling unit 70 of the base material 60 to increase the heat transfer efficiency between the refrigerant flowing through the cooling unit 70 and the base material 60. The shape of the uneven pattern is not particularly limited. Preferred pattern shapes include a line and space pattern composed of lines (convex portions) and spaces (concave portions), a dot pattern in which dots (convex portions) are scattered on the surface (concave portions) of the base material 60, and the base material 60. It may be a hole pattern in which holes (concave portions) are scattered on the surface (convex portion).

以上、説明した反射鏡20と、太陽電池10を内蔵するレシーバとを備える集光型太陽電池システムを用いると、直達光のみならず散乱光も有効に利用でき、高効率で発電できる。
特に、日本のように、雲量が1以下の快晴が少なく、雲量が2以上の晴れや曇りの天候が多い地域では、雲による太陽光の散乱によって、太陽光の全成分中の散乱光の比率が20%以上である場合が多い。
しかし、以上説明した集光型太陽電池システムによれば、太陽光の全成分中の散乱光の比率が20%以上である場合でも、散乱光を良好に発電に利用できる。
As described above, when a concentrating solar cell system including the reflector 20 described above and a receiver incorporating the solar cell 10 is used, not only direct light but also scattered light can be used effectively, and power can be generated with high efficiency.
In particular, as in Japan, in areas where there is little clear weather with cloudiness of 1 or less and there are many sunny or cloudy weather with cloudiness of 2 or more, the ratio of scattered light in all components of sunlight due to the scattering of sunlight by clouds. Is often 20% or more.
However, according to the concentrating solar cell system described above, even when the ratio of scattered light in all components of sunlight is 20% or more, the scattered light can be favorably used for power generation.

<シミュレーション>
以下、一例として、図2に示すトラフ型集光太陽電池システムに関し、シミュレーション結果を用いて、その効果について具体的に説明する。なお、集光型太陽電池システム、及びその集光効率に関する効果は、図2に示すトラフ型集光太陽電池システムとその集光効果とには限定されない。
<Simulation>
Hereinafter, as an example, the effect of the trough-type concentrating solar cell system shown in FIG. 2 will be specifically described using simulation results. In addition, the effect regarding a concentrating solar cell system and its condensing efficiency is not limited to the trough concentrating solar cell system and the condensing effect shown in FIG.

ここでは、光学シミュレーションにより、放物線形状に関する式y=axにおける係数aの値と、散乱光の取り込み率(%)との関係を調べた。
光学シミュレーションには、光線追跡型光学シミュレーションソフト(Lighttools、サイバネット社製)を用いた。
太陽電池の条件として、7.8cmの角の結晶シリコン系太陽電池の使用を設定した。
放物線形状を表す式中の係数aとして、0.3、0.4、1.1、2.0、3.8、5.6、及び10.0の7値を設定して、各値についてのトラフ型集光太陽電池システムの散乱光の取り込み率(%)を算出した。
なお、散乱光については、全ての方位から均等に光を照射し、その内どれだけの割合の光が太陽電池に取り込まれているかを調べた。
また、反射鏡としては、図2における左右両側の反射鏡から、直達光の場合において、それぞれ概ね5倍集光となるように、反射鏡の設置範囲を設定した。各平面反射鏡の短辺の長さは、平面鏡の短辺の長さ(Wm)と、太陽電池の光軸方向の幅(Ws)とが、前述の関係式:
Wm≦2sin(α)×Ws)を満たすように設定した。
図10に計算結果を示す。図10から分るように、0.8≦a≦8.0であるときに、約10%以上の散乱光が取り込めており、さらに、1.0≦a≦6.0において、約15%以上、2.0≦a≦4.5では約17%以上の散乱光が取り込めていることが分かる。
また、上述の計算においては、全方から均等な散乱光を仮定したが、Perez Sky Diffuse Model(非特許文献1)を用いて、晴天、及び曇天における散乱光に関しても同様の検討を実施した。その結果を図11に示す。この場合においても、同様の結果を示しており、特定の係数aにおいて、散乱光の良好な取り込みを期待できることが分かった。
Here, the relationship between the value of the coefficient a in the equation y = ax 2 regarding the parabolic shape and the capture rate (%) of scattered light was examined by optical simulation.
For the optical simulation, ray tracing optical simulation software (Lighttools, manufactured by Cybernet) was used.
As a condition of the solar cell, use of a crystalline silicon solar cell having a corner of 7.8 cm was set.
As the coefficient a in the formula representing the parabolic shape, seven values of 0.3, 0.4, 1.1, 2.0, 3.8, 5.6, and 10.0 are set, and each value is set. Scattered light uptake rate (%) of the trough-type concentrating solar cell system was calculated.
In addition, about scattered light, light was equally irradiated from all directions, and it was investigated how much of the light was taken in by the solar cell.
In addition, as the reflecting mirrors, the setting range of the reflecting mirrors was set so that the reflecting mirrors on the left and right sides in FIG. The length of the short side of each plane reflector is the length of the short side (Wm) of the plane mirror and the width (Ws) of the solar cell in the optical axis direction.
Wm ≦ 2sin (α) × Ws).
FIG. 10 shows the calculation result. As can be seen from FIG. 10, about 10% or more of scattered light is captured when 0.8 ≦ a ≦ 8.0, and further about 15% when 1.0 ≦ a ≦ 6.0. As described above, it is understood that about 17% or more of scattered light is captured when 2.0 ≦ a ≦ 4.5.
Further, in the above calculation, uniform scattered light is assumed from all sides, but the same study was performed on scattered light in clear sky and cloudy sky using Perez Sky Diffuse Model (Non-Patent Document 1). The result is shown in FIG. In this case as well, similar results are shown, and it was found that good capture of scattered light can be expected at a specific coefficient a.

≪変形例≫
集光型太陽電池システムは、以上説明した実施形態に限定されることなく、種々の変形や変更が可能である。例えば、反射鏡20の形状を、所定の条件を満たす限りにおいて、図1に示されるトラフ型の形状から種々変更することができる。
≪Modification≫
The concentrating solar cell system is not limited to the embodiment described above, and various modifications and changes can be made. For example, the shape of the reflecting mirror 20 can be variously changed from the trough shape shown in FIG. 1 as long as a predetermined condition is satisfied.

反射鏡20の形状は、図9に示されるように、放物線形状が曲線に沿って移動した軌跡の形状であってもよい。この場合、反射鏡20の放物線断面の焦点位置を考慮して、反射鏡20が形成する凹部内に、反射鏡20の開口部のカーブに沿って曲がった板状のレシーバ30が光軸に平行に配置される。
ここでは、光軸に対して垂直な方向に湾曲した反射鏡20について説明したが、反射鏡を光軸に対して平行な方向に湾曲させることもできる。この場合、反射鏡は、開口側に向かって凸であっても、開口側と反対側に向かって凸であってもよい。
As shown in FIG. 9, the shape of the reflecting mirror 20 may be a trajectory shape in which a parabola shape moves along a curved line. In this case, in consideration of the focal position of the parabolic cross section of the reflecting mirror 20, the plate-like receiver 30 bent along the curve of the opening of the reflecting mirror 20 is parallel to the optical axis in the recess formed by the reflecting mirror 20. Placed in.
Here, the reflecting mirror 20 curved in the direction perpendicular to the optical axis has been described, but the reflecting mirror may be curved in a direction parallel to the optical axis. In this case, the reflecting mirror may be convex toward the opening side or may be convex toward the side opposite to the opening side.

図9に示される形状の反射鏡20を用いる場合、トラフ型の反射鏡20を備える集光型太陽電池システムと同じ設置幅で、太陽電池10の受光面積を大きくできる利点がある。   When the reflecting mirror 20 having the shape shown in FIG. 9 is used, there is an advantage that the light receiving area of the solar cell 10 can be increased with the same installation width as that of the concentrating solar cell system including the trough-type reflecting mirror 20.

10 太陽電池
20 反射鏡
30 レシーバ
40 封止材
50a、50b 表面保護材
60 基材
70 冷却部
DESCRIPTION OF SYMBOLS 10 Solar cell 20 Reflecting mirror 30 Receiver 40 Sealing material 50a, 50b Surface protection material 60 Base material 70 Cooling part

Claims (13)

反射鏡とレシーバとを備える集光型太陽電池システムであって、
前記反射鏡は、光軸に対して平行であって、巨視的に放物線形状である断面を少なくとも1つ含み、
前記放物線形状が、式y=axで表され、且つ前記aが0.8以上8.0以下である形状であって、
前記レシーバは、前記光軸に対して平行な板状であって、且つ前記断面の少なくとも1つに対して垂直な方向に延在し、
前記レシーバは、第1受光面と、前記第1受光面の裏側の第2受光面とを有し、且つ内部に太陽電池が配置されており、
前記反射鏡により反射された入射光が、集光されたうえで、前記第1受光面及び前記第2受光面の両面を通じて前記太陽電池に照射される、集光型太陽電池システム。
A concentrating solar cell system comprising a reflector and a receiver,
The reflecting mirror includes at least one cross section parallel to the optical axis and macroscopically parabolic,
The parabolic shape is a shape represented by the formula y = ax 2 and the a is 0.8 or more and 8.0 or less,
The receiver has a plate shape parallel to the optical axis and extends in a direction perpendicular to at least one of the cross sections;
The receiver has a first light receiving surface and a second light receiving surface on the back side of the first light receiving surface, and a solar cell is disposed therein,
A concentrating solar cell system in which incident light reflected by the reflecting mirror is collected and irradiated to the solar cell through both the first light receiving surface and the second light receiving surface.
巨視的に放物線形状である前記断面を1つ含み、トラフ型である、請求項1に記載の、集光型太陽電池システム。   2. The concentrating solar cell system according to claim 1, wherein the concentrating solar cell system includes one of the macroscopic parabolic shapes and has a trough shape. 前記太陽電池が、第1主面と、前記第1主面の裏側の第2主面とを有し、
前記第1受光面及び前記第2受光面を通じて入射する入射光が、それぞれ前記第1主面及び前記第2主面に照射される、請求項1又は2に記載の集光型太陽電池システム。
The solar cell has a first main surface and a second main surface on the back side of the first main surface,
The concentrating solar cell system according to claim 1 or 2, wherein incident light incident through the first light receiving surface and the second light receiving surface is irradiated to the first main surface and the second main surface, respectively.
前記レシーバが、前記第1受光面側の第1太陽電池と、前記第2受光面側の第2太陽電池を有し、
前記第1太陽電池の第1主面と、前記第2太陽電池の第1主面とが、それぞれ、前記第1受光面側と、前記第2受光面側とに配置されており、
前記第1受光面及び前記第2受光面を通じて入射する入射光が、それぞれ前記第1太陽電池の前記第1主面及び前記第2太陽電池の第1主面に照射され、
前記第1太陽電池と、前記第2太陽電池との間に、冷媒を流通させる冷却部を有する、請求項1又は2に記載の集光型太陽電池システム。
The receiver has a first solar cell on the first light receiving surface side and a second solar cell on the second light receiving surface side,
The first main surface of the first solar cell and the first main surface of the second solar cell are arranged on the first light receiving surface side and the second light receiving surface side, respectively.
Incident light incident through the first light receiving surface and the second light receiving surface is irradiated to the first main surface of the first solar cell and the first main surface of the second solar cell, respectively.
3. The concentrating solar cell system according to claim 1, further comprising a cooling unit that circulates a refrigerant between the first solar cell and the second solar cell.
前記第1太陽電池と、前記第2太陽電池とに入射した入射光により発生する熱エネルギーを用いて前記冷媒の加熱が行われ、
前記冷媒が移動することで熱エネルギーが取り出される、請求項4に記載の集光型太陽電池システム。
The refrigerant is heated using thermal energy generated by incident light incident on the first solar cell and the second solar cell,
The concentrating solar cell system according to claim 4, wherein thermal energy is extracted by moving the refrigerant.
前記反射鏡の表面が、複数の短冊状の鏡からなり、
前記短冊状の鏡の鏡面が平面である、請求項1〜5のいずれか1項に記載の集光型太陽電池システム。
The surface of the reflecting mirror is composed of a plurality of strip-shaped mirrors,
The concentrating solar cell system according to any one of claims 1 to 5, wherein a mirror surface of the strip-shaped mirror is a flat surface.
複数の前記短冊状の鏡は、短辺の長さのことなる2種以上の短冊状の鏡を含み、
それぞれの短冊状の鏡で反射された入射光が、前記レシーバの前記第1受光面又は前記第2受光面に収まる、請求項6に記載の集光型太陽電池システム。
The plurality of strip-shaped mirrors include two or more strip-shaped mirrors each having a short side length,
The concentrating solar cell system according to claim 6, wherein incident light reflected by each strip-shaped mirror falls within the first light receiving surface or the second light receiving surface of the receiver.
集光倍率が2倍から20倍である、請求項1〜7のいずれか1項に記載の集光型太陽電池システム。   The concentrating solar cell system according to any one of claims 1 to 7, wherein the condensing magnification is 2 to 20 times. 追尾式である、請求項1〜8のいずれか1項に記載の集光型太陽電池システム。   The concentrating solar cell system according to any one of claims 1 to 8, which is a tracking type. 地軸と平行な回転軸を有する、請求項9に記載の集光型太陽電池システム。   The concentrating solar cell system according to claim 9, which has a rotation axis parallel to the earth axis. 前記太陽電池がバックコンタクト型太陽電池である、請求項1〜10のいずれか1項に記載の集光型太陽電池システム。   The concentrating solar cell system according to any one of claims 1 to 10, wherein the solar cell is a back contact solar cell. 請求項1〜11のいずれか1項に記載の集光型太陽電池システムに太陽光を照射して発電を行うことを含む、発電方法。   The power generation method including irradiating sunlight to the concentrating solar cell system according to any one of claims 1 to 11 to generate power. 前記太陽光における散乱光の比率が、20%以上である、請求項12に記載の発電方法。   The power generation method according to claim 12, wherein a ratio of scattered light in the sunlight is 20% or more.
JP2016139665A 2016-07-14 2016-07-14 Concentrating solar cell system and power generation method Active JP6854096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016139665A JP6854096B2 (en) 2016-07-14 2016-07-14 Concentrating solar cell system and power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016139665A JP6854096B2 (en) 2016-07-14 2016-07-14 Concentrating solar cell system and power generation method

Publications (2)

Publication Number Publication Date
JP2018011459A true JP2018011459A (en) 2018-01-18
JP6854096B2 JP6854096B2 (en) 2021-04-07

Family

ID=60994573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016139665A Active JP6854096B2 (en) 2016-07-14 2016-07-14 Concentrating solar cell system and power generation method

Country Status (1)

Country Link
JP (1) JP6854096B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210055939A (en) * 2019-11-08 2021-05-18 한국광기술원 Building Integrated Photovoltaic Module with Improved Condensing Efficiency
KR102330217B1 (en) * 2021-08-11 2021-11-24 (주)푸드포트 Solar power generation device with uniform focus area

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114861A1 (en) * 2010-03-18 2011-09-22 コニカミノルタオプト株式会社 Solar concentrating mirror, and trough solar thermal power generation device and trough solar power generation device using same
JP2012204710A (en) * 2011-03-28 2012-10-22 Panasonic Corp Light condensing solar cell unit and installation method of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114861A1 (en) * 2010-03-18 2011-09-22 コニカミノルタオプト株式会社 Solar concentrating mirror, and trough solar thermal power generation device and trough solar power generation device using same
JP2012204710A (en) * 2011-03-28 2012-10-22 Panasonic Corp Light condensing solar cell unit and installation method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210055939A (en) * 2019-11-08 2021-05-18 한국광기술원 Building Integrated Photovoltaic Module with Improved Condensing Efficiency
KR102319732B1 (en) * 2019-11-08 2021-11-01 한국광기술원 Building Integrated Photovoltaic Module with Improved Condensing Efficiency
KR102330217B1 (en) * 2021-08-11 2021-11-24 (주)푸드포트 Solar power generation device with uniform focus area
WO2023017913A1 (en) * 2021-08-11 2023-02-16 (주)푸드포트 Solar power generation device having uniform focus area

Also Published As

Publication number Publication date
JP6854096B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
Ju et al. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)
Jaaz et al. Design and development of compound parabolic concentrating for photovoltaic solar collector
Brogren et al. Optical efficiency of a PV–thermal hybrid CPC module for high latitudes
Amanlou et al. A comprehensive review of uniform solar illumination at low concentration photovoltaic (LCPV) systems
Kribus et al. A miniature concentrating photovoltaic and thermal system
Zacharopoulos et al. Linear dielectric non-imaging concentrating covers for PV integrated building facades
Patt et al. Vulnerability of solar energy infrastructure and output to climate change
Chemisana et al. Experimental performance of a Fresnel-transmission PVT concentrator for building-façade integration
EP3029394B1 (en) Photovoltaic power generation device using optical beam uniformly condensed by plane mirrors and cooling by direct contact
Nilsson et al. Electrical and thermal characterization of a PV-CPC hybrid
Singh et al. Experimental investigations into low concentrating line axis solar concentrators for CPV applications
Chong et al. Dense-array concentrator photovoltaic prototype using non-imaging dish concentrator and an array of cross compound parabolic concentrators
CN101189480A (en) Solar concentrator
Tang et al. Design and optical performance of CPC based compound plane concentrators
Nilsson Optical Design and Characterization of Solar Concentrations for Photovoltaics
Paul Application of compound parabolic concentrators to solar photovoltaic conversion: A comprehensive review
Sato et al. Design and testing of highly transparent concentrator photovoltaic modules for efficient dual‐land‐use applications
Coventry et al. Thermal and electrical performance of a concentrating PV/Thermal collector: results from the ANU CHAPS collector
Gajbert et al. Optimisation of reflector and module geometries for stationary, low-concentrating, façade-integrated photovoltaic systems
Sornek et al. Experimental investigations of the microscale concentrated photovoltaic/thermal system based on a solar parabolic trough concentrator
JP6854096B2 (en) Concentrating solar cell system and power generation method
Cooper et al. Experimental demonstration of high‐concentration photovoltaics on a parabolic trough using tracking secondary optics
Waghmare et al. Numerical simulation of tracking modes for compound parabolic collector with tubular receiver
Bowden et al. Application of static concentrators to photovoltaic roof tiles
Augustin et al. Canal top solar energy harvesting using reflector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R150 Certificate of patent or registration of utility model

Ref document number: 6854096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250