WO2023054282A1 - Multi-layer structure - Google Patents

Multi-layer structure Download PDF

Info

Publication number
WO2023054282A1
WO2023054282A1 PCT/JP2022/035775 JP2022035775W WO2023054282A1 WO 2023054282 A1 WO2023054282 A1 WO 2023054282A1 JP 2022035775 W JP2022035775 W JP 2022035775W WO 2023054282 A1 WO2023054282 A1 WO 2023054282A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
adhesive layer
glass
multilayer structure
support
Prior art date
Application number
PCT/JP2022/035775
Other languages
French (fr)
Japanese (ja)
Inventor
綾 渡邉
淳一 稲垣
啓介 佐藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2023551482A priority Critical patent/JPWO2023054282A1/ja
Publication of WO2023054282A1 publication Critical patent/WO2023054282A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a multilayer structure.
  • a multilayer structure in which two or more layers are laminated is known.
  • One example is a multi-layer structure in which a silver reflective layer is laminated on a thin glass layer (glass film).
  • the thickness of this multilayer structure is, for example, within the range of 10 to 200 ⁇ m.
  • This multilayer structure is obtained, for example, from a glass roll formed by a down-draw method.
  • the appearance may be poor due to the heat.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a multi-layer structure that is less likely to cause poor appearance even when placed in a high-temperature environment.
  • the multilayer structure includes a resin support, an adhesive layer laminated on the support, a metal layer laminated on the adhesive layer, and a glass layer laminated on the metal layer. and the thickness of the glass layer is 10 ⁇ m or more and 300 ⁇ m or less, the elastic modulus of the pressure-sensitive adhesive layer at 60° C. is x [MPa], and the amount of water contained in the support is y [ ⁇ g/cm 2 ] satisfies y ⁇ 3333.3x.
  • FIG. 1 is a cross-sectional view illustrating a multilayer structure according to this embodiment
  • FIG. FIG. 2 is a diagram showing the relationship between the elastic modulus [MPa] of the pressure-sensitive adhesive layer at 60° C. and the water content [ ⁇ g/cm 2 ] of the support.
  • FIG. 1 is a cross-sectional view illustrating a multilayer structure according to this embodiment.
  • the multilayer structure 1 has a support 10, an adhesive layer 20, a resin layer 30, a metal layer 40, an adhesive layer 50, and a glass layer 60.
  • the adhesive layer 20 , the resin layer 30 , the metal layer 40 , the adhesive layer 50 and the glass layer 60 are sequentially laminated on the upper surface 10 a of the support 10 .
  • the resin layer 30 and the adhesive layer 50 are provided as required.
  • the planar shape of the multilayer structure 1 (the shape viewed from the normal direction of the upper surface 10a of the support 10) is, for example, a rectangular shape.
  • the planar shape of the multilayer structure 1 is not limited to this, and may be a circular shape, an elliptical shape, a combination thereof, or any other appropriate shape.
  • the multilayer structure 1 can be used, for example, as a mirror.
  • the thickness of the glass layer 60 is 10 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of the glass layer 60 is thin, and the distance between the surface of the glass layer 60 and the metal layer 40 is extremely short. Therefore, in the multilayer structure 1, a clear image can be projected by solving the problem of the conventional sheet glass in which an image is doubled.
  • the support 10 is made of resin and supports the glass layer 60 and the like.
  • the thickness of the support 10 can be, for example, about 1 mm or more and 5 mm or less.
  • materials for the support 10 include resins such as polycarbonate and polypropylene.
  • the support 10 Although it is possible to use glass or metal as the support 10, since glass and metal are heavy, the weight of the entire multi-layer structure 1 increases and the handleability deteriorates.
  • the support 10 made of resin it is possible to reduce the weight of the multi-layer structure 1 and improve the handleability of the multi-layer structure 1 . From the viewpoint of further improving handleability, the weight per unit area of the support 10 is preferably 8 kg/m 2 or less.
  • the resin-made support 10 it is possible to realize a multilayer structure 1 having flexibility. For example, it is possible to attach the multilayer structure 1 along a curved surface.
  • the adhesive layer 20 is laminated on the support 10 .
  • the adhesive layer 20 is provided between the support 10 and the resin layer 30, but when the multilayer structure 1 does not have the resin layer 30, the adhesive layer 20 is provided between the support 10 and the metal layer 40 .
  • Any appropriate adhesive is used as the adhesive layer 20 .
  • materials for the adhesive layer 20 include acrylic adhesives, silicone adhesives, rubber adhesives, and the like.
  • the thickness of the adhesive layer 20 is not particularly limited, it is, for example, about 5 ⁇ m or more and 500 ⁇ m or less.
  • the resin layer 30 is laminated on the support 10 with the adhesive layer 20 interposed therebetween.
  • the resin layer 30 is composed of one layer or multiple layers.
  • the resin layer 30 consists of a plurality of layers, it is preferable to laminate them with an adhesion layer having an adhesive function interposed therebetween.
  • the total thickness of the resin layer 30 may be 20 ⁇ m or more and 1000 ⁇ m or less, preferably 25 ⁇ m or more and 500 ⁇ m or less, and more preferably 50 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the resin layer 30 can be, for example, in the range of 20 ⁇ m or more and 150 ⁇ m or less.
  • polyester-based resins such as polyethylene terephthalate-based resins and polyethylene naphthalate-based resins
  • cycloolefin-based resins such as norbornene-based resins
  • polyether sulfone-based resins polycarbonate-based resins
  • acrylic-based resins examples include polyester-based resins such as polyethylene terephthalate-based resins and polyethylene naphthalate-based resins, cycloolefin-based resins such as norbornene-based resins, polyether sulfone-based resins, polycarbonate-based resins, and acrylic-based resins.
  • polyolefin-based resins polyimide-based resins
  • polyamide-based resins polyamide-based resins
  • polyarylate-based resins polysulfone-based resins
  • polyetherimide-based resins cellulose-based resins, urethane-based resins, and the like.
  • the resin layer 30 is provided as necessary, the provision of the resin layer 30 has the effect of improving the handleability of the multilayer structure 1 .
  • the metal layer 40 is laminated on the adhesive layer 20 with the resin layer 30 interposed therebetween. When the multilayer structure 1 does not have the resin layer 30 , the metal layer 40 is laminated directly on the adhesive layer 20 .
  • the metal layer 40 is a layer that reflects visible light incident through the glass layer 60 and the adhesive layer 50 .
  • a material for the metal layer 40 a material having a high visible light reflectance is preferable, and examples thereof include aluminum, silver, and silver alloys.
  • the thickness of the metal layer 40 is not particularly limited, it is, for example, about 10 nm or more and 500 nm or less.
  • the metal layer 40 can be formed on the upper surface of the resin layer 30 by, for example, a sputtering method, a vapor deposition method, a plating method, or the like.
  • the metal layer 40 may be formed on the lower surface of the glass layer 60 by, for example, a sputtering method, a vapor deposition method, a plating method, or the like. In this case, the adhesive layer 50 becomes unnecessary.
  • the adhesive layer 50 is made of a material with high visible light transmittance.
  • the thickness of the adhesive layer 50 is, for example, 0.1 ⁇ m or more and 25 ⁇ m or less.
  • an acrylic adhesive, a silicone adhesive, a rubber adhesive, an ultraviolet curable acrylic adhesive, an ultraviolet curable epoxy adhesive, a thermosetting epoxy adhesive, or a thermosetting adhesive for example, an acrylic adhesive, a silicone adhesive, a rubber adhesive, an ultraviolet curable acrylic adhesive, an ultraviolet curable epoxy adhesive, a thermosetting epoxy adhesive, or a thermosetting adhesive.
  • a melamine-based adhesive, a thermosetting phenol-based adhesive, an ethylene vinyl acetate (EVA) intermediate film, a polyvinyl butyral (PVB) intermediate film, and the like can be used.
  • the pressure-sensitive adhesive refers to a layer that has adhesiveness at room temperature and adheres to an adherend with light pressure. Therefore, even when the adherend adhered to the adhesive is peeled off, the adhesive retains practical adhesive strength.
  • an adhesive refers to a layer that can bind substances by being interposed between them. Therefore, when the adherend adhered to the adhesive is peeled off, the adhesive does not have practical adhesive strength.
  • the glass layer 60 is laminated on the metal layer 40 via the adhesive layer 50 .
  • the glass layer 60 is not particularly limited, and a suitable one can be adopted depending on the purpose.
  • Examples of the glass layer 60 include soda-lime glass, boric acid glass, aluminosilicate glass, quartz glass, etc. according to classification according to composition. Further, according to the classification by alkali component, non-alkali glass and low-alkali glass can be mentioned.
  • the content of alkali metal components (eg, Na 2 O, K 2 O, Li 2 O) in the glass is preferably 15% by weight or less, more preferably 10% by weight or less.
  • the thickness of the glass layer 60 is preferably 10 ⁇ m or more, considering the surface hardness, airtightness, and corrosion resistance of the glass. Moreover, since it is desirable that the glass layer 60 has flexibility like a film, the thickness of the glass layer 60 is preferably 300 ⁇ m or less. The thickness of the glass layer 60 is more preferably 20 ⁇ m or more and 200 ⁇ m or less, and particularly preferably 30 ⁇ m or more and 150 ⁇ m or less.
  • the light transmittance of the glass layer 60 at a wavelength of 550 nm is preferably 85% or more.
  • the refractive index of the glass layer 60 at a wavelength of 550 nm is preferably 1.4 to 1.65.
  • the density of the glass layer 60 is preferably 2.3 g/cm 3 to 3.0 g/cm 3 , more preferably 2.3 g/cm 3 to 2.7 g/cm 3 .
  • the method of forming the glass layer 60 is not particularly limited, and an appropriate method can be adopted according to the purpose.
  • the glass layer 60 is formed by heating a mixture containing a main raw material such as silica or alumina, an antifoaming agent such as mirabilite or antimony oxide, and a reducing agent such as carbon at a temperature of about 1400°C to 1600°C. It can be produced by melting, molding into a thin plate, and then cooling.
  • Examples of the method for forming the glass layer 60 include a slot down draw method, a fusion method, a float method, and the like.
  • the glass layer formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to thin the plate or improve smoothness.
  • a functional layer such as an antifouling layer, an antireflection layer, a conductive layer, a reflective layer, and a decorative layer may be provided on the upper surface of the glass layer 60 (the side on which the adhesive layer 50 is not formed).
  • the support 10 Since the support 10 is made of resin, it contains moisture.
  • the amount of water contained in the resin varies depending on the material, and has values shown in Table 1, for example.
  • Table 1 shows an example of the amount of water contained in the resin, which was measured by the inventors. Of course, resins not exemplified in Table 1 also contain a certain amount of water.
  • a high-temperature environment for example, 60°C
  • the deterioration of the appearance of the multilayer structure in a high-temperature environment is thought to be due to the following mechanism.
  • the elastic modulus of the pressure-sensitive adhesive layer is lowered by heating, and the moisture contained in the support pushes away the pressure-sensitive adhesive near the surface and easily penetrates into the pressure-sensitive adhesive layer. air bubbles.
  • the air bubbles in the pressure-sensitive adhesive layer cause fine unevenness on the surface of the resin layer or the metal layer on the glass layer side of the pressure-sensitive adhesive layer.
  • the reflection on the surface of the metal layer becomes non-uniform, degrading the appearance of the multilayer structure.
  • a resin with low water absorption should be used as the material of the support 10, and the material of the adhesive layer 20 should be heated at high temperature.
  • a pressure-sensitive adhesive that has a high elastic modulus even in an environment (eg, 60° C.). That is, in a high-temperature environment (for example, 60° C.), if the elastic modulus of the adhesive layer 20 is high, the pressure-sensitive adhesive layer 20 is hard. We thought that it would be possible to suppress the entry of moisture, and conducted an experiment.
  • the inventors prepared a plurality of samples of a multilayer structure in which the amount of water contained in the support 10 and the elastic modulus of the pressure-sensitive adhesive layer 20 were changed, and stored them in an environment of 60°C for 12 hours. A visual inspection was carried out to see if the appearance of the layer structure deteriorated. Note that the sample of the multilayer structure used in the experiment had a rectangular planar shape and was 297 mm long ⁇ 210 mm wide. Also, the thickness of the resin layer 30 is 20 ⁇ m, the thickness of the metal layer 40 is 50 nm, the thickness of the adhesive layer 50 is 2 ⁇ m, and the thickness of the glass layer 60 is 100 ⁇ m.
  • the amount of water contained in the support 10 was measured by the Karl Fischer method.
  • the elastic modulus of the pressure-sensitive adhesive layer 20 was measured by a nanoindentation method using a nanoindenter (Triboindenter manufactured by Hysitron Inc.). Conical (spherical indenter: radius of curvature 10 ⁇ m) was used as the indenter, and the elastic modulus was measured by a single indentation method at 60° C. under the measurement condition of an indentation depth of about 2 ⁇ m.
  • FIG. 2 is a diagram showing the relationship between the elastic modulus [MPa] of the adhesive layer at 60° C. and the water content [ ⁇ g/cm 2 ] of the support.
  • is a sample in which the air bubbles did not deteriorate the appearance of the multilayer structure
  • x is a sample in which the air bubbles deteriorated the appearance of the multilayer structure.
  • the elastic modulus of the adhesive layer 20 is preferably 0.1 MPa or more.
  • the elastic modulus of the pressure-sensitive adhesive layer 20 is 0.1 MPa or more, it is possible to suppress the occurrence of minute irregularities on the surface of the metal layer 40 due to dents or the like. Further, when the elastic modulus of the pressure-sensitive adhesive layer 20 is 0.1 MPa or more, handling in the manufacturing process of the multilayer structure 1 is facilitated.
  • the moisture content in the support 10 is preferably 1500 ⁇ g/cm 2 or less.
  • a water content of 1500 ⁇ g/cm 2 or less in the support 10 is preferable in that deterioration of the appearance of the multilayer structure due to water can be suppressed.
  • low water absorption resins suitable for the material of the support 10 include polycarbonate and polypropylene shown in Table 1, but are not limited to these.
  • Methods for increasing the elastic modulus of the pressure-sensitive adhesive layer 20 include, for example, increasing the crosslinking density of the monomer, increasing the glass transition temperature of the monomer, and using a polyfunctional monomer.
  • REFERENCE SIGNS LIST 1 multilayer structure 10 support 10a upper surface 20 adhesive layer 30 resin layer 40 metal layer 50 adhesive layer 60 glass layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A multi-layer structure according to the present invention comprises a support body made of resin, an adhesive layer laminated on the support body, a metal layer laminated on the adhesive layer, and a glass layer laminated on the metal layer. The thickness of the glass layer is 10-300 µm, and when the elastic modulus of the adhesive layer at 60ºC is denoted by x [MPa], and the amount of moisture contained in the support body is denoted by y [µg/cm2], y ≤ 3333.3x is satisfied.

Description

複層構造体multilayer structure
 本発明は、複層構造体に関する。 The present invention relates to a multilayer structure.
 2以上の層を積層させた複層構造体が知られている。一例として、板厚の薄いガラス層(ガラスフィルム)上に銀反射層を積層させた複層構造体が挙げられる。この複層構造体の厚みは、例えば、10~200μmの範囲内である。この複層構造体は、例えば、ダウンドロー法によって成形されたガラスロールより得られる。 A multilayer structure in which two or more layers are laminated is known. One example is a multi-layer structure in which a silver reflective layer is laminated on a thin glass layer (glass film). The thickness of this multilayer structure is, for example, within the range of 10 to 200 μm. This multilayer structure is obtained, for example, from a glass roll formed by a down-draw method.
特開2013-231744号公報JP 2013-231744 A
 ところで、複層構造体が高温環境下に置かれると、熱の影響で外観不良が発生する場合がある。 By the way, if the multilayer structure is placed in a high-temperature environment, the appearance may be poor due to the heat.
 本発明は、上記の点に鑑みてなされたもので、高温環境下に置かれても外観不良が発生しにくい複層構造体を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a multi-layer structure that is less likely to cause poor appearance even when placed in a high-temperature environment.
 本複層構造体は、樹脂製の支持体と、前記支持体上に積層された粘着剤層と、前記粘着剤層上に積層された金属層と、前記金属層上に積層されたガラス層と、を有し、前記ガラス層の厚みは、10μm以上300μm以下であり、前記粘着剤層の60℃における弾性率をx[MPa]、前記支持体に含まれる水分量をy[μg/cm]としたときに、y≦3333.3xを満たす。 The multilayer structure includes a resin support, an adhesive layer laminated on the support, a metal layer laminated on the adhesive layer, and a glass layer laminated on the metal layer. and the thickness of the glass layer is 10 μm or more and 300 μm or less, the elastic modulus of the pressure-sensitive adhesive layer at 60° C. is x [MPa], and the amount of water contained in the support is y [μg/cm 2 ] satisfies y≦3333.3x.
 開示の技術によれば、高温環境下に置かれても外観不良が発生しにくい複層構造体を提供できる。 According to the disclosed technology, it is possible to provide a multi-layered structure that is less prone to appearance defects even when placed in a high-temperature environment.
本実施形態に係る複層構造体を例示する断面図である。1 is a cross-sectional view illustrating a multilayer structure according to this embodiment; FIG. 60℃における粘着剤層の弾性率[MPa]と支持体の水分量[μg/cm]との関係を示す図である。FIG. 2 is a diagram showing the relationship between the elastic modulus [MPa] of the pressure-sensitive adhesive layer at 60° C. and the water content [μg/cm 2 ] of the support.
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。 Hereinafter, the embodiments for carrying out the invention will be described with reference to the drawings. In each drawing, the same components are denoted by the same reference numerals, and redundant description may be omitted.
 図1は、本実施形態に係る複層構造体を例示する断面図である。図1に示すように、複層構造体1は、支持体10と、粘着剤層20と、樹脂層30と、金属層40と、接着剤層50と、ガラス層60とを有している。粘着剤層20、樹脂層30、金属層40、接着剤層50、及びガラス層60は、支持体10の上面10aに順次積層されている。なお、樹脂層30及び接着剤層50は、必要に応じて設けられる。 FIG. 1 is a cross-sectional view illustrating a multilayer structure according to this embodiment. As shown in FIG. 1, the multilayer structure 1 has a support 10, an adhesive layer 20, a resin layer 30, a metal layer 40, an adhesive layer 50, and a glass layer 60. . The adhesive layer 20 , the resin layer 30 , the metal layer 40 , the adhesive layer 50 and the glass layer 60 are sequentially laminated on the upper surface 10 a of the support 10 . The resin layer 30 and the adhesive layer 50 are provided as required.
 複層構造体1の平面形状(支持体10の上面10aの法線方向から視た形状)は、例えば、矩形状である。しかし、これには限定されず、複層構造体1の平面形状は、円形状、楕円形状、これらの複合、その他の適宜な形状とすることが可能である。 The planar shape of the multilayer structure 1 (the shape viewed from the normal direction of the upper surface 10a of the support 10) is, for example, a rectangular shape. However, the planar shape of the multilayer structure 1 is not limited to this, and may be a circular shape, an elliptical shape, a combination thereof, or any other appropriate shape.
 複層構造体1は、例えば、鏡として使用できる。複層構造体1において、ガラス層60の厚みは10μm以上300μm以下である。複層構造体1では、ガラス層60の厚みが薄く、ガラス層60の表面と金属層40との距離が極めて近い。そのため、複層構造体1では、像が二重に映る従来の板ガラスの課題を解決してクリアな像を映し出すことができる。 The multilayer structure 1 can be used, for example, as a mirror. In the multilayer structure 1, the thickness of the glass layer 60 is 10 μm or more and 300 μm or less. In the multilayer structure 1, the thickness of the glass layer 60 is thin, and the distance between the surface of the glass layer 60 and the metal layer 40 is extremely short. Therefore, in the multilayer structure 1, a clear image can be projected by solving the problem of the conventional sheet glass in which an image is doubled.
 ここで、複層構造体1の各部の材料等について説明する。 Here, the materials and the like of each part of the multilayer structure 1 will be described.
 [支持体]
 支持体10は、樹脂製であり、ガラス層60等を支持する。支持体10の厚みは、例えば、1mm以上5mm以下程度とすることができる。支持体10の材料としては、例えば、ポリカーボネート、ポリプロピレン等の樹脂が挙げられる。
[Support]
The support 10 is made of resin and supports the glass layer 60 and the like. The thickness of the support 10 can be, for example, about 1 mm or more and 5 mm or less. Examples of materials for the support 10 include resins such as polycarbonate and polypropylene.
 支持体10としてガラスや金属を用いることも可能ではあるが、ガラスや金属は重いため、複層構造体1全体の重量が増加してハンドリング性が悪化する。樹脂製の支持体10を用いることで、複層構造体1を軽量化することが可能となり、複層構造体1のハンドリング性を向上できる。ハンドリング性をさらに向上する観点から、支持体10の単位面積当たりの重量は、8kg/m以下であることが好ましい。また、樹脂製の支持体10を用いることで、可撓性を有する複層構造体1を実現可能である。例えば、複層構造体1を湾曲面に沿って貼り付けることが可能となる。 Although it is possible to use glass or metal as the support 10, since glass and metal are heavy, the weight of the entire multi-layer structure 1 increases and the handleability deteriorates. By using the support 10 made of resin, it is possible to reduce the weight of the multi-layer structure 1 and improve the handleability of the multi-layer structure 1 . From the viewpoint of further improving handleability, the weight per unit area of the support 10 is preferably 8 kg/m 2 or less. Moreover, by using the resin-made support 10, it is possible to realize a multilayer structure 1 having flexibility. For example, it is possible to attach the multilayer structure 1 along a curved surface.
 [粘着剤層]
 粘着剤層20は、支持体10上に積層されている。図1の例では、粘着剤層20は支持体10と樹脂層30との間に設けられているが、複層構造体1が樹脂層30を有していない場合には、粘着剤層20は支持体10と金属層40との間に設けられる。粘着剤層20としては、任意の適切な粘着剤が用いられる。粘着剤層20の材料としては、例えば、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等が挙げられる。粘着剤層20の厚みは、特に限定するものではないが、例えば、5μm以上500μm以下程度である。
[Adhesive layer]
The adhesive layer 20 is laminated on the support 10 . In the example of FIG. 1, the adhesive layer 20 is provided between the support 10 and the resin layer 30, but when the multilayer structure 1 does not have the resin layer 30, the adhesive layer 20 is provided between the support 10 and the metal layer 40 . Any appropriate adhesive is used as the adhesive layer 20 . Examples of materials for the adhesive layer 20 include acrylic adhesives, silicone adhesives, rubber adhesives, and the like. Although the thickness of the adhesive layer 20 is not particularly limited, it is, for example, about 5 μm or more and 500 μm or less.
 [樹脂層]
 樹脂層30は、支持体10上に粘着剤層20を介して積層されている。樹脂層30は、1つの層又は複数の層から構成されている。樹脂層30が複数の層からなる場合には、接着機能を有する密着層を介在させ積層させることが好ましい。樹脂層30の総厚みは、可撓性の観点から20μm以上1000μm以下であればよく、好ましくは25μm以上500μm以下、より好ましくは50μm以上200μm以下の範囲である。樹脂層30が1層から構成される場合には、樹脂層30の厚みは、例えば、20μm以上150μm以下の範囲とすることができる。
[Resin layer]
The resin layer 30 is laminated on the support 10 with the adhesive layer 20 interposed therebetween. The resin layer 30 is composed of one layer or multiple layers. When the resin layer 30 consists of a plurality of layers, it is preferable to laminate them with an adhesion layer having an adhesive function interposed therebetween. From the viewpoint of flexibility, the total thickness of the resin layer 30 may be 20 μm or more and 1000 μm or less, preferably 25 μm or more and 500 μm or less, and more preferably 50 μm or more and 200 μm or less. When the resin layer 30 is composed of one layer, the thickness of the resin layer 30 can be, for example, in the range of 20 μm or more and 150 μm or less.
 樹脂層30の材料としては、例えば、ポリエチレンテレフタレート系樹脂やポリエチレンナフタレート系樹脂等のポリエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリイミドアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルイミド系樹脂、セルロース系樹脂、ウレタン系樹脂等が挙げられる。 Examples of materials for the resin layer 30 include polyester-based resins such as polyethylene terephthalate-based resins and polyethylene naphthalate-based resins, cycloolefin-based resins such as norbornene-based resins, polyether sulfone-based resins, polycarbonate-based resins, and acrylic-based resins. , polyolefin-based resins, polyimide-based resins, polyamide-based resins, polyimide-amide-based resins, polyarylate-based resins, polysulfone-based resins, polyetherimide-based resins, cellulose-based resins, urethane-based resins, and the like.
 樹脂層30は必要に応じて設けられるが、樹脂層30を設けることで、複層構造体1のハンドリング性向上の効果を奏する。 Although the resin layer 30 is provided as necessary, the provision of the resin layer 30 has the effect of improving the handleability of the multilayer structure 1 .
 [金属層]
 金属層40は、粘着剤層20上に樹脂層30を介して積層されている。複層構造体1が樹脂層30を有していない場合には、金属層40は粘着剤層20上に直接積層される。金属層40は、ガラス層60及び接着剤層50を介して入射する可視光を反射する層である。金属層40の材料としては、可視光反射率が高い材料が好ましく、例えば、アルミニウム、銀、銀合金等が挙げられる。金属層40の厚みは、特に限定するものではないが、例えば、10nm以上500nm以下程度である。金属層40は、樹脂層30の上面に、例えば、スパッタ法、蒸着法、めっき法等により形成できる。
[Metal layer]
The metal layer 40 is laminated on the adhesive layer 20 with the resin layer 30 interposed therebetween. When the multilayer structure 1 does not have the resin layer 30 , the metal layer 40 is laminated directly on the adhesive layer 20 . The metal layer 40 is a layer that reflects visible light incident through the glass layer 60 and the adhesive layer 50 . As a material for the metal layer 40, a material having a high visible light reflectance is preferable, and examples thereof include aluminum, silver, and silver alloys. Although the thickness of the metal layer 40 is not particularly limited, it is, for example, about 10 nm or more and 500 nm or less. The metal layer 40 can be formed on the upper surface of the resin layer 30 by, for example, a sputtering method, a vapor deposition method, a plating method, or the like.
 なお、金属層40は、ガラス層60の下面に、例えば、スパッタ法、蒸着法、めっき法等により形成されてもよい。この場合には、接着剤層50は不要となる。 Note that the metal layer 40 may be formed on the lower surface of the glass layer 60 by, for example, a sputtering method, a vapor deposition method, a plating method, or the like. In this case, the adhesive layer 50 becomes unnecessary.
 [接着剤層]
 接着剤層50は、可視光透過率が高い材料から形成されている。接着剤層50の厚みは、例えば、0.1μm以上25μm以下である。接着剤層50としては、例えば、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤、紫外線硬化性アクリル系接着剤、紫外線硬化性エポキシ系接着剤、熱硬化性エポキシ系接着剤、熱硬化性メラミン系接着剤、熱硬化性フェノール系接着剤、エチレンビニルアセテート(EVA)中間膜、ポリビニルブチラール(PVB)中間膜等が利用できる。
[Adhesive layer]
The adhesive layer 50 is made of a material with high visible light transmittance. The thickness of the adhesive layer 50 is, for example, 0.1 μm or more and 25 μm or less. As the adhesive layer 50, for example, an acrylic adhesive, a silicone adhesive, a rubber adhesive, an ultraviolet curable acrylic adhesive, an ultraviolet curable epoxy adhesive, a thermosetting epoxy adhesive, or a thermosetting adhesive. A melamine-based adhesive, a thermosetting phenol-based adhesive, an ethylene vinyl acetate (EVA) intermediate film, a polyvinyl butyral (PVB) intermediate film, and the like can be used.
 なお、本明細書において、粘着剤とは、常温で接着性を有し、軽い圧力で被着体に接着する層をいう。従って、粘着剤に貼着した被着体を剥離した場合にも、粘着剤は実用的な粘着力を保持する。一方、接着剤とは、物質の間に介在することによって物質を結合できる層をいう。従って、接着剤に貼着した被着体を剥離した場合には、接着剤は実用的な接着力を有さない。 In this specification, the pressure-sensitive adhesive refers to a layer that has adhesiveness at room temperature and adheres to an adherend with light pressure. Therefore, even when the adherend adhered to the adhesive is peeled off, the adhesive retains practical adhesive strength. On the other hand, an adhesive refers to a layer that can bind substances by being interposed between them. Therefore, when the adherend adhered to the adhesive is peeled off, the adhesive does not have practical adhesive strength.
 [ガラス層]
 ガラス層60は、接着剤層50を介して金属層40上に積層されている。ガラス層60は、特に限定はなく、目的に応じて適切なものを採用できる。ガラス層60は、組成による分類によれば、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。又、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げられる。上記ガラスのアルカリ金属成分(例えば、NaO、KO、LiO)の含有量は、好ましくは15重量%以下であり、更に好ましくは10重量%以下である。
[Glass layer]
The glass layer 60 is laminated on the metal layer 40 via the adhesive layer 50 . The glass layer 60 is not particularly limited, and a suitable one can be adopted depending on the purpose. Examples of the glass layer 60 include soda-lime glass, boric acid glass, aluminosilicate glass, quartz glass, etc. according to classification according to composition. Further, according to the classification by alkali component, non-alkali glass and low-alkali glass can be mentioned. The content of alkali metal components (eg, Na 2 O, K 2 O, Li 2 O) in the glass is preferably 15% by weight or less, more preferably 10% by weight or less.
 ガラス層60の厚みは、ガラスの持つ表面硬度や気密性や耐腐食性を考慮すると、10μm以上が好ましい。又、ガラス層60はフィルムのような可撓性を有することが望ましいため、ガラス層60の厚みは300μm以下が好ましい。ガラス層60の厚みは、更に好ましくは20μm以上200μm以下、特に好ましくは30μm以上150μm以下である。 The thickness of the glass layer 60 is preferably 10 μm or more, considering the surface hardness, airtightness, and corrosion resistance of the glass. Moreover, since it is desirable that the glass layer 60 has flexibility like a film, the thickness of the glass layer 60 is preferably 300 μm or less. The thickness of the glass layer 60 is more preferably 20 μm or more and 200 μm or less, and particularly preferably 30 μm or more and 150 μm or less.
 ガラス層60の波長550nmにおける光透過率は、好ましくは85%以上である。ガラス層60の波長550nmにおける屈折率は、好ましくは1.4~1.65である。ガラス層60の密度は、好ましくは2.3g/cm~3.0g/cmであり、更に好ましくは2.3g/cm~2.7g/cmである。 The light transmittance of the glass layer 60 at a wavelength of 550 nm is preferably 85% or more. The refractive index of the glass layer 60 at a wavelength of 550 nm is preferably 1.4 to 1.65. The density of the glass layer 60 is preferably 2.3 g/cm 3 to 3.0 g/cm 3 , more preferably 2.3 g/cm 3 to 2.7 g/cm 3 .
 ガラス層60の成形方法は、特に限定はなく、目的に応じて適切なものを採用できる。代表的には、ガラス層60は、シリカやアルミナ等の主原料と、芒硝や酸化アンチモン等の消泡剤と、カーボン等の還元剤とを含む混合物を、1400℃~1600℃程度の温度で溶融し、薄板状に成形した後、冷却して作製できる。ガラス層60の成形方法としては、例えば、スロットダウンドロー法、フュージョン法、フロート法等が挙げられる。これらの方法によって板状に成形されたガラス層は、薄板化したり、平滑性を高めたりするために、必要に応じて、フッ酸等の溶剤により化学的に研磨されてもよい。 The method of forming the glass layer 60 is not particularly limited, and an appropriate method can be adopted according to the purpose. Typically, the glass layer 60 is formed by heating a mixture containing a main raw material such as silica or alumina, an antifoaming agent such as mirabilite or antimony oxide, and a reducing agent such as carbon at a temperature of about 1400°C to 1600°C. It can be produced by melting, molding into a thin plate, and then cooling. Examples of the method for forming the glass layer 60 include a slot down draw method, a fusion method, a float method, and the like. The glass layer formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to thin the plate or improve smoothness.
 なお、ガラス層60の上面(接着剤層50が形成されていない側の面)に、防汚層、反射防止層、導電層、反射層、加飾層等の機能層を設けてもよい。 A functional layer such as an antifouling layer, an antireflection layer, a conductive layer, a reflective layer, and a decorative layer may be provided on the upper surface of the glass layer 60 (the side on which the adhesive layer 50 is not formed).
 [支持体に含まれる水分の影響]
 支持体10は樹脂であるため、水分を含んでいる。樹脂に含まれる水分量は材料により異なり、例えば、表1に示す値となる。表1は、発明者らにより測定されたもので、樹脂に含まれる水分量の例である。もちろん、表1に例示されていない樹脂も所定量の水分を含んでいる。
Figure JPOXMLDOC01-appb-T000001
[Influence of Moisture Contained in Support]
Since the support 10 is made of resin, it contains moisture. The amount of water contained in the resin varies depending on the material, and has values shown in Table 1, for example. Table 1 shows an example of the amount of water contained in the resin, which was measured by the inventors. Of course, resins not exemplified in Table 1 also contain a certain amount of water.
Figure JPOXMLDOC01-appb-T000001
 発明者らは、支持体が樹脂である複層構造体を高温環境(例えば、60℃)で使用すると、樹脂に含まれる水分が粘着剤層内に侵入し、気泡となって、複層構造体の外観を悪化させることを見出した。 The inventors found that when a multi-layer structure whose support is a resin is used in a high-temperature environment (for example, 60°C), water contained in the resin penetrates into the pressure-sensitive adhesive layer and becomes air bubbles, resulting in a multi-layer structure. It has been found to aggravate the appearance of the body.
 高温環境(例えば、60℃)における複層構造体の外観の悪化は、以下のようなメカニズムによると考えられる。まず、加熱によって粘着剤層の弾性率が低下し、支持体に含まれる水分が表面付近の粘着剤を押しのけて粘着剤層内に侵入しやすくなり、粘着剤層内に侵入した水分が気化して気泡が発生する。そして、粘着剤層内の気泡は、粘着剤層よりもガラス層側にある樹脂層や金属層の表面に微小な凹凸を生じさせる。これにより、金属層の表面における反射が不均一となって複層構造体の外観を悪化させる。 The deterioration of the appearance of the multilayer structure in a high-temperature environment (eg, 60°C) is thought to be due to the following mechanism. First, the elastic modulus of the pressure-sensitive adhesive layer is lowered by heating, and the moisture contained in the support pushes away the pressure-sensitive adhesive near the surface and easily penetrates into the pressure-sensitive adhesive layer. air bubbles. Then, the air bubbles in the pressure-sensitive adhesive layer cause fine unevenness on the surface of the resin layer or the metal layer on the glass layer side of the pressure-sensitive adhesive layer. As a result, the reflection on the surface of the metal layer becomes non-uniform, degrading the appearance of the multilayer structure.
 そこで、複層構造体1では、支持体10に含まれる水分が粘着剤層20に移動しないような対策を施している。これに関し、以下に説明する。 Therefore, in the multilayer structure 1, measures are taken to prevent the moisture contained in the support 10 from moving to the adhesive layer 20. This will be explained below.
 発明者らは、支持体10に含まれる水分が粘着剤層20に移動しないようにするには、支持体10の材料として低吸水の樹脂を使用すること、そして粘着剤層20の材料として高温環境(例えば、60℃)でも高い弾性率を有する粘着剤を使用することが有効であると考えた。すなわち、高温環境(例えば、60℃)において、粘着剤層20の弾性率が高いと、粘着剤層20が硬いため、粘着剤層20と支持体10との界面から粘着剤層20の内部に水分が入り込むことを抑制できると考え、実験を行った。 The inventors have found that in order to prevent the moisture contained in the support 10 from moving to the adhesive layer 20, a resin with low water absorption should be used as the material of the support 10, and the material of the adhesive layer 20 should be heated at high temperature. We thought that it would be effective to use a pressure-sensitive adhesive that has a high elastic modulus even in an environment (eg, 60° C.). That is, in a high-temperature environment (for example, 60° C.), if the elastic modulus of the adhesive layer 20 is high, the pressure-sensitive adhesive layer 20 is hard. We thought that it would be possible to suppress the entry of moisture, and conducted an experiment.
 発明者らは、支持体10に含まれる水分量と粘着剤層20の弾性率を変えた複層構造体のサンプルを複数個作製し、60℃の環境に12時間保存した後、気泡により複層構造体の外観が悪化するか否かを目視検査で調べた。なお、実験に用いた複層構造体のサンプルは、平面形状が矩形で、縦297mm×横210mmとした。また、樹脂層30の厚さを20μm、金属層40の厚さを50nm、接着剤層50の厚さを2μm、ガラス層60の厚さを100μmとした。 The inventors prepared a plurality of samples of a multilayer structure in which the amount of water contained in the support 10 and the elastic modulus of the pressure-sensitive adhesive layer 20 were changed, and stored them in an environment of 60°C for 12 hours. A visual inspection was carried out to see if the appearance of the layer structure deteriorated. Note that the sample of the multilayer structure used in the experiment had a rectangular planar shape and was 297 mm long×210 mm wide. Also, the thickness of the resin layer 30 is 20 μm, the thickness of the metal layer 40 is 50 nm, the thickness of the adhesive layer 50 is 2 μm, and the thickness of the glass layer 60 is 100 μm.
 また、支持体10に含まれる水分量の測定は、カールフィッシャー法により行った。また、粘着剤層20の弾性率は、ナノインデンター(Hysitron Inc社製Triboindenter)を用いて、ナノインデンテーション法により測定した。使用圧子としてはConical(球形圧子:曲率半径10μm)を用い、60℃における単一押し込み法により、押し込み深さ約2μmの測定条件で弾性率を測定した。 Also, the amount of water contained in the support 10 was measured by the Karl Fischer method. The elastic modulus of the pressure-sensitive adhesive layer 20 was measured by a nanoindentation method using a nanoindenter (Triboindenter manufactured by Hysitron Inc.). Conical (spherical indenter: radius of curvature 10 μm) was used as the indenter, and the elastic modulus was measured by a single indentation method at 60° C. under the measurement condition of an indentation depth of about 2 μm.
 実験結果を図2に示す。図2は、60℃における粘着剤層の弾性率[MPa]と支持体の水分量[μg/cm]との関係を示す図である。図2において、〇は気泡により複層構造体の外観が悪化しなかったサンプルであり、×は気泡により複層構造体の外観が悪化したサンプルである。 The experimental results are shown in FIG. FIG. 2 is a diagram showing the relationship between the elastic modulus [MPa] of the adhesive layer at 60° C. and the water content [μg/cm 2 ] of the support. In FIG. 2, ◯ is a sample in which the air bubbles did not deteriorate the appearance of the multilayer structure, and x is a sample in which the air bubbles deteriorated the appearance of the multilayer structure.
 図2に示した結果より、図2の傾斜する直線よりも矢印側であれば、複層構造体の外観が悪化しないといえる。すなわち、粘着剤層20の60℃における弾性率をx[MPa]、支持体10に含まれる水分量をy[μg/cm]としたときに、y≦3333.3xを満たすことで、支持体10に含まれる水分に起因する複層構造体の外観の悪化を抑制できる。 From the results shown in FIG. 2, it can be said that the outer appearance of the multilayer structure does not deteriorate if it is on the arrow side of the inclined straight line in FIG. That is, when x [MPa] is the elastic modulus of the pressure-sensitive adhesive layer 20 at 60° C. and y [μg/cm 2 ] is the amount of water contained in the support 10, y≦3333.3x is satisfied. Deterioration of the appearance of the multilayer structure due to moisture contained in the body 10 can be suppressed.
 ただし、粘着剤層20の弾性率は、0.1MPa以上であることが好ましい。粘着剤層20の弾性率が0.1MPa以上であると、打痕等により金属層40の表面に微小な凹凸を生じることを抑制できる。また、粘着剤層20の弾性率が0.1MPa以上であると、複層構造体1の製造工程での取り扱いが容易となる。 However, the elastic modulus of the adhesive layer 20 is preferably 0.1 MPa or more. When the elastic modulus of the pressure-sensitive adhesive layer 20 is 0.1 MPa or more, it is possible to suppress the occurrence of minute irregularities on the surface of the metal layer 40 due to dents or the like. Further, when the elastic modulus of the pressure-sensitive adhesive layer 20 is 0.1 MPa or more, handling in the manufacturing process of the multilayer structure 1 is facilitated.
 また、支持体10に含まれる水分量は、1500μg/cm以下であることが好ましい。支持体10に含まれる水分量が1500μg/cm以下であると、水分に起因する複層構造体の外観の悪化を抑制できる点で好適である。 Moreover, the moisture content in the support 10 is preferably 1500 μg/cm 2 or less. A water content of 1500 μg/cm 2 or less in the support 10 is preferable in that deterioration of the appearance of the multilayer structure due to water can be suppressed.
 なお、支持体10の材料として好適な低吸水の樹脂としては、例えば、表1に示したポリカーボネートやポリプロピレンが挙げられるが、これらには限定されない。また、粘着剤層20の弾性率を高くする方法としては、例えば、モノマーの架橋密度を上げる、モノマーのガラス転移温度を上げる、多官能モノマーを使用するなどの方法が挙げられる。 Examples of low water absorption resins suitable for the material of the support 10 include polycarbonate and polypropylene shown in Table 1, but are not limited to these. Methods for increasing the elastic modulus of the pressure-sensitive adhesive layer 20 include, for example, increasing the crosslinking density of the monomer, increasing the glass transition temperature of the monomer, and using a polyfunctional monomer.
 以上、好ましい実施形態等について詳説したが、上述した実施形態等に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態等に種々の変形及び置換を加えることができる。 Although the preferred embodiments and the like have been described in detail above, the present invention is not limited to the above-described embodiments and the like, and various modifications and substitutions can be made to the above-described embodiments and the like without departing from the scope of the claims. can be added.
 本国際出願は2021年9月28日に出願した日本国特許出願2021-157512号に基づく優先権を主張するものであり、日本国特許出願2021-157512号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2021-157512 filed on September 28, 2021, and the entire contents of Japanese Patent Application No. 2021-157512 are incorporated into this international application. .
 1 複層構造体
 10 支持体
 10a 上面
 20 粘着剤層
 30 樹脂層
 40 金属層
 50 接着剤層
 60 ガラス層
REFERENCE SIGNS LIST 1 multilayer structure 10 support 10a upper surface 20 adhesive layer 30 resin layer 40 metal layer 50 adhesive layer 60 glass layer

Claims (5)

  1.  樹脂製の支持体と、
     前記支持体上に積層された粘着剤層と、
     前記粘着剤層上に積層された金属層と、
     前記金属層上に積層されたガラス層と、を有し、
     前記ガラス層の厚みは、10μm以上300μm以下であり、
     前記粘着剤層の60℃における弾性率をx[MPa]、前記支持体に含まれる水分量をy[μg/cm]としたときに、y≦3333.3xを満たす、複層構造体。
    a resin support;
    a pressure-sensitive adhesive layer laminated on the support;
    a metal layer laminated on the adhesive layer;
    a glass layer laminated on the metal layer;
    The glass layer has a thickness of 10 μm or more and 300 μm or less,
    A multilayer structure satisfying y≦3333.3x, where x [MPa] is the elastic modulus of the pressure-sensitive adhesive layer at 60° C. and y [μg/cm 2 ] is the water content in the support.
  2.  前記粘着剤層の弾性率は、0.1MPa以上である、請求項1に記載の複層構造体。 The multilayer structure according to claim 1, wherein the adhesive layer has an elastic modulus of 0.1 MPa or more.
  3.  前記支持体に含まれる水分量は、1500μg/cm以下である、請求項1又は2に記載の複層構造体。 3. The multilayer structure according to claim 1, wherein the moisture content of said support is 1500 μg/cm 2 or less.
  4.  前記粘着剤層と前記金属層との間に樹脂層が積層されている、請求項1乃至3の何れか一項に記載の複層構造体。 The multilayer structure according to any one of claims 1 to 3, wherein a resin layer is laminated between the adhesive layer and the metal layer.
  5.  前記金属層と前記ガラス層との間に接着剤層が積層されている、請求項1乃至4の何れか一項に記載の複層構造体。 The multilayer structure according to any one of claims 1 to 4, wherein an adhesive layer is laminated between the metal layer and the glass layer.
PCT/JP2022/035775 2021-09-28 2022-09-26 Multi-layer structure WO2023054282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023551482A JPWO2023054282A1 (en) 2021-09-28 2022-09-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-157512 2021-09-28
JP2021157512 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023054282A1 true WO2023054282A1 (en) 2023-04-06

Family

ID=85782694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035775 WO2023054282A1 (en) 2021-09-28 2022-09-26 Multi-layer structure

Country Status (3)

Country Link
JP (1) JPWO2023054282A1 (en)
TW (1) TW202323027A (en)
WO (1) WO2023054282A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026449A (en) * 2009-07-24 2011-02-10 Lintec Corp Laminate and article comprising the same
WO2012023347A1 (en) * 2010-08-20 2012-02-23 コニカミノルタオプト株式会社 Film mirror, method for producing same, and mirror for sunlight reflection using film mirror
JP2015125167A (en) * 2013-12-25 2015-07-06 コニカミノルタ株式会社 Film mirror, method for manufacturing the same, and reflecting device for solar thermal power generation
JP2015210335A (en) * 2014-04-24 2015-11-24 コニカミノルタ株式会社 Film mirror and reflection device
JP2017096987A (en) * 2014-03-26 2017-06-01 コニカミノルタ株式会社 Light reflection film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026449A (en) * 2009-07-24 2011-02-10 Lintec Corp Laminate and article comprising the same
WO2012023347A1 (en) * 2010-08-20 2012-02-23 コニカミノルタオプト株式会社 Film mirror, method for producing same, and mirror for sunlight reflection using film mirror
JP2015125167A (en) * 2013-12-25 2015-07-06 コニカミノルタ株式会社 Film mirror, method for manufacturing the same, and reflecting device for solar thermal power generation
JP2017096987A (en) * 2014-03-26 2017-06-01 コニカミノルタ株式会社 Light reflection film
JP2015210335A (en) * 2014-04-24 2015-11-24 コニカミノルタ株式会社 Film mirror and reflection device

Also Published As

Publication number Publication date
TW202323027A (en) 2023-06-16
JPWO2023054282A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP2020512251A (en) Curved bonded glass manufacturing method and curved bonded glass
US20180203173A1 (en) Optical laminate
JP2016526003A (en) Glass-coating laminate having controlled breaking strength
JPWO2018025779A1 (en) Cover member and display device
JP2011051278A (en) Lightweight substrate with excellent gas barrier properties and surface characteristics and member using this substrate
US20230114553A1 (en) Multilayer structure
WO2023054282A1 (en) Multi-layer structure
WO2022113652A1 (en) Multi-layer structure
WO2021060155A1 (en) Multi-layer structure body
WO2022030239A1 (en) Multilayer structure
WO2023163129A1 (en) Multi-layer structure
WO2021095516A1 (en) Optical film set and liquid crystal panel
WO2021060107A1 (en) Optical film
JP2000052492A (en) Anti-reflective laminate, optically functional laminate, and display device
JP2001096669A (en) Antireflection laminate, optically functional laminate, and display unit
JP2024051583A (en) Multi-layer structure
EP3878647A1 (en) Thin glass laminated body
WO2023190477A1 (en) Multilayer structure
WO2023032783A1 (en) Multi-layer structure
JP2024051582A (en) Multi-layer structure
EP4245523A1 (en) Layered structure and method for producing same
WO2021199986A1 (en) Multilayer structure
US20240017527A1 (en) Multi-layered structure and method for producing same
WO2023054468A1 (en) Multilayer body for display devices, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876149

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551482

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE