WO2023054468A1 - Multilayer body for display devices, and display device - Google Patents

Multilayer body for display devices, and display device Download PDF

Info

Publication number
WO2023054468A1
WO2023054468A1 PCT/JP2022/036159 JP2022036159W WO2023054468A1 WO 2023054468 A1 WO2023054468 A1 WO 2023054468A1 JP 2022036159 W JP2022036159 W JP 2022036159W WO 2023054468 A1 WO2023054468 A1 WO 2023054468A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
inorganic compound
laminate
display device
fluorine
Prior art date
Application number
PCT/JP2022/036159
Other languages
French (fr)
Japanese (ja)
Inventor
純 佐藤
研一 小野寺
和也 本田
紗緒里 川口
佳奈 堀井
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022146208A external-priority patent/JP2023051786A/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2023054468A1 publication Critical patent/WO2023054468A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present disclosure relates to a laminate for a display device and a display device.
  • display devices such as displays for display purposes have a surface with low reflectance to prevent external light such as sunlight and fluorescent lamps from reflecting on the display screen, and to improve the visibility of characters and images. transformation is required.
  • the display device is required to have abrasion resistance so that it is hard to be scratched.
  • Patent Document 1 discloses an antireflection laminate having at least a resin film, a hard coat layer, and an inorganic oxide layer, wherein the laminate has a pencil hardness of 4H or more and a rigidity of 8.0 N mm or more, and a Knoop An antireflection laminate having a hardness of 150 to 300 mN/mm 2 is disclosed, and by laminating it to the surface of a display, it is possible to effectively suppress reflections on the surface of the display while imparting sufficient scratch resistance. It states what you can do.
  • the laminate arranged on the surface of the display device is required to have high abrasion resistance.
  • the laminate becomes brittle against bending, and cracks may occur during the production or transportation of the laminate.
  • flexible display devices are required to have no display defects even when repeatedly bent. Endurance is required.
  • the wear resistance may deteriorate.
  • the laminate for a display device has a problem that it is impossible to achieve both bending resistance and abrasion resistance while maintaining low reflectivity.
  • the present disclosure has been made in view of the above problems, and a main object thereof is to provide a laminate for a display device that has low reflectivity and excellent bending resistance and abrasion resistance.
  • One embodiment of the present disclosure is a laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer.
  • the first inorganic compound layer has a first inorganic compound that is a low refractive index material, the relative film density D1 is 0.70 or more and 1.20 or less
  • the second inorganic compound layer is , a second inorganic compound that is a high refractive index material, a relative film density D2 of 0.50 or more and less than 1.00, and an incident angle of 5 on the surface of the display device laminate on the fluorine-containing layer side.
  • a laminate for a display device which has a luminous reflectance of 2.0% or less for specularly reflected light when light is incident at 100°.
  • One embodiment of the present disclosure is a laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer.
  • the first inorganic compound layer has a first inorganic compound that is a low refractive index material and has a fluorine atom content of 6.5 atomic % or less
  • the second inorganic compound layer is It has a second inorganic compound that is a high refractive index material, has a relative film density D2 of 0.50 or more and less than 1.00, and has an incident angle of 5° on the fluorine-containing layer side surface of the laminate for a display device.
  • a laminate for a display device which has a luminous reflectance of 2.0% or less for specularly reflected light when light is incident at .
  • One embodiment of the present disclosure is a laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, and a substrate layer, wherein the first inorganic compound
  • the layer has a first inorganic compound that is a low refractive index material, has a relative film density D1 of 0.70 or more and 1.20 or less, and is between the first inorganic compound layer and the base layer , a high refractive index dispersion layer in which inorganic compound particles having a high refractive index are dispersed in a binder resin, and the relative film density D4 of the high refractive index dispersion layer is 0.10 or more and 0.70 or less, and the display Provided is a laminate for a display device having a luminous reflectance of 2.0% or less for specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a device at an incident angle of 5°. .
  • Another embodiment of the present disclosure provides a display device comprising a display panel and the above-described display device laminate disposed on the viewer side of the display panel.
  • the present disclosure can provide a laminate for a display device that has low reflectivity and excellent bending resistance and abrasion resistance.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminate for a display device according to a first embodiment and a second embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view showing another example of the display device laminate of the first embodiment and the second embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view showing another example of the display device laminate of the first embodiment and the second embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of a first inorganic compound layer and a fluorine-containing layer for explaining a difference in content ratio of fluorine atoms in the first inorganic compound layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminate for a display device according to a first embodiment and a second embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view showing another example of the display device laminate of the first embodiment and the second embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view of
  • FIG. 10 is a schematic cross-sectional view showing an example of a laminate for a display device according to a third embodiment of the present disclosure
  • 1 is a schematic cross-sectional view showing an example of a display device of the present disclosure
  • FIG. It is a figure for demonstrating the method of a dynamic bending test.
  • 2 when expressing a mode of arranging another member on top of a certain member, when simply describing “above” or “below”, unless otherwise specified, 2 includes both cases in which another member is arranged directly above or directly below, and cases in which another member is arranged above or below a certain member via another member.
  • 2 when expressing a mode in which another member is arranged on the surface of a certain member, when simply describing “on the surface side” or “on the surface”, unless otherwise specified, It includes both the case of arranging another member directly above or directly below so as to be in contact with it, and the case of arranging another member above or below a certain member via another member.
  • the inventors of the present invention have found that, in a laminated body arranged on the surface of a display device, the bending resistance of the inorganic compound layer exhibiting low reflectivity may be low.
  • we investigated the resistance of the inorganic compound layer to stress changes and found that by using the relative film density of the inorganic compound layer as a parameter, it is possible to determine the degree of resistance to stress changes for each material. I found out that. Specifically, when the measured value of the film density of the inorganic compound layer is close to the literature value (that is, the relative film density is about 1), it was found that there is almost no difference in bending resistance due to the difference in materials. . Furthermore, even if the material has a high film density in the literature, when the film density is lower than the literature value (that is, the relative film density is low), the bending resistance of the inorganic compound layer is improved. .
  • the inventors of the present invention conducted repeated studies to improve bending resistance and wear resistance while maintaining low reflectivity for a laminate disposed on the surface of a display device. It was found that the configuration of the laminate for a display device according to the second embodiment and the third embodiment can improve bending resistance and abrasion resistance.
  • the fluorine-containing layer is disposed on one surface of the laminate for a display device, and the first inorganic compound layer (low refractive index layer) which is the inorganic compound layer on the fluorine-containing layer side is relative to It was found that abrasion resistance can be obtained by setting the film density within a predetermined range. Furthermore, by setting the relative film density of the second inorganic compound layer (high refractive index layer) to a predetermined low range, it was found that a laminate for a display device having high resistance to stress change and good bending resistance can be obtained. , completed the present invention.
  • the laminate for a display device of this embodiment will be described in detail.
  • FIG. 1 is a schematic cross-sectional view showing an example of the laminate for a display device according to this embodiment.
  • the display device laminate 1a of the present embodiment includes a fluorine-containing layer 2, a first inorganic compound layer 3, a second inorganic compound layer 4, and a substrate layer 5. have in this order.
  • the first inorganic compound layer contains the first inorganic compound, which is a low refractive index material, and has a relative film density D1 of 0.70 or more and 1.20 or less.
  • the second inorganic compound layer contains a second inorganic compound having a higher refractive index than the first inorganic compound, and has a relative film density D2 of 0.50 or more and less than 1.00.
  • the luminous reflectance of specularly reflected light when light is incident on the surface 1A on the fluorine-containing layer 2 side at an incident angle of 5° is 2.0% or less.
  • the laminate for a display device has a fluorine-containing layer on one surface, and the relative film density D1 of the first inorganic compound layer is within a predetermined range, thereby exhibiting excellent abrasion resistance. will have. Furthermore, by setting the relative film density D2 of the second inorganic compound layer to be within a predetermined low range, excellent bending resistance can be obtained.
  • the laminate for a display device in the present embodiment includes a first inorganic compound layer that is a low refractive index layer and a second inorganic compound layer that is a high refractive index layer, thereby achieving a predetermined luminous reflectance. will have. Therefore, the laminate for a display device has low reflectivity and excellent bending resistance and abrasion resistance.
  • each configuration in the laminate for display device of the present embodiment will be described in detail.
  • the first inorganic compound layer is composed of a first inorganic compound that is a low refractive index material.
  • the inorganic compound layer is a layer mainly composed of an inorganic compound, and is distinguished from a layer in which inorganic compound particles are dispersed in a binder resin.
  • the first inorganic compound constituting the first inorganic compound layer is not particularly limited as long as it is an inorganic compound having a lower refractive index than the second inorganic compound constituting the second inorganic compound layer, but preferably Inorganic oxides such as silicon oxides and gallium oxides, magnesium fluoride, lithium fluoride, calcium fluoride, barium fluoride and the like can be mentioned. In this embodiment, among others, silicon oxide is preferable from the viewpoint of refractive index and versatility.
  • the average composition of the inorganic oxide is represented by, for example, MOx (wherein M represents a metal element, and the value of x varies depending on the metal element).
  • MOx metal element
  • x can be 0 ⁇ x ⁇ 2, preferably 1 ⁇ x ⁇ 2, more preferably SiO 2 .
  • the average composition of the inorganic oxide is not limited to the stoichiometric optimum as described above.
  • the first inorganic compound layer is preferably a deposited film.
  • a silicon oxide (silica) deposited film is preferred.
  • one type of inorganic compound is preferably contained in the first inorganic compound layer, but a plurality of types of inorganic compounds may be contained.
  • the film density calculated according to the content ratio of multiple types of inorganic compounds is adopted as the film density (literature value) described later.
  • the refractive index of the first inorganic compound layer is preferably 1.60 or less, more preferably 1.50 or less. On the other hand, for example, it is 1.30 or more, and may be 1.40 or more.
  • the refractive index of each layer refers to the refractive index for light with a wavelength of 550 nm.
  • a method of measuring the refractive index can include a method of measuring using an ellipsometer. Examples of the ellipsometer include "UVSEL" manufactured by Jobin-Evon and "DF1030R” manufactured by Techno Synergy.
  • the relative film density D1 of the first inorganic compound layer which is the low refractive index layer, is 0.70 or more and 1.20 or less.
  • the relative film density D1 of the first inorganic compound layer is preferably 0.75 or more, more preferably 0.80 or more. On the other hand, it is preferably 1.17 or less, more preferably 1.15 or less. If the relative film density D1 is too high, the bending resistance may be poor and cracks may occur in the first inorganic compound layer. If the relative film density D1 is too low, the wear resistance may be poor.
  • the relative film density of the inorganic compound layer is calculated by the following formula.
  • Relative film density film density (measured value) / film density (literature value)
  • the measured value of the film density can be obtained from the surface density measured by Rutherford Backscattering Spectrometry (RBS) under the following measurement equipment and the following measurement conditions, and the film thickness measured by a transmission electron microscope (TEM).
  • Rutherford backscattering analysis detects the energy value of the backscattered light element ions when the sample is irradiated with light element ions such as helium (He) at high energy. It is a method to measure the abundance of
  • the atomic number density (atoms/cm 3 ) was calculated from the area density (atoms/cm 2 ) obtained from the RBS analysis and the film thickness (cm) measured by a transmission electron microscope (TEM) or the like, and determined by RBS.
  • the density (g/cm 3 ) of the inorganic compound layer is calculated by performing conversion based on the composition information.
  • the film density (literature value) of the inorganic compound layer is a theoretical film density, and typical film density values of the inorganic compound layer are as follows. ⁇ SiO 2 (2.2 g/cm 3 ) ⁇ ZrO 2 (5.9 g/cm 3 ) - Nb2O5 ( 4.6g / cm3 ) -Al2O3 (4.0 g / cm3 ) ⁇ TiO 2 (4.3 g/cm 3 ) ⁇ ZnO (5.5 g/cm 3 ) - SnO2 (6.9g/ cm3 )
  • values described in literature such as Filler Data Utilization Book (author: Isao Soma) and resource platforms such as Chemical Book can be adopted.
  • the composition of the actual inorganic compound layer is, for example, SiOx (0 ⁇ x ⁇ 2)
  • the film density of SiO2 having a stoichiometric composition where x is 2 (literature value ).
  • a method for adjusting the relative film density of the first inorganic compound layer within the above range includes, for example, a method for adjusting the film forming speed of the first inorganic compound layer. By increasing the deposition rate, the relative film density can be lowered. A method of changing the composition of the first inorganic compound layer can also be used.
  • the first inorganic compound layer may contain fluorine atoms derived from the fluorine-containing layer.
  • the content ratio of fluorine atoms in the first inorganic compound layer is preferably low. This is because when the fluorine atom content is low, softening of the first inorganic compound layer can be suppressed for the reason described in detail in the second embodiment, and abrasion resistance is improved.
  • the content ratio of fluorine atoms in the first inorganic compound layer can be the same value as the value described in the second embodiment described later.
  • the thickness of the first inorganic compound layer is not particularly limited, but is preferably 30 nm or more and 200 nm or less, more preferably 50 nm or more and 150 nm or less.
  • the thickness of each layer is the thickness of the display device laminate observed with a transmission electron microscope (TEM), a scanning electron microscope (SEM), or a scanning transmission electron microscope (STEM). It can be an average value of thicknesses at arbitrary 10 points obtained by measuring from cross sections in the same direction.
  • the first inorganic compound layer for example, selects particles having a desired refractive index from among low refractive index particles, and performs physical vapor deposition such as vacuum deposition, sputtering, and ion plating. method (Physical Vapor Deposition method, PVD method) or the like. Among these, the vacuum deposition method is preferable from the viewpoint of productivity (deposition speed).
  • the first inorganic compound layer is preferably in direct contact with the fluorine-containing layer. Also, the first inorganic compound layer is preferably in direct contact with the second inorganic compound layer.
  • Second Inorganic Compound Layer is composed of a second inorganic compound having a higher refractive index than the first inorganic compound.
  • the second inorganic compound constituting the second inorganic compound layer aluminum oxide, zirconium oxide, hafnium oxide, tantalum oxide, cerium oxide, titanium oxide, zinc oxide, tin oxide, magnesium Examples include oxides, inorganic oxides such as yttrium oxide and niobium oxide, lanthanum fluoride, and cerium fluoride.
  • the average composition of aluminum oxide is represented by AlOx, where x can take 0 ⁇ x ⁇ 1.5 and is preferably Al 2 O 3 .
  • the average composition of zirconium oxide is represented by ZrOx, where x can take 0 ⁇ x ⁇ 2 and is preferably ZrO2 .
  • the average composition of niobium oxide is represented by NbOx, where x can take 0 ⁇ x ⁇ 2.5, preferably Nb 2 O 5 .
  • the second inorganic compound layer is preferably a deposited film.
  • any one of an aluminum oxide (alumina) vapor deposition film, a zirconium oxide vapor deposition film, a titanium oxide vapor deposition film, a zinc oxide vapor deposition film, a tin oxide vapor deposition film, and a niobium oxide vapor deposition film is preferable.
  • one type of inorganic compound is preferably contained in the second inorganic compound layer, but a plurality of types of inorganic compounds may be contained.
  • the refractive index of the second inorganic compound layer is preferably 1.60 or more, more preferably 1.80 or more. On the other hand, it is, for example, 3.00 or less, and may be 2.50 or less.
  • the relative film density D2 of the second inorganic compound layer which is a high refractive index layer, is 0.50 or more and less than 1.00.
  • the relative film density D2 in this embodiment is preferably 0.60 or more, more preferably 0.70 or more. On the other hand, it is preferably 0.95 or less, more preferably 0.90 or less. If the relative film density D2 is too high, the bending resistance may be poor and cracks may occur in the second inorganic compound layer. If the relative film density D2 is too low, the second inorganic compound layer may peel off after bending, and the visibility may deteriorate. This is because the adhesion of the second inorganic compound layer is insufficient and the stress applied during bending cannot be endured.
  • a method for adjusting the relative film density of the second inorganic compound layer within the above range includes, for example, a method for adjusting the film forming speed of the second inorganic compound layer. By increasing the deposition rate, the relative film density can be lowered. Also, a method of changing the composition of the second inorganic compound layer can be used. In this case, the relative film density can be lowered by shifting the elemental ratio of the inorganic compound in the inorganic compound layer (the elemental ratio of the inorganic oxide in the inorganic compound layer) from the stoichiometrically optimum ratio.
  • the thickness of the second inorganic compound layer is not particularly limited, but is preferably 10 nm or more and 200 nm or less, more preferably 20 nm or more and 170 nm or less.
  • the second inorganic compound layer selects particles having a desired refractive index from among high refractive index particles, and performs physical vapor deposition such as vacuum deposition, sputtering, and ion plating. method (Physical Vapor Deposition method, PVD method) or the like. Among these, the vacuum deposition method is preferable from the viewpoint of productivity (deposition speed).
  • the second inorganic compound layer is preferably in direct contact with the first inorganic compound layer. Moreover, the second inorganic compound layer is preferably in direct contact with any one of the base material layer, the hard coat layer, the intervening layer, and the third inorganic compound layer, which will be described later.
  • the fluorine-containing layer in the present embodiment is arranged on the side of the first inorganic compound layer opposite to the side of the second inorganic compound layer. is preferably arranged on the outermost surface.
  • the fluorine-containing layer may be any layer as long as it contains fluorine atoms, and by containing fluorine atoms, it is possible to impart abrasion resistance to the display device laminate. Specifically, the coefficient of dynamic friction of the surface of the display device laminate on the fluorine-containing layer side can be set within a predetermined range.
  • the dynamic friction coefficient of the fluorine-containing layer-side surface of the laminate for display device in the present embodiment is preferably 0.01 or more and 0.30 or less, more preferably 0.03 or more and 0.20 or less. If the coefficient of dynamic friction is equal to or less than the above value, the slipperiness of the surface will be improved, and the wear resistance will be more excellent.
  • the dynamic friction coefficient can be measured by a method conforming to JIS K7125:1999 (friction coefficient test method).
  • the method for measuring the coefficient of dynamic friction is, for example, using a variable load friction and wear test system (HEIDON Type HHS2000 manufactured by Shinto Kagaku Co., Ltd.), using cashmere felt of 2 cm ⁇ 2 cm, a load of 200 g, and a speed of 5 mm / sec. conditions can be measured.
  • the coefficient of dynamic friction is measured at five different positions on the surface of the laminate for a display device on the fluorine-containing layer side, and is taken as the average value of the measured values.
  • the thickness of the fluorine-containing layer is relatively thin, it is presumed that it does not affect thin film interference.
  • the thickness of the fluorine-containing layer is, for example, preferably 1 nm or more and 30 nm or less, more preferably 2 nm or more and 20 nm or less, and even more preferably 3 nm or more and 10 nm or less.
  • the fluorine-containing layer is not particularly limited as long as it contains fluorine atoms.
  • the fluorine-containing layer may contain, for example, a fluorine compound, may contain a fluorine compound and a resin, or may contain a fluorine resin.
  • the fluorine compound for example, those known as fluorine-based antifouling agents, fluorine-based leveling agents, fluorine-based surfactants, and the like can be used.
  • fluorine compounds include organic fluorine compounds, and specific examples include perfluoro compounds.
  • Perfluoro compounds include, for example, perfluoro compounds having perfluoropolyether groups, perfluoroalkylene groups, perfluoroalkyl groups, and the like. Perfluoroalkylene groups and perfluoroalkyl groups may be linear or branched.
  • a fluorine compound may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • the fluorine compound is preferably bound to the resin component.
  • binding the fluorine compound to the resin component bleeding out of the fluorine compound can be suppressed, and wear resistance and antifouling properties can be maintained over a long period of time.
  • the fluorine compound a fluorine compound having a reactive functional group is preferably used because it is preferably bonded to the resin component. That is, the fluorine-containing layer preferably contains a cured product of a resin composition containing a fluorine compound having a reactive functional group and a polymerizable compound to be described later.
  • reactive functional groups include ethylenically unsaturated bond groups such as (meth)acryloyl groups, vinyl groups, and allyl groups, epoxy groups, and oxetanyl groups.
  • the number of reactive functional groups possessed by the fluorine compound should be 1 or more, preferably 2 or more. Abrasion resistance can be enhanced by using a fluorine compound having two or more reactive functional groups.
  • the fluorine compound may contain silicon. That is, the fluorine-containing layer may contain fluorine and silicon.
  • silicon-containing fluorine compounds include fluorine compounds having a siloxane bond in the molecule. By using a fluorine compound having a siloxane bond, it is possible to improve lubricity and wear resistance.
  • the fluorine compound is preferably, for example, a fluorine compound having a reactive functional group or a fluorine compound containing a reactive functional group and silicon.
  • fluorine compounds having a reactive functional group examples include fluorine-containing monomers having an ethylenically unsaturated bond, fluorine-containing polymers or oligomers having a fluoroalkylene group in the main chain, fluoroalkylene groups or fluoroalkyl groups in the main chain and side chains. Fluorine-containing polymers or oligomers having groups are included.
  • fluorine compounds having reactive functional groups for example, JP-A-2017-19247 can be referred to.
  • fluorine compound containing a reactive functional group and silicon for example, a silicone-containing vinylidene fluoride copolymer obtained by reacting an organic silicone having a reactive functional group in the molecule with the above fluorine compound having a reactive functional group. etc.
  • fluorine compound containing a reactive functional group and silicon for example, a fluorine compound having a reactive functional group and a perfluoropolyether group, especially a silane unit having a reactive functional group and a silane having a perfluoropolyether group Fluorine compounds containing units are also preferably used. International publication 2012/157682 can be referred to for such a fluorine compound, for example.
  • the fluorine-containing layer may be a layer containing a fluorine compound and a resin.
  • the resin include cured products of polymerizable compounds.
  • the cured product of the polymerizable compound can be obtained by polymerizing the polymerizable compound by a known method using a polymerization initiator as necessary.
  • the polymerizable compound has at least one polymerizable functional group in its molecule.
  • the polymerizable compound for example, at least one of a radically polymerizable compound and a cationic polymerizable compound can be used.
  • examples of the fluorine resin include a cured product of a polymerizable compound containing fluorine.
  • a cured product of a fluorine-containing polymerizable compound can be obtained by polymerizing a fluorine-containing polymerizable compound by a known method using a polymerization initiator as necessary.
  • a polymerizable compound containing fluorine has at least one polymerizable functional group in its molecule.
  • the fluorine-containing polymerizable compound for example, at least one of a radically polymerizable compound and a cationic polymerizable compound can be used.
  • the fluorine-containing polymerizable compound for example, fluorine-containing monomers, oligomers, and polymers can be used.
  • the fluorine-containing layer contains inorganic particles, organic particles, ultraviolet absorbers, antioxidants, light stabilizers, antiglare agents, leveling agents, surfactants, lubricants, various sensitizers, flame retardants, if necessary. , tackifiers, polymerization inhibitors, surface modifiers, and other additives.
  • the fluorine-containing layer may be a single layer or multiple layers. Further, the method for forming the fluorine-containing layer is appropriately selected according to the material. is mentioned.
  • the fluorine-containing layer is preferably in direct contact with the first inorganic compound layer.
  • the base material layer in the present embodiment is a member that supports the second inorganic compound layer, the first inorganic compound layer and the fluorine-containing layer.
  • the substrate layer is not particularly limited as long as it has transparency, and examples thereof include resin substrates and glass substrates.
  • Resin substrate The resin constituting the resin substrate is not particularly limited as long as it can obtain a transparent resin substrate.
  • Examples include polyimide resins, polyamide resins, Examples include polyester-based resins.
  • Examples of polyimide-based resins include polyimide, polyamideimide, polyetherimide, and polyesterimide.
  • polyester resins include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
  • the glass constituting the glass substrate is not particularly limited as long as it has transparency, and examples thereof include silicate glass and silica glass. Among them, borosilicate glass, aluminosilicate glass, and aluminoborosilicate glass are preferable, and alkali-free glass is more preferable.
  • Commercially available glass substrates include, for example, ultra-thin sheet glass G-Leaf manufactured by Nippon Electric Glass Co., Ltd., ultra-thin glass manufactured by Matsunami Glass Industry Co., Ltd., and the like.
  • the glass constituting the glass substrate is chemically strengthened glass.
  • Chemically strengthened glass is excellent in mechanical strength and is preferable in that it can be made thinner accordingly.
  • Chemically strengthened glass is glass whose mechanical properties are strengthened by a chemical method, typically by partially exchanging ion species, such as replacing sodium with potassium, in the vicinity of the surface of the glass. It has a compressive stress layer.
  • glass constituting the chemically strengthened glass substrate examples include aluminosilicate glass, soda lime glass, borosilicate glass, lead glass, alkali barium glass, and aluminoborosilicate glass.
  • Examples of commercial products of chemically strengthened glass substrates include Corning's Gorilla Glass (Gorilla Glass), AGC's Dragontrail, and Schott's chemically strengthened glass.
  • the thickness of the base layer is not particularly limited as long as it is a thickness that allows flexibility, and is appropriately selected according to the type of base layer. be.
  • the thickness of the resin base material is, for example, preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 25 ⁇ m or more and 80 ⁇ m or less.
  • the thickness of the resin base material is within the above range, good flexibility and sufficient hardness can be obtained.
  • curling of the laminate for a display device can also be suppressed.
  • the thickness of the glass substrate is, for example, preferably 200 ⁇ m or less, more preferably 15 ⁇ m or more and 100 ⁇ m or less, further preferably 20 ⁇ m or more and 90 ⁇ m or less, and 25 ⁇ m or more and 80 ⁇ m or less. is particularly preferred.
  • the thickness of the glass substrate is within the above range, good flexibility and sufficient hardness can be obtained.
  • curling of the laminate for a display device can also be suppressed.
  • Laminate for display device (1) Luminous reflectance When light is incident at an incident angle of 5°, the specular reflectance of the incident light has a luminous reflectance of 2.0% or less. It is preferably 1.7% or less, more preferably 1.5% or less. If the luminous reflectance is too high, it is impossible to prevent the viewer from being reflected in the display area.
  • the luminous reflectance can be obtained in accordance with JIS Z8722:2009.
  • the luminous reflectance is obtained from the reflection spectrum obtained by making light in the wavelength range of 380 nm or more and 780 nm or less incident on the fluorine-containing layer side surface of the laminate for a display device.
  • the tristimulus values X, Y, and Z in the XYZ color system are obtained, and the value of Y is the luminous reflectance. That is, the luminous reflectance refers to the Y value of the CIE1931 standard color system. In the measurement of luminous reflectance, the following conditions can be used.
  • a black vinyl tape having a width larger than the measurement spot area (for example, product name "Yamato vinyl tape NO200-19-21 , Yamato Co., Ltd., 19 mm width) is attached to the surface of the laminate for display device on the side of the substrate layer, and then the measurement is performed.
  • a spectrophotometer can be used as a device for measuring luminous reflectance.
  • a spectrophotometer “UV-2600” manufactured by Shimadzu Corporation can be used.
  • the laminate for a display device in this embodiment has bending resistance. Specifically, when the display device laminate is subjected to a dynamic bending test described below, it is preferable that the display device laminate does not crack or break.
  • the dynamic bending test is performed as follows. First, a laminate for a display device having a size of 20 mm ⁇ 100 mm is prepared. Then, in the dynamic bending test, as shown in FIG. 7A, the short side portion 1C of the display device laminate 1 and the short side portion 1D facing the short side portion 1C are arranged in parallel. are fixed by the fixing portion 51. As shown in FIG. Further, as shown in FIG. 7(a), the fixed portion 51 is horizontally slidable. Next, as shown in FIG. 7(b), the fixing portions 51 are moved closer to each other, thereby deforming the laminate for display device 1 so as to be folded, and furthermore, as shown in FIG.
  • a dynamic bending test was performed so that the bent portion 1E of the laminated body 1 for a display device did not protrude from the lower end of the fixed portion 51, and by controlling the distance when the fixed portion 51 was closest, the display device
  • the distance d between the two opposing short sides 1C and 1D of the laminate 1 can be set to a predetermined value. For example, when the interval d between the short sides 1C and 1D is 10 mm, the outer diameter of the bent portion 1E is considered to be 10 mm.
  • a dynamic bending test was repeated 200,000 times in which the display device laminate 1 was folded 180° so that the distance d between the opposing short sides 1C and 1D was 10 mm. It is preferable that no cracking or breakage occurs when it is repeatedly repeated 500,000 times. Above all, it is preferable that no cracks or breaks occur when a dynamic bending test is repeated 200,000 times in which the display device laminate is folded 180° so that the distance d between the opposing short sides 1C and 1D is 6 mm. .
  • the display laminate may be folded so that the fluorine-containing layer is on the outside, or the display laminate may be folded so that the fluorine-containing layer is on the inside. Even so, it is preferable that the display device laminate does not crack or break.
  • the laminate for a display device in the present embodiment preferably has a total light transmittance of, for example, 85% or more, more preferably 88% or more, and 90% or more. It is even more preferable to have Due to such a high total light transmittance, a laminate for a display device with good transparency can be obtained.
  • the total light transmittance of the laminate for display devices can be measured according to JIS K7361-1:1999, and can be measured, for example, with a haze meter HM150 manufactured by Murakami Color Research Laboratory.
  • the haze of the laminate for a display device in the present embodiment is, for example, preferably 5% or less, more preferably 2% or less, and even more preferably 1% or less. Such a low haze makes it possible to obtain a laminate for a display device with good transparency.
  • the haze of the laminate for a display device can be measured according to JIS K-7136:2000, and can be measured, for example, with a haze meter HM150 manufactured by Murakami Color Research Laboratory.
  • FIG. 2 is a schematic cross-sectional view showing another example of the display device laminate according to the present embodiment.
  • the display device laminate 1a of the present embodiment includes a fluorine-containing layer 2, a first inorganic compound layer 3, a second inorganic compound layer 4, a substrate layer 5, and Furthermore, it is preferable to have another inorganic compound layer 6 (for example, a third inorganic compound layer) and a hard coat layer 7 .
  • FIG. 3 is a schematic cross-sectional view showing an example of a preferred aspect of the laminate for display device in this embodiment.
  • the display device laminate 1a of the present embodiment includes a fluorine-containing layer 2, a first inorganic compound layer 3, a second inorganic compound layer 4, a substrate layer 5, It is preferable to have an intervening layer 9 having a relative film density D3 of 0.10 or more and 0.70 or less between the second inorganic compound layer 4 and the substrate layer 5 .
  • the laminate for a display device in the present embodiment can have one or more other inorganic compound layers between the second inorganic compound layer and the substrate layer.
  • a lower reflectance can be obtained by arranging another inorganic compound layer.
  • the other inorganic compound layer is arranged between the second inorganic compound layer and the hard coat layer when the laminate for a display device in the present embodiment has a hard coat layer.
  • other inorganic compound layers are referred to as a third inorganic compound layer, a fourth inorganic compound layer, etc. from the second inorganic compound layer side.
  • the laminate for a display device in the present embodiment has a multilayer film having a different refractive index.
  • a high refractive index layer (fourth inorganic compound layer) / medium refractive index layer (third inorganic compound layer) / high refractive index layer (second inorganic compound layer) / low refractive index layer (second 1 inorganic compound layer) can be adopted.
  • the refractive index of the third inorganic compound layer is, for example, 1.40 or more and 2.50 or less
  • the refractive index of the fourth inorganic compound layer is, for example, 1.60 or more and 3.00 or less.
  • the medium refractive index layer (third inorganic compound layer)/high refractive index layer (second inorganic compound layer) A structure such as /low refractive index layer (first inorganic compound layer) can be employed.
  • the refractive index of the third inorganic compound layer is, for example, 1.40 or more and 2.50 or less.
  • Inorganic compounds contained in other inorganic compound layers include silicon oxide, gallium oxide, aluminum oxide, zirconium oxide, hafnium oxide, tantalum oxide, cerium oxide, titanium oxide, zinc oxide, tin oxides, magnesium oxide, yttrium oxide, niobium oxide, magnesium fluoride, lithium fluoride, calcium fluoride, barium fluoride, lanthanum fluoride and cerium fluoride.
  • the thickness of the other inorganic compound layer is not particularly limited, it is preferably 10 nm or more and 200 nm or less, more preferably 20 nm or more and 170 nm or less.
  • the total thickness of all the inorganic compound layers included in the laminate for display device in the present embodiment is preferably 500 nm or less, more preferably 400 nm or less. On the other hand, for example, it may be 50 nm or more, or may be 80 nm or more. If the total thickness is too thick, the bending resistance of the laminate for display device may deteriorate.
  • the laminate for display device in the present embodiment may have a hard coat layer between the second inorganic compound layer and the substrate layer.
  • the adhesion of the inorganic compound layer can be improved.
  • the abrasion resistance can be improved by arranging the hard coat layer.
  • the base material layer is a resin base material, the abrasion resistance can be effectively improved by disposing the hard coat layer.
  • the material of the hard coat layer is preferably an organic material.
  • the hard coat layer preferably contains a cured product of a resin composition containing a polymerizable compound.
  • a cured product of a resin composition containing a polymerizable compound can be obtained by subjecting the polymerizable compound to a polymerization reaction by a known method using a polymerization initiator as necessary.
  • the polymerizable compound has at least one polymerizable functional group in its molecule.
  • the polymerizable compound for example, at least one of a radically polymerizable compound and a cationic polymerizable compound can be used.
  • a radically polymerizable compound is a compound having a radically polymerizable group.
  • the radically polymerizable group possessed by the radically polymerizable compound is not particularly limited as long as it is a functional group capable of causing a radical polymerization reaction. Examples thereof include a group containing a carbon-carbon unsaturated double bond. Specific examples include a vinyl group and a (meth)acryloyl group. When the radically polymerizable compound has two or more radically polymerizable groups, these radically polymerizable groups may be the same or different.
  • the number of radically polymerizable groups in one molecule of the radically polymerizable compound is preferably 2 or more, more preferably 3 or more, from the viewpoint of increasing the surface hardness of the hard coat layer and improving the scratch resistance. Preferably.
  • compounds having a (meth)acryloyl group are preferable from the viewpoint of high reactivity.
  • urethane (meth)acrylate, polyester (meth)acrylate, epoxy (meth)acrylate, melamine Polyfunctional (meth)acrylate monomers having several (meth)acryloyl groups in the molecule and having a molecular weight of several hundred to several thousand, called meth)acrylates, polyfluoroalkyl (meth)acrylates, silicone (meth)acrylates, etc. and oligomers can be preferably used, and polyfunctional (meth)acrylate polymers having two or more (meth)acryloyl groups in side chains of the acrylate polymer can also be preferably used.
  • polyfunctional (meth)acrylate monomers having two or more (meth)acryloyl groups in one molecule can be preferably used.
  • a cured product of a polyfunctional (meth)acrylate monomer in the hard coat layer the surface hardness of the hard coat layer can be increased and the scratch resistance can be improved.
  • adhesion can be improved.
  • Polyfunctional (meth)acrylate oligomers or polymers having two or more (meth)acryloyl groups in one molecule can also be preferably used.
  • a cured polyfunctional (meth)acrylate oligomer or polymer in the hard coat layer the surface hardness of the hard coat layer can be increased and the scratch resistance can be improved. Furthermore, bending resistance and adhesion can be improved.
  • (meth)acryloyl represents acryloyl and methacryloyl
  • (meth)acrylate represents acrylate and methacrylate
  • polyfunctional (meth)acrylate monomers include those described in JP-A-2019-132930. Among them, those having 3 or more and 6 or less (meth)acryloyl groups in one molecule are preferable from the viewpoint of high reactivity, high surface hardness of the hard coat layer, and improvement of scratch resistance.
  • polyfunctional (meth)acrylate monomers examples include pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), pentaerythritol tetraacrylate (PETTA), dipentaerythritol pentaacrylate (DPPA), tri Methylolpropane tri(meth)acrylate, tripentaerythritol octa(meth)acrylate, tetrapentaerythritol deca(meth)acrylate and the like can be preferably used.
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol hexaacrylate
  • PETTA pentaerythritol tetraacrylate
  • DPPA dipentaerythritol pentaacrylate
  • tri Methylolpropane tri(meth)acrylate tripentaerythrito
  • the scratch resistance may decrease due to the flexible group in the molecular structure. Therefore, in order to suppress deterioration of scratch resistance due to a flexible component (soft segment), it is preferable to use a radically polymerizable compound that does not have a flexible group introduced into its molecular structure. Specifically, it is preferable to use a radically polymerizable compound that is not EO- or PO-modified. By using such a radically polymerizable compound, it is possible to increase cross-linking points and improve scratch resistance.
  • the hard coat layer may contain a monofunctional (meth)acrylate monomer as a radically polymerizable compound in order to adjust hardness and viscosity, improve adhesion, and the like.
  • monofunctional (meth)acrylate monomers include those described in JP-A-2019-132930.
  • a cationically polymerizable compound is a compound having a cationically polymerizable group.
  • the cationically polymerizable group possessed by the cationically polymerizable compound is not particularly limited as long as it is a functional group capable of causing a cationic polymerization reaction. Examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group.
  • these cationically polymerizable groups may be the same or different.
  • the number of cationically polymerizable groups in one molecule of the cationically polymerizable compound is preferably two or more, more preferably three or more, in order to increase the surface hardness of the hard coat layer and improve the scratch resistance. Preferably.
  • a compound having at least one of an epoxy group and an oxetanyl group as a cationically polymerizable group is preferable, and a compound having two or more of at least one of an epoxy group and an oxetanyl group in one molecule. is more preferred.
  • a cyclic ether group such as an epoxy group or an oxetanyl group is preferable from the viewpoint that shrinkage accompanying a polymerization reaction is small.
  • compounds having epoxy groups are readily available in various structures, do not adversely affect the durability of the resulting hard coat layer, and are easy to control compatibility with radically polymerizable compounds. There is an advantage.
  • the oxetanyl group has a higher degree of polymerization and is less toxic than the epoxy group, and when the resulting hard coat layer is combined with a compound having an epoxy group,
  • advantages such as increasing the network formation rate obtained from the cationically polymerizable compound and forming an independent network without leaving unreacted monomers in the film even in a region mixed with the radically polymerizable compound.
  • Examples of cationic polymerizable compounds having an epoxy group include polyglycidyl ethers of polyhydric alcohols having an alicyclic ring, or compounds containing cyclohexene rings or cyclopentene rings, which are treated with a suitable oxidizing agent such as hydrogen peroxide or peracid.
  • Examples include alicyclic epoxy resins obtained by epoxidation.
  • Aliphatic epoxy resins such as polyglycidyl ethers of aliphatic polyhydric alcohols or their alkylene oxide adducts, polyglycidyl esters of aliphatic long-chain polybasic acids, and homopolymers and copolymers of glycidyl (meth)acrylates are also included.
  • Bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or derivatives such as alkylene oxide adducts and caprolactone adducts thereof, are reacted with epichlorohydrin, glycidyl ethers, and novolac epoxy resins. and glycidyl ether type epoxy resins derived from bisphenols.
  • alicyclic epoxy resins examples include those described in JP-A-2018-104682.
  • the hard coat layer may contain a polymerization initiator as necessary.
  • the hard coat layer may contain an antistatic agent. Antistatic properties can be imparted to the laminate for display device.
  • the hard coat layer can further contain additives as needed.
  • the additive is appropriately selected according to the function to be imparted to the hard coat layer, and is not particularly limited. Examples include inorganic particles, organic particles, ultraviolet absorbers, infrared absorbers, antifouling agents, antiglare agents, and leveling agents. , surfactants, lubricants, various sensitizers, flame retardants, adhesion promoters, polymerization inhibitors, antioxidants, light stabilizers, surface modifiers and the like.
  • the material for the hard coat layer is a radically polymerizable compound having at least one of urethane (meth)acrylate and polyfunctional (meth)acrylate monomers in order to obtain better bending resistance.
  • an organic inorganic material in which a radically polymerizable compound and reactive inorganic particles having a reactive functional group capable of forming a covalent bond are used in combination is preferred, and an adhesion promoter is more preferably used in combination as an additive.
  • reactive inorganic particles include silica having a reactive functional group.
  • reactive functional groups include vinyl groups, (meth)acryloyl groups, allyl groups, epoxy groups, and silanol groups.
  • the thickness of the hard coat layer may be appropriately selected depending on the function of the hard coat layer and the application of the laminate for display devices.
  • the thickness of the hard coat layer is, for example, preferably 0.5 ⁇ m or more and 50 ⁇ m or less, more preferably 1.0 ⁇ m or more and 40 ⁇ m or less, further preferably 1.5 ⁇ m or more and 30 ⁇ m or less. It is particularly preferable to be 0 ⁇ m or more and 20 ⁇ m or less. If the thickness of the hard coat layer is within the above range, it is possible to obtain sufficient hardness as the hard coat layer.
  • Examples of the method of forming the hard coat layer include a method of applying a hard coat layer resin composition containing the polymerizable compound and the like onto the base material layer and curing the resin composition.
  • the laminate for a display device in the present embodiment can have an adhesive layer for sticking on the surface of the substrate layer opposite to the second inorganic compound layer.
  • the laminate for a display device can be attached to, for example, a display panel or the like via the adhesive layer for attachment.
  • the adhesive used for the sticking adhesive layer is not particularly limited as long as it has transparency and is capable of adhering the laminate for a display device to a display panel or the like.
  • Curable adhesives ultraviolet curable adhesives, two-liquid curable adhesives, hot-melt adhesives, pressure-sensitive adhesives (so-called adhesives), and the like can be mentioned.
  • the thickness of the sticking adhesive layer is, for example, preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 25 ⁇ m or more and 80 ⁇ m or less, and even more preferably 40 ⁇ m or more and 60 ⁇ m or less. If the thickness of the sticking adhesive layer is too thin, there is a possibility that the display device laminate and the display panel or the like cannot be sufficiently adhered. On the other hand, if the adhesive layer for sticking is too thick, the flexibility may be impaired.
  • an adhesive film may be used as the sticking adhesive layer.
  • an adhesive composition may be applied onto a support or a substrate layer to form an adhesive layer for attachment.
  • the adhesive layer for attachment may be a layer having adhesion to the extent that it can be peeled off after being attached to the display panel of the display device, or may be a layer having high adhesion without the purpose of peeling. good.
  • an interlayer adhesive layer may be arranged between each layer.
  • the adhesive used for the interlayer adhesive layer the same adhesive as used for the adhesive layer for attachment can be used.
  • an intervening layer 9 having a relative film density D3 of 0.10 or more and 0.70 or less is provided between the second inorganic compound layer 4 and the base layer 5. It is preferred to have By arranging such an intervening layer, bending resistance is further improved.
  • the display device laminate having the intervening layer is subjected to a dynamic bending test in which the display device laminate 1 is folded 180° so that the distance d between the opposing short sides 1C and 1D is 5 mm. It is preferable that no cracks or breaks occur when repeated 200,000 times, and more preferably no cracks or breaks occur when repeated 500,000 times.
  • the display laminate may be folded so that the fluorine-containing layer is on the outside, or the display laminate may be folded so that the fluorine-containing layer is on the inside. Even so, it is preferable that the display device laminate does not crack or break.
  • the intervening layer in the present embodiment has a relative film density D3 of 0.10 or more and 0.70 or less, preferably 0.20 or more and 0.60 or less.
  • the intervening layer is preferably a dispersed layer in which inorganic compound particles are dispersed in a binder resin. This is because it is easy to set the relative film density within the above range. Also, the intervening layer may be an inorganic compound layer other than the first inorganic compound layer and the second inorganic compound layer.
  • the relative film density of dispersion layer film density of dispersion layer (measured value) / film density (literature value)
  • the film density (literature value) for calculating the relative film density of the intervening layer the film density (literature value) of the inorganic compound layer mainly composed of the inorganic compound contained in the inorganic compound particles is used.
  • the relative film density D1 of the first inorganic compound layer, the relative film density D2 of the second inorganic compound layer, and the relative film density D3 of the intervening layer preferably satisfy the relationship D3 ⁇ D2 ⁇ D1. .
  • the difference in relative film density between adjacent layers can be reduced, and stress concentration can be suppressed. Therefore, bending resistance is further improved, and cracks and peeling can be suppressed.
  • the relative film density D2 of the second inorganic compound layer and the relative film density D3 of the intermediate layer satisfy 1.0 ⁇ D2/D3 ⁇ 7.0.
  • D2/D3 is 1.0 or more, peeling at the interface between the first inorganic compound layer and the second inorganic compound layer can be effectively suppressed in the bending test.
  • D2/D3 is 7.0 or less, peeling at the interface between the intervening layer and the second inorganic compound layer can be effectively suppressed in the bending test.
  • the relative film density D1 of the first inorganic compound layer and the relative film density D3 of the intermediate layer satisfy 1.0 ⁇ D1/D3 ⁇ 12.0.
  • D1/D3 is 1.0 or more, wear resistance tends to be further improved.
  • D1/D3 is 12.0 or less, the bending resistance is further improved, and the occurrence of cracks in the dispersion layer can be suppressed.
  • the intermediate layer is preferably a dispersion layer in which inorganic compound particles are dispersed in a binder resin.
  • the dispersion layer contains inorganic compound particles and a binder resin.
  • inorganic compound particles are not particularly limited, silicon oxide, gallium oxide, aluminum oxide, zirconium oxide, hafnium oxide, tantalum oxide, cerium oxide, titanium oxide, zinc oxides, tin oxides, magnesium oxides, yttrium oxides, niobium oxides, magnesium fluoride, lithium fluoride, calcium fluoride, barium fluoride, lanthanum fluoride and cerium fluoride.
  • inorganic compound particles having a refractive index higher than that of the first inorganic compound are preferable.
  • Specific examples of such inorganic compound particles include aluminum oxide, zirconium oxide, niobium oxide, zinc oxide, tin oxide, and titanium oxide.
  • the content of the inorganic compound particles in the dispersed layer is not particularly limited as long as the content is such that the relative film density D3 of the intervening layer is the above value.
  • Binder resin is preferably a cured product of a polymerizable compound.
  • the polymerizable compound can be the same as that described in the section of the hard coat layer of the laminate for a display device of the first embodiment, so the description is omitted here.
  • the refractive index of the dispersion layer is preferably 1.60 or more, more preferably 1.65 or more. On the other hand, it is, for example, 2.00 or less, and may be 1.80 or less.
  • the thickness of the dispersion layer is not particularly limited, but is preferably 10 nm or more and 500 nm or less, more preferably 30 nm or more and 300 nm or less.
  • a method for forming the dispersion layer for example, a method of applying a resin composition for a dispersion layer containing inorganic compound particles and a polymerizable compound onto a substrate layer or a hard coat layer to be described later and curing the composition can be used. mentioned.
  • the intervening layer may be another inorganic compound layer.
  • Inorganic compounds contained in the inorganic compound layer as the intermediate layer include silicon oxide, gallium oxide, aluminum oxide, zirconium oxide, hafnium oxide, tantalum oxide, cerium oxide, and titanium oxide. oxide, zinc oxide, tin oxide, magnesium oxide, yttrium oxide, niobium oxide, magnesium fluoride, lithium fluoride, calcium fluoride, barium fluoride, lanthanum fluoride and cerium fluoride.
  • a material having a higher refractive index than the first inorganic compound is preferable.
  • inorganic compounds examples include aluminum oxide, zirconium oxide, hafnium oxide, tantalum oxide, cerium oxide, titanium oxide, zinc oxide, tin oxide, magnesium oxide, yttrium oxide, and niobium oxide. inorganic oxides, lanthanum fluoride, cerium fluoride, and the like.
  • the refractive index of the inorganic compound layer as an intervening layer is preferably 1.60 or higher, more preferably 1.65 or higher. On the other hand, it is, for example, 2.00 or less, and may be 1.80 or less.
  • the thickness of the inorganic compound layer as the intermediate layer is not particularly limited, but is preferably 10 nm or more and 500 nm or less, more preferably 30 nm or more and 300 nm or less.
  • the laminate for a display device according to the present embodiment can be used as a front plate in a display device, which is arranged closer to the viewer than the display panel. Since the laminate for a display device according to the present embodiment has excellent bending resistance and wear resistance, it can be suitably used as a front plate of a flexible display device such as a foldable display, a rollable display, and a bendable display. In particular, the laminate for a display device according to the present embodiment can improve bending resistance, and thus can be suitably used for a front panel of a foldable display.
  • the thickness of the display device laminate in the present embodiment is, for example, preferably 10 ⁇ m or more and 500 ⁇ m or less, more preferably 20 ⁇ m or more and 400 ⁇ m or less, and even more preferably 30 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of the laminate for a display device is within the above range, the flexibility can be enhanced.
  • the display device laminate in the present embodiment is used as a front plate in a display device such as a smartphone, a tablet terminal, a wearable terminal, a personal computer, a television, a digital signage, a public information display (PID), or an in-vehicle display. be able to.
  • a display device such as a smartphone, a tablet terminal, a wearable terminal, a personal computer, a television, a digital signage, a public information display (PID), or an in-vehicle display.
  • Second Embodiment The inventors of the present invention conducted repeated studies to improve bending resistance and wear resistance while maintaining low reflectivity of a laminate disposed on the surface of a display device.
  • a fluorine-containing layer containing fluorine atoms is arranged on one surface of the laminate, and an inorganic compound layer having a predetermined fluorine content ratio is used as the low refractive index layer for realizing a low reflectance of the laminate. It has been found that bending resistance and wear resistance can be improved by using an inorganic compound layer having a predetermined relative film density for the high refractive index layer that realizes a low reflectance.
  • the fluorine-containing layer is arranged on one surface of the laminate for a display device, and fluorine in the first inorganic compound layer (low refractive index layer) which is the inorganic compound layer on the fluorine-containing layer side It has been found that wear resistance can be obtained by setting the content ratio within a predetermined range. Furthermore, by setting the relative film density of the second inorganic compound layer (high refractive index layer) to a predetermined low range, it was found that a laminate for a display device having high resistance to stress change and good bending resistance can be obtained. , completed the present invention.
  • the present embodiment is a laminate for a display device having a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer in this order, , the first inorganic compound layer has a first inorganic compound that is a low refractive index material, the content ratio of fluorine atoms is 6.5 atomic % or less, and the second inorganic compound layer has a high It has a second inorganic compound that is a refractive index material, has a relative film density D2 of 0.50 or more and less than 1.00, and is applied to the fluorine-containing layer side surface of the display device laminate at an incident angle of 5°.
  • a laminate for a display device which has a luminous reflectance of 2.0% or less for specularly reflected light when light is incident thereon.
  • the laminate for a display device of this embodiment will be described in detail.
  • FIG. 1 is a schematic cross-sectional view showing an example of the laminate for a display device according to this embodiment.
  • the display device laminate 1b of the present embodiment includes a fluorine-containing layer 2 containing fluorine atoms, a first inorganic compound layer 3, a second inorganic compound layer 4, a substrate 5 and , in that order.
  • the first inorganic compound layer contains the first inorganic compound, which is a low refractive index material, and has a fluorine atom content of 6.5 atomic % or less.
  • the second inorganic compound layer contains a second inorganic compound having a higher refractive index than the first inorganic compound, and has a relative film density D2 of 0.50 or more and less than 1.00. Furthermore, in the display device laminate 1b of the present embodiment, the luminous reflectance of specularly reflected light when light is incident on the surface 1A on the fluorine-containing layer 2 side at an incident angle of 5° is 2.0% or less. be.
  • the laminate for a display device in the present embodiment has a fluorine-containing layer on one surface, and furthermore, the content ratio of fluorine atoms in the first inorganic compound layer is within a predetermined range, so that excellent wear resistance will have This is presumed to be due to the following reasons.
  • FIG. 4A shows the case where the first inorganic compound layer 3 has a low fluorine atom content
  • FIG. 4B shows the first case where the first inorganic compound layer 3 has a high fluorine atom content
  • 2 shows a schematic cross-sectional view of the inorganic compound layer 3 and the fluorine-containing layer 2 of FIG. As shown in FIG.
  • the laminate for a display device has excellent bending resistance because the relative film density D2 of the second inorganic compound layer is within a predetermined low range.
  • the laminate for a display device in the present embodiment includes a first inorganic compound layer that is a low refractive index layer and a second inorganic compound layer that is a high refractive index layer, thereby achieving a predetermined luminous reflectance. will have. Therefore, the laminate for a display device has low reflectivity and excellent bending resistance and abrasion resistance.
  • each configuration in the laminate for display device of the present embodiment will be described in detail.
  • First Inorganic Compound Layer is composed of a first inorganic compound that is a low refractive index material.
  • the first inorganic compound that constitutes the first inorganic compound layer in the present embodiment include those similar to the first inorganic compound in the first embodiment.
  • silicon oxide is preferable from the viewpoint of refractive index and versatility.
  • one type of inorganic compound is preferably contained in the first inorganic compound layer, but a plurality of types of inorganic compounds may be contained.
  • the first inorganic compound layer is preferably a deposited film.
  • a silicon oxide (silica) deposited film is preferred.
  • the content ratio of fluorine atoms in the first inorganic compound layer in the present embodiment is 6.5 atomic % or less.
  • the fluorine atom content is preferably 6.3 atomic % or less, more preferably 5.0 atomic % or less. If the content ratio of fluorine atoms is within the above range, it will have excellent abrasion resistance.
  • the first inorganic compound layer in the present embodiment preferably has a low fluorine atomic ratio. That is, the first inorganic compound layer may not contain fluorine atoms, and the lower limit of the content ratio of fluorine atoms is 0%.
  • the content ratio of fluorine atoms in the first inorganic compound layer is obtained by measuring the first inorganic compound layer by Rutherford Backscattering Spectrometry (RBS) using the measurement apparatus and measurement conditions described above. It is the ratio of fluorine atoms when the total amount of (for example, inorganic elements such as silicon, oxygen, fluorine, etc.) is 100 atomic %.
  • RBS Rutherford Backscattering Spectrometry
  • the refractive index of the first inorganic compound layer in the present embodiment can be the same as the refractive index of the first inorganic compound layer in the first embodiment, so the description here is omitted. .
  • the relative film density D1 of the first inorganic compound layer which is the low refractive index layer, is preferably 0.70 or more and 1.20 or less.
  • the relative film density D1 of the first inorganic compound layer is more preferably 0.75 or more, particularly preferably 0.80 or more. If the relative film density D1 is too low, the fluorine content ratio becomes high, which may result in poor wear resistance. On the other hand, it is more preferably 1.17 or less, particularly preferably 1.15 or less. If the relative film density D1 is too high, the bending resistance may be poor and cracks may occur in the first inorganic compound layer.
  • the method for calculating the relative film density of the inorganic compound layer is the same as the method described in the first embodiment, description thereof is omitted here. Even when the first inorganic compound layer in the present embodiment contains fluorine atoms, the theoretical film density of the inorganic compound layer composed of the first inorganic compound is adopted as the film density (literature value) described later. do.
  • the method for adjusting the relative film density of the first inorganic compound layer within the above range can be the same as the method described in the first embodiment, so the description is omitted here.
  • the thickness of the first inorganic compound layer in the present embodiment is the same as the thickness of the first inorganic compound layer in the first embodiment, and thus the description thereof is omitted here.
  • the method for forming the first inorganic compound layer in this embodiment is the same as the method for forming the first inorganic compound layer in the first embodiment, and thus the description is omitted here.
  • Second Inorganic Compound Layer The content of the second inorganic compound layer in this embodiment is the same as that of the second inorganic compound layer in the first embodiment, and thus the description thereof is omitted here.
  • Fluorine-Containing Layer The content of the fluorine-containing layer in the present embodiment is the same as that of the fluorine-containing layer in the first embodiment, so the description is omitted here.
  • Base Material Layer The content of the base material layer in the present embodiment is the same as that of the base material layer in the first embodiment, so the description thereof is omitted here.
  • Laminate for display device The luminous reflectance, dynamic bending resistance, total light transmittance, and haze of the laminate for a display device in the present embodiment are the same as those in the first embodiment, and are therefore described here. are omitted.
  • the laminate for a display device in the present embodiment includes the above-described fluorine-containing layer 2, the first inorganic compound layer 3, the second inorganic compound layer 4, and the substrate layer 5, in addition to other layers. may have Other layers include other inorganic compound layers, intervening layers, hard coat layers, adhesive layers for attachment, and interlayer adhesive layers.
  • FIG. 2 is a schematic cross-sectional view showing another example of the laminate for a display device according to this embodiment.
  • the display device laminate 1b of the present embodiment includes a fluorine-containing layer 2, a first inorganic compound layer 3, a second inorganic compound layer 4, a substrate layer 5, Furthermore, it is preferable to have another inorganic compound layer 6 (for example, a third inorganic compound layer) and a hard coat layer 7 .
  • FIG. 3 is a schematic cross-sectional view showing an example of a preferred aspect of the laminate for display device in this embodiment.
  • the display device laminate 1b of the present embodiment includes a fluorine-containing layer 2, a first inorganic compound layer 3, a second inorganic compound layer 4, a substrate layer 5, and It is preferable to have an intervening layer 9 having a relative film density D3 of 0.10 or more and 0.70 or less between the second inorganic compound layer 4 and the substrate layer 5 .
  • inorganic compound layers intervening layers, hard coat layers, bonding adhesive layers, and interlayer adhesive layers can be the same as those described in the first embodiment, so descriptions thereof are omitted here.
  • the inventors of the present invention conducted repeated studies to improve bending resistance and wear resistance while maintaining low reflectivity of a laminate disposed on the surface of a display device.
  • a fluorine-containing layer containing fluorine atoms is arranged on one surface of the laminate, and an inorganic compound layer having a predetermined relative film density is used as the low refractive index layer for realizing a low reflectance of the laminate.
  • the high refractive index layer that achieves low reflectance of the body has a predetermined relative film density and uses a dispersion layer of inorganic compound particles having a high refractive index (high refractive index dispersion layer) to improve bending resistance. and wear resistance can be improved.
  • the fluorine-containing layer on one surface of the display device laminate and setting the relative film density of the first inorganic compound layer (low refractive index layer) to a predetermined range. It was found that abrasion resistance can be obtained. Furthermore, between the substrate layer and the first inorganic compound layer, a dispersion layer (high refractive index dispersion layer) of inorganic compound particles having a high refractive index and having a relative film density in a predetermined low range is arranged. Thus, the inventors have found that a laminate for a display device having high resistance to stress change and good bending resistance can be obtained, and have completed the present invention.
  • the present embodiment is a laminate for a display device having a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, and a substrate layer in this order, wherein the first inorganic compound layer has a first inorganic compound that is a low refractive index material, has a relative film density D1 of 0.70 or more and 1.20 or less, and between the first inorganic compound layer and the base layer,
  • the display device has a high refractive index dispersion layer in which inorganic compound particles having a high refractive index are dispersed in a binder resin, and the relative film density D4 of the high refractive index dispersion layer is 0.10 or more and 0.70 or less.
  • a laminate for a display device which has a luminous reflectance of 2.0% or less for specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a display device at an incident angle of 5°.
  • the laminate for a display device of this embodiment will be described in detail.
  • FIG. 5 is a schematic cross-sectional view showing an example of the laminate for a display device according to this embodiment.
  • the display device laminate 1c of the present embodiment includes a fluorine-containing layer 2 containing fluorine atoms, a first inorganic compound layer 3, a high refractive index dispersion layer 10, and a substrate layer. 5 and , in that order.
  • the first inorganic compound layer contains the first inorganic compound, which is a low refractive index material, and has a relative film density D1 of 0.70 or more and 1.20 or less.
  • a high refractive index dispersion layer in which inorganic compound particles having a high refractive index are dispersed in a binder resin is arranged between the base material layer and the first inorganic compound layer.
  • the relative film density D4 of this high refractive index dispersion layer is 0.10 or more and 0.70 or less.
  • the luminous reflectance of specularly reflected light when light is incident on the surface 1A on the fluorine-containing layer 2 side at an incident angle of 5° is 2.0% or less. be.
  • the laminate for a display device has a fluorine-containing layer on one surface, and the relative film density D1 of the first inorganic compound layer is within a predetermined range, thereby exhibiting excellent abrasion resistance.
  • a high refractive index dispersion layer in which inorganic compound particles having a high refractive index are dispersed in a binder resin is arranged between the base material layer and the first inorganic compound layer.
  • the relative film density D4 is within the predetermined low range, the film has excellent bending resistance.
  • the high refractive index dispersion layer contains a binder resin and thus has high flexibility.
  • the laminate for a display device in the present embodiment includes a first inorganic compound layer that is a low refractive index layer and a high refractive index dispersed layer in which inorganic compound particles that are high refractive index particles are dispersed. luminous reflectance. Therefore, the laminate for a display device has low reflectivity and excellent bending resistance and abrasion resistance.
  • First Inorganic Compound Layer The content of the first inorganic compound layer in this embodiment is the same as that of the first inorganic compound layer in the first embodiment, and thus the description thereof is omitted here.
  • the high refractive index dispersion layer is disposed between the first inorganic compound layer and the substrate layer and contains inorganic compound particles having a high refractive index and a binder resin.
  • inorganic Compound Particles and Binder Resin The inorganic compound particles and the binder resin are described in "(a) inorganic compound particles” and "(b) binder resin” in the section "intervening layer" in the first embodiment. Since it is the same as that of 1, description here is abbreviate
  • the relative film density D4 of the high refractive index dispersion layer is 0.10 or more and 0.70 or less, preferably 0.20 or more and 0.60 or less.
  • the calculation method of the relative film density of the high refractive index dispersion layer can be the same as that of the dispersion layer in the above-described first embodiment, so the explanation is omitted here.
  • the relative film density D1 of the first inorganic compound layer and the relative film density D4 of the high refractive index dispersion layer preferably satisfy 1.0 ⁇ D1/D4 ⁇ 12.0.
  • D1/D4 is 1.0 or more, wear resistance tends to improve.
  • D1/D4 is 12.0 or less, the bending resistance is further improved, and the occurrence of cracks in the high refractive index dispersion layer can be suppressed.
  • the refractive index of the high refractive index dispersion layer in the present embodiment is preferably 1.60 or more, more preferably 1.65 or more. On the other hand, it is, for example, 2.00 or less, and may be 1.80 or less.
  • the thickness of the high refractive index dispersion layer is not particularly limited, but is preferably 10 nm or more and 500 nm or less, more preferably 30 nm or more and 300 nm or less.
  • a high refractive index dispersion layer containing inorganic compound particles having a high refractive index and a polymerizable compound is formed on a substrate layer or a hard coat layer described later.
  • a method of applying and curing the resin composition for the dispersion layer may be used.
  • Fluorine-Containing Layer The content of the fluorine-containing layer in the present embodiment is the same as that of the fluorine-containing layer in the first embodiment, so the description is omitted here.
  • Base Material Layer The content of the base material layer in the present embodiment is the same as that of the base material layer in the first embodiment, so the description thereof is omitted here.
  • Laminate for display device (1) Luminous reflectance When light is incident at an incident angle of 5°, the specular reflectance of the incident light has a luminous reflectance of 2.0% or less. It is preferably 1.7% or less, more preferably 1.5% or less. If the luminous reflectance is too high, it is impossible to prevent the viewer from being reflected in the display area.
  • the above luminous reflectance is a value measured by the measuring method described in the first embodiment.
  • the laminate for a display device in this embodiment has bending resistance. Specifically, when the dynamic bending test described in the first embodiment is performed on the display device laminate, it is preferable that the display device laminate does not crack or break.
  • a dynamic bending test was repeated 200,000 times in which the display device laminate 1 was folded 180° so that the distance d between the opposing short sides 1C and 1D was 5 mm. It is preferable that no cracking or breakage occurs when it is repeatedly repeated 500,000 times. Above all, it is preferable that no cracks or breaks occur when a dynamic bending test is repeated 200,000 times in which the display device laminate is folded 180° so that the distance d between the opposing short sides 1C and 1D is 4 mm. .
  • the display laminate may be folded so that the fluorine-containing layer is on the outside, or the display laminate may be folded so that the fluorine-containing layer is on the inside. Even so, it is preferable that the display device laminate does not crack or break.
  • the laminate for a display device in the present embodiment preferably has a total light transmittance of, for example, 85% or more, more preferably 88% or more, and 90% or more. It is even more preferable to have Due to such a high total light transmittance, a laminate for a display device with good transparency can be obtained.
  • the haze of the laminate for a display device in the present embodiment is, for example, preferably 5% or less, more preferably 2% or less, and even more preferably 1% or less. Such a low haze makes it possible to obtain a laminate for a display device with good transparency.
  • the total light transmittance and haze of the display device laminate are values measured by the measurement method described in the first embodiment.
  • the laminate for a display device in the present embodiment includes, in addition to the fluorine-containing layer 2, the first inorganic compound layer 3, the high refractive index dispersion layer 10, and the substrate layer 5, other layers. may have.
  • Other layers include hard coat layers, lamination adhesive layers and interlayer adhesive layers.
  • the laminate for a display device in the present embodiment preferably has a hard coat layer between the high refractive index dispersion layer and the substrate layer.
  • the hard coat layer, the bonding adhesive layer, and the interlayer adhesive layer can be the same as those described in the first embodiment, so descriptions thereof will be omitted here.
  • a display device includes a display panel and a display device according to any one of the above-described first, second, and third embodiments, which is arranged on the observer side of the display panel. and a laminate.
  • FIG. 6 is a schematic cross-sectional view showing an example of a display device according to the present disclosure.
  • the display devices 20a to 20c include a display panel 21 and the display device laminate 1a of the first embodiment arranged on the observer side of the display panel 21. , the display device laminate 1b of the second embodiment, or the display device laminate 1c of the third embodiment.
  • the display device laminates 1a, 1b, 1c and the display panel 21 can be bonded together via the bonding adhesive layer 8 of the display device laminate 1, for example.
  • the flexible display device includes a laminate for a display device having low reflectivity, and therefore has improved visibility. Furthermore, since the laminate for a display device has excellent bending resistance and wear resistance, it is less likely to be scratched and display defects are suppressed even when repeatedly bent.
  • the laminate for a display device according to the present disclosure is arranged on the surface of the display device, it is arranged so that the fluorine-containing layer is on the outside and the substrate layer is on the inside.
  • the method of disposing the laminate for a display device according to the present disclosure on the surface of the display device is not particularly limited, but includes, for example, a method of interposing an adhesive layer.
  • Examples of the display panel in the present disclosure include display panels used in display devices such as organic EL display devices and liquid crystal display devices.
  • the display device according to the present disclosure can have a touch panel member between the display panel and the laminate for display device.
  • the display device in the present disclosure is preferably a flexible display device such as a foldable display, a rollable display, or a bendable display.
  • the display device in the present disclosure is preferably foldable. That is, the display device in the present disclosure is preferably a foldable display.
  • composition of resin composition for hard coat layer ⁇ Pentaerythritol acrylate (product name “A-9550”, manufactured by Shin-Nakamura Chemical Co., Ltd.): 87 parts by mass ⁇ Pentaerythritol acrylate (product name “A-TMM-3L”, manufactured by Shin-Nakamura Chemical Co., Ltd.): 13 parts by mass ⁇ Polymerization Initiator (1-hydroxycyclohexylphenyl ketone, product name "Omnirad 184", manufactured by IGM Resins B.V.): 4 parts by mass Silica particles (average primary particle diameter 12 nm, manufactured by Nissan Chemical Industries, Ltd.): 40 parts by mass ( 100% solid content conversion value) ⁇ Methyl isobutyl ketone: 210 parts by mass
  • a second inorganic compound layer and a first inorganic compound layer were formed in this order on the hard coat layer.
  • the first inorganic compound layer and the second inorganic compound layer were formed by vacuum deposition using the constituent materials shown in Table 1 and at the film forming speed shown in Table 1.
  • Tables 1 and 2 show the constituent materials, thicknesses, deposition rates and refractive indices of the first inorganic compound layer and the second inorganic compound layer.
  • Examples 1-12 to 1-16, Comparative Examples 1-11 to 1-14 A hard coat layer, a third inorganic compound layer, a second inorganic compound layer, a first inorganic compound layer, and a fluorine-containing layer (thickness: 7 nm) were formed in this order on the substrate layer.
  • Tables 1 and 2 show the constituent materials, thicknesses, deposition rates and refractive indices of the first to third inorganic compound layers.
  • the methods of forming the substrate layer, hard coat layer and fluorine-containing layer used are the same as in Example 1-1 above.
  • Examples 1-17 to 1-19, Comparative Examples 1-15 to 1-16 A hard coat layer, a fourth inorganic compound layer, a third inorganic compound layer, a second inorganic compound layer, a first inorganic compound layer, and a fluorine-containing layer (thickness: 7 nm) are formed in this order on the substrate layer. bottom.
  • Tables 1 and 2 show the constituent materials, thicknesses, deposition rates and refractive indices of the first to fourth inorganic compound layers. The methods of forming the substrate layer, hard coat layer and fluorine-containing layer used were the same as in Example 1-1.
  • Example 1-1 A hard coat layer, a first inorganic compound layer, and a fluorine-containing layer (thickness: 7 nm) were formed in this order on the substrate layer.
  • Table 2 shows the constituent material, thickness, deposition rate and refractive index of the first inorganic compound layer. The methods of forming the substrate layer, hard coat layer and fluorine-containing layer used were the same as in Example 1-1.
  • Example 1-2 A hard coat layer, a second inorganic compound layer, and a fluorine-containing layer (thickness: 7 nm) were formed in this order on the substrate layer.
  • Table 2 shows the constituent material, thickness, deposition rate and refractive index of the second inorganic compound layer. The methods of forming the substrate layer, hard coat layer and fluorine-containing layer used were the same as in Example 1-1.
  • the abrasion resistance of the display device laminates obtained in Examples 1-1 to 1-19 and Comparative Examples 1-1 to 1-16 was evaluated by the following evaluation method and evaluation criteria. ⁇ Evaluation method Using Gakushin type rubbing fastness tester AB-301 manufactured by Tester Sangyo Co., Ltd., a laminate with a size of 5 cm ⁇ 10 cm is placed on a glass plate with cellophane tape (registered trademark) so that there are no folds or wrinkles. Fixed.
  • the fixing portions 51 are moved closer to each other, thereby deforming the laminate for display device 1 so as to be folded, and furthermore, as shown in FIG. 7(c), Then, after moving the fixing portion 51 to a position where the distance d between the two opposing short side portions 1C and 1D fixed by the fixing portion 51 of the display device laminate 1 becomes a predetermined value, the fixing portion 51 is removed. Deformation of the display device laminate 1 was eliminated by moving in the opposite direction. By moving the fixing portion 51 as shown in FIGS. 7A to 7C, the stack 1 for a display device was repeatedly folded by 180°.
  • the distance d between the two opposing short sides 1C and 1D of the display device laminate 1 was 6 mm ( ⁇ 6 mm dynamic bending test) or 10 mm ( ⁇ 10 mm dynamic bending test). Also, the laminate was bent so that the fluorine-containing layer was on the outside. The results of the dynamic bending test were evaluated according to the following criteria.
  • Example 2-1 to 2-24 Comparative Examples 2-1 to 2-8
  • a hard coat layer was formed on the substrate layer in the same manner as in Example 1-1.
  • a dispersion layer resin composition containing inorganic compound particles and a polymerizable compound (aliphatic urethane acrylate) was obtained with the following composition.
  • the types of inorganic compound particles shown in Tables 5 and 6 were used, and the blending amount of the inorganic compound particles was varied.
  • composition of resin composition for dispersion layer ⁇ Aliphatic urethane acrylate (product name “EBECRYL225”, manufactured by Daicel Ohnex): 74 parts by mass ⁇ Pentaerythritol (tri/tetra) acrylate (product name “PETIA”, manufactured by Daicel Ohnex): 26 parts by mass ⁇ Polymerization Initiator (1-hydroxycyclohexylphenyl ketone, product name “Omnirad 184", manufactured by IGM Resins B.V.): 4 parts by mass Inorganic compound particles (average primary particle size 10 nm, manufactured by Resinocolor): Type of inorganic compound particles and the blending amount (parts by mass (converted to 100% solid content)) are shown in Tables 5 and 6 Methyl isobutyl ketone: 300 parts by mass
  • a coating film was formed by applying the resin composition for the dispersion layer onto the hard coat layer. Then, this coating film was dried and cured to form a dispersion layer having the thickness and refractive index shown in Tables 5 and 6.
  • a second inorganic compound layer and a first inorganic compound layer were formed in this order on the dispersion layer.
  • the second inorganic compound layer was formed by vacuum deposition using the constituent materials shown in Tables 5 and 6 at the film formation rates shown in Tables 5 and 6.
  • Tables 5 and 6 show the thickness and refractive index of the second inorganic compound layer.
  • the first inorganic compound layer was formed by a vacuum deposition method using the constituent materials shown in Tables 5 and 6 at the film formation rates shown in Tables 5 and 6.
  • Tables 5 and 6 show the thickness and refractive index of the first inorganic compound layer.
  • a fluorine-containing layer having a thickness of 7 nm was formed on the first inorganic compound layer in the same manner as in Example 1-1.
  • the relative film densities D3 of the first inorganic compound layer D1, the second inorganic compound layer D2, and the dispersion layer of the obtained laminate for display device were measured according to "A. Laminate for display device, I. First embodiment, 1. First inorganic compound layer (3) Relative film density D1” and “A. Laminate for display device I. First embodiment 6. Other configurations (5) Intervening layer (i) Relative film density” It was measured.
  • the distance d between the two opposing short sides 1C and 1D of the display device laminate 1 is set to 3 mm ( ⁇ 3 mm dynamic bending test) or 4 mm ( ⁇ 4 mm dynamic bending test), and the lamination
  • the test was conducted with the fluorine-containing layer side of the body as the inside, and the dynamic flexibility was evaluated according to the following evaluation criteria.
  • the distance d between the two opposing short sides 1C and 1D of the display device laminate 1 is set to 4 mm ( ⁇ 4 mm dynamic bending test) or 5 mm ( ⁇ 5 mm dynamic bending test), and the fluorine-containing layer of the laminate
  • the test was conducted with the side facing out, and the dynamic flexibility was evaluated according to the following evaluation criteria.
  • the laminate for a display device after the dynamic bending test was performed with the fluorine-containing layer side facing out, and the display device laminate was attached to a tablet display on which the screen was displayed, and the visibility of the bent portion was confirmed under a fluorescent light. It was evaluated according to the evaluation criteria.
  • Examples 3-1 to 3-6, Comparative Example 3-1 A hard coat layer was formed on the substrate layer in the same manner as in Example 1-1. Next, a third inorganic compound layer, a second inorganic compound layer, and a first inorganic compound layer were formed in this order on the hard coat layer.
  • the third inorganic compound layer was formed by vacuum deposition using ZrO 2 as a constituent material at a deposition rate of 0.26 nm/sec.
  • the third inorganic compound layer had a thickness of 45 nm and a refractive index of 2.00.
  • the second inorganic compound layer was formed by vacuum deposition using Nb 2 O 5 as a constituent material at a film forming rate of 0.26 nm/sec.
  • the second inorganic compound layer had a thickness of 75 nm and a refractive index of 2.30.
  • the first inorganic compound layer was formed by a vacuum deposition method using SiO 2 as a constituent material at a film formation rate shown in Table 9.
  • the first inorganic compound layer had a thickness of 80 nm and a refractive index of 1.47.
  • a fluorine-containing layer having a thickness of 7 nm was formed on the first inorganic compound layer.
  • a laminate having a substrate layer, a hard coat layer, a third inorganic compound layer, a second inorganic compound layer, a first inorganic compound layer and a fluorine-containing layer in this order was obtained.
  • Example 3-7 Comparative Example 3-2
  • a laminate was obtained in the same manner as in Example 3-1, except that the following antistatic agent-containing resin composition for hard coat layer was used to form the hard coat layer.
  • composition of resin composition for antistatic agent-containing hard coat layer ⁇ Pentaerythritol acrylate (product name “A-9550”, manufactured by Shin-Nakamura Chemical Co., Ltd.): 87 parts by mass ⁇ Pentaerythritol acrylate (product name “A-TMM-3L”, manufactured by Shin-Nakamura Chemical Co., Ltd.): 13 parts by mass ⁇ Polymerization Initiator (1-hydroxycyclohexylphenyl ketone, product name “Omnirad 184", manufactured by IGM Resins B.V.): 4 parts by mass Silica particles (average primary particle diameter 12 nm, manufactured by Nissan Chemical Industries, Ltd.): 40 parts by mass ( 100% solid content conversion value) ⁇ Methyl isobutyl ketone: 190 parts by mass ⁇ Antistatic agent (product name “MT-2”, manufactured by Arakawa Chemical Industries, Ltd.): 3 parts by mass (converted to 100% solid content)
  • the relative film densities of the first inorganic compound layer and the second inorganic compound layer of the obtained laminate for display device were calculated as follows: "A. Laminate for display device I. First embodiment 1. First inorganic compound layer (3) Relative film density D1”. Further, the content ratio of fluorine atoms in the first inorganic compound layer is the content ratio of fluorine atoms described in "A. Laminate for display device II. Second embodiment 1. First inorganic compound layer (2) Content ratio of fluorine atoms" method. Table 9 shows the measurement results of the relative film density D1 and the fluorine atom content ratio of the first inorganic compound layer. The relative film density D2 of the second inorganic compound layer was 0.58.
  • the laminate was cut into a size of 100 mm ⁇ 100 mm to prepare a test piece.
  • the applied voltage was set to 1000 V according to JIS K6911: 1995, and the laminate was placed on the register table.
  • the surface opposite to the fluorine-containing layer side is brought into contact and fixed with cellophane tape (registered trademark) so that there are no folds or wrinkles, and the URS probe of the resistivity meter is brought into contact with the surface of the laminate on the fluorine-containing layer side.
  • the surface resistance value was measured by The surface resistance value was obtained by measuring the surface resistance value at 10 points at random on the surface of the laminate on the fluorine-containing layer side, and taking the arithmetic mean value of the measured surface resistance values at 10 points.
  • Examples 3-1 to 3-6 wear resistance and bending resistance confirmed to be excellent. It was confirmed that even when a hard coat layer material containing an antistatic agent was used, the abrasion resistance and bending resistance were excellent (Examples 3-7). On the other hand, Comparative Examples 3-1 and 3-2 have good dynamic flexibility and crack elongation, but have poor wear resistance because the content ratio of fluorine atoms in the first inorganic compound layer is high. was confirmed.
  • Example 4-1 to 4-3 Comparative Example 4-1
  • a hard coat layer was formed on the substrate layer in the same manner as in Example 1-1.
  • a coating film was formed by applying the resin composition for the dispersion layer onto the hard coat layer. Then, this coating film was dried and cured to form a dispersion layer having a thickness of 100 nm.
  • a first inorganic compound layer was formed on the dispersion layer.
  • the first inorganic compound layer was formed by a vacuum deposition method using the constituent materials shown in Table 10 at the film formation rate shown in Table 10.
  • Table 10 shows the thickness and refractive index of the first inorganic compound layer.
  • a fluorine-containing layer having a thickness of 7 nm was formed on the first inorganic compound layer in the same manner as in Example 1-1.
  • a laminate having a substrate layer, a hard coat layer, a high refractive index dispersion layer, a first inorganic compound layer, and a fluorine-containing layer in this order was obtained.
  • the relative film densities D4 of the first inorganic compound layer D1 and the high-refractive-index dispersion layer of the obtained laminate for display device were calculated as follows: "A. Laminate for display device I. First embodiment 1. First inorganic compound Layer (3) Relative film density D1” and “A. Laminate for display device I. First embodiment 6. Other configurations (5) Intervening layer (i) Relative film density” were measured.
  • Examples 4-1 to 4-3 in which the relative film density D4 of the high refractive index dispersion layer is 0.10 or more and 0.70 or less are superior to Comparative Example 4-1 in wear resistance and bending It was confirmed that the resistance is excellent.
  • a laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer
  • the first inorganic compound layer has a first inorganic compound that is a low refractive index material, and has a relative film density D1 of 0.70 or more and 1.20 or less
  • the second inorganic compound layer has a second inorganic compound that is a high refractive index material, and has a relative film density D2 of 0.50 or more and less than 1.00
  • a laminate for a display device wherein the luminous reflectance of specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a display device at an incident angle of 5° is 2.0% or less.
  • the relative film density D1 of the first inorganic compound layer, the relative film density D2 of the second inorganic compound layer, and the relative film density D3 of the intervening layer satisfy the relationship D3 ⁇ D2 ⁇ D1, from [9] [11]
  • a laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer
  • the first inorganic compound layer has a first inorganic compound that is a low refractive index material, and has a fluorine atom content of 6.5 atomic % or less
  • the second inorganic compound layer has a second inorganic compound that is a high refractive index material, and has a relative film density D2 of 0.50 or more and less than 1.00
  • a laminate for a display device wherein the luminous reflectance of specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a display device at an incident angle of 5° is 2.0% or less.
  • a laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, and a substrate layer
  • the first inorganic compound layer has a first inorganic compound that is a low refractive index material, and has a relative film density D1 of 0.70 or more and 1.20 or less
  • a high refractive index dispersion layer in which inorganic compound particles having a high refractive index are dispersed in a binder resin,
  • the relative film density D4 of the high refractive index dispersion layer is 0.10 or more and 0.70 or less
  • a laminate for a display device wherein the luminous reflectance of specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a display device at an incident angle of 5° is 2.0% or less.
  • a display device comprising: the laminate for a display device according to any one of [1] to [33], which is arranged on the viewer side of the display panel.
  • SYMBOLS 1a, 1b, 1c Laminate for display devices 2... Fluorine-containing layer 3... First inorganic compound layer 4... Second inorganic compound layer 5... Base material layer 6... Third inorganic compound layer 7... Hard coat layer DESCRIPTION OF SYMBOLS 8... Adhesive layer for sticking 9... Intervening layer 10... High refractive index dispersion layer 20a, 20b, 20c... Flexible display device 21... Display panel

Abstract

The present disclosure provides a multilayer body for display devices, the multilayer body sequentially comprising a fluorine-containing layer, a first inorganic compound layer, a second inorganic compound layer and a base material layer in this order. With respect to this multilayer body for display devices, the first inorganic compound layer contains a first inorganic compound that serves as a low refractive index material, while having a relative film density D1 of 0.70 to 1.20; the second inorganic compound layer contains a second inorganic compound that serves as a high refractive index material, while having a relative film density D2 of not less than 0.50 but less than 1.00; and if light is incident on the fluorine-containing layer-side surface of this multilayer body for display devices at an incident angle of 5°, the luminous reflectance of specularly reflected light is 2.0% or less.

Description

表示装置用積層体および表示装置Laminate for display device and display device
 本開示は、表示装置用積層体および表示装置に関する。 The present disclosure relates to a laminate for a display device and a display device.
 一般に、表示を目的とするディスプレイ等の表示装置は、太陽光及び蛍光灯等の外光の表示画面への写り込みを防止したり、文字や画像の視認性改善のため、表面の低反射率化が求められている。また、表示装置には、傷が付きにくいように耐摩耗性が求められる。 In general, display devices such as displays for display purposes have a surface with low reflectance to prevent external light such as sunlight and fluorescent lamps from reflecting on the display screen, and to improve the visibility of characters and images. transformation is required. In addition, the display device is required to have abrasion resistance so that it is hard to be scratched.
 特許文献1には、樹脂フィルムと、ハードコート層と、無機酸化物層とを少なくとも有する反射防止積層体であって、積層体の鉛筆硬度が4H以上で剛性が8.0N・mm以上でヌープ硬度が150~300mN/mmである反射防止積層体が開示されており、ディスプレイ表面に貼合することで、ディスプレイ表面の映り込みを効果的に抑えながら充分な耐擦傷性を付与することができることが記載されている。 Patent Document 1 discloses an antireflection laminate having at least a resin film, a hard coat layer, and an inorganic oxide layer, wherein the laminate has a pencil hardness of 4H or more and a rigidity of 8.0 N mm or more, and a Knoop An antireflection laminate having a hardness of 150 to 300 mN/mm 2 is disclosed, and by laminating it to the surface of a display, it is possible to effectively suppress reflections on the surface of the display while imparting sufficient scratch resistance. It states what you can do.
 最近では、フォルダブルディスプレイ、ローラブルディスプレイ、ベンダブルディスプレイ等のフレキシブル表示装置が注目されており、フレキシブル表示装置の表面に配置される積層体の開発が盛んに進められている。 Recently, flexible display devices such as foldable displays, rollable displays, and bendable displays have been attracting attention, and the development of laminates to be placed on the surface of flexible display devices is being actively promoted.
WO2018-179757号公報WO2018-179757 publication
 上述したように、表示装置の表面に配置される積層体には、高い耐摩耗性が求められる。しかし、積層体の硬度を高くすると傷は付きにくくなるが、曲げに対して脆くなり、積層体の製造時や搬送時に、割れ(クラック)が生じる場合がある。特に、フレキシブル表示装置には、繰り返し屈曲させても表示不良が発生しないことが求められ、フレキシブル表示装置の表面に配置される積層体には、繰り返し屈曲させたときにクラックや剥がれが生じない屈曲耐性が求められる。一方、表示装置用の積層体を低硬度化すると、耐摩耗性が悪化する場合がある。
 このように、表示装置用の積層体には、低反射性を維持した状態で、屈曲耐性と耐摩耗性を両立することができないという問題がある。
As described above, the laminate arranged on the surface of the display device is required to have high abrasion resistance. However, when the hardness of the laminate is increased, it becomes difficult to be scratched, but the laminate becomes brittle against bending, and cracks may occur during the production or transportation of the laminate. In particular, flexible display devices are required to have no display defects even when repeatedly bent. Endurance is required. On the other hand, if the hardness of the laminate for display devices is lowered, the wear resistance may deteriorate.
As described above, the laminate for a display device has a problem that it is impossible to achieve both bending resistance and abrasion resistance while maintaining low reflectivity.
 本開示は、上記問題に鑑みてなされたものであり、低反射性を有し、かつ、優れた屈曲耐性と耐摩耗性を有する表示装置用積層体を提供することを主目的とする。 The present disclosure has been made in view of the above problems, and a main object thereof is to provide a laminate for a display device that has low reflectivity and excellent bending resistance and abrasion resistance.
 本開示の一実施形態は、フッ素原子を含有するフッ素含有層と、第1の無機化合物層と、第2の無機化合物層と、基材層と、をこの順に有する表示装置用積層体であって、上記第1の無機化合物層は、低屈折率材料である第1の無機化合物を有し、相対膜密度D1が0.70以上1.20以下であり、上記第2の無機化合物層は、高屈折率材料である第2の無機化合物を有し、相対膜密度D2が0.50以上1.00未満であり、上記表示装置用積層体の上記フッ素含有層側の面に入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である、表示装置用積層体を提供する。 One embodiment of the present disclosure is a laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer. The first inorganic compound layer has a first inorganic compound that is a low refractive index material, the relative film density D1 is 0.70 or more and 1.20 or less, and the second inorganic compound layer is , a second inorganic compound that is a high refractive index material, a relative film density D2 of 0.50 or more and less than 1.00, and an incident angle of 5 on the surface of the display device laminate on the fluorine-containing layer side. Provided is a laminate for a display device, which has a luminous reflectance of 2.0% or less for specularly reflected light when light is incident at 100°.
 本開示の一実施形態は、フッ素原子を含有するフッ素含有層と、第1の無機化合物層と、第2の無機化合物層と、基材層と、をこの順に有する表示装置用積層体であって、上記第1の無機化合物層は、低屈折率材料である第1の無機化合物を有し、フッ素原子の含有比率が6.5原子%以下であり、上記第2の無機化合物層は、高屈折率材料である第2の無機化合物を有し、相対膜密度D2が0.50以上1.00未満であり、上記表示装置用積層体の上記フッ素含有層側の面に入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である、表示装置用積層体を提供する。 One embodiment of the present disclosure is a laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer. The first inorganic compound layer has a first inorganic compound that is a low refractive index material and has a fluorine atom content of 6.5 atomic % or less, and the second inorganic compound layer is It has a second inorganic compound that is a high refractive index material, has a relative film density D2 of 0.50 or more and less than 1.00, and has an incident angle of 5° on the fluorine-containing layer side surface of the laminate for a display device. Provided is a laminate for a display device, which has a luminous reflectance of 2.0% or less for specularly reflected light when light is incident at .
 本開示の一実施形態は、フッ素原子を含有するフッ素含有層と、第1の無機化合物層と、基材層と、をこの順に有する表示装置用積層体であって、上記第1の無機化合物層は、低屈折率材料である第1の無機化合物を有し、相対膜密度D1が0.70以上1.20以下であり、上記第1の無機化合物層と上記基材層との間に、高屈折率を有する無機化合物粒子がバインダー樹脂に分散された高屈折率分散層を有し、上記高屈折率分散層の相対膜密度D4が0.10以上0.70以下であり、上記表示装置用積層体の上記フッ素含有層側の面に入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である、表示装置用積層体を提供する。 One embodiment of the present disclosure is a laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, and a substrate layer, wherein the first inorganic compound The layer has a first inorganic compound that is a low refractive index material, has a relative film density D1 of 0.70 or more and 1.20 or less, and is between the first inorganic compound layer and the base layer , a high refractive index dispersion layer in which inorganic compound particles having a high refractive index are dispersed in a binder resin, and the relative film density D4 of the high refractive index dispersion layer is 0.10 or more and 0.70 or less, and the display Provided is a laminate for a display device having a luminous reflectance of 2.0% or less for specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a device at an incident angle of 5°. .
 本開示の他の実施形態は、表示パネルと、上記表示パネルの観察者側に配置された、上述の表示装置用積層体と、を備える、表示装置を提供する。 Another embodiment of the present disclosure provides a display device comprising a display panel and the above-described display device laminate disposed on the viewer side of the display panel.
 本開示は、低反射性を有し、かつ、優れた屈曲耐性と耐摩耗性を有する表示装置用積層体を提供することができる。 The present disclosure can provide a laminate for a display device that has low reflectivity and excellent bending resistance and abrasion resistance.
本開示における第1実施形態および第2実施形態の表示装置用積層体の一例を示す概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing an example of a laminate for a display device according to a first embodiment and a second embodiment of the present disclosure; 本開示における第1実施形態および第2実施形態の表示装置用積層体の他の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing another example of the display device laminate of the first embodiment and the second embodiment of the present disclosure; 本開示における第1実施形態および第2実施形態の表示装置用積層体の他の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing another example of the display device laminate of the first embodiment and the second embodiment of the present disclosure; 第1の無機化合物層のフッ素原子の含有比率の違いを説明する第1の無機化合物層およびフッ素含有層の断面模式図である。FIG. 2 is a schematic cross-sectional view of a first inorganic compound layer and a fluorine-containing layer for explaining a difference in content ratio of fluorine atoms in the first inorganic compound layer. 本開示における第3実施形態の表示装置用積層体の一例を示す概略断面図である。FIG. 10 is a schematic cross-sectional view showing an example of a laminate for a display device according to a third embodiment of the present disclosure; 本開示の表示装置の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a display device of the present disclosure; FIG. 動的屈曲試験の方法を説明するための図である。It is a figure for demonstrating the method of a dynamic bending test.
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Embodiments of the present disclosure will be described below with reference to the drawings and the like. However, the present disclosure can be embodied in many different modes and should not be construed as limited to the description of the embodiments exemplified below. In addition, in order to make the description clearer, the drawings may schematically show the width, thickness, shape, etc. of each part compared to the actual form, but this is only an example and limits the interpretation of the present disclosure. not something to do. In addition, in this specification and each figure, the same reference numerals may be given to the same elements as those described above with respect to the existing figures, and detailed description thereof may be omitted as appropriate.
 本明細書において、ある部材の上に他の部材を配置する態様を表現するにあたり、単に「上に」、あるいは「下に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。また、本明細書において、ある部材の面に他の部材を配置する態様を表現するにあたり、単に「面側に」または「面に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。 In this specification, when expressing a mode of arranging another member on top of a certain member, when simply describing “above” or “below”, unless otherwise specified, 2 includes both cases in which another member is arranged directly above or directly below, and cases in which another member is arranged above or below a certain member via another member. In addition, in this specification, when expressing a mode in which another member is arranged on the surface of a certain member, when simply describing “on the surface side” or “on the surface”, unless otherwise specified, It includes both the case of arranging another member directly above or directly below so as to be in contact with it, and the case of arranging another member above or below a certain member via another member.
 本発明者らは、表示装置の表面に配置される積層体において、低反射性を発現する無機化合物層の屈曲耐性が低い場合があることを知見した。そこで、無機化合物層の応力変化に対する耐性について検討を重ねたところ、無機化合物層の相対膜密度をパラメータとして用いることで、材料毎に、応力変化に対する耐性をどの程度有するかを判断することが可能であることを知見した。具体的には、無機化合物層の膜密度の実測値が文献値に近い(すなわち、相対膜密度が約1である)場合には、材料の違いによる屈曲耐性の差はほぼ無いことを知見した。さらに、膜密度の文献値が高い材料であっても、膜密度が文献値に対して低い場合(すなわち、相対膜密度が低い)には、無機化合物層の屈曲耐性が向上することを知見した。 The inventors of the present invention have found that, in a laminated body arranged on the surface of a display device, the bending resistance of the inorganic compound layer exhibiting low reflectivity may be low. As a result, we investigated the resistance of the inorganic compound layer to stress changes, and found that by using the relative film density of the inorganic compound layer as a parameter, it is possible to determine the degree of resistance to stress changes for each material. I found out that. Specifically, when the measured value of the film density of the inorganic compound layer is close to the literature value (that is, the relative film density is about 1), it was found that there is almost no difference in bending resistance due to the difference in materials. . Furthermore, even if the material has a high film density in the literature, when the film density is lower than the literature value (that is, the relative film density is low), the bending resistance of the inorganic compound layer is improved. .
 このように相対膜密度が低い場合に、無機化合物層の屈曲耐性が向上するのは、相対膜密度が低い場合は、各元素の周囲にある程度の空隙が存在し、屈曲された際に各元素の移動の自由度が上がることが原因であることが推定される。 The reason why the bending resistance of the inorganic compound layer is improved when the relative film density is low is that when the relative film density is low, there is a certain amount of space around each element, and when the relative film density is low, each element It is presumed that the reason is that the degree of freedom of movement of
 そこで、本発明者らは、表示装置の表面に配置される積層体について、低反射性を維持しながら、屈曲耐性と耐摩耗性を向上させるために検討を重ねたところ、以下の第1実施形態、第2実施形態および第3実施形態の表示装置用積層体の構成であれば、屈曲耐性と耐摩耗性を向上させることができることを見出した。 Therefore, the inventors of the present invention conducted repeated studies to improve bending resistance and wear resistance while maintaining low reflectivity for a laminate disposed on the surface of a display device. It was found that the configuration of the laminate for a display device according to the second embodiment and the third embodiment can improve bending resistance and abrasion resistance.
A.表示装置用積層体
I.第1実施形態
 本発明者らは、表示装置の表面に配置される積層体について、低反射性を維持しながら、屈曲耐性と耐摩耗性を向上させるために検討を重ねたところ、積層体の低反射率化を実現する低屈折率層と高屈折率層に、それぞれ所定の相対膜密度を有する無機化合物層を用い、さらに、表示装置用積層体の一方の面にフッ素原子を含有するフッ素含有層を配置することにより、屈曲耐性と耐摩耗性を向上させることができることを見出した。
A. Laminate for display device I. First Embodiment The inventors of the present invention conducted repeated studies to improve bending resistance and wear resistance while maintaining low reflectivity for a laminate disposed on the surface of a display device. An inorganic compound layer having a predetermined relative film density is used for each of the low refractive index layer and the high refractive index layer that realizes low reflectance, and fluorine containing fluorine atoms is provided on one surface of the laminate for a display device. It has been found that arranging the inclusion layer can improve bending resistance and abrasion resistance.
 具体的には、表示装置用積層体の一方の面に上記フッ素含有層を配置し、かつ、上記フッ素含有層側の無機化合物層である第1の無機化合物層(低屈折率層)の相対膜密度を所定の範囲とすることで、耐摩耗性が得られることを見出した。さらに、第2の無機化合物層(高屈折率層)の相対膜密度を所定の低い範囲とすることで、応力変化に対する耐性が強く、屈曲耐性が良好な表示装置用積層体となることを見出し、本発明を完成させた。以下、本実施形態の表示装置用積層体について、詳細に説明する。 Specifically, the fluorine-containing layer is disposed on one surface of the laminate for a display device, and the first inorganic compound layer (low refractive index layer) which is the inorganic compound layer on the fluorine-containing layer side is relative to It was found that abrasion resistance can be obtained by setting the film density within a predetermined range. Furthermore, by setting the relative film density of the second inorganic compound layer (high refractive index layer) to a predetermined low range, it was found that a laminate for a display device having high resistance to stress change and good bending resistance can be obtained. , completed the present invention. Hereinafter, the laminate for a display device of this embodiment will be described in detail.
 図1は、本実施形態における表示装置用積層体の一例を示す概略断面図である。図1に示すように、本実施形態の表示装置用積層体1aは、フッ素含有層2と、第1の無機化合物層3と、第2の無機化合物層4と、基材層5と、をこの順に有する。本実施形態において、第1の無機化合物層は、低屈折率材料である第1の無機化合物を含み、相対膜密度D1が0.70以上1.20以下である。さらに、第2の無機化合物層は、第1の無機化合物よりも屈折率が高い第2の無機化合物を含み、相対膜密度D2が0.50以上1.00未満である。さらに、本実施形態における表示装置用積層体1aは、フッ素含有層2側の面1Aに入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である。 FIG. 1 is a schematic cross-sectional view showing an example of the laminate for a display device according to this embodiment. As shown in FIG. 1, the display device laminate 1a of the present embodiment includes a fluorine-containing layer 2, a first inorganic compound layer 3, a second inorganic compound layer 4, and a substrate layer 5. have in this order. In the present embodiment, the first inorganic compound layer contains the first inorganic compound, which is a low refractive index material, and has a relative film density D1 of 0.70 or more and 1.20 or less. Furthermore, the second inorganic compound layer contains a second inorganic compound having a higher refractive index than the first inorganic compound, and has a relative film density D2 of 0.50 or more and less than 1.00. Furthermore, in the laminate 1a for a display device according to the present embodiment, the luminous reflectance of specularly reflected light when light is incident on the surface 1A on the fluorine-containing layer 2 side at an incident angle of 5° is 2.0% or less. be.
 本実施形態における表示装置用積層体は、一方の表面にフッ素含有層を有し、さらに、第1の無機化合物層の相対膜密度D1が所定の範囲であることにより、優れた耐摩耗性を有するものとなる。さらに、第2の無機化合物層の相対膜密度D2が所定の低い範囲であることにより、優れた屈曲耐性を有するものとなる。また、本実施形態における表示装置用積層体は、低屈折率層である第1の無機化合物層と高屈折率層である第2の無機化合物層を含むことにより、所定の視感反射率を有するものとなる。
 従って、低反射性を有し、かつ、優れた屈曲耐性と耐摩耗性を有する表示装置用積層体となる。以下、本実施形態の表示装置用積層体における各構成について、詳細に説明する。
The laminate for a display device according to the present embodiment has a fluorine-containing layer on one surface, and the relative film density D1 of the first inorganic compound layer is within a predetermined range, thereby exhibiting excellent abrasion resistance. will have. Furthermore, by setting the relative film density D2 of the second inorganic compound layer to be within a predetermined low range, excellent bending resistance can be obtained. In addition, the laminate for a display device in the present embodiment includes a first inorganic compound layer that is a low refractive index layer and a second inorganic compound layer that is a high refractive index layer, thereby achieving a predetermined luminous reflectance. will have.
Therefore, the laminate for a display device has low reflectivity and excellent bending resistance and abrasion resistance. Hereinafter, each configuration in the laminate for display device of the present embodiment will be described in detail.
1.第1の無機化合物層
(1)第1の無機化合物
 第1の無機化合物層は、低屈折率材料である第1の無機化合物から構成される。本明細書において、無機化合物層とは、無機化合物を主体とする層であり、バインダー樹脂に無機化合物粒子が分散された層等とは区別される。第1の無機化合物層を構成する第1の無機化合物としては、第2の無機化合物層を構成する第2の無機化合物よりも屈折率が低い無機化合物であれば特に限定されないが、好ましくは、ケイ素酸化物、ガリウム酸化物等の無機酸化物、フッ化マグネシウム、フッ化リチウム、フッ化カルシウム、フッ化バリウム等が挙げられる。本実施形態においては、中でも、ケイ素酸化物が屈折率や汎用性の観点から好ましい。
1. First Inorganic Compound Layer (1) First Inorganic Compound The first inorganic compound layer is composed of a first inorganic compound that is a low refractive index material. In this specification, the inorganic compound layer is a layer mainly composed of an inorganic compound, and is distinguished from a layer in which inorganic compound particles are dispersed in a binder resin. The first inorganic compound constituting the first inorganic compound layer is not particularly limited as long as it is an inorganic compound having a lower refractive index than the second inorganic compound constituting the second inorganic compound layer, but preferably Inorganic oxides such as silicon oxides and gallium oxides, magnesium fluoride, lithium fluoride, calcium fluoride, barium fluoride and the like can be mentioned. In this embodiment, among others, silicon oxide is preferable from the viewpoint of refractive index and versatility.
 なお、無機酸化物の平均組成は、例えば、MOx(ただし、式中、Mは金属元素を表し、xの値は、金属元素によってそれぞれ範囲がことなる。)で表される。例えばケイ素酸化物の平均組成はSiOxで表され、式中、xは、0<x≦2をとることができ、1≦x≦2が好ましく、より好ましくは、SiOとなる。本実施形態においては、無機酸化物の平均組成は、上述したように化学量論的に最適なものに限定されるものではない。 The average composition of the inorganic oxide is represented by, for example, MOx (wherein M represents a metal element, and the value of x varies depending on the metal element). For example, the average composition of silicon oxide is represented by SiOx, where x can be 0<x≦2, preferably 1≦x≦2, more preferably SiO 2 . In the present embodiment, the average composition of the inorganic oxide is not limited to the stoichiometric optimum as described above.
 本実施形態において、第1の無機化合物層は、蒸着膜であることが好ましい。特に、ケイ素酸化物(シリカ)蒸着膜であることが好ましい。 In the present embodiment, the first inorganic compound layer is preferably a deposited film. In particular, a silicon oxide (silica) deposited film is preferred.
 また、第1の無機化合物層中に含まれる無機化合物は1種類が好ましいが、複数種類の無機化合物が含まれていてもよい。
 なお、このように複数種類の無機化合物が含まれる場合においては、後述する膜密度(文献値)としては、複数種類の無機化合物の含有比率に応じて計算された膜密度が採用される。
Moreover, one type of inorganic compound is preferably contained in the first inorganic compound layer, but a plurality of types of inorganic compounds may be contained.
In the case where multiple types of inorganic compounds are included in this way, the film density calculated according to the content ratio of multiple types of inorganic compounds is adopted as the film density (literature value) described later.
(2)屈折率
 第1の無機化合物層の屈折率は、1.60以下であることが好ましく、1.50以下であることがより好ましい。一方、例えば、1.30以上であり、1.40以上であってもよい。
(2) Refractive Index The refractive index of the first inorganic compound layer is preferably 1.60 or less, more preferably 1.50 or less. On the other hand, for example, it is 1.30 or more, and may be 1.40 or more.
 なお、本明細書において、各層の屈折率とは、波長550nmの光に対する屈折率をいう。屈折率の測定方法は、エリプソメーターを用いて測定する方法を挙げることができる。エリプソメーターとしては、例えばジョバンーイーボン社製「UVSEL」やテクノ・シナジー社製「DF1030R」等が挙げられる。 In this specification, the refractive index of each layer refers to the refractive index for light with a wavelength of 550 nm. A method of measuring the refractive index can include a method of measuring using an ellipsometer. Examples of the ellipsometer include "UVSEL" manufactured by Jobin-Evon and "DF1030R" manufactured by Techno Synergy.
(3)相対膜密度D1
 本実施形態においては、低屈折率層である第1の無機化合物層の相対膜密度D1は、0.70以上1.20以下である。第1の無機化合物層の相対膜密度D1は、好ましくは0.75以上であり、更に好ましくは0.80以上である。一方、好ましくは1.17以下であり、更に好ましくは1.15以下である。相対膜密度D1が高すぎると、屈曲耐性に劣り、第1の無機化合物層にクラックが発生する場合がある。相対膜密度D1が低すぎると、耐摩耗性に劣る場合がある。
(3) Relative film density D1
In this embodiment, the relative film density D1 of the first inorganic compound layer, which is the low refractive index layer, is 0.70 or more and 1.20 or less. The relative film density D1 of the first inorganic compound layer is preferably 0.75 or more, more preferably 0.80 or more. On the other hand, it is preferably 1.17 or less, more preferably 1.15 or less. If the relative film density D1 is too high, the bending resistance may be poor and cracks may occur in the first inorganic compound layer. If the relative film density D1 is too low, the wear resistance may be poor.
 本明細書において、無機化合物層の相対膜密度は、以下の式により算出される。
相対膜密度=膜密度(実測値)/膜密度(文献値)
In this specification, the relative film density of the inorganic compound layer is calculated by the following formula.
Relative film density = film density (measured value) / film density (literature value)
 膜密度の実測値は、下記測定装置および下記測定条件にてラザフォード後方散乱分析(RBS:Rutherford  Backscattering Spectrometry)により測定した面密度、および透過型電子顕微鏡(TEM)により測定した膜厚から求めることができる。ラザフォード後方散乱分析は、ヘリウム(He)等の軽元素イオンを高いエネルギーで試料に照射した際、後方に散乱される軽元素イオンのエネルギー値を検出することで、試料中に含まれる元素の種類や存在量を測定する方法である。 The measured value of the film density can be obtained from the surface density measured by Rutherford Backscattering Spectrometry (RBS) under the following measurement equipment and the following measurement conditions, and the film thickness measured by a transmission electron microscope (TEM). can. Rutherford backscattering analysis detects the energy value of the backscattered light element ions when the sample is irradiated with light element ions such as helium (He) at high energy. It is a method to measure the abundance of
 RBS分析から得られた面密度(atoms/cm)と透過型電子顕微鏡(TEM)等により測定した膜厚(cm)から、原子数密度(atoms/cm)を算出し、RBSで決定した組成情報に基づいて換算することで、無機化合物層の密度(g/cm)を算出する。 The atomic number density (atoms/cm 3 ) was calculated from the area density (atoms/cm 2 ) obtained from the RBS analysis and the film thickness (cm) measured by a transmission electron microscope (TEM) or the like, and determined by RBS. The density (g/cm 3 ) of the inorganic compound layer is calculated by performing conversion based on the composition information.
・測定装置:高分解能RBS分析装置(Pelletron 3SDH(National Electrostatics Corporation製))
・測定条件
 入射エネルギー:  2300keV
 入射イオン:    He++
 入射角:      測定面の法線から75°
 検出イオン:    散乱He
 散乱角:      160°
- Measuring device: high-resolution RBS analyzer (Pelletron 3SDH (manufactured by National Electrostatics Corporation))
・Measurement conditions Incident energy: 2300 keV
Incident ions: He ++
Incident angle: 75° from the normal to the measurement surface
Detected ions: Scattered He
Scattering angle: 160°
 無機化合物層の膜密度(文献値)は、理論膜密度であり、代表的な無機化合物層の膜密度の値としては、以下の通りである。
・SiO(2.2g/cm
・ZrO(5.9g/cm
・Nb(4.6g/cm
・Al(4.0g/cm
・TiO(4.3g/cm
・ZnO(5.5g/cm
・SnO(6.9g/cm
 その他の無機化合物層の膜密度(文献値)は、フィラーデータ活用ブック(著者:相馬勲)等の文献やChemicalBook等のリソースプラットフォームに記載の値を採用することができる。
The film density (literature value) of the inorganic compound layer is a theoretical film density, and typical film density values of the inorganic compound layer are as follows.
・SiO 2 (2.2 g/cm 3 )
・ZrO 2 (5.9 g/cm 3 )
- Nb2O5 ( 4.6g / cm3 )
-Al2O3 (4.0 g / cm3 )
・TiO 2 (4.3 g/cm 3 )
・ZnO (5.5 g/cm 3 )
- SnO2 (6.9g/ cm3 )
For other film densities (literature values) of inorganic compound layers, values described in literature such as Filler Data Utilization Book (author: Isao Soma) and resource platforms such as Chemical Book can be adopted.
 なお、実際の無機化合物層の組成が、例えばSiOx(0<x<2)の場合であっても、文献値としては、xが2の化学量論組成であるSiOの膜密度(文献値)を採用する。 Even if the composition of the actual inorganic compound layer is, for example, SiOx (0<x<2), the film density of SiO2 having a stoichiometric composition where x is 2 (literature value ).
 第1の無機化合物層の相対膜密度を上述の範囲に調整する方法としては、例えば、第1の無機化合物層の成膜速度を調整する方法が挙げられる。成膜速度を上げることにより、相対膜密度を下げることができる。また、第1の無機化合物層の組成を変更する方法も挙げられる。 A method for adjusting the relative film density of the first inorganic compound layer within the above range includes, for example, a method for adjusting the film forming speed of the first inorganic compound layer. By increasing the deposition rate, the relative film density can be lowered. A method of changing the composition of the first inorganic compound layer can also be used.
 第1の無機化合物層は、フッ素含有層に由来するフッ素原子を含有していてもよい。一方、第1の無機化合物層のフッ素原子の含有比率は低い方が好ましい。フッ素原子の含有比率が低いことで、第2実施形態で詳述する理由により、第1の無機化合物層の軟化を抑制することができ、耐摩耗性が向上するためである。第1の無機化合物層におけるフッ素原子の含有比率は、後述する第2実施形態に記載の値と同様の値とすることができる。 The first inorganic compound layer may contain fluorine atoms derived from the fluorine-containing layer. On the other hand, the content ratio of fluorine atoms in the first inorganic compound layer is preferably low. This is because when the fluorine atom content is low, softening of the first inorganic compound layer can be suppressed for the reason described in detail in the second embodiment, and abrasion resistance is improved. The content ratio of fluorine atoms in the first inorganic compound layer can be the same value as the value described in the second embodiment described later.
(4)厚み
 第1の無機化合物層の厚みとしては、特に限定されないが、30nm以上、200nm以下であることが好ましく、50nm以上、150nm以下であることがより好ましい。
 ここで、本明細書において、各層の厚さは、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)又は走査透過型電子顕微鏡(STEM)により観察される表示装置用積層体の厚さ方向の断面から測定して得られた任意の10箇所の厚さの平均値とすることができる。
(4) Thickness The thickness of the first inorganic compound layer is not particularly limited, but is preferably 30 nm or more and 200 nm or less, more preferably 50 nm or more and 150 nm or less.
Here, in this specification, the thickness of each layer is the thickness of the display device laminate observed with a transmission electron microscope (TEM), a scanning electron microscope (SEM), or a scanning transmission electron microscope (STEM). It can be an average value of thicknesses at arbitrary 10 points obtained by measuring from cross sections in the same direction.
(5)形成方法
 第1の無機化合物層は、例えば、低屈折率粒子の中から所望の屈折率を有する粒子を選び、真空蒸着法、スパッタリング法、及びイオンプレーティング法等の物理気相成長法(Physical Vapor Deposition法、PVD法)等により形成することができる。これらの中でも、生産性(蒸着速度)の観点から真空蒸着法が好ましい。
(5) Formation method The first inorganic compound layer, for example, selects particles having a desired refractive index from among low refractive index particles, and performs physical vapor deposition such as vacuum deposition, sputtering, and ion plating. method (Physical Vapor Deposition method, PVD method) or the like. Among these, the vacuum deposition method is preferable from the viewpoint of productivity (deposition speed).
 第1の無機化合物層は、フッ素含有層と直接接していることが好ましい。また、第1の無機化合物層は、第2の無機化合物層と直接接していることが好ましい。 The first inorganic compound layer is preferably in direct contact with the fluorine-containing layer. Also, the first inorganic compound layer is preferably in direct contact with the second inorganic compound layer.
2.第2の無機化合物層
(1)第2の無機化合物
 第2の無機化合物層は、第1の無機化合物よりも高屈折率材料である第2の無機化合物から構成される。第2の無機化合物層を構成する第2の無機化合物としては、アルミニウム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、セリウム酸化物、チタン酸化物、亜鉛酸化物、スズ酸化物、マグネシウム酸化物、イットリウム酸化物、ニオブ酸化物等の無機酸化物、フッ化ランタン、フッ化セリウム等が挙げられる。
2. Second Inorganic Compound Layer (1) Second Inorganic Compound The second inorganic compound layer is composed of a second inorganic compound having a higher refractive index than the first inorganic compound. As the second inorganic compound constituting the second inorganic compound layer, aluminum oxide, zirconium oxide, hafnium oxide, tantalum oxide, cerium oxide, titanium oxide, zinc oxide, tin oxide, magnesium Examples include oxides, inorganic oxides such as yttrium oxide and niobium oxide, lanthanum fluoride, and cerium fluoride.
 アルミニウム酸化物の平均組成はAlOxで表され、式中、xは、0<x≦1.5をとることができ、好ましくは、Alである。ジルコニウム酸化物の平均組成はZrOxで表され、式中、xは、0<x≦2をとることができ、好ましくは、ZrOである。ニオブ酸化物の平均組成はNbOxで表され、式中、xは、0<x≦2.5をとることができ、好ましくは、Nbである。 The average composition of aluminum oxide is represented by AlOx, where x can take 0<x≦1.5 and is preferably Al 2 O 3 . The average composition of zirconium oxide is represented by ZrOx, where x can take 0<x≦2 and is preferably ZrO2 . The average composition of niobium oxide is represented by NbOx, where x can take 0<x≦2.5, preferably Nb 2 O 5 .
 第2の無機化合物層は、蒸着膜であることが好ましい。特に、アルミニウム酸化物(アルミナ)蒸着膜、ジルコニウム酸化物蒸着膜、チタン酸化物蒸着膜、亜鉛酸化物蒸着膜、スズ酸化物蒸着膜、およびニオブ酸化物蒸着膜のいずれかであることが好ましい。 The second inorganic compound layer is preferably a deposited film. In particular, any one of an aluminum oxide (alumina) vapor deposition film, a zirconium oxide vapor deposition film, a titanium oxide vapor deposition film, a zinc oxide vapor deposition film, a tin oxide vapor deposition film, and a niobium oxide vapor deposition film is preferable.
 また、第2の無機化合物層中に含まれる無機化合物は1種類が好ましいが、複数種類の無機化合物が含まれていてもよい。 In addition, one type of inorganic compound is preferably contained in the second inorganic compound layer, but a plurality of types of inorganic compounds may be contained.
(2)屈折率
 第2の無機化合物層の屈折率は、1.60以上であることが好ましく、1.80以上であることがより好ましい。一方、例えば3.00以下であり、2.50以下であってもよい。
(2) Refractive Index The refractive index of the second inorganic compound layer is preferably 1.60 or more, more preferably 1.80 or more. On the other hand, it is, for example, 3.00 or less, and may be 2.50 or less.
(3)相対膜密度D2
 高屈折率層である第2の無機化合物層の相対膜密度D2は、0.50以上1.00未満である。本実施形態における相対膜密度D2は、好ましくは、0.60以上であり、更に好ましくは0.70以上である。一方、好ましくは0.95以下であり、更に好ましくは0.90以下である。
 相対膜密度D2が高すぎると、屈曲耐性に劣り、第2の無機化合物層にクラックが発生する場合がある。相対膜密度D2が低すぎると、屈曲後に第2の無機化合物層に剥がれが発生する場合があり、視認性が悪化する場合がある。これは、第2の無機化合物層の密着性が不充分で屈曲時にかかる応力に耐えられなくなるためである。
(3) Relative film density D2
The relative film density D2 of the second inorganic compound layer, which is a high refractive index layer, is 0.50 or more and less than 1.00. The relative film density D2 in this embodiment is preferably 0.60 or more, more preferably 0.70 or more. On the other hand, it is preferably 0.95 or less, more preferably 0.90 or less.
If the relative film density D2 is too high, the bending resistance may be poor and cracks may occur in the second inorganic compound layer. If the relative film density D2 is too low, the second inorganic compound layer may peel off after bending, and the visibility may deteriorate. This is because the adhesion of the second inorganic compound layer is insufficient and the stress applied during bending cannot be endured.
 第2の無機化合物層の相対膜密度を上述の範囲に調整する方法としては、例えば、第2の無機化合物層の成膜速度を調整する方法が挙げられる。成膜速度を上げることにより、相対膜密度を下げることができる。また、第2の無機化合物層の組成を変更する方法も挙げられる。この場合、無機化合物層中の無機化合物の元素比(無機化合物層中の無機酸化物の元素比)を、化学量論的に最適な比率からずらすことにより、相対膜密度を下げることができる。 A method for adjusting the relative film density of the second inorganic compound layer within the above range includes, for example, a method for adjusting the film forming speed of the second inorganic compound layer. By increasing the deposition rate, the relative film density can be lowered. Also, a method of changing the composition of the second inorganic compound layer can be used. In this case, the relative film density can be lowered by shifting the elemental ratio of the inorganic compound in the inorganic compound layer (the elemental ratio of the inorganic oxide in the inorganic compound layer) from the stoichiometrically optimum ratio.
(4)厚み
 第2の無機化合物層の厚みとしては、特に限定されないが、10nm以上、200nm以下であることが好ましく、20nm以上、170nm以下であることがより好ましい。
(4) Thickness The thickness of the second inorganic compound layer is not particularly limited, but is preferably 10 nm or more and 200 nm or less, more preferably 20 nm or more and 170 nm or less.
(5)形成方法
 第2の無機化合物層は、例えば、高屈折率粒子の中から所望の屈折率を有する粒子を選び、真空蒸着法、スパッタリング法、及びイオンプレーティング法等の物理気相成長法(Physical Vapor Deposition法、PVD法)等により形成することができる。これらの中でも、生産性(蒸着速度)の観点から真空蒸着法が好ましい。
(5) Formation method The second inorganic compound layer, for example, selects particles having a desired refractive index from among high refractive index particles, and performs physical vapor deposition such as vacuum deposition, sputtering, and ion plating. method (Physical Vapor Deposition method, PVD method) or the like. Among these, the vacuum deposition method is preferable from the viewpoint of productivity (deposition speed).
 第2の無機化合物層は、第1の無機化合物層と直接接していることが好ましい。また、第2の無機化合物層は、後述する基材層、ハードコート層および、介在層、第3の無機化合物層のいずれかと直接接していることが好ましい。 The second inorganic compound layer is preferably in direct contact with the first inorganic compound layer. Moreover, the second inorganic compound layer is preferably in direct contact with any one of the base material layer, the hard coat layer, the intervening layer, and the third inorganic compound layer, which will be described later.
3.フッ素含有層
 本実施形態におけるフッ素含有層は、第1の無機化合物層の第2の無機化合物層側の面とは反対の面側に配置され、中でも、表示装置用積層体において、フッ素含有層が最表面に配置されていることが好ましい。フッ素含有層は、フッ素原子を含有するものであればよく、フッ素原子を含有することにより、表示装置用積層体に耐摩耗性を付与することができる。具体的には、表示装置用積層体のフッ素含有層側の表面の動摩擦係数を所定の範囲とすることができる。本実施形態における表示装置用積層体のフッ素含有層側の表面の動摩擦係数は、0.01以上0.30以下であることが好ましく、さらに好ましくは0.03以上0.20以下である。動摩擦係数が上記値以下であれば、表面の滑り性が向上し、耐摩耗性がより優れるものとなる。
3. Fluorine-Containing Layer The fluorine-containing layer in the present embodiment is arranged on the side of the first inorganic compound layer opposite to the side of the second inorganic compound layer. is preferably arranged on the outermost surface. The fluorine-containing layer may be any layer as long as it contains fluorine atoms, and by containing fluorine atoms, it is possible to impart abrasion resistance to the display device laminate. Specifically, the coefficient of dynamic friction of the surface of the display device laminate on the fluorine-containing layer side can be set within a predetermined range. The dynamic friction coefficient of the fluorine-containing layer-side surface of the laminate for display device in the present embodiment is preferably 0.01 or more and 0.30 or less, more preferably 0.03 or more and 0.20 or less. If the coefficient of dynamic friction is equal to or less than the above value, the slipperiness of the surface will be improved, and the wear resistance will be more excellent.
 動摩擦係数はJIS K7125:1999(摩擦係数試験方法)に準拠した方法により測定することができる。動摩擦係数の測定方法は、例えば、荷重変動型摩擦摩耗試験システム(新東科学(株)社製  HEIDON Type HHS2000)を用いて、2cm×2cmのカシミアフェルトを用い、荷重200g、速度5mm/secの条件で測定することができる。動摩擦係数の値は、表示装置用積層体のフッ素含有層側の表面において、異なる位置で5点測定し、当該測定値の平均値とする。 The dynamic friction coefficient can be measured by a method conforming to JIS K7125:1999 (friction coefficient test method). The method for measuring the coefficient of dynamic friction is, for example, using a variable load friction and wear test system (HEIDON Type HHS2000 manufactured by Shinto Kagaku Co., Ltd.), using cashmere felt of 2 cm × 2 cm, a load of 200 g, and a speed of 5 mm / sec. conditions can be measured. The coefficient of dynamic friction is measured at five different positions on the surface of the laminate for a display device on the fluorine-containing layer side, and is taken as the average value of the measured values.
 なお、本実施形態において、フッ素含有層の厚さは、比較的薄いことから、薄膜干渉には影響しないものと推量される。フッ素含有層の厚さは、例えば、1nm以上30nm以下であることが好ましく、2nm以上20nm以下であることがより好ましく、3nm以上10nm以下であることがさらに好ましい。 In addition, in this embodiment, since the thickness of the fluorine-containing layer is relatively thin, it is presumed that it does not affect thin film interference. The thickness of the fluorine-containing layer is, for example, preferably 1 nm or more and 30 nm or less, more preferably 2 nm or more and 20 nm or less, and even more preferably 3 nm or more and 10 nm or less.
 フッ素含有層としては、フッ素原子を含有するものであれば特に限定されない。フッ素含有層は、例えば、フッ素化合物を含有していてもよく、フッ素化合物および樹脂を含有していてもよく、フッ素樹脂を含有していてもよい。フッ素化合物としては、例えば、フッ素系防汚剤、フッ素系レベリング剤、フッ素系界面活性剤等として知られているものを用いることができる。フッ素化合物としては、例えば、有機フッ素化合物を挙げることができ、具体的には、パーフルオロ化合物が挙げられる。パーフルオロ化合物としては、例えば、パーフルオロポリエーテル基、パーフルオロアルキレン基、パーフルオロアルキル基等を有するパーフルオロ化合物が挙げられる。パーフルオロアルキレン基およびパーフルオロアルキル基は、直鎖でも分岐鎖でもよい。フッ素化合物は、1種を単独で使用してもよく、2種以上を混合して使用してもよい。 The fluorine-containing layer is not particularly limited as long as it contains fluorine atoms. The fluorine-containing layer may contain, for example, a fluorine compound, may contain a fluorine compound and a resin, or may contain a fluorine resin. As the fluorine compound, for example, those known as fluorine-based antifouling agents, fluorine-based leveling agents, fluorine-based surfactants, and the like can be used. Examples of fluorine compounds include organic fluorine compounds, and specific examples include perfluoro compounds. Perfluoro compounds include, for example, perfluoro compounds having perfluoropolyether groups, perfluoroalkylene groups, perfluoroalkyl groups, and the like. Perfluoroalkylene groups and perfluoroalkyl groups may be linear or branched. A fluorine compound may be used individually by 1 type, and may be used in mixture of 2 or more types.
 また、フッ素化合物は、樹脂成分と結合していることが好ましい。フッ素化合物が樹脂成分と結合していることにより、フッ素化合物のブリードアウトを抑制することができ、耐摩耗性や防汚性を長期に渡って持続することができる。 Also, the fluorine compound is preferably bound to the resin component. By binding the fluorine compound to the resin component, bleeding out of the fluorine compound can be suppressed, and wear resistance and antifouling properties can be maintained over a long period of time.
 フッ素化合物としては、樹脂成分と結合していることが好ましいことから、反応性官能基を有するフッ素化合物が好ましく用いられる。すなわち、フッ素含有層は、反応性官能基を有するフッ素化合物と後述の重合性化合物とを含む樹脂組成物の硬化物を含有することが好ましい。反応性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基や、エポキシ基、オキセタニル基等が挙げられる。 As the fluorine compound, a fluorine compound having a reactive functional group is preferably used because it is preferably bonded to the resin component. That is, the fluorine-containing layer preferably contains a cured product of a resin composition containing a fluorine compound having a reactive functional group and a polymerizable compound to be described later. Examples of reactive functional groups include ethylenically unsaturated bond groups such as (meth)acryloyl groups, vinyl groups, and allyl groups, epoxy groups, and oxetanyl groups.
 フッ素化合物が有する反応性官能基の数は、1以上であればよく、好ましくは2以上である。2以上の反応性官能基を有するフッ素化合物を用いることにより、耐摩耗性を高めることができる。 The number of reactive functional groups possessed by the fluorine compound should be 1 or more, preferably 2 or more. Abrasion resistance can be enhanced by using a fluorine compound having two or more reactive functional groups.
 また、フッ素化合物は、ケイ素を含んでいてもよい。すなわち、フッ素含有層は、フッ素およびケイ素を含有していてもよい。ケイ素を含むフッ素化合物としては、例えば、分子内にシロキサン結合を有するフッ素化合物を挙げることができる。シロキサン結合を有するフッ素化合物を用いることにより、滑り性を向上させることができ、耐摩耗性を高めることができる。 In addition, the fluorine compound may contain silicon. That is, the fluorine-containing layer may contain fluorine and silicon. Examples of silicon-containing fluorine compounds include fluorine compounds having a siloxane bond in the molecule. By using a fluorine compound having a siloxane bond, it is possible to improve lubricity and wear resistance.
 フッ素化合物は、例えば、反応性官能基を有するフッ素化合物や、反応性官能基およびケイ素を含むフッ素化合物であることが好ましい。 The fluorine compound is preferably, for example, a fluorine compound having a reactive functional group or a fluorine compound containing a reactive functional group and silicon.
 反応性官能基を有するフッ素化合物としては、例えば、エチレン性不飽和結合を有するフッ素含有モノマー、主鎖にフルオロアルキレン基を有するフッ素含有ポリマーもしくはオリゴマー、主鎖および側鎖にフルオロアルキレン基もしくはフルオロアルキル基を有するフッ素含有ポリマーもしくはオリゴマー等が挙げられる。反応性官能基を有するフッ素化合物については、例えば、特開2017-19247号公報を参照することができる。 Examples of fluorine compounds having a reactive functional group include fluorine-containing monomers having an ethylenically unsaturated bond, fluorine-containing polymers or oligomers having a fluoroalkylene group in the main chain, fluoroalkylene groups or fluoroalkyl groups in the main chain and side chains. Fluorine-containing polymers or oligomers having groups are included. For fluorine compounds having reactive functional groups, for example, JP-A-2017-19247 can be referred to.
 反応性官能基およびケイ素を含むフッ素化合物としては、例えば、上記の反応性官能基を有するフッ素化合物に、反応性官能基を分子中に有する有機シリコーンを反応させたシリコーン含有フッ化ビニリデン共重合体等が挙げられる。 As the fluorine compound containing a reactive functional group and silicon, for example, a silicone-containing vinylidene fluoride copolymer obtained by reacting an organic silicone having a reactive functional group in the molecule with the above fluorine compound having a reactive functional group. etc.
 また、反応性官能基およびケイ素を含むフッ素化合物としては、例えば、反応官能基およびパーフルオロポリエーテル基を有するフッ素化合物、中でも反応性官能基を有するシラン単位、およびパーフルオロポリエーテル基を有するシラン単位を含むフッ素化合物も好ましく用いられる。このようなフッ素化合物については、例えば、国際公開第2012/157682号を参照することができる。 In addition, as the fluorine compound containing a reactive functional group and silicon, for example, a fluorine compound having a reactive functional group and a perfluoropolyether group, especially a silane unit having a reactive functional group and a silane having a perfluoropolyether group Fluorine compounds containing units are also preferably used. International publication 2012/157682 can be referred to for such a fluorine compound, for example.
 本実施形態においては、上記フッ素含有層は、フッ素化合物および樹脂を含有する層であってもよい。フッ素含有層がフッ素化合物および樹脂を含有する場合、樹脂としては、例えば、重合性化合物の硬化物が挙げられる。重合性化合物の硬化物は、重合性化合物を、必要に応じて重合開始剤を用い、公知の方法で重合反応させることにより得ることができる。重合性化合物は、分子内に重合性官能基を少なくとも1つ有するものである。重合性化合物としては、例えば、ラジカル重合性化合物およびカチオン重合性化合物の少なくとも1種を用いることができる。 In this embodiment, the fluorine-containing layer may be a layer containing a fluorine compound and a resin. When the fluorine-containing layer contains a fluorine compound and a resin, examples of the resin include cured products of polymerizable compounds. The cured product of the polymerizable compound can be obtained by polymerizing the polymerizable compound by a known method using a polymerization initiator as necessary. The polymerizable compound has at least one polymerizable functional group in its molecule. As the polymerizable compound, for example, at least one of a radically polymerizable compound and a cationic polymerizable compound can be used.
 また、フッ素含有層がフッ素樹脂を含有する場合、フッ素樹脂としては、例えば、フッ素を含有する重合性化合物の硬化物が挙げられる。フッ素を含有する重合性化合物の硬化物は、フッ素を含有する重合性化合物を、必要に応じて重合開始剤を用い、公知の方法で重合反応させることにより得ることができる。 Further, when the fluorine-containing layer contains a fluorine resin, examples of the fluorine resin include a cured product of a polymerizable compound containing fluorine. A cured product of a fluorine-containing polymerizable compound can be obtained by polymerizing a fluorine-containing polymerizable compound by a known method using a polymerization initiator as necessary.
 フッ素を含有する重合性化合物は、分子内に重合性官能基を少なくとも1つ有するものである。フッ素を含有する重合性化合物としては、例えば、ラジカル重合性化合物およびカチオン重合性化合物の少なくとも1種を用いることができる。また、フッ素を含有する重合性化合物としては、例えば、フッ素含有モノマー、オリゴマー、ポリマーのいずれも用いることができる。 A polymerizable compound containing fluorine has at least one polymerizable functional group in its molecule. As the fluorine-containing polymerizable compound, for example, at least one of a radically polymerizable compound and a cationic polymerizable compound can be used. As the fluorine-containing polymerizable compound, for example, fluorine-containing monomers, oligomers, and polymers can be used.
 フッ素含有層は、必要に応じて、例えば無機粒子、有機粒子、紫外線吸収剤、酸化防止剤、光安定剤、防眩剤、レベリング剤、界面活性剤、易滑剤、各種増感剤、難燃剤、接着付与剤、重合禁止剤、表面改質剤等の添加剤を含有することができる。 The fluorine-containing layer contains inorganic particles, organic particles, ultraviolet absorbers, antioxidants, light stabilizers, antiglare agents, leveling agents, surfactants, lubricants, various sensitizers, flame retardants, if necessary. , tackifiers, polymerization inhibitors, surface modifiers, and other additives.
 本実施形態において、フッ素含有層は、単層であってもよく、多層であってもよい。
 また、フッ素含有層の形成方法としては、材料に応じ適宜選択され、例えば、真空蒸着法、スパッタリング法、上記第1の無機化合物層上にフッ素含有層用組成物を塗布し、硬化させる方法等が挙げられる。
In this embodiment, the fluorine-containing layer may be a single layer or multiple layers.
Further, the method for forming the fluorine-containing layer is appropriately selected according to the material. is mentioned.
 フッ素含有層は、第1の無機化合物層と直接接していることが好ましい。 The fluorine-containing layer is preferably in direct contact with the first inorganic compound layer.
4.基材層
 本実施形態における基材層は、第2の無機化合物層、第1の無機化合物層およびフッ素含有層を支持する部材である。基材層としては、透明性を有するものであれば特に限定されるものではなく、例えば、樹脂基材、ガラス基材等が挙げられる。
4. Base Material Layer The base material layer in the present embodiment is a member that supports the second inorganic compound layer, the first inorganic compound layer and the fluorine-containing layer. The substrate layer is not particularly limited as long as it has transparency, and examples thereof include resin substrates and glass substrates.
(1)樹脂基材
 樹脂基材を構成する樹脂としては、透明性を有する樹脂基材を得ることができるものであれば特に限定されるものではなく、例えば、ポリイミド系樹脂、ポリアミド系樹脂、ポリエステル系樹脂等が挙げられる。ポリイミド系樹脂としては、例えば、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエステルイミド等が挙げられる。ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられる。
(1) Resin substrate The resin constituting the resin substrate is not particularly limited as long as it can obtain a transparent resin substrate. Examples include polyimide resins, polyamide resins, Examples include polyester-based resins. Examples of polyimide-based resins include polyimide, polyamideimide, polyetherimide, and polyesterimide. Examples of polyester resins include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
(2)ガラス基材
 ガラス基材を構成するガラスとしては、透明性を有するものであれば特に限定されるものではなく、例えば、ケイ酸塩ガラス、シリカガラス等が挙げられる。中でも、ホウケイ酸ガラス、アルミノケイ酸塩ガラス、アルミノホウケイ酸ガラスが好ましく、無アルカリガラスがより好ましい。ガラス基材の市販品としては、例えば、日本電気硝子社の超薄板ガラスG-Leafや、松浪硝子工業社の極薄膜ガラス等が挙げられる。
(2) Glass Substrate The glass constituting the glass substrate is not particularly limited as long as it has transparency, and examples thereof include silicate glass and silica glass. Among them, borosilicate glass, aluminosilicate glass, and aluminoborosilicate glass are preferable, and alkali-free glass is more preferable. Commercially available glass substrates include, for example, ultra-thin sheet glass G-Leaf manufactured by Nippon Electric Glass Co., Ltd., ultra-thin glass manufactured by Matsunami Glass Industry Co., Ltd., and the like.
 また、ガラス基材を構成するガラスは、化学強化ガラスであることも好ましい。化学強化ガラスは機械的強度に優れており、その分薄くできる点で好ましい。化学強化ガラスは、典型的には、ガラスの表面近傍について、ナトリウムをカリウムに代える等、イオン種を一部交換することで、化学的な方法によって機械的物性を強化したガラスであり、表面に圧縮応力層を有する。 It is also preferable that the glass constituting the glass substrate is chemically strengthened glass. Chemically strengthened glass is excellent in mechanical strength and is preferable in that it can be made thinner accordingly. Chemically strengthened glass is glass whose mechanical properties are strengthened by a chemical method, typically by partially exchanging ion species, such as replacing sodium with potassium, in the vicinity of the surface of the glass. It has a compressive stress layer.
 化学強化ガラス基材を構成するガラスとしては、例えば、アルミノケイ酸塩ガラス、ソーダライムガラス、ホウケイ酸ガラス、鉛ガラス、アルカリバリウムガラス、アルミノホウケイ酸ガラス等が挙げられる。 Examples of glass constituting the chemically strengthened glass substrate include aluminosilicate glass, soda lime glass, borosilicate glass, lead glass, alkali barium glass, and aluminoborosilicate glass.
 化学強化ガラス基材の市販品としては、例えば、コーニング社のGorilla Glass(ゴリラガラス)、AGC社のDragontrail(ドラゴントレイル)、ショット社の化学強化ガラス等が挙げられる。 Examples of commercial products of chemically strengthened glass substrates include Corning's Gorilla Glass (Gorilla Glass), AGC's Dragontrail, and Schott's chemically strengthened glass.
(3)基材層の構成
 基材層の厚さとしては、柔軟性を有することが可能な厚さであれば特に限定されるものではなく、基材層の種類等に応じて適宜選択される。
(3) Structure of base layer The thickness of the base layer is not particularly limited as long as it is a thickness that allows flexibility, and is appropriately selected according to the type of base layer. be.
 樹脂基材の厚さは、例えば、10μm以上、100μm以下であることが好ましく、25μm以上、80μm以下であることがより好ましい。樹脂基材の厚さが上記範囲内であることにより、良好な柔軟性を得ることができるともに、十分な硬度を得ることができる。また、表示装置用積層体のカールを抑制することもできる。さらに、表示装置用積層体の軽量化の面で好ましい。 The thickness of the resin base material is, for example, preferably 10 µm or more and 100 µm or less, and more preferably 25 µm or more and 80 µm or less. When the thickness of the resin base material is within the above range, good flexibility and sufficient hardness can be obtained. In addition, curling of the laminate for a display device can also be suppressed. Furthermore, it is preferable in terms of reducing the weight of the laminate for a display device.
 ガラス基材の厚さは、例えば、200μm以下であることが好ましく、15μm以上、100μm以下であることがより好ましく、20μm以上、90μm以下であることがさらに好ましく、25μm以上、80μm以下であることが特に好ましい。ガラス基材の厚さが上記範囲内であることにより、良好な柔軟性を得ることができるともに、十分な硬度を得ることができる。また、表示装置用積層体のカールを抑制することもできる。さらに、表示装置用積層体の軽量化の面で好ましい。 The thickness of the glass substrate is, for example, preferably 200 μm or less, more preferably 15 μm or more and 100 μm or less, further preferably 20 μm or more and 90 μm or less, and 25 μm or more and 80 μm or less. is particularly preferred. When the thickness of the glass substrate is within the above range, good flexibility and sufficient hardness can be obtained. In addition, curling of the laminate for a display device can also be suppressed. Furthermore, it is preferable in terms of reducing the weight of the laminate for a display device.
5.表示装置用積層体
(1)視感反射率
 本実施形態における表示装置用積層体は、フッ素含有層側から、フッ素含有層の表面に対して垂直に入射する光の入射角を0°として、入射角5°で光を入射させた際に、この入射光の正反射光の視感反射率が2.0%以下である。好ましくは1.7%以下であり、更に好ましくは1.5%以下である。視感反射率が高すぎると、表示領域に観察者自身が映り込むのを抑制することができない。
5. Laminate for display device (1) Luminous reflectance When light is incident at an incident angle of 5°, the specular reflectance of the incident light has a luminous reflectance of 2.0% or less. It is preferably 1.7% or less, more preferably 1.5% or less. If the luminous reflectance is too high, it is impossible to prevent the viewer from being reflected in the display area.
 ここで、視感反射率は、JIS Z8722:2009に準拠して求めることができる。視感反射率は、表示装置用積層体のフッ素含有層側の面に、380nm以上780nm以下の波長範囲の光を入射させて得られた反射スペクトルから、標準の光Cでの2度視野において、XYZ表色系における三刺激値X、Y、Zを求め、そのYの値が視感反射率となる。すなわち、視感反射率は、CIE1931標準表色系のY値のことをいう。視感反射率の測定においては、下記の条件とすることができる。 Here, the luminous reflectance can be obtained in accordance with JIS Z8722:2009. The luminous reflectance is obtained from the reflection spectrum obtained by making light in the wavelength range of 380 nm or more and 780 nm or less incident on the fluorine-containing layer side surface of the laminate for a display device. , and the tristimulus values X, Y, and Z in the XYZ color system are obtained, and the value of Y is the luminous reflectance. That is, the luminous reflectance refers to the Y value of the CIE1931 standard color system. In the measurement of luminous reflectance, the following conditions can be used.
(測定条件)
・視野:2°
・イルミナント:C
・光源:タングステンハロゲンランプ
・測定波長:380nm以上780nm以下の範囲を0.5nm間隔
・スキャン速度:高速
・スリット幅:5.0nm
・S/R切替:標準
・オートゼロ:ベースラインのスキャン後550nmにて実施
(Measurement condition)
・Field of view: 2°
・Illuminant: C
・Light source: tungsten halogen lamp ・Measurement wavelength: 0.5 nm interval in the range of 380 nm to 780 nm ・Scan speed: high speed ・Slit width: 5.0 nm
・S/R switching: Standard ・Auto zero: Performed at 550 nm after baseline scanning
 なお、表示装置用積層体の視感反射率の測定に際しては、裏面反射を防止するために、測定スポット面積よりも大きな幅の黒色ビニールテープ(例えば、製品名「ヤマトビニールテープNO200-19-21」、ヤマト社製、19mm幅)を表示装置用積層体の基材層側の面に貼り付けてから測定するものとする。視感反射率の測定装置としては、例えば分光光度計を用いることができ、具体的には島津製作所社製の分光光度計「UV-2600」を用いることができる。 In addition, when measuring the luminous reflectance of the laminate for a display device, a black vinyl tape having a width larger than the measurement spot area (for example, product name "Yamato vinyl tape NO200-19-21 , Yamato Co., Ltd., 19 mm width) is attached to the surface of the laminate for display device on the side of the substrate layer, and then the measurement is performed. As a device for measuring luminous reflectance, for example, a spectrophotometer can be used. Specifically, a spectrophotometer “UV-2600” manufactured by Shimadzu Corporation can be used.
(2)動的屈曲耐性
 本実施形態における表示装置用積層体は、屈曲耐性を有する。具体的には、表示装置用積層体に対して、下記に説明する動的屈曲試験を行った場合に、表示装置用積層体に割れ、または破断が生じないことが好ましい。
(2) Dynamic Bending Resistance The laminate for a display device in this embodiment has bending resistance. Specifically, when the display device laminate is subjected to a dynamic bending test described below, it is preferable that the display device laminate does not crack or break.
 動的屈曲試験は、以下のようにして行われる。まず、20mm×100mmの大きさの表示装置用積層体を準備する。そして、動的屈曲試験においては、図7(a)に示すように、表示装置用積層体1の短辺部1Cと、短辺部1Cと対向する短辺部1Dとを、平行に配置された固定部51でそれぞれ固定する。また、図7(a)に示すように、固定部51は水平方向にスライド移動可能になっている。次に、図7(b)に示すように、固定部51を互いに近接するように移動させることで、表示装置用積層体1を折りたたむように変形させ、更に、図7(c)に示すように、表示装置用積層体1の固定部51で固定された対向する2つの短辺部1C、1Dの間隔dが所定の値となる位置まで固定部51を移動させた後、固定部51を逆方向に移動させて表示装置用積層体1の変形を解消させる。図7(a)~(c)に示すように固定部51を移動させることで、表示装置用積層体1を180°折りたたむことができる。また、表示装置用積層体1の屈曲部1Eが固定部51の下端からはみ出さないように動的屈曲試験を行い、かつ固定部51が最接近したときの間隔を制御することで、表示装置用積層体1の対向する2つの短辺部1C、1Dの間隔dを所定の値にできる。例えば、短辺部1C、1Dの間隔dが10mmである場合、屈曲部1Eの外径を10mmとみなす。 The dynamic bending test is performed as follows. First, a laminate for a display device having a size of 20 mm×100 mm is prepared. Then, in the dynamic bending test, as shown in FIG. 7A, the short side portion 1C of the display device laminate 1 and the short side portion 1D facing the short side portion 1C are arranged in parallel. are fixed by the fixing portion 51. As shown in FIG. Further, as shown in FIG. 7(a), the fixed portion 51 is horizontally slidable. Next, as shown in FIG. 7(b), the fixing portions 51 are moved closer to each other, thereby deforming the laminate for display device 1 so as to be folded, and furthermore, as shown in FIG. 7(c), Then, after moving the fixing portion 51 to a position where the distance d between the two opposing short side portions 1C and 1D fixed by the fixing portion 51 of the display device laminate 1 becomes a predetermined value, the fixing portion 51 is removed. Deformation of the display device laminate 1 is eliminated by moving in the opposite direction. By moving the fixing portion 51 as shown in FIGS. 7A to 7C, the display device laminate 1 can be folded 180°. In addition, a dynamic bending test was performed so that the bent portion 1E of the laminated body 1 for a display device did not protrude from the lower end of the fixed portion 51, and by controlling the distance when the fixed portion 51 was closest, the display device The distance d between the two opposing short sides 1C and 1D of the laminate 1 can be set to a predetermined value. For example, when the interval d between the short sides 1C and 1D is 10 mm, the outer diameter of the bent portion 1E is considered to be 10 mm.
 本実施形態における表示装置用積層体においては、表示装置用積層体1の対向する短辺部1C、1Dの間隔dが10mmとなるように180°折りたたむ動的屈曲試験を、20万回繰り返し行った場合に割れまたは破断が生じないことが好ましく、50万回繰り返し行った場合に割れまたは破断が生じないことがより好ましい。中でも、表示装置用積層体の対向する短辺部1C、1Dの間隔dが6mmとなるように180°折りたたむ動的屈曲試験を20万回繰り返し行った場合に割れまたは破断が生じないことが好ましい。動的屈曲試験では、フッ素含有層が外側となるように表示装置用積層体を折りたたんでもよく、あるいは、フッ素含有層が内側となるように表示装置用積層体を折りたたんでもよいが、いずれの場合であっても、表示装置用積層体に割れまたは破断が生じないことが好ましい。 In the display device laminate of the present embodiment, a dynamic bending test was repeated 200,000 times in which the display device laminate 1 was folded 180° so that the distance d between the opposing short sides 1C and 1D was 10 mm. It is preferable that no cracking or breakage occurs when it is repeatedly repeated 500,000 times. Above all, it is preferable that no cracks or breaks occur when a dynamic bending test is repeated 200,000 times in which the display device laminate is folded 180° so that the distance d between the opposing short sides 1C and 1D is 6 mm. . In the dynamic bending test, the display laminate may be folded so that the fluorine-containing layer is on the outside, or the display laminate may be folded so that the fluorine-containing layer is on the inside. Even so, it is preferable that the display device laminate does not crack or break.
(3)全光線透過率およびヘイズ
 本実施形態における表示装置用積層体は、全光線透過率が、例えば85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることがさらに好ましい。このように全光線透過率が高いことにより、透明性が良好な表示装置用積層体とすることができる。
(3) Total light transmittance and haze The laminate for a display device in the present embodiment preferably has a total light transmittance of, for example, 85% or more, more preferably 88% or more, and 90% or more. It is even more preferable to have Due to such a high total light transmittance, a laminate for a display device with good transparency can be obtained.
 ここで、表示装置用積層体の全光線透過率は、JIS K7361-1:1999に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。 Here, the total light transmittance of the laminate for display devices can be measured according to JIS K7361-1:1999, and can be measured, for example, with a haze meter HM150 manufactured by Murakami Color Research Laboratory.
 本実施形態における表示装置用積層体のヘイズは、例えば5%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることがさらに好ましい。このようにヘイズが低いことにより、透明性が良好な表示装置用積層体とすることができる。 The haze of the laminate for a display device in the present embodiment is, for example, preferably 5% or less, more preferably 2% or less, and even more preferably 1% or less. Such a low haze makes it possible to obtain a laminate for a display device with good transparency.
 ここで、表示装置用積層体のヘイズは、JIS K-7136:2000に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。 Here, the haze of the laminate for a display device can be measured according to JIS K-7136:2000, and can be measured, for example, with a haze meter HM150 manufactured by Murakami Color Research Laboratory.
6.その他構成
 図2は、本実施形態における表示装置用積層体の別の一例を示す概略断面図である。図2に示すように、本実施形態の表示装置用積層体1aは、フッ素含有層2と、第1の無機化合物層3と、第2の無機化合物層4と、基材層5に加え、さらに、他の無機化合物層6(例えば第3の無機化合物層)と、ハードコート層7とを有することが好ましい。
6. Other Configurations FIG. 2 is a schematic cross-sectional view showing another example of the display device laminate according to the present embodiment. As shown in FIG. 2, the display device laminate 1a of the present embodiment includes a fluorine-containing layer 2, a first inorganic compound layer 3, a second inorganic compound layer 4, a substrate layer 5, and Furthermore, it is preferable to have another inorganic compound layer 6 (for example, a third inorganic compound layer) and a hard coat layer 7 .
 図3は、本実施形態における表示装置用積層体の好ましい態様の一例を示す概略断面図である。図3に示すように、本実施形態の表示装置用積層体1aは、フッ素含有層2と、第1の無機化合物層3と、第2の無機化合物層4と、基材層5に加え、第2の無機化合物層4と基材層5との間に、相対膜密度D3が0.10以上0.70以下の介在層9を有することが好ましい。また、図3に示すように、基材層5と介在層9との間に、ハードコート層7を有することが好ましい。 FIG. 3 is a schematic cross-sectional view showing an example of a preferred aspect of the laminate for display device in this embodiment. As shown in FIG. 3, the display device laminate 1a of the present embodiment includes a fluorine-containing layer 2, a first inorganic compound layer 3, a second inorganic compound layer 4, a substrate layer 5, It is preferable to have an intervening layer 9 having a relative film density D3 of 0.10 or more and 0.70 or less between the second inorganic compound layer 4 and the substrate layer 5 . Moreover, as shown in FIG. 3, it is preferable to have a hard coat layer 7 between the base material layer 5 and the intervening layer 9 .
(1)他の無機化合物層
 本実施形態における表示装置用積層体は、第2の無機化合物層と基材層との間に、1つまたは複数の他の無機化合物層を有することができる。他の無機化合物層を配置することにより、より低い反射率が得られる。他の無機化合物層は、本実施形態における表示装置用積層体がハードコート層を有する場合には、第2の無機化合物層とハードコート層との間に配置される。本明細書においては、他の無機化合物層を、第2の無機化合物層側から、第3の無機化合物層、第4の無機化合物層、等と称する。
(1) Other Inorganic Compound Layer The laminate for a display device in the present embodiment can have one or more other inorganic compound layers between the second inorganic compound layer and the substrate layer. A lower reflectance can be obtained by arranging another inorganic compound layer. The other inorganic compound layer is arranged between the second inorganic compound layer and the hard coat layer when the laminate for a display device in the present embodiment has a hard coat layer. In this specification, other inorganic compound layers are referred to as a third inorganic compound layer, a fourth inorganic compound layer, etc. from the second inorganic compound layer side.
 他の無機化合物層を配置することにより、本実施形態における表示装置用積層体は、屈折率の異なる多層膜を有するものとなり、この多層膜の層構成としては、基材層側からフッ素含有層側に向かって、高屈折率層(第4の無機化合物層)/中屈折率層(第3の無機化合物層)/高屈折率層(第2の無機化合物層)/低屈折率層(第1の無機化合物層)の構造を採ることができる。
 この場合において、第3の無機化合物層の屈折率は、例えば、1.40以上2.50以下であり、第4の無機化合物層の屈折率は、例えば、1.60以上3.00以下である。
By arranging other inorganic compound layers, the laminate for a display device in the present embodiment has a multilayer film having a different refractive index. A high refractive index layer (fourth inorganic compound layer) / medium refractive index layer (third inorganic compound layer) / high refractive index layer (second inorganic compound layer) / low refractive index layer (second 1 inorganic compound layer) can be adopted.
In this case, the refractive index of the third inorganic compound layer is, for example, 1.40 or more and 2.50 or less, and the refractive index of the fourth inorganic compound layer is, for example, 1.60 or more and 3.00 or less. be.
 また、多層膜の他の層構成としては、基材層側からフッ素含有層側に向かって、中屈折率層(第3の無機化合物層)/高屈折率層(第2の無機化合物層)/低屈折率層(第1の無機化合物層)等の構造を採ることができる。この場合において、第3の無機化合物層の屈折率は、例えば、1.40以上2.50以下である。 Further, as another layer configuration of the multilayer film, from the substrate layer side to the fluorine-containing layer side, the medium refractive index layer (third inorganic compound layer)/high refractive index layer (second inorganic compound layer) A structure such as /low refractive index layer (first inorganic compound layer) can be employed. In this case, the refractive index of the third inorganic compound layer is, for example, 1.40 or more and 2.50 or less.
 他の無機化合物層に含まれる無機化合物としては、ケイ素酸化物、ガリウム酸化物、アルミニウム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、セリウム酸化物、チタン酸化物、亜鉛酸化物、スズ酸化物、マグネシウム酸化物、イットリウム酸化物、ニオブ酸化物、フッ化マグネシウム、フッ化リチウム、フッ化カルシウム、フッ化バリウム、フッ化ランタンおよびフッ化セリウム等が挙げられる。 Inorganic compounds contained in other inorganic compound layers include silicon oxide, gallium oxide, aluminum oxide, zirconium oxide, hafnium oxide, tantalum oxide, cerium oxide, titanium oxide, zinc oxide, tin oxides, magnesium oxide, yttrium oxide, niobium oxide, magnesium fluoride, lithium fluoride, calcium fluoride, barium fluoride, lanthanum fluoride and cerium fluoride.
 1つの他の無機化合物層の厚みとしては、特に限定されないが、10nm以上200nm以下であることが好ましく、20nm以上170nm以下であることがより好ましい。 Although the thickness of the other inorganic compound layer is not particularly limited, it is preferably 10 nm or more and 200 nm or less, more preferably 20 nm or more and 170 nm or less.
 また、本実施形態においては、本実施形態における表示装置用積層体に含まれる全ての無機化合物層の合計厚みが、500nm以下であることが好ましく、400nm以下であることが更に好ましい。一方、例えば、50nm以上であってもよく、80nm以上であってもよい。合計厚みが厚すぎると、表示装置用積層体の屈曲耐性が悪化する場合がある。 Further, in the present embodiment, the total thickness of all the inorganic compound layers included in the laminate for display device in the present embodiment is preferably 500 nm or less, more preferably 400 nm or less. On the other hand, for example, it may be 50 nm or more, or may be 80 nm or more. If the total thickness is too thick, the bending resistance of the laminate for display device may deteriorate.
(2)ハードコート層
 本実施形態における表示装置用積層体は、第2の無機化合物層と、基材層との間にハードコート層を有していてもよい。ハードコート層が配置されていることにより、無機化合物層の密着性を向上させることができる。また、ハードコート層が配置されていることにより、耐摩耗性を向上させることができる。特に、上記基材層が樹脂基材である場合には、ハードコート層が配置されていることにより、耐摩耗性を効果的に向上させることができる。
(2) Hard Coat Layer The laminate for display device in the present embodiment may have a hard coat layer between the second inorganic compound layer and the substrate layer. By disposing the hard coat layer, the adhesion of the inorganic compound layer can be improved. Moreover, the abrasion resistance can be improved by arranging the hard coat layer. In particular, when the base material layer is a resin base material, the abrasion resistance can be effectively improved by disposing the hard coat layer.
 ハードコート層の材料としては、例えば、有機材料、無機材料、有機無機複合材料等を用いることができる。中でも、ハードコート層の材料は有機材料であることが好ましい。具体的には、ハードコート層は、重合性化合物を含む樹脂組成物の硬化物を含むことが好ましい。重合性化合物を含む樹脂組成物の硬化物は、重合性化合物を、必要に応じて重合開始剤を用い、公知の方法で重合反応させることにより得ることができる。 As materials for the hard coat layer, for example, organic materials, inorganic materials, organic-inorganic composite materials, etc. can be used. Among them, the material of the hard coat layer is preferably an organic material. Specifically, the hard coat layer preferably contains a cured product of a resin composition containing a polymerizable compound. A cured product of a resin composition containing a polymerizable compound can be obtained by subjecting the polymerizable compound to a polymerization reaction by a known method using a polymerization initiator as necessary.
 なお、重合性化合物は、分子内に重合性官能基を少なくとも1つ有するものである。重合性化合物としては、例えば、ラジカル重合性化合物およびカチオン重合性化合物の少なくとも1種を用いることができる。 The polymerizable compound has at least one polymerizable functional group in its molecule. As the polymerizable compound, for example, at least one of a radically polymerizable compound and a cationic polymerizable compound can be used.
 ラジカル重合性化合物とは、ラジカル重合性基を有する化合物である。ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、炭素-炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。 A radically polymerizable compound is a compound having a radically polymerizable group. The radically polymerizable group possessed by the radically polymerizable compound is not particularly limited as long as it is a functional group capable of causing a radical polymerization reaction. Examples thereof include a group containing a carbon-carbon unsaturated double bond. Specific examples include a vinyl group and a (meth)acryloyl group. When the radically polymerizable compound has two or more radically polymerizable groups, these radically polymerizable groups may be the same or different.
 ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の表面硬度が高くなり耐擦傷性が向上する点から、2つ以上であることが好ましく、さらに3つ以上であることが好ましい。 The number of radically polymerizable groups in one molecule of the radically polymerizable compound is preferably 2 or more, more preferably 3 or more, from the viewpoint of increasing the surface hardness of the hard coat layer and improving the scratch resistance. Preferably.
 ラジカル重合性化合物としては、反応性の高さの点から、中でも(メタ)アクリロイル基を有する化合物が好ましく、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリフルオロアルキル(メタ)アクリレート、シリコーン(メタ)アクリレート等と称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千の多官能(メタ)アクリレートモノマー及びオリゴマーを好ましく使用でき、またアクリレートポリマーの側鎖に(メタ)アクリロイル基を2個以上有する多官能(メタ)アクリレートポリマーも好ましく使用できる。中でも、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートモノマーを好ましく使用できる。ハードコート層が、多官能(メタ)アクリレートモノマーの硬化物を含むことにより、ハードコート層の表面硬度を高めることができ、耐擦傷性を向上させることができる。さらに密着性を向上させることもできる。また、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートオリゴマー又はポリマーも好ましく使用できる。ハードコート層が、多官能(メタ)アクリレートオリゴマー又はポリマーの硬化物を含むことにより、ハードコート層の表面硬度を高めることができ、耐擦傷性を向上させることができる。さらに屈曲耐性および密着性を向上させることもできる。 As the radically polymerizable compound, compounds having a (meth)acryloyl group are preferable from the viewpoint of high reactivity. For example, urethane (meth)acrylate, polyester (meth)acrylate, epoxy (meth)acrylate, melamine ( Polyfunctional (meth)acrylate monomers having several (meth)acryloyl groups in the molecule and having a molecular weight of several hundred to several thousand, called meth)acrylates, polyfluoroalkyl (meth)acrylates, silicone (meth)acrylates, etc. and oligomers can be preferably used, and polyfunctional (meth)acrylate polymers having two or more (meth)acryloyl groups in side chains of the acrylate polymer can also be preferably used. Among them, polyfunctional (meth)acrylate monomers having two or more (meth)acryloyl groups in one molecule can be preferably used. By including a cured product of a polyfunctional (meth)acrylate monomer in the hard coat layer, the surface hardness of the hard coat layer can be increased and the scratch resistance can be improved. Furthermore, adhesion can be improved. Polyfunctional (meth)acrylate oligomers or polymers having two or more (meth)acryloyl groups in one molecule can also be preferably used. By including a cured polyfunctional (meth)acrylate oligomer or polymer in the hard coat layer, the surface hardness of the hard coat layer can be increased and the scratch resistance can be improved. Furthermore, bending resistance and adhesion can be improved.
 なお、本明細書において、(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。 In this specification, (meth)acryloyl represents acryloyl and methacryloyl, and (meth)acrylate represents acrylate and methacrylate.
 多官能(メタ)アクリレートモノマーの具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。中でも、反応性が高く、ハードコート層の表面硬度が高くなり耐擦傷性が向上する点から、1分子中に3個以上6個以下の(メタ)アクリロイル基を有するものが好ましい。このような多官能(メタ)アクリレートモノマーとしては、例えば、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート等を好ましく用いることができる。特に、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びジペンタエリスリトールヘキサアクリレートから選ばれる少なくとも1種が好ましい。 Specific examples of polyfunctional (meth)acrylate monomers include those described in JP-A-2019-132930. Among them, those having 3 or more and 6 or less (meth)acryloyl groups in one molecule are preferable from the viewpoint of high reactivity, high surface hardness of the hard coat layer, and improvement of scratch resistance. Examples of such polyfunctional (meth)acrylate monomers include pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), pentaerythritol tetraacrylate (PETTA), dipentaerythritol pentaacrylate (DPPA), tri Methylolpropane tri(meth)acrylate, tripentaerythritol octa(meth)acrylate, tetrapentaerythritol deca(meth)acrylate and the like can be preferably used. In particular, at least one selected from pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexaacrylate is preferred.
 また、ラジカル重合性化合物を用いる場合、分子構造内の柔軟性基によって耐擦傷性が低下することがある。そのため、柔軟性成分(ソフトセグメント)による耐擦傷性の低下を抑制するために、ラジカル重合性化合物は、分子構造に柔軟性基が導入されていないものを用いることが好ましい。具体的には、EOまたはPO変性されていないラジカル重合性化合物を用いることが好ましい。このようなラジカル重合性化合物を用いることにより、架橋点を増やし、耐擦傷性を向上させることができる。 Also, when a radically polymerizable compound is used, the scratch resistance may decrease due to the flexible group in the molecular structure. Therefore, in order to suppress deterioration of scratch resistance due to a flexible component (soft segment), it is preferable to use a radically polymerizable compound that does not have a flexible group introduced into its molecular structure. Specifically, it is preferable to use a radically polymerizable compound that is not EO- or PO-modified. By using such a radically polymerizable compound, it is possible to increase cross-linking points and improve scratch resistance.
 ハードコート層は、硬度や粘度調整、密着性の向上等のために、ラジカル重合性化合物として、単官能(メタ)アクリレートモノマーを含んでいてもよい。単官能(メタ)アクリレートモノマーの具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。 The hard coat layer may contain a monofunctional (meth)acrylate monomer as a radically polymerizable compound in order to adjust hardness and viscosity, improve adhesion, and the like. Specific examples of monofunctional (meth)acrylate monomers include those described in JP-A-2019-132930.
 カチオン重合性化合物とは、カチオン重合性基を有する化合物である。カチオン重合性化合物が有するカチオン重合性基としては、カチオン重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、エポキシ基、オキセタニル基、ビニルエーテル基などが挙げられる。なお、カチオン重合性化合物が2個以上のカチオン重合性基を有する場合、これらのカチオン重合性基はそれぞれ同一であってもよいし、異なっていてもよい。 A cationically polymerizable compound is a compound having a cationically polymerizable group. The cationically polymerizable group possessed by the cationically polymerizable compound is not particularly limited as long as it is a functional group capable of causing a cationic polymerization reaction. Examples thereof include an epoxy group, an oxetanyl group, and a vinyl ether group. When the cationically polymerizable compound has two or more cationically polymerizable groups, these cationically polymerizable groups may be the same or different.
 カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の表面硬度が高くなり耐擦傷性が向上する点から、2つ以上であることが好ましく、さらに3つ以上であることが好ましい。 The number of cationically polymerizable groups in one molecule of the cationically polymerizable compound is preferably two or more, more preferably three or more, in order to increase the surface hardness of the hard coat layer and improve the scratch resistance. Preferably.
 また、カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましく、エポキシ基及びオキセタニル基の少なくとも1種を1分子中に2個以上有する化合物がより好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高い、低毒性であり、得られたハードコート層を、エポキシ基を有する化合物と組み合わせた際に塗膜中でのカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。 As the cationically polymerizable compound, among others, a compound having at least one of an epoxy group and an oxetanyl group as a cationically polymerizable group is preferable, and a compound having two or more of at least one of an epoxy group and an oxetanyl group in one molecule. is more preferred. A cyclic ether group such as an epoxy group or an oxetanyl group is preferable from the viewpoint that shrinkage accompanying a polymerization reaction is small. In addition, among the cyclic ether groups, compounds having epoxy groups are readily available in various structures, do not adversely affect the durability of the resulting hard coat layer, and are easy to control compatibility with radically polymerizable compounds. There is an advantage. In addition, among the cyclic ether groups, the oxetanyl group has a higher degree of polymerization and is less toxic than the epoxy group, and when the resulting hard coat layer is combined with a compound having an epoxy group, There are advantages such as increasing the network formation rate obtained from the cationically polymerizable compound and forming an independent network without leaving unreacted monomers in the film even in a region mixed with the radically polymerizable compound.
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂が挙げられる。また、脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂が挙げられる。また、ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。 Examples of cationic polymerizable compounds having an epoxy group include polyglycidyl ethers of polyhydric alcohols having an alicyclic ring, or compounds containing cyclohexene rings or cyclopentene rings, which are treated with a suitable oxidizing agent such as hydrogen peroxide or peracid. Examples include alicyclic epoxy resins obtained by epoxidation. Aliphatic epoxy resins such as polyglycidyl ethers of aliphatic polyhydric alcohols or their alkylene oxide adducts, polyglycidyl esters of aliphatic long-chain polybasic acids, and homopolymers and copolymers of glycidyl (meth)acrylates are also included. Bisphenols such as bisphenol A, bisphenol F and hydrogenated bisphenol A, or derivatives such as alkylene oxide adducts and caprolactone adducts thereof, are reacted with epichlorohydrin, glycidyl ethers, and novolac epoxy resins. and glycidyl ether type epoxy resins derived from bisphenols.
 脂環族エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、および、オキセタニル基を有するカチオン重合性化合物の具体例については、例えば特開2018-104682号公報に記載のものを挙げることができる。 Specific examples of alicyclic epoxy resins, glycidyl ether type epoxy resins, and cationically polymerizable compounds having an oxetanyl group include those described in JP-A-2018-104682.
 ハードコート層は、必要に応じて重合開始剤を含有していてもよい。 The hard coat layer may contain a polymerization initiator as necessary.
 また、ハードコート層は、帯電防止剤を含有していてもよい。表示装置用積層体に帯電防止性を付与することができる。ハードコート層は、必要に応じて、添加剤をさらに含有することができる。添加剤としては、ハードコート層に付与する機能に応じて適宜選択され、特に限定されないが、例えば、無機粒子、有機粒子、紫外線吸収剤、赤外線吸収剤、防汚剤、防眩剤、レベリング剤、界面活性剤、易滑剤、各種増感剤、難燃剤、接着付与剤、重合禁止剤、酸化防止剤、光安定化剤、表面改質剤等が挙げられる。 In addition, the hard coat layer may contain an antistatic agent. Antistatic properties can be imparted to the laminate for display device. The hard coat layer can further contain additives as needed. The additive is appropriately selected according to the function to be imparted to the hard coat layer, and is not particularly limited. Examples include inorganic particles, organic particles, ultraviolet absorbers, infrared absorbers, antifouling agents, antiglare agents, and leveling agents. , surfactants, lubricants, various sensitizers, flame retardants, adhesion promoters, polymerization inhibitors, antioxidants, light stabilizers, surface modifiers and the like.
 また、本実施形態においては、ハードコート層の材料としては、より優れた屈曲耐性を得るため、ウレタン(メタ)アクリレートと多官能(メタ)アクリレートモノマーのうち少なくとも1つを有するラジカル重合性化合物と、ラジカル重合性化合物と共有結合が形成可能な反応性官能基を有する反応性無機粒子とを併用した有機無機材料が好ましく、添加剤として接着付与剤を併用することが更に好ましい。反応性無機粒子としては、反応性官能基を有するシリカ等が挙げられる。また、反応性官能基としては、ビニル基、(メタ)アクリロイル基、アリル基、エポキシ基、およびシラノール基等が挙げられる。 Further, in the present embodiment, the material for the hard coat layer is a radically polymerizable compound having at least one of urethane (meth)acrylate and polyfunctional (meth)acrylate monomers in order to obtain better bending resistance. , an organic inorganic material in which a radically polymerizable compound and reactive inorganic particles having a reactive functional group capable of forming a covalent bond are used in combination is preferred, and an adhesion promoter is more preferably used in combination as an additive. Examples of reactive inorganic particles include silica having a reactive functional group. Examples of reactive functional groups include vinyl groups, (meth)acryloyl groups, allyl groups, epoxy groups, and silanol groups.
 ハードコート層の厚さは、ハードコート層が有する機能及び表示装置用積層体の用途により適宜選択されればよい。ハードコート層の厚さは、例えば、0.5μm以上50μm以下であることが好ましく、1.0μm以上40μm以下であることがより好ましく、1.5μm以上30μm以下であることがさらに好ましく、2.0μm以上20μm以下であることが特に好ましい。ハードコート層の厚さが上記範囲内であれば、ハードコート層として十分な硬度を得ることができる。 The thickness of the hard coat layer may be appropriately selected depending on the function of the hard coat layer and the application of the laminate for display devices. The thickness of the hard coat layer is, for example, preferably 0.5 μm or more and 50 μm or less, more preferably 1.0 μm or more and 40 μm or less, further preferably 1.5 μm or more and 30 μm or less. It is particularly preferable to be 0 μm or more and 20 μm or less. If the thickness of the hard coat layer is within the above range, it is possible to obtain sufficient hardness as the hard coat layer.
 ハードコート層の形成方法としては、例えば、上記基材層上に上記重合性化合物等を含むハードコート層用樹脂組成物を塗布し、硬化させる方法が挙げられる。 Examples of the method of forming the hard coat layer include a method of applying a hard coat layer resin composition containing the polymerizable compound and the like onto the base material layer and curing the resin composition.
(3)貼付用接着層
 本実施形態における表示装置用積層体は、基材層の第2の無機化合物層とは反対側の面に貼付用接着層を有することができる。貼付用接着層を介して、表示装置用積層体を例えば表示パネル等に貼り合わせることができる。
(3) Adhesive layer for sticking The laminate for a display device in the present embodiment can have an adhesive layer for sticking on the surface of the substrate layer opposite to the second inorganic compound layer. The laminate for a display device can be attached to, for example, a display panel or the like via the adhesive layer for attachment.
 貼付用接着層に用いられる接着剤としては、透明性を有し、表示装置用積層体を表示パネル等に接着することが可能な接着剤であれば特に限定されるものではなく、例えば、熱硬化型接着剤、紫外線硬化型接着剤、2液硬化型接着剤、熱溶融型接着剤、感圧接着剤(いわゆる粘着剤)等を挙げることができる。 The adhesive used for the sticking adhesive layer is not particularly limited as long as it has transparency and is capable of adhering the laminate for a display device to a display panel or the like. Curable adhesives, ultraviolet curable adhesives, two-liquid curable adhesives, hot-melt adhesives, pressure-sensitive adhesives (so-called adhesives), and the like can be mentioned.
 貼付用接着層の厚さは、例えば、10μm以上100μm以下であることが好ましく、より好ましくは25μm以上80μm以下、さらに好ましくは40μm以上60μm以下とすることができる。貼付用接着層の厚さが薄すぎると、表示装置用積層体と表示パネル等とを十分に接着することができないおそれがある。一方、貼付用接着層の厚さが厚すぎると、フレキシブル性が損なわれる場合がある。 The thickness of the sticking adhesive layer is, for example, preferably 10 µm or more and 100 µm or less, more preferably 25 µm or more and 80 µm or less, and even more preferably 40 µm or more and 60 µm or less. If the thickness of the sticking adhesive layer is too thin, there is a possibility that the display device laminate and the display panel or the like cannot be sufficiently adhered. On the other hand, if the adhesive layer for sticking is too thick, the flexibility may be impaired.
 貼付用接着層としては、例えば接着フィルムを用いてもよい。また、例えば支持体または基材層等の上に接着剤組成物を塗布して、貼付用接着層を形成してもよい。 For example, an adhesive film may be used as the sticking adhesive layer. Also, for example, an adhesive composition may be applied onto a support or a substrate layer to form an adhesive layer for attachment.
 貼付用接着層は、表示装置の表示パネルと貼り合わせた後に剥離が可能な程度の密着性を有する層であってもよいし、剥離を目的とせずに高い密着性を有する層であってもよい。 The adhesive layer for attachment may be a layer having adhesion to the extent that it can be peeled off after being attached to the display panel of the display device, or may be a layer having high adhesion without the purpose of peeling. good.
(4)層間接着層
 本実施形態における表示装置用積層体においては、各層の間に層間接着層が配置されていてもよい。層間接着層に用いられる接着剤としては、上記貼付用接着層に用いられる接着剤と同様とすることができる。
(4) Interlayer Adhesive Layer In the laminate for a display device according to the present embodiment, an interlayer adhesive layer may be arranged between each layer. As the adhesive used for the interlayer adhesive layer, the same adhesive as used for the adhesive layer for attachment can be used.
(5)介在層
 本実施形態における表示装置用積層体は、第2の無機化合物層4と基材層5との間に、相対膜密度D3が0.10以上0.70以下の介在層9を有することが好ましい。このような介在層を配置することにより、屈曲耐性が更に向上する。
 本実施形態において、介在層を配置した表示装置用積層体は、表示装置用積層体1の対向する短辺部1C、1Dの間隔dが5mmとなるように180°折りたたむ動的屈曲試験を、20万回繰り返し行った場合に割れまたは破断が生じないことが好ましく、50万回繰り返し行った場合に割れまたは破断が生じないことがより好ましい。中でも、表示装置用積層体の対向する短辺部1C、1Dの間隔dが4mmとなるように180°折りたたむ動的屈曲試験を20万回繰り返し行った場合に割れまたは破断が生じないことが好ましい。動的屈曲試験では、フッ素含有層が外側となるように表示装置用積層体を折りたたんでもよく、あるいは、フッ素含有層が内側となるように表示装置用積層体を折りたたんでもよいが、いずれの場合であっても、表示装置用積層体に割れまたは破断が生じないことが好ましい。
(5) Intervening layer In the laminate for a display device according to the present embodiment, an intervening layer 9 having a relative film density D3 of 0.10 or more and 0.70 or less is provided between the second inorganic compound layer 4 and the base layer 5. It is preferred to have By arranging such an intervening layer, bending resistance is further improved.
In the present embodiment, the display device laminate having the intervening layer is subjected to a dynamic bending test in which the display device laminate 1 is folded 180° so that the distance d between the opposing short sides 1C and 1D is 5 mm. It is preferable that no cracks or breaks occur when repeated 200,000 times, and more preferably no cracks or breaks occur when repeated 500,000 times. Above all, it is preferable that no cracks or breaks occur when a dynamic bending test is repeated 200,000 times in which the display device laminate is folded 180° so that the distance d between the opposing short sides 1C and 1D is 4 mm. . In the dynamic bending test, the display laminate may be folded so that the fluorine-containing layer is on the outside, or the display laminate may be folded so that the fluorine-containing layer is on the inside. Even so, it is preferable that the display device laminate does not crack or break.
(i)相対膜密度
 本実施形態における介在層は、相対膜密度D3が0.10以上0.70以下であり、好ましくは0.20以上0.60以下である。
(i) Relative Film Density The intervening layer in the present embodiment has a relative film density D3 of 0.10 or more and 0.70 or less, preferably 0.20 or more and 0.60 or less.
 介在層は、無機化合物粒子がバインダー樹脂に分散された分散層であることが好ましい。相対膜密度を上記範囲としやすいためである。また、介在層は、第1の無機化合物層および第2の無機化合物層以外の、他の無機化合物層であってもよい。 The intervening layer is preferably a dispersed layer in which inorganic compound particles are dispersed in a binder resin. This is because it is easy to set the relative film density within the above range. Also, the intervening layer may be an inorganic compound layer other than the first inorganic compound layer and the second inorganic compound layer.
 なお、介在層が分散層である場合、相対膜密度は、以下の式により算出される。
分散層の相対膜密度=分散層の膜密度(実測値)/膜密度(文献値)
介在層の相対膜密度を算出するための上記膜密度(文献値)としては、無機化合物粒子に含まれる無機化合物を主体とする無機化合物層の膜密度(文献値)を採用する。
In addition, when the intervening layer is a dispersion layer, the relative film density is calculated by the following formula.
Relative film density of dispersion layer = film density of dispersion layer (measured value) / film density (literature value)
As the film density (literature value) for calculating the relative film density of the intervening layer, the film density (literature value) of the inorganic compound layer mainly composed of the inorganic compound contained in the inorganic compound particles is used.
 本態様においては、第1の無機化合物層の相対膜密度D1、第2の無機化合物層の相対膜密度D2および介在層の相対膜密度D3が、D3<D2<D1の関係を満たすことが好ましい。上記関係を満たすことにより、隣接する各層の相対膜密度の差を小さくすることができ、応力集中を抑制することができる。そのため、屈曲耐性がより向上し、クラックや剥がれを抑制することができる。 In this aspect, the relative film density D1 of the first inorganic compound layer, the relative film density D2 of the second inorganic compound layer, and the relative film density D3 of the intervening layer preferably satisfy the relationship D3<D2<D1. . By satisfying the above relationship, the difference in relative film density between adjacent layers can be reduced, and stress concentration can be suppressed. Therefore, bending resistance is further improved, and cracks and peeling can be suppressed.
 また、本態様においては、第2の無機化合物層の相対膜密度D2および介在層の相対膜密度D3が、1.0≦D2/D3≦7.0を満たすことが好ましい。D2/D3が1.0以上であると、屈曲試験において第1の無機化合物層および第2の無機化合物層の界面での剥がれを効果的に抑制することができる。一方、D2/D3が7.0以下であると、屈曲試験において、介在層および第2の無機化合物層の界面での剥がれを効果的に抑制することができる。 In addition, in this aspect, it is preferable that the relative film density D2 of the second inorganic compound layer and the relative film density D3 of the intermediate layer satisfy 1.0≦D2/D3≦7.0. When D2/D3 is 1.0 or more, peeling at the interface between the first inorganic compound layer and the second inorganic compound layer can be effectively suppressed in the bending test. On the other hand, when D2/D3 is 7.0 or less, peeling at the interface between the intervening layer and the second inorganic compound layer can be effectively suppressed in the bending test.
 また、本態様においては、第1の無機化合物層の相対膜密度D1および介在層の相対膜密度D3が、1.0≦D1/D3≦12.0を満たすことが好ましい。D1/D3が1.0以上であると、耐摩耗性がより向上する傾向にある。一方、D1/D3が12.0以下であると、屈曲耐性がより向上し、分散層へのクラックの発生を抑制することができる。 In addition, in this aspect, it is preferable that the relative film density D1 of the first inorganic compound layer and the relative film density D3 of the intermediate layer satisfy 1.0≦D1/D3≦12.0. When D1/D3 is 1.0 or more, wear resistance tends to be further improved. On the other hand, when D1/D3 is 12.0 or less, the bending resistance is further improved, and the occurrence of cracks in the dispersion layer can be suppressed.
(ii)構成
(ii-1)分散層
 上述したように、介在層は、無機化合物粒子がバインダー樹脂に分散された分散層であることが好ましい。分散層は、無機化合物粒子およびバインダー樹脂を含有する。
(ii) Structure (ii-1) Dispersion Layer As described above, the intermediate layer is preferably a dispersion layer in which inorganic compound particles are dispersed in a binder resin. The dispersion layer contains inorganic compound particles and a binder resin.
(a)無機化合物粒子
 無機化合物粒子としては、特に限定されないが、ケイ素酸化物、ガリウム酸化物、アルミニウム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、セリウム酸化物、チタン酸化物、亜鉛酸化物、スズ酸化物、マグネシウム酸化物、イットリウム酸化物、ニオブ酸化物、フッ化マグネシウム、フッ化リチウム、フッ化カルシウム、フッ化バリウム、フッ化ランタンおよびフッ化セリウム等が挙げられる。中でも、第1の無機化合物よりも高屈折率を有する無機化合物粒子が好ましい。このような無機化合物粒子としては、具体的には、アルミニウム酸化物、ジルコニウム酸化物、ニオブ酸化物、亜鉛酸化物、スズ酸化物、チタン酸化物等が挙げられる。分散層における無機化合物粒子の含有量としては、介在層の相対膜密度D3が上記値となる量であれば特に限定されない。
(a) Inorganic compound particles Although the inorganic compound particles are not particularly limited, silicon oxide, gallium oxide, aluminum oxide, zirconium oxide, hafnium oxide, tantalum oxide, cerium oxide, titanium oxide, zinc oxides, tin oxides, magnesium oxides, yttrium oxides, niobium oxides, magnesium fluoride, lithium fluoride, calcium fluoride, barium fluoride, lanthanum fluoride and cerium fluoride. Among them, inorganic compound particles having a refractive index higher than that of the first inorganic compound are preferable. Specific examples of such inorganic compound particles include aluminum oxide, zirconium oxide, niobium oxide, zinc oxide, tin oxide, and titanium oxide. The content of the inorganic compound particles in the dispersed layer is not particularly limited as long as the content is such that the relative film density D3 of the intervening layer is the above value.
(b)バインダー樹脂
 バインダー樹脂としては、重合性化合物の硬化物であることが好ましい。重合性化合物については、第1実施形態の表示装置用積層体のハードコート層の項に記載したものと同様とすることができるので、ここでの説明は省略する。
(b) Binder resin The binder resin is preferably a cured product of a polymerizable compound. The polymerizable compound can be the same as that described in the section of the hard coat layer of the laminate for a display device of the first embodiment, so the description is omitted here.
(c)屈折率
 分散層の屈折率は、1.60以上が好ましく、1.65以上がより好ましい。一方、例えば2.00以下であり、1.80以下であってもよい。
(c) Refractive Index The refractive index of the dispersion layer is preferably 1.60 or more, more preferably 1.65 or more. On the other hand, it is, for example, 2.00 or less, and may be 1.80 or less.
(d)厚み
 分散層の厚みとしては、特に限定されないが、10nm以上、500nm以下が好ましく、30nm以上、300nm以下がより好ましい。
(d) Thickness The thickness of the dispersion layer is not particularly limited, but is preferably 10 nm or more and 500 nm or less, more preferably 30 nm or more and 300 nm or less.
(e)形成方法
 分散層の形成方法としては、例えば、基材層または後述するハードコート層上に、無機化合物粒子および重合性化合物を含む分散層用樹脂組成物を塗布し、硬化させる方法が挙げられる。
(e) Forming method As a method for forming the dispersion layer, for example, a method of applying a resin composition for a dispersion layer containing inorganic compound particles and a polymerizable compound onto a substrate layer or a hard coat layer to be described later and curing the composition can be used. mentioned.
(ii-2)無機化合物層
 上述したように、介在層は、他の無機化合物層であってもよい。
(a)無機化合物
 介在層としての無機化合物層に含まれる無機化合物としては、ケイ素酸化物、ガリウム酸化物、アルミニウム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、セリウム酸化物、チタン酸化物、亜鉛酸化物、スズ酸化物、マグネシウム酸化物、イットリウム酸化物、ニオブ酸化物、フッ化マグネシウム、フッ化リチウム、フッ化カルシウム、フッ化バリウム、フッ化ランタンおよびフッ化セリウム等が挙げられる。中でも、第1の無機化合物よりも高屈折率材料であることが好ましい。このような無機化合物としては、アルミニウム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、セリウム酸化物、チタン酸化物、亜鉛酸化物、スズ酸化物、マグネシウム酸化物、イットリウム酸化物、ニオブ酸化物等の無機酸化物、フッ化ランタン、フッ化セリウム等が挙げられる。
(ii-2) Inorganic Compound Layer As described above, the intervening layer may be another inorganic compound layer.
(a) Inorganic compound Inorganic compounds contained in the inorganic compound layer as the intermediate layer include silicon oxide, gallium oxide, aluminum oxide, zirconium oxide, hafnium oxide, tantalum oxide, cerium oxide, and titanium oxide. oxide, zinc oxide, tin oxide, magnesium oxide, yttrium oxide, niobium oxide, magnesium fluoride, lithium fluoride, calcium fluoride, barium fluoride, lanthanum fluoride and cerium fluoride. Among them, a material having a higher refractive index than the first inorganic compound is preferable. Examples of such inorganic compounds include aluminum oxide, zirconium oxide, hafnium oxide, tantalum oxide, cerium oxide, titanium oxide, zinc oxide, tin oxide, magnesium oxide, yttrium oxide, and niobium oxide. inorganic oxides, lanthanum fluoride, cerium fluoride, and the like.
(b)屈折率
 介在層としての無機化合物層の屈折率は、1.60以上が好ましく、1.65以上がより好ましい。一方、例えば2.00以下であり、1.80以下であってもよい。
(b) Refractive Index The refractive index of the inorganic compound layer as an intervening layer is preferably 1.60 or higher, more preferably 1.65 or higher. On the other hand, it is, for example, 2.00 or less, and may be 1.80 or less.
(c)厚み
 介在層としての無機化合物層の厚みとしては、特に限定されないが、10nm以上、500nm以下が好ましく、30nm以上、300nm以下がより好ましい。
(c) Thickness The thickness of the inorganic compound layer as the intermediate layer is not particularly limited, but is preferably 10 nm or more and 500 nm or less, more preferably 30 nm or more and 300 nm or less.
(d)形成方法
 介在層としての無機化合物層の形成方法としては、上述の第1の無機化合物層および第2の無機化合物層の形成方法と同様の方法を用いることができる。
(d) Method of Formation As a method of forming the inorganic compound layer as the intervening layer, the same method as the method of forming the first inorganic compound layer and the second inorganic compound layer can be used.
7.用途
 本実施形態における表示装置用積層体は、表示装置において、表示パネルよりも観察者側に配置される前面板として用いることができる。本実施形態における表示装置用積層体は、優れた屈曲耐性と耐摩耗性を有するため、フォルダブルディスプレイ、ローラブルディスプレイ、ベンダブルディスプレイ等のフレキシブル表示装置における前面板に好適に用いることができる。特に、本実施形態における表示装置用積層体は、屈曲耐性を向上させることができることから、フォルダブルディスプレイにおける前面板に好適に用いることができる。
7. Application The laminate for a display device according to the present embodiment can be used as a front plate in a display device, which is arranged closer to the viewer than the display panel. Since the laminate for a display device according to the present embodiment has excellent bending resistance and wear resistance, it can be suitably used as a front plate of a flexible display device such as a foldable display, a rollable display, and a bendable display. In particular, the laminate for a display device according to the present embodiment can improve bending resistance, and thus can be suitably used for a front panel of a foldable display.
 本実施形態における表示装置用積層体の厚さは、例えば、10μm以上500μm以下であることが好ましく、20μm以上400μm以下であることがより好ましく、30μm以上300μm以下であることがさらに好ましい。表示装置用積層体の厚さが上記範囲であれば、フレキシブル性を高めることができる。 The thickness of the display device laminate in the present embodiment is, for example, preferably 10 μm or more and 500 μm or less, more preferably 20 μm or more and 400 μm or less, and even more preferably 30 μm or more and 300 μm or less. When the thickness of the laminate for a display device is within the above range, the flexibility can be enhanced.
 また、本実施形態における表示装置用積層体は、例えば、スマートフォン、タブレット端末、ウェアラブル端末、パーソナルコンピュータ、テレビジョン、デジタルサイネージ、パブリックインフォメーションディスプレイ(PID)、車載ディスプレイ等の表示装置における前面板に用いることができる。 In addition, the display device laminate in the present embodiment is used as a front plate in a display device such as a smartphone, a tablet terminal, a wearable terminal, a personal computer, a television, a digital signage, a public information display (PID), or an in-vehicle display. be able to.
II.第2実施形態
 本発明者らは、表示装置の表面に配置される積層体について、低反射性を維持しながら、屈曲耐性と耐摩耗性を向上させるために検討を重ねたところ、表示装置用積層体の一方の面にフッ素原子を含有するフッ素含有層を配置し、積層体の低反射率化を実現する低屈折率層には所定のフッ素含有比率を有する無機化合物層を用い、積層体の低反射率化を実現する高屈折率層には所定の相対膜密度を有する無機化合物層を用いることにより、屈曲耐性と耐摩耗性を向上させることができることを見出した。
II. Second Embodiment The inventors of the present invention conducted repeated studies to improve bending resistance and wear resistance while maintaining low reflectivity of a laminate disposed on the surface of a display device. A fluorine-containing layer containing fluorine atoms is arranged on one surface of the laminate, and an inorganic compound layer having a predetermined fluorine content ratio is used as the low refractive index layer for realizing a low reflectance of the laminate. It has been found that bending resistance and wear resistance can be improved by using an inorganic compound layer having a predetermined relative film density for the high refractive index layer that realizes a low reflectance.
 具体的には、表示装置用積層体の一方の面に上記フッ素含有層を配置し、かつ、上記フッ素含有層側の無機化合物層である第1の無機化合物層(低屈折率層)のフッ素含有比率を所定の範囲とすることで、耐摩耗性が得られることを見出した。さらに、第2の無機化合物層(高屈折率層)の相対膜密度を所定の低い範囲とすることで、応力変化に対する耐性が強く、屈曲耐性が良好な表示装置用積層体となることを見出し、本発明を完成させた。 Specifically, the fluorine-containing layer is arranged on one surface of the laminate for a display device, and fluorine in the first inorganic compound layer (low refractive index layer) which is the inorganic compound layer on the fluorine-containing layer side It has been found that wear resistance can be obtained by setting the content ratio within a predetermined range. Furthermore, by setting the relative film density of the second inorganic compound layer (high refractive index layer) to a predetermined low range, it was found that a laminate for a display device having high resistance to stress change and good bending resistance can be obtained. , completed the present invention.
 すなわち、本実施形態は、フッ素原子を含有するフッ素含有層と、第1の無機化合物層と、第2の無機化合物層と、基材層と、をこの順に有する表示装置用積層体であって、上記第1の無機化合物層は、低屈折率材料である第1の無機化合物を有し、フッ素原子の含有比率が6.5原子%以下であり、上記第2の無機化合物層は、高屈折率材料である第2の無機化合物を有し、相対膜密度D2が0.50以上1.00未満であり、上記表示装置用積層体の上記フッ素含有層側の面に入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である、表示装置用積層体を提供する。
 以下、本実施形態の表示装置用積層体について、詳細に説明する。
That is, the present embodiment is a laminate for a display device having a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer in this order, , the first inorganic compound layer has a first inorganic compound that is a low refractive index material, the content ratio of fluorine atoms is 6.5 atomic % or less, and the second inorganic compound layer has a high It has a second inorganic compound that is a refractive index material, has a relative film density D2 of 0.50 or more and less than 1.00, and is applied to the fluorine-containing layer side surface of the display device laminate at an incident angle of 5°. Provided is a laminate for a display device, which has a luminous reflectance of 2.0% or less for specularly reflected light when light is incident thereon.
Hereinafter, the laminate for a display device of this embodiment will be described in detail.
 図1は、本実施形態における表示装置用積層体の一例を示す概略断面図である。図1に示すように、本実施形態の表示装置用積層体1bは、フッ素原子を含有するフッ素含有層2と、第1の無機化合物層3と、第2の無機化合物層4と、基材層5と、をこの順に有する。本実施形態において、第1の無機化合物層は、低屈折率材料である第1の無機化合物を含み、フッ素原子の含有比率が6.5原子%以下である。さらに、第2の無機化合物層は、第1の無機化合物よりも屈折率が高い第2の無機化合物を含み、相対膜密度D2が0.50以上1.00未満である。さらに、本実施形態における表示装置用積層体1bは、フッ素含有層2側の面1Aに入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である。 FIG. 1 is a schematic cross-sectional view showing an example of the laminate for a display device according to this embodiment. As shown in FIG. 1, the display device laminate 1b of the present embodiment includes a fluorine-containing layer 2 containing fluorine atoms, a first inorganic compound layer 3, a second inorganic compound layer 4, a substrate 5 and , in that order. In the present embodiment, the first inorganic compound layer contains the first inorganic compound, which is a low refractive index material, and has a fluorine atom content of 6.5 atomic % or less. Furthermore, the second inorganic compound layer contains a second inorganic compound having a higher refractive index than the first inorganic compound, and has a relative film density D2 of 0.50 or more and less than 1.00. Furthermore, in the display device laminate 1b of the present embodiment, the luminous reflectance of specularly reflected light when light is incident on the surface 1A on the fluorine-containing layer 2 side at an incident angle of 5° is 2.0% or less. be.
 本実施形態における表示装置用積層体は、一方の表面にフッ素含有層を有し、さらに、第1の無機化合物層のフッ素原子の含有比率が所定の範囲であることにより、優れた耐摩耗性を有するものとなる。これは、以下の理由によるものと推察される。図4(a)に、第1の無機化合物層3のフッ素原子の含有比率が低い場合、図4(b)に、第1の無機化合物層3のフッ素原子の含有比率が高い場合の第1の無機化合物層3およびフッ素含有層2の断面模式図を示す。図4(b)に示すように、第1の無機化合物層3のフッ素原子の含有比率が高い場合、第1の無機化合物層3上にフッ素含有層2を形成する際に、フッ素原子(フッ素化合物)が第1の無機化合物層3中に混入したものと推測される。そのため、第1の無機化合物層3が軟化し、耐摩耗性が悪化する。一方、図4(a)に示すように、第1の無機化合物層3のフッ素原子の含有比率が低い場合、第1の無機化合物層3上にフッ素含有層2を形成する際、フッ素原子(フッ素化合物)の第1の無機化合物層3中への混入が抑制されたものと推測される。そのため、第1の無機化合物層の軟化が抑制され、耐摩耗性に優れたものとなる。 The laminate for a display device in the present embodiment has a fluorine-containing layer on one surface, and furthermore, the content ratio of fluorine atoms in the first inorganic compound layer is within a predetermined range, so that excellent wear resistance will have This is presumed to be due to the following reasons. FIG. 4A shows the case where the first inorganic compound layer 3 has a low fluorine atom content, and FIG. 4B shows the first case where the first inorganic compound layer 3 has a high fluorine atom content. 2 shows a schematic cross-sectional view of the inorganic compound layer 3 and the fluorine-containing layer 2 of FIG. As shown in FIG. 4B, when the content ratio of fluorine atoms in the first inorganic compound layer 3 is high, when forming the fluorine-containing layer 2 on the first inorganic compound layer 3, fluorine atoms (fluorine compound) was mixed into the first inorganic compound layer 3 . As a result, the first inorganic compound layer 3 is softened and wear resistance is deteriorated. On the other hand, as shown in FIG. 4A, when the content ratio of fluorine atoms in the first inorganic compound layer 3 is low, when forming the fluorine-containing layer 2 on the first inorganic compound layer 3, fluorine atoms ( It is presumed that the mixture of the fluorine compound) into the first inorganic compound layer 3 was suppressed. Therefore, softening of the first inorganic compound layer is suppressed, resulting in excellent wear resistance.
 さらに、本実施形態における表示装置用積層体は、第2の無機化合物層の相対膜密度D2が所定の低い範囲であることにより、優れた屈曲耐性を有するものとなる。また、本実施形態における表示装置用積層体は、低屈折率層である第1の無機化合物層と高屈折率層である第2の無機化合物層を含むことにより、所定の視感反射率を有するものとなる。
 従って、低反射性を有し、かつ、優れた屈曲耐性と耐摩耗性を有する表示装置用積層体となる。以下、本実施形態の表示装置用積層体における各構成について、詳細に説明する。
Furthermore, the laminate for a display device according to the present embodiment has excellent bending resistance because the relative film density D2 of the second inorganic compound layer is within a predetermined low range. In addition, the laminate for a display device in the present embodiment includes a first inorganic compound layer that is a low refractive index layer and a second inorganic compound layer that is a high refractive index layer, thereby achieving a predetermined luminous reflectance. will have.
Therefore, the laminate for a display device has low reflectivity and excellent bending resistance and abrasion resistance. Hereinafter, each configuration in the laminate for display device of the present embodiment will be described in detail.
1.第1の無機化合物層
(1)第1の無機化合物
 本実施形態における第1の無機化合物層は、低屈折率材料である第1の無機化合物から構成される。本実施形態における第1の無機化合物層を構成する第1の無機化合物としては、第1実施形態における第1の無機化合物と同様のものが挙げられる。本実施形態においては、中でも、ケイ素酸化物が屈折率や汎用性の観点から好ましい。また、第1の無機化合物層中に含まれる無機化合物は1種類が好ましいが、複数種類の無機化合物が含まれていてもよい。
1. First Inorganic Compound Layer (1) First Inorganic Compound The first inorganic compound layer in the present embodiment is composed of a first inorganic compound that is a low refractive index material. Examples of the first inorganic compound that constitutes the first inorganic compound layer in the present embodiment include those similar to the first inorganic compound in the first embodiment. In this embodiment, among others, silicon oxide is preferable from the viewpoint of refractive index and versatility. Moreover, one type of inorganic compound is preferably contained in the first inorganic compound layer, but a plurality of types of inorganic compounds may be contained.
 本実施形態において、第1の無機化合物層は、蒸着膜であることが好ましい。特に、ケイ素酸化物(シリカ)蒸着膜であることが好ましい。 In the present embodiment, the first inorganic compound layer is preferably a deposited film. In particular, a silicon oxide (silica) deposited film is preferred.
(2)フッ素原子の含有比率
 本実施形態における第1の無機化合物層は、フッ素原子の含有比率が6.5原子%以下である。フッ素原子の含有比率は、6.3原子%以下が好ましく、5.0原子%以下がより好ましい。フッ素原子の含有比率が上記範囲であれば、優れた耐摩耗性を有するものとなる。本実施形態における第1の無機化合物層は、フッ素原子比率が低い方が好ましい。すなわち、第1の無機化合物層は、フッ素原子を含まなくてもよく、フッ素原子の含有比率の下限は0%である。
(2) Content Ratio of Fluorine Atoms The content ratio of fluorine atoms in the first inorganic compound layer in the present embodiment is 6.5 atomic % or less. The fluorine atom content is preferably 6.3 atomic % or less, more preferably 5.0 atomic % or less. If the content ratio of fluorine atoms is within the above range, it will have excellent abrasion resistance. The first inorganic compound layer in the present embodiment preferably has a low fluorine atomic ratio. That is, the first inorganic compound layer may not contain fluorine atoms, and the lower limit of the content ratio of fluorine atoms is 0%.
 第1の無機化合物層におけるフッ素原子の含有比率は、上述した測定装置および測定条件にてラザフォード後方散乱分析(RBS:Rutherford  Backscattering Spectrometry)により、第1の無機化合物層を測定して得られる全元素(例えば、珪素等の無機元素、酸素、フッ素等)の合計量を100原子%とした際のフッ素原子の比率である。 The content ratio of fluorine atoms in the first inorganic compound layer is obtained by measuring the first inorganic compound layer by Rutherford Backscattering Spectrometry (RBS) using the measurement apparatus and measurement conditions described above. It is the ratio of fluorine atoms when the total amount of (for example, inorganic elements such as silicon, oxygen, fluorine, etc.) is 100 atomic %.
 第1の無機化合物層のフッ素原子の含有比率を上述の範囲に調整する方法としては、第1の無機化合物層の相対膜密度D1を、後述する範囲に調整する方法が挙げられる。 As a method for adjusting the fluorine atom content ratio of the first inorganic compound layer to fall within the range described above, there is a method for adjusting the relative film density D1 of the first inorganic compound layer to fall within the range described later.
(3)屈折率
 本実施形態における第1の無機化合物層の屈折率は、第1実施形態における第1の無機化合物層の屈折率と同様とすることができるため、ここでの説明は省略する。
(3) Refractive index The refractive index of the first inorganic compound layer in the present embodiment can be the same as the refractive index of the first inorganic compound layer in the first embodiment, so the description here is omitted. .
(4)相対膜密度D1
 本実施形態においては、低屈折率層である第1の無機化合物層の相対膜密度D1は、0.70以上1.20以下であることが好ましい。第1の無機化合物層の相対膜密度D1は、より好ましくは0.75以上であり、特に好ましくは0.80以上である。相対膜密度D1が低すぎると、フッ素含有比率が高くなり、耐摩耗性に劣る場合がある。一方、より好ましくは1.17以下であり、特に好ましくは1.15以下である。相対膜密度D1が高すぎると、屈曲耐性に劣り、第1の無機化合物層にクラックが発生する場合がある。
(4) Relative film density D1
In the present embodiment, the relative film density D1 of the first inorganic compound layer, which is the low refractive index layer, is preferably 0.70 or more and 1.20 or less. The relative film density D1 of the first inorganic compound layer is more preferably 0.75 or more, particularly preferably 0.80 or more. If the relative film density D1 is too low, the fluorine content ratio becomes high, which may result in poor wear resistance. On the other hand, it is more preferably 1.17 or less, particularly preferably 1.15 or less. If the relative film density D1 is too high, the bending resistance may be poor and cracks may occur in the first inorganic compound layer.
 無機化合物層の相対膜密度の算出方法は、第1実施形態で記載した方法と同様であるため、ここでの説明は省略する。
 なお、本実施形態における第1の無機化合物層がフッ素原子を含有する場合でも、後述する膜密度(文献値)としては、第1の無機化合物から構成される無機化合物層の理論膜密度を採用する。
Since the method for calculating the relative film density of the inorganic compound layer is the same as the method described in the first embodiment, description thereof is omitted here.
Even when the first inorganic compound layer in the present embodiment contains fluorine atoms, the theoretical film density of the inorganic compound layer composed of the first inorganic compound is adopted as the film density (literature value) described later. do.
 第1の無機化合物層の相対膜密度を上述の範囲に調整する方法としては、第1実施形態で記載した方法と同様とすることができるため、ここでの説明は省略する。 The method for adjusting the relative film density of the first inorganic compound layer within the above range can be the same as the method described in the first embodiment, so the description is omitted here.
(5)厚み
 本実施形態における第1の無機化合物層の厚みとしては、第1実施形態における第1の無機化合物層の厚みと同様であるため、ここでの説明は省略する。
(5) Thickness The thickness of the first inorganic compound layer in the present embodiment is the same as the thickness of the first inorganic compound layer in the first embodiment, and thus the description thereof is omitted here.
(6)形成方法
 本実施形態における第1の無機化合物層の形成方法としては、第1実施形態における第1の無機化合物層の形成方法と同様であるため、ここでの説明は省略する。
(6) Formation method The method for forming the first inorganic compound layer in this embodiment is the same as the method for forming the first inorganic compound layer in the first embodiment, and thus the description is omitted here.
2.第2の無機化合物層
 本実施形態における第2の無機化合物層としては、第1実施形態における第2の無機化合物層の内容と同様であるため、ここでの説明は省略する。
2. Second Inorganic Compound Layer The content of the second inorganic compound layer in this embodiment is the same as that of the second inorganic compound layer in the first embodiment, and thus the description thereof is omitted here.
3.フッ素含有層
 本実施形態におけるフッ素含有層としては、第1実施形態におけるフッ素含有層の内容と同様であるため、ここでの説明は省略する。
3. Fluorine-Containing Layer The content of the fluorine-containing layer in the present embodiment is the same as that of the fluorine-containing layer in the first embodiment, so the description is omitted here.
4.基材層
 本実施形態における基材層としては、第1実施形態における基材層の内容と同様であるため、ここでの説明は省略する。
4. Base Material Layer The content of the base material layer in the present embodiment is the same as that of the base material layer in the first embodiment, so the description thereof is omitted here.
5.表示装置用積層体
 本実施形態における表示装置用積層体の視感反射率、動的屈曲耐性、全光線透過率およびヘイズについては、第1実施形態の内容と同様であるため、ここでの説明は省略する。
5. Laminate for display device The luminous reflectance, dynamic bending resistance, total light transmittance, and haze of the laminate for a display device in the present embodiment are the same as those in the first embodiment, and are therefore described here. are omitted.
6.その他構成
 本実施形態における表示装置用積層体は、上述した、フッ素含有層2と、第1の無機化合物層3と、第2の無機化合物層4と、基材層5に加え、他の層を有していてもよい。
 他の層としては、他の無機化合物層、介在層、ハードコート層、貼付用接着層および層間接着層が挙げられる。
6. Other Configurations The laminate for a display device in the present embodiment includes the above-described fluorine-containing layer 2, the first inorganic compound layer 3, the second inorganic compound layer 4, and the substrate layer 5, in addition to other layers. may have
Other layers include other inorganic compound layers, intervening layers, hard coat layers, adhesive layers for attachment, and interlayer adhesive layers.
 図2は、本実施形態における表示装置用積層体の別の一例を示す概略断面図である。図2に示すように、本実施形態の表示装置用積層体1bは、フッ素含有層2と、第1の無機化合物層3と、第2の無機化合物層4と、基材層5に加え、さらに、他の無機化合物層6(例えば第3の無機化合物層)と、ハードコート層7とを有することが好ましい。 FIG. 2 is a schematic cross-sectional view showing another example of the laminate for a display device according to this embodiment. As shown in FIG. 2, the display device laminate 1b of the present embodiment includes a fluorine-containing layer 2, a first inorganic compound layer 3, a second inorganic compound layer 4, a substrate layer 5, Furthermore, it is preferable to have another inorganic compound layer 6 (for example, a third inorganic compound layer) and a hard coat layer 7 .
 図3は、本実施形態における表示装置用積層体の好ましい態様の一例を示す概略断面図である。図3に示すように、本実施形態の表示装置用積層体1bは、フッ素含有層2と、第1の無機化合物層3と、第2の無機化合物層4と、基材層5に加え、第2の無機化合物層4と基材層5との間に、相対膜密度D3が0.10以上0.70以下の介在層9を有することが好ましい。また、図3に示すように、基材層5と介在層9との間に、ハードコート層7を有することが好ましい。 FIG. 3 is a schematic cross-sectional view showing an example of a preferred aspect of the laminate for display device in this embodiment. As shown in FIG. 3, the display device laminate 1b of the present embodiment includes a fluorine-containing layer 2, a first inorganic compound layer 3, a second inorganic compound layer 4, a substrate layer 5, and It is preferable to have an intervening layer 9 having a relative film density D3 of 0.10 or more and 0.70 or less between the second inorganic compound layer 4 and the substrate layer 5 . Moreover, as shown in FIG. 3, it is preferable to have a hard coat layer 7 between the base material layer 5 and the intervening layer 9 .
 他の無機化合物層、介在層、ハードコート層、貼付用接着層および層間接着層としては、第1実施形態に記載したものと同様とすることができるため、ここでの説明は省略する。 Other inorganic compound layers, intervening layers, hard coat layers, bonding adhesive layers, and interlayer adhesive layers can be the same as those described in the first embodiment, so descriptions thereof are omitted here.
7.用途
 本実施形態における表示装置用積層体の用途としては、第1実施形態に記載した内容と同様とすることができるため、ここでの説明は省略する。
7. Use The use of the laminate for a display device according to the present embodiment can be the same as that described in the first embodiment, and thus the description thereof is omitted here.
III.第3実施形態
 本発明者らは、表示装置の表面に配置される積層体について、低反射性を維持しながら、屈曲耐性と耐摩耗性を向上させるために検討を重ねたところ、表示装置用積層体の一方の面にフッ素原子を含有するフッ素含有層を配置し、積層体の低反射率化を実現する低屈折率層には、所定の相対膜密度を有する無機化合物層を用い、積層体の低反射率化を実現する高屈折率層には、所定の相対膜密度を有し、高屈折率を有する無機化合物粒子の分散層(高屈折率分散層)を用いることにより、屈曲耐性と耐摩耗性を向上させることができることを見出した。
III. Third Embodiment The inventors of the present invention conducted repeated studies to improve bending resistance and wear resistance while maintaining low reflectivity of a laminate disposed on the surface of a display device. A fluorine-containing layer containing fluorine atoms is arranged on one surface of the laminate, and an inorganic compound layer having a predetermined relative film density is used as the low refractive index layer for realizing a low reflectance of the laminate. The high refractive index layer that achieves low reflectance of the body has a predetermined relative film density and uses a dispersion layer of inorganic compound particles having a high refractive index (high refractive index dispersion layer) to improve bending resistance. and wear resistance can be improved.
 具体的には、表示装置用積層体の一方の面に上記フッ素含有層を配置し、かつ、第1の無機化合物層(低屈折率層)の相対膜密度を所定の範囲とすることで、耐摩耗性が得られることを見出した。さらに、基材層と第1の無機化合物層との間に、相対膜密度が所定の低い範囲である、高屈折率を有する無機化合物粒子の分散層(高屈折率分散層)を配置することで、応力変化に対する耐性が強く、屈曲耐性が良好な表示装置用積層体となることを見出し、本発明を完成させた。 Specifically, by arranging the fluorine-containing layer on one surface of the display device laminate and setting the relative film density of the first inorganic compound layer (low refractive index layer) to a predetermined range, It was found that abrasion resistance can be obtained. Furthermore, between the substrate layer and the first inorganic compound layer, a dispersion layer (high refractive index dispersion layer) of inorganic compound particles having a high refractive index and having a relative film density in a predetermined low range is arranged. Thus, the inventors have found that a laminate for a display device having high resistance to stress change and good bending resistance can be obtained, and have completed the present invention.
 すなわち、本実施形態は、フッ素原子を含有するフッ素含有層と、第1の無機化合物層と、基材層と、をこの順に有する表示装置用積層体であって、上記第1の無機化合物層は、低屈折率材料である第1の無機化合物を有し、相対膜密度D1が0.70以上1.20以下であり、上記第1の無機化合物層と上記基材層との間に、高屈折率を有する無機化合物粒子がバインダー樹脂に分散された高屈折率分散層を有し、上記高屈折率分散層の相対膜密度D4が0.10以上0.70以下であり、上記表示装置用積層体の上記フッ素含有層側の面に入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である、表示装置用積層体を提供する。
 以下、本実施形態の表示装置用積層体について、詳細に説明する。
That is, the present embodiment is a laminate for a display device having a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, and a substrate layer in this order, wherein the first inorganic compound layer has a first inorganic compound that is a low refractive index material, has a relative film density D1 of 0.70 or more and 1.20 or less, and between the first inorganic compound layer and the base layer, The display device has a high refractive index dispersion layer in which inorganic compound particles having a high refractive index are dispersed in a binder resin, and the relative film density D4 of the high refractive index dispersion layer is 0.10 or more and 0.70 or less. Provided is a laminate for a display device, which has a luminous reflectance of 2.0% or less for specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a display device at an incident angle of 5°.
Hereinafter, the laminate for a display device of this embodiment will be described in detail.
 図5は、本実施形態における表示装置用積層体の一例を示す概略断面図である。図5に示すように、本実施形態の表示装置用積層体1cは、フッ素原子を含有するフッ素含有層2と、第1の無機化合物層3と、高屈折率分散層10と、基材層5と、をこの順に有する。本実施形態において、第1の無機化合物層は、低屈折率材料である第1の無機化合物を含み、相対膜密度D1が0.70以上1.20以下である。さらに、本実施形態における表示装置用積層体は、基材層と第1の無機化合物層との間に、高屈折率を有する無機化合物粒子がバインダー樹脂に分散された高屈折率分散層が配置されており、この高屈折率分散層の相対膜密度D4が0.10以上0.70以下である。さらに、本実施形態における表示装置用積層体1cは、フッ素含有層2側の面1Aに入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である。 FIG. 5 is a schematic cross-sectional view showing an example of the laminate for a display device according to this embodiment. As shown in FIG. 5, the display device laminate 1c of the present embodiment includes a fluorine-containing layer 2 containing fluorine atoms, a first inorganic compound layer 3, a high refractive index dispersion layer 10, and a substrate layer. 5 and , in that order. In the present embodiment, the first inorganic compound layer contains the first inorganic compound, which is a low refractive index material, and has a relative film density D1 of 0.70 or more and 1.20 or less. Furthermore, in the laminate for a display device in the present embodiment, a high refractive index dispersion layer in which inorganic compound particles having a high refractive index are dispersed in a binder resin is arranged between the base material layer and the first inorganic compound layer. The relative film density D4 of this high refractive index dispersion layer is 0.10 or more and 0.70 or less. Furthermore, in the display device laminate 1c of the present embodiment, the luminous reflectance of specularly reflected light when light is incident on the surface 1A on the fluorine-containing layer 2 side at an incident angle of 5° is 2.0% or less. be.
 本実施形態における表示装置用積層体は、一方の表面にフッ素含有層を有し、さらに、第1の無機化合物層の相対膜密度D1が所定の範囲であることにより、優れた耐摩耗性を有するものとなる。さらに、基材層と第1の無機化合物層との間に、高屈折率を有する無機化合物粒子がバインダー樹脂に分散された高屈折率分散層が配置されており、この高屈折率分散層の相対膜密度D4が所定の低い範囲であることにより、優れた屈曲耐性を有するものとなる。なお、高屈折率分散層は、無機化合物層とは異なり、バインダー樹脂を含むため柔軟性が高い。そのため、第1実施形態や第2実施形態における第2無機化合物層よりも低い相対膜密度の範囲においても、優れた屈曲耐性を有すると推察される。
 さらに、本実施形態における表示装置用積層体は、低屈折率層である第1の無機化合物層と高屈折率粒子である無機化合物粒子が分散された高屈折率分散層を含むことにより、所定の視感反射率を有するものとなる。
 従って、低反射性を有し、かつ、優れた屈曲耐性と耐摩耗性を有する表示装置用積層体となる。以下、本実施形態の表示装置用積層体における各構成について、詳細に説明する。
The laminate for a display device according to the present embodiment has a fluorine-containing layer on one surface, and the relative film density D1 of the first inorganic compound layer is within a predetermined range, thereby exhibiting excellent abrasion resistance. will have. Furthermore, a high refractive index dispersion layer in which inorganic compound particles having a high refractive index are dispersed in a binder resin is arranged between the base material layer and the first inorganic compound layer. When the relative film density D4 is within the predetermined low range, the film has excellent bending resistance. In addition, unlike the inorganic compound layer, the high refractive index dispersion layer contains a binder resin and thus has high flexibility. Therefore, it is presumed that the layer has excellent bending resistance even in a range of relative film densities lower than those of the second inorganic compound layer in the first embodiment and the second embodiment.
Furthermore, the laminate for a display device in the present embodiment includes a first inorganic compound layer that is a low refractive index layer and a high refractive index dispersed layer in which inorganic compound particles that are high refractive index particles are dispersed. luminous reflectance.
Therefore, the laminate for a display device has low reflectivity and excellent bending resistance and abrasion resistance. Hereinafter, each configuration in the laminate for display device of the present embodiment will be described in detail.
1.第1の無機化合物層
 本実施形態における第1の無機化合物層としては、第1実施形態における第1の無機化合物層の内容と同様であるため、ここでの説明は省略する。
1. First Inorganic Compound Layer The content of the first inorganic compound layer in this embodiment is the same as that of the first inorganic compound layer in the first embodiment, and thus the description thereof is omitted here.
2.高屈折率分散層
 本実施形態において、高屈折率分散層は、第1の無機化合物層と基材層との間に配置され、高屈折率を有する無機化合物粒子およびバインダー樹脂を含有する。
2. High Refractive Index Dispersion Layer In the present embodiment, the high refractive index dispersion layer is disposed between the first inorganic compound layer and the substrate layer and contains inorganic compound particles having a high refractive index and a binder resin.
(1)無機化合物粒子およびバインダー樹脂
 上記無機化合物粒子およびバインダー樹脂については、第1実施形態における「介在層」の項の「(a)無機化合物粒子」および「(b)バインダー樹脂」で説明したものと同様であるので、ここでの説明は省略する。
(1) Inorganic Compound Particles and Binder Resin The inorganic compound particles and the binder resin are described in "(a) inorganic compound particles" and "(b) binder resin" in the section "intervening layer" in the first embodiment. Since it is the same as that of 1, description here is abbreviate|omitted.
(2)相対膜密度
 高屈折率分散層の相対膜密度D4は、0.10以上0.70以下であり、好ましくは0.20以上0.60以下である。
 高屈折率分散層の相対膜密度の算出方法としては、上述した第1実施形態における分散層の相対膜密度と同様とすることができるため、ここでの説明は省略する。
(2) Relative Film Density The relative film density D4 of the high refractive index dispersion layer is 0.10 or more and 0.70 or less, preferably 0.20 or more and 0.60 or less.
The calculation method of the relative film density of the high refractive index dispersion layer can be the same as that of the dispersion layer in the above-described first embodiment, so the explanation is omitted here.
 本実施形態においては、第1の無機化合物層の相対膜密度D1および高屈折率分散層の相対膜密度D4が、1.0≦D1/D4≦12.0を満たすことが好ましい。D1/D4が1.0以上であると、耐摩耗性が向上する傾向にある。一方、D1/D4が12.0以下であれば、屈曲耐性がより向上し、高屈折率分散層へのクラックの発生を抑制することができる。 In the present embodiment, the relative film density D1 of the first inorganic compound layer and the relative film density D4 of the high refractive index dispersion layer preferably satisfy 1.0≦D1/D4≦12.0. When D1/D4 is 1.0 or more, wear resistance tends to improve. On the other hand, when D1/D4 is 12.0 or less, the bending resistance is further improved, and the occurrence of cracks in the high refractive index dispersion layer can be suppressed.
(3)屈折率
 本実施形態における高屈折率分散層の屈折率は、1.60以上が好ましく、1.65以上がより好ましい。一方、例えば2.00以下であり、1.80以下であってもよい。
(3) Refractive Index The refractive index of the high refractive index dispersion layer in the present embodiment is preferably 1.60 or more, more preferably 1.65 or more. On the other hand, it is, for example, 2.00 or less, and may be 1.80 or less.
(4)厚み
 高屈折率分散層の厚みとしては、特に限定されないが、10nm以上、500nm以下が好ましく、30nm以上、300nm以下がより好ましい。
(4) Thickness The thickness of the high refractive index dispersion layer is not particularly limited, but is preferably 10 nm or more and 500 nm or less, more preferably 30 nm or more and 300 nm or less.
(5)形成方法
 本実施形態における高屈折率分散層の形成方法としては、例えば、基材層または後述するハードコート層上に、高屈折率を有する無機化合物粒子および重合性化合物を含む高屈折率分散層用樹脂組成物を塗布し、硬化させる方法が挙げられる。
(5) Formation method As a method for forming the high refractive index dispersion layer in the present embodiment, for example, a high refractive index dispersion layer containing inorganic compound particles having a high refractive index and a polymerizable compound is formed on a substrate layer or a hard coat layer described later. A method of applying and curing the resin composition for the dispersion layer may be used.
3.フッ素含有層
 本実施形態におけるフッ素含有層としては、第1実施形態におけるフッ素含有層の内容と同様であるため、ここでの説明は省略する。
3. Fluorine-Containing Layer The content of the fluorine-containing layer in the present embodiment is the same as that of the fluorine-containing layer in the first embodiment, so the description is omitted here.
4.基材層
 本実施形態における基材層としては、第1実施形態における基材層の内容と同様であるため、ここでの説明は省略する。
4. Base Material Layer The content of the base material layer in the present embodiment is the same as that of the base material layer in the first embodiment, so the description thereof is omitted here.
5.表示装置用積層体
(1)視感反射率
 本実施形態における表示装置用積層体は、フッ素含有層側から、フッ素含有層の表面に対して垂直に入射する光の入射角を0°として、入射角5°で光を入射させた際に、この入射光の正反射光の視感反射率が2.0%以下である。好ましくは1.7%以下であり、更に好ましくは1.5%以下である。視感反射率が高すぎると、表示領域に観察者自身が映り込むのを抑制することができない。
5. Laminate for display device (1) Luminous reflectance When light is incident at an incident angle of 5°, the specular reflectance of the incident light has a luminous reflectance of 2.0% or less. It is preferably 1.7% or less, more preferably 1.5% or less. If the luminous reflectance is too high, it is impossible to prevent the viewer from being reflected in the display area.
 ここで、上記視感反射率は、第1実施形態に記載した測定方法により測定された値である。 Here, the above luminous reflectance is a value measured by the measuring method described in the first embodiment.
(2)動的屈曲耐性
 本実施形態における表示装置用積層体は、屈曲耐性を有する。具体的には、表示装置用積層体に対して、第1実施形態で説明した動的屈曲試験を行った場合に、表示装置用積層体に割れ、または破断が生じないことが好ましい。
(2) Dynamic Bending Resistance The laminate for a display device in this embodiment has bending resistance. Specifically, when the dynamic bending test described in the first embodiment is performed on the display device laminate, it is preferable that the display device laminate does not crack or break.
 本実施形態における表示装置用積層体においては、表示装置用積層体1の対向する短辺部1C、1Dの間隔dが5mmとなるように180°折りたたむ動的屈曲試験を、20万回繰り返し行った場合に割れまたは破断が生じないことが好ましく、50万回繰り返し行った場合に割れまたは破断が生じないことがより好ましい。中でも、表示装置用積層体の対向する短辺部1C、1Dの間隔dが4mmとなるように180°折りたたむ動的屈曲試験を20万回繰り返し行った場合に割れまたは破断が生じないことが好ましい。動的屈曲試験では、フッ素含有層が外側となるように表示装置用積層体を折りたたんでもよく、あるいは、フッ素含有層が内側となるように表示装置用積層体を折りたたんでもよいが、いずれの場合であっても、表示装置用積層体に割れまたは破断が生じないことが好ましい。 In the display device laminate according to the present embodiment, a dynamic bending test was repeated 200,000 times in which the display device laminate 1 was folded 180° so that the distance d between the opposing short sides 1C and 1D was 5 mm. It is preferable that no cracking or breakage occurs when it is repeatedly repeated 500,000 times. Above all, it is preferable that no cracks or breaks occur when a dynamic bending test is repeated 200,000 times in which the display device laminate is folded 180° so that the distance d between the opposing short sides 1C and 1D is 4 mm. . In the dynamic bending test, the display laminate may be folded so that the fluorine-containing layer is on the outside, or the display laminate may be folded so that the fluorine-containing layer is on the inside. Even so, it is preferable that the display device laminate does not crack or break.
(3)全光線透過率およびヘイズ
 本実施形態における表示装置用積層体は、全光線透過率が、例えば85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることがさらに好ましい。このように全光線透過率が高いことにより、透明性が良好な表示装置用積層体とすることができる。本実施形態における表示装置用積層体のヘイズは、例えば5%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることがさらに好ましい。このようにヘイズが低いことにより、透明性が良好な表示装置用積層体とすることができる。
(3) Total light transmittance and haze The laminate for a display device in the present embodiment preferably has a total light transmittance of, for example, 85% or more, more preferably 88% or more, and 90% or more. It is even more preferable to have Due to such a high total light transmittance, a laminate for a display device with good transparency can be obtained. The haze of the laminate for a display device in the present embodiment is, for example, preferably 5% or less, more preferably 2% or less, and even more preferably 1% or less. Such a low haze makes it possible to obtain a laminate for a display device with good transparency.
 ここで、表示装置用積層体の全光線透過率およびヘイズは、第1実施形態で説明した測定方法により測定された値である。 Here, the total light transmittance and haze of the display device laminate are values measured by the measurement method described in the first embodiment.
6.その他構成
 本実施形態における表示装置用積層体は、上述した、フッ素含有層2と、第1の無機化合物層3と、高屈折率分散層10と、基材層5に加え、他の層を有していてもよい。
 他の層としては、ハードコート層、貼付用接着層および層間接着層が挙げられる。具体的には、本実施形態における表示装置用積層体は、高屈折率分散層と基材層との間にハードコート層を有することが好ましい。また、基材層の高屈折率分散層側の面とは反対の面側に、貼付用接着層を有することが好ましい。
6. Other Configurations The laminate for a display device in the present embodiment includes, in addition to the fluorine-containing layer 2, the first inorganic compound layer 3, the high refractive index dispersion layer 10, and the substrate layer 5, other layers. may have.
Other layers include hard coat layers, lamination adhesive layers and interlayer adhesive layers. Specifically, the laminate for a display device in the present embodiment preferably has a hard coat layer between the high refractive index dispersion layer and the substrate layer. In addition, it is preferable to have an adhesive layer for sticking on the side of the substrate layer opposite to the side of the high refractive index dispersion layer.
 ハードコート層、貼付用接着層および層間接着層としては、第1実施形態に記載したものと同様とすることができるため、ここでの説明は省略する。 The hard coat layer, the bonding adhesive layer, and the interlayer adhesive layer can be the same as those described in the first embodiment, so descriptions thereof will be omitted here.
7.用途
 本実施形態における表示装置用積層体の用途としては、第1実施形態に記載した内容と同様とすることができるため、ここでの説明は省略する。
7. Use The use of the laminate for a display device according to the present embodiment can be the same as that described in the first embodiment, and thus the description thereof is omitted here.
B.表示装置
 本開示における表示装置は、表示パネルと、上記表示パネルの観察者側に配置された、上述の第1実施形態、第2実施形態および第3実施形態のうちのいずれかの表示装置用積層体と、を備える。
B. Display Device A display device according to the present disclosure includes a display panel and a display device according to any one of the above-described first, second, and third embodiments, which is arranged on the observer side of the display panel. and a laminate.
 図6は、本開示における表示装置の一例を示す概略断面図である。図6(a)および図6(b)に示すように、表示装置20a~20cは、表示パネル21と、表示パネル21の観察者側に配置された第1実施形態の表示装置用積層体1a、第2実施形態の表示装置用積層体1b、または第3実施形態の表示装置用積層体1cと、を備える。表示装置20a~20cにおいては、表示装置用積層体1a、1b、1cと表示パネル21とは、例えば表示装置用積層体1の貼付用接着層8を介して貼り合わせることができる。 FIG. 6 is a schematic cross-sectional view showing an example of a display device according to the present disclosure. As shown in FIGS. 6A and 6B, the display devices 20a to 20c include a display panel 21 and the display device laminate 1a of the first embodiment arranged on the observer side of the display panel 21. , the display device laminate 1b of the second embodiment, or the display device laminate 1c of the third embodiment. In the display devices 20a to 20c, the display device laminates 1a, 1b, 1c and the display panel 21 can be bonded together via the bonding adhesive layer 8 of the display device laminate 1, for example.
 本開示におけるフレキシブル表示装置は、低反射性を有する表示装置用積層体を備えるため、視認性が向上したものとなる。さらに、表示装置用積層体が優れた屈曲耐性と耐摩耗性を有するため、傷がつきにくく、繰り返し屈曲させても表示不良が抑制されたものとなる。 The flexible display device according to the present disclosure includes a laminate for a display device having low reflectivity, and therefore has improved visibility. Furthermore, since the laminate for a display device has excellent bending resistance and wear resistance, it is less likely to be scratched and display defects are suppressed even when repeatedly bent.
 本開示における表示装置用積層体を表示装置の表面に配置する場合には、フッ素含有層が外側、基材層が内側になるように配置される。 When the laminate for a display device according to the present disclosure is arranged on the surface of the display device, it is arranged so that the fluorine-containing layer is on the outside and the substrate layer is on the inside.
 本開示における表示装置用積層体を表示装置の表面に配置する方法としては、特に限定されないが、例えば接着層を介する方法等が挙げられる。 The method of disposing the laminate for a display device according to the present disclosure on the surface of the display device is not particularly limited, but includes, for example, a method of interposing an adhesive layer.
 本開示における表示パネルとしては、例えば、有機EL表示装置、液晶表示装置等の表示装置に用いられる表示パネルを挙げることができる。 Examples of the display panel in the present disclosure include display panels used in display devices such as organic EL display devices and liquid crystal display devices.
 本開示における表示装置は、表示パネルと表示装置用積層体との間にタッチパネル部材を有することができる。 The display device according to the present disclosure can have a touch panel member between the display panel and the laminate for display device.
 本開示における表示装置は、中でも、フォルダブルディスプレイ、ローラブルディスプレイ、ベンダブルディスプレイ等のフレキシブル表示装置であることが好ましい。 The display device in the present disclosure is preferably a flexible display device such as a foldable display, a rollable display, or a bendable display.
 また、本開示における表示装置は、折りたたみ可能であることが好ましい。すなわち、本開示における表示装置は、フォルダブルディスプレイであることが好ましい。 Also, the display device in the present disclosure is preferably foldable. That is, the display device in the present disclosure is preferably a foldable display.
 以下に実施例および比較例を示し、本開示をさらに詳細に説明する。 Examples and comparative examples are shown below to describe the present disclosure in more detail.
<第1実施形態>
(実施例1-1~1-11、比較例1-3~1-10)
 まず、下記に示す組成となるように各成分を配合して、ハードコート層用樹脂組成物を得た。
<First embodiment>
(Examples 1-1 to 1-11, Comparative Examples 1-3 to 1-10)
First, each component was blended so as to have the composition shown below to obtain a resin composition for a hard coat layer.
(ハードコート層用樹脂組成物の組成)
・ペンタエリスリトールアクリレート(製品名「A-9550」、新中村化学社製):87質量部
・ペンタエリスリトールアクリレート(製品名「A-TMM-3L」、新中村化学社製):13質量部
・重合開始剤(1-ヒドロキシシクロヘキシルフェニルケトン、製品名「Omnirad184」、IGM Resins B.V.社製):4質量部
・シリカ粒子(平均一次粒子径12nm、日産化学工業社製):40質量部(固形分100%換算値)
・メチルイソブチルケトン:210質量部
(Composition of resin composition for hard coat layer)
・Pentaerythritol acrylate (product name “A-9550”, manufactured by Shin-Nakamura Chemical Co., Ltd.): 87 parts by mass ・Pentaerythritol acrylate (product name “A-TMM-3L”, manufactured by Shin-Nakamura Chemical Co., Ltd.): 13 parts by mass ・Polymerization Initiator (1-hydroxycyclohexylphenyl ketone, product name "Omnirad 184", manufactured by IGM Resins B.V.): 4 parts by mass Silica particles (average primary particle diameter 12 nm, manufactured by Nissan Chemical Industries, Ltd.): 40 parts by mass ( 100% solid content conversion value)
・Methyl isobutyl ketone: 210 parts by mass
(ハードコート層の形成)
 次に、基材層として、厚さ50μmのポリアミドイミドフィルム(製品名「CPI」、コーロン社製)を用い、基材層上にバーコーターで上記ハードコート層用樹脂組成物を塗布して、塗膜を形成した。そして、この塗膜に対して、80℃、1分間加熱することにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムズジャパン社製、光源Hバルブ)を用いて、紫外線を酸素濃度が100ppm以下にて積算光量が300mJ/cmになるように照射して塗膜を硬化させ、厚さ3.5μmのハードコート層を形成した。
(Formation of hard coat layer)
Next, a 50 μm-thick polyamideimide film (product name “CPI”, manufactured by Kolon Co., Ltd.) was used as the base layer, and the resin composition for the hard coat layer was applied onto the base layer with a bar coater. A coating was formed. Then, this coating film is heated at 80 ° C. for 1 minute to evaporate the solvent in the coating film, and an ultraviolet irradiation device (Fusion UV Systems Japan Co., Ltd., light source H bulb) is used to irradiate ultraviolet rays with oxygen concentration. was 100 ppm or less, the coating film was cured by irradiating so that the integrated light amount was 300 mJ/cm 2 , and a hard coat layer having a thickness of 3.5 μm was formed.
(無機化合物層の形成)
 次いで、ハードコート層上に、第2の無機化合物層、第1の無機化合物層、をこの順に形成した。なお、第1の無機化合物層および第2の無機化合物層は、表1に示す構成材料を用い、表1に示す成膜速度で真空蒸着法により形成した。第1の無機化合物層および第2の無機化合物層の構成材料、厚み、成膜速度および屈折率を表1、表2に示す。
(Formation of inorganic compound layer)
Next, a second inorganic compound layer and a first inorganic compound layer were formed in this order on the hard coat layer. The first inorganic compound layer and the second inorganic compound layer were formed by vacuum deposition using the constituent materials shown in Table 1 and at the film forming speed shown in Table 1. Tables 1 and 2 show the constituent materials, thicknesses, deposition rates and refractive indices of the first inorganic compound layer and the second inorganic compound layer.
(フッ素含有層の形成)
 次に、第1の無機化合物層上に出力100Wで40秒間プラズマ処理をし、フッ素化合物(ダイキン工業社製、製品名「オプツールUD120」)を成膜速度0.1nm/秒で真空蒸着することにより、厚さ7nmのフッ素含有層を形成した。このようにして基材層、ハードコート層、第2の無機化合物層、第1の無機化合物層、フッ素含有層をこの順に有する積層体を得た。
(Formation of fluorine-containing layer)
Next, plasma treatment is performed on the first inorganic compound layer at an output of 100 W for 40 seconds, and a fluorine compound (manufactured by Daikin Industries, Ltd., product name “Optool UD120”) is vacuum-deposited at a film formation rate of 0.1 nm/sec. to form a fluorine-containing layer with a thickness of 7 nm. Thus, a laminate having a substrate layer, a hard coat layer, a second inorganic compound layer, a first inorganic compound layer and a fluorine-containing layer in this order was obtained.
(実施例1-12~1-16、比較例1-11~1-14)
 基材層上に、ハードコート層、第3の無機化合物層、第2の無機化合物層、第1の無機化合物層、およびフッ素含有層(厚み7nm)をこの順に形成した。第1の無機化合物層~第3の無機化合物層の構成材料、厚み、成膜速度および屈折率を表1、表2に示す。なお、用いた基材層、ハードコート層およびフッ素含有層の形成方法は、上記実施例1-1と同様である。
(Examples 1-12 to 1-16, Comparative Examples 1-11 to 1-14)
A hard coat layer, a third inorganic compound layer, a second inorganic compound layer, a first inorganic compound layer, and a fluorine-containing layer (thickness: 7 nm) were formed in this order on the substrate layer. Tables 1 and 2 show the constituent materials, thicknesses, deposition rates and refractive indices of the first to third inorganic compound layers. The methods of forming the substrate layer, hard coat layer and fluorine-containing layer used are the same as in Example 1-1 above.
(実施例1-17~1-19、比較例1-15~1-16)
 基材層上に、ハードコート層、第4の無機化合物層、第3の無機化合物層、第2の無機化合物層、第1の無機化合物層、およびフッ素含有層(厚み7nm)をこの順に形成した。第1の無機化合物層~第4の無機化合物層の構成材料、厚み、成膜速度および屈折率を表1、表2に示す。なお、用いた基材層、ハードコート層およびフッ素含有層の形成方法は、実施例1-1と同様である。
(Examples 1-17 to 1-19, Comparative Examples 1-15 to 1-16)
A hard coat layer, a fourth inorganic compound layer, a third inorganic compound layer, a second inorganic compound layer, a first inorganic compound layer, and a fluorine-containing layer (thickness: 7 nm) are formed in this order on the substrate layer. bottom. Tables 1 and 2 show the constituent materials, thicknesses, deposition rates and refractive indices of the first to fourth inorganic compound layers. The methods of forming the substrate layer, hard coat layer and fluorine-containing layer used were the same as in Example 1-1.
(比較例1-1)
 基材層上に、ハードコート層、第1の無機化合物層、およびフッ素含有層(厚み7nm)をこの順に形成した。第1の無機化合物層の構成材料、厚み、成膜速度および屈折率を表2に示す。なお、用いた基材層、ハードコート層およびフッ素含有層の形成方法は、実施例1-1と同様である。
(Comparative Example 1-1)
A hard coat layer, a first inorganic compound layer, and a fluorine-containing layer (thickness: 7 nm) were formed in this order on the substrate layer. Table 2 shows the constituent material, thickness, deposition rate and refractive index of the first inorganic compound layer. The methods of forming the substrate layer, hard coat layer and fluorine-containing layer used were the same as in Example 1-1.
(比較例1-2)
 基材層上に、ハードコート層、第2の無機化合物層、およびフッ素含有層(厚み7nm)をこの順に形成した。第2の無機化合物層の構成材料、厚み、成膜速度および屈折率を表2に示す。なお、用いた基材層、ハードコート層およびフッ素含有層の形成方法は、実施例1-1と同様である。
(Comparative Example 1-2)
A hard coat layer, a second inorganic compound layer, and a fluorine-containing layer (thickness: 7 nm) were formed in this order on the substrate layer. Table 2 shows the constituent material, thickness, deposition rate and refractive index of the second inorganic compound layer. The methods of forming the substrate layer, hard coat layer and fluorine-containing layer used were the same as in Example 1-1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[相対膜密度]
 実施例1-1~1-19および比較例1-1~1-16で得られた表示装置用積層体の第1の無機化合物層と第2の無機化合物層の相対膜密度を、「A.表示装置用積層体 I.第1実施形態 1.第1の無機化合物層 (3)相対膜密度D1」に記載の方法により測定した。結果を表3および表4に示す。
[Relative film density]
The relative film densities of the first inorganic compound layer and the second inorganic compound layer of the laminates for display devices obtained in Examples 1-1 to 1-19 and Comparative Examples 1-1 to 1-16 were expressed as "A Laminate for display device I. First embodiment 1. First inorganic compound layer (3) Relative film density D1". The results are shown in Tables 3 and 4.
[評価]
(動摩擦係数)
 実施例1-1~1-19および比較例1-1~1-16で得られた表示装置用積層体のフッ素含有層側の表面の動摩擦係数を、「A.表示装置用積層体 I.第1実施形態 3.フッ素含有層」に記載の方法により測定した。結果を表3および表4に示す。
[evaluation]
(dynamic friction coefficient)
The dynamic friction coefficients of the fluorine-containing layer side surfaces of the laminates for display devices obtained in Examples 1-1 to 1-19 and Comparative Examples 1-1 to 1-16 were measured according to "A. Laminates for display device I. First embodiment 3. Fluorine-containing layer” was measured. The results are shown in Tables 3 and 4.
(耐摩耗性評価)
 実施例1-1~1-19および比較例1-1~1-16で得られた表示装置用積層体の耐摩耗性を、以下の評価方法および評価基準により評価した。
・評価方法
 テスター産業社製の学振型摩擦堅牢度試験機AB-301を用い、5cm×10cmの大きさの積層体を、ガラス板上に折れやシワがないようセロハンテープ(登録商標)で固定した。次いで、#0000のスチールウール(日本スチールウール社製のボンスター#0000)を用い、スチールウールを1cm×1cmの治具に固定して、荷重750g/cm、移動速度100mm/秒、移動距離50mmの条件で、表示装置用積層体の防汚層(フッ素含有層)側の面を100往復擦った。そして、耐摩耗試験を行った積層体において、移動速度が不安定な両端10mmの範囲を除く中心30mmの範囲における表面を蛍光灯下で透過観察し、傷の有無と状態を評価した。
・評価基準
A:合格(傷が生じていない)
B:合格(長さ5mm以下の傷が5本未満)
C:不合格(上記A、B以外)
(Abrasion resistance evaluation)
The abrasion resistance of the display device laminates obtained in Examples 1-1 to 1-19 and Comparative Examples 1-1 to 1-16 was evaluated by the following evaluation method and evaluation criteria.
・Evaluation method Using Gakushin type rubbing fastness tester AB-301 manufactured by Tester Sangyo Co., Ltd., a laminate with a size of 5 cm × 10 cm is placed on a glass plate with cellophane tape (registered trademark) so that there are no folds or wrinkles. Fixed. Next, using #0000 steel wool (Bonstar #0000 manufactured by Nippon Steel Wool Co., Ltd.), the steel wool was fixed to a jig of 1 cm × 1 cm, with a load of 750 g/cm 2 , a moving speed of 100 mm/sec, and a moving distance of 50 mm. The surface of the laminate for a display device on the antifouling layer (fluorine-containing layer) side was rubbed back and forth 100 times under the conditions of . Then, in the laminate subjected to the wear resistance test, the surface of the central 30 mm range excluding the 10 mm range at both ends where the moving speed was unstable was observed under a fluorescent light, and the presence or absence of scratches and the state thereof were evaluated.
・Evaluation Criteria A: Passed (no damage occurred)
B: Passed (less than 5 scratches with a length of 5 mm or less)
C: Failed (Other than A and B above)
(動的屈曲性評価)
 実施例1-1~1-19および比較例1-1~1-16で得られた表示装置用積層体の屈曲性について、動的屈曲試験を行い、下記評価基準により評価した。
 以下、動的屈曲試験の方法について、図7を参照して説明する。
 積層体に対して、下記の動的屈曲試験を行い、屈曲耐性を評価した。まず、20mm×100mmの大きさの積層体を準備し、耐久試験機(製品名「DLDMLH-FS」、ユアサシステム機器社製)に対し、図7(a)に示すように、表示装置用積層体1の短辺部1Cと、短辺部1Cと対向する短辺部1Dとを、平行に配置された固定部51でそれぞれ固定した。次に、図7(b)に示すように、固定部51を互いに近接するように移動させることで、表示装置用積層体1を折りたたむように変形させ、更に、図7(c)に示すように、表示装置用積層体1の固定部51で固定された対向する2つの短辺部1C、1Dの間隔dが所定の値となる位置まで固定部51を移動させた後、固定部51を逆方向に移動させて表示装置用積層体1の変形を解消させた。図7(a)~(c)に示すように固定部51を移動させることで、表示装置用積層体1を180°折りたたむ動作を繰り返し行った。この際、表示装置用積層体1の対向する2つの短辺部1C、1Dの間隔dは6mm(φ6mm動的屈曲試験)、または、10mm(φ10mm動的屈曲試験)とした。また、積層体は、フッ素含有層が外側になるように屈曲させた。動的屈曲試験の結果は、下記の基準で評価した。
(Dynamic Flexibility Evaluation)
A dynamic bending test was performed on the flexibility of the laminates for display devices obtained in Examples 1-1 to 1-19 and Comparative Examples 1-1 to 1-16, and evaluation was performed according to the following evaluation criteria.
The method of the dynamic bending test will be described below with reference to FIG.
The following dynamic bending test was performed on the laminate to evaluate bending resistance. First, a laminate with a size of 20 mm × 100 mm was prepared, and as shown in FIG. A short side portion 1C of the body 1 and a short side portion 1D facing the short side portion 1C were fixed by fixing portions 51 arranged in parallel. Next, as shown in FIG. 7(b), the fixing portions 51 are moved closer to each other, thereby deforming the laminate for display device 1 so as to be folded, and furthermore, as shown in FIG. 7(c), Then, after moving the fixing portion 51 to a position where the distance d between the two opposing short side portions 1C and 1D fixed by the fixing portion 51 of the display device laminate 1 becomes a predetermined value, the fixing portion 51 is removed. Deformation of the display device laminate 1 was eliminated by moving in the opposite direction. By moving the fixing portion 51 as shown in FIGS. 7A to 7C, the stack 1 for a display device was repeatedly folded by 180°. At this time, the distance d between the two opposing short sides 1C and 1D of the display device laminate 1 was 6 mm (φ6 mm dynamic bending test) or 10 mm (φ10 mm dynamic bending test). Also, the laminate was bent so that the fluorine-containing layer was on the outside. The results of the dynamic bending test were evaluated according to the following criteria.
・評価基準
A:合格(積層体のフッ素含有層側を外側にしたφ6mmの動的屈曲試験において、20万回屈曲を繰り返しても破断せず、且つクラックが生じていない)
B:合格(積層体のフッ素含有層側を外側にしたφ10mmの動的屈曲試験において、20万回屈曲を繰り返しても破断せず、且つクラックが生じていない)
C:不合格(積層体のフッ素含有層側を外側にしたφ10mmの動的屈曲試験において、20万回屈曲を繰り返す間に、破断する、又はクラックが生じている)
・Evaluation Criteria A: Passed (in a φ6 mm dynamic bending test with the fluorine-containing layer side of the laminate facing outward, the laminate did not break even after repeated bending 200,000 times, and no cracks occurred)
B: Passed (in a φ10 mm dynamic bending test with the fluorine-containing layer side of the laminate facing outward, the laminate did not break even after repeated bending 200,000 times, and no cracks occurred)
C: Fail (breakage or cracks occurred during repeated bending of 200,000 times in a φ10 mm dynamic bending test with the fluorine-containing layer side of the laminate facing outward)
(屈曲試験後の屈曲部の視認性)
 上記動的屈曲試験実施後の表示装置用積層体を、画面表示させたタブレットディスプレイに貼り合わせて、蛍光灯下で屈曲部の視認性を確認し、以下の評価基準により評価した。
・評価基準
A:合格(10人中10人が問題なく視認できた)
B:合格(10人中7~9人が問題なく視認できた)
C:不合格(10人中4~6人が問題なく視認できた)
D:不合格(10人中、問題なく視認できたのは4人未満であった)
(Visibility of bent portion after bending test)
After the dynamic bending test, the laminate for a display device was attached to a tablet display on which screen display was performed, and the visibility of the bent portion was confirmed under a fluorescent light and evaluated according to the following evaluation criteria.
・Evaluation Criteria A: Passed (10 out of 10 could be visually recognized without problems)
B: Passed (7 to 9 out of 10 could be visually recognized without problems)
C: Failed (4 to 6 out of 10 people could see without problems)
D: Failed (out of 10 people, less than 4 people could see without problems)
(視感反射率)
 実施例1-1~1-19および比較例1-1~1-16で得られた表示装置用積層体の視感反射率を、「A.表示装置用積層体 I.第1実施形態 5.表示装置用積層体 (1)視感反射率」に記載の方法により測定した。結果を表3および表4に示す。
(luminous reflectance)
The luminous reflectances of the display device laminates obtained in Examples 1-1 to 1-19 and Comparative Examples 1-1 to 1-16 were evaluated as follows: "A. Display device laminate I. First embodiment 5 Laminate for display device (1) Luminous reflectance was measured by the method described in ". The results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3および表4から、実施例1-1~1-19の表示装置用積層体は、低反射性を維持しつつ、優れた屈曲耐性と耐摩耗性を有することが確認された。一方、第1の無機化合物層の相対膜密度が0.70未満である場合には(比較例1-3および比較例1-7)、耐摩耗性に劣ることが確認された。また、第1の無機化合物層の相対膜密度が1.20より大きい場合には(比較例1-4および比較例1-8)、屈曲耐性に劣ることが確認された。第2の無機化合物層の相対膜密度が0.50未満である場合(比較例1-5、比較例1-9、比較例1-11~比較例1-12および比較例1-15)、および第2の無機化合物層の相対膜密度が1.0以上である場合(比較例1-6、1-10、1-13、1-14および比較例1-16)には、屈曲耐性に劣ることが確認された。また、比較例1-1および比較例1-2は、無機化合物層が一層のみであり、視感反射率が高いことが確認された。 From Tables 3 and 4, it was confirmed that the laminates for display devices of Examples 1-1 to 1-19 had excellent bending resistance and abrasion resistance while maintaining low reflectivity. On the other hand, when the relative film density of the first inorganic compound layer was less than 0.70 (Comparative Examples 1-3 and 1-7), it was confirmed that the wear resistance was inferior. It was also confirmed that when the relative film density of the first inorganic compound layer was greater than 1.20 (Comparative Examples 1-4 and 1-8), the bending resistance was poor. When the relative film density of the second inorganic compound layer is less than 0.50 (Comparative Example 1-5, Comparative Example 1-9, Comparative Examples 1-11 to 1-12 and Comparative Example 1-15), And when the relative film density of the second inorganic compound layer is 1.0 or more (Comparative Examples 1-6, 1-10, 1-13, 1-14 and Comparative Example 1-16), bending resistance confirmed to be inferior. Moreover, it was confirmed that Comparative Examples 1-1 and 1-2 had only one inorganic compound layer and had high luminous reflectance.
(実施例2-1~2-24、比較例2-1~2-8)
 実施例1-1と同様の方法で、基材層上にハードコート層を形成した。
(Examples 2-1 to 2-24, Comparative Examples 2-1 to 2-8)
A hard coat layer was formed on the substrate layer in the same manner as in Example 1-1.
 次に、下記の組成で、無機化合物粒子および重合性化合物(脂肪族ウレタンアクリレート)を含む分散層用樹脂組成物を得た。この際、表5および表6に示す種類の無機化合物粒子を用い、無機化合物粒子の配合量を変えた。 Next, a dispersion layer resin composition containing inorganic compound particles and a polymerizable compound (aliphatic urethane acrylate) was obtained with the following composition. At this time, the types of inorganic compound particles shown in Tables 5 and 6 were used, and the blending amount of the inorganic compound particles was varied.
(分散層用樹脂組成物の組成)
・脂肪族ウレタンアクリレート(製品名「EBECRYL225」、ダイセルオルネクス社製):74質量部
・ペンタエリスリトール(トリ/テトラ)アクリレート(製品名「PETIA」、ダイセルオルネクス社製):26質量部
・重合開始剤(1-ヒドロキシシクロヘキシルフェニルケトン、製品名「Omnirad184」、IGM Resins B.V.社製):4質量部
・無機化合物粒子(平均一次粒子径10nm、レジノカラー社製):無機化合物粒子の種類と配合量(質量部(固形分100%換算値))は表5および表6に示す
・メチルイソブチルケトン:300質量部
(Composition of resin composition for dispersion layer)
・ Aliphatic urethane acrylate (product name “EBECRYL225”, manufactured by Daicel Ohnex): 74 parts by mass ・ Pentaerythritol (tri/tetra) acrylate (product name “PETIA”, manufactured by Daicel Ohnex): 26 parts by mass ・Polymerization Initiator (1-hydroxycyclohexylphenyl ketone, product name "Omnirad 184", manufactured by IGM Resins B.V.): 4 parts by mass Inorganic compound particles (average primary particle size 10 nm, manufactured by Resinocolor): Type of inorganic compound particles and the blending amount (parts by mass (converted to 100% solid content)) are shown in Tables 5 and 6 Methyl isobutyl ketone: 300 parts by mass
 ハードコート層上に上記分散層用樹脂組成物を塗布して、塗膜を形成した。そして、この塗膜を乾燥、硬化させ、表5および表6に示す厚さおよび屈折率の分散層を形成した。 A coating film was formed by applying the resin composition for the dispersion layer onto the hard coat layer. Then, this coating film was dried and cured to form a dispersion layer having the thickness and refractive index shown in Tables 5 and 6.
 次に、分散層上に、第2の無機化合物層、第1の無機化合物層、をこの順に形成した。第2の無機化合物層は、表5および表6に示す構成材料を用い、表5および表6に示す成膜速度で真空蒸着法により形成した。第2の無機化合物層の厚さおよび屈折率を表5および表6に示す。第1の無機化合物層は、表5および表6に示す構成材料を用い、表5および表6に示す成膜速度で真空蒸着法により形成した。第1の無機化合物層の厚さおよび屈折率を表5および表6に示す。
 次に、実施例1-1と同様の方法で、第1の無機化合物層上に厚さ7nmのフッ素含有層を形成した。このようにして基材層、ハードコート層、分散層、第2の無機化合物層、第1の無機化合物層、フッ素含有層をこの順に有する積層体を得た。
Next, a second inorganic compound layer and a first inorganic compound layer were formed in this order on the dispersion layer. The second inorganic compound layer was formed by vacuum deposition using the constituent materials shown in Tables 5 and 6 at the film formation rates shown in Tables 5 and 6. Tables 5 and 6 show the thickness and refractive index of the second inorganic compound layer. The first inorganic compound layer was formed by a vacuum deposition method using the constituent materials shown in Tables 5 and 6 at the film formation rates shown in Tables 5 and 6. Tables 5 and 6 show the thickness and refractive index of the first inorganic compound layer.
Next, a fluorine-containing layer having a thickness of 7 nm was formed on the first inorganic compound layer in the same manner as in Example 1-1. Thus, a laminate having a substrate layer, a hard coat layer, a dispersion layer, a second inorganic compound layer, a first inorganic compound layer and a fluorine-containing layer in this order was obtained.
[相対膜密度]
 得られた表示装置用積層体の第1の無機化合物層D1、第2の無機化合物層D2および分散層の相対膜密度D3を、「A.表示装置用積層体 I.第1実施形態 1.第1の無機化合物層 (3)相対膜密度D1」および「A.表示装置用積層体 I.第1実施形態 6.その他構成 (5)介在層 (i)相対膜密度」に記載の方法により測定した。
[Relative film density]
The relative film densities D3 of the first inorganic compound layer D1, the second inorganic compound layer D2, and the dispersion layer of the obtained laminate for display device were measured according to "A. Laminate for display device, I. First embodiment, 1. First inorganic compound layer (3) Relative film density D1” and “A. Laminate for display device I. First embodiment 6. Other configurations (5) Intervening layer (i) Relative film density” It was measured.
(動摩擦係数および視感反射率)
 動摩擦係数および視感反射率を実施例1-1と同様に測定した。
(Dynamic friction coefficient and luminous reflectance)
The dynamic friction coefficient and luminous reflectance were measured in the same manner as in Example 1-1.
(耐摩耗性評価)
 表示装置用積層体の耐摩耗性を、上述した評価方法および評価基準により評価した。
(Abrasion resistance evaluation)
The abrasion resistance of the laminate for display device was evaluated by the evaluation method and evaluation criteria described above.
(動的屈曲性評価)
 上記動的屈曲試験において、表示装置用積層体1の対向する2つの短辺部1C、1Dの間隔dを3mm(φ3mm動的屈曲試験)、または、4mm(φ4mm動的屈曲試験)とし、積層体のフッ素含有層側を内側として試験を行い、下記評価基準により動的屈曲性を評価した。また、表示装置用積層体1の対向する2つの短辺部1C、1Dの間隔dを4mm(φ4mm動的屈曲試験)、または、5mm(φ5mm動的屈曲試験)とし、積層体のフッ素含有層側を外側として試験を行い、下記評価基準により動的屈曲性を評価した。
(Dynamic Flexibility Evaluation)
In the dynamic bending test, the distance d between the two opposing short sides 1C and 1D of the display device laminate 1 is set to 3 mm (φ3 mm dynamic bending test) or 4 mm (φ4 mm dynamic bending test), and the lamination The test was conducted with the fluorine-containing layer side of the body as the inside, and the dynamic flexibility was evaluated according to the following evaluation criteria. In addition, the distance d between the two opposing short sides 1C and 1D of the display device laminate 1 is set to 4 mm (φ4 mm dynamic bending test) or 5 mm (φ5 mm dynamic bending test), and the fluorine-containing layer of the laminate The test was conducted with the side facing out, and the dynamic flexibility was evaluated according to the following evaluation criteria.
・評価基準(積層体のフッ素含有層側を内側にした試験)
A:合格(積層体のフッ素含有層側を内側にしたφ3mmの動的屈曲試験において、20万回屈曲を繰り返しても破断せず、且つクラックが生じていない)
B:合格(積層体のフッ素含有層側を内側にしたφ4mmの動的屈曲試験において、20万回屈曲を繰り返しても破断せず、且つクラックが生じていない)
C:不合格(積層体のフッ素含有層側を内側にしたφ4mmの動的屈曲試験において、20万回屈曲を繰り返す間に、破断する、又はクラックが生じている)
・Evaluation criteria (test with the fluorine-containing layer side of the laminate inside)
A: Passed (in a φ3 mm dynamic bending test with the fluorine-containing layer side of the laminate facing inward, the laminate did not break even after repeated bending 200,000 times, and no cracks occurred)
B: Passed (in a φ4 mm dynamic bending test with the fluorine-containing layer side of the laminate on the inside, the laminate did not break even after repeated bending 200,000 times, and no cracks occurred)
C: Failed (breakage or cracks occurred during repeated bending of 200,000 times in a φ4 mm dynamic bending test in which the fluorine-containing layer side of the laminate was inside)
・評価基準(積層体のフッ素含有層側を外側にした試験)
A:合格(積層体のフッ素含有層側を外側にしたφ4mmの動的屈曲試験において、20万回屈曲を繰り返しても破断せず、且つクラックが生じていない)
B:合格(積層体のフッ素含有層側を外側にしたφ5mmの動的屈曲試験において、20万回屈曲を繰り返しても破断せず、且つクラックが生じていない)
C:不合格(積層体のフッ素含有層側を外側にしたφ5mmの動的屈曲試験において、20万回屈曲を繰り返す間に、破断する、又はクラックが生じている)
・Evaluation criteria (test with the fluorine-containing layer side of the laminate facing outward)
A: Passed (in a φ4 mm dynamic bending test with the fluorine-containing layer side of the laminate facing outward, the laminate did not break even after being repeatedly bent 200,000 times, and no cracks occurred)
B: Passed (in a φ5 mm dynamic bending test with the fluorine-containing layer side of the laminate facing outward, the laminate did not break even after repeated bending 200,000 times, and no cracks occurred)
C: Failed (in a dynamic bending test of φ5 mm with the fluorine-containing layer side of the laminate facing outward, breakage or cracks occurred while bending was repeated 200,000 times)
(屈曲試験後の屈曲部の視認性)
 上記のフッ素含有層側を外側にした動的屈曲試験実施後の表示装置用積層体を、画面表示させたタブレットディスプレイに貼り合わせて、蛍光灯下で屈曲部の視認性を確認し、以下の評価基準により評価した。
(Visibility of bent portion after bending test)
The laminate for a display device after the dynamic bending test was performed with the fluorine-containing layer side facing out, and the display device laminate was attached to a tablet display on which the screen was displayed, and the visibility of the bent portion was confirmed under a fluorescent light. It was evaluated according to the evaluation criteria.
・評価基準
A:合格(10人中10人が問題なく視認できた)
B:合格(10人中7~9人が問題なく視認できた)
C:不合格(10人中4~6人が問題なく視認できた)
D:不合格(10人中、問題なく視認できたのは4人未満であった)
・Evaluation Criteria A: Passed (10 out of 10 could be visually recognized without problems)
B: Passed (7 to 9 out of 10 could be visually recognized without problems)
C: Failed (4 to 6 out of 10 people could see without problems)
D: Failed (out of 10 people, less than 4 people could see without problems)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7および表8から、実施例2-1~2-24の表示装置用積層体は、比較例2-1~比較例2-8と比較し、低反射性を維持しつつ、優れた屈曲耐性と耐摩耗性を有することが確認された。また、実施例2-1~2-24の表示装置用積層体は、実施例1-12~1-19および後述する実施例3-1~3-7よりも厳しい評価基準でも、優れた屈曲性を有することが確認された。 From Tables 7 and 8, it can be seen that the laminates for display devices of Examples 2-1 to 2-24 exhibited excellent bending while maintaining low reflectivity compared to Comparative Examples 2-1 to 2-8. It was confirmed to have resistance and wear resistance. In addition, the display device laminates of Examples 2-1 to 2-24 exhibited excellent bending performance even under stricter evaluation criteria than Examples 1-12 to 1-19 and Examples 3-1 to 3-7 described later. It was confirmed that the
<第2実施形態>
(実施例3-1~3-6、比較例3-1)
 実施例1-1と同様の方法で、基材層上にハードコート層を形成した。次に、ハードコート層上に、第3の無機化合物層、第2の無機化合物層、第1の無機化合物層、をこの順に形成した。
 第3の無機化合物層は、構成材料としてZrOを用い、成膜速度0.26nm/秒で真空蒸着法により形成した。第3の無機化合物層の厚さは45nm、屈折率は2.00であった。第2の無機化合物層は、構成材料としてNbを用い、成膜速度0.26nm/秒で真空蒸着法により形成した。第2の無機化合物層の厚さは75nm、屈折率は2.30であった。第1の無機化合物層は、構成材料としてSiOを用い、表9に示す成膜速度で真空蒸着法により形成した。第1の無機化合物層の厚さは80nm、屈折率は1.47であった。
 次に、実施例1と同様の方法で、第1の無機化合物層上に厚さ7nmのフッ素含有層を形成した。このようにして基材層、ハードコート層、第3の無機化合物層、第2の無機化合物層、第1の無機化合物層、フッ素含有層をこの順に有する積層体を得た。
<Second embodiment>
(Examples 3-1 to 3-6, Comparative Example 3-1)
A hard coat layer was formed on the substrate layer in the same manner as in Example 1-1. Next, a third inorganic compound layer, a second inorganic compound layer, and a first inorganic compound layer were formed in this order on the hard coat layer.
The third inorganic compound layer was formed by vacuum deposition using ZrO 2 as a constituent material at a deposition rate of 0.26 nm/sec. The third inorganic compound layer had a thickness of 45 nm and a refractive index of 2.00. The second inorganic compound layer was formed by vacuum deposition using Nb 2 O 5 as a constituent material at a film forming rate of 0.26 nm/sec. The second inorganic compound layer had a thickness of 75 nm and a refractive index of 2.30. The first inorganic compound layer was formed by a vacuum deposition method using SiO 2 as a constituent material at a film formation rate shown in Table 9. The first inorganic compound layer had a thickness of 80 nm and a refractive index of 1.47.
Next, in the same manner as in Example 1, a fluorine-containing layer having a thickness of 7 nm was formed on the first inorganic compound layer. Thus, a laminate having a substrate layer, a hard coat layer, a third inorganic compound layer, a second inorganic compound layer, a first inorganic compound layer and a fluorine-containing layer in this order was obtained.
(実施例3-7、比較例3-2)
 ハードコート層の形成に、下記帯電防止剤含有ハードコート層用樹脂組成物を用いた以外は、実施例3-1と同様の方法で、積層体を得た。
(Example 3-7, Comparative Example 3-2)
A laminate was obtained in the same manner as in Example 3-1, except that the following antistatic agent-containing resin composition for hard coat layer was used to form the hard coat layer.
(帯電防止剤含有ハードコート層用樹脂組成物の組成)
・ペンタエリスリトールアクリレート(製品名「A-9550」、新中村化学社製):87質量部
・ペンタエリスリトールアクリレート(製品名「A-TMM-3L」、新中村化学社製):13質量部
・重合開始剤(1-ヒドロキシシクロヘキシルフェニルケトン、製品名「Omnirad184」、IGM Resins B.V.社製):4質量部
・シリカ粒子(平均一次粒子径12nm、日産化学工業社製):40質量部(固形分100%換算値)
・メチルイソブチルケトン:190質量部
・帯電防止剤(製品名「MT-2」、荒川化学工業社製):3質量部(固形分100%換算値)
(Composition of resin composition for antistatic agent-containing hard coat layer)
・Pentaerythritol acrylate (product name “A-9550”, manufactured by Shin-Nakamura Chemical Co., Ltd.): 87 parts by mass ・Pentaerythritol acrylate (product name “A-TMM-3L”, manufactured by Shin-Nakamura Chemical Co., Ltd.): 13 parts by mass ・Polymerization Initiator (1-hydroxycyclohexylphenyl ketone, product name "Omnirad 184", manufactured by IGM Resins B.V.): 4 parts by mass Silica particles (average primary particle diameter 12 nm, manufactured by Nissan Chemical Industries, Ltd.): 40 parts by mass ( 100% solid content conversion value)
・Methyl isobutyl ketone: 190 parts by mass ・Antistatic agent (product name “MT-2”, manufactured by Arakawa Chemical Industries, Ltd.): 3 parts by mass (converted to 100% solid content)
[相対膜密度およびフッ素原子含有比率]
 得られた表示装置用積層体の第1の無機化合物層と第2の無機化合物層の相対膜密度を、「A.表示装置用積層体 I.第1実施形態 1.第1の無機化合物層 (3)相対膜密度D1」に記載の方法により測定した。また、第1の無機化合物層のフッ素原子の含有比率を、「A.表示装置用積層体 II.第2実施形態 1.第1の無機化合物層 (2)フッ素原子の含有比率」に記載の方法により測定した。第1の無機化合物層の相対膜密度D1およびフッ素原子の含有比率の測定結果を表9に示す。第2の無機化合物層の相対膜密度D2は0.58であった。
[Relative Film Density and Fluorine Atom Content Ratio]
The relative film densities of the first inorganic compound layer and the second inorganic compound layer of the obtained laminate for display device were calculated as follows: "A. Laminate for display device I. First embodiment 1. First inorganic compound layer (3) Relative film density D1”. Further, the content ratio of fluorine atoms in the first inorganic compound layer is the content ratio of fluorine atoms described in "A. Laminate for display device II. Second embodiment 1. First inorganic compound layer (2) Content ratio of fluorine atoms" method. Table 9 shows the measurement results of the relative film density D1 and the fluorine atom content ratio of the first inorganic compound layer. The relative film density D2 of the second inorganic compound layer was 0.58.
[評価]
(クラック伸度)
 まず、積層体を3mm×100mmの大きさに切り出し、試験片を作製した。次に、テンシロン万能試験機オリエンテック社製「STA-1150」)を用い、クランプ間距離(つかみ具間距離)を50mmとして上記試験片をたわみが無いように設置し、温度23±5℃、湿度30%RH以上70%RH以下にて、10mm/minの引張速度で積層体にクラックが生じるまで引っ張り続け、積層体にクラックが生じた時点での引張長さを測定した。クラックの有無は、試験片にLEDを照射して目視で判断した。続いて、以下の式によりクラック伸度を算出した。
クラック伸度(%)=100×引張長さ(mm)/つかみ具間距離(mm)
[evaluation]
(crack elongation)
First, the laminate was cut into a size of 3 mm×100 mm to prepare a test piece. Next, using a Tensilon universal testing machine "STA-1150" manufactured by Orientec Co., Ltd., the distance between clamps (distance between grips) was set to 50 mm, and the test piece was placed so that there was no deflection, and the temperature was 23 ± 5 ° C. At a humidity of 30% RH or more and 70% RH or less, the laminate was continuously pulled at a tensile speed of 10 mm/min until cracks occurred in the laminate, and the tensile length was measured when cracks occurred in the laminate. The presence or absence of cracks was determined visually by irradiating the test piece with an LED. Subsequently, the crack elongation was calculated by the following formula.
Crack elongation (%) = 100 x tensile length (mm) / distance between grips (mm)
(耐摩耗性評価および動的屈曲性評価)
 積層体の耐摩耗性および動的屈曲性を、上述した実施例1-1~1-19および比較例1-1~1-16における評価方法および評価基準により評価した。なお、積層体のフッ素含有層側を外側にしたφ6mmの動的屈曲試験において、50万回屈曲を繰り返しても破断せず、且つクラックが生じなかった場合は、評価基準をA’:合格とした。
(Abrasion resistance evaluation and dynamic flexibility evaluation)
The abrasion resistance and dynamic flexibility of the laminate were evaluated by the evaluation methods and evaluation criteria in Examples 1-1 to 1-19 and Comparative Examples 1-1 to 1-16 described above. In addition, in the dynamic bending test of φ6 mm with the fluorine-containing layer side of the laminate facing outward, if the laminate did not break even after being repeatedly bent 500,000 times and no cracks occurred, the evaluation criteria was A′: pass. bottom.
(表面抵抗値測定)
 まず、積層体を100mm×100mmの大きさに切り出し、試験片を作製した。次に、抵抗率計(製品名「ハイレスタUX MCP-HT型」、株式会社三菱ケミカルアナリテック製)を用いて、JIS K6911:1995に従って、印加電圧を1000Vにするとともに、レジテーブルに積層体のフッ素含有層側とは反対側の面を接触させて折れやシワがないようセロハンテープ(登録商標)で固定し、抵抗率計のURSプローブを積層体のフッ素含有層側の面に接触させることにより表面抵抗値を測定した。表面抵抗値は、積層体のフッ素含有層側の面の表面抵抗値をランダムにそれぞれ10箇所測定し、測定した10箇所の表面抵抗値の算術平均値とした。
(Surface resistance value measurement)
First, the laminate was cut into a size of 100 mm×100 mm to prepare a test piece. Next, using a resistivity meter (product name “Hiresta UX MCP-HT type”, manufactured by Mitsubishi Chemical Analytech Co., Ltd.), the applied voltage was set to 1000 V according to JIS K6911: 1995, and the laminate was placed on the register table. The surface opposite to the fluorine-containing layer side is brought into contact and fixed with cellophane tape (registered trademark) so that there are no folds or wrinkles, and the URS probe of the resistivity meter is brought into contact with the surface of the laminate on the fluorine-containing layer side. The surface resistance value was measured by The surface resistance value was obtained by measuring the surface resistance value at 10 points at random on the surface of the laminate on the fluorine-containing layer side, and taking the arithmetic mean value of the measured surface resistance values at 10 points.
Figure JPOXMLDOC01-appb-T000009

 なお、表中の表面抵抗値の「-」は、装置限界(上限)を超えたことを意味する。
Figure JPOXMLDOC01-appb-T000009

"-" in the surface resistance value in the table means that the device limit (upper limit) was exceeded.
 表9に示されるように、第1の無機化合物層のフッ素原子の含有比率が6.5原子%以下の場合(実施例3-1~実施例3-6)、耐摩耗性および屈曲耐性に優れることが確認された。なお、帯電防止剤を含むハードコート層材料を用いた場合にも、耐摩耗性および屈曲耐性に優れることが確認された(実施例3-7)。一方、比較例3-1および比較例3-2は、動的屈曲性およびクラック伸度が良好であるものの、第1の無機化合物層のフッ素原子の含有比率が高いため、耐摩耗性に劣ることが確認された。 As shown in Table 9, when the content ratio of fluorine atoms in the first inorganic compound layer is 6.5 atomic % or less (Examples 3-1 to 3-6), wear resistance and bending resistance confirmed to be excellent. It was confirmed that even when a hard coat layer material containing an antistatic agent was used, the abrasion resistance and bending resistance were excellent (Examples 3-7). On the other hand, Comparative Examples 3-1 and 3-2 have good dynamic flexibility and crack elongation, but have poor wear resistance because the content ratio of fluorine atoms in the first inorganic compound layer is high. was confirmed.
<第3実施形態>
(実施例4-1~4-3、比較例4-1)
 実施例1-1と同様の方法で、基材層上にハードコート層を形成した。
<Third Embodiment>
(Examples 4-1 to 4-3, Comparative Example 4-1)
A hard coat layer was formed on the substrate layer in the same manner as in Example 1-1.
 次に、無機化合物粒子および上記重合性化合物を含む分散層用樹脂組成物を得た。この際、表10に示す種類の無機化合物粒子を用い、無機化合物粒子の配合量を変えた。 Next, a resin composition for a dispersion layer containing inorganic compound particles and the polymerizable compound was obtained. At this time, the inorganic compound particles of the types shown in Table 10 were used, and the blending amount of the inorganic compound particles was changed.
 ハードコート層上に上記分散層用樹脂組成物を塗布して、塗膜を形成した。そして、この塗膜を乾燥、硬化させ、厚さ100nmの分散層を形成した。 A coating film was formed by applying the resin composition for the dispersion layer onto the hard coat layer. Then, this coating film was dried and cured to form a dispersion layer having a thickness of 100 nm.
 次に、分散層上に第1の無機化合物層を形成した。第1の無機化合物層は、表10に示す構成材料を用い、表10に示す成膜速度で真空蒸着法により形成した。第1の無機化合物層の厚さおよび屈折率を表10に示す。
 次に、実施例1-1と同様の方法で、第1の無機化合物層上に厚さ7nmのフッ素含有層を形成した。このようにして基材層、ハードコート層、高屈折率分散層、第1の無機化合物層、フッ素含有層をこの順に有する積層体を得た。
Next, a first inorganic compound layer was formed on the dispersion layer. The first inorganic compound layer was formed by a vacuum deposition method using the constituent materials shown in Table 10 at the film formation rate shown in Table 10. Table 10 shows the thickness and refractive index of the first inorganic compound layer.
Next, a fluorine-containing layer having a thickness of 7 nm was formed on the first inorganic compound layer in the same manner as in Example 1-1. Thus, a laminate having a substrate layer, a hard coat layer, a high refractive index dispersion layer, a first inorganic compound layer, and a fluorine-containing layer in this order was obtained.
[相対膜密度]
 得られた表示装置用積層体の第1の無機化合物層D1および高屈折率分散層の相対膜密度D4を、「A.表示装置用積層体 I.第1実施形態 1.第1の無機化合物層 (3)相対膜密度D1」および「A.表示装置用積層体 I.第1実施形態 6.その他構成 (5)介在層 (i)相対膜密度」に記載の方法により測定した。
[Relative film density]
The relative film densities D4 of the first inorganic compound layer D1 and the high-refractive-index dispersion layer of the obtained laminate for display device were calculated as follows: "A. Laminate for display device I. First embodiment 1. First inorganic compound Layer (3) Relative film density D1” and “A. Laminate for display device I. First embodiment 6. Other configurations (5) Intervening layer (i) Relative film density” were measured.
(動摩擦係数および視感反射率)
動摩擦係数および視感反射率を実施例1-1と同様に測定した。
(Dynamic friction coefficient and luminous reflectance)
The dynamic friction coefficient and luminous reflectance were measured in the same manner as in Example 1-1.
(耐摩耗性評価、動的屈曲性評価、屈曲試験後の屈曲部の視認性)
 表示装置用積層体の耐摩耗性、動的屈曲性および屈曲試験後の屈曲部の視認性を、上述した実施例2-1~2-24および比較例2-1~2-8における評価方法および評価基準により評価した。
(Abrasion resistance evaluation, dynamic flexibility evaluation, visibility of bending part after bending test)
The wear resistance, dynamic flexibility, and visibility of the bent portion after the bending test of the laminate for a display device were evaluated in Examples 2-1 to 2-24 and Comparative Examples 2-1 to 2-8 described above. and evaluation criteria.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表11から、高屈折率分散層の相対膜密度D4が0.10以上0.70以下である実施例4-1~4-3は、比較例4-1に対して、耐摩耗性および屈曲耐性に優れることが確認された。 From Table 11, Examples 4-1 to 4-3 in which the relative film density D4 of the high refractive index dispersion layer is 0.10 or more and 0.70 or less are superior to Comparative Example 4-1 in wear resistance and bending It was confirmed that the resistance is excellent.
 すなわち、本開示においては、以下の発明を提供できる。 That is, the present disclosure can provide the following inventions.
[1]
 フッ素原子を含有するフッ素含有層と、第1の無機化合物層と、第2の無機化合物層と、基材層と、をこの順に有する表示装置用積層体であって、
 前記第1の無機化合物層は、低屈折率材料である第1の無機化合物を有し、相対膜密度D1が0.70以上1.20以下であり、
 前記第2の無機化合物層は、高屈折率材料である第2の無機化合物を有し、相対膜密度D2が0.50以上1.00未満であり、
 前記表示装置用積層体の前記フッ素含有層側の面に入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である、表示装置用積層体。
[1]
A laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer,
The first inorganic compound layer has a first inorganic compound that is a low refractive index material, and has a relative film density D1 of 0.70 or more and 1.20 or less,
The second inorganic compound layer has a second inorganic compound that is a high refractive index material, and has a relative film density D2 of 0.50 or more and less than 1.00,
A laminate for a display device, wherein the luminous reflectance of specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a display device at an incident angle of 5° is 2.0% or less.
[2]
 前記表示装置用積層体の前記フッ素含有層側の表面の動摩擦係数が、0.01以上0.30以下である、[1]に記載の表示装置用積層体。
[2]
The laminate for a display device according to [1], wherein the surface of the laminate for a display device on the fluorine-containing layer side has a dynamic friction coefficient of 0.01 or more and 0.30 or less.
[3]
 前記第1の無機化合物が、ケイ素酸化物である、[1]または[2]に記載の表示装置用積層体。
[3]
The laminate for a display device according to [1] or [2], wherein the first inorganic compound is a silicon oxide.
[4]
 前記第2の無機化合物が、アルミニウム酸化物、ジルコニウム酸化物、チタン酸化物、亜鉛酸化物、スズ酸化物およびニオブ酸化物のいずれかである、[1]から[3]までのいずれかに記載の表示装置用積層体。
[4]
Any one of [1] to [3], wherein the second inorganic compound is any one of aluminum oxide, zirconium oxide, titanium oxide, zinc oxide, tin oxide and niobium oxide. display device laminate.
[5]
 前記第1の無機化合物層の厚みが、30nm以上200nm以下である、[1]から[4]までのいずれかに記載の表示装置用積層体。
[5]
The laminate for a display device according to any one of [1] to [4], wherein the first inorganic compound layer has a thickness of 30 nm or more and 200 nm or less.
[6]
 前記第2の無機化合物層の厚みが、10nm以上200nm以下である、[1]から[5]までのいずれかに記載の表示装置用積層体。
[6]
The laminate for a display device according to any one of [1] to [5], wherein the second inorganic compound layer has a thickness of 10 nm or more and 200 nm or less.
[7]
 前記第2の無機化合物層と前記基材層との間に、1つまたは複数の他の無機化合物層を有する、[1]から[6]までのいずれかに記載の表示装置用積層体。
[7]
The laminate for a display device according to any one of [1] to [6], which has one or more other inorganic compound layers between the second inorganic compound layer and the substrate layer.
[8]
 前記表示装置用積層体に含まれる全ての無機化合物層の合計厚みが、500nm以下である、[1]から[7]までのいずれかに記載の表示装置用積層体。
[8]
The laminate for a display device according to any one of [1] to [7], wherein the total thickness of all inorganic compound layers contained in the laminate for a display device is 500 nm or less.
[9]
 前記第2の無機化合物層と前記基材層との間に、介在層を有し、
 前記介在層の相対膜密度D3が0.10以上0.70以下である、[1]から[8]までのいずれかに記載の表示装置用積層体。
[9]
Having an intervening layer between the second inorganic compound layer and the base layer,
The laminate for a display device according to any one of [1] to [8], wherein the intervening layer has a relative film density D3 of 0.10 or more and 0.70 or less.
[10]
 前記介在層が、無機化合物粒子がバインダー樹脂に分散された分散層である、[9]に記載の表示装置用積層体。
[10]
The laminate for a display device according to [9], wherein the intervening layer is a dispersed layer in which inorganic compound particles are dispersed in a binder resin.
[11]
 前記介在層が、他の無機化合物層である、[9]または[10]に記載の表示装置用積層体。
[11]
The laminate for a display device according to [9] or [10], wherein the intervening layer is another inorganic compound layer.
[12]
 前記第1の無機化合物層の相対膜密度D1、前記第2の無機化合物層の相対膜密度D2および前記介在層の相対膜密度D3が、D3<D2<D1の関係を満たす、[9]から[11]までのいずれかに記載の表示装置用積層体。
[12]
The relative film density D1 of the first inorganic compound layer, the relative film density D2 of the second inorganic compound layer, and the relative film density D3 of the intervening layer satisfy the relationship D3 < D2 < D1, from [9] [11] The laminate for a display device according to any one of the items up to [11].
[13]
 前記第2の無機化合物層の相対膜密度D2および前記介在層の相対膜密度D3が、1.0≦D2/D3≦7.0を満たす、[9]から[12]までのいずれかに記載の表示装置用積層体。
[13]
Any one of [9] to [12], wherein the relative film density D2 of the second inorganic compound layer and the relative film density D3 of the intermediate layer satisfy 1.0≦D2/D3≦7.0. display device laminate.
[14]
 前記第1の無機化合物層の相対膜密度D1および前記介在層の相対膜密度D3が、1.0≦D1/D3≦12.0を満たす、[9]から[13]までのいずれかに記載の表示装置用積層体。
[14]
Any one of [9] to [13], wherein the relative film density D1 of the first inorganic compound layer and the relative film density D3 of the intermediate layer satisfy 1.0≦D1/D3≦12.0. display device laminate.
[15]
 前記第2の無機化合物層と前記基材層との間にハードコート層を有する、[1]から[14]までのいずれかに記載の表示装置用積層体。
[15]
The laminate for a display device according to any one of [1] to [14], which has a hard coat layer between the second inorganic compound layer and the substrate layer.
[16]
 前記基材層の前記第2の無機化合物層側の面とは反対の面側に、貼付用接着層を有する、[1]から[15]までのいずれかに記載の表示装置用積層体。
[16]
The laminate for a display device according to any one of [1] to [15], which has an adhesive layer for attachment on the side opposite to the side of the base layer facing the second inorganic compound layer.
[17]
 フッ素原子を含有するフッ素含有層と、第1の無機化合物層と、第2の無機化合物層と、基材層と、をこの順に有する表示装置用積層体であって、
 前記第1の無機化合物層は、低屈折率材料である第1の無機化合物を有し、フッ素原子の含有比率が6.5原子%以下であり、
 前記第2の無機化合物層は、高屈折率材料である第2の無機化合物を有し、相対膜密度D2が0.50以上1.00未満であり、
 前記表示装置用積層体の前記フッ素含有層側の面に入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である、表示装置用積層体。
[17]
A laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer,
The first inorganic compound layer has a first inorganic compound that is a low refractive index material, and has a fluorine atom content of 6.5 atomic % or less,
The second inorganic compound layer has a second inorganic compound that is a high refractive index material, and has a relative film density D2 of 0.50 or more and less than 1.00,
A laminate for a display device, wherein the luminous reflectance of specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a display device at an incident angle of 5° is 2.0% or less.
[18]
 前記表示装置用積層体の前記フッ素含有層側の表面の動摩擦係数が、0.01以上0.30以下である、[17]に記載の表示装置用積層体。
[18]
The laminate for a display device according to [17], wherein the surface of the laminate for a display device on the fluorine-containing layer side has a dynamic friction coefficient of 0.01 or more and 0.30 or less.
[19]
 前記第1の無機化合物が、ケイ素酸化物である、[17]または[18]に記載の表示装置用積層体。
[19]
The laminate for a display device according to [17] or [18], wherein the first inorganic compound is a silicon oxide.
[20]
 前記第2の無機化合物が、アルミニウム酸化物、ジルコニウム酸化物、チタン酸化物、亜鉛酸化物、スズ酸化物およびニオブ酸化物のいずれかである、[17]から[19]までのいずれかに記載の表示装置用積層体。
[20]
Any one of [17] to [19], wherein the second inorganic compound is any one of aluminum oxide, zirconium oxide, titanium oxide, zinc oxide, tin oxide and niobium oxide. display device laminate.
[21]
 前記第1の無機化合物層の厚みが、30nm以上200nm以下である、[17]から[20]までのいずれかに記載の表示装置用積層体。
[21]
The laminate for a display device according to any one of [17] to [20], wherein the first inorganic compound layer has a thickness of 30 nm or more and 200 nm or less.
[22]
 前記第2の無機化合物層の厚みが、10nm以上、200nm以下である、[17]から[21]までのいずれかに記載の表示装置用積層体。
[22]
The laminate for a display device according to any one of [17] to [21], wherein the second inorganic compound layer has a thickness of 10 nm or more and 200 nm or less.
[23]
 前記第2の無機化合物層と前記基材層との間に、1つまたは複数の他の無機化合物層を有する、[17]から[22]までのいずれかに記載の表示装置用積層体。
[23]
The laminate for a display device according to any one of [17] to [22], which has one or more other inorganic compound layers between the second inorganic compound layer and the substrate layer.
[24]
 前記表示装置用積層体に含まれる全ての無機化合物層の合計厚みが、500nm以下である、[17]から[23]までのいずれかに記載の表示装置用積層体。
[24]
The laminate for a display device according to any one of [17] to [23], wherein the total thickness of all inorganic compound layers contained in the laminate for a display device is 500 nm or less.
[25]
 前記第2の無機化合物層と前記基材層との間にハードコート層を有する、[17]から[24]までのいずれかに記載の表示装置用積層体。
[25]
The laminate for a display device according to any one of [17] to [24], which has a hard coat layer between the second inorganic compound layer and the substrate layer.
[26]
 前記基材層の前記第2の無機化合物層側の面とは反対の面側に、貼付用接着層を有する、[17]から[25]までのいずれかに記載の表示装置用積層体。
[26]
The laminate for a display device according to any one of [17] to [25], which has an adhesive layer for attachment on the side opposite to the side of the base layer facing the second inorganic compound layer.
[27]
 フッ素原子を含有するフッ素含有層と、第1の無機化合物層と、基材層と、をこの順に有する表示装置用積層体であって、
 前記第1の無機化合物層は、低屈折率材料である第1の無機化合物を有し、相対膜密度D1が0.70以上1.20以下であり、
 前記第1の無機化合物層と前記基材層との間に、高屈折率を有する無機化合物粒子がバインダー樹脂に分散された高屈折率分散層を有し、
 前記高屈折率分散層の相対膜密度D4が0.10以上0.70以下であり、
 前記表示装置用積層体の前記フッ素含有層側の面に入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である、表示装置用積層体。
[27]
A laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, and a substrate layer,
The first inorganic compound layer has a first inorganic compound that is a low refractive index material, and has a relative film density D1 of 0.70 or more and 1.20 or less,
Between the first inorganic compound layer and the substrate layer, a high refractive index dispersion layer in which inorganic compound particles having a high refractive index are dispersed in a binder resin,
The relative film density D4 of the high refractive index dispersion layer is 0.10 or more and 0.70 or less,
A laminate for a display device, wherein the luminous reflectance of specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a display device at an incident angle of 5° is 2.0% or less.
[28]
 前記第1の無機化合物層の相対膜密度D1および前記高屈折率分散層の相対膜密度D4が、1.0≦D1/D4≦12.0を満たす、[27]に記載の表示装置用積層体。
[28]
The laminate for a display device according to [27], wherein the relative film density D1 of the first inorganic compound layer and the relative film density D4 of the high refractive index dispersion layer satisfy 1.0≦D1/D4≦12.0. body.
[29]
 前記表示装置用積層体の前記フッ素含有層側の表面の動摩擦係数が、0.01以上0.30以下である、[27]または[28]に記載の表示装置用積層体。
[29]
The laminate for a display device according to [27] or [28], wherein the surface of the laminate for a display device on the fluorine-containing layer side has a dynamic friction coefficient of 0.01 or more and 0.30 or less.
[30]
 前記第1の無機化合物が、ケイ素酸化物である、[27]から[29]までのいずれかに記載の表示装置用積層体。
[30]
The laminate for a display device according to any one of [27] to [29], wherein the first inorganic compound is silicon oxide.
[31]
 前記無機化合物粒子が、アルミニウム酸化物、ジルコニウム酸化物、ニオブ酸化物、亜鉛酸化物、スズ酸化物およびチタン酸化物のいずれかである、[27]から[30]までのいずれかに記載の表示装置用積層体。
[31]
The display according to any one of [27] to [30], wherein the inorganic compound particles are any one of aluminum oxide, zirconium oxide, niobium oxide, zinc oxide, tin oxide and titanium oxide. Device laminate.
[32]
 前記高屈折率分散層と前記基材層との間にハードコート層を有する、[27]から[31]までのいずれかに記載の表示装置用積層体。
[32]
The laminate for a display device according to any one of [27] to [31], which has a hard coat layer between the high refractive index dispersion layer and the substrate layer.
[33]
 前記基材層の前記高屈折率分散層側の面とは反対の面側に、貼付用接着層を有する、[27]から[32]までのいずれかに記載の表示装置用積層体。
[33]
The laminate for a display device according to any one of [27] to [32], which has an adhesive layer for attachment on the side of the substrate layer opposite to the side of the high refractive index dispersion layer.
[34]
 表示パネルと、
 前記表示パネルの観察者側に配置された、[1]から[33]までのいずれかに記載の表示装置用積層体と、を備える、表示装置。
[34]
a display panel;
A display device comprising: the laminate for a display device according to any one of [1] to [33], which is arranged on the viewer side of the display panel.
 1a,1b,1c … 表示装置用積層体
 2 … フッ素含有層
 3 … 第1の無機化合物層
 4 … 第2の無機化合物層
 5 … 基材層
 6 … 第3の無機化合物層
 7 … ハードコート層
 8 … 貼付用接着層
 9 … 介在層
10 … 高屈折率分散層
20a,20b,20c  … フレキシブル表示装置
21 … 表示パネル
DESCRIPTION OF SYMBOLS 1a, 1b, 1c... Laminate for display devices 2... Fluorine-containing layer 3... First inorganic compound layer 4... Second inorganic compound layer 5... Base material layer 6... Third inorganic compound layer 7... Hard coat layer DESCRIPTION OF SYMBOLS 8... Adhesive layer for sticking 9... Intervening layer 10... High refractive index dispersion layer 20a, 20b, 20c... Flexible display device 21... Display panel

Claims (34)

  1.  フッ素原子を含有するフッ素含有層と、第1の無機化合物層と、第2の無機化合物層と、基材層と、をこの順に有する表示装置用積層体であって、
     前記第1の無機化合物層は、低屈折率材料である第1の無機化合物を有し、相対膜密度D1が0.70以上1.20以下であり、
     前記第2の無機化合物層は、高屈折率材料である第2の無機化合物を有し、相対膜密度D2が0.50以上1.00未満であり、
     前記表示装置用積層体の前記フッ素含有層側の面に入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である、表示装置用積層体。
    A laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer,
    The first inorganic compound layer has a first inorganic compound that is a low refractive index material, and has a relative film density D1 of 0.70 or more and 1.20 or less,
    The second inorganic compound layer has a second inorganic compound that is a high refractive index material, and has a relative film density D2 of 0.50 or more and less than 1.00,
    A laminate for a display device, wherein the luminous reflectance of specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a display device at an incident angle of 5° is 2.0% or less.
  2.  前記表示装置用積層体の前記フッ素含有層側の表面の動摩擦係数が、0.01以上0.30以下である、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the dynamic friction coefficient of the surface of the laminate for a display device on the side of the fluorine-containing layer is 0.01 or more and 0.30 or less.
  3.  前記第1の無機化合物が、ケイ素酸化物である、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the first inorganic compound is silicon oxide.
  4.  前記第2の無機化合物が、アルミニウム酸化物、ジルコニウム酸化物、チタン酸化物、亜鉛酸化物、スズ酸化物およびニオブ酸化物のいずれかである、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the second inorganic compound is any one of aluminum oxide, zirconium oxide, titanium oxide, zinc oxide, tin oxide and niobium oxide.
  5.  前記第1の無機化合物層の厚みが、30nm以上200nm以下である、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the first inorganic compound layer has a thickness of 30 nm or more and 200 nm or less.
  6.  前記第2の無機化合物層の厚みが、10nm以上200nm以下である、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the second inorganic compound layer has a thickness of 10 nm or more and 200 nm or less.
  7.  前記第2の無機化合物層と前記基材層との間に、1つまたは複数の他の無機化合物層を有する、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, having one or more other inorganic compound layers between the second inorganic compound layer and the substrate layer.
  8.  前記表示装置用積層体に含まれる全ての無機化合物層の合計厚みが、500nm以下である、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the total thickness of all inorganic compound layers contained in the laminate for a display device is 500 nm or less.
  9.  前記第2の無機化合物層と前記基材層との間に、介在層を有し、
     前記介在層の相対膜密度D3が0.10以上0.70以下である、請求項1に記載の表示装置用積層体。
    Having an intervening layer between the second inorganic compound layer and the base layer,
    2. The laminate for a display device according to claim 1, wherein the intervening layer has a relative film density D3 of 0.10 or more and 0.70 or less.
  10.  前記介在層が、無機化合物粒子がバインダー樹脂に分散された分散層である、請求項9に記載の表示装置用積層体。 The display device laminate according to claim 9, wherein the intervening layer is a dispersed layer in which inorganic compound particles are dispersed in a binder resin.
  11.  前記介在層が、他の無機化合物層である、請求項9に記載の表示装置用積層体。 The laminate for a display device according to claim 9, wherein the intervening layer is another inorganic compound layer.
  12.  前記第1の無機化合物層の相対膜密度D1、前記第2の無機化合物層の相対膜密度D2および前記介在層の相対膜密度D3が、D3<D2<D1の関係を満たす、請求項9に記載の表示装置用積層体。 10. The relative film density D1 of the first inorganic compound layer, the relative film density D2 of the second inorganic compound layer, and the relative film density D3 of the intervening layer satisfy the relationship D3<D2<D1. The laminate for a display device described above.
  13.  前記第2の無機化合物層の相対膜密度D2および前記介在層の相対膜密度D3が、1.0≦D2/D3≦7.0を満たす、請求項9に記載の表示装置用積層体。 The laminate for a display device according to claim 9, wherein the relative film density D2 of the second inorganic compound layer and the relative film density D3 of the intermediate layer satisfy 1.0≤D2/D3≤7.0.
  14.  前記第1の無機化合物層の相対膜密度D1および前記介在層の相対膜密度D3が、1.0≦D1/D3≦12.0を満たす、請求項9に記載の表示装置用積層体。 The laminate for a display device according to claim 9, wherein the relative film density D1 of the first inorganic compound layer and the relative film density D3 of the intermediate layer satisfy 1.0≤D1/D3≤12.0.
  15.  前記第2の無機化合物層と前記基材層との間にハードコート層を有する、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, having a hard coat layer between the second inorganic compound layer and the substrate layer.
  16.  前記基材層の前記第2の無機化合物層側の面とは反対の面側に、貼付用接着層を有する、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, which has an adhesive layer for attachment on the side opposite to the side of the base material layer facing the second inorganic compound layer.
  17.  フッ素原子を含有するフッ素含有層と、第1の無機化合物層と、第2の無機化合物層と、基材層と、をこの順に有する表示装置用積層体であって、
     前記第1の無機化合物層は、低屈折率材料である第1の無機化合物を有し、フッ素原子の含有比率が6.5原子%以下であり、
     前記第2の無機化合物層は、高屈折率材料である第2の無機化合物を有し、相対膜密度D2が0.50以上1.00未満であり、
     前記表示装置用積層体の前記フッ素含有層側の面に入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である、表示装置用積層体。
    A laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, a second inorganic compound layer, and a substrate layer,
    The first inorganic compound layer has a first inorganic compound that is a low refractive index material, and has a fluorine atom content of 6.5 atomic % or less,
    The second inorganic compound layer has a second inorganic compound that is a high refractive index material, and has a relative film density D2 of 0.50 or more and less than 1.00,
    A laminate for a display device, wherein the luminous reflectance of specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a display device at an incident angle of 5° is 2.0% or less.
  18.  前記表示装置用積層体の前記フッ素含有層側の表面の動摩擦係数が、0.01以上0.30以下である、請求項17に記載の表示装置用積層体。 The display device laminate according to claim 17, wherein the dynamic friction coefficient of the fluorine-containing layer-side surface of the display device laminate is 0.01 or more and 0.30 or less.
  19.  前記第1の無機化合物が、ケイ素酸化物である、請求項17に記載の表示装置用積層体。 The laminate for a display device according to claim 17, wherein the first inorganic compound is silicon oxide.
  20.  前記第2の無機化合物が、アルミニウム酸化物、ジルコニウム酸化物、チタン酸化物、亜鉛酸化物、スズ酸化物およびニオブ酸化物のいずれかである、請求項17に記載の表示装置用積層体。 The laminate for a display device according to claim 17, wherein the second inorganic compound is any one of aluminum oxide, zirconium oxide, titanium oxide, zinc oxide, tin oxide and niobium oxide.
  21.  前記第1の無機化合物層の厚みが、30nm以上200nm以下である、請求項17に記載の表示装置用積層体。 The laminate for a display device according to claim 17, wherein the first inorganic compound layer has a thickness of 30 nm or more and 200 nm or less.
  22.  前記第2の無機化合物層の厚みが、10nm以上、200nm以下である、請求項17に記載の表示装置用積層体。 The laminate for a display device according to claim 17, wherein the second inorganic compound layer has a thickness of 10 nm or more and 200 nm or less.
  23.  前記第2の無機化合物層と前記基材層との間に、1つまたは複数の他の無機化合物層を有する、請求項17に記載の表示装置用積層体。 The laminate for a display device according to claim 17, having one or more other inorganic compound layers between said second inorganic compound layer and said base material layer.
  24.  前記表示装置用積層体に含まれる全ての無機化合物層の合計厚みが、500nm以下である、請求項17に記載の表示装置用積層体。 The laminate for a display device according to claim 17, wherein the total thickness of all inorganic compound layers contained in the laminate for a display device is 500 nm or less.
  25.  前記第2の無機化合物層と前記基材層との間にハードコート層を有する、請求項17に記載の表示装置用積層体。 The laminate for a display device according to claim 17, having a hard coat layer between the second inorganic compound layer and the substrate layer.
  26.  前記基材層の前記第2の無機化合物層側の面とは反対の面側に、貼付用接着層を有する、請求項17に記載の表示装置用積層体。 18. The laminate for a display device according to claim 17, which has an adhesive layer for attachment on the side opposite to the side of the base material layer facing the second inorganic compound layer.
  27.  フッ素原子を含有するフッ素含有層と、第1の無機化合物層と、基材層と、をこの順に有する表示装置用積層体であって、
     前記第1の無機化合物層は、低屈折率材料である第1の無機化合物を有し、相対膜密度D1が0.70以上1.20以下であり、
     前記第1の無機化合物層と前記基材層との間に、高屈折率を有する無機化合物粒子がバインダー樹脂に分散された高屈折率分散層を有し、
     前記高屈折率分散層の相対膜密度D4が0.10以上0.70以下であり、
     前記表示装置用積層体の前記フッ素含有層側の面に入射角5°で光を入射させた際の正反射光の視感反射率が2.0%以下である、表示装置用積層体。
    A laminate for a display device having, in this order, a fluorine-containing layer containing fluorine atoms, a first inorganic compound layer, and a substrate layer,
    The first inorganic compound layer has a first inorganic compound that is a low refractive index material, and has a relative film density D1 of 0.70 or more and 1.20 or less,
    Between the first inorganic compound layer and the substrate layer, a high refractive index dispersion layer in which inorganic compound particles having a high refractive index are dispersed in a binder resin,
    The relative film density D4 of the high refractive index dispersion layer is 0.10 or more and 0.70 or less,
    A laminate for a display device, wherein the luminous reflectance of specularly reflected light when light is incident on the fluorine-containing layer side surface of the laminate for a display device at an incident angle of 5° is 2.0% or less.
  28.  前記第1の無機化合物層の相対膜密度D1および前記高屈折率分散層の相対膜密度D4が、1.0≦D1/D4≦12.0を満たす、請求項27に記載の表示装置用積層体。 28. The laminate for a display device according to claim 27, wherein the relative film density D1 of the first inorganic compound layer and the relative film density D4 of the high refractive index dispersion layer satisfy 1.0≤D1/D4≤12.0. body.
  29.  前記表示装置用積層体の前記フッ素含有層側の表面の動摩擦係数が、0.01以上0.30以下である、請求項27に記載の表示装置用積層体。 The laminate for a display device according to claim 27, wherein the dynamic friction coefficient of the surface of the laminate for a display device on the side of the fluorine-containing layer is 0.01 or more and 0.30 or less.
  30.  前記第1の無機化合物が、ケイ素酸化物である、請求項27に記載の表示装置用積層体。 The laminate for a display device according to claim 27, wherein the first inorganic compound is silicon oxide.
  31.  前記無機化合物粒子が、アルミニウム酸化物、ジルコニウム酸化物、ニオブ酸化物、亜鉛酸化物、スズ酸化物およびチタン酸化物のいずれかである、請求項27に記載の表示装置用積層体。 The laminate for a display device according to claim 27, wherein the inorganic compound particles are any one of aluminum oxide, zirconium oxide, niobium oxide, zinc oxide, tin oxide and titanium oxide.
  32.  前記高屈折率分散層と前記基材層との間にハードコート層を有する、請求項27に記載の表示装置用積層体。 The laminate for a display device according to claim 27, having a hard coat layer between the high refractive index dispersion layer and the substrate layer.
  33.  前記基材層の前記高屈折率分散層側の面とは反対の面側に、貼付用接着層を有する、請求項27に記載の表示装置用積層体。 The laminate for a display device according to claim 27, which has an adhesive layer for attachment on the side of the substrate layer opposite to the side of the high refractive index dispersion layer.
  34.  表示パネルと、
     前記表示パネルの観察者側に配置された、請求項1から請求項33までのいずれかの請求項に記載の表示装置用積層体と、を備える、表示装置。
    a display panel;
    34. A display device, comprising: the laminate for a display device according to any one of claims 1 to 33, which is arranged on the viewer side of the display panel.
PCT/JP2022/036159 2021-09-30 2022-09-28 Multilayer body for display devices, and display device WO2023054468A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-162210 2021-09-30
JP2021162210 2021-09-30
JP2022146208A JP2023051786A (en) 2021-09-30 2022-09-14 Laminated body for display device and display device
JP2022-146208 2022-09-14

Publications (1)

Publication Number Publication Date
WO2023054468A1 true WO2023054468A1 (en) 2023-04-06

Family

ID=85782840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036159 WO2023054468A1 (en) 2021-09-30 2022-09-28 Multilayer body for display devices, and display device

Country Status (2)

Country Link
TW (1) TW202331485A (en)
WO (1) WO2023054468A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017544A (en) * 2003-06-25 2005-01-20 Dainippon Printing Co Ltd Antireflection film and image display apparatus
JP2009139925A (en) * 2007-11-16 2009-06-25 Epson Toyocom Corp Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus
JP2012522259A (en) * 2009-03-27 2012-09-20 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Optical article coated with antireflective or reflective coating having a conductive film based on tin oxide, and method for producing the same
JP2012208448A (en) * 2011-03-30 2012-10-25 Gunze Ltd Light reflection preventing sheet and method of manufacturing the same, and touch panel and display using light reflection preventing sheet
WO2021111813A1 (en) * 2019-12-03 2021-06-10 コニカミノルタ株式会社 Optical member and production method therefor
JP2021184032A (en) * 2020-05-21 2021-12-02 デクセリアルズ株式会社 Antireflection film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005017544A (en) * 2003-06-25 2005-01-20 Dainippon Printing Co Ltd Antireflection film and image display apparatus
JP2009139925A (en) * 2007-11-16 2009-06-25 Epson Toyocom Corp Optical multilayer film filter, method for producing optical multilayer film filter and electronic apparatus
JP2012522259A (en) * 2009-03-27 2012-09-20 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Optical article coated with antireflective or reflective coating having a conductive film based on tin oxide, and method for producing the same
JP2012208448A (en) * 2011-03-30 2012-10-25 Gunze Ltd Light reflection preventing sheet and method of manufacturing the same, and touch panel and display using light reflection preventing sheet
WO2021111813A1 (en) * 2019-12-03 2021-06-10 コニカミノルタ株式会社 Optical member and production method therefor
JP2021184032A (en) * 2020-05-21 2021-12-02 デクセリアルズ株式会社 Antireflection film

Also Published As

Publication number Publication date
TW202331485A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP6189547B2 (en) Hard-coated and surface-treated nanoparticles comprising alkoxylated multi (meth) acrylate monomers
KR101564803B1 (en) Transparent conductive laminate and transparent touch panel
JP4547644B1 (en) Easy-adhesive polyester film for optics
JP2009104842A (en) Transparent conductive film, manufacturing method therefor, and touch panel having the transparent conductive film
EP3127700A1 (en) Transparent layered film, process for producing same, and electrode for touch panel
TW201400561A (en) Hard coating composition and composition for forming high refractive index anti-blocking layer
WO2022092249A1 (en) Laminate and display device
TWI559338B (en) Color correction film and transparent conductive film using the same
WO2023054468A1 (en) Multilayer body for display devices, and display device
JP2023051786A (en) Laminated body for display device and display device
JP7185101B2 (en) Optical film with antifouling layer
WO2022260152A1 (en) Hard coat film, optical member, and image display device
JP7130893B2 (en) Optical film with antifouling layer
WO2023054683A1 (en) Laminate for display device, and display device
JP2002082206A (en) Glare-proof antireflection film
JP2001096669A (en) Antireflection laminate, optically functional laminate, and display unit
JP2000052492A (en) Anti-reflective laminate, optically functional laminate, and display device
WO2018181220A1 (en) Light-transmissive substrate for reflecting heat rays, and heat-ray-reflecting window
WO2024071391A1 (en) Laminate for display device, display device, and display device equipped with support plate
WO2024070686A1 (en) Anti-reflection film and image display device
WO2022210725A1 (en) Laminate for display device and display device
WO2023171567A1 (en) Optical laminate, article, and image display device
WO2022239821A1 (en) Multilayer body for display devices, and display device
KR20190128651A (en) Heat Reflective Translucent Substrate and Heat Reflective Window
JP7241949B1 (en) OPTICAL LAMINATE, ARTICLE AND IMAGE DISPLAY DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876334

Country of ref document: EP

Kind code of ref document: A1