WO2018181220A1 - Light-transmissive substrate for reflecting heat rays, and heat-ray-reflecting window - Google Patents

Light-transmissive substrate for reflecting heat rays, and heat-ray-reflecting window Download PDF

Info

Publication number
WO2018181220A1
WO2018181220A1 PCT/JP2018/012217 JP2018012217W WO2018181220A1 WO 2018181220 A1 WO2018181220 A1 WO 2018181220A1 JP 2018012217 W JP2018012217 W JP 2018012217W WO 2018181220 A1 WO2018181220 A1 WO 2018181220A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat ray
ray reflective
transparent conductive
layer
translucent substrate
Prior art date
Application number
PCT/JP2018/012217
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 中西
恵梨 上田
広宣 待永
大森 裕
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018049516A external-priority patent/JP2018173630A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201880020827.5A priority Critical patent/CN110494778A/en
Priority to EP18776403.0A priority patent/EP3605164A4/en
Priority to KR1020247004159A priority patent/KR20240019407A/en
Priority to KR1020197027859A priority patent/KR20190128651A/en
Priority to US16/497,522 priority patent/US20200115956A1/en
Publication of WO2018181220A1 publication Critical patent/WO2018181220A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/70Door leaves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Definitions

  • the present invention relates to a heat ray reflective translucent substrate and a heat ray reflection window.
  • a heat ray reflective translucent substrate having a layer having a function of reflecting heat rays on a translucent substrate such as glass or resin is known.
  • heat ray reflective translucent base material As a heat ray reflective translucent base material, a part of visible light such as sunlight and near infrared rays are reflected, so that the near infrared rays are prevented from entering the room and the inside of the vehicle, and the heat shielding property is suppressed to suppress the temperature rise. What has been prepared has been studied. Further, in recent years, studies are also being conducted on heat ray reflective translucent substrates having reduced emissivity and heat insulation.
  • Patent Document 1 discloses a transparent substrate, a transparent conductive layer and a film thickness of 10 nm on the transparent substrate for the purpose of providing a transparent substrate with a laminated film that has excellent durability in addition to high heat shielding and color rendering.
  • a transparent substrate with a laminated film having a laminated film in which a super nitrogen-containing light absorbing layer is laminated is disclosed.
  • the heat ray reflective translucent base material is used as a translucent base material of a lighting part such as a window or affixed to a translucent base material of a lighting part such as a window because of its function.
  • a human hand or an object moves while causing friction in a state where pressure is applied to the surface of the heat ray reflective translucent base material, the transparent constituting the heat ray reflective translucent base material It has been demanded to prevent the functional layer such as the conductive layer from being peeled off or scratched to deteriorate the function or impair the appearance. That is, a heat ray reflective translucent base material excellent in scratch resistance has been demanded.
  • an object of one aspect of the present invention is to provide a heat ray reflective translucent substrate having excellent scratch resistance.
  • a translucent substrate A hard coat layer disposed on one surface of the translucent substrate;
  • a heat ray reflective translucent substrate having a transparent conductive oxide layer containing a transparent conductive oxide disposed on the hard coat layer.
  • a heat ray reflective translucent substrate having excellent scratch resistance can be provided.
  • the present embodiment is not limited thereto.
  • Heat ray reflective translucent substrate One structural example of the heat ray reflective translucent substrate of the present embodiment will be described below.
  • the heat ray reflective translucent substrate of the present embodiment includes a translucent substrate, a hard coat layer disposed on one surface of the translucent substrate, and a transparent conductive layer disposed on the hard coat layer. And a transparent conductive oxide layer containing an oxide.
  • the inventor of the present invention has intensively studied to reduce the emissivity and to make the heat ray reflective translucent substrate having heat insulating property a heat ray reflective translucent substrate excellent in scratch resistance.
  • the transparent conductive oxide layer when only the transparent conductive oxide layer is disposed on the translucent base material, for example, when a hand or an object is moved against the transparent conductive oxide layer while causing friction in a pressed state.
  • the transparent conductive oxide layer may be deformed, and scratches or peeling may occur in the transparent conductive oxide layer. If the transparent conductive oxide layer is scratched or peeled off, the function of the transparent conductive oxide layer may be deteriorated or the appearance may be impaired.
  • FIG. 1 schematically shows a cross-sectional view of the heat ray reflective translucent substrate of the present embodiment on a plane parallel to the lamination direction of the translucent substrate, hard coat layer, and transparent conductive oxide layer. ing.
  • the heat ray reflective translucent substrate 10 of the present embodiment has a hard coat layer 12 and a transparent disposed on the hard coat layer 12 on one surface of the translucent substrate 11.
  • a structure in which the conductive oxide layer 13 is stacked can be provided. Each layer will be described below.
  • the translucent substrate 11 various translucent substrates that can transmit visible light can be preferably used.
  • a substrate having a visible light transmittance of 10% or more can be used more preferably.
  • the visible light transmittance is measured according to JIS A5759-2008 (architectural window glass film).
  • the heat ray reflective translucent base material of this embodiment can suppress a deformation
  • any material that can transmit visible light as described above can be preferably used. However, when forming each layer on the translucent base material 11, a heat treatment or the like is performed. Since it may be performed, a resin having heat resistance can be preferably used.
  • the resin material constituting the translucent resin base material for example, one or more selected from polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polycarbonate (PC) and the like are preferable. Can be used.
  • the heat ray reflective translucent base material of the present embodiment can be used by being fitted into a window frame or the like as a translucent base material of a lighting part such as a window. It can also be used by pasting together. For this reason, the translucent base material 11 can select the thickness and material according to a use etc.
  • the thickness of the translucent substrate 11 can be, for example, 10 ⁇ m or more and 10 mm or less.
  • the thickness or material of the translucent substrate 11 is sufficient so as to have sufficient strength. Is preferably selected.
  • the heat ray reflective translucent base material of the present embodiment is used by being bonded to a light transmissible base material of a lighting part such as a window, the productivity of the heat ray reflective substrate is increased and the light transmissivity of the window or the like is increased. It is preferable to select a thickness and a material so that the translucent substrate 11 is flexible so that it can be easily bonded to the substrate.
  • a translucent resin base material is used suitably as a translucent base material.
  • the thickness is preferably in the range of about 10 ⁇ m to 300 ⁇ m.
  • the translucent base material 11 can also be comprised from one translucent base material, it can also be used, for example, combining two or more translucent base materials by bonding etc.
  • the total thickness satisfies, for example, a range of suitable thicknesses of the above-described translucent substrate.
  • the hard coat layer 12 supports the transparent conductive oxide layer 13 and can suppress deformation of the transparent conductive oxide layer 13 when pressed or the like.
  • the hard coat layer 12 can be formed using a resin, for example, and can be a resin hard coat layer.
  • the material of the hard coat layer is not particularly limited.
  • one or more kinds of resins selected from acrylic resins, silicone resins, urethane resins and the like can be preferably used.
  • inorganic particles in the hard coat layer, an improvement in adhesion between the hard coat layer and the transparent conductive layer can be expected.
  • the material of the inorganic particles is not particularly limited, but for example, one or more kinds of inorganic particles selected from silica, alumina, zirconia and the like can be preferably used.
  • the hard coat layer 12 can be formed by, for example, applying a resin on one surface of the translucent substrate 11 and curing the resin.
  • the thickness of the hard coat layer 12 is not particularly limited, and can be arbitrarily selected according to the material of the hard coat layer 12, the required visible light transmittance, the degree of scratch resistance, and the like.
  • the thickness of the hard coat layer 12 is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and more preferably 0.7 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the hard coat layer 12 is set to 0.5 ⁇ m or more, a hard coat layer having sufficient strength can be obtained, and deformation of the transparent conductive oxide layer 13 can be particularly suppressed. It is. Moreover, it is because the internal stress which arises by shrinkage
  • the transparent conductive oxide layer 13 is a layer containing a transparent conductive oxide, and may be a layer made of a transparent conductive oxide. According to the study of the inventors of the present invention, far infrared rays can be reflected by the carrier contained in the transparent conductive oxide. For this reason, the heat ray reflective translucent base material of this embodiment can be made into the heat ray reflective translucent base material excellent in heat insulation by providing a transparent conductive oxide layer.
  • the transparent conductive oxide contained in the transparent conductive oxide layer is not particularly limited, and various transparent conductive oxides can be used as long as they can reflect far infrared rays.
  • the transparent conductive oxide is doped with, for example, one or more selected from tin, titanium, tungsten, molybdenum, zinc, and hydrogen.
  • the transparent conductive oxide is more preferably indium oxide doped with one or more selected from tin, titanium, tungsten, molybdenum, zinc, and hydrogen, and one or more selected from tin and zinc Is more preferably doped indium oxide.
  • the thickness of the transparent conductive oxide layer is not particularly limited, and can be arbitrarily selected according to required heat insulating properties.
  • the thickness of the transparent conductive oxide layer is preferably 30 nm or more and 500 nm or less, and more preferably 35 nm or more and 400 nm or less.
  • the film forming method of the transparent conductive oxide layer is not particularly limited, but a film forming method by any one or more dry processes selected from, for example, a sputtering method, a vacuum evaporation method, a CVD method, and an electron beam evaporation method is preferable. Can be used. In addition, it is preferable to increase the crystallinity by performing a heat treatment after the film formation.
  • the heat ray reflective translucent base material of the present embodiment is not limited to the translucent base material, hard coat layer, and transparent conductive oxide layer described so far, and may further have an arbitrary layer.
  • undercoat layers such as an optical adjustment layer, a gas barrier layer, and an adhesion improving layer can be provided between the hard coat layer and the transparent conductive oxide layer.
  • the optical adjustment layer can improve the color and transparency
  • the gas barrier layer can improve the crystallization speed of the transparent conductive oxide
  • the adhesion improving layer can prevent delamination and resistance. It is possible to improve durability such as cracks.
  • the specific configuration of the underlayer is not particularly limited, and examples of the adhesion improving layer and the gas barrier layer include a layer containing alumina (Al 2 O 3 ).
  • examples of the optical adjustment layer include a layer containing zirconia (ZrO 2 ) and a layer containing hollow particles.
  • the heat ray reflective translucent substrate of the present embodiment is the same as the heat ray reflective translucent substrate 20 shown in FIG.
  • the pressure-sensitive adhesive layer 21 can also be provided on the other surface 11b opposite to the one surface 11a on which the layer 13 is provided.
  • the heat ray reflective translucent substrate of the present embodiment can be used by being attached to a translucent substrate of a daylighting unit such as a window. Therefore, by providing the pressure-sensitive adhesive layer 21 as described above, it can be easily attached to a light-transmitting substrate of a daylighting unit such as a window.
  • the material of the pressure-sensitive adhesive layer is not particularly limited, but it is preferable to use a material having a high visible light transmittance.
  • a material for the pressure-sensitive adhesive layer for example, an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, or the like can be used.
  • the acrylic pressure-sensitive adhesive mainly composed of an acrylic polymer is excellent in optical transparency, exhibits appropriate wettability, cohesion and adhesion, and is excellent in weather resistance, heat resistance, etc. It is suitable as a material.
  • the pressure-sensitive adhesive layer preferably has a high visible light transmittance and a low ultraviolet transmittance.
  • the pressure-sensitive adhesive layer can also contain an ultraviolet absorber.
  • degradation of the transparent conductive oxide layer etc. resulting from the ultraviolet-ray from the outdoors can be suppressed also by using the translucent base material etc. which contain a ultraviolet absorber.
  • the exposed surface of the pressure-sensitive adhesive layer is preferably covered with a release paper for the purpose of preventing contamination of the exposed surface until the heat ray reflective / translucent substrate is put to practical use. Thereby, the contamination by the contact with the exterior of the exposed surface of an adhesive layer can be prevented in the usual handling state.
  • the heat ray reflective translucent base material of this embodiment is fitted into a window frame or the like and used as a translucent base material of a daylighting part such as a window, it is necessary to stick to another translucent base material. Therefore, it is preferable not to have an adhesive layer.
  • the heat ray reflective translucent base material of this embodiment may further have a surface protective layer 31 on the transparent conductive oxide layer 13 like the heat ray reflective translucent base material 30 shown in FIG. it can.
  • the heat ray reflective translucent base material 30 can have the hard-coat layer 12 and the translucent base material 11 under the transparent conductive oxide layer 13, as shown in FIG.
  • the surface protective layer 31 By providing the surface protective layer 31, it is possible to suppress the transparent conductive oxide layer 13 from directly touching a human hand or the like, so that the scratch resistance can be particularly improved.
  • the thickness of the surface protective layer is preferably 5 nm or more and 1 ⁇ m or less, and more preferably 5 nm or more and 500 nm or less. This is because by setting the thickness of the surface protective layer to 5 nm or more, the transparent conductive oxide layer 13 can be sufficiently protected and the scratch resistance can be particularly improved. Further, even if the thickness of the surface protective layer is made thicker than 1 ⁇ m, there is no significant difference in the effect. Rather, there is a possibility that the emissivity may be increased by far-infrared absorption, so that the thickness is preferably 1 ⁇ m or less.
  • the material of the surface protective layer 31 is preferably a material having high visible light transmittance and excellent mechanical strength and chemical strength. From the viewpoint of enhancing scratch prevention and chemical protection for the transparent conductive oxide layer, organic materials and inorganic materials are preferred. Examples of organic materials include fluorine, acrylic, urethane, ester, epoxy, silicone, and olefin actinic ray curable or thermosetting organic materials, and organic and inorganic components chemically bonded. The organic / inorganic hybrid material is preferably used.
  • examples of the inorganic material include transparent oxide containing at least one selected from silicon, aluminum, zinc, titanium, zirconium, and tin as a main component, diamond-like carbon, and the like.
  • a crosslinked structure is preferably introduced into the organic material.
  • the mechanical strength and chemical strength of the surface protective layer are increased, and the protective function for the transparent conductive oxide layer and the like is increased.
  • it is preferable that a crosslinked structure derived from an ester compound having an acidic group and a polymerizable functional group in the same molecule is introduced.
  • ester compounds having an acidic group and a polymerizable functional group in the same molecule include polyvalent acids such as phosphoric acid, sulfuric acid, oxalic acid, succinic acid, phthalic acid, fumaric acid, and maleic acid; And an ester of a compound having a polymerizable functional group such as a group, silanol group or epoxy group and a hydroxyl group in the molecule.
  • the ester compound may be a polyester such as a diester or triester, but it is preferable that at least one acidic group of the polyvalent acid is not esterified.
  • the surface protective layer 31 has a cross-linked structure derived from the above ester compound, the mechanical strength and chemical strength of the surface protective layer are increased, and between the surface protective layer 31 and the transparent conductive oxide layer 13. Adhesion is enhanced and the durability of the transparent conductive oxide layer is particularly enhanced.
  • an ester compound (phosphate ester compound) of phosphoric acid and an organic acid having a polymerizable functional group is excellent in adhesion to the transparent conductive oxide layer.
  • the surface protective layer having a cross-linked structure derived from a phosphate ester compound is excellent in adhesion with the transparent conductive oxide layer.
  • the ester compound preferably contains a (meth) acryloyl group as a polymerizable functional group.
  • the ester compound may have a plurality of polymerizable functional groups in the molecule.
  • a phosphoric acid monoester compound or a phosphoric acid diester compound represented by the following formula (1) is preferably used.
  • phosphoric acid monoester and phosphoric acid diester can also be used together.
  • X represents a hydrogen atom or a methyl group
  • (Y) represents an —OCO (CH 2 ) 5 — group
  • n is 0 or 1
  • p is 1 or 2.
  • the content of the structure derived from the ester compound in the surface protective layer 31 is preferably 1 to 20% by mass, more preferably 1.5 to 17.5% by mass, and more preferably 2 to 15% by mass. More preferably, it is more preferably 2.5% by mass or more and 12.5% by mass or less. If the content of the ester compound-derived structure is excessively small, the effect of improving strength and adhesion may not be sufficiently obtained. On the other hand, if the content of the ester compound-derived structure is excessively large, the curing rate at the time of forming the surface protective layer is reduced and the hardness is lowered, or the slipping property of the surface protective layer surface is lowered and the scratch resistance is lowered. There is a case. Content of the structure derived from the ester compound in a surface protective layer can be made into a desired range by adjusting content of the said ester compound in a composition at the time of surface protective layer formation.
  • the method for forming the surface protective layer 31 is not particularly limited.
  • the surface protective layer is prepared, for example, by dissolving an organic material, or a curable monomer or oligomer of the organic material, and the ester compound in a solvent, and applying the solution on the transparent conductive oxide layer 13. After drying, it is preferably formed by a method of curing by irradiating with ultraviolet rays or electron beams or applying thermal energy.
  • the film can be formed by any one or more dry processes selected from, for example, a sputtering method, a vacuum evaporation method, a CVD method, and an electron beam evaporation method. .
  • the surface protective layer 31 is made of a coupling agent such as a silane coupling agent or a titanium coupling agent, a leveling agent, an ultraviolet absorber, an antioxidant, or a heat stabilizer.
  • a coupling agent such as a silane coupling agent or a titanium coupling agent
  • a leveling agent such as a silane coupling agent or a titanium coupling agent
  • an ultraviolet absorber such as an ultraviolet absorber, an antioxidant, or a heat stabilizer.
  • Additives such as lubricants, plasticizers, anti-coloring agents, flame retardants and antistatic agents may be included.
  • the surface protective layer 31 may be composed of a plurality of layers having different materials, such as laminating an inorganic material and an organic material.
  • required of the heat ray reflective translucent base material of this embodiment is not specifically limited, It is preferable that the emissivity measured from the transparent conductive oxide layer side is 0.60 or less, and 0.50 or less It is more preferable that it is 0.40 or less.
  • the lower limit of the emissivity is not particularly limited, but is preferably smaller than 0 because it is preferably smaller.
  • the heat ray reflective translucent substrate of the present embodiment includes a translucent substrate, a hard coat layer, and a transparent conductive oxide layer.
  • the emissivity measured from the side of the transparent conductive oxide layer is the surface of the heat ray reflective translucent substrate, from the surface on the side close to the transparent conductive oxide layer in the three layers, It means the emissivity measured by irradiating infrared rays on the transparent conductive oxide layer.
  • the heat ray reflective window 40 of the present embodiment includes a window translucent base material 41 and the heat ray reflective translucent member described above disposed on one surface 41 a of the window translucent base material 41. It can have an optical substrate 42.
  • the translucent base material 41 for windows is a translucent base material disposed in, for example, a daylighting portion of a window, and for example, a glass material or a translucent resin base material can be used.
  • the heat ray reflective translucent base material 42 described above can be disposed on one surface of the translucent base material 41 for windows.
  • the method for fixing the heat ray reflective translucent substrate 42 on the window translucent substrate 41 is not particularly limited.
  • the window light translucent substrate 41 of the heat ray reflective translucent substrate 42 is used.
  • the pressure-sensitive adhesive layer described with reference to FIG. 2 can be disposed and fixed on the side facing the surface 42b.
  • the transparent conductive oxide layer is positioned indoors or inside the vehicle. That is, the heat ray reflective translucent base material 42 is preferably fixed so that the transparent conductive oxide layer is located indoors or inside the vehicle, rather than the light translucent base material of the heat ray reflective translucent base material 42. .
  • the heat ray reflective translucent base material 42 is disposed on the indoor side of the translucent base material 41 for windows. Therefore, in the example shown in FIG. 4, the heat ray reflective translucent substrate 42 is transparent on the other surface 42 a side opposite to the one surface 42 b facing the translucent substrate 41 for windows. It is preferable to fix so that the conductive oxide layer is located.
  • the transparent conductive oxide layer has a function of reflecting far-infrared rays, so that the far-infrared rays generated in the room or the like are radiated to the outside by being arranged in the direction of the room or the like. This is because it can be suppressed.
  • the heat ray reflective window of the present embodiment the heat ray reflective translucent substrate described above is provided. For this reason, far infrared rays can be reflected and it can have a heat insulation function. Moreover, it can be set as the heat ray reflective window excellent in abrasion resistance.
  • Visible Light Transmittance was determined according to JIS A5759-2008 (architectural window glass film) using a spectrophotometer (product name “U-4100” manufactured by Hitachi High-Tech).
  • Emissivity Emissivity is measured using a Fourier transform infrared spectroscopic (FT-IR) device (manufactured by Varian) equipped with a variable angle reflection accessory, and infrared rays in the wavelength range of 5 ⁇ m to 25 ⁇ m from the surface protective layer side.
  • FT-IR Fourier transform infrared spectroscopic
  • the sample after the test was visually evaluated for scratches and peeling of the transparent conductive oxide layer, and evaluated according to the following evaluation criteria.
  • PET polyethylene terephthalate
  • the thickness shown in Table 1 is obtained by applying a resin solution on one surface of a light-transmitting substrate using spin coating, drying, and then curing by ultraviolet (UV) irradiation (300 mJ / cm 2 ) in a nitrogen atmosphere. A hard coat layer was formed.
  • UV ultraviolet
  • an optical polymerization initiator (trade name: Irgacure 184, manufactured by BASF) is mixed with a UV curable urethane acrylate hard coat resin solution (trade name: ENS1068, manufactured by DIC Corporation) so that the resin equivalent is 3 wt%. Produced.
  • ITO film Indium Tin Oxide film, indium tin oxide film
  • Table 1 the thickness shown in Table 1 is obtained by DC magnetron sputtering using a composite oxide target having a SnO 2 content of 10 wt% with respect to the total amount of In 2 O 3 and SnO 2. Then, the film was formed by heat treatment at 150 ° C. for 30 minutes.
  • the sputtering gas was a mixed gas of argon and a small amount of oxygen, and film formation was performed under a process pressure of 0.2 Pa.
  • a surface protective layer was formed on the transparent conductive oxide layer.
  • an acrylic hard coat resin solution manufactured by JSR Corporation, trade name: Opster Z7535
  • an optical polymerization initiator trade name: Irgacure 127, manufactured by BASF Corporation
  • Example 1 The above-mentioned evaluation was performed about the obtained heat ray reflective translucent base material. The results are shown in Table 1.
  • Example 2 and 3 Except for the point that the transparent conductive oxide layer had the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 Except for the point that the surface protective layer had the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 A heat ray reflective translucent base material was produced and evaluated in the same manner as in Example 1 except that the surface protective layer was configured as follows. The results are shown in Table 1.
  • An oxide film (described as “SXO” in Table 1) containing Si and Zr was formed as a surface protective layer on the transparent conductive oxide layer. Specifically, using an alloy target having a Zr content of 30 wt% with respect to the total amount of metal Si and Zr, a film was formed by DC magnetron sputtering so as to have a thickness shown in Table 1.
  • a mixed gas of argon / oxygen 85/15 (volume ratio) was used, and film formation was performed under a process gas pressure of 0.2 Pa.
  • Example 6 Except for the point that the surface protective layer was formed to have the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 As a transparent conductive oxide layer, instead of the ITO film, an IZO film (Indium Zinc Oxide film, indium zinc oxide film) was formed in the same manner as in Example 1 except that the film was formed to a thickness of 400 nm. A reflective translucent substrate was prepared and evaluated. The results are shown in Table 1.
  • the IZO film was formed to a thickness of 400 nm by DC magnetron sputtering using a complex oxide target having a ZnO content of 10 wt% with respect to the total amount of In 2 O 3 and ZnO.
  • the sputtering gas was a mixed gas of argon and a small amount of oxygen, and film formation was performed under a process pressure of 0.2 Pa.
  • Example 8 A heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 3 except that the hard coat layer was formed to have a thickness shown in Table 1. The results are shown in Table 1.
  • Example 9 Except for the point that the hard coat layer was formed to have the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 10 Except for the point that blue plate glass (manufactured by Matsunami Glass Co., Ltd.) having a thickness of 3 mm was used as the translucent substrate and the surface protective layer was not provided, the heat ray reflective translucent light was conducted in the same manner as in Example 1. A porous substrate was prepared and evaluated.
  • Example 11 Except for the point that the transparent conductive oxide layer was formed to have the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 12 Except for the point that the surface protective layer was formed to have the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 13 A heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1 except that a base layer was formed between the hard coat layer and the transparent conductive oxide layer.
  • an Al oxide film as an adhesion improving layer that is, an alumina film (described as “Al 2 O 3 ” in Table 1) was formed as a base layer.
  • an underlayer was formed on the hard coat layer using a metal Al target so as to have the thickness shown in Table 1 by DC magnetron sputtering.
  • a mixed gas of argon / oxygen 85/15 (volume ratio) was used, and film formation was performed under a process gas pressure of 0.2 Pa.
  • a transparent conductive oxide layer and a surface protective layer were formed on the underlayer in the same manner as in Example 1 to obtain a heat ray reflective translucent substrate.
  • the SiO 2 layer was formed to a thickness of 80 nm by a DC magnetron sputtering method using a metal Si target.
  • a mixed gas of argon / oxygen 85/15 (volume ratio) was used as the sputtering gas, and the process was performed under a process pressure of 0.2 Pa.
  • Examples 1 to 13 are compared with Comparative Example 2 that does not have a transparent conductive oxide layer, the emissivity is significantly reduced in Examples 1 to 13 compared to Comparative Example 2. It was also confirmed that heat insulation can be exhibited by providing a transparent conductive oxide layer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a light-transmissive substrate for reflecting heat rays, the light-transmissive substrate having: a light-transmissive substrate; a hard coat layer disposed on one surface of the light-transmissive substrate; and a transparent electroconductive oxide layer containing a transparent electroconductive oxide, the transparent electroconductive oxide layer being disposed on the hard coat layer.

Description

熱線反射透光性基材、熱線反射窓Heat ray reflective translucent substrate, heat ray reflective window
 本発明は、熱線反射透光性基材、熱線反射窓に関する。 The present invention relates to a heat ray reflective translucent substrate and a heat ray reflection window.
 従来から、ガラスや樹脂等の透光性基材上に熱線を反射する機能を備えた層を有する熱線反射透光性基材が知られている。 Conventionally, a heat ray reflective translucent substrate having a layer having a function of reflecting heat rays on a translucent substrate such as glass or resin is known.
 熱線反射透光性基材としては、太陽光等の可視光の一部や近赤外線を反射することで、室内や車内に近赤外線が入射することを抑制し、温度上昇を抑制する遮熱性を備えたものが従来から検討されている。また、近年では放射率を低減させて、断熱性を備えた熱線反射透光性基材についても検討が進められている。 As a heat ray reflective translucent base material, a part of visible light such as sunlight and near infrared rays are reflected, so that the near infrared rays are prevented from entering the room and the inside of the vehicle, and the heat shielding property is suppressed to suppress the temperature rise. What has been prepared has been studied. Further, in recent years, studies are also being conducted on heat ray reflective translucent substrates having reduced emissivity and heat insulation.
 例えば特許文献1には、高遮熱性および高演色性に加えて耐久性に優れる積層膜付き透明基板の提供を目的として、透明基板と、前記透明基板上に、透明導電層と膜厚が10nm超の窒素含有光吸収層とが積層された積層膜とを有する積層膜付き透明基板が開示されている。 For example, Patent Document 1 discloses a transparent substrate, a transparent conductive layer and a film thickness of 10 nm on the transparent substrate for the purpose of providing a transparent substrate with a laminated film that has excellent durability in addition to high heat shielding and color rendering. A transparent substrate with a laminated film having a laminated film in which a super nitrogen-containing light absorbing layer is laminated is disclosed.
日本国特開2016-79051号公報Japanese Unexamined Patent Publication No. 2016-79051
 ところで、熱線反射透光性基材はその機能から、窓等の採光部の透光性基材として、もしくは窓等の採光部の透光性基材に貼付して使用されるため、人の手や、物に触れる機会が多い。このため、人の手や、物等が、熱線反射透光性基材の表面に対して圧力を加えた状態で摩擦を起こしながら移動した場合でも、熱線反射透光性基材を構成する透明導電層等の機能層に剥がれやキズなどが生じ、機能が低下したり、外観を損ねることを防止することが求められていた。すなわち、耐擦傷性に優れた熱線反射透光性基材が求められていた。 By the way, the heat ray reflective translucent base material is used as a translucent base material of a lighting part such as a window or affixed to a translucent base material of a lighting part such as a window because of its function. There are many opportunities to touch hands and objects. For this reason, even when a human hand or an object moves while causing friction in a state where pressure is applied to the surface of the heat ray reflective translucent base material, the transparent constituting the heat ray reflective translucent base material It has been demanded to prevent the functional layer such as the conductive layer from being peeled off or scratched to deteriorate the function or impair the appearance. That is, a heat ray reflective translucent base material excellent in scratch resistance has been demanded.
 しかしながら、特許文献1に開示された積層膜付き透明基板においては耐擦傷性については十分に検討されていなかった。 However, the scratch resistance of the transparent substrate with a laminated film disclosed in Patent Document 1 has not been sufficiently studied.
 そこで、上記従来技術の問題に鑑み、本発明の一側面では耐擦傷性に優れた熱線反射透光性基材を提供することを目的とする。 Therefore, in view of the above-described problems of the prior art, an object of one aspect of the present invention is to provide a heat ray reflective translucent substrate having excellent scratch resistance.
 上記課題を解決するため本発明の一側面では、透光性基材と、
 前記透光性基材の一方の面上に配置されたハードコート層と、
 前記ハードコート層上に配置された透明導電性酸化物を含有する透明導電性酸化物層とを有する熱線反射透光性基材を提供する。
In order to solve the above problems, in one aspect of the present invention, a translucent substrate,
A hard coat layer disposed on one surface of the translucent substrate;
Provided is a heat ray reflective translucent substrate having a transparent conductive oxide layer containing a transparent conductive oxide disposed on the hard coat layer.
 本発明の一側面によれば、耐擦傷性に優れた熱線反射透光性基材を提供することができる。 According to one aspect of the present invention, a heat ray reflective translucent substrate having excellent scratch resistance can be provided.
本発明の実施形態に係る一構成例の熱線反射透光性基材の断面図である。It is sectional drawing of the heat ray reflective translucent base material of the example of 1 structure which concerns on embodiment of this invention. 本発明の実施形態に係る他の構成例の熱線反射透光性基材の断面図である。It is sectional drawing of the heat ray reflective translucent base material of the other structural example which concerns on embodiment of this invention. 本発明の実施形態に係る他の構成例の熱線反射透光性基材の断面図である。It is sectional drawing of the heat ray reflective translucent base material of the other structural example which concerns on embodiment of this invention. 本発明の実施形態に係る一の構成例の熱線反射窓の断面図である。It is sectional drawing of the heat ray reflective window of the one structural example which concerns on embodiment of this invention.
 以下、本開示の一実施形態(以下「本実施形態」と記す)について詳細に説明するが、本実施形態はこれらに限定されるものではない。
[熱線反射透光性基材]
 本実施形態の熱線反射透光性基材の一構成例について以下に説明する。
Hereinafter, an embodiment of the present disclosure (hereinafter referred to as “the present embodiment”) will be described in detail, but the present embodiment is not limited thereto.
[Heat ray reflective translucent substrate]
One structural example of the heat ray reflective translucent substrate of the present embodiment will be described below.
 本実施形態の熱線反射透光性基材は、透光性基材と、透光性基材の一方の面上に配置されたハードコート層と、ハードコート層上に配置された透明導電性酸化物を含有する透明導電性酸化物層とを有する。 The heat ray reflective translucent substrate of the present embodiment includes a translucent substrate, a hard coat layer disposed on one surface of the translucent substrate, and a transparent conductive layer disposed on the hard coat layer. And a transparent conductive oxide layer containing an oxide.
 本発明の発明者は、放射率を低減させて、断熱性を備えた熱線反射透光性基材について耐擦傷性に優れた熱線反射透光性基材とするべく、鋭意検討を行った。 The inventor of the present invention has intensively studied to reduce the emissivity and to make the heat ray reflective translucent substrate having heat insulating property a heat ray reflective translucent substrate excellent in scratch resistance.
 その結果まず、透明導電性酸化物を含有する透明導電性酸化物層を有することで、断熱性を備えた熱線反射透光性基材とすることができるとの知見を得た。これは透明導電性酸化物層に含まれる透明導電性酸化物が有するキャリアを利用して遠赤外線を反射することができるためと考えられる。 As a result, firstly, it has been found that by having a transparent conductive oxide layer containing a transparent conductive oxide, a heat ray reflective translucent substrate having heat insulating properties can be obtained. This is presumably because far-infrared rays can be reflected using the carriers of the transparent conductive oxide contained in the transparent conductive oxide layer.
 ただし、透光性基材上に透明導電性酸化物層を配置するのみでは、例えば手や物を、透明導電性酸化物層に対して、押圧した状態で摩擦を起こしながら移動等させた際に、透明導電性酸化物層が変形し、透明導電性酸化物層にキズや剥がれ等が生じる場合があった。透明導電性酸化物層にキズや剥がれ等が生じると透明導電性酸化物層の機能が低下したり、外観を損ねる場合がある。 However, when only the transparent conductive oxide layer is disposed on the translucent base material, for example, when a hand or an object is moved against the transparent conductive oxide layer while causing friction in a pressed state. In addition, the transparent conductive oxide layer may be deformed, and scratches or peeling may occur in the transparent conductive oxide layer. If the transparent conductive oxide layer is scratched or peeled off, the function of the transparent conductive oxide layer may be deteriorated or the appearance may be impaired.
 そこで、透光性基材上にハードコート層を配置することで、透明導電性酸化物層を押圧・摩擦等した場合でも、透明導電性酸化物層の変形を低減し、キズや剥がれ等の発生を抑制できること、すなわち耐擦傷性を高めることができることを見出し、本発明を完成した。 Therefore, by disposing a hard coat layer on the translucent substrate, even when the transparent conductive oxide layer is pressed and rubbed, the deformation of the transparent conductive oxide layer is reduced, and scratches, peeling, etc. The inventors have found that generation can be suppressed, that is, scratch resistance can be improved, and the present invention has been completed.
 ここで、図1に本実施形態の熱線反射透光性基材の構成例を示す。図1は、本実施形態の熱線反射透光性基材の、透光性基材、ハードコート層、及び透明導電性酸化物層の積層方向と平行な面での断面図を模式的に示している。 Here, the structural example of the heat ray reflective translucent base material of this embodiment is shown in FIG. FIG. 1 schematically shows a cross-sectional view of the heat ray reflective translucent substrate of the present embodiment on a plane parallel to the lamination direction of the translucent substrate, hard coat layer, and transparent conductive oxide layer. ing.
 図1に示すように、本実施形態の熱線反射透光性基材10は、透光性基材11の一方の面上に、ハードコート層12と、ハードコート層12上に配置された透明導電性酸化物層13とを積層した構造を有することができる。以下に各層について説明する。 As shown in FIG. 1, the heat ray reflective translucent substrate 10 of the present embodiment has a hard coat layer 12 and a transparent disposed on the hard coat layer 12 on one surface of the translucent substrate 11. A structure in which the conductive oxide layer 13 is stacked can be provided. Each layer will be described below.
 透光性基材11としては、可視光を透過できる各種透光性基材を好ましく用いることができる。透光性基材11としては、可視光透過率が10%以上のものをより好ましく用いることができる。なお、本明細書において、可視光透過率は、JIS A5759-2008(建築窓ガラスフィルム)に準じて測定される。 As the translucent substrate 11, various translucent substrates that can transmit visible light can be preferably used. As the translucent substrate 11, a substrate having a visible light transmittance of 10% or more can be used more preferably. In this specification, the visible light transmittance is measured according to JIS A5759-2008 (architectural window glass film).
 透光性基材11としては、ガラス板や透光性樹脂基材等を好ましく用いることができる。本実施形態の熱線反射透光性基材は、ハードコート層を設けることで、透明導電性酸化物層の変形を抑制し、耐擦傷性を高めることができる。そして、透光性基材が透光性樹脂基材のように特に変形しやすい場合に、特にその効果を発揮することができる。このため、本実施形態の熱線反射透光性基材の透光性基材は、透光性樹脂基材であることがより好ましい。 As the translucent substrate 11, a glass plate, a translucent resin substrate, or the like can be preferably used. The heat ray reflective translucent base material of this embodiment can suppress a deformation | transformation of a transparent conductive oxide layer and can improve abrasion resistance by providing a hard-coat layer. And when a translucent base material is especially easy to deform | transform like a translucent resin base material, the effect can be exhibited especially. For this reason, as for the translucent base material of the heat ray reflective translucent base material of this embodiment, it is more preferable that it is a translucent resin base material.
 透光性樹脂基材の材料としては、上述のように可視光を透過できる材料であれば好ましく用いることができるが、透光性基材11上に各層を形成する際等に加熱処理等を行う場合があるため耐熱性を有する樹脂を好ましく用いることができる。透光性樹脂基材を構成する樹脂材料としては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルエーテルケトン(PEEK)、ポリカーボネート(PC)等から選択された1種類以上を好ましく用いることができる。 As a material of the translucent resin base material, any material that can transmit visible light as described above can be preferably used. However, when forming each layer on the translucent base material 11, a heat treatment or the like is performed. Since it may be performed, a resin having heat resistance can be preferably used. As the resin material constituting the translucent resin base material, for example, one or more selected from polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polycarbonate (PC) and the like are preferable. Can be used.
 本実施形態の熱線反射透光性基材は、例えば窓等の採光部の透光性基材として窓枠等に嵌め込んで用いることもでき、また窓等の採光部の透光性基材に貼り合せて用いることもできる。このため、透光性基材11は、用途等に応じてその厚みや、材料を選択することができる。透光性基材11の厚さは、例えば10μm以上10mm以下とすることができる。 The heat ray reflective translucent base material of the present embodiment can be used by being fitted into a window frame or the like as a translucent base material of a lighting part such as a window. It can also be used by pasting together. For this reason, the translucent base material 11 can select the thickness and material according to a use etc. The thickness of the translucent substrate 11 can be, for example, 10 μm or more and 10 mm or less.
 例えば、本実施形態の熱線反射透光性基材を、窓等の採光部の透光性基材として用いる場合には、透光性基材11は十分な強度を有するよう、その厚みや材料を選択することが好ましい。 For example, when the heat ray reflective translucent substrate of the present embodiment is used as a translucent substrate of a daylighting unit such as a window, the thickness or material of the translucent substrate 11 is sufficient so as to have sufficient strength. Is preferably selected.
 また、本実施形態の熱線反射透光性基材を、窓等の採光部の透光性基材に貼り合せて用いる場合には、熱線反射基板の生産性を高め、窓等の透光性基材に貼り合せ易いように、透光性基材11は可撓性を有するように厚みや材料を選択することが好ましい。可撓性を有する透光性基材とする場合、透光性基材としては透光性樹脂基材が好適に用いられる。可撓性を有する透光性基材として透光性樹脂基材を用いる場合、その厚みは10μm以上300μm以下程度の範囲が好適である。 In addition, when the heat ray reflective translucent base material of the present embodiment is used by being bonded to a light transmissible base material of a lighting part such as a window, the productivity of the heat ray reflective substrate is increased and the light transmissivity of the window or the like is increased. It is preferable to select a thickness and a material so that the translucent substrate 11 is flexible so that it can be easily bonded to the substrate. When it is set as the translucent base material which has flexibility, a translucent resin base material is used suitably as a translucent base material. When a translucent resin substrate is used as the flexible translucent substrate, the thickness is preferably in the range of about 10 μm to 300 μm.
 なお、透光性基材11は1枚の透光性基材から構成することもできるが、例えば2枚以上の透光性基材を貼り合せ等により組み合わせて用いることもできる。2枚以上の透光性基材を貼り合せ等により組合せて用いる場合には、合計の厚さが例えば上述の透光性基材の好適な厚みの範囲を満たすことが好ましい。 In addition, although the translucent base material 11 can also be comprised from one translucent base material, it can also be used, for example, combining two or more translucent base materials by bonding etc. When two or more translucent substrates are used in combination by bonding or the like, it is preferable that the total thickness satisfies, for example, a range of suitable thicknesses of the above-described translucent substrate.
 ハードコート層12は透明導電性酸化物層13を支持し、押圧等された場合に透明導電性酸化物層13が変形することを抑制することができる。 The hard coat layer 12 supports the transparent conductive oxide layer 13 and can suppress deformation of the transparent conductive oxide layer 13 when pressed or the like.
 ハードコート層12は、例えば樹脂を用いて形成することができ、樹脂ハードコート層とすることができる。ハードコート層の材料は特に限定されない。例えばアクリル系樹脂、シリコーン系樹脂、ウレタン系樹脂等から選択された1種類以上の樹脂を好ましく用いることができる。 The hard coat layer 12 can be formed using a resin, for example, and can be a resin hard coat layer. The material of the hard coat layer is not particularly limited. For example, one or more kinds of resins selected from acrylic resins, silicone resins, urethane resins and the like can be preferably used.
 またハードコート層に無機粒子を含有させることで、ハードコート層と透明導電層との密着性の向上が期待できる。無機粒子の材料は特に限定されないが、例えばシリカ、アルミナ、ジルコニア等から選択された1種類以上の無機粒子を好ましく用いることができる。 Also, by incorporating inorganic particles in the hard coat layer, an improvement in adhesion between the hard coat layer and the transparent conductive layer can be expected. The material of the inorganic particles is not particularly limited, but for example, one or more kinds of inorganic particles selected from silica, alumina, zirconia and the like can be preferably used.
 ハードコート層12は、例えば樹脂を透光性基材11等の一方の面上に塗布し、硬化させることで形成することができる。 The hard coat layer 12 can be formed by, for example, applying a resin on one surface of the translucent substrate 11 and curing the resin.
 ハードコート層12の厚みは特に限定されるものではなく、ハードコート層12の材料や、要求される可視光の透過率、耐擦傷性の程度等に応じて任意に選択することができる。ハードコート層12は、例えば厚みが0.5μm以上10μm以下であることが好ましく、0.7μm以上5μm以下であることがより好ましい。 The thickness of the hard coat layer 12 is not particularly limited, and can be arbitrarily selected according to the material of the hard coat layer 12, the required visible light transmittance, the degree of scratch resistance, and the like. For example, the thickness of the hard coat layer 12 is preferably 0.5 μm or more and 10 μm or less, and more preferably 0.7 μm or more and 5 μm or less.
 これは、ハードコート層12の厚みを0.5μm以上とすることで、十分な強度を有するハードコート層とすることができ、透明導電性酸化物層13の変形を特に抑制することができるからである。また、ハードコート層12の厚みを10μm以下とすることで、ハードコート層の収縮により生じる内部応力を抑制できるからである。 This is because, by setting the thickness of the hard coat layer 12 to 0.5 μm or more, a hard coat layer having sufficient strength can be obtained, and deformation of the transparent conductive oxide layer 13 can be particularly suppressed. It is. Moreover, it is because the internal stress which arises by shrinkage | contraction of a hard-coat layer can be suppressed because the thickness of the hard-coat layer 12 shall be 10 micrometers or less.
 透明導電性酸化物層13は、透明導電性酸化物を含有する層であり、透明導電性酸化物からなる層とすることもできる。本発明の発明者の検討によれば、透明導電性酸化物が含有するキャリアにより遠赤外線を反射することができる。このため、透明導電性酸化物層を設けることで、本実施形態の熱線反射透光性基材は、断熱性に優れた熱線反射透光性基材とすることができる。 The transparent conductive oxide layer 13 is a layer containing a transparent conductive oxide, and may be a layer made of a transparent conductive oxide. According to the study of the inventors of the present invention, far infrared rays can be reflected by the carrier contained in the transparent conductive oxide. For this reason, the heat ray reflective translucent base material of this embodiment can be made into the heat ray reflective translucent base material excellent in heat insulation by providing a transparent conductive oxide layer.
 透明導電性酸化物層が含有する透明導電性酸化物としては特に限定されるものではなく、遠赤外線を反射できる材料であれば、各種透明導電性酸化物を用いることができる。ただし、既述のように、キャリアにより遠赤外線を反射することから、該透明導電性酸化物としては、例えばスズ、チタン、タングステン、モリブデン、亜鉛、および水素から選択される1種類以上がドープされた酸化インジウムと、アンチモン、インジウム、タンタル、塩素、およびフッ素から選択される1種類以上がドープされた酸化スズと、インジウム、アルミニウム、スズ、ガリウム、フッ素、およびホウ素から選択される1種類以上がドープされた酸化亜鉛と、から選択される1種類以上を含有することが好ましい。 The transparent conductive oxide contained in the transparent conductive oxide layer is not particularly limited, and various transparent conductive oxides can be used as long as they can reflect far infrared rays. However, as described above, since far infrared rays are reflected by the carrier, the transparent conductive oxide is doped with, for example, one or more selected from tin, titanium, tungsten, molybdenum, zinc, and hydrogen. Indium oxide, tin oxide doped with one or more selected from antimony, indium, tantalum, chlorine and fluorine, and one or more selected from indium, aluminum, tin, gallium, fluorine and boron It is preferable to contain at least one selected from doped zinc oxide.
 透明導電性酸化物としては、スズ、チタン、タングステン、モリブデン、亜鉛、および水素から選択される1種類以上がドープされた酸化インジウムであることがより好ましく、スズ、亜鉛から選択された1種類以上がドープされた酸化インジウムであることがさらに好ましい。 The transparent conductive oxide is more preferably indium oxide doped with one or more selected from tin, titanium, tungsten, molybdenum, zinc, and hydrogen, and one or more selected from tin and zinc Is more preferably doped indium oxide.
 透明導電性酸化物層の厚みは特に限定されるものではなく、要求される断熱性等に応じて任意に選択することができる。例えば、透明導電性酸化物層の厚みは、30nm以上500nm以下であることが好ましく35nm以上400nm以下であることがより好ましい。 The thickness of the transparent conductive oxide layer is not particularly limited, and can be arbitrarily selected according to required heat insulating properties. For example, the thickness of the transparent conductive oxide layer is preferably 30 nm or more and 500 nm or less, and more preferably 35 nm or more and 400 nm or less.
 これは透明導電性酸化物層の厚みを30nm以上とすることで、特に遠赤外線を反射することができ、断熱性能を高めることができるからである。また、透明導電性酸化物層の厚みを500nm以下とすることで、可視光透過率についても充分に高く維持することができるからである。 This is because by setting the thickness of the transparent conductive oxide layer to 30 nm or more, particularly far infrared rays can be reflected and the heat insulation performance can be improved. Moreover, it is because visible light transmittance can be maintained sufficiently high by setting the thickness of the transparent conductive oxide layer to 500 nm or less.
 透明導電性酸化物層の成膜方法は特に限定されないが、例えばスパッタ法、真空蒸着法、CVD法、電子線蒸着法等から選択されるいずれか1種類以上のドライプロセスによる成膜方法を好ましく用いることができる。また、成膜後熱処理を行い、結晶性を高めておくことが好ましい。 The film forming method of the transparent conductive oxide layer is not particularly limited, but a film forming method by any one or more dry processes selected from, for example, a sputtering method, a vacuum evaporation method, a CVD method, and an electron beam evaporation method is preferable. Can be used. In addition, it is preferable to increase the crystallinity by performing a heat treatment after the film formation.
 本実施形態の熱線反射透光性基材は、ここまで説明した透光性基材、ハードコート層、透明導電性酸化物層だけに限定されず、さらに任意の層を有することもできる。 The heat ray reflective translucent base material of the present embodiment is not limited to the translucent base material, hard coat layer, and transparent conductive oxide layer described so far, and may further have an arbitrary layer.
 例えば、ハードコート層と透明導電性酸化物層の間に、光学調整層やガスバリア層、密着改善層などの下地層を有することができる。光学調整層によって色味や透明性を改善することが可能であり、ガスバリア層によって透明導電性酸化物の結晶化速度を改善したりすることが可能であり、密着改善層によって耐層間剥離や耐クラックなどの耐久性向上を図ることができる。 For example, undercoat layers such as an optical adjustment layer, a gas barrier layer, and an adhesion improving layer can be provided between the hard coat layer and the transparent conductive oxide layer. The optical adjustment layer can improve the color and transparency, the gas barrier layer can improve the crystallization speed of the transparent conductive oxide, and the adhesion improving layer can prevent delamination and resistance. It is possible to improve durability such as cracks.
 下地層の具体的な構成は特に限定されないが、密着改善層や、ガスバリア層としては例えばアルミナ(Al)を含有する層が挙げられる。また、光学調整層としては、ジルコニア(ZrO)を含有する層や、中空粒子を含有する層等が挙げられる。 The specific configuration of the underlayer is not particularly limited, and examples of the adhesion improving layer and the gas barrier layer include a layer containing alumina (Al 2 O 3 ). Examples of the optical adjustment layer include a layer containing zirconia (ZrO 2 ) and a layer containing hollow particles.
 例えば、本実施形態の熱線反射透光性基材は、図2に示した熱線反射透光性基材20のように、透光性基材11の、ハードコート層12、透明導電性酸化物層13を設けた一方の面11aと反対側の他方の面11b上に粘着剤層21を有することもできる。 For example, the heat ray reflective translucent substrate of the present embodiment is the same as the heat ray reflective translucent substrate 20 shown in FIG. The pressure-sensitive adhesive layer 21 can also be provided on the other surface 11b opposite to the one surface 11a on which the layer 13 is provided.
 本実施形態の熱線反射透光性基材は、既述のように、窓等の採光部の透光性基材に貼付して用いることもできる。そこで、上述のように粘着剤層21を設けることで、容易に窓等の採光部の透光性基材に貼付することができる。 As described above, the heat ray reflective translucent substrate of the present embodiment can be used by being attached to a translucent substrate of a daylighting unit such as a window. Therefore, by providing the pressure-sensitive adhesive layer 21 as described above, it can be easily attached to a light-transmitting substrate of a daylighting unit such as a window.
 粘着剤層の材料は特に限定されないが、可視光透過率が高い材料を用いることが好ましい。粘着剤層の材料としては、例えばアクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等を使用することができる。中でも、アクリル系ポリマーを主成分とするアクリル系粘着剤は、光学的透明性に優れ、適度な濡れ性と凝集性と接着性を示し、耐候性や耐熱性等に優れることから、粘着剤層の材料として好適である。 The material of the pressure-sensitive adhesive layer is not particularly limited, but it is preferable to use a material having a high visible light transmittance. As a material for the pressure-sensitive adhesive layer, for example, an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, or the like can be used. Among them, the acrylic pressure-sensitive adhesive mainly composed of an acrylic polymer is excellent in optical transparency, exhibits appropriate wettability, cohesion and adhesion, and is excellent in weather resistance, heat resistance, etc. It is suitable as a material.
 粘着剤層は、可視光透過率が高く、かつ紫外線透過率が小さいものが好ましい。粘着剤層の紫外線透過率を小さくすることにより、太陽光等の紫外線に起因する透光性基材及びハードコート層及び透明導電性酸化物層の劣化を抑制できる。粘着剤層の紫外線透過率を小さくする観点から、粘着剤層は紫外線吸収剤を含有することもできる。なお、紫外線吸収剤を含有する透光性基材等を用いることによっても、屋外からの紫外線に起因する透明導電性酸化物層等の劣化を抑制できる。粘着剤層の露出面は、熱線反射透光性基材が実用に供されるまでの間、露出面の汚染防止等を目的に剥離紙が仮着されてカバーされることが好ましい。これにより、通例の取扱状態で、粘着剤層の露出面の外部との接触による汚染を防止できる。 The pressure-sensitive adhesive layer preferably has a high visible light transmittance and a low ultraviolet transmittance. By reducing the ultraviolet transmittance of the pressure-sensitive adhesive layer, it is possible to suppress deterioration of the translucent substrate, the hard coat layer, and the transparent conductive oxide layer caused by ultraviolet rays such as sunlight. From the viewpoint of reducing the ultraviolet transmittance of the pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer can also contain an ultraviolet absorber. In addition, degradation of the transparent conductive oxide layer etc. resulting from the ultraviolet-ray from the outdoors can be suppressed also by using the translucent base material etc. which contain a ultraviolet absorber. The exposed surface of the pressure-sensitive adhesive layer is preferably covered with a release paper for the purpose of preventing contamination of the exposed surface until the heat ray reflective / translucent substrate is put to practical use. Thereby, the contamination by the contact with the exterior of the exposed surface of an adhesive layer can be prevented in the usual handling state.
 なお、本実施形態の熱線反射透光性基材を窓枠等に嵌め込んで窓等の採光部の透光性基材として用いる場合には、他の透光性基材に貼付する必要はないため、粘着剤層を有しないことが好ましい。 In addition, when the heat ray reflective translucent base material of this embodiment is fitted into a window frame or the like and used as a translucent base material of a daylighting part such as a window, it is necessary to stick to another translucent base material. Therefore, it is preferable not to have an adhesive layer.
 また、本実施形態の熱線反射透光性基材は、図3に示した熱線反射透光性基材30のように、透明導電性酸化物層13上にさらに表面保護層31を有することもできる。なお、熱線反射透光性基材30は、透明導電性酸化物層13の下には、図3に示すように、ハードコート層12、透光性基材11を有することができる。 Moreover, the heat ray reflective translucent base material of this embodiment may further have a surface protective layer 31 on the transparent conductive oxide layer 13 like the heat ray reflective translucent base material 30 shown in FIG. it can. In addition, the heat ray reflective translucent base material 30 can have the hard-coat layer 12 and the translucent base material 11 under the transparent conductive oxide layer 13, as shown in FIG.
 表面保護層31を設けることで、透明導電性酸化物層13が直接人の手等に触れることを抑制できるため、耐擦傷性を特に高めることができる。 By providing the surface protective layer 31, it is possible to suppress the transparent conductive oxide layer 13 from directly touching a human hand or the like, so that the scratch resistance can be particularly improved.
 表面保護層の厚みは5nm以上1μm以下であることが好ましく、5nm以上500nm以下であることがより好ましい。これは、表面保護層の厚みを5nm以上とすることで、透明導電性酸化物層13を十分に保護することができ、耐擦傷性を特に高めることができるからである。また、表面保護層の厚みを1μmよりも厚くしても効果に大きな違いはなく、むしろ遠赤外線吸収によって放射率が上昇する恐れもあるため、1μm以下であることが好ましい。 The thickness of the surface protective layer is preferably 5 nm or more and 1 μm or less, and more preferably 5 nm or more and 500 nm or less. This is because by setting the thickness of the surface protective layer to 5 nm or more, the transparent conductive oxide layer 13 can be sufficiently protected and the scratch resistance can be particularly improved. Further, even if the thickness of the surface protective layer is made thicker than 1 μm, there is no significant difference in the effect. Rather, there is a possibility that the emissivity may be increased by far-infrared absorption, so that the thickness is preferably 1 μm or less.
 表面保護層31の材料としては、可視光透過率が高く、機械的強度および化学的強度に優れるものが好ましい。透明導電性酸化物層に対する擦傷防止や化学的な保護作用を高める観点からは、有機材料や、無機材料が好ましい。有機材料としては、例えば、フッ素系、アクリル系、ウレタン系、エステル系、エポキシ系、シリコーン系、オレフィン系等の活性光線硬化型あるいは熱硬化型の有機材料や、有機成分と無機成分が化学結合した有機・無機ハイブリッド材料が好ましく用いられる。 The material of the surface protective layer 31 is preferably a material having high visible light transmittance and excellent mechanical strength and chemical strength. From the viewpoint of enhancing scratch prevention and chemical protection for the transparent conductive oxide layer, organic materials and inorganic materials are preferred. Examples of organic materials include fluorine, acrylic, urethane, ester, epoxy, silicone, and olefin actinic ray curable or thermosetting organic materials, and organic and inorganic components chemically bonded. The organic / inorganic hybrid material is preferably used.
 また、無機材料としては、例えばケイ素、アルミニウム、亜鉛、チタン、ジルコニウム、および、スズから選択される少なくとも1種類を主たる成分として含む透明酸化物等やダイヤモンドライクカーボン等が挙げられる。 In addition, examples of the inorganic material include transparent oxide containing at least one selected from silicon, aluminum, zinc, titanium, zirconium, and tin as a main component, diamond-like carbon, and the like.
 表面保護層31として有機材料を用いる場合、該有機材料には架橋構造が導入されることが好ましい。架橋構造が形成されることによって、表面保護層の機械的強度および化学的強度が高められ、透明導電性酸化物層等に対する保護機能が増大する。中でも、酸性基と重合性官能基とを同一分子中に有するエステル化合物に由来する架橋構造が導入されることが好ましい。 When an organic material is used as the surface protective layer 31, a crosslinked structure is preferably introduced into the organic material. By forming the crosslinked structure, the mechanical strength and chemical strength of the surface protective layer are increased, and the protective function for the transparent conductive oxide layer and the like is increased. Among these, it is preferable that a crosslinked structure derived from an ester compound having an acidic group and a polymerizable functional group in the same molecule is introduced.
 酸性基と重合性官能基とを同一分子中に有するエステル化合物としては、リン酸、硫酸、シュウ酸、コハク酸、フタル酸、フマル酸、マレイン酸等の多価の酸と;エチレン性不飽和基、シラノール基、エポキシ基等の重合性官能基と水酸基とを分子中に有する化合物とのエステルが挙げられる。なお、当該エステル化合物は、ジエステルやトリエステル等の多価エステルでもよいが、多価の酸の少なくとも1つの酸性基がエステル化されていないことが好ましい。 Examples of ester compounds having an acidic group and a polymerizable functional group in the same molecule include polyvalent acids such as phosphoric acid, sulfuric acid, oxalic acid, succinic acid, phthalic acid, fumaric acid, and maleic acid; And an ester of a compound having a polymerizable functional group such as a group, silanol group or epoxy group and a hydroxyl group in the molecule. The ester compound may be a polyester such as a diester or triester, but it is preferable that at least one acidic group of the polyvalent acid is not esterified.
 表面保護層31が上記のエステル化合物に由来する架橋構造を有する場合、表面保護層の機械的強度および化学的強度が高められると共に、表面保護層31と透明導電性酸化物層13との間の密着性が高められ、透明導電性酸化物層の耐久性を特に高められる。上記エステル化合物の中でも、リン酸と重合性官能基を有する有機酸とのエステル化合物(リン酸エステル化合物)が、透明導電性酸化物層との密着性に優れている。特に、リン酸エステル化合物に由来する架橋構造を有する表面保護層は、透明導電性酸化物層との密着性に優れる。 When the surface protective layer 31 has a cross-linked structure derived from the above ester compound, the mechanical strength and chemical strength of the surface protective layer are increased, and between the surface protective layer 31 and the transparent conductive oxide layer 13. Adhesion is enhanced and the durability of the transparent conductive oxide layer is particularly enhanced. Among the ester compounds, an ester compound (phosphate ester compound) of phosphoric acid and an organic acid having a polymerizable functional group is excellent in adhesion to the transparent conductive oxide layer. In particular, the surface protective layer having a cross-linked structure derived from a phosphate ester compound is excellent in adhesion with the transparent conductive oxide layer.
 表面保護層31の機械的強度および化学的強度を高める観点から、上記エステル化合物は、重合性官能基として(メタ)アクリロイル基を含有することが好ましい。また、架橋構造の導入を容易とする観点から、上記エステル化合物は、分子中に複数の重合性官能基を有していてもよい。上記エステル化合物としては、例えば、下記式(1)で表される、リン酸モノエステル化合物またはリン酸ジエステル化合物が好適に用いられる。なお、リン酸モノエステルとリン酸ジエステルとを併用することもできる。 From the viewpoint of increasing the mechanical strength and chemical strength of the surface protective layer 31, the ester compound preferably contains a (meth) acryloyl group as a polymerizable functional group. From the viewpoint of facilitating introduction of a crosslinked structure, the ester compound may have a plurality of polymerizable functional groups in the molecule. As the ester compound, for example, a phosphoric acid monoester compound or a phosphoric acid diester compound represented by the following formula (1) is preferably used. In addition, phosphoric acid monoester and phosphoric acid diester can also be used together.
Figure JPOXMLDOC01-appb-C000001
 式中、Xは水素原子またはメチル基を表し、(Y)は-OCO(CH-基を表す。nは0または1であり、pは1または2である。
Figure JPOXMLDOC01-appb-C000001
In the formula, X represents a hydrogen atom or a methyl group, and (Y) represents an —OCO (CH 2 ) 5 — group. n is 0 or 1, and p is 1 or 2.
 表面保護層31中の上記エステル化合物に由来する構造の含有量は、1質量%以上20質量%以下が好ましく、1.5質量%以上17.5質量%以下がより好ましく、2質量%以上15質量%以下がさらに好ましく、2.5質量%以上12.5質量%以下が特に好ましい。エステル化合物由来構造の含有量が過度に小さいと、強度や密着性の向上効果が十分に得られない場合がある。一方、エステル化合物由来構造の含有量が過度に大きいと、表面保護層形成時の硬化速度が小さくなって硬度が低下したり、表面保護層表面の滑り性が低下して耐擦傷性が低下する場合がある。表面保護層中のエステル化合物に由来する構造の含有量は、表面保護層形成時に、組成物中の上記エステル化合物の含有量を調整することによって、所望の範囲とすることができる。 The content of the structure derived from the ester compound in the surface protective layer 31 is preferably 1 to 20% by mass, more preferably 1.5 to 17.5% by mass, and more preferably 2 to 15% by mass. More preferably, it is more preferably 2.5% by mass or more and 12.5% by mass or less. If the content of the ester compound-derived structure is excessively small, the effect of improving strength and adhesion may not be sufficiently obtained. On the other hand, if the content of the ester compound-derived structure is excessively large, the curing rate at the time of forming the surface protective layer is reduced and the hardness is lowered, or the slipping property of the surface protective layer surface is lowered and the scratch resistance is lowered. There is a case. Content of the structure derived from the ester compound in a surface protective layer can be made into a desired range by adjusting content of the said ester compound in a composition at the time of surface protective layer formation.
 表面保護層31の形成方法は特に限定されない。表面保護層は、例えば、有機材料、あるいは有機材料の硬化性モノマーやオリゴマーと上記エステル化合物を溶剤に溶解させて溶液を調製し、この溶液を透明導電性酸化物層13上に塗布し、溶媒を乾燥させた後、紫外線や電子線等の照射や熱エネルギ―の付与によって、硬化させる方法により形成されることが好ましい。 The method for forming the surface protective layer 31 is not particularly limited. The surface protective layer is prepared, for example, by dissolving an organic material, or a curable monomer or oligomer of the organic material, and the ester compound in a solvent, and applying the solution on the transparent conductive oxide layer 13. After drying, it is preferably formed by a method of curing by irradiating with ultraviolet rays or electron beams or applying thermal energy.
 また、表面保護層31の材料として無機材料を用いる場合、例えばスパッタ法、真空蒸着法、CVD法、電子線蒸着法等から選択されるいずれか1種類以上のドライプロセスにより成膜することができる。 When an inorganic material is used as the material of the surface protective layer 31, the film can be formed by any one or more dry processes selected from, for example, a sputtering method, a vacuum evaporation method, a CVD method, and an electron beam evaporation method. .
 なお、表面保護層31の材料としては、上記の有機材料や無機材料以外に、シランカップリング剤、チタンカップリング剤等のカップリング剤、レベリング剤、紫外線吸収剤、酸化防止剤、熱安定剤、滑剤、可塑剤、着色防止剤、難燃剤、帯電防止剤等の添加剤が含まれていてもよい。 In addition to the organic materials and inorganic materials described above, the surface protective layer 31 is made of a coupling agent such as a silane coupling agent or a titanium coupling agent, a leveling agent, an ultraviolet absorber, an antioxidant, or a heat stabilizer. Additives such as lubricants, plasticizers, anti-coloring agents, flame retardants and antistatic agents may be included.
 更に、表面保護層31は無機材料と有機材料を積層させるなど、材料の異なる複数の層から構成されていてもよい。 Furthermore, the surface protective layer 31 may be composed of a plurality of layers having different materials, such as laminating an inorganic material and an organic material.
 本実施形態の熱線反射透光性基材に要求される特性は特に限定されないが、透明導電性酸化物層の側から測定した放射率が0.60以下であることが好ましく、0.50以下であることがより好ましく、0.40以下であることがさらに好ましい。 Although the characteristic requested | required of the heat ray reflective translucent base material of this embodiment is not specifically limited, It is preferable that the emissivity measured from the transparent conductive oxide layer side is 0.60 or less, and 0.50 or less It is more preferable that it is 0.40 or less.
 放射率を0.60以下とすることで、十分な断熱性を備えた熱線反射透光性基材とすることができ、好ましいからである。なお、放射率の下限値は特に限定されないが、小さい方が好ましいことから、例えば0より大きくすることができる。 It is because it can be set as the heat ray reflective translucent base material provided with sufficient heat insulation by making emissivity 0.60 or less, and it is preferable. The lower limit of the emissivity is not particularly limited, but is preferably smaller than 0 because it is preferably smaller.
 既述の様に、本実施形態の熱線反射透光性基材は透光性基材と、ハードコート層と、透明導電性酸化物層とを有している。そして、透明導電性酸化物層の側から測定した放射率とは、熱線反射透光性基材の表面のうち、上記3つの層の中の透明導電性酸化物層に近い側の表面から、透明導電性酸化物層に赤外線を照射する等して測定した放射率を意味する。
[熱線反射窓]
 次に、本実施形態の熱線反射窓の一構成例について説明する。図4に示すように、本実施形態の熱線反射窓40は、窓用透光性基材41と、窓用透光性基材41の一方の面41a上に配置した既述の熱線反射透光性基材42とを有することができる。
As described above, the heat ray reflective translucent substrate of the present embodiment includes a translucent substrate, a hard coat layer, and a transparent conductive oxide layer. And the emissivity measured from the side of the transparent conductive oxide layer is the surface of the heat ray reflective translucent substrate, from the surface on the side close to the transparent conductive oxide layer in the three layers, It means the emissivity measured by irradiating infrared rays on the transparent conductive oxide layer.
[Heat ray reflection window]
Next, a configuration example of the heat ray reflective window of this embodiment will be described. As shown in FIG. 4, the heat ray reflective window 40 of the present embodiment includes a window translucent base material 41 and the heat ray reflective translucent member described above disposed on one surface 41 a of the window translucent base material 41. It can have an optical substrate 42.
 窓用透光性基材41は、例えば窓の採光部などに配置された透光性基材であり、例えばガラス材や、透光性樹脂基材を用いることができる。 The translucent base material 41 for windows is a translucent base material disposed in, for example, a daylighting portion of a window, and for example, a glass material or a translucent resin base material can be used.
 そして、窓用透光性基材41の一方の面上に既述の熱線反射透光性基材42を配置することができる。窓用透光性基材41上に熱線反射透光性基材42を固定する方法は特に限定されるものではないが、例えば熱線反射透光性基材42の窓用透光性基材41と対向する面42b側に図2を用いて説明した粘着剤層等を配置して固定することができる。 And the heat ray reflective translucent base material 42 described above can be disposed on one surface of the translucent base material 41 for windows. The method for fixing the heat ray reflective translucent substrate 42 on the window translucent substrate 41 is not particularly limited. For example, the window light translucent substrate 41 of the heat ray reflective translucent substrate 42 is used. The pressure-sensitive adhesive layer described with reference to FIG. 2 can be disposed and fixed on the side facing the surface 42b.
 熱線反射透光性基材42を窓用透光性基材41上に固定する際、室内や車内側に透明導電性酸化物層が位置するように固定することが好ましい。すなわち、熱線反射透光性基材42は、熱線反射透光性基材42が有する透光性基材よりも室内や車内側に透明導電性酸化物層が位置するように固定することが好ましい。 When fixing the heat ray reflective translucent substrate 42 on the window translucent substrate 41, it is preferable that the transparent conductive oxide layer is positioned indoors or inside the vehicle. That is, the heat ray reflective translucent base material 42 is preferably fixed so that the transparent conductive oxide layer is located indoors or inside the vehicle, rather than the light translucent base material of the heat ray reflective translucent base material 42. .
 通常、熱線反射透光性基材42は、窓用透光性基材41の室内側に配置する。このため、図4に示した例では、熱線反射透光性基材42のうち、窓用透光性基材41と対向する一方の面42bとは反対側の他方の面42a側に、透明導電性酸化物層が位置するように固定することが好ましい。 Usually, the heat ray reflective translucent base material 42 is disposed on the indoor side of the translucent base material 41 for windows. Therefore, in the example shown in FIG. 4, the heat ray reflective translucent substrate 42 is transparent on the other surface 42 a side opposite to the one surface 42 b facing the translucent substrate 41 for windows. It is preferable to fix so that the conductive oxide layer is located.
 これは、透明導電性酸化物層は、遠赤外線を反射する機能を有していることから、室内等の方向に向けて配置することで、室内等で発生した遠赤外線が外部へ放射されることを抑制できるからである。 This is because the transparent conductive oxide layer has a function of reflecting far-infrared rays, so that the far-infrared rays generated in the room or the like are radiated to the outside by being arranged in the direction of the room or the like. This is because it can be suppressed.
 本実施形態の熱線反射窓によれば、既述の熱線反射透光性基材を有している。このため、遠赤外線を反射し、断熱性の機能を有することができる。また、耐擦傷性に優れた熱線反射窓とすることができる。 According to the heat ray reflective window of the present embodiment, the heat ray reflective translucent substrate described above is provided. For this reason, far infrared rays can be reflected and it can have a heat insulation function. Moreover, it can be set as the heat ray reflective window excellent in abrasion resistance.
 以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(1)可視光透過率
 可視光透過率は、分光光度計(日立ハイテク製 製品名「U-4100」)を用いて、JIS A5759-2008(建築窓ガラスフィルム)に準じて求めた。
(2)放射率
 放射率は、角度可変反射アクセサリを備えるフーリエ変換型赤外分光(FT-IR)装置(Varian製)を用いて、表面保護層側から波長5μm以上25μm以下の範囲の赤外線を照射した場合の正反射率を測定し、JIS R3106-2008(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)に準じて求めた。
(3)耐擦傷性
 15cm×5cmにカットした熱線反射透光性基材の透光性基材側の面を、厚み25μmの粘着剤層を介して1.5mmガラスに貼り合せたものを試料として用いた。10連式ペン試験機を用いて、スチールウール(ボンスター♯0000)で1kgの荷重を加えながら、ガラス上に固定した熱線反射透光性基材の露出した面の10cmの長さの範囲を10往復擦った。
なお、熱線反射透光性基材の露出した面とは、実施例1~実施例9、実施例11~実施例13、比較例1、比較例2は表面保護層表面、実施例10は透明導電性酸化物層表面となる。
Specific examples will be described below, but the present invention is not limited to these examples.
(1) Visible Light Transmittance Visible light transmittance was determined according to JIS A5759-2008 (architectural window glass film) using a spectrophotometer (product name “U-4100” manufactured by Hitachi High-Tech).
(2) Emissivity Emissivity is measured using a Fourier transform infrared spectroscopic (FT-IR) device (manufactured by Varian) equipped with a variable angle reflection accessory, and infrared rays in the wavelength range of 5 μm to 25 μm from the surface protective layer side. The regular reflectance when irradiated was measured and determined according to JIS R3106-2008 (Testing method for transmittance, reflectance, emissivity, and solar heat gain of plate glass).
(3) Scratch resistance A sample obtained by bonding a surface of a heat ray reflective translucent substrate cut to 15 cm × 5 cm to a 1.5 mm glass through a 25 μm thick adhesive layer. Used as. Using a 10-point pen tester, while applying a load of 1 kg with steel wool (Bonster # 0000), the range of 10 cm length of the exposed surface of the heat ray reflective translucent substrate fixed on the glass is 10 Rubbed back and forth.
Note that the exposed surface of the heat ray reflective translucent substrate is the surface protective layer surface in Examples 1 to 9, Example 11 to Example 13, Comparative Example 1 and Comparative Example 2, and Example 10 is transparent. It becomes the surface of the conductive oxide layer.
 試験後の試料の透明導電性酸化物層のキズや、剥離等の有無を目視で評価し、以下の評価基準に従い、評価した。 The sample after the test was visually evaluated for scratches and peeling of the transparent conductive oxide layer, and evaluated according to the following evaluation criteria.
  〇:透明導電性酸化物層にキズや、剥がれが確認されないもの
  △:透明導電性酸化物層に一部にキズや、剥がれが確認できるもの
  ×:透明導電性酸化物層にキズや、剥がれが確認できるもの
[実施例1]
 表1に示した構成を有する熱線反射透光性基材を作製し、評価を行った。
◯: Scratch or peeling is not confirmed on the transparent conductive oxide layer △: Scratch or peeling can be confirmed partially on the transparent conductive oxide layer ×: Scratch or peeling on the transparent conductive oxide layer [Example 1]
The heat ray reflective translucent base material which has the structure shown in Table 1 was produced and evaluated.
 表1に示すように、透光性基材、ハードコート層、透明導電性酸化物層、表面保護層とを有する熱線反射透光性基材を作製した。 As shown in Table 1, a heat ray reflective translucent substrate having a translucent substrate, a hard coat layer, a transparent conductive oxide layer, and a surface protective layer was produced.
 透光性基材として厚みが50μmのポリエチレンテレフタレート(PET)フィルム(三菱樹脂株式会社製 商品名:T602E50)を用いた。 A polyethylene terephthalate (PET) film having a thickness of 50 μm (trade name: T602E50, manufactured by Mitsubishi Plastics, Inc.) was used as the light-transmitting substrate.
 透光性基材の一方の面上に樹脂溶液をスピンコートを用いて塗布、乾燥した後、窒素雰囲気下で紫外線(UV)照射(300mJ/cm)によって硬化させることで表1に示す厚みのハードコート層を形成した。 The thickness shown in Table 1 is obtained by applying a resin solution on one surface of a light-transmitting substrate using spin coating, drying, and then curing by ultraviolet (UV) irradiation (300 mJ / cm 2 ) in a nitrogen atmosphere. A hard coat layer was formed.
 樹脂溶液は、UV硬化性ウレタンアクリレート系ハードコート樹脂溶液(DIC株式会社製 商品名:ENS1068)に、光学重合開始剤(BASF社製 商品名:Irgacure184)を樹脂当量3wt%になるよう混合させて作製した。 For the resin solution, an optical polymerization initiator (trade name: Irgacure 184, manufactured by BASF) is mixed with a UV curable urethane acrylate hard coat resin solution (trade name: ENS1068, manufactured by DIC Corporation) so that the resin equivalent is 3 wt%. Produced.
 ハードコート層上に透明導電性酸化物層としてITO膜(Indium Tin Oxide膜、酸化インジウムスズ膜)を成膜した。具体的には、InとSnOとの総量に対して、SnO含有量が10wt%である複合酸化物ターゲットを用いて、DCマグネトロンスパッタリング法にて表1に示す厚みとなるように成膜し、その後150℃30分間の熱処理を施すことで成膜した。 An ITO film (Indium Tin Oxide film, indium tin oxide film) was formed as a transparent conductive oxide layer on the hard coat layer. Specifically, the thickness shown in Table 1 is obtained by DC magnetron sputtering using a composite oxide target having a SnO 2 content of 10 wt% with respect to the total amount of In 2 O 3 and SnO 2. Then, the film was formed by heat treatment at 150 ° C. for 30 minutes.
 なお、スパッタガスにはアルゴンと少量の酸素の混合ガスを使用し、プロセス圧力0.2Pa下で成膜を行った。 The sputtering gas was a mixed gas of argon and a small amount of oxygen, and film formation was performed under a process pressure of 0.2 Pa.
 透明導電性酸化物層上に表面保護層を成膜した。具体的には、アクリル系ハードコート樹脂溶液(JSR株式会社製、商品名:オプスター Z7535)に、光学重合開始剤(BASF社製 商品名:Irgacure127)を樹脂当量3wt%となるように混合させた混合溶液を調製した。そして、該混合溶液を透明導電性酸化物層上に、乾燥後厚みが表1に示した厚みになるようにスピンコートによりコーティングした。乾燥後、窒素雰囲気下でUV照射(300mJ/cm)を行い、硬化させた。 A surface protective layer was formed on the transparent conductive oxide layer. Specifically, an acrylic hard coat resin solution (manufactured by JSR Corporation, trade name: Opster Z7535) was mixed with an optical polymerization initiator (trade name: Irgacure 127, manufactured by BASF Corporation) so as to have a resin equivalent of 3 wt%. A mixed solution was prepared. Then, the mixed solution was coated on the transparent conductive oxide layer by spin coating so that the thickness after drying became the thickness shown in Table 1. After drying, UV irradiation (300 mJ / cm 2 ) was performed in a nitrogen atmosphere to cure.
 得られた熱線反射透光性基材について、既述の評価を行った。結果を表1に示す。
[実施例2、3]
 透明導電性酸化物層が、表1に示した厚みとなるようにした点を除いて、実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
[実施例4]
 表面保護層が、表1に示した厚みとなるようにした点を除いて、実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
[実施例5]
 表面保護層について以下の構成とした点を除いて、実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
The above-mentioned evaluation was performed about the obtained heat ray reflective translucent base material. The results are shown in Table 1.
[Examples 2 and 3]
Except for the point that the transparent conductive oxide layer had the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[Example 4]
Except for the point that the surface protective layer had the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[Example 5]
A heat ray reflective translucent base material was produced and evaluated in the same manner as in Example 1 except that the surface protective layer was configured as follows. The results are shown in Table 1.
 透明導電性酸化物層上に表面保護層としてSiおよびZrを含有する酸化物膜(表1では「SXO」と記載する)を成膜した。具体的には、金属SiとZrとの総量に対して、Zr含有量が30wt%である合金ターゲットを用いて、DCマグネトロンスパッタリング法にて表1に示す厚みとなるように成膜した。 An oxide film (described as “SXO” in Table 1) containing Si and Zr was formed as a surface protective layer on the transparent conductive oxide layer. Specifically, using an alloy target having a Zr content of 30 wt% with respect to the total amount of metal Si and Zr, a film was formed by DC magnetron sputtering so as to have a thickness shown in Table 1.
 スパッタガスには、アルゴン/酸素=85/15(体積比)の混合ガスを使用し、プロセスガス圧力0.2Pa下で成膜を行った。 As a sputtering gas, a mixed gas of argon / oxygen = 85/15 (volume ratio) was used, and film formation was performed under a process gas pressure of 0.2 Pa.
 評価結果を表1に示す。
[実施例6]
 表面保護層を表1に示した厚みになるように成膜した点を除いては、実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
[実施例7]
 透明導電性酸化物層として、ITO膜に替えて、IZO膜(Indium Zinc Oxide膜、酸化インジウム亜鉛膜)を厚みが400nmとなるように成膜した点以外は、実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
The evaluation results are shown in Table 1.
[Example 6]
Except for the point that the surface protective layer was formed to have the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[Example 7]
As a transparent conductive oxide layer, instead of the ITO film, an IZO film (Indium Zinc Oxide film, indium zinc oxide film) was formed in the same manner as in Example 1 except that the film was formed to a thickness of 400 nm. A reflective translucent substrate was prepared and evaluated. The results are shown in Table 1.
 IZO膜は、InとZnOとの総量に対して、ZnO含有量が10wt%である複合酸化物ターゲットを用いて、DCマグネトロンスパッタリング法にて厚みが400nmとなるように成膜した。 The IZO film was formed to a thickness of 400 nm by DC magnetron sputtering using a complex oxide target having a ZnO content of 10 wt% with respect to the total amount of In 2 O 3 and ZnO.
 なお、スパッタガスにはアルゴンと少量の酸素の混合ガスを使用し、プロセス圧力0.2Pa下で成膜を行った。 The sputtering gas was a mixed gas of argon and a small amount of oxygen, and film formation was performed under a process pressure of 0.2 Pa.
 評価結果を表1に示す。
[実施例8]
 ハードコート層を表1に示した厚みになるように成膜した点を除いては、実施例3と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
[実施例9]
 ハードコート層を表1に示した厚みになるように成膜した点を除いては、実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
[実施例10]
 透光性基材として、厚みが3mmの青板ガラス(松浪硝子株式会社製)を用いた点と、表面保護層を設けなかった点を除いては、実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
[実施例11]
 透明導電性酸化物層を表1に示した厚みになるように成膜した点を除いては、実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
[実施例12]
 表面保護層を表1に示した厚みになるように成膜した点を除いては、実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
[実施例13]
 ハードコート層と透明導電性酸化物層の間に下地層を成膜した点を除いては、実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。
The evaluation results are shown in Table 1.
[Example 8]
A heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 3 except that the hard coat layer was formed to have a thickness shown in Table 1. The results are shown in Table 1.
[Example 9]
Except for the point that the hard coat layer was formed to have the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[Example 10]
Except for the point that blue plate glass (manufactured by Matsunami Glass Co., Ltd.) having a thickness of 3 mm was used as the translucent substrate and the surface protective layer was not provided, the heat ray reflective translucent light was conducted in the same manner as in Example 1. A porous substrate was prepared and evaluated. The results are shown in Table 1.
[Example 11]
Except for the point that the transparent conductive oxide layer was formed to have the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[Example 12]
Except for the point that the surface protective layer was formed to have the thickness shown in Table 1, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[Example 13]
A heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1 except that a base layer was formed between the hard coat layer and the transparent conductive oxide layer.
 ハードコート層上に下地層として密着改善層であるAl酸化物膜、すなわちアルミナ膜(表1では「Al」と記載する)を成膜した。具体的には、ハードコート層上に金属Alターゲットを用いて、DCマグネトロンスパッタリング法にて表1に示す厚みとなるように下地層を成膜した。 On the hard coat layer, an Al oxide film as an adhesion improving layer, that is, an alumina film (described as “Al 2 O 3 ” in Table 1) was formed as a base layer. Specifically, an underlayer was formed on the hard coat layer using a metal Al target so as to have the thickness shown in Table 1 by DC magnetron sputtering.
 スパッタガスには、アルゴン/酸素=85/15(体積比)の混合ガスを使用し、プロセスガス圧力0.2Pa下で成膜を行った。 As a sputtering gas, a mixed gas of argon / oxygen = 85/15 (volume ratio) was used, and film formation was performed under a process gas pressure of 0.2 Pa.
 下地層成膜後は、下地層上に実施例1と同様にして透明導電性酸化物層、表面保護層を成膜し、熱線反射透光性基材を得た。 After forming the underlayer, a transparent conductive oxide layer and a surface protective layer were formed on the underlayer in the same manner as in Example 1 to obtain a heat ray reflective translucent substrate.
 評価結果を表1に示す。
[比較例1]
 ハードコート層を設けなかった点を除いては、実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
[比較例2]
 透明導電性酸化物層に替えて、SiO膜を成膜した点を除いて実施例1と同様にして熱線反射透光性基材を作製し、評価を行った。結果を表1に示す。
The evaluation results are shown in Table 1.
[Comparative Example 1]
Except that the hard coat layer was not provided, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[Comparative Example 2]
Instead of the transparent conductive oxide layer, a heat ray reflective translucent substrate was prepared and evaluated in the same manner as in Example 1 except that a SiO 2 film was formed. The results are shown in Table 1.
 SiO層は金属Siターゲットを用いて、DCマグネトロンスパッタリング法により、厚みが80nmとなるように成膜した。スパッタガスにはアルゴン/酸素=85/15(体積比)の混合ガスを使用し、プロセス圧力0.2Pa下で行った。 The SiO 2 layer was formed to a thickness of 80 nm by a DC magnetron sputtering method using a metal Si target. A mixed gas of argon / oxygen = 85/15 (volume ratio) was used as the sputtering gas, and the process was performed under a process pressure of 0.2 Pa.
 評価結果を表1に示す。 Evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
 表1に示した結果によると、実施例1~実施例13と、比較例1とを比較すると、ハードコート層を設けることで、耐擦傷性に優れた熱線反射透光性基材とすることができることが確認できた。これは、ハードコート層を設けることで、透明導電性酸化物層が押圧等された場合でも変形することを抑制でき、摩擦によるキズや剥がれひび割れ等が生じることを抑制できるからだと考えられる。
Figure JPOXMLDOC01-appb-T000002
According to the results shown in Table 1, when Examples 1 to 13 and Comparative Example 1 are compared, a heat ray reflective translucent substrate having excellent scratch resistance can be obtained by providing a hard coat layer. I was able to confirm. This is considered to be because by providing the hard coat layer, it is possible to suppress deformation even when the transparent conductive oxide layer is pressed and the like, and it is possible to suppress the occurrence of scratches or peeling cracks due to friction.
 また、実施例1~実施例13と、透明導電性酸化物層を有しない比較例2とを比較すると、実施例1~実施例13では比較例2と比較して、放射率を大幅に低減できており、透明導電性酸化物層を設けることで断熱性を発揮できることも確認できた。 Further, when Examples 1 to 13 are compared with Comparative Example 2 that does not have a transparent conductive oxide layer, the emissivity is significantly reduced in Examples 1 to 13 compared to Comparative Example 2. It was also confirmed that heat insulation can be exhibited by providing a transparent conductive oxide layer.
 以上に熱線反射透光性基材、熱線反射窓を、実施形態および実施例等で説明したが、本発明は上記実施形態および実施例等に限定されない。特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 Although the heat ray reflective translucent base material and the heat ray reflection window have been described above in the embodiments and examples, the present invention is not limited to the above embodiments and examples. Various modifications and changes are possible within the scope of the gist of the present invention described in the claims.
 本出願は、2017年3月31日に日本国特許庁に出願された特願2017-073174号、および2018年3月16日に日本国特許庁に出願された特願2018-049516号に基づく優先権を主張するものであり、特願2017-073174号、および特願2018-049516号の全内容を本国際出願に援用する。 This application is based on Japanese Patent Application No. 2017-073174 filed with the Japan Patent Office on March 31, 2017, and Japanese Patent Application No. 2018-049516 filed with the Japan Patent Office on March 16, 2018. The contents of Japanese Patent Application No. 2017-073174 and Japanese Patent Application No. 2018-049516 are incorporated herein by reference.
10、20、30、42 熱線反射透光性基材
11          透光性基材
12          ハードコート層
13          透明導電性酸化物層
21          粘着剤層
31          表面保護層
40          熱線反射窓
41          窓用透光性基材
10, 20, 30, 42 Heat ray reflective translucent base material 11 Translucent base material 12 Hard coat layer 13 Transparent conductive oxide layer 21 Adhesive layer 31 Surface protective layer 40 Heat ray reflective window 41 Translucent group for window Material

Claims (9)

  1.  透光性基材と、
     前記透光性基材の一方の面上に配置されたハードコート層と、
     前記ハードコート層上に配置された透明導電性酸化物を含有する透明導電性酸化物層とを有する熱線反射透光性基材。
    A translucent substrate;
    A hard coat layer disposed on one surface of the translucent substrate;
    The heat ray reflective translucent base material which has a transparent conductive oxide layer containing the transparent conductive oxide arrange | positioned on the said hard-coat layer.
  2.  前記透明導電性酸化物層が、前記透明導電性酸化物として、
     スズ、チタン、タングステン、モリブデン、亜鉛、および水素から選択される1種類以上がドープされた酸化インジウムと、
     アンチモン、インジウム、タンタル、塩素、およびフッ素から選択される1種類以上がドープされた酸化スズと、
     インジウム、アルミニウム、スズ、ガリウム、フッ素、およびホウ素から選択される1種類以上がドープされた酸化亜鉛と、から選択される1種類以上を含有する請求項1に記載の熱線反射透光性基材。
    The transparent conductive oxide layer, as the transparent conductive oxide,
    Indium oxide doped with one or more selected from tin, titanium, tungsten, molybdenum, zinc, and hydrogen;
    Tin oxide doped with one or more selected from antimony, indium, tantalum, chlorine, and fluorine;
    The heat ray reflective translucent substrate according to claim 1, comprising one or more selected from zinc oxide doped with one or more selected from indium, aluminum, tin, gallium, fluorine, and boron. .
  3.  前記透明導電性酸化物層の厚みが、30nm以上500nm以下である請求項1または請求項2に記載の熱線反射透光性基材。 The heat ray reflective translucent substrate according to claim 1 or 2, wherein the transparent conductive oxide layer has a thickness of 30 nm to 500 nm.
  4.  前記ハードコート層の厚みが0.5μm以上10μm以下である請求項1~請求項3のいずれか1項に記載の熱線反射透光性基材。 The heat ray reflective translucent substrate according to any one of claims 1 to 3, wherein the thickness of the hard coat layer is 0.5 µm or more and 10 µm or less.
  5.  前記透明導電性酸化物層上にさらに表面保護層を有する請求項1~請求項4のいずれか1項に記載の熱線反射透光性基材。 The heat ray reflective translucent substrate according to any one of claims 1 to 4, further comprising a surface protective layer on the transparent conductive oxide layer.
  6.  前記表面保護層の厚みが5nm以上1μm以下である請求項5に記載の熱線反射透光性基材。 The heat ray reflective translucent substrate according to claim 5, wherein the thickness of the surface protective layer is 5 nm or more and 1 µm or less.
  7.  前記透光性基材の、前記一方の面と反対側の面上に粘着剤層を有する請求項1~請求項6のいずれか1項に記載の熱線反射透光性基材。 The heat ray reflective translucent substrate according to any one of claims 1 to 6, further comprising an adhesive layer on a surface opposite to the one surface of the translucent substrate.
  8.  前記透明導電性酸化物層の側から測定した放射率が0.60以下である請求項1~請求項7のいずれか1項に記載の熱線反射透光性基材。 The heat ray reflective translucent substrate according to any one of claims 1 to 7, wherein an emissivity measured from the transparent conductive oxide layer side is 0.60 or less.
  9.  窓用透光性基材と、
     前記窓用透光性基材の一方の面上に配置した請求項1~請求項8のいずれか1項に記載の熱線反射透光性基材とを有する熱線反射窓。
    A translucent substrate for windows;
    A heat ray reflective window having the heat ray reflective translucent substrate according to any one of claims 1 to 8, which is disposed on one surface of the window translucent substrate.
PCT/JP2018/012217 2017-03-31 2018-03-26 Light-transmissive substrate for reflecting heat rays, and heat-ray-reflecting window WO2018181220A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880020827.5A CN110494778A (en) 2017-03-31 2018-03-26 Heat ray reflects Mght-transmitting base material, heat ray reflects window
EP18776403.0A EP3605164A4 (en) 2017-03-31 2018-03-26 Light-transmissive substrate for reflecting heat rays, and heat-ray-reflecting window
KR1020247004159A KR20240019407A (en) 2017-03-31 2018-03-26 Light-transmissive substrate for reflecting heat rays, and heat-ray-reflecting window
KR1020197027859A KR20190128651A (en) 2017-03-31 2018-03-26 Heat Reflective Translucent Substrate and Heat Reflective Window
US16/497,522 US20200115956A1 (en) 2017-03-31 2018-03-26 Heat-ray-reflective, light-transmissive base material, and heat-ray-reflective window

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017073174 2017-03-31
JP2017-073174 2017-03-31
JP2018049516A JP2018173630A (en) 2017-03-31 2018-03-16 Heat-ray reflective translucent base material and heat-ray reflective window
JP2018-049516 2018-03-16

Publications (1)

Publication Number Publication Date
WO2018181220A1 true WO2018181220A1 (en) 2018-10-04

Family

ID=63677669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012217 WO2018181220A1 (en) 2017-03-31 2018-03-26 Light-transmissive substrate for reflecting heat rays, and heat-ray-reflecting window

Country Status (2)

Country Link
KR (1) KR20240019407A (en)
WO (1) WO2018181220A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220041495A1 (en) * 2010-01-16 2022-02-10 Cardinal Cg Company Alloy oxide overcoat indium tin oxide coatings, coated glazings, and production methods
US12006249B2 (en) * 2021-10-22 2024-06-11 Cardinal Cg Company Alloy oxide overcoat indium tin oxide coatings, coated glazings, and production methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032542A1 (en) * 2011-08-31 2013-03-07 Cpfilms Inc. Low emissivity and emi shielding films
WO2014167964A1 (en) * 2013-04-11 2014-10-16 日東電工株式会社 Infrared-ray reflecting film
WO2015133370A1 (en) * 2014-03-03 2015-09-11 日東電工株式会社 Infrared reflecting substrate and method for producing same
WO2016060082A1 (en) * 2014-10-14 2016-04-21 旭硝子株式会社 Layered-film-equipped transparent base plate and production method therefor
WO2017047281A1 (en) * 2015-09-17 2017-03-23 日東電工株式会社 Functional film for aircraft windows, aircraft window structure and method for functionalizing aircraft window
JP2017073174A (en) 2013-04-02 2017-04-13 フェイスブック,インク. Interactive element in user interface
WO2017170760A1 (en) * 2016-04-01 2017-10-05 日東電工株式会社 Translucent film
JP2018049516A (en) 2016-09-23 2018-03-29 京セラドキュメントソリューションズ株式会社 Adjustment work support system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032542A1 (en) * 2011-08-31 2013-03-07 Cpfilms Inc. Low emissivity and emi shielding films
JP2017073174A (en) 2013-04-02 2017-04-13 フェイスブック,インク. Interactive element in user interface
WO2014167964A1 (en) * 2013-04-11 2014-10-16 日東電工株式会社 Infrared-ray reflecting film
WO2015133370A1 (en) * 2014-03-03 2015-09-11 日東電工株式会社 Infrared reflecting substrate and method for producing same
WO2016060082A1 (en) * 2014-10-14 2016-04-21 旭硝子株式会社 Layered-film-equipped transparent base plate and production method therefor
JP2016079051A (en) 2014-10-14 2016-05-16 旭硝子株式会社 Laminated film-equipped transparent substrate, and method for producing the same
WO2017047281A1 (en) * 2015-09-17 2017-03-23 日東電工株式会社 Functional film for aircraft windows, aircraft window structure and method for functionalizing aircraft window
WO2017170760A1 (en) * 2016-04-01 2017-10-05 日東電工株式会社 Translucent film
JP2018049516A (en) 2016-09-23 2018-03-29 京セラドキュメントソリューションズ株式会社 Adjustment work support system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220041495A1 (en) * 2010-01-16 2022-02-10 Cardinal Cg Company Alloy oxide overcoat indium tin oxide coatings, coated glazings, and production methods
US12006249B2 (en) * 2021-10-22 2024-06-11 Cardinal Cg Company Alloy oxide overcoat indium tin oxide coatings, coated glazings, and production methods

Also Published As

Publication number Publication date
KR20240019407A (en) 2024-02-14

Similar Documents

Publication Publication Date Title
JP6000991B2 (en) Infrared reflective film
KR101051226B1 (en) Optical film
US10007037B2 (en) Infrared-ray reflective film
TWI765014B (en) Heat ray transmission suppression translucent base material, translucent base material unit
JP6370347B2 (en) Infrared reflective film
JP2016094012A (en) Infrared reflection film
JPWO2015190536A1 (en) Optical reflective film and optical reflector
WO2018181220A1 (en) Light-transmissive substrate for reflecting heat rays, and heat-ray-reflecting window
TWI765015B (en) Heat ray reflective light-transmitting substrate, heat ray reflecting window
JP2018171831A (en) Heat-ray reflecting light transmissive substrate, heat-ray reflecting window
WO2018181219A1 (en) Light-transmissive substrate for suppressing heat-ray transmission and light-transmissive substrate unit
JP2010169963A (en) Reflection preventing film
WO2023054468A1 (en) Multilayer body for display devices, and display device
JP2021133680A (en) Transfer sheet and laminate, method for manufacturing laminate, and image display device
JP2023051786A (en) Laminated body for display device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776403

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197027859

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018776403

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018776403

Country of ref document: EP

Effective date: 20191031