WO2024070686A1 - Anti-reflection film and image display device - Google Patents

Anti-reflection film and image display device Download PDF

Info

Publication number
WO2024070686A1
WO2024070686A1 PCT/JP2023/033344 JP2023033344W WO2024070686A1 WO 2024070686 A1 WO2024070686 A1 WO 2024070686A1 JP 2023033344 W JP2023033344 W JP 2023033344W WO 2024070686 A1 WO2024070686 A1 WO 2024070686A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
hard coat
reflection
reflection film
Prior art date
Application number
PCT/JP2023/033344
Other languages
French (fr)
Japanese (ja)
Inventor
一生 田中
遼太郎 横井
達也 大井
翔 橋本
翔太 長命
幸大 宮本
豊 角田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022155144A external-priority patent/JP2024048953A/en
Priority claimed from JP2023113507A external-priority patent/JP7538299B1/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024070686A1 publication Critical patent/WO2024070686A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to an anti-reflection film and an image display device.
  • Anti-reflection films are placed on the viewing side of image display devices such as liquid crystal displays and organic EL displays to prevent degradation of image quality due to reflection of external light and to improve contrast.
  • Anti-reflection films have an anti-reflection layer made of a laminate of multiple thin films with different refractive indices on a transparent film substrate.
  • Patent Document 1 discloses an anti-reflective film in which a primer layer containing indium tin oxide (ITO) is provided on a hard coat layer, and an anti-reflective layer made of multiple thin films is formed on top of the primer layer.
  • ITO indium tin oxide
  • the inventors have found through their research that when an anti-reflective film having a typical ITO film as a primer layer is brought into contact with an acid such as sulfuric acid, delamination (for example, delamination between the anti-reflective layer and the hard coat layer) is likely to occur. For this reason, it may be difficult to apply an anti-reflective film having a typical ITO film as a primer layer to applications requiring acid resistance (resistance to corrosion caused by acid). Examples of applications requiring acid resistance include automotive applications (on-board applications) in which sulfuric acid is used in the battery fluid.
  • the present invention aims to provide an anti-reflection film with excellent acid resistance, and an image display device using the anti-reflection film.
  • the present invention includes the following aspects.
  • An antireflection film having a transparent film substrate, a hard coat layer, a primer layer, and an antireflection layer in this order, the antireflection layer is a laminate of a plurality of thin films having different refractive indices,
  • the primer layer is a thin film containing indium tin oxide as a main component, and the amount of tin oxide relative to the total amount of indium oxide and tin oxide is 15% by weight or more.
  • An image display device comprising an image display panel and an anti-reflection film according to any one of [1] to [6] above, arranged on the viewing side of the image display panel.
  • the present invention provides an anti-reflection film with excellent acid resistance, and an image display device using the anti-reflection film.
  • FIG. 1 is a cross-sectional view showing an example of an anti-reflection film according to the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the antireflection film according to the present invention.
  • 1 is a cross-sectional view showing an example of an image display device according to the present invention.
  • Refractive index refers to the refractive index for light with a wavelength of 550 nm in an atmosphere at a temperature of 23°C.
  • the "principal surface” of a layered material refers to a surface perpendicular to the thickness direction of the layered material.
  • the numerical value of the thickness (film thickness) of each layer constituting the anti-reflective film is the arithmetic average value of 10 measured values obtained by randomly selecting 10 measurement points from an image of a cross section cut in the thickness direction of the layer and measuring the thickness of the selected 10 measurement points.
  • the "major component” of a thin film (layer) means the component that is contained in the largest amount in the thin film by weight.
  • Solids refers to the non-volatile components in the composition, e.g., components other than the solvent.
  • the number-average primary particle size of particles is the number-average circle-equivalent diameter (Heywood diameter: diameter of a circle having the same area as the projected area of a primary particle) of 100 primary particles measured using a scanning electron microscope and image processing software (e.g., "ImageJ” manufactured by the National Institutes of Health, USA).
  • the compound and its derivatives may be collectively referred to by adding "system” after the compound name.
  • system when the compound name is followed by "system” to represent the name of a polymer, it means that the repeating unit of the polymer is derived from the compound or its derivative, unless otherwise specified.
  • the components and functional groups exemplified in this specification may be used alone or in combination of two or more types.
  • the anti-reflection film according to the first embodiment of the present invention is an anti-reflection film (laminate) having a transparent film substrate, a hard coat layer, a primer layer, and an anti-reflection layer in this order.
  • the anti-reflection layer is a laminate of multiple thin films having different refractive indices.
  • the primer layer is a thin film mainly composed of indium tin oxide, and the amount of tin oxide relative to the total of indium oxide and tin oxide is 15% by weight or more.
  • the amount of tin oxide (unit: weight %) relative to the total of indium oxide and tin oxide in the primer layer (100 weight %) may be referred to simply as “the amount of tin oxide in the primer layer” or "the amount of tin oxide.”
  • the anti-reflection film according to the first embodiment has the above-mentioned configuration and therefore has excellent acid resistance.
  • the reason for this is presumed to be as follows.
  • a thin film containing indium tin oxide as a main component is provided as a primer layer for improving adhesion between the hard coat layer and the anti-reflective layer.
  • the primer layer of the anti-reflective film according to the first embodiment contains 15% by weight or more of tin oxide. Therefore, in the anti-reflective film according to the first embodiment, the primer layer tends to be less susceptible to corrosion by acid. Therefore, the anti-reflective film according to the first embodiment has excellent acid resistance because adhesion between the hard coat layer and the anti-reflective layer is ensured even when it comes into contact with acid.
  • the anti-reflection film according to the first embodiment has the above-mentioned configuration, it is possible to ensure adhesion between layers when irradiated with ultraviolet rays.
  • the property of ensuring adhesion between layers when irradiated with ultraviolet rays may be referred to as "weather resistance.”
  • the amount of tin oxide in the primer layer is preferably 18% by weight or more, more preferably 20% by weight or more, even more preferably 22% by weight or more, even more preferably 24% by weight or more, and may be 25% by weight or more, 30% by weight or more, 35% by weight or more, or 40% by weight or more.
  • the amount of tin oxide in the primer layer is preferably 60% by weight or less, more preferably 55% by weight or less, even more preferably 50% by weight or less, and may be 45% by weight or less.
  • FIG. 1 is a cross-sectional view showing an example of an anti-reflection film according to the first embodiment.
  • the anti-reflection film 10 shown in FIG. 1 has a transparent film substrate 11, a hard coat layer 12, a primer layer 13, and an anti-reflection layer 14, in this order.
  • the primer layer 13 is in contact with both the hard coat layer 12 and the anti-reflection layer 14.
  • the primer layer 13 is a thin film containing indium tin oxide as a main component, and the amount of tin oxide relative to the total of indium oxide and tin oxide is 15% by weight or more.
  • the anti-reflection film 10 further includes an anti-fouling layer 19 disposed on the side of the anti-reflection layer 14 opposite the primer layer 13 side.
  • the anti-reflection film 10 includes a transparent film substrate 11, a hard coat layer 12, a primer layer 13, an anti-reflection layer 14, and an anti-fouling layer 19 in this order.
  • the anti-reflection layer 14 has four layers, namely, a high refractive index layer 15, a low refractive index layer 16, a high refractive index layer 17, and a low refractive index layer 18, in this order from the primer layer 13 side. Details of the high refractive index layer and the low refractive index layer will be described later.
  • the anti-reflection layer of the anti-reflection film is not limited to a four-layer structure like the anti-reflection layer 14, and may be a two-layer structure, a three-layer structure, a five-layer structure, or a stacked structure of six or more layers.
  • the anti-reflection layer of the anti-reflection film is preferably an alternating laminate of two or more high refractive index layers and two or more low refractive index layers.
  • the outermost layer (the layer farthest from the hard coat layer 12) of the anti-reflection layer of the anti-reflection film is a low refractive index layer.
  • the anti-reflection film according to the first embodiment may have a layer structure different from that of the anti-reflection film 10 shown in FIG. 1.
  • the anti-reflection film according to the first embodiment may be an anti-reflection film 20 further including an adhesive layer 21 arranged on the side opposite the hard coat layer 12 of the transparent film substrate 11, as shown in FIG. 2.
  • the adhesive constituting the adhesive layer 21 is not particularly limited, and can be appropriately selected and used, for example, a transparent adhesive having a base polymer such as an acrylic polymer, a silicone polymer, polyester, polyurethane, polyamide, polyvinyl ether, vinyl acetate-vinyl chloride copolymer, modified polyolefin, epoxy resin, fluororesin, natural rubber, synthetic rubber, etc.
  • the thickness of the adhesive layer 21 is not particularly limited, but from the viewpoint of achieving both a thin layer property and adhesiveness, it is preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • a release liner (not shown) may be temporarily attached to the main surface of the adhesive layer 21 opposite the transparent film substrate 11.
  • the release liner protects the surface of the adhesive layer 21, for example, until the anti-reflection film 20 is bonded to an image display panel 101 (see FIG. 3) described below.
  • the release liner is preferably made of a plastic film made of acrylic, polyolefin, cyclic polyolefin, polyester, or the like.
  • the release liner has a thickness of, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the surface of the release liner is preferably subjected to a release treatment. Examples of the material of the release agent used in the release treatment include silicone-based materials, fluorine-based materials, long-chain alkyl-based materials, and fatty acid amide-based materials.
  • the anti-reflection film according to the first embodiment has been described above with reference to the drawings, but the anti-reflection film according to the present invention is not limited to the above-mentioned configuration.
  • the anti-reflection film according to the present invention may be an anti-reflection film that does not have an anti-fouling layer.
  • the anti-reflection film according to the present invention may have an optically functional layer that is different from the layers included in the above-mentioned configuration (transparent film substrate, hard coat layer, primer layer, anti-reflection layer, and anti-fouling layer).
  • the transparent film substrate is, for example, a transparent resin film having flexibility.
  • materials constituting the transparent film substrate include polyester resin, polyolefin resin, polystyrene resin, acrylic resin, polycarbonate resin, polyethersulfone resin, polysulfone resin, polyamide resin, polyimide resin, cellulose resin, norbornene resin, polyarylate resin, and polyvinyl alcohol resin.
  • polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate.
  • polyolefin resin include polyethylene, polypropylene, and cycloolefin polymer (COP).
  • cellulose resin include triacetyl cellulose (TAC).
  • the transparent film substrate from the viewpoint of transparency and strength, one selected from the group consisting of polyester resin, polyolefin resin, and cellulose resin is preferable, one selected from the group consisting of PET, COP, and TAC is more preferable, and TAC is even more preferable.
  • a type of film selected from the group consisting of polyester resin film, polyolefin resin film, and cellulose resin film is preferable, a type of film selected from the group consisting of PET film, COP film, and TAC film is more preferable, and a TAC film is even more preferable.
  • the thickness of the transparent film substrate is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more. From the viewpoint of handleability, the thickness of the transparent film substrate is preferably 300 ⁇ m or less, and more preferably 200 ⁇ m or less.
  • One or both main surfaces of the transparent film substrate may be subjected to a surface modification treatment.
  • surface modification treatments include corona treatment, plasma treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment.
  • the total light transmittance (JIS K 7375-2008) of the transparent film substrate is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more and 100% or less, from the viewpoint of improving the transparency of the anti-reflection film.
  • the hard coat layer is a layer that enhances mechanical properties such as hardness and elastic modulus of the anti-reflection film.
  • the hard coat layer is, for example, made of a cured product of a curable resin composition (composition for forming a hard coat layer).
  • the curable resin contained in the curable resin composition include polyester resin, acrylic resin, urethane resin, urethane acrylate resin, amide resin, silicone resin, epoxy resin, and melamine resin. These curable resins may be used alone or in combination of two or more kinds.
  • the curable resin is preferably one or more selected from the group consisting of acrylic resin and urethane acrylate resin, and more preferably urethane acrylate resin.
  • examples of the curable resin composition include an ultraviolet-curable resin composition and a thermosetting resin composition.
  • the curable resin composition is preferably an ultraviolet-curable resin composition.
  • the ultraviolet-curable resin composition includes one or more selected from the group consisting of an ultraviolet-curable monomer, an ultraviolet-curable oligomer, and an ultraviolet-curable polymer.
  • a specific example of the ultraviolet-curable resin composition is the composition for forming a hard coat layer described in JP 2016-179686 A.
  • the curable resin composition may also contain fine particles. By blending fine particles in the curable resin composition, it is possible to adjust the hardness, surface roughness, refractive index, and anti-glare properties of the hard coat layer.
  • fine particles include metal (or semi-metal) oxide particles, glass particles, and organic particles.
  • materials for metal (or semi-metal) oxide particles include silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide.
  • materials for organic particles include polymethyl methacrylate, polystyrene, polyurethane, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate.
  • the curable resin composition may also contain particles having a number average primary particle diameter of less than 1.0 ⁇ m (hereinafter, sometimes referred to as "nanoparticles") as the fine particles.
  • the hard coat layer may contain nanoparticles.
  • the number average primary particle diameter of the nanoparticles is preferably 20 nm or more and 80 nm or less, more preferably 25 nm or more and 70 nm or less, and even more preferably 30 nm or more and 60 nm or less.
  • Inorganic oxides are preferred as nanoparticle materials.
  • examples of inorganic oxides include oxides of metals (or semi-metals), such as silicon oxide (silica), titanium oxide, aluminum oxide, zirconium oxide, niobium oxide, zinc oxide, tin oxide, cerium oxide, and magnesium oxide.
  • the inorganic oxide may be a composite oxide of multiple (semi-)metals.
  • silicon oxide is preferred because of its high adhesion-improving effect.
  • silicon oxide particles (silica particles) are preferred as nanoparticles.
  • Functional groups such as acrylic groups and epoxy groups may be introduced onto the surface of inorganic oxide particles as nanoparticles in order to improve adhesion and affinity with resins.
  • the amount of nanoparticles in the hard coat layer is preferably 5 parts by weight or more, and may be 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more, based on 100 parts by weight of the curable resin. If the amount of nanoparticles is 5 parts by weight or more, the adhesion to the layer formed on the hard coat layer can be further improved.
  • the upper limit of the amount of nanoparticles in the hard coat layer is, for example, 90 parts by weight, preferably 80 parts by weight, and may be 70 parts by weight, based on 100 parts by weight of the curable resin.
  • the thickness of the hard coat layer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, from the viewpoint of increasing the hardness of the hard coat layer.
  • the thickness of the hard coat layer is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, even more preferably 35 ⁇ m or less, and even more preferably 30 ⁇ m or less, from the viewpoint of ensuring the flexibility of the anti-reflection film.
  • the main surface of the hard coat layer opposite the transparent film substrate side may be subjected to a surface modification treatment.
  • surface modification treatments include plasma treatment, corona treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment.
  • a layer e.g., a primer layer described below
  • the main surface of the hard coat layer opposite the transparent film substrate side is subjected to a plasma treatment.
  • the primer layer is a layer for enhancing adhesion between the hard coat layer and the anti-reflection layer.
  • the primer layer is a thin film mainly composed of indium tin oxide (ITO).
  • ITO indium tin oxide
  • the primer layer By containing ITO as a main component of the primer layer, a primer layer having excellent transparency can be obtained while enhancing adhesion between the hard coat layer and the anti-reflection layer.
  • the anti-reflection film can have an appropriate antistatic property.
  • the primer layer may contain oxides other than indium oxide and tin oxide, but in order to further improve adhesion between the hard coat layer and the anti-reflective layer, the content of ITO in the primer layer is preferably 90% by weight or more, and more preferably 99% by weight or more, based on the total amount of the primer layer.
  • ITO layer a thin film containing ITO as the main component
  • the thickness of the primer layer is preferably 0.5 nm or more and 20 nm or less, more preferably 0.5 nm or more and 10 nm or less, and even more preferably 1.0 nm or more and 10 nm or less.
  • the antireflection layer is made of two or more thin layers with different refractive indexes.
  • the optical film thickness (product of refractive index and thickness) of the thin film is adjusted so that the inverted phases of incident light and reflected light cancel each other out.
  • the thin film material constituting the anti-reflection layer may be a metal (or semi-metal) oxide, nitride, fluoride, etc.
  • the anti-reflection layer is preferably an alternating laminate of high refractive index layers and low refractive index layers.
  • the high refractive index layer has a refractive index of, for example, 1.9 or more, preferably 2.0 or more.
  • materials for the high refractive index layer include titanium oxide, niobium oxide (Nb 2 O 5 , etc.), zirconium oxide, tantalum oxide, zinc oxide, indium oxide, and antimony-doped tin oxide (ATO). Among these, at least one selected from the group consisting of titanium oxide and niobium oxide is preferred.
  • the low refractive index layer has a refractive index of, for example, 1.6 or less, preferably 1.5 or less.
  • Examples of materials for the low refractive index layer include silicon oxide (SiO 2 , etc.), titanium nitride, magnesium fluoride, barium fluoride, calcium fluoride, hafnium fluoride, and lanthanum fluoride.
  • silicon oxide is preferred.
  • a medium refractive index layer having a refractive index of more than 1.6 and less than 1.9 may be provided.
  • each of the high and low refractive index layers is preferably 5 nm to 200 nm, and more preferably 10 nm to 150 nm.
  • the thickness of each layer can be designed so that the reflectance of visible light is small, depending on the refractive index and layer structure.
  • the layer structure of the high and low refractive index layers can be a four-layer structure consisting of, from the hard coat layer side, a high refractive index layer with an optical thickness of 20 nm to 55 nm, a low refractive index layer with an optical thickness of 25 nm to 55 nm, a high refractive index layer with an optical thickness of 80 nm to 270 nm, and a low refractive index layer with an optical thickness of 100 nm to 150 nm.
  • the anti-reflection layer is a four-layer alternating laminate consisting of niobium oxide thin films as high refractive index layers and silicon oxide thin films as low refractive index layers
  • the anti-reflection layer may be configured to have, in this order from the hard coat layer side, a niobium oxide thin film with a thickness of 5 nm to 20 nm, a silicon oxide thin film with a thickness of 10 nm to 40 nm, a niobium oxide thin film with a thickness of 65 nm to 120 nm, and a silicon oxide thin film with a thickness of 60 nm to 100 nm.
  • the thickness of the anti-reflective layer is preferably 140 nm or more and 280 nm or less, more preferably 170 nm or more and 280 nm or less, even more preferably 180 nm or more and 260 nm or less, and even more preferably 190 nm or more and 250 nm or less.
  • the "thickness of the anti-reflective layer” refers to the sum of the thicknesses of the layers that make up the anti-reflective layer (total thickness).
  • the anti-reflection film preferably has an anti-soiling layer on the side opposite to the primer layer of the anti-reflection layer, and more preferably has an anti-soiling layer as the outermost layer of the anti-reflection film.
  • the anti-soiling layer for example, the influence of contamination from the external environment (fingerprints, hand dirt, dust, etc.) can be reduced, and contaminants attached to the surface of the anti-reflection film can be easily removed.
  • the anti-smudge layer has a small difference in refractive index from the outermost layer of the anti-reflection layer (e.g., a low refractive index layer).
  • the refractive index of the anti-smudge layer is preferably 1.6 or less, and more preferably 1.55 or less.
  • a fluorine-containing compound As the material of the antifouling layer, a fluorine-containing compound is preferred.
  • the fluorine-containing compound can contribute to lowering the refractive index while having excellent antifouling properties.
  • an alkoxysilane compound containing a perfluoropolyether skeleton is preferred because it has excellent water repellency and can exhibit high antifouling properties.
  • an alkoxysilane compound containing a perfluoropolyether skeleton for example, an alkoxysilane compound having a plurality of linear or branched perfluoroalkylene oxide units having 1 to 4 carbon atoms can be mentioned.
  • linear or branched perfluoroalkylene oxide unit having 1 to 4 carbon atoms for example, a perfluoromethylene oxide unit (-CF 2 O-), a perfluoroethylene oxide unit (-CF 2 CF 2 O-), a perfluoropropylene oxide unit (-CF 2 CF 2 CF 2 O-), a perfluoroisopropylene oxide unit (-CF(CF 3 )CF 2 O-), and the like can be mentioned.
  • the thickness of the antifouling layer is, for example, 2 nm or more and 20 nm or less. The thicker the antifouling layer, the more improved the antifouling properties tend to be.
  • the thickness of the antifouling layer is preferably 5 nm or more, and more preferably 6 nm or more. On the other hand, from the viewpoint of improving antiglare properties, the thickness of the antifouling layer is preferably 15 nm or less.
  • the antireflection film according to the first embodiment preferably satisfies the following condition 1, more preferably satisfies the following condition 2, and even more preferably satisfies the following condition 3.
  • Condition 1 The amount of tin oxide in the primer layer is 15% by weight or more and 60% by weight or less.
  • Condition 2 The above condition 1 is satisfied, and the thickness of the primer layer is 0.5 nm or more and 20 nm or less.
  • Condition 3 The above condition 2 is satisfied, and the hard coat layer contains particles having a number average primary particle diameter of less than 1.0 ⁇ m.
  • Manufacturing method M includes, for example, a primer layer forming step and an anti-reflective layer forming step.
  • Manufacturing method M may include steps (other steps) other than the primer layer forming step and the anti-reflective layer forming step. Examples of the other steps include a hard coat layer forming step, a surface treatment step of the hard coat layer, and an anti-fouling layer forming step, which will be described later.
  • the hard coat layer forming process is a process of forming a hard coat layer on one main surface of a transparent film substrate.
  • a curable resin composition composition for forming a hard coat layer
  • the composition for forming a hard coat layer includes, for example, the above-mentioned curable resin and a polymerization initiator (e.g., a photopolymerization initiator), and includes a solvent capable of dissolving or dispersing these components as necessary.
  • the composition for forming the hard coat layer may contain additives such as nanoparticles, particles with a number-average primary particle size of 1.0 ⁇ m or more, leveling agents, viscosity adjusters (thixotropic agents, thickeners, etc.), antistatic agents, antiblocking agents, dispersants, dispersion stabilizers, antioxidants, UV absorbers, defoamers, surfactants, and lubricants.
  • additives such as nanoparticles, particles with a number-average primary particle size of 1.0 ⁇ m or more, leveling agents, viscosity adjusters (thixotropic agents, thickeners, etc.), antistatic agents, antiblocking agents, dispersants, dispersion stabilizers, antioxidants, UV absorbers, defoamers, surfactants, and lubricants.
  • any suitable method such as a bar coating method, a roll coating method, a gravure coating method, a rod coating method, a slot orifice coating method, a curtain coating method, a fountain coating method, a comma coating method, etc. may be adopted.
  • the drying temperature of the coating film after coating may be set to an appropriate temperature depending on the composition of the composition for forming a hard coat layer, for example, 50°C or more and 150°C or less.
  • the resin component in the composition for forming a hard coat layer is a thermosetting resin, the coating film is cured by heating.
  • the coating film is cured by irradiating it with active energy rays such as ultraviolet rays.
  • active energy rays such as ultraviolet rays.
  • the integrated light amount of the irradiation light is preferably 100 mJ/ cm2 or more and 500 mJ/ cm2 or less.
  • the surface treatment process of the hard coat layer In the surface treatment process of the hard coat layer, the main surface of the hard coat layer opposite to the transparent film substrate side is surface modified.
  • the surface modification treatment include plasma treatment, corona treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment.
  • plasma treatment for example, argon gas is used as the inert gas.
  • the discharge power in the plasma treatment is, for example, 50 W or more and 300 W or less.
  • the pressure condition in the plasma treatment is, for example, 0.1 Pa or more and 2.5 Pa or less.
  • the primer layer forming step is a step of forming (forming) a primer layer on the hard coat layer.
  • the method of forming the primer layer is not particularly limited, and may be either a wet coating method or a dry coating method. Dry coating methods such as vacuum deposition, CVD, and sputtering are preferred because they can form a thin film with a uniform thickness. From the viewpoint of increasing productivity, the method of forming the primer layer is preferably a method of forming a film using a roll-to-roll sputtering film forming device (roll-to-roll sputtering method).
  • a primer layer and an anti-reflection layer can be continuously formed while a long film (for example, a transparent film substrate on which a hard coat layer has been formed) is transported in the longitudinal direction (MD direction).
  • film formation is performed while introducing an inert gas such as argon, and if necessary, a reactive gas such as oxygen, into the film formation chamber.
  • an ITO layer can be formed by sputtering using either an oxide target or reactive sputtering using a metal (or semi-metal) target.
  • Power sources for carrying out the sputtering method include, for example, DC power sources, AC power sources, RF power sources, and MFAC power sources (AC power sources with a frequency band of several kHz to several MHz).
  • the discharge power in the sputtering method is, for example, 1 kW to 100 kW, and preferably 1 kW to 50 kW.
  • the surface temperature of the film-forming roll when carrying out the sputtering method is, for example, -25°C to 25°C, and preferably -20°C to 0°C.
  • the pressure in the film-forming chamber when carrying out the sputtering method is preferably 0.01 Pa to 10 Pa, more preferably 0.05 Pa to 5 Pa, and even more preferably 0.1 Pa to 1 Pa.
  • the anti-reflective layer forming step is a step of forming an anti-reflective layer on the primer layer.
  • the method of forming the anti-reflective layer is not particularly limited, and may be either a wet coating method or a dry coating method. Since a thin film with a uniform thickness can be formed, a dry coating method such as a vacuum deposition method, a CVD method, or a sputtering method is preferable. From the viewpoint of increasing productivity, the method of forming the anti-reflective layer is preferably a method of forming a film using a roll-to-roll sputtering film forming device (roll-to-roll sputtering method).
  • the film forming conditions can be appropriately set, for example, among the conditions described above (primer layer forming step).
  • the antifouling layer forming step is a step of forming an antifouling layer on the side opposite to the primer layer side of the antireflection layer.
  • a fluorine-containing compound is used as a material to form the antifouling layer by a dry coating method.
  • the dry coating method include a vacuum deposition method, a sputtering method, and a CVD method, and the vacuum deposition method is preferred.
  • the image display device according to the second embodiment includes an image display panel and the anti-reflection film according to the first embodiment, which is disposed on the viewing side of the image display panel.
  • the description of the contents that overlap with the first embodiment will be omitted.
  • FIG. 3 is a cross-sectional view showing an example of an image display device according to the second embodiment.
  • the image display device 100 shown in FIG. 3 includes an image display panel 101 and an anti-reflection film 10, which is an example of the anti-reflection film according to the first embodiment, arranged on the viewing side (upper side in FIG. 3) of the image display panel 101.
  • a transparent film substrate 11 of the anti-reflection film 10 and the image display panel 101 are bonded together via an adhesive layer 21.
  • Examples of the image display panel 101 include image display panels that include image display cells such as liquid crystal cells and organic EL cells.
  • the image display device has an anti-reflection film disposed on the viewing side of the image display panel, which reduces reflection of external light and provides excellent visibility.
  • the image display device has excellent acid resistance because it includes the anti-reflection film according to the first embodiment.
  • a urethane acrylate-based ultraviolet-curing resin composition containing silica particles having a number-average primary particle size of 50 nm ("Beamset 577” manufactured by Arakawa Chemical Industries Co., Ltd.), 0.1 parts by weight of silicone resin particles ("Tospearl 130" manufactured by Momentive Performance Materials Japan, Inc., average particle size: 3.0 ⁇ m, refractive index: 1.43, true specific gravity: 1.32), 4.0 parts by weight of crosslinked polymethyl methacrylate (PMMA) particles ("Techpolymer SSX-103" manufactured by Sekisui Chemical Co., Ltd., average particle size: 3.0 ⁇ m, refractive index: 1.50, true specific gravity: 1.20), 2.0 parts by weight of a thixotropic agent ("Sumecton SAN” manufactured by Kunimine Kogyo Co., Ltd., a synthetic smectite which is an organic clay
  • a hard coat layer forming composition HC1 having a solid content concentration of 40% by weight.
  • the hard coat layer forming composition HC1 obtained by the above procedure was applied to one main surface of a TAC film (FUJITAC TG60UL manufactured by FUJIFILM Corporation, thickness: 60 ⁇ m) as a transparent film substrate to form a coating film.
  • this coating film was dried by heating at a temperature of 60 ° C. for 60 seconds, and then cured by ultraviolet irradiation.
  • a high-pressure mercury lamp was used as a light source, ultraviolet rays with a wavelength of 365 nm were used, and the accumulated light amount was set to 300 mJ / cm 2. As a result, a hard coat layer with a thickness of 6 ⁇ m was formed on the TAC film.
  • the optical film F1 was introduced into a roll-to-roll sputtering deposition apparatus, and the pressure in the deposition chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa.
  • argon gas and oxygen gas were introduced in a volume ratio of 100:13, the surface temperature of the deposition roll was set to ⁇ 8° C., and an ITO layer (primer layer) having a thickness of 1.5 nm was formed on the hard coat layer by a sputtering method.
  • an ITO target containing indium oxide and tin oxide in a weight ratio of 85:15 was used as the target material.
  • the power source was an MFAC power source
  • the discharge power was 4.5 kW
  • the pressure in the deposition chamber was 0.2 Pa.
  • a 4-layer structure (4-layer structure consisting of the 1st layer, the 2nd layer, the 3rd layer, and the 4th layer) antireflection layer formed on the primer layer.
  • the surface temperature of the deposition roll was set to -8°C
  • the power source was an MFAC power source
  • the pressure in the deposition chamber was set to 0.7 Pa.
  • a Nb target was used, argon gas and oxygen gas were introduced in a volume ratio of 100:5, and the discharge power was set to 13.0 kW.
  • a Si target was used, argon gas and oxygen gas were introduced in a volume ratio of 100:33, and the discharge power was set to 25.5 kW.
  • a Nb target was used, argon gas and oxygen gas were introduced in a volume ratio of 100:13, and the discharge power was set to 27.5 kW.
  • a Si target was used, argon gas and oxygen gas were introduced in a volume ratio of 100:30, and the discharge power was set to 20.5 kW.
  • a coating agent (“SHIN-ETSU SUBELYN KY1903-1" manufactured by Shin-Etsu Chemical Co., Ltd., active ingredient: an alkoxysilane compound containing a perfluoropolyether skeleton) was dried and solidified and used as a deposition source, and an antifouling layer having a thickness of 8 nm was formed on the antireflection layer by a vacuum deposition method at a heating temperature of the deposition source of 260° C. In this way, an antireflection film (antireflection film of Example 1) including a TAC film, a hard coat layer, a primer layer, an antireflection layer, and an antifouling layer in this order was obtained.
  • Example 2 An anti-reflection film of Example 2 was obtained by the same preparation method as in Example 1, except that in the primer layer formation step, an ITO target containing indium oxide and tin oxide in a weight ratio of 80:20 was used as the target material.
  • Example 3 An anti-reflection film of Example 3 was obtained by the same preparation method as in Example 1, except that in the primer layer formation step, an ITO target containing indium oxide and tin oxide in a weight ratio of 75:25 was used as the target material.
  • Example 4 An anti-reflection film of Example 4 was obtained by the same preparation method as in Example 1, except that in the primer layer formation step, an ITO target containing indium oxide and tin oxide in a weight ratio of 70:30 was used as the target material.
  • Example 5 An anti-reflection film of Example 5 was obtained by the same preparation method as in Example 1, except that in the primer layer formation step, an ITO target containing indium oxide and tin oxide in a weight ratio of 60:40 was used as the target material.
  • An anti-reflection film of Comparative Example 1 was obtained by the same preparation method as in Example 1, except that in the primer layer formation step, an ITO target containing indium oxide and tin oxide in a weight ratio of 90:10 was used as the target material.
  • the optical film F1 was introduced into a roll-to-roll sputtering deposition apparatus, and the pressure in the deposition chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa.
  • argon gas and oxygen gas were introduced in a volume ratio of 100:9, the surface temperature of the deposition roll was set to ⁇ 8° C., and a SiOx layer (x ⁇ 2) having a thickness of 3.0 nm was formed on the hard coat layer by a sputtering method.
  • a Si target was used as a target material for forming the primer layer (SiOx layer).
  • the power source was an MFAC power source
  • the discharge power was 4.5 kW
  • the pressure in the deposition chamber was 0.7 Pa.
  • the optical film F1 was introduced into a roll-to-roll sputtering deposition apparatus, and the pressure in the deposition chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa.
  • argon gas and oxygen gas were introduced in a volume ratio of 100:10, the surface temperature of the deposition roll was set to ⁇ 8° C., and a TiOx layer (x ⁇ 2) having a thickness of 1.5 nm was formed on the hard coat layer by sputtering.
  • a Ti target was used as a target material for forming the primer layer (TiOx layer).
  • the power source was set to an MFAC power source, the discharge power was set to 4.5 kW, and the pressure in the deposition chamber was set to 0.7 Pa.
  • the amount of tin oxide in the primer layer of the antireflection film to be measured was measured by the following procedure. First, a primer layer having a thickness of 1.5 nm was formed on the hard coat layer of the optical film F1 under the same conditions as those for forming the primer layer of the antireflection film to be measured. Next, the elemental composition of the obtained primer layer was measured using a scanning X-ray fluorescence analyzer ("ZSX Primus II" manufactured by Rigaku Corporation). Then, the amount of tin oxide relative to the total amount of indium oxide and tin oxide (unit: weight %) was calculated.
  • a 5 mm thick glass plate was attached to the main surface of the TAC film side of the antireflection film to be evaluated (specifically, any of the antireflection films of Examples 1 to 5, Comparative Example 1, and Reference Examples 1 and 2) via an adhesive to obtain an evaluation sample.
  • the evaluation sample was placed in a weather resistance evaluation device (Iwasaki Electric Co., Ltd.'s "Eyesuper SUV-W161") and irradiated with ultraviolet light from the antifouling layer side under the following conditions.
  • Table 1 shows the type of oxide constituting the primer layer, the amount of tin oxide, the evaluation results of acid resistance, and the evaluation results of weather resistance for Examples 1 to 5, Comparative Example 1, and Reference Examples 1 and 2.
  • "-" means that no measurement was performed.
  • Examples 1 to 5 As shown in Table 1, in Examples 1 to 5, the amount of tin oxide in the primer layer was 15% by weight or more. In Examples 1 to 5, the evaluation result for acid resistance was A. Therefore, the anti-reflection films of Examples 1 to 5 had excellent acid resistance.
  • Comparative Example 1 As shown in Table 1, in Comparative Example 1, the amount of tin oxide in the primer layer was less than 15% by weight. In Comparative Example 1, the evaluation result for acid resistance was B. Therefore, the anti-reflection film of Comparative Example 1 did not have excellent acid resistance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

An anti-reflection film (10) comprises a transparent film base (11), a hard coat layer (12), a primer layer (13), and an anti-reflection layer (14), in the stated order. The anti-reflection layer (14) is a laminate of a plurality of thin films having different refractive indices. The primer layer (13) is a thin film containing indium tin oxide as the main component. In the primer layer (13), the amount of tin oxide is at least 15 wt% with respect to the total amount of indium oxide and tin oxide.

Description

反射防止フィルム及び画像表示装置Anti-reflection film and image display device
 本発明は、反射防止フィルム及び画像表示装置に関する。 The present invention relates to an anti-reflection film and an image display device.
 液晶ディスプレイや有機ELディスプレイ等の画像表示装置の視認側には、外光の反射による画質低下の防止、コントラスト向上等を目的として、反射防止フィルムが配置されている。反射防止フィルムは、透明フィルム基材上に、屈折率の異なる複数の薄膜の積層体からなる反射防止層を備える。 Anti-reflection films are placed on the viewing side of image display devices such as liquid crystal displays and organic EL displays to prevent degradation of image quality due to reflection of external light and to improve contrast. Anti-reflection films have an anti-reflection layer made of a laminate of multiple thin films with different refractive indices on a transparent film substrate.
 例えば、特許文献1では、ハードコート層上に酸化インジウムスズ(ITO)を含むプライマー層を設け、その上に複数の薄膜からなる反射防止層を形成した反射防止フィルムが開示されている。 For example, Patent Document 1 discloses an anti-reflective film in which a primer layer containing indium tin oxide (ITO) is provided on a hard coat layer, and an anti-reflective layer made of multiple thin films is formed on top of the primer layer.
特開2005-266665号公報JP 2005-266665 A
 プライマー層として一般的なITO膜が設けられた反射防止フィルムを、硫酸等の酸と接触させると、層間剥離(例えば、反射防止層とハードコート層との間の層間剥離)が発生しやすくなることが、本発明者らの検討により判明した。このため、プライマー層として一般的なITO膜が設けられた反射防止フィルムは、耐酸性(酸による腐食に耐える性質)が必要とされる用途に適用することが困難となる可能性がある。なお、耐酸性が必要とされる用途としては、バッテリー液に硫酸が使用されている自動車向け用途(車載用途)等が挙げられる。 The inventors have found through their research that when an anti-reflective film having a typical ITO film as a primer layer is brought into contact with an acid such as sulfuric acid, delamination (for example, delamination between the anti-reflective layer and the hard coat layer) is likely to occur. For this reason, it may be difficult to apply an anti-reflective film having a typical ITO film as a primer layer to applications requiring acid resistance (resistance to corrosion caused by acid). Examples of applications requiring acid resistance include automotive applications (on-board applications) in which sulfuric acid is used in the battery fluid.
 上記に鑑み、本発明は、耐酸性に優れる反射防止フィルム、及び当該反射防止フィルムを用いた画像表示装置の提供を目的とする。 In view of the above, the present invention aims to provide an anti-reflection film with excellent acid resistance, and an image display device using the anti-reflection film.
<本発明の態様>
 本発明には、以下の態様が含まれる。
<Aspects of the present invention>
The present invention includes the following aspects.
[1]透明フィルム基材、ハードコート層、プライマー層及び反射防止層をこの順に有する反射防止フィルムであって、
 前記反射防止層は、屈折率の異なる複数の薄膜の積層体であり、
 前記プライマー層は、酸化インジウムスズを主成分とする薄膜であり、かつ酸化インジウムと酸化スズの合計に対する酸化スズの量が15重量%以上である、反射防止フィルム。
[1] An antireflection film having a transparent film substrate, a hard coat layer, a primer layer, and an antireflection layer in this order,
the antireflection layer is a laminate of a plurality of thin films having different refractive indices,
The primer layer is a thin film containing indium tin oxide as a main component, and the amount of tin oxide relative to the total amount of indium oxide and tin oxide is 15% by weight or more.
[2]前記プライマー層は、酸化インジウムと酸化スズの合計に対する酸化スズの量が60重量%以下である、前記[1]に記載の反射防止フィルム。 [2] The anti-reflection film described in [1], wherein the primer layer contains tin oxide in an amount of 60% by weight or less relative to the total amount of indium oxide and tin oxide.
[3]前記プライマー層の厚みが、0.5nm以上20nm以下である、前記[1]又は[2]に記載の反射防止フィルム。 [3] The anti-reflection film according to [1] or [2], wherein the thickness of the primer layer is 0.5 nm or more and 20 nm or less.
[4]前記反射防止層の前記プライマー層側とは反対側に配置された防汚層を更に備える、前記[1]~[3]のいずれか一つに記載の反射防止フィルム。 [4] The anti-reflection film according to any one of [1] to [3], further comprising an antifouling layer disposed on the side of the anti-reflection layer opposite the primer layer.
[5]前記ハードコート層は、個数平均一次粒子径1.0μm未満の粒子を含む、前記[1]~[4]のいずれか一つに記載の反射防止フィルム。 [5] The anti-reflection film according to any one of [1] to [4], wherein the hard coat layer contains particles having a number average primary particle diameter of less than 1.0 μm.
[6]前記透明フィルム基材の前記ハードコート層側とは反対側に配置された粘着剤層を更に備える、前記[1]~[5]のいずれか一つに記載の反射防止フィルム。 [6] The anti-reflection film according to any one of [1] to [5], further comprising a pressure-sensitive adhesive layer disposed on the opposite side of the transparent film substrate from the hard coat layer.
[7]画像表示パネルと、前記画像表示パネルの視認側に配置された、前記[1]~[6]のいずれか一つに記載の反射防止フィルムとを備える、画像表示装置。 [7] An image display device comprising an image display panel and an anti-reflection film according to any one of [1] to [6] above, arranged on the viewing side of the image display panel.
 本発明によれば、耐酸性に優れる反射防止フィルム、及び当該反射防止フィルムを用いた画像表示装置を提供できる。 The present invention provides an anti-reflection film with excellent acid resistance, and an image display device using the anti-reflection film.
本発明に係る反射防止フィルムの一例を示す断面図である。1 is a cross-sectional view showing an example of an anti-reflection film according to the present invention. 本発明に係る反射防止フィルムの他の例を示す断面図である。FIG. 2 is a cross-sectional view showing another example of the antireflection film according to the present invention. 本発明に係る画像表示装置の一例を示す断面図である。1 is a cross-sectional view showing an example of an image display device according to the present invention.
 以下、本発明の好適な実施形態について詳しく説明するが、本発明はこれらに限定されるものではない。また、本明細書中に記載された学術文献及び特許文献の全てが、本明細書中において参考として援用される。 The following provides a detailed description of preferred embodiments of the present invention, but the present invention is not limited to these. In addition, all academic and patent literature described in this specification is incorporated herein by reference.
 まず、本明細書中で使用される用語について説明する。「屈折率」は、温度23℃の雰囲気下における波長550nmの光に対する屈折率である。層状物(より具体的には、透明フィルム基材、ハードコート層、プライマー層、反射防止層、防汚層、粘着剤層等)の「主面」とは、層状物の厚み方向に直交する面をさす。反射防止フィルムを構成する各層の厚み(膜厚)の数値は、何ら規定していなければ、層を厚み方向に切断した断面の画像から無作為に測定箇所を10箇所選択し、選択した10箇所の測定箇所の厚みを測定して得られた10個の測定値の算術平均値である。 First, the terms used in this specification are explained. "Refractive index" refers to the refractive index for light with a wavelength of 550 nm in an atmosphere at a temperature of 23°C. The "principal surface" of a layered material (more specifically, a transparent film substrate, a hard coat layer, a primer layer, an anti-reflective layer, an antifouling layer, an adhesive layer, etc.) refers to a surface perpendicular to the thickness direction of the layered material. Unless otherwise specified, the numerical value of the thickness (film thickness) of each layer constituting the anti-reflective film is the arithmetic average value of 10 measured values obtained by randomly selecting 10 measurement points from an image of a cross section cut in the thickness direction of the layer and measuring the thickness of the selected 10 measurement points.
 薄膜(層)の「主成分」は、何ら規定していなければ、重量基準で、薄膜中に最も多く含まれる成分を意味する。「固形分」とは組成物中の不揮発成分であり、例えば、溶媒以外の成分である。 Unless otherwise specified, the "major component" of a thin film (layer) means the component that is contained in the largest amount in the thin film by weight. "Solids" refers to the non-volatile components in the composition, e.g., components other than the solvent.
 粒子の個数平均一次粒子径は、何ら規定していなければ、走査型電子顕微鏡及び画像処理ソフトウェア(例えば、アメリカ国立衛生研究所製「ImageJ」)を用いて測定した、100個の一次粒子の円相当径(ヘイウッド径:一次粒子の投影面積と同じ面積を有する円の直径)の個数平均値である。 Unless otherwise specified, the number-average primary particle size of particles is the number-average circle-equivalent diameter (Heywood diameter: diameter of a circle having the same area as the projected area of a primary particle) of 100 primary particles measured using a scanning electron microscope and image processing software (e.g., "ImageJ" manufactured by the National Institutes of Health, USA).
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。また、化合物名の後に「系」を付けて重合体名を表す場合には、何ら規定していなければ、重合体の繰り返し単位が化合物又はその誘導体に由来することを意味する。本明細書に例示の成分や官能基等は、特記しない限り、単独で用いてもよく、2種以上を併用してもよい。 Hereinafter, the compound and its derivatives may be collectively referred to by adding "system" after the compound name. In addition, when the compound name is followed by "system" to represent the name of a polymer, it means that the repeating unit of the polymer is derived from the compound or its derivative, unless otherwise specified. Unless otherwise specified, the components and functional groups exemplified in this specification may be used alone or in combination of two or more types.
 以下の説明において参照する図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の大きさ、個数、形状等は、図面作成の都合上から実際とは異なる場合がある。また、説明の都合上、後に説明する図面において、先に説明した図面と同一構成部分については、同一符号を付して、その説明を省略する場合がある。 The drawings referred to in the following explanation mainly show each component in a schematic manner for ease of understanding, and the size, number, shape, etc. of each component shown may differ from the actual size due to the convenience of creating the drawings. Also, for the convenience of explanation, in drawings explained later, the same components as those in previously explained drawings may be given the same reference numerals and their explanation may be omitted.
<第1実施形態:反射防止フィルム>
 本発明の第1実施形態に係る反射防止フィルムは、透明フィルム基材、ハードコート層、プライマー層及び反射防止層をこの順に有する反射防止フィルム(積層体)である。反射防止層は、屈折率の異なる複数の薄膜の積層体である。プライマー層は、酸化インジウムスズを主成分とする薄膜であり、かつ酸化インジウムと酸化スズの合計に対する酸化スズの量が15重量%以上である。
First embodiment: anti-reflection film
The anti-reflection film according to the first embodiment of the present invention is an anti-reflection film (laminate) having a transparent film substrate, a hard coat layer, a primer layer, and an anti-reflection layer in this order. The anti-reflection layer is a laminate of multiple thin films having different refractive indices. The primer layer is a thin film mainly composed of indium tin oxide, and the amount of tin oxide relative to the total of indium oxide and tin oxide is 15% by weight or more.
 以下、プライマー層中の酸化インジウムと酸化スズの合計(100重量%)に対する酸化スズの量(単位:重量%)を、単に「プライマー層中の酸化スズの量」又は「酸化スズの量」と記載することがある。 Hereinafter, the amount of tin oxide (unit: weight %) relative to the total of indium oxide and tin oxide in the primer layer (100 weight %) may be referred to simply as "the amount of tin oxide in the primer layer" or "the amount of tin oxide."
 第1実施形態に係る反射防止フィルムは、上述した構成を備えるため、耐酸性に優れる。その理由は、以下のように推測される。 The anti-reflection film according to the first embodiment has the above-mentioned configuration and therefore has excellent acid resistance. The reason for this is presumed to be as follows.
 第1実施形態に係る反射防止フィルムでは、ハードコート層と反射防止層との密着性を高めるためのプライマー層として、酸化インジウムスズを主成分とする薄膜が設けられている。また、第1実施形態に係る反射防止フィルムのプライマー層では、酸化スズの量が15重量%以上である。このため、第1実施形態に係る反射防止フィルムでは、プライマー層が、酸に対して腐食しにくくなる傾向がある。よって、第1実施形態に係る反射防止フィルムは、酸と接触しても、ハードコート層と反射防止層との密着性が確保されるため、耐酸性に優れる。 In the anti-reflective film according to the first embodiment, a thin film containing indium tin oxide as a main component is provided as a primer layer for improving adhesion between the hard coat layer and the anti-reflective layer. Furthermore, the primer layer of the anti-reflective film according to the first embodiment contains 15% by weight or more of tin oxide. Therefore, in the anti-reflective film according to the first embodiment, the primer layer tends to be less susceptible to corrosion by acid. Therefore, the anti-reflective film according to the first embodiment has excellent acid resistance because adhesion between the hard coat layer and the anti-reflective layer is ensured even when it comes into contact with acid.
 また、第1実施形態に係る反射防止フィルムは、上述した構成を備えるため、紫外線が照射された際の層間の密着性を確保できる。以下、紫外線が照射された際の層間の密着性を確保できる性質を、「耐候性」と記載することがある。 In addition, since the anti-reflection film according to the first embodiment has the above-mentioned configuration, it is possible to ensure adhesion between layers when irradiated with ultraviolet rays. Hereinafter, the property of ensuring adhesion between layers when irradiated with ultraviolet rays may be referred to as "weather resistance."
 第1実施形態において、耐酸性により優れる反射防止フィルムを得るためには、プライマー層中の酸化スズの量が、18重量%以上であることが好ましく、20重量%以上であることがより好ましく、22重量%以上であることが更に好ましく、24重量%以上であることが更により好ましく、25重量%以上、30重量%以上、35重量%以上又は40重量%以上であってもよい。 In the first embodiment, in order to obtain an anti-reflection film with superior acid resistance, the amount of tin oxide in the primer layer is preferably 18% by weight or more, more preferably 20% by weight or more, even more preferably 22% by weight or more, even more preferably 24% by weight or more, and may be 25% by weight or more, 30% by weight or more, 35% by weight or more, or 40% by weight or more.
 第1実施形態において、透明性に優れる反射防止フィルムを得るためには、プライマー層中の酸化スズの量が、60重量%以下であることが好ましく、55重量%以下であることがより好ましく、50重量%以下であることが更に好ましく、45重量%以下であってもよい。 In the first embodiment, in order to obtain an anti-reflective film with excellent transparency, the amount of tin oxide in the primer layer is preferably 60% by weight or less, more preferably 55% by weight or less, even more preferably 50% by weight or less, and may be 45% by weight or less.
 以下、第1実施形態に係る反射防止フィルムの構成について、図面を参照しながら説明する。図1は、第1実施形態に係る反射防止フィルムの一例を示す断面図である。図1に示す反射防止フィルム10は、透明フィルム基材11、ハードコート層12、プライマー層13及び反射防止層14をこの順に有する。プライマー層13は、ハードコート層12及び反射防止層14の両方と接している。プライマー層13は、酸化インジウムスズを主成分とする薄膜であり、かつ酸化インジウムと酸化スズの合計に対する酸化スズの量が15重量%以上である。 The configuration of the anti-reflection film according to the first embodiment will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of an anti-reflection film according to the first embodiment. The anti-reflection film 10 shown in FIG. 1 has a transparent film substrate 11, a hard coat layer 12, a primer layer 13, and an anti-reflection layer 14, in this order. The primer layer 13 is in contact with both the hard coat layer 12 and the anti-reflection layer 14. The primer layer 13 is a thin film containing indium tin oxide as a main component, and the amount of tin oxide relative to the total of indium oxide and tin oxide is 15% by weight or more.
 また、反射防止フィルム10は、反射防止層14のプライマー層13側とは反対側に配置された防汚層19を更に備える。つまり、反射防止フィルム10は、透明フィルム基材11、ハードコート層12、プライマー層13、反射防止層14及び防汚層19をこの順に有する。 The anti-reflection film 10 further includes an anti-fouling layer 19 disposed on the side of the anti-reflection layer 14 opposite the primer layer 13 side. In other words, the anti-reflection film 10 includes a transparent film substrate 11, a hard coat layer 12, a primer layer 13, an anti-reflection layer 14, and an anti-fouling layer 19 in this order.
 反射防止層14は、プライマー層13側から、高屈折率層15、低屈折率層16、高屈折率層17及び低屈折率層18の4層をこの順に有する。高屈折率層及び低屈折率層の詳細については、後述する。なお、反射防止フィルムの反射防止層は、反射防止層14のような4層構成に限定されず、2層構成、3層構成、5層構成、又は6層以上の積層構成であってもよい。反射防止フィルムの反射防止層は、好ましくは、2層以上の高屈折率層と2層以上の低屈折率層との交互積層体である。空気界面での反射を低減するためには、反射防止フィルムの反射防止層は、最外層(ハードコート層12から最も離れた層)が低屈折率層であることが好ましい。 The anti-reflection layer 14 has four layers, namely, a high refractive index layer 15, a low refractive index layer 16, a high refractive index layer 17, and a low refractive index layer 18, in this order from the primer layer 13 side. Details of the high refractive index layer and the low refractive index layer will be described later. The anti-reflection layer of the anti-reflection film is not limited to a four-layer structure like the anti-reflection layer 14, and may be a two-layer structure, a three-layer structure, a five-layer structure, or a stacked structure of six or more layers. The anti-reflection layer of the anti-reflection film is preferably an alternating laminate of two or more high refractive index layers and two or more low refractive index layers. In order to reduce reflection at the air interface, it is preferable that the outermost layer (the layer farthest from the hard coat layer 12) of the anti-reflection layer of the anti-reflection film is a low refractive index layer.
 第1実施形態に係る反射防止フィルムは、図1に示す反射防止フィルム10とは異なる層構成であってもよい。例えば、第1実施形態に係る反射防止フィルムは、図2に示すように、透明フィルム基材11のハードコート層12側とは反対側に配置された粘着剤層21を更に備える、反射防止フィルム20であってもよい。 The anti-reflection film according to the first embodiment may have a layer structure different from that of the anti-reflection film 10 shown in FIG. 1. For example, the anti-reflection film according to the first embodiment may be an anti-reflection film 20 further including an adhesive layer 21 arranged on the side opposite the hard coat layer 12 of the transparent film substrate 11, as shown in FIG. 2.
 粘着剤層21を構成する粘着剤は、特に限定されず、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル-塩化ビニル共重合体、変性ポリオレフィン、エポキシ系樹脂、フッ素系樹脂、天然ゴム、合成ゴム等のポリマーをベースポリマーとする透明な粘着剤を、適宜に選択して用いることができる。粘着剤層21の厚みは、特に限定されないが、薄層性及び接着性を両立させる観点から、5μm以上100μm以下であることが好ましい。 The adhesive constituting the adhesive layer 21 is not particularly limited, and can be appropriately selected and used, for example, a transparent adhesive having a base polymer such as an acrylic polymer, a silicone polymer, polyester, polyurethane, polyamide, polyvinyl ether, vinyl acetate-vinyl chloride copolymer, modified polyolefin, epoxy resin, fluororesin, natural rubber, synthetic rubber, etc. The thickness of the adhesive layer 21 is not particularly limited, but from the viewpoint of achieving both a thin layer property and adhesiveness, it is preferably 5 μm or more and 100 μm or less.
 粘着剤層21の透明フィルム基材11側とは反対側の主面には、はく離ライナー(不図示)が仮着されていてもよい。はく離ライナーは、例えば、反射防止フィルム20を後述する画像表示パネル101(図3参照)と貼り合わせるまでの間、粘着剤層21の表面を保護する。はく離ライナーの構成材料としては、アクリル、ポリオレフィン、環状ポリオレフィン、ポリエステル等から形成されたプラスチックフィルムが好適に用いられる。はく離ライナーの厚みは、例えば、5μm以上200μm以下である。はく離ライナーの表面には、離型処理が施されていることが好ましい。離型処理に使用される離型剤の材料としては、シリコーン系材料、フッ素系材料、長鎖アルキル系材料、脂肪酸アミド系材料等が挙げられる。 A release liner (not shown) may be temporarily attached to the main surface of the adhesive layer 21 opposite the transparent film substrate 11. The release liner protects the surface of the adhesive layer 21, for example, until the anti-reflection film 20 is bonded to an image display panel 101 (see FIG. 3) described below. The release liner is preferably made of a plastic film made of acrylic, polyolefin, cyclic polyolefin, polyester, or the like. The release liner has a thickness of, for example, 5 μm or more and 200 μm or less. The surface of the release liner is preferably subjected to a release treatment. Examples of the material of the release agent used in the release treatment include silicone-based materials, fluorine-based materials, long-chain alkyl-based materials, and fatty acid amide-based materials.
 以上、図面を参照しながら第1実施形態に係る反射防止フィルムの構成について説明したが、本発明に係る反射防止フィルムは、上述した構成に限定されない。 The configuration of the anti-reflection film according to the first embodiment has been described above with reference to the drawings, but the anti-reflection film according to the present invention is not limited to the above-mentioned configuration.
 例えば、本発明に係る反射防止フィルムは、防汚層を備えていない反射防止フィルムであってもよい。また、本発明に係る反射防止フィルムは、上述した構成に含まれる層(透明フィルム基材、ハードコート層、プライマー層、反射防止層及び防汚層)とは異なる光学機能層を備えていてもよい。 For example, the anti-reflection film according to the present invention may be an anti-reflection film that does not have an anti-fouling layer. In addition, the anti-reflection film according to the present invention may have an optically functional layer that is different from the layers included in the above-mentioned configuration (transparent film substrate, hard coat layer, primer layer, anti-reflection layer, and anti-fouling layer).
 次に、第1実施形態に係る反射防止フィルムの要素について説明する。 Next, we will explain the elements of the anti-reflection film according to the first embodiment.
[透明フィルム基材]
 透明フィルム基材は、例えば可撓性を有する透明な樹脂フィルムである。透明フィルム基材を構成する材料としては、例えば、ポリエステル樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、ノルボルネン樹脂、ポリアリレート樹脂、及びポリビニルアルコール樹脂が挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、及びポリエチレンナフタレートが挙げられる。ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、及びシクロオレフィンポリマー(COP)が挙げられる。セルロース樹脂としては、例えば、トリアセチルセルロース(TAC)が挙げられる。これらの材料は、単独で用いられてもよいし、二種類以上が併用されてもよい。透明フィルム基材の材料としては、透明性及び強度の観点から、ポリエステル樹脂、ポリオレフィン樹脂、及びセルロース樹脂からなる群より選択される一種が好ましく、PET、COP、及びTACからなる群より選択される一種がより好ましく、TACが更に好ましい。つまり、透明フィルム基材としては、ポリエステル樹脂フィルム、ポリオレフィン樹脂フィルム、及びセルロース樹脂フィルムからなる群より選択される一種のフィルムが好ましく、PETフィルム、COPフィルム、及びTACフィルムからなる群より選択される一種のフィルムがより好ましく、TACフィルムが更に好ましい。
[Transparent film substrate]
The transparent film substrate is, for example, a transparent resin film having flexibility. Examples of materials constituting the transparent film substrate include polyester resin, polyolefin resin, polystyrene resin, acrylic resin, polycarbonate resin, polyethersulfone resin, polysulfone resin, polyamide resin, polyimide resin, cellulose resin, norbornene resin, polyarylate resin, and polyvinyl alcohol resin. Examples of polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate. Examples of polyolefin resin include polyethylene, polypropylene, and cycloolefin polymer (COP). Examples of cellulose resin include triacetyl cellulose (TAC). These materials may be used alone or in combination of two or more. As the material of the transparent film substrate, from the viewpoint of transparency and strength, one selected from the group consisting of polyester resin, polyolefin resin, and cellulose resin is preferable, one selected from the group consisting of PET, COP, and TAC is more preferable, and TAC is even more preferable. In other words, as the transparent film substrate, a type of film selected from the group consisting of polyester resin film, polyolefin resin film, and cellulose resin film is preferable, a type of film selected from the group consisting of PET film, COP film, and TAC film is more preferable, and a TAC film is even more preferable.
 透明フィルム基材の厚みは、強度の観点から、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは20μm以上である。透明フィルム基材の厚みは、取扱い性の観点から、好ましくは300μm以下、より好ましくは200μm以下である。 From the viewpoint of strength, the thickness of the transparent film substrate is preferably 5 μm or more, more preferably 10 μm or more, and even more preferably 20 μm or more. From the viewpoint of handleability, the thickness of the transparent film substrate is preferably 300 μm or less, and more preferably 200 μm or less.
 透明フィルム基材の一方の主面又は両主面は、表面改質処理されていてもよい。表面改質処理としては、例えば、コロナ処理、プラズマ処理、オゾン処理、プライマー処理、グロー処理、及びカップリング剤処理が挙げられる。 One or both main surfaces of the transparent film substrate may be subjected to a surface modification treatment. Examples of surface modification treatments include corona treatment, plasma treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment.
 透明フィルム基材の全光線透過率(JIS K 7375-2008)は、反射防止フィルムの透明性を向上させる観点から、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上100%以下である。 The total light transmittance (JIS K 7375-2008) of the transparent film substrate is preferably 80% or more, more preferably 90% or more, and even more preferably 95% or more and 100% or less, from the viewpoint of improving the transparency of the anti-reflection film.
[ハードコート層]
 ハードコート層は、反射防止フィルムの硬度や弾性率等の機械的特性を高める層である。ハードコート層は、例えば、硬化性樹脂組成物(ハードコート層形成用組成物)の硬化物からなる。硬化性樹脂組成物に含まれる硬化性樹脂としては、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ウレタンアクリレート系樹脂、アミド樹脂、シリコーン樹脂、エポキシ樹脂、及びメラミン樹脂が挙げられる。これらの硬化性樹脂は、単独で用いられてもよいし、二種類以上が併用されてもよい。ハードコート層の硬度を高める観点から、硬化性樹脂としては、アクリル樹脂及びウレタンアクリレート系樹脂からなる群より選択される一種以上が好ましく、ウレタンアクリレート系樹脂がより好ましい。
[Hard coat layer]
The hard coat layer is a layer that enhances mechanical properties such as hardness and elastic modulus of the anti-reflection film. The hard coat layer is, for example, made of a cured product of a curable resin composition (composition for forming a hard coat layer). Examples of the curable resin contained in the curable resin composition include polyester resin, acrylic resin, urethane resin, urethane acrylate resin, amide resin, silicone resin, epoxy resin, and melamine resin. These curable resins may be used alone or in combination of two or more kinds. From the viewpoint of increasing the hardness of the hard coat layer, the curable resin is preferably one or more selected from the group consisting of acrylic resin and urethane acrylate resin, and more preferably urethane acrylate resin.
 また、硬化性樹脂組成物としては、例えば、紫外線硬化型の樹脂組成物、及び熱硬化型の樹脂組成物が挙げられる。反射防止フィルムの生産性向上の観点から、硬化性樹脂組成物としては、紫外線硬化型の樹脂組成物が好ましい。紫外線硬化型の樹脂組成物には、紫外線硬化型モノマー、紫外線硬化型オリゴマー及び紫外線硬化型ポリマーからなる群より選択される一種以上が含まれる。紫外線硬化型の樹脂組成物の具体例としては、特開2016-179686号公報に記載のハードコート層形成用組成物が挙げられる。 In addition, examples of the curable resin composition include an ultraviolet-curable resin composition and a thermosetting resin composition. From the viewpoint of improving the productivity of the anti-reflection film, the curable resin composition is preferably an ultraviolet-curable resin composition. The ultraviolet-curable resin composition includes one or more selected from the group consisting of an ultraviolet-curable monomer, an ultraviolet-curable oligomer, and an ultraviolet-curable polymer. A specific example of the ultraviolet-curable resin composition is the composition for forming a hard coat layer described in JP 2016-179686 A.
 また、硬化性樹脂組成物は、微粒子を含有してもよい。硬化性樹脂組成物に微粒子を配合することにより、ハードコート層における、硬さの調整、表面粗さの調整、屈折率の調整及び防眩性の調整が可能となる。微粒子としては、例えば、金属(又は半金属)の酸化物粒子、ガラス粒子、及び有機粒子が挙げられる。金属(又は半金属)の酸化物粒子の材料としては、例えば、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化スズ、酸化インジウム、酸化カドミウム、及び酸化アンチモンが挙げられる。有機粒子の材料としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル-スチレン共重合体、ベンゾグアナミン、メラミン、及びポリカーボネートが挙げられる。 The curable resin composition may also contain fine particles. By blending fine particles in the curable resin composition, it is possible to adjust the hardness, surface roughness, refractive index, and anti-glare properties of the hard coat layer. Examples of fine particles include metal (or semi-metal) oxide particles, glass particles, and organic particles. Examples of materials for metal (or semi-metal) oxide particles include silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide. Examples of materials for organic particles include polymethyl methacrylate, polystyrene, polyurethane, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate.
 また、硬化性樹脂組成物は、上記微粒子として、個数平均一次粒子径が1.0μm未満の粒子(以下、「ナノ粒子」と記載することがある)を含んでいてもよい。つまり、ハードコート層は、ナノ粒子を含んでいてもよい。ハードコート層がナノ粒子を含む硬化性樹脂組成物の硬化物からなる場合、ハードコート層の表面に、微細な凹凸が形成され、ハードコート層と、その上に形成される層(例えばプライマー層)との密着性が向上する傾向がある。 The curable resin composition may also contain particles having a number average primary particle diameter of less than 1.0 μm (hereinafter, sometimes referred to as "nanoparticles") as the fine particles. In other words, the hard coat layer may contain nanoparticles. When the hard coat layer is made of a cured product of a curable resin composition containing nanoparticles, fine irregularities are formed on the surface of the hard coat layer, which tends to improve adhesion between the hard coat layer and a layer (e.g., a primer layer) formed thereon.
 密着性向上に寄与する微細な凹凸形状を形成する観点から、ナノ粒子の個数平均一次粒子径は、20nm以上80nm以下であることが好ましく、25nm以上70nm以下であることがより好ましく、30nm以上60nm以下であることが更に好ましい。 From the viewpoint of forming a fine uneven shape that contributes to improved adhesion, the number average primary particle diameter of the nanoparticles is preferably 20 nm or more and 80 nm or less, more preferably 25 nm or more and 70 nm or less, and even more preferably 30 nm or more and 60 nm or less.
 ナノ粒子の材料としては、無機酸化物が好ましい。無機酸化物としては、酸化シリコン(シリカ)、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ニオブ、酸化亜鉛、酸化スズ、酸化セリウム、酸化マグネシウム等の金属(又は半金属)の酸化物が挙げられる。無機酸化物は、複数種の(半)金属の複合酸化物でもよい。例示の無機酸化物の中でも、密着性向上効果が高いことから、酸化シリコンが好ましい。つまり、ナノ粒子としては、酸化シリコンの粒子(シリカ粒子)が好ましい。ナノ粒子としての無機酸化物粒子の表面には、樹脂との密着性や親和性を高める目的で、アクリル基、エポキシ基等の官能基が導入されていてもよい。 Inorganic oxides are preferred as nanoparticle materials. Examples of inorganic oxides include oxides of metals (or semi-metals), such as silicon oxide (silica), titanium oxide, aluminum oxide, zirconium oxide, niobium oxide, zinc oxide, tin oxide, cerium oxide, and magnesium oxide. The inorganic oxide may be a composite oxide of multiple (semi-)metals. Among the inorganic oxides listed above, silicon oxide is preferred because of its high adhesion-improving effect. In other words, silicon oxide particles (silica particles) are preferred as nanoparticles. Functional groups such as acrylic groups and epoxy groups may be introduced onto the surface of inorganic oxide particles as nanoparticles in order to improve adhesion and affinity with resins.
 ハードコート層におけるナノ粒子の量は、硬化性樹脂100重量部に対して、5重量部以上であることが好ましく、10重量部以上、20重量部以上又は30重量部以上であってもよい。ナノ粒子の量が5重量部以上であれば、ハードコート層上に形成される層との密着性をより向上させることができる。ハードコート層におけるナノ粒子の量の上限は、硬化性樹脂100重量部に対して、例えば90重量部であり、80重量部であることが好ましく、70重量部であってもよい。 The amount of nanoparticles in the hard coat layer is preferably 5 parts by weight or more, and may be 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more, based on 100 parts by weight of the curable resin. If the amount of nanoparticles is 5 parts by weight or more, the adhesion to the layer formed on the hard coat layer can be further improved. The upper limit of the amount of nanoparticles in the hard coat layer is, for example, 90 parts by weight, preferably 80 parts by weight, and may be 70 parts by weight, based on 100 parts by weight of the curable resin.
 ハードコート層の厚みは、ハードコート層の硬度を高める観点から、好ましくは1μm以上、より好ましくは2μm以上である。ハードコート層の厚みは、反射防止フィルムの柔軟性確保の観点から、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは35μm以下、更により好ましくは30μm以下である。 The thickness of the hard coat layer is preferably 1 μm or more, more preferably 2 μm or more, from the viewpoint of increasing the hardness of the hard coat layer. The thickness of the hard coat layer is preferably 50 μm or less, more preferably 40 μm or less, even more preferably 35 μm or less, and even more preferably 30 μm or less, from the viewpoint of ensuring the flexibility of the anti-reflection film.
 ハードコート層の透明フィルム基材側とは反対側の主面は、表面改質処理されていてもよい。表面改質処理としては、例えば、プラズマ処理、コロナ処理、オゾン処理、プライマー処理、グロー処理、及びカップリング剤処理が挙げられる。ハードコート層の透明フィルム基材側とは反対側に設けられる層(例えば、後述するプライマー層)とハードコート層との密着性を高めるためには、ハードコート層の透明フィルム基材側とは反対側の主面は、プラズマ処理されていることが好ましい。 The main surface of the hard coat layer opposite the transparent film substrate side may be subjected to a surface modification treatment. Examples of surface modification treatments include plasma treatment, corona treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment. In order to increase the adhesion between the hard coat layer and a layer (e.g., a primer layer described below) provided on the side opposite the transparent film substrate side of the hard coat layer, it is preferable that the main surface of the hard coat layer opposite the transparent film substrate side is subjected to a plasma treatment.
[プライマー層]
 プライマー層は、ハードコート層と反射防止層との密着性を高めるための層である。本実施形態では、プライマー層が酸化インジウムスズ(ITO)を主成分とする薄膜である。プライマー層がITOを主成分として含むことにより、ハードコート層と反射防止層との密着性を高めつつ、透明性に優れるプライマー層が得られる。また、プライマー層がITOを主成分として含むことにより、反射防止フィルムに適度な帯電防止性を持たせることができる。
[Primer layer]
The primer layer is a layer for enhancing adhesion between the hard coat layer and the anti-reflection layer. In this embodiment, the primer layer is a thin film mainly composed of indium tin oxide (ITO). By containing ITO as a main component of the primer layer, a primer layer having excellent transparency can be obtained while enhancing adhesion between the hard coat layer and the anti-reflection layer. In addition, by containing ITO as a main component of the primer layer, the anti-reflection film can have an appropriate antistatic property.
 プライマー層は、酸化インジウム及び酸化スズ以外の酸化物を含んでいてもよいが、ハードコート層と反射防止層との密着性をより高めるためには、プライマー層中のITOの含有率は、プライマー層の全量に対して、90重量%以上であることが好ましく、99重量%以上であることがより好ましい。以下、ITOを主成分とする薄膜を、「ITO層」と記載することがある。 The primer layer may contain oxides other than indium oxide and tin oxide, but in order to further improve adhesion between the hard coat layer and the anti-reflective layer, the content of ITO in the primer layer is preferably 90% by weight or more, and more preferably 99% by weight or more, based on the total amount of the primer layer. Hereinafter, a thin film containing ITO as the main component may be referred to as an "ITO layer."
 ハードコート層と反射防止層との密着性を高めつつ、プライマー層の透明性を確保するためには、プライマー層の厚みは、0.5nm以上20nm以下であることが好ましく、0.5nm以上10nm以下であることがより好ましく、1.0nm以上10nm以下であることが更に好ましい。 In order to ensure the transparency of the primer layer while improving the adhesion between the hard coat layer and the anti-reflection layer, the thickness of the primer layer is preferably 0.5 nm or more and 20 nm or less, more preferably 0.5 nm or more and 10 nm or less, and even more preferably 1.0 nm or more and 10 nm or less.
[反射防止層]
 反射防止層は、屈折率の異なる2層以上の薄膜からなる。一般に、反射防止層は、入射光と反射光の逆転した位相が互いに打ち消し合うように、薄膜の光学膜厚(屈折率と厚みの積)が調整される。反射防止層を、屈折率の異なる2層以上の薄膜の多層積層体とすることにより、可視光の広帯域の波長範囲において、反射率を小さくできる。
[Anti-reflection layer]
The antireflection layer is made of two or more thin layers with different refractive indexes. In general, the optical film thickness (product of refractive index and thickness) of the thin film is adjusted so that the inverted phases of incident light and reflected light cancel each other out. By making the antireflection layer a multilayer laminate of two or more thin films with different refractive indexes, the reflectance can be reduced in a wide wavelength range of visible light.
 反射防止層を構成する薄膜の材料としては、金属(又は半金属)の酸化物、窒化物、フッ化物等が挙げられる。反射防止層は、好ましくは、高屈折率層と低屈折率層の交互積層体である。 The thin film material constituting the anti-reflection layer may be a metal (or semi-metal) oxide, nitride, fluoride, etc. The anti-reflection layer is preferably an alternating laminate of high refractive index layers and low refractive index layers.
 高屈折率層は、屈折率が、例えば1.9以上であり、好ましくは2.0以上である。高屈折率層の材料としては、酸化チタン、酸化ニオブ(Nb等)、酸化ジルコニウム、酸化タンタル、酸化亜鉛、酸化インジウム、アンチモンドープ酸化スズ(ATO)等が挙げられる。中でも、酸化チタン及び酸化ニオブからなる群より選択される一種以上が好ましい。低屈折率層は、屈折率が、例えば1.6以下であり、好ましくは1.5以下である。低屈折率層の材料としては、酸化シリコン(SiO等)、窒化チタン、フッ化マグネシウム、フッ化バリウム、フッ化カルシウム、フッ化ハフニウム、フッ化ランタン等が挙げられる。中でも酸化シリコンが好ましい。特に、高屈折率層としての酸化ニオブ薄膜と、低屈折率層としての酸化シリコン薄膜とを交互に積層することが好ましい。低屈折率層と高屈折率層に加えて、屈折率1.6超1.9未満の中屈折率層が設けられてもよい。 The high refractive index layer has a refractive index of, for example, 1.9 or more, preferably 2.0 or more. Examples of materials for the high refractive index layer include titanium oxide, niobium oxide (Nb 2 O 5 , etc.), zirconium oxide, tantalum oxide, zinc oxide, indium oxide, and antimony-doped tin oxide (ATO). Among these, at least one selected from the group consisting of titanium oxide and niobium oxide is preferred. The low refractive index layer has a refractive index of, for example, 1.6 or less, preferably 1.5 or less. Examples of materials for the low refractive index layer include silicon oxide (SiO 2 , etc.), titanium nitride, magnesium fluoride, barium fluoride, calcium fluoride, hafnium fluoride, and lanthanum fluoride. Among these, silicon oxide is preferred. In particular, it is preferred to alternately stack a niobium oxide thin film as the high refractive index layer and a silicon oxide thin film as the low refractive index layer. In addition to the low refractive index layer and the high refractive index layer, a medium refractive index layer having a refractive index of more than 1.6 and less than 1.9 may be provided.
 高屈折率層及び低屈折率層の膜厚は、それぞれ、5nm以上200nm以下であることが好ましく、10nm以上150nm以下であることがより好ましい。屈折率や積層構成等に応じて、可視光の反射率が小さくなるように、各層の膜厚を設計すればよい。例えば、高屈折率層と低屈折率層の積層構成としては、ハードコート層側から、光学膜厚20nm以上55nm以下の高屈折率層、光学膜厚25nm以上55nm以下の低屈折率層、光学膜厚80nm以上270nm以下の高屈折率層、及び光学膜厚100nm以上150nm以下の低屈折率層からなる4層構成が挙げられる。 The thickness of each of the high and low refractive index layers is preferably 5 nm to 200 nm, and more preferably 10 nm to 150 nm. The thickness of each layer can be designed so that the reflectance of visible light is small, depending on the refractive index and layer structure. For example, the layer structure of the high and low refractive index layers can be a four-layer structure consisting of, from the hard coat layer side, a high refractive index layer with an optical thickness of 20 nm to 55 nm, a low refractive index layer with an optical thickness of 25 nm to 55 nm, a high refractive index layer with an optical thickness of 80 nm to 270 nm, and a low refractive index layer with an optical thickness of 100 nm to 150 nm.
 反射防止層が、高屈折率層としての酸化ニオブ薄膜と、低屈折率層としての酸化シリコン薄膜とを交互に積層させた、4層の交互積層体である場合、反射防止層の構成としては、ハードコート層側から、厚み5nm以上20nm以下の酸化ニオブ薄膜、厚み10nm以上40nm以下の酸化シリコン薄膜、厚み65nm以上120nm以下の酸化ニオブ薄膜、及び厚み60nm以上100nm以下の酸化シリコン薄膜をこの順に備える構成が挙げられる。 When the anti-reflection layer is a four-layer alternating laminate consisting of niobium oxide thin films as high refractive index layers and silicon oxide thin films as low refractive index layers, the anti-reflection layer may be configured to have, in this order from the hard coat layer side, a niobium oxide thin film with a thickness of 5 nm to 20 nm, a silicon oxide thin film with a thickness of 10 nm to 40 nm, a niobium oxide thin film with a thickness of 65 nm to 120 nm, and a silicon oxide thin film with a thickness of 60 nm to 100 nm.
 耐屈曲性に優れる反射防止フィルムを得るためには、反射防止層の厚みは、140nm以上280nm以下であることが好ましく、170nm以上280nm以下であることがより好ましく、180nm以上260nm以下であることが更に好ましく、190nm以上250nm以下であることが更により好ましい。なお、本明細書において、「反射防止層の厚み」は、反射防止層を構成する各層の厚みの合計(合計厚み)である。 In order to obtain an anti-reflective film with excellent bending resistance, the thickness of the anti-reflective layer is preferably 140 nm or more and 280 nm or less, more preferably 170 nm or more and 280 nm or less, even more preferably 180 nm or more and 260 nm or less, and even more preferably 190 nm or more and 250 nm or less. In this specification, the "thickness of the anti-reflective layer" refers to the sum of the thicknesses of the layers that make up the anti-reflective layer (total thickness).
[防汚層]
 反射防止フィルムは、反射防止層のプライマー層側とは反対側に防汚層を備えることが好ましく、反射防止フィルムの最表層として防汚層を備えることがより好ましい。防汚層が設けられることにより、例えば、外部環境からの汚染(指紋、手垢、埃等)の影響を低減できるとともに、反射防止フィルムの表面に付着した汚染物質の除去が容易となる。
[Anti-stain layer]
The anti-reflection film preferably has an anti-soiling layer on the side opposite to the primer layer of the anti-reflection layer, and more preferably has an anti-soiling layer as the outermost layer of the anti-reflection film. By providing the anti-soiling layer, for example, the influence of contamination from the external environment (fingerprints, hand dirt, dust, etc.) can be reduced, and contaminants attached to the surface of the anti-reflection film can be easily removed.
 反射防止層の反射防止性能の低下を抑制するためには、防汚層は、反射防止層の最表層(例えば低屈折率層)との屈折率差が小さいことが好ましい。防汚層の屈折率としては、1.6以下が好ましく、1.55以下がより好ましい。 In order to prevent a decrease in the anti-reflection performance of the anti-reflection layer, it is preferable that the anti-smudge layer has a small difference in refractive index from the outermost layer of the anti-reflection layer (e.g., a low refractive index layer). The refractive index of the anti-smudge layer is preferably 1.6 or less, and more preferably 1.55 or less.
 防汚層の材料としては、フッ素含有化合物が好ましい。フッ素含有化合物は、防汚性に優れつつ、低屈折率化に寄与し得る。中でも、撥水性に優れ、高い防汚性を発揮できることから、パーフルオロポリエーテル骨格を含有するアルコキシシラン化合物が好ましい。パーフルオロポリエーテル骨格を含有するアルコキシシラン化合物としては、例えば、炭素原子数1以上4以下の直鎖状又は分枝鎖状のパーフルオロアルキレンオキシド単位を複数有するアルコキシシラン化合物が挙げられる。炭素原子数1以上4以下の直鎖状又は分枝鎖状のパーフルオロアルキレンオキシド単位としては、例えば、パーフルオロメチレンオキシド単位(-CFO-)、パーフルオロエチレンオキシド単位(-CFCFO-)、パーフルオロプロピレンオキシド単位(-CFCFCFO-)、パーフルオロイソプロピレンオキシド単位(-CF(CF)CFO-)等が挙げられる。 As the material of the antifouling layer, a fluorine-containing compound is preferred. The fluorine-containing compound can contribute to lowering the refractive index while having excellent antifouling properties. Among them, an alkoxysilane compound containing a perfluoropolyether skeleton is preferred because it has excellent water repellency and can exhibit high antifouling properties. As an alkoxysilane compound containing a perfluoropolyether skeleton, for example, an alkoxysilane compound having a plurality of linear or branched perfluoroalkylene oxide units having 1 to 4 carbon atoms can be mentioned. As an example of the linear or branched perfluoroalkylene oxide unit having 1 to 4 carbon atoms, for example, a perfluoromethylene oxide unit (-CF 2 O-), a perfluoroethylene oxide unit (-CF 2 CF 2 O-), a perfluoropropylene oxide unit (-CF 2 CF 2 CF 2 O-), a perfluoroisopropylene oxide unit (-CF(CF 3 )CF 2 O-), and the like can be mentioned.
 防汚層の厚みは、例えば、2nm以上20nm以下である。防汚層の厚みが大きいほど、防汚性が向上する傾向がある。防汚層の厚みは、5nm以上であることが好ましく、6nm以上であることがより好ましい。一方、防眩性を高める観点から、防汚層の厚みは、15nm以下であることが好ましい。 The thickness of the antifouling layer is, for example, 2 nm or more and 20 nm or less. The thicker the antifouling layer, the more improved the antifouling properties tend to be. The thickness of the antifouling layer is preferably 5 nm or more, and more preferably 6 nm or more. On the other hand, from the viewpoint of improving antiglare properties, the thickness of the antifouling layer is preferably 15 nm or less.
[反射防止フィルムの好ましい態様]
 耐候性及び透明性を確保しつつ、耐酸性に優れる反射防止フィルムを得るためには、第1実施形態に係る反射防止フィルムは、下記条件1を満たすことが好ましく、下記条件2を満たすことがより好ましく、下記条件3を満たすことが更に好ましい。
 条件1:プライマー層中の酸化スズの量が15重量%以上60重量%以下である。
 条件2:上記条件1を満たし、かつプライマー層の厚みが0.5nm以上20nm以下である。
 条件3:上記条件2を満たし、かつハードコート層が個数平均一次粒子径1.0μm未満の粒子を含む。
[Preferred embodiment of anti-reflection film]
In order to obtain an antireflection film having excellent acid resistance while ensuring weather resistance and transparency, the antireflection film according to the first embodiment preferably satisfies the following condition 1, more preferably satisfies the following condition 2, and even more preferably satisfies the following condition 3.
Condition 1: The amount of tin oxide in the primer layer is 15% by weight or more and 60% by weight or less.
Condition 2: The above condition 1 is satisfied, and the thickness of the primer layer is 0.5 nm or more and 20 nm or less.
Condition 3: The above condition 2 is satisfied, and the hard coat layer contains particles having a number average primary particle diameter of less than 1.0 μm.
[反射防止フィルムの製造方法]
 次に、第1実施形態に係る反射防止フィルムの好適な製造方法について説明する。以下、第1実施形態に係る反射防止フィルムの好適な製造方法を、製造方法Mと記載することがある。
[Method of manufacturing anti-reflection film]
Next, a description will be given of a preferred method for producing the anti-reflection film according to the first embodiment. Hereinafter, the preferred method for producing the anti-reflection film according to the first embodiment may be referred to as production method M.
 製造方法Mは、例えば、プライマー層形成工程及び反射防止層形成工程を備える。製造方法Mは、プライマー層形成工程及び反射防止層形成工程以外の工程(他の工程)を備えていてもよい。他の工程としては、例えば、後述するハードコート層形成工程、ハードコート層の表面処理工程、及び防汚層形成工程が挙げられる。 Manufacturing method M includes, for example, a primer layer forming step and an anti-reflective layer forming step. Manufacturing method M may include steps (other steps) other than the primer layer forming step and the anti-reflective layer forming step. Examples of the other steps include a hard coat layer forming step, a surface treatment step of the hard coat layer, and an anti-fouling layer forming step, which will be described later.
 以下、製造方法Mの一例が備える各工程について説明する。 The following describes each step in one example of manufacturing method M.
(ハードコート層形成工程)
 ハードコート層形成工程は、透明フィルム基材の一方の主面にハードコート層を形成する工程である。例えば、透明フィルム基材の一方の主面に硬化性樹脂組成物(ハードコート層形成用組成物)を塗布し、必要に応じて溶媒の除去及び樹脂の硬化を行うことにより、ハードコート層が形成される。ハードコート層形成用組成物は、例えば、上述した硬化性樹脂、及び重合開始剤(例えば光重合開始剤)を含み、必要に応じてこれらの成分を溶解又は分散可能な溶媒を含む。
(Hard Coat Layer Forming Process)
The hard coat layer forming process is a process of forming a hard coat layer on one main surface of a transparent film substrate. For example, a curable resin composition (composition for forming a hard coat layer) is applied to one main surface of a transparent film substrate, and the hard coat layer is formed by removing the solvent and curing the resin as necessary. The composition for forming a hard coat layer includes, for example, the above-mentioned curable resin and a polymerization initiator (e.g., a photopolymerization initiator), and includes a solvent capable of dissolving or dispersing these components as necessary.
 ハードコート層形成用組成物は、上記成分の他に、ナノ粒子、個数平均一次粒子径1.0μm以上の粒子、レベリング剤、粘度調整剤(チクソトロピー剤、増粘剤等)、帯電防止剤、ブロッキング防止剤、分散剤、分散安定剤、酸化防止剤、紫外線吸収剤、消泡剤、界面活性剤、滑剤等の添加剤を含んでいてもよい。 In addition to the above components, the composition for forming the hard coat layer may contain additives such as nanoparticles, particles with a number-average primary particle size of 1.0 μm or more, leveling agents, viscosity adjusters (thixotropic agents, thickeners, etc.), antistatic agents, antiblocking agents, dispersants, dispersion stabilizers, antioxidants, UV absorbers, defoamers, surfactants, and lubricants.
 ハードコート層形成用組成物の塗布方法としては、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法、コンマコート法等の任意の適切な方法を採用し得る。塗布後の塗膜の乾燥温度は、ハードコート層形成用組成物の組成等に応じて、適切な温度に設定すればよく、例えば、50℃以上150℃以下である。ハードコート層形成用組成物中の樹脂成分が熱硬化性樹脂である場合は、加熱によって塗膜を硬化させる。ハードコート層形成用組成物中の樹脂成分が光硬化性樹脂である場合は、紫外線等の活性エネルギー線を照射することによって塗膜を硬化させる。照射光の積算光量は、好ましくは100mJ/cm以上500mJ/cm以下である。 As the coating method of the composition for forming a hard coat layer, any suitable method such as a bar coating method, a roll coating method, a gravure coating method, a rod coating method, a slot orifice coating method, a curtain coating method, a fountain coating method, a comma coating method, etc. may be adopted. The drying temperature of the coating film after coating may be set to an appropriate temperature depending on the composition of the composition for forming a hard coat layer, for example, 50°C or more and 150°C or less. When the resin component in the composition for forming a hard coat layer is a thermosetting resin, the coating film is cured by heating. When the resin component in the composition for forming a hard coat layer is a photocurable resin, the coating film is cured by irradiating it with active energy rays such as ultraviolet rays. The integrated light amount of the irradiation light is preferably 100 mJ/ cm2 or more and 500 mJ/ cm2 or less.
(ハードコート層の表面処理工程)
 ハードコート層の表面処理工程では、ハードコート層の透明フィルム基材側とは反対側の主面を表面改質処理する。表面改質処理としては、例えば、プラズマ処理、コロナ処理、オゾン処理、プライマー処理、グロー処理、及びカップリング剤処理が挙げられる。表面改質処理がプラズマ処理である場合、不活性ガスとしては、例えばアルゴンガスが使用される。また、プラズマ処理における放電電力は、例えば50W以上300W以下である。また、プラズマ処理における圧力条件は、例えば0.1Pa以上2.5Pa以下である。
(Surface treatment process of hard coat layer)
In the surface treatment process of the hard coat layer, the main surface of the hard coat layer opposite to the transparent film substrate side is surface modified. Examples of the surface modification treatment include plasma treatment, corona treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment. When the surface modification treatment is plasma treatment, for example, argon gas is used as the inert gas. The discharge power in the plasma treatment is, for example, 50 W or more and 300 W or less. The pressure condition in the plasma treatment is, for example, 0.1 Pa or more and 2.5 Pa or less.
(プライマー層形成工程)
 プライマー層形成工程は、ハードコート層上にプライマー層を形成(成膜)する工程である。プライマー層の成膜方法は、特に限定されず、ウェットコーティング法及びドライコーティング法のいずれでもよい。膜厚が均一な薄膜を形成できることから、真空蒸着法、CVD法、スパッタ法等のドライコーティング法が好ましい。生産性を高める観点から、プライマー層の成膜方法としては、ロールトゥロール方式のスパッタ成膜装置を用いて成膜する方法(ロールトゥロール方式のスパッタ法)が好ましい。
(Primer layer forming step)
The primer layer forming step is a step of forming (forming) a primer layer on the hard coat layer. The method of forming the primer layer is not particularly limited, and may be either a wet coating method or a dry coating method. Dry coating methods such as vacuum deposition, CVD, and sputtering are preferred because they can form a thin film with a uniform thickness. From the viewpoint of increasing productivity, the method of forming the primer layer is preferably a method of forming a film using a roll-to-roll sputtering film forming device (roll-to-roll sputtering method).
 ロールトゥロール方式のスパッタ法では、長尺のフィルム(例えば、ハードコート層が形成された透明フィルム基材)を長手方向(MD方向)に搬送しながら、例えば、プライマー層及び反射防止層を連続成膜できる。スパッタ法では、アルゴン等の不活性ガス、及び必要に応じて酸素等の反応性ガスを成膜室内に導入しながら成膜が行われる。プライマー層としてITO層を成膜する場合、スパッタ法によるITO層の成膜は、酸化物ターゲットを用いる方法、及び金属(又は半金属)ターゲットを用いる反応性スパッタのいずれでも実施できる。 In the roll-to-roll sputtering method, for example, a primer layer and an anti-reflection layer can be continuously formed while a long film (for example, a transparent film substrate on which a hard coat layer has been formed) is transported in the longitudinal direction (MD direction). In the sputtering method, film formation is performed while introducing an inert gas such as argon, and if necessary, a reactive gas such as oxygen, into the film formation chamber. When forming an ITO layer as a primer layer, the ITO layer can be formed by sputtering using either an oxide target or reactive sputtering using a metal (or semi-metal) target.
 スパッタ法を実施するための電源としては、例えば、DC電源、AC電源、RF電源、及び、MFAC電源(周波数帯が数kHz~数MHzのAC電源)が挙げられる。スパッタ法における放電電力は、例えば1kW以上100kW以下であり、好ましくは1kW以上50kW以下である。スパッタ法を実施する際の成膜ロールの表面温度は、例えば-25℃以上25℃以下であり、好ましくは-20℃以上0℃以下である。スパッタ法を実施する際の成膜室内の圧力は、好ましくは0.01Pa以上10Pa以下であり、より好ましくは0.05Pa以上5Pa以下であり、更に好ましくは0.1Pa以上1Pa以下である。 Power sources for carrying out the sputtering method include, for example, DC power sources, AC power sources, RF power sources, and MFAC power sources (AC power sources with a frequency band of several kHz to several MHz). The discharge power in the sputtering method is, for example, 1 kW to 100 kW, and preferably 1 kW to 50 kW. The surface temperature of the film-forming roll when carrying out the sputtering method is, for example, -25°C to 25°C, and preferably -20°C to 0°C. The pressure in the film-forming chamber when carrying out the sputtering method is preferably 0.01 Pa to 10 Pa, more preferably 0.05 Pa to 5 Pa, and even more preferably 0.1 Pa to 1 Pa.
(反射防止層形成工程)
 反射防止層形成工程は、プライマー層上に反射防止層を成膜する工程である。反射防止層の成膜方法は、特に限定されず、ウェットコーティング法及びドライコーティング法のいずれでもよい。膜厚が均一な薄膜を形成できることから、真空蒸着法、CVD法、スパッタ法等のドライコーティング法が好ましい。生産性を高める観点から、反射防止層の成膜方法としては、ロールトゥロール方式のスパッタ成膜装置を用いて成膜する方法(ロールトゥロール方式のスパッタ法)が好ましい。反射防止層形成工程でスパッタ法を実施する際は、例えば、上述した(プライマー層形成工程)で説明した条件の中で成膜条件を適宜設定することができる。
(Anti-reflection layer forming process)
The anti-reflective layer forming step is a step of forming an anti-reflective layer on the primer layer. The method of forming the anti-reflective layer is not particularly limited, and may be either a wet coating method or a dry coating method. Since a thin film with a uniform thickness can be formed, a dry coating method such as a vacuum deposition method, a CVD method, or a sputtering method is preferable. From the viewpoint of increasing productivity, the method of forming the anti-reflective layer is preferably a method of forming a film using a roll-to-roll sputtering film forming device (roll-to-roll sputtering method). When performing the sputtering method in the anti-reflective layer forming step, the film forming conditions can be appropriately set, for example, among the conditions described above (primer layer forming step).
(防汚層形成工程)
 防汚層形成工程は、反射防止層のプライマー層側とは反対側に防汚層を形成する工程である。防汚層形成工程では、例えば、フッ素含有化合物を材料として用い、ドライコーティング法で防汚層を形成する。ドライコーティング法としては、例えば、真空蒸着法、スパッタ法、及びCVD法が挙げられ、真空蒸着法が好ましい。
(Anti-stain layer forming process)
The antifouling layer forming step is a step of forming an antifouling layer on the side opposite to the primer layer side of the antireflection layer. In the antifouling layer forming step, for example, a fluorine-containing compound is used as a material to form the antifouling layer by a dry coating method. Examples of the dry coating method include a vacuum deposition method, a sputtering method, and a CVD method, and the vacuum deposition method is preferred.
<第2実施形態:画像表示装置>
 次に、本発明の第2実施形態に係る画像表示装置について説明する。第2実施形態に係る画像表示装置は、画像表示パネルと、画像表示パネルの視認側に配置された、第1実施形態に係る反射防止フィルムとを備える。以下、第1実施形態と重複する内容については説明を省略する。
Second embodiment: Image display device
Next, an image display device according to a second embodiment of the present invention will be described. The image display device according to the second embodiment includes an image display panel and the anti-reflection film according to the first embodiment, which is disposed on the viewing side of the image display panel. Hereinafter, the description of the contents that overlap with the first embodiment will be omitted.
 図3は、第2実施形態に係る画像表示装置の一例を示す断面図である。図3に示す画像表示装置100は、画像表示パネル101と、画像表示パネル101の視認側(図3中の上方側)に配置された、第1実施形態に係る反射防止フィルムの一例である反射防止フィルム10とを備える。画像表示装置100では、反射防止フィルム10の透明フィルム基材11と画像表示パネル101とが粘着剤層21を介して貼り合わせられている。 FIG. 3 is a cross-sectional view showing an example of an image display device according to the second embodiment. The image display device 100 shown in FIG. 3 includes an image display panel 101 and an anti-reflection film 10, which is an example of the anti-reflection film according to the first embodiment, arranged on the viewing side (upper side in FIG. 3) of the image display panel 101. In the image display device 100, a transparent film substrate 11 of the anti-reflection film 10 and the image display panel 101 are bonded together via an adhesive layer 21.
 画像表示パネル101としては、液晶セル、有機ELセル等の画像表示セルを含む画像表示パネルが例示できる。 Examples of the image display panel 101 include image display panels that include image display cells such as liquid crystal cells and organic EL cells.
 第2実施形態に係る画像表示装置は、画像表示パネルの視認側に反射防止フィルムが配置されているため、外光の反射が低減され、視認性に優れる。また、第2実施形態に係る画像表示装置は、第1実施形態に係る反射防止フィルムを備えるため、耐酸性に優れる。 The image display device according to the second embodiment has an anti-reflection film disposed on the viewing side of the image display panel, which reduces reflection of external light and provides excellent visibility. In addition, the image display device according to the second embodiment has excellent acid resistance because it includes the anti-reflection film according to the first embodiment.
 以下、本発明の実施例について説明するが、本発明は以下の実施例に限定されるものではない。 The following describes examples of the present invention, but the present invention is not limited to the following examples.
<実施例1の反射防止フィルムの作製>
[ハードコート層形成工程]
 個数平均一次粒子径50nmのシリカ粒子を含有するウレタンアクリレート系の紫外線硬化型樹脂組成物(荒川化学工業社製「ビームセット577」)と、この紫外線硬化型樹脂組成物の固形分100重量部に対して、シリコーン樹脂粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製「トスパール130」、平均粒子径:3.0μm、屈折率:1.43、真比重:1.32)0.1重量部と、架橋ポリメタクリル酸メチル(PMMA)粒子(積水化成品工業社製「テクポリマー SSX-103」、平均粒子径:3.0μm、屈折率:1.50、真比重:1.20)4.0重量部と、チクソトロピー剤(クニミネ工業社製「スメクトンSAN」、有機粘土である合成スメクタイト)2.0重量部と、光重合開始剤(IGM Resins社製「Omnirad127」)3.0重量部と、シリコーン系レベリング剤(共栄社化学社製「ポリフロー LE303」)0.15重量部とを混合し、酢酸ブチルで希釈して、固形分濃度40重量%のハードコート層形成用組成物HC1を得た。次いで、透明フィルム基材としてのTACフィルム(富士フイルム社製「フジタック TG60UL」、厚み:60μm)の一方の主面に、上記手順で得られたハードコート層形成用組成物HC1を塗布し、塗膜を形成した。次に、この塗膜を、温度60℃で60秒間加熱することにより乾燥させた後、紫外線照射により硬化させた。紫外線照射する際は、光源として高圧水銀ランプを使用し、波長365nmの紫外線を用い、積算光量を300mJ/cmとした。これにより、TACフィルム上に厚み6μmのハードコート層を形成した。
<Preparation of Antireflection Film of Example 1>
[Hard coat layer forming process]
A urethane acrylate-based ultraviolet-curing resin composition containing silica particles having a number-average primary particle size of 50 nm ("Beamset 577" manufactured by Arakawa Chemical Industries Co., Ltd.), 0.1 parts by weight of silicone resin particles ("Tospearl 130" manufactured by Momentive Performance Materials Japan, Inc., average particle size: 3.0 μm, refractive index: 1.43, true specific gravity: 1.32), 4.0 parts by weight of crosslinked polymethyl methacrylate (PMMA) particles ("Techpolymer SSX-103" manufactured by Sekisui Chemical Co., Ltd., average particle size: 3.0 μm, refractive index: 1.50, true specific gravity: 1.20), 2.0 parts by weight of a thixotropic agent ("Sumecton SAN" manufactured by Kunimine Kogyo Co., Ltd., a synthetic smectite which is an organic clay), and a photopolymerization initiator (IGM Resins Co., Ltd. "Omnirad 127") 3.0 parts by weight and a silicone-based leveling agent (Kyoeisha Chemical Co., Ltd. "Polyflow LE303") 0.15 parts by weight were mixed and diluted with butyl acetate to obtain a hard coat layer forming composition HC1 having a solid content concentration of 40% by weight. Next, the hard coat layer forming composition HC1 obtained by the above procedure was applied to one main surface of a TAC film (FUJITAC TG60UL manufactured by FUJIFILM Corporation, thickness: 60 μm) as a transparent film substrate to form a coating film. Next, this coating film was dried by heating at a temperature of 60 ° C. for 60 seconds, and then cured by ultraviolet irradiation. When irradiating ultraviolet rays, a high-pressure mercury lamp was used as a light source, ultraviolet rays with a wavelength of 365 nm were used, and the accumulated light amount was set to 300 mJ / cm 2. As a result, a hard coat layer with a thickness of 6 μm was formed on the TAC film.
[ハードコート層の表面処理工程]
 次いで、ロールトゥロール方式のプラズマ処理装置により、1.0Paの真空雰囲気下、ハードコート層が形成されたTACフィルムを搬送しながら、ハードコート層の表面をプラズマ処理した。プラズマ処理する際は、不活性ガスとしてアルゴンガスを用い、放電電力を100Wとした。これにより、TACフィルムと、プラズマ処理されたハードコート層とを備える積層体(以下、「光学フィルムF1」と記載することがある)を得た。
[Surface treatment process of hard coat layer]
Next, the surface of the hard coat layer was plasma-treated by a roll-to-roll type plasma treatment device while conveying the TAC film on which the hard coat layer was formed under a vacuum atmosphere of 1.0 Pa. During the plasma treatment, argon gas was used as an inert gas, and the discharge power was set to 100 W. As a result, a laminate (hereinafter, sometimes referred to as "optical film F1") including the TAC film and the plasma-treated hard coat layer was obtained.
[プライマー層形成工程]
 次いで、光学フィルムF1をロールトゥロール方式のスパッタ成膜装置に導入し、成膜室内を1×10-4Paまで減圧した。次いで、光学フィルムF1を搬送しながら、アルゴンガスと酸素ガスとを100:13の体積比で導入し、成膜ロールの表面温度を-8℃とし、スパッタ法により、ハードコート層上に厚み1.5nmのITO層(プライマー層)を形成した。プライマー層の形成には、ターゲット材料として、酸化インジウムと酸化スズとを85:15の重量比で含有するITOターゲットを用いた。また、スパッタ法により成膜する際は、電源をMFAC電源とし、放電電力を4.5kWとし、成膜室内の圧力を0.2Paとした。
[Primer layer forming step]
Next, the optical film F1 was introduced into a roll-to-roll sputtering deposition apparatus, and the pressure in the deposition chamber was reduced to 1×10 −4 Pa. Next, while conveying the optical film F1, argon gas and oxygen gas were introduced in a volume ratio of 100:13, the surface temperature of the deposition roll was set to −8° C., and an ITO layer (primer layer) having a thickness of 1.5 nm was formed on the hard coat layer by a sputtering method. For the formation of the primer layer, an ITO target containing indium oxide and tin oxide in a weight ratio of 85:15 was used as the target material. In addition, when forming the film by the sputtering method, the power source was an MFAC power source, the discharge power was 4.5 kW, and the pressure in the deposition chamber was 0.2 Pa.
[反射防止層形成工程]
 プライマー層の形成に続いて、ロールトゥロール方式のスパッタ成膜装置を用いてプライマー層形成後の光学フィルムF1を搬送しながら、スパッタ法により、プライマー層上に、第1層:厚み12nmのNb層(屈折率:2.33)、第2層:厚み27nmのSiO層(屈折率:1.46)、第3層:厚み108nmのNb層、及び第4層:厚み86nmのSiO層をこの順に成膜した。これにより、プライマー層上に、4層構成(第1層、第2層、第3層及び第4層からなる4層構成)の反射防止層を形成した。第1層~第4層の各層の成膜では、いずれも、成膜ロールの表面温度を-8℃とし、電源をMFAC電源とし、成膜室内の圧力を0.7Paとした。また、第1層の成膜では、Nbターゲットを用い、アルゴンガスと酸素ガスとを100:5の体積比で導入し、放電電力を13.0kWとした。第2層の成膜では、Siターゲットを用い、アルゴンガスと酸素ガスとを100:33の体積比で導入し、放電電力を25.5kWとした。第3層の成膜では、Nbターゲットを用い、アルゴンガスと酸素ガスとを100:13の体積比で導入し、放電電力を27.5kWとした。第4層の成膜では、Siターゲットを用い、アルゴンガスと酸素ガスとを100:30の体積比で導入し、放電電力を20.5kWとした。
[Anti-reflection layer forming process]
Following the formation of the primer layer, while conveying the optical film F1 after the formation of the primer layer using a roll-to-roll sputtering deposition apparatus, the following layers were deposited on the primer layer in this order by sputtering: 1st layer: 12 nm thick Nb 2 O 5- layer (refractive index: 2.33), 2nd layer: 27 nm thick SiO 2- layer (refractive index: 1.46), 3rd layer: 108 nm thick Nb 2 O 5- layer, and 4th layer: 86 nm thick SiO 2- layer. This resulted in a 4-layer structure (4-layer structure consisting of the 1st layer, the 2nd layer, the 3rd layer, and the 4th layer) antireflection layer formed on the primer layer. In the deposition of each of the 1st to 4th layers, the surface temperature of the deposition roll was set to -8°C, the power source was an MFAC power source, and the pressure in the deposition chamber was set to 0.7 Pa. In addition, in the deposition of the first layer, a Nb target was used, argon gas and oxygen gas were introduced in a volume ratio of 100:5, and the discharge power was set to 13.0 kW. In the deposition of the second layer, a Si target was used, argon gas and oxygen gas were introduced in a volume ratio of 100:33, and the discharge power was set to 25.5 kW. In the deposition of the third layer, a Nb target was used, argon gas and oxygen gas were introduced in a volume ratio of 100:13, and the discharge power was set to 27.5 kW. In the deposition of the fourth layer, a Si target was used, argon gas and oxygen gas were introduced in a volume ratio of 100:30, and the discharge power was set to 20.5 kW.
[防汚層形成工程]
 コーティング剤(信越化学工業社製「SHIN-ETSU SUBELYN KY1903-1」、有効成分:パーフルオロポリエーテル骨格を含有するアルコキシシラン化合物)を乾燥して固化したものを蒸着源として用い、蒸着源の加熱温度を260℃にして、真空蒸着法により反射防止層上に厚み8nmの防汚層を形成した。これにより、TACフィルムと、ハードコート層と、プライマー層と、反射防止層と、防汚層とをこの順に備える反射防止フィルム(実施例1の反射防止フィルム)を得た。
[Anti-stain layer forming process]
A coating agent ("SHIN-ETSU SUBELYN KY1903-1" manufactured by Shin-Etsu Chemical Co., Ltd., active ingredient: an alkoxysilane compound containing a perfluoropolyether skeleton) was dried and solidified and used as a deposition source, and an antifouling layer having a thickness of 8 nm was formed on the antireflection layer by a vacuum deposition method at a heating temperature of the deposition source of 260° C. In this way, an antireflection film (antireflection film of Example 1) including a TAC film, a hard coat layer, a primer layer, an antireflection layer, and an antifouling layer in this order was obtained.
<実施例2の反射防止フィルムの作製>
 プライマー層形成工程において、ターゲット材料として、酸化インジウムと酸化スズとを80:20の重量比で含有するITOターゲットを用いたこと以外は、実施例1と同じ作製方法により、実施例2の反射防止フィルムを得た。
<Preparation of anti-reflection film of Example 2>
An anti-reflection film of Example 2 was obtained by the same preparation method as in Example 1, except that in the primer layer formation step, an ITO target containing indium oxide and tin oxide in a weight ratio of 80:20 was used as the target material.
<実施例3の反射防止フィルムの作製>
 プライマー層形成工程において、ターゲット材料として、酸化インジウムと酸化スズとを75:25の重量比で含有するITOターゲットを用いたこと以外は、実施例1と同じ作製方法により、実施例3の反射防止フィルムを得た。
<Preparation of anti-reflection film of Example 3>
An anti-reflection film of Example 3 was obtained by the same preparation method as in Example 1, except that in the primer layer formation step, an ITO target containing indium oxide and tin oxide in a weight ratio of 75:25 was used as the target material.
<実施例4の反射防止フィルムの作製>
 プライマー層形成工程において、ターゲット材料として、酸化インジウムと酸化スズとを70:30の重量比で含有するITOターゲットを用いたこと以外は、実施例1と同じ作製方法により、実施例4の反射防止フィルムを得た。
<Preparation of anti-reflection film of Example 4>
An anti-reflection film of Example 4 was obtained by the same preparation method as in Example 1, except that in the primer layer formation step, an ITO target containing indium oxide and tin oxide in a weight ratio of 70:30 was used as the target material.
<実施例5の反射防止フィルムの作製>
 プライマー層形成工程において、ターゲット材料として、酸化インジウムと酸化スズとを60:40の重量比で含有するITOターゲットを用いたこと以外は、実施例1と同じ作製方法により、実施例5の反射防止フィルムを得た。
<Preparation of anti-reflection film of Example 5>
An anti-reflection film of Example 5 was obtained by the same preparation method as in Example 1, except that in the primer layer formation step, an ITO target containing indium oxide and tin oxide in a weight ratio of 60:40 was used as the target material.
<比較例1の反射防止フィルムの作製>
 プライマー層形成工程において、ターゲット材料として、酸化インジウムと酸化スズとを90:10の重量比で含有するITOターゲットを用いたこと以外は、実施例1と同じ作製方法により、比較例1の反射防止フィルムを得た。
<Preparation of anti-reflection film of Comparative Example 1>
An anti-reflection film of Comparative Example 1 was obtained by the same preparation method as in Example 1, except that in the primer layer formation step, an ITO target containing indium oxide and tin oxide in a weight ratio of 90:10 was used as the target material.
<参考例1の反射防止フィルムの作製>
 プライマー層形成工程を以下の手順に変更したこと以外は、実施例1と同じ作製方法により、参考例1の反射防止フィルムを得た。
<Preparation of Antireflection Film of Reference Example 1>
An antireflection film of Reference Example 1 was obtained by the same production method as in Example 1, except that the primer layer formation step was changed to the following procedure.
[参考例1のプライマー層形成工程]
 光学フィルムF1をロールトゥロール方式のスパッタ成膜装置に導入し、成膜室内を1×10-4Paまで減圧した。次いで、光学フィルムF1を搬送しながら、アルゴンガスと酸素ガスとを100:9の体積比で導入し、成膜ロールの表面温度を-8℃とし、スパッタ法により、ハードコート層上に厚み3.0nmのSiOx層(x<2)を形成した。プライマー層(SiOx層)の形成には、ターゲット材料として、Siターゲットを用いた。また、スパッタ法により成膜する際は、電源をMFAC電源とし、放電電力を4.5kWとし、成膜室内の圧力を0.7Paとした。
[Primer layer forming step of Reference Example 1]
The optical film F1 was introduced into a roll-to-roll sputtering deposition apparatus, and the pressure in the deposition chamber was reduced to 1×10 −4 Pa. Next, while conveying the optical film F1, argon gas and oxygen gas were introduced in a volume ratio of 100:9, the surface temperature of the deposition roll was set to −8° C., and a SiOx layer (x<2) having a thickness of 3.0 nm was formed on the hard coat layer by a sputtering method. A Si target was used as a target material for forming the primer layer (SiOx layer). In addition, when forming the film by the sputtering method, the power source was an MFAC power source, the discharge power was 4.5 kW, and the pressure in the deposition chamber was 0.7 Pa.
<参考例2の反射防止フィルムの作製>
 プライマー層形成工程を以下の手順に変更したこと以外は、実施例1と同じ作製方法により、参考例2の反射防止フィルムを得た。
<Preparation of anti-reflection film of Reference Example 2>
An antireflection film of Reference Example 2 was obtained by the same production method as in Example 1, except that the primer layer formation step was changed to the following procedure.
[参考例2のプライマー層形成工程]
 光学フィルムF1をロールトゥロール方式のスパッタ成膜装置に導入し、成膜室内を1×10-4Paまで減圧した。次いで、光学フィルムF1を搬送しながら、アルゴンガスと酸素ガスとを100:10の体積比で導入し、成膜ロールの表面温度を-8℃とし、スパッタ法により、ハードコート層上に厚み1.5nmのTiOx層(x<2)を形成した。プライマー層(TiOx層)の形成には、ターゲット材料として、Tiターゲットを用いた。また、スパッタ法により成膜する際は、電源をMFAC電源とし、放電電力を4.5kWとし、成膜室内の圧力を0.7Paとした。
[Primer layer forming step of Reference Example 2]
The optical film F1 was introduced into a roll-to-roll sputtering deposition apparatus, and the pressure in the deposition chamber was reduced to 1×10 −4 Pa. Next, while conveying the optical film F1, argon gas and oxygen gas were introduced in a volume ratio of 100:10, the surface temperature of the deposition roll was set to −8° C., and a TiOx layer (x<2) having a thickness of 1.5 nm was formed on the hard coat layer by sputtering. A Ti target was used as a target material for forming the primer layer (TiOx layer). In addition, when forming the film by sputtering, the power source was set to an MFAC power source, the discharge power was set to 4.5 kW, and the pressure in the deposition chamber was set to 0.7 Pa.
<測定方法及び評価方法>
[酸化スズの量の測定方法]
 測定対象の反射防止フィルム(詳しくは、実施例1~5及び比較例1の反射防止フィルムのいずれか)のプライマー層中の酸化スズの量は、以下に示す手順で測定した。まず、測定対象の反射防止フィルムのプライマー層の成膜条件と同じ条件で、光学フィルムF1のハードコート層上に厚み1.5nmのプライマー層を成膜した。次いで、得られたプライマー層の元素組成を、走査型蛍光X線分析装置(リガク社製「ZSX PrimusII」)を用いて測定した。そして、酸化インジウムと酸化スズの合計に対する酸化スズの量(単位:重量%)を算出した。
<Measurement and evaluation methods>
[Method for measuring the amount of tin oxide]
The amount of tin oxide in the primer layer of the antireflection film to be measured (specifically, any of the antireflection films of Examples 1 to 5 and Comparative Example 1) was measured by the following procedure. First, a primer layer having a thickness of 1.5 nm was formed on the hard coat layer of the optical film F1 under the same conditions as those for forming the primer layer of the antireflection film to be measured. Next, the elemental composition of the obtained primer layer was measured using a scanning X-ray fluorescence analyzer ("ZSX Primus II" manufactured by Rigaku Corporation). Then, the amount of tin oxide relative to the total amount of indium oxide and tin oxide (unit: weight %) was calculated.
[耐酸性の評価方法]
 評価対象の反射防止フィルム(詳しくは、実施例1~5、比較例1並びに参考例1及び2の反射防止フィルムのいずれか)の防汚層表面に、硫酸水溶液(キシダ化学社製「37%(1+3)-硫酸」、硫酸の濃度:37重量%、水の濃度:63重量%)をスポイトで1滴滴下し、温度23℃かつ相対湿度50%の雰囲気下に22時間静置した。次いで、防汚層表面を水洗し、反射防止フィルム中の層間剥離の有無を目視で確認した。層間剥離が無かった場合、A(耐酸性に優れている)と評価した。一方、層間剥離が有った場合、B(耐酸性に優れていない)と評価した。
[Method for evaluating acid resistance]
On the surface of the antifouling layer of the antireflection film to be evaluated (specifically, any of the antireflection films of Examples 1 to 5, Comparative Example 1, and Reference Examples 1 and 2), one drop of an aqueous sulfuric acid solution ("37% (1+3)-sulfuric acid" manufactured by Kishida Chemical Co., Ltd., sulfuric acid concentration: 37% by weight, water concentration: 63% by weight) was dropped with a dropper, and the film was allowed to stand for 22 hours in an atmosphere of a temperature of 23°C and a relative humidity of 50%. Next, the surface of the antifouling layer was washed with water, and the presence or absence of delamination in the antireflection film was visually confirmed. When no delamination was observed, the film was rated as A (excellent acid resistance). On the other hand, when delamination was observed, the film was rated as B (not excellent acid resistance).
[耐候性の評価方法]
 まず、評価対象の反射防止フィルム(詳しくは、実施例1~5、比較例1並びに参考例1及び2の反射防止フィルムのいずれか)のTACフィルム側の主面に、粘着剤を介して厚み5mmのガラス板を貼り合わせて、評価用試料を得た。次いで、評価用試料を、耐候性評価装置(岩崎電気社製「アイスーパー SUV-W161」)に投入し、下記の条件で防汚層側から紫外線を照射した。
[Weather resistance evaluation method]
First, a 5 mm thick glass plate was attached to the main surface of the TAC film side of the antireflection film to be evaluated (specifically, any of the antireflection films of Examples 1 to 5, Comparative Example 1, and Reference Examples 1 and 2) via an adhesive to obtain an evaluation sample. Next, the evaluation sample was placed in a weather resistance evaluation device (Iwasaki Electric Co., Ltd.'s "Eyesuper SUV-W161") and irradiated with ultraviolet light from the antifouling layer side under the following conditions.
(紫外線照射条件)
 ブラックパネル温度(BPT):85℃
 相対湿度:45%
 紫外線強度:150mW/cm
 照射時間:32.5時間
(Ultraviolet light irradiation conditions)
Black Panel Temperature (BPT): 85°C
Relative humidity: 45%
UV intensity: 150mW/ cm2
Irradiation time: 32.5 hours
 次いで、紫外線照射後の反射防止フィルムの防汚層側に100個のマス目を形成し、JIS K5400(クロスカット試験法)に従って、碁盤目剥離試験を実施した。そして、剥がれたマス目の個数をカウントし、以下の基準に従い、耐候性を判定した。なお、「剥がれ」とは、1マスの面積の1/4以上の剥離があった場合を意味する。
 A:剥がれたマス目の個数が、9個以下であった。
 B:剥がれたマス目の個数が、10個以上であった。
Next, 100 squares were formed on the antifouling layer side of the antireflection film after UV irradiation, and a cross-cut peel test was performed according to JIS K5400 (cross-cut test method). The number of peeled squares was counted, and the weather resistance was evaluated according to the following criteria. "Peeling" means that peeling occurred over 1/4 or more of the area of one square.
A: The number of peeled squares was 9 or less.
B: The number of peeled squares was 10 or more.
 判定結果がAの場合、「耐候性に優れている」と評価した。一方、判定結果がBの場合、「耐候性に優れていない」と評価した。 If the result was A, it was evaluated as having "excellent weather resistance." On the other hand, if the result was B, it was evaluated as having "not excellent weather resistance."
<結果>
 実施例1~5、比較例1並びに参考例1及び2について、プライマー層を構成する酸化物の種類、酸化スズの量、耐酸性の評価結果、及び耐候性の評価結果を表1に示す。なお、表1において、「-」は、測定しなかったことを意味する。
<Results>
Table 1 shows the type of oxide constituting the primer layer, the amount of tin oxide, the evaluation results of acid resistance, and the evaluation results of weather resistance for Examples 1 to 5, Comparative Example 1, and Reference Examples 1 and 2. In Table 1, "-" means that no measurement was performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~5では、プライマー層中の酸化スズの量が15重量%以上であった。実施例1~5では、耐酸性の評価結果がAであった。よって、実施例1~5の反射防止フィルムは、耐酸性に優れていた。 As shown in Table 1, in Examples 1 to 5, the amount of tin oxide in the primer layer was 15% by weight or more. In Examples 1 to 5, the evaluation result for acid resistance was A. Therefore, the anti-reflection films of Examples 1 to 5 had excellent acid resistance.
 表1に示すように、比較例1では、プライマー層中の酸化スズの量が15重量%未満であった。比較例1では、耐酸性の評価結果がBであった。よって、比較例1の反射防止フィルムは、耐酸性に優れていなかった。 As shown in Table 1, in Comparative Example 1, the amount of tin oxide in the primer layer was less than 15% by weight. In Comparative Example 1, the evaluation result for acid resistance was B. Therefore, the anti-reflection film of Comparative Example 1 did not have excellent acid resistance.
 なお、耐候性については、プライマー層としてTiOx層を設けた参考例2以外は、全てA(耐候性に優れている)であった。 In terms of weather resistance, all were rated A (excellent weather resistance) except for Reference Example 2, which had a TiOx layer as the primer layer.
 以上の結果から、本発明によれば、耐酸性に優れる反射防止フィルムを提供できることが示された。 These results demonstrate that the present invention can provide an anti-reflection film with excellent acid resistance.
10、20 反射防止フィルム
11 透明フィルム基材
12 ハードコート層
13 プライマー層
14 反射防止層
19 防汚層
21 粘着剤層
100 画像表示装置
101 画像表示パネル

 
Reference Signs List 10, 20 Anti-reflection film 11 Transparent film substrate 12 Hard coat layer 13 Primer layer 14 Anti-reflection layer 19 Antifouling layer 21 Pressure-sensitive adhesive layer 100 Image display device 101 Image display panel

Claims (7)

  1.  透明フィルム基材、ハードコート層、プライマー層及び反射防止層をこの順に有する反射防止フィルムであって、
     前記反射防止層は、屈折率の異なる複数の薄膜の積層体であり、
     前記プライマー層は、酸化インジウムスズを主成分とする薄膜であり、かつ酸化インジウムと酸化スズの合計に対する酸化スズの量が15重量%以上である、反射防止フィルム。
    An antireflection film having a transparent film substrate, a hard coat layer, a primer layer, and an antireflection layer in this order,
    the antireflection layer is a laminate of a plurality of thin films having different refractive indices,
    The primer layer is a thin film containing indium tin oxide as a main component, and the amount of tin oxide relative to the total amount of indium oxide and tin oxide is 15% by weight or more.
  2.  前記プライマー層は、酸化インジウムと酸化スズの合計に対する酸化スズの量が60重量%以下である、請求項1に記載の反射防止フィルム。 The anti-reflection film according to claim 1, wherein the primer layer contains tin oxide in an amount of 60% by weight or less relative to the total amount of indium oxide and tin oxide.
  3.  前記プライマー層の厚みが、0.5nm以上20nm以下である、請求項1に記載の反射防止フィルム。 The anti-reflection film according to claim 1, wherein the thickness of the primer layer is 0.5 nm or more and 20 nm or less.
  4.  前記反射防止層の前記プライマー層側とは反対側に配置された防汚層を更に備える、請求項1に記載の反射防止フィルム。 The anti-reflection film according to claim 1, further comprising an anti-fouling layer disposed on the side of the anti-reflection layer opposite the primer layer.
  5.  前記ハードコート層は、個数平均一次粒子径1.0μm未満の粒子を含む、請求項1に記載の反射防止フィルム。 The anti-reflection film according to claim 1, wherein the hard coat layer contains particles having a number-average primary particle diameter of less than 1.0 μm.
  6.  前記透明フィルム基材の前記ハードコート層側とは反対側に配置された粘着剤層を更に備える、請求項1に記載の反射防止フィルム。 The anti-reflection film according to claim 1, further comprising an adhesive layer disposed on the opposite side of the transparent film substrate from the hard coat layer.
  7.  画像表示パネルと、前記画像表示パネルの視認側に配置された、請求項1に記載の反射防止フィルムとを備える、画像表示装置。

     
    An image display device comprising: an image display panel; and the anti-reflection film according to claim 1 disposed on a viewing side of the image display panel.

PCT/JP2023/033344 2022-09-28 2023-09-13 Anti-reflection film and image display device WO2024070686A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-155144 2022-09-28
JP2022155144A JP2024048953A (en) 2022-09-28 2022-09-28 Anti-reflection film, method of manufacturing the same, and image display device
JP2023-113507 2023-07-11
JP2023113507A JP7538299B1 (en) 2023-07-11 2023-07-11 Anti-reflection film and image display device

Publications (1)

Publication Number Publication Date
WO2024070686A1 true WO2024070686A1 (en) 2024-04-04

Family

ID=90477615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033344 WO2024070686A1 (en) 2022-09-28 2023-09-13 Anti-reflection film and image display device

Country Status (2)

Country Link
TW (1) TW202422116A (en)
WO (1) WO2024070686A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029126A (en) * 2002-06-21 2004-01-29 Toyo Metallizing Co Ltd Antistatic antireflection film
KR20140052510A (en) * 2012-10-24 2014-05-07 엠텍씨앤케이주식회사 Manufacturing method of touch screen panel
WO2021106788A1 (en) * 2019-11-26 2021-06-03 日東電工株式会社 Antireflection film, method for producing same, and image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029126A (en) * 2002-06-21 2004-01-29 Toyo Metallizing Co Ltd Antistatic antireflection film
KR20140052510A (en) * 2012-10-24 2014-05-07 엠텍씨앤케이주식회사 Manufacturing method of touch screen panel
WO2021106788A1 (en) * 2019-11-26 2021-06-03 日東電工株式会社 Antireflection film, method for producing same, and image display device

Also Published As

Publication number Publication date
TW202422116A (en) 2024-06-01

Similar Documents

Publication Publication Date Title
TWI786475B (en) Anti-reflection film and image display device
JP6328984B2 (en) Double-sided transparent conductive film and touch panel
CN111183374B (en) Hard coating film, optical laminate, and image display device
JP5032785B2 (en) Antireflection laminate and method for producing the same
WO2011158735A1 (en) Laminated film, manufacturing method for same, and electronic device
WO2024070686A1 (en) Anti-reflection film and image display device
JP7538299B1 (en) Anti-reflection film and image display device
JP7455777B2 (en) Optical laminates and image display devices
TWI796117B (en) Optical laminate, article and image display device
JP2024048862A (en) Anti-reflection film, method of manufacturing the same, and image display device
JP2024123914A (en) Anti-reflection film and image display device
JP7213323B2 (en) optical laminate, article
JP2024098719A (en) Anti-reflection film and image display device
JP2024098718A (en) Anti-reflection film and image display device
WO2022014567A1 (en) Optical film provided with antifouling layer
WO2022249674A1 (en) Layered body and method for manufacturing same, and image display device
JP2024072451A (en) Optical Film
JP2008152120A (en) Optical film
TW202430926A (en) Anti-reflection film and manufacturing method thereof, and image display device
TW202423682A (en) Anti-reflection film, method for manufacturing same, and image display device
JP2024048953A (en) Anti-reflection film, method of manufacturing the same, and image display device
JP2023047650A (en) Optical film set and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871919

Country of ref document: EP

Kind code of ref document: A1