WO2022249674A1 - Layered body and method for manufacturing same, and image display device - Google Patents

Layered body and method for manufacturing same, and image display device Download PDF

Info

Publication number
WO2022249674A1
WO2022249674A1 PCT/JP2022/012199 JP2022012199W WO2022249674A1 WO 2022249674 A1 WO2022249674 A1 WO 2022249674A1 JP 2022012199 W JP2022012199 W JP 2022012199W WO 2022249674 A1 WO2022249674 A1 WO 2022249674A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard coat
film
primer layer
antireflection
Prior art date
Application number
PCT/JP2022/012199
Other languages
French (fr)
Japanese (ja)
Inventor
由佳 山▲崎▼
佳史 ▲高▼見
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020237030168A priority Critical patent/KR20240011660A/en
Publication of WO2022249674A1 publication Critical patent/WO2022249674A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to a laminate in which an inorganic thin film is provided on a film substrate, a manufacturing method thereof, and an image display device.
  • An antireflection film is sometimes provided on the surface of image display devices such as liquid crystal displays and organic EL displays for the purpose of improving the visibility of displayed images.
  • An antireflection film has an antireflection layer composed of a plurality of thin films having different refractive indices on a film substrate.
  • An antireflection film using an inorganic thin film such as an inorganic oxide as the thin film forming the antireflection layer can easily adjust the refractive index and film thickness, and therefore can achieve high antireflection properties.
  • a hard coat layer may be provided on the antireflection layer formation surface of the film substrate for the purpose of preventing damage due to contact from the outside.
  • the adhesion between the hard coat layer and the inorganic thin film, which are made of organic substances, is low, and delamination may occur between the hard coat layer and the inorganic thin film. is proposed.
  • a primer layer tends to improve the adhesion of inorganic thin films such as an antireflection layer, but in an environment exposed to ultraviolet rays such as outdoors, even if a primer layer is provided, the inorganic thin film may deteriorate due to light deterioration. Adhesion may decrease.
  • a primer layer made of silicon oxide (SiO x ; 0 ⁇ x ⁇ 2) in an oxygen-deficient state (non-stoichiometric composition) is formed on a hard coat layer, and an antireflection layer is formed thereon. By doing so, the antireflection layer has high adhesion even after high-intensity light irradiation (weather resistance test).
  • a primer layer made of silicon oxide with a non-stoichiometric composition is deposited by reactive sputtering using a silicon target.
  • the present inventors have found that the antireflection film provided with a silicon oxide thin film as a primer layer between the hard coat layer and the antireflection layer has unstable characteristics such as adhesion and transparency of the antireflection layer. It turns out there is.
  • an object of the present invention is to provide a laminate having excellent quality stability such as adhesion of an inorganic thin film.
  • the present invention relates to a laminate and its manufacturing method.
  • the laminate includes a hard coat film having a hard coat layer on one main surface of a film substrate, a primer layer provided in contact with the hard coat layer, and an inorganic thin film provided in contact with the primer layer.
  • the inorganic thin film formed on the primer layer is an antireflection layer comprising a laminate of a plurality of thin films having different refractive indices. Each thin film constituting the antireflection layer may be an inorganic oxide thin film.
  • the primer layer is a metal oxide thin film and contains oxides of specific metal elements.
  • the metal element of the metal oxide preferably has a metal-oxygen bond dissociation energy of 450 to 780 kJ/mol at a temperature of 298K.
  • metal elements include Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Tc, Re, Ru, Os, Al, and Sn. Among them, Ti and Sn are particularly preferred. It is preferable that the total amount of these metal elements is 50 atomic % or more based on the total amount of metal elements in the metal oxide.
  • the primer layer is deposited, for example, by sputtering using an oxide target.
  • the thickness of the primer layer is preferably about 0.5 to 30 nm.
  • the formation of the inorganic thin film on the primer layer may be performed by reactive sputtering.
  • the hard coat layer may contain a binder resin and fine particles.
  • the hard coat layer contains a binder resin and nanoparticles with a particle size of 10 to 100 nm, and the content of the nanoparticles is 20 to 100 parts by weight based on 100 parts by weight of the binder resin.
  • FIG. 3 is a cross-sectional view showing a lamination configuration of antireflection films.
  • the laminate of the present invention comprises a primer layer on the hard coat layer of the hard coat film, and an inorganic thin film thereon.
  • Such laminates include films for image display devices such as antireflection films and transparent electrode films, solar radiation control films, heat shielding/insulating films, light control films, electromagnetic wave shielding films, and the like, which are provided on window glasses and show windows. film, gas barrier film, and the like.
  • FIG. 1 is a cross-sectional view showing a laminated configuration example of an antireflection film as an embodiment of the laminate.
  • the antireflection film 100 includes a hard coat film 1 having a hard coat layer 11 provided on one main surface of a film substrate 10, a primer layer 3 in contact with the hard coat layer 11, and an antireflection layer 5 in contact with the primer layer.
  • the antireflection layer 5 is a laminate of two or more inorganic thin films having different refractive indices.
  • the antireflection layer 5 has a configuration in which high refractive index layers 51 and 53 and low refractive index layers 52 and 54 are alternately laminated.
  • the film substrate 10 of the hard coat film for example, a transparent film is used.
  • the visible light transmittance of the transparent film is preferably 80% or higher, more preferably 90% or higher.
  • the resin material that constitutes the transparent film for example, a resin material that is excellent in transparency, mechanical strength, and thermal stability is preferable.
  • resin materials include cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) Examples include acrylic resins, cyclic polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • cellulose resins such as triacetyl cellulose
  • polyester resins such as polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth)
  • acrylic resins cyclic polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • the film substrate 10 does not necessarily have to be transparent.
  • a laminate of a plurality of films may also be used as the film substrate 10 .
  • a polarizing plate in which a protective film is provided on the surface of a polarizer may be used as the film substrate 10 .
  • the thickness of the film substrate 10 is not particularly limited, it is preferably about 5 to 300 ⁇ m, more preferably 10 to 250 ⁇ m, and even more preferably 20 to 200 ⁇ m from the viewpoint of strength, workability such as handleability, and thinness.
  • the hard coat film 1 is formed by providing the hard coat layer 11 on the main surface of the film substrate 10 .
  • the hard coat layer is a cured resin layer, and is formed by applying a composition containing a curable resin onto the film substrate and curing the resin component.
  • the hard coat layer may contain fine particles in addition to the cured resin.
  • curable resin As the curable resin (binder resin) of the hard coat layer 11, curable resins such as thermosetting resins, photo-curable resins, and electron beam curable resins are preferably used. Types of curable resins include polyester, acrylic, urethane, acrylic urethane, amide, silicone, silicate, epoxy, melamine, oxetane, and acrylic urethane. Among these resins, acrylic resins, acrylic urethane resins, and epoxy resins are preferable because they have high hardness and can be photocured, and acrylic urethane resins are particularly preferable.
  • the photocurable resin composition contains a polyfunctional compound having two or more photopolymerizable (preferably ultraviolet-polymerizable) functional groups.
  • Polyfunctional compounds may be monomeric or oligomeric.
  • As the photopolymerizable polyfunctional compound a compound containing two or more (meth)acryloyl groups in one molecule is preferably used.
  • polyfunctional compounds having two or more (meth)acryloyl groups in one molecule include tricyclodecanedimethanol diacrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, and trimethylol.
  • propane triacrylate pentaerythritol tetra(meth)acrylate, dimethylolpropane tetraacrylate, dipentaerythritol hexa(meth)acrylate, 1,6-hexanediol (meth)acrylate, 1,9-nonanediol diacrylate, 1, 10-decanediol (meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, dipropylene glycol diacrylate, isocyanuric acid tri(meth)acrylate, ethoxylated glycerin triacrylate, ethoxylated pentaerythritol tetra Examples include acrylates and oligomers or prepolymers thereof.
  • (meth)acryl means acryl and/or methacryl.
  • a polyfunctional compound having two or more (meth)acryloyl groups in one molecule may have a hydroxyl group.
  • the use of a polyfunctional compound containing a hydroxyl group tends to improve the adhesion between the film substrate and the hard coat layer.
  • Compounds having a hydroxyl group and two or more (meth)acryloyl groups in one molecule include pentaerythritol tri(meth)acrylate and dipentaerythritol penta(meth)acrylate.
  • Acrylic urethane resins contain urethane (meth)acrylate monomers or oligomers as polyfunctional compounds.
  • the number of (meth)acryloyl groups in the urethane (meth)acrylate is preferably 3 or more, more preferably 4-15, and even more preferably 6-12.
  • the molecular weight of the urethane (meth)acrylate oligomer is, for example, 3000 or less, preferably 500-2500, more preferably 800-2000.
  • Urethane (meth)acrylate is obtained, for example, by reacting hydroxy (meth)acrylate obtained from (meth)acrylic acid or (meth)acrylic acid ester and polyol with diisocyanate.
  • the content of the polyfunctional compound in the composition for forming a hard coat layer is preferably 50 parts by weight or more with respect to a total of 100 parts by weight of the resin components (monomers, oligomers and prepolymers that form a binder resin upon curing). 60 parts by weight or more is more preferable, and 70 parts by weight or more is even more preferable.
  • the content of the polyfunctional monomer is within the above range, the hardness of the hard coat layer tends to be increased.
  • fine particles By including fine particles in the hard coat layer 11, it is possible to adjust the surface shape, impart optical properties such as antiglare properties, and improve the adhesion of the antireflection layer.
  • Fine particles include inorganic oxide fine particles such as silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide, glass fine particles, polymethyl methacrylate, polystyrene, polyurethane, and acrylic-styrene copolymer. , benzoguanamine, melamine, polycarbonate, and other crosslinked or uncrosslinked organic microparticles can be used without particular limitation.
  • the average particle size (average primary particle size) of fine particles is preferably about 10 nm to 10 ⁇ m.
  • Fine particles have a particle diameter of about 0.5 ⁇ m to 10 ⁇ m, submicrons or ⁇ m order (hereinafter sometimes referred to as “microparticles”), and have a particle diameter of about 10 nm to 100 nm. They can be roughly classified into microparticles (hereinafter sometimes referred to as “nanoparticles”) and microparticles having a particle size intermediate between microparticles and nanoparticles.
  • nanoparticles in the hard coat layer 11 tends to form fine irregularities on the surface and improve the adhesion between the hard coat layer 11 and the primer layer 3 and the antireflection layer 5 .
  • inorganic fine particles are preferable, and inorganic oxide fine particles are particularly preferable.
  • silica particles are preferable because they have a low refractive index and can reduce the difference in refractive index from the binder resin.
  • the average primary particle diameter of the nanoparticles is preferably 20 to 80 nm, more preferably 25 to 70 nm, and more preferably 30 to 60 nm. More preferred. From the viewpoint of suppressing coloring of reflected light on the surface of the hard coat layer, the average primary particle size of the nanoparticles is preferably 55 nm or less, more preferably 50 nm or less, and even more preferably 45 nm or less.
  • the average primary particle size is the weight average particle size measured by the Coulter count method.
  • the amount of nanoparticles in the hard coat layer 11 may be about 1 to 150 parts by weight with respect to 100 parts by weight of the binder resin. From the viewpoint of forming a surface shape with excellent adhesion to the inorganic thin film on the surface of the hard coat layer 11, the content of the nanoparticles in the hard coat layer 11 is 20 to 100 parts by weight with respect to 100 parts by weight of the binder resin. parts, more preferably 25 to 90 parts by weight, even more preferably 30 to 80 parts by weight.
  • microparticles in the hard coat layer 11 projections with a diameter of submicron or ⁇ m order are formed on the surface of the hard coat layer 11 and the surface of the thin film formed thereon, thereby imparting antiglare properties.
  • the microparticles preferably have a small refractive index difference from the binder resin of the hard coat layer, and are preferably low refractive index inorganic oxide particles such as silica or polymer fine particles.
  • the average primary particle size of the microparticles is preferably 1 to 8 ⁇ m, more preferably 2 to 5 ⁇ m.
  • the content of the microparticles in the hard coat layer 11 is not particularly limited, but is preferably 1 to 15 parts by weight, more preferably 2 to 10 parts by weight, and even more preferably 3 to 8 parts by weight with respect to 100 parts by weight of the binder resin.
  • the hard coat layer 11 may contain either one of nanoparticles and microparticles, or may contain both. It may also contain fine particles having a particle size intermediate between nanoparticles and microparticles.
  • the composition for forming a hard coat layer contains the binder resin component described above and, if necessary, a solvent capable of dissolving the binder resin component. As described above, the composition for forming a hard coat layer may contain fine particles. When the binder resin component is a photocurable resin, the composition preferably contains a photopolymerization initiator. In addition to the above, the composition for forming a hard coat layer contains a leveling agent, a thixotropic agent, an antistatic agent, an antiblocking agent, a dispersant, a dispersion stabilizer, an antioxidant, an ultraviolet absorber, an antifoaming agent, and a thickener. , surfactants, and lubricants.
  • a hard coat layer is formed by applying the composition for forming a hard coat layer onto a film substrate, and optionally removing the solvent and curing the resin.
  • the hard coat layer-forming composition may be applied by any appropriate method such as bar coating, roll coating, gravure coating, rod coating, slot orifice coating, curtain coating, fountain coating, and comma coating. method can be adopted.
  • the heating temperature after application may be set to an appropriate temperature depending on the composition of the composition for forming a hard coat layer, and is, for example, about 50°C to 150°C.
  • the binder resin component is a photocurable resin
  • photocuring is performed by irradiating active energy rays such as ultraviolet rays.
  • the integrated light quantity of the irradiation light is preferably about 100 to 500 mJ/cm 2 .
  • the thickness of the hard coat layer 11 is not particularly limited, it is preferably about 1 to 10 ⁇ m, more preferably 2 to 9 ⁇ m, and even more preferably 3 to 8 ⁇ m from the viewpoint of achieving high hardness and appropriately controlling the surface shape.
  • the hard coat layer 11 is formed.
  • a surface treatment may be performed. Examples of surface treatment include surface modification treatments such as corona treatment, plasma treatment, flame treatment, ozone treatment, primer treatment, glow treatment, alkali treatment, acid treatment, and treatment with a coupling agent.
  • a vacuum plasma treatment may be performed as the surface treatment.
  • the surface roughness of the hard coat layer can also be adjusted by vacuum plasma treatment. For example, if vacuum plasma treatment is performed at high discharge power, the surface unevenness of the hard coat layer tends to increase and the adhesion to the inorganic thin film tends to improve.
  • Primer layer 3 is formed on the hard coat layer 11, and an antireflection layer 5 is formed thereon.
  • the adhesion between the layers is excellent, and the reflection is reflected even when exposed to light such as ultraviolet rays for a long time. It is possible to obtain an antireflection film in which the antireflection layer is less likely to peel off.
  • the primer layer 3 is a metal oxide thin film. Note that the term “metal” here is a concept that does not include semimetals such as silicon.
  • the metal oxide of the primer layer contains, as a metal element, a metal having a metal-oxygen bond dissociation energy D 0 298 at a temperature of 298K of 450 to 780 kJ/mol.
  • the value described in Luo, Y. R., Comprehensive Handbook of Chemical Bond Energys, CRC Press, 2007 is adopted as the bond dissociation energy D 0 298 (MO) between metal and oxygen at 298 ° C. do.
  • Metals having a D 0 298 (MO) of 450 to 780 kJ/mol include Cr (461 ⁇ 8.7), Al (501.9 ⁇ 10.6), Mo (502), Sn (528), Ru(528 ⁇ 42), Tc(548), Os(575), Re(627 ⁇ 84), V(637), Ti(666.5 ⁇ 5.6), Sc(671.4 ⁇ 1.0) , Y (714.1 ⁇ 10.2), W (720 ⁇ 71), Nb (726.5 ⁇ 10.6), Zr (766.1 ⁇ 10.6), and the like.
  • the numbers in brackets are D 0 298 (MO)/kJmol ⁇ 1 .
  • D 0 298 (M ⁇ O) of the metal element M constituting the primer layer The larger the D 0 298 (M ⁇ O) of the metal element M constituting the primer layer, the more difficult it is for the antireflection layer to peel off even when exposed to light such as ultraviolet rays for a long time, and the antireflection film has better weather resistance. tend to be better.
  • D 0 298 (MO) of the metal element M constituting the primer layer is preferably 480 kJ/mol or more, more preferably 500 kJ/mol or more, and may be 520 kJ/mol or more.
  • the adhesion of the antireflection layer may be insufficient.
  • the D 0 298 (M ⁇ O) of silicon (Si), a semimetal, is about 800 kJ/mol, and a SiOx (x ⁇ 2) primer layer lacking oxygen with respect to stoichiometry reflects Adhesion to the antireflection layer is excellent, but when a stoichiometric SiO 2 primer layer is formed, adhesion to the antireflection layer tends to decrease after the weather resistance test.
  • D 0 298 (MO) of the metal element M constituting the primer layer is preferably 780 kJ/mol or less. It is not clear why the adhesion decreases when D 0 298 (M ⁇ O) is too large, but one possibility is that dangling The presence of bonds improves the adhesion with other layers, whereas in the stoichiometric composition, the metal element M has a high affinity for oxygen and high stability, so It is conceivable that the contribution to the improvement of affinity is small.
  • Examples of the metal element M having a D 0 298 (MO) of 450 to 780 kJ/mol are as described above. Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Tc, Re, Ru, Os, Al, and Sn are preferred from the viewpoint of properties. In particular, in applications requiring transparency such as antireflection films, Ti and Sn are preferred because they are excellent in oxide transparency and chemical stability.
  • the metal oxide constituting the primer layer may be a composite oxide, and as a dopant element, metal elements other than the above, and semi-metals such as B, C, Ge, P, As, Sb, Be, Se, Te, Po, At, etc. It may contain a metal element. From the viewpoint of maintaining high adhesion even after light irradiation, the ratio of the above metal to the total amount (100 atomic %) of the metal elements of the metal oxide constituting the primer layer 3 is preferably 50 atomic % or more, more preferably 60 atomic %. The above is more preferable, 70 atomic % or more is more preferable, and 80 atomic % or more, 90 atomic % or more, 95 atomic % or more, or 99 atomic % or more may be used.
  • the ratio of the metal having D 0 298 (M ⁇ O) of 450 kJ/mol or more with respect to the total amount of metal elements in the metal oxide is preferably within the above range, and D 0 298 (M It is more preferable that the ratio of the metal having —O) of 500 kJ/mol or more is within the above range.
  • the primer layer 3 is the total content of Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Tc, Re, Ru, Os, Al, and Sn with respect to the total amount of metal elements in the metal oxide. is preferably within the above range, and more preferably, the proportion of Ti or Sn is within the above range. That is, the primer layer is particularly preferably composed mainly of titanium oxide (TiO 2 ) or tin oxide (SnO 2 ).
  • the primer layer 3 containing a specific metal oxide is formed on the hard coat layer 11, and the antireflection layer 5 is formed thereon.
  • peeling of the antireflection layer is unlikely to occur, and an antireflection film having excellent weather resistance can be obtained.
  • the primer layer 3 tends to significantly improve the adhesion of the antireflection layer 5 .
  • the thickness of the primer layer 3 is, for example, about 0.5 to 30 nm, preferably 1 to 25 nm, and may be 2 nm or more or 3 nm or more.
  • the thickness of the primer layer 3 may be 20 nm or less, 15 nm or less, 10 nm or less, or 8 nm or less.
  • the antireflection layer 5 is a laminate of a plurality of thin films having different refractive indices.
  • the antireflection layer has an optical thickness (product of refractive index and thickness) of the thin film so that the reversed phases of incident light and reflected light cancel each other out.
  • a multi-layer stack of thin films having different refractive indices can reduce the reflectance in a wide wavelength range of visible light.
  • the thin film constituting the antireflection layer 5 is preferably an inorganic material, preferably a ceramic material made of metal or semimetal oxide, nitride, fluoride, etc. Among them, metal or semimetal oxide (inorganic oxide). is preferred.
  • the antireflection layer 5 is preferably an alternate laminate of high refractive index layers and low refractive index layers.
  • the thin film 54 provided as the outermost layer (layer farthest from the hard coat film 1) of the antireflection layer 5 is preferably a low refractive index layer.
  • the high refractive index layers 51 and 53 have, for example, a refractive index of 1.9 or more, preferably 2.0 or more.
  • high refractive index materials include titanium oxide, niobium oxide, zirconium oxide, tantalum oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and antimony-doped tin oxide (ATO). Among them, titanium oxide or niobium oxide is preferable.
  • the low refractive index layers 52 and 54 have, for example, a refractive index of 1.6 or less, preferably 1.5 or less.
  • low refractive index materials include silicon oxide, titanium nitride, magnesium fluoride, barium fluoride, calcium fluoride, hafnium fluoride, and lanthanum fluoride.
  • silicon oxide is preferred.
  • a medium refractive index layer having a refractive index of about 1.6 to 1.9 may be provided in addition to the low refractive index layer and the high refractive index layer.
  • the film thicknesses of the high refractive index layer and the low refractive index layer are each about 5 to 200 nm, preferably about 15 to 150 ⁇ m.
  • the film thickness of each layer may be designed so that the reflectance of visible light is reduced according to the refractive index, lamination structure, and the like.
  • a high refractive index layer 51 having an optical thickness of about 25 nm to 55 nm and a low refractive index layer having an optical thickness of about 35 nm to 55 nm 52, a high refractive index layer 53 with an optical thickness of about 80 nm to 240 nm, and a low refractive index layer 54 with an optical thickness of about 120 nm to 150 nm.
  • the antireflection layer is not limited to a 4-layer structure, and may have a 2-layer structure, a 3-layer structure, a 5-layer structure, or a lamination structure of 6 or more layers.
  • a method for forming the thin films constituting the primer layer 3 and the antireflection layer 5 is not particularly limited, and may be either a wet coating method or a dry coating method.
  • a dry coating method such as vacuum deposition, CVD, sputtering, or electron beam deposition is preferred because it can form a thin film with a uniform thickness.
  • the sputtering method is preferable because it is excellent in the uniformity of the film thickness and can easily form a dense film.
  • a thin film can be formed continuously while transporting the film substrate in one direction (longitudinal direction) by a roll-to-roll method. Therefore, the productivity of the antireflection film including the primer layer 3 and the antireflection layer 5 composed of a plurality of thin films on the hard coat film 1 can be improved.
  • the sputtering method film formation is performed while introducing an inert gas such as argon and, if necessary, a reactive gas such as oxygen into the chamber.
  • an inert gas such as argon
  • a reactive gas such as oxygen
  • the deposition of the oxide layer by the sputtering method can be carried out by either a method using an oxide target or reactive sputtering using a (semi)metal target.
  • the thin film forming the antireflection layer 5 is preferably deposited by reactive sputtering using a metal or semimetal target.
  • DC or MF-AC is preferable as a sputtering power source used for reactive sputtering.
  • film formation is performed while introducing an inert gas such as argon and a reactive gas such as oxygen into the chamber.
  • an inert gas such as argon
  • a reactive gas such as oxygen
  • the amount of oxygen in the obtained film is smaller than the stoichiometric composition, resulting in an oxygen-deficient state, and the antireflection layer tends to have a metallic luster and decrease in transparency.
  • the film formation rate tends to be extremely low.
  • An oxide film can be deposited at a high rate by adjusting the amount of oxygen so that sputtering deposition is in the transition region.
  • a method for controlling the amount of oxygen introduced so that the deposition mode is in the transition region there is a plasma emission monitoring method (PEM method) in which the plasma emission intensity of the discharge is detected and the amount of gas introduced into the deposition chamber is controlled. mentioned.
  • PEM plasma emission monitoring method
  • control is performed by detecting the plasma emission intensity and feeding it back to the amount of oxygen introduced. For example, by setting the emission intensity control value (set point) within a predetermined range and performing PEM control to adjust the oxygen introduction amount, film formation in the transition region can be maintained.
  • An impedance method may be used to control the amount of introduced oxygen so that the plasma impedance is constant, that is, the discharge voltage is constant.
  • an oxide target for forming the primer layer 3 It is preferable to use an oxide target for forming the primer layer 3 .
  • Reactive sputtering using a metal target has the advantage of a high film formation rate, but on the other hand, the film quality may change due to a slight change in the introduction amount of a reactive gas such as oxygen.
  • an oxide target if an oxide target is used, the film quality of the primer layer is stabilized because the film quality does not change much even when the film formation conditions such as the amount of oxygen introduced are changed.
  • a conductive oxide target such as titanium oxide or tin oxide is used, it is possible to form a film at a high rate by DC sputtering.
  • An oxide target with a small amount of dopant added may be used to enhance conductivity.
  • the substrate temperature when the primer layer is formed by sputtering is about -30 to 150°C, and is not particularly limited as long as the hard coat film as the substrate material has durability.
  • the pressure and power density for forming the primer layer by sputtering can be appropriately set according to the type of target and the film thickness of the primer layer.
  • an oxidizing gas such as oxygen in addition to an inert gas such as argon.
  • oxygen oxygen released from the target during sputtering is supplemented, so that an oxide thin film having a stoichiometric composition tends to be easily formed, and transparency and chemical stability tend to be improved. Further, the adhesion of the antireflection layer tends to improve as the amount of oxygen introduced during sputtering film formation increases.
  • the amount of oxygen introduced during sputtering film formation is, for example, about 0.1 to 100 parts by volume, preferably 0.3 parts by volume or more, more preferably 0.5 parts by volume or more, with respect to 100 parts by volume of the inert gas. .
  • the amount of oxygen introduced during sputtering film formation is preferably 1 part by volume or more, more preferably 5 parts by volume or more, and 10 parts by volume or more with respect to 100 parts by volume of the inert gas. is more preferable, and may be 15 parts by volume or more or 20 parts by volume or more.
  • the amount of oxygen introduced during sputtering deposition is 80 parts by volume or less, 70 parts by volume or less, 60 parts by volume or less, 50 parts by volume or less, 40 parts by volume or less, or 30 parts by volume or less with respect to 100 parts by volume of the inert gas. There may be.
  • the oxide may have a non-stoichiometric composition and the transparency of the primer layer may decrease. Oxygen vacancies are slight even if they are not introduced at all.
  • the amount of oxygen introduced is excessively large, the conductivity tends to decrease.
  • the primer layer does not require conductivity, even if the amount of oxygen introduced is large, no particular problem occurs. . Rather, as the amount of oxygen introduced increases, the adhesion of the antireflection layer tends to improve. It is preferred to deposit a layer.
  • An antireflection film in which a silicon oxide layer is provided as a primer layer between a hard coat layer and an antireflection layer undergoes large fluctuations in film quality of the primer layer, and is likely to cause deterioration in adhesion and transparency.
  • One of the factors that cause the film quality of the silicon oxide primer layer to fluctuate is that it is not easy to precisely control the composition (value of x) of SiO x , which is an oxide of Si, which is a metalloid.
  • SiO x is deposited by reactive sputtering using a Si target, but the composition changes due to slight differences in deposition conditions. If the amount of oxygen is small, the transparency tends to decrease, and if the amount of oxygen is large, SiO2 (with a stoichiometric composition) having no oxygen vacancies is generated, and the adhesion of the antireflection layer is reduced. Tend. When an oxide target is used, the amount of oxygen can be appropriately controlled while monitoring the reaction by the above-mentioned PEM control or the like in the film formation of a complete oxide. It is not easy to control the amount of oxygen that is absorbed to be constant, and the characteristics tend to vary.
  • the antireflection film may comprise additional functional layers on the antireflection layer 5 .
  • an antifouling layer (not shown) may be provided on the antireflection layer 5 for the purpose of preventing contamination from the external environment and facilitating removal of adhering contaminants.
  • the difference in refractive index between the low refractive index layer 54 on the outermost surface of the antireflection layer 5 and the antifouling layer should be small from the viewpoint of reducing reflection at the interface.
  • the refractive index of the antifouling layer is preferably 1.6 or less, more preferably 1.55 or less.
  • the material for the antifouling layer fluorine group-containing silane compounds, fluorine group-containing organic compounds, and the like are preferable.
  • the antifouling layer can be formed by a wet method such as a reverse coating method, a die coating method, or a gravure coating method, or a dry method such as a CVD method.
  • the thickness of the antifouling layer is usually about 1 to 100 nm, preferably 2 to 50 nm, more preferably 3 to 30 nm.
  • An antireflection film is used, for example, by placing it on the surface of an image display device such as a liquid crystal display or an organic EL display. For example, by arranging an antireflection film on the viewing side surface of a panel including an image display medium such as a liquid crystal cell or an organic EL cell, the reflection of external light can be reduced and the visibility of the image display device can be improved.
  • the antireflection film may be laminated with other films.
  • a polarizing plate with an antireflection layer can be formed by attaching a polarizer to the surface of the film substrate 10 on which the hard coat layer is not formed.
  • dichroic substances such as iodine and dichroic dyes are added to hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and partially saponified ethylene-vinyl acetate copolymer films. and a polyene-based oriented film such as a dehydrated product of polyvinyl alcohol or a dehydrochlorinated product of polyvinyl chloride.
  • a polyvinyl alcohol-based film such as polyvinyl alcohol or partially formalized polyvinyl alcohol is oriented in a predetermined direction by adsorbing a dichroic substance such as iodine or a dichroic dye.
  • Alcohol (PVA) based polarizers are preferred.
  • a transparent protective film may be provided on the surface of the polarizer for the purpose of protecting the polarizer.
  • the transparent protective film may be attached only to one surface of the polarizer, or may be attached to both surfaces.
  • a transparent protective film is provided on the surface of the polarizer opposite to the surface provided with the antireflection film.
  • the antireflection film On the side of the polarizer on which the antireflection film is attached, the antireflection film also functions as a transparent protective film, so it is not necessary to provide a transparent protective film, but a transparent protective film may be provided between the polarizer and the antireflection film. may have been
  • the same materials as those described above as the material for the transparent film substrate are preferably used.
  • An adhesive is preferably used for bonding the polarizer and the transparent film.
  • Adhesives are based on acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyvinyl alcohol, polyvinyl ether, vinyl acetate/vinyl chloride copolymer, modified polyolefin, epoxy polymer, fluorine polymer, rubber polymer, etc. Polymers can be appropriately selected and used.
  • a polyvinyl alcohol-based adhesive is preferably used for bonding the PVA-based polarizer.
  • an antireflection film comprising an antireflection layer as an inorganic thin film on a hard coat layer of a film base via a primer layer
  • the primer layer comprises an inorganic thin film other than the antireflection layer.
  • it can contribute to the improvement of adhesion and weather resistance.
  • Inorganic thin film materials include metals and metal compounds (metal or metalloid oxides, nitrides, carbides, sulfides, fluorides, etc.).
  • the inorganic thin film may be conductive, insulating, or semiconducting.
  • the film thickness of the inorganic thin film (the total film thickness when a plurality of thin films are included) is, for example, about 1 nm to 1 ⁇ m, and may be appropriately adjusted according to the type of thin film, the function of the laminate, and the like.
  • the present invention will be described in more detail below by giving specific examples of an antireflection film having a primer layer provided between a hard coat layer and an antireflection layer, but the present invention is not limited to the following specific examples. do not have.
  • the above composition was applied to one side of a 40 ⁇ m-thick triacetyl cellulose film so that the thickness after drying was 6 ⁇ m, and dried at 80° C. for 3 minutes. After that, using a high-pressure mercury lamp, the coating layer was cured by irradiating ultraviolet light with an accumulated light amount of 200 mJ/cm 2 to form a hard coat layer.
  • SiO2 primer layer For the formation of the SiO2 primer layer, a Si target was used, and DC sputtering was performed under the conditions of a pressure of 0.2 Pa and a power density of 0.5 W/ cm2 while introducing 20 parts by volume of oxygen to 100 parts by volume of argon. membrane was performed.
  • a Si target was used to form the SiO 2 layer (low refractive index layer), and a Nb target was used to form the Nb 2 O 5 layer (high refractive index layer). rice field.
  • the amount of introduced oxygen was adjusted by plasma emission monitoring (PEM) control so that the deposition mode maintained the transition region.
  • Antireflection film 2 In the same manner as in the preparation of antireflection film 1, a hard coat film was prepared and the surface was treated with argon plasma. The hard coat film after the plasma treatment was introduced into a roll-to-roll type sputtering film forming apparatus, and the pressure in the tank was reduced to 1 ⁇ 10 ⁇ 4 Pa. Then, while the film was running, the substrate temperature was ⁇ 8° C., and a thickness of 6 nm was formed. A TiO 2 primer layer, a 16 nm Nb 2 O 5 layer, a 19 nm SiO 2 layer, a 102 nm Nb 2 O 5 layer and a 71 nm SiO 2 layer were sequentially deposited on the hard coat layer forming surface.
  • the TiO 2 primer layer was formed by DC sputtering under the conditions of a pressure of 0.2 Pa and a power density of 0.5 W/cm 2 while introducing 6 parts by volume of oxygen to 100 parts by volume of argon using a titanium oxide target. A film was formed. The SiO 2 layer and the Nb 2 O 5 layer were deposited under the same conditions as the antireflection film 1.
  • Antireflection films 3 to 7 The oxide target used for forming the primer layer was changed to tin oxide (SnO 2 ), molybdenum oxide (WO 3 ), chromium oxide (CrO 3 ), nickel oxide (NiO), and zinc oxide (ZnO), and the film was formed. The amount of oxygen introduced and the film thickness were changed as shown in Table 1. An antireflection film having an antireflection layer on a hard coat layer via a primer layer was produced in the same manner as in the production of antireflection film 2 except for these changes.
  • the number of grid patterns in which the antireflection layer was peeled off in a region of 1/4 or more of the area of the mass was counted, and the adhesion was evaluated according to the following criteria.
  • the metal type of the primer layer For each of the antireflection films 1 to 7, the metal type of the primer layer, the amount of oxygen introduced during the formation of the primer layer (volume ratio to argon) and the thickness of the primer layer, and the adhesion of the antireflection layer before and after the accelerated weathering test Table 1 shows the evaluation results.
  • the anti-reflection film 1 in which the SiO 2 primer layer was formed by reactive sputtering using a silicon target, exhibited a significant decrease in adhesion after the accelerated weathering test.
  • the SiOx (x ⁇ 2) primer layer was formed by changing the amount of oxygen introduced during the formation of the primer layer to 3 parts by volume with respect to 100 parts by volume of argon, Even after the accelerated weathering test, the antireflection layer exhibited good adhesion, but a decrease in transmittance was observed.
  • the prevention film 4 was also the same.
  • Antireflection film 5 with nickel oxide (Ni—O: D 0 298 461 kJ/mol) as a primer layer, and zinc oxide (Zn—O: D 0 298 ⁇ 250 kJ/mol) as a primer layer.
  • the antireflection film 6 showed a marked decrease in adhesion after the accelerated weathering test.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A layered body (100) comprises a hard coat film in which a hard coat layer (11) is provided on one main surface of a film substrate (10), a primer layer (3) provided on the hard coat layer and in contact with the hard coat layer, and an inorganic thin film (5) provided on the primer layer and in contact with the primer layer. The inorganic thin film may be an antireflection layer comprising a layered body of a plurality of thin films having different refractive indices. The primer layer is a metal oxide thin film and includes an oxide of a specific metal element such as Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Tc, Re, Ru, Os, Al, or Sn.

Description

積層体およびその製造方法、ならびに画像表示装置LAMINATED BODY, METHOD FOR MANUFACTURING SAME, AND IMAGE DISPLAY DEVICE
 本発明は、フィルム基材上に無機薄膜が設けられた積層体およびその製造方法、ならびに画像表示装置に関する。 The present invention relates to a laminate in which an inorganic thin film is provided on a film substrate, a manufacturing method thereof, and an image display device.
 液晶ディスプレイや有機ELディスプレイ等の画像表示装置の表面には、表示画像の視認性向上を目的として反射防止フィルムが設けられる場合がある。反射防止フィルムは、フィルム基材上に、屈折率の異なる複数の薄膜からなる反射防止層を備えている。反射防止層を形成する薄膜として、無機酸化物等の無機薄膜を用いた反射防止フィルムは、屈折率や膜厚の調整が容易であるため、高い反射防止特性を実現できる。 An antireflection film is sometimes provided on the surface of image display devices such as liquid crystal displays and organic EL displays for the purpose of improving the visibility of displayed images. An antireflection film has an antireflection layer composed of a plurality of thin films having different refractive indices on a film substrate. An antireflection film using an inorganic thin film such as an inorganic oxide as the thin film forming the antireflection layer can easily adjust the refractive index and film thickness, and therefore can achieve high antireflection properties.
 反射防止フィルムは画像表示装置の最表面に配置されるため、外部からの接触による傷つき防止等を目的として、フィルム基材の反射防止層形成面にハードコート層が設けられる場合がある。一般に有機物により形成されるハードコート層と無機薄膜は層間の密着力が小さく、層間剥離が生じる場合があり、ハードコート層と無機薄膜の間に、金属やセラミック材料からなるプライマー層を形成することが提案されている。 Since the antireflection film is placed on the outermost surface of the image display device, a hard coat layer may be provided on the antireflection layer formation surface of the film substrate for the purpose of preventing damage due to contact from the outside. In general, the adhesion between the hard coat layer and the inorganic thin film, which are made of organic substances, is low, and delamination may occur between the hard coat layer and the inorganic thin film. is proposed.
 プライマー層を設けることにより、反射防止層等の無機薄膜の密着性が向上する傾向があるが、屋外等の紫外線に晒される環境下では、プライマー層を設けた場合でも光劣化等により無機薄膜の密着性が低下する場合がある。特許文献1では、ハードコート層上に、酸素欠損状態(非化学量論組成)の酸化シリコン(SiO;0<x<2)からなるプライマー層を形成し、その上に反射防止層を形成することにより、高強度の光照射(耐候試験)後も反射防止層が高い密着性を有することが記載されている。 The provision of a primer layer tends to improve the adhesion of inorganic thin films such as an antireflection layer, but in an environment exposed to ultraviolet rays such as outdoors, even if a primer layer is provided, the inorganic thin film may deteriorate due to light deterioration. Adhesion may decrease. In Patent Document 1, a primer layer made of silicon oxide (SiO x ; 0<x<2) in an oxygen-deficient state (non-stoichiometric composition) is formed on a hard coat layer, and an antireflection layer is formed thereon. By doing so, the antireflection layer has high adhesion even after high-intensity light irradiation (weather resistance test).
国際公開第2016/190415号WO2016/190415
 非化学量論組成の酸化シリコンからなるプライマー層は、シリコンターゲットを用いて、反応性スパッタにより成膜される。本発明者らの検討により、ハードコート層と反射防止層の間に、プライマー層として酸化シリコン薄膜を設けた反射防止フィルムは、反射防止層の密着性や、透明性等の特性が不安定であることが判明した。かかる課題に鑑み、本発明は、無機薄膜の密着性等の品質安定性に優れる積層体の提供を目的とする。 A primer layer made of silicon oxide with a non-stoichiometric composition is deposited by reactive sputtering using a silicon target. The present inventors have found that the antireflection film provided with a silicon oxide thin film as a primer layer between the hard coat layer and the antireflection layer has unstable characteristics such as adhesion and transparency of the antireflection layer. It turns out there is. In view of such problems, an object of the present invention is to provide a laminate having excellent quality stability such as adhesion of an inorganic thin film.
 本発明は、積層体およびその製造方法に関する。積層体は、フィルム基材の一主面上にハードコート層を備えるハードコートフィルムと、ハードコート層上に接して設けられたプライマー層と、プライマー層上に接して設けられた無機薄膜とを備える。一実施形態において、プライマー層上に形成される無機薄膜は、屈折率が異なる複数の薄膜の積層体からなる反射防止層である。反射防止層を構成するそれぞれの薄膜は無機酸化物薄膜であってもよい。 The present invention relates to a laminate and its manufacturing method. The laminate includes a hard coat film having a hard coat layer on one main surface of a film substrate, a primer layer provided in contact with the hard coat layer, and an inorganic thin film provided in contact with the primer layer. Prepare. In one embodiment, the inorganic thin film formed on the primer layer is an antireflection layer comprising a laminate of a plurality of thin films having different refractive indices. Each thin film constituting the antireflection layer may be an inorganic oxide thin film.
 プライマー層は金属酸化物薄膜であり、特定の金属元素の酸化物を含む。金属酸化物の金属元素は、好ましくは、温度298Kにおける金属-酸素間の結合解離エネルギーが450~780kJ/molである。金属元素としては、Sc,Y,Ti,Zr,V,Nb,Cr,Mo,W,Tc,Re,Ru,Os,Al,Sn等が挙げられる。中でも、Ti,Snが特に好ましい。金属酸化物の金属元素の全量に対して、これらの金属元素を合計50原子%以上含むことが好ましい。 The primer layer is a metal oxide thin film and contains oxides of specific metal elements. The metal element of the metal oxide preferably has a metal-oxygen bond dissociation energy of 450 to 780 kJ/mol at a temperature of 298K. Examples of metal elements include Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Tc, Re, Ru, Os, Al, and Sn. Among them, Ti and Sn are particularly preferred. It is preferable that the total amount of these metal elements is 50 atomic % or more based on the total amount of metal elements in the metal oxide.
 プライマー層は、例えば、酸化物ターゲットを用いてスパッタ法により成膜される。プライマー層の厚みは、0.5~30nm程度が好ましい。 The primer layer is deposited, for example, by sputtering using an oxide target. The thickness of the primer layer is preferably about 0.5 to 30 nm.
 プライマー層上への無機薄膜の形成は、反応性スパッタにより実施してもよい。 The formation of the inorganic thin film on the primer layer may be performed by reactive sputtering.
 ハードコート層は、バインダー樹脂および微粒子を含んでいてもよい。一実施形態において、ハードコート層は、バインダー樹脂および粒子径10~100nmのナノ粒子を含み、バインダー樹脂100重量部に対するナノ粒子の含有量が20~100重量部である。 The hard coat layer may contain a binder resin and fine particles. In one embodiment, the hard coat layer contains a binder resin and nanoparticles with a particle size of 10 to 100 nm, and the content of the nanoparticles is 20 to 100 parts by weight based on 100 parts by weight of the binder resin.
 ハードコート層と反射防止層等の無機薄膜との間に、特定の金属元素の酸化物を含むプライマー層を設けることにより、耐候試験後も無機薄膜の密着性が高い積層体が得られる。 By providing a primer layer containing an oxide of a specific metal element between the hard coat layer and the inorganic thin film such as the antireflection layer, a laminate with high adhesion of the inorganic thin film even after the weather resistance test can be obtained.
反射防止フィルムの積層形態を示す断面図である。FIG. 3 is a cross-sectional view showing a lamination configuration of antireflection films.
 本発明の積層体は、ハードコートフィルムのハードコート層上にプライマー層を備え、その上に無機薄膜を備える。このような積層体としては、反射防止フィルムおよび透明電極フィルム等の画像表示装置用フィルム、日射調整フィルム、遮熱・断熱フィルム、調光フィルムおよび電磁波遮蔽フィルム等の窓ガラスやショーウィンドウ等に設けられるフィルム、ガスバリアフィルム等が挙げられる。 The laminate of the present invention comprises a primer layer on the hard coat layer of the hard coat film, and an inorganic thin film thereon. Such laminates include films for image display devices such as antireflection films and transparent electrode films, solar radiation control films, heat shielding/insulating films, light control films, electromagnetic wave shielding films, and the like, which are provided on window glasses and show windows. film, gas barrier film, and the like.
 図1は、積層体の一実施形態としての反射防止フィルムの積層構成例を示す断面図である。反射防止フィルム100は、フィルム基材10の一主面上にハードコート層11が設けられたハードコートフィルム1と、ハードコート層11に接するプライマー層3と、プライマー層に接する反射防止層5とを備える。反射防止層5は、屈折率の異なる2層以上の無機薄膜の積層体である。図1に示す反射防止フィルム100において、反射防止層5は、高屈折率層51,53と低屈折率層52,54とを交互に積層した構成を有する。 FIG. 1 is a cross-sectional view showing a laminated configuration example of an antireflection film as an embodiment of the laminate. The antireflection film 100 includes a hard coat film 1 having a hard coat layer 11 provided on one main surface of a film substrate 10, a primer layer 3 in contact with the hard coat layer 11, and an antireflection layer 5 in contact with the primer layer. Prepare. The antireflection layer 5 is a laminate of two or more inorganic thin films having different refractive indices. In the antireflection film 100 shown in FIG. 1, the antireflection layer 5 has a configuration in which high refractive index layers 51 and 53 and low refractive index layers 52 and 54 are alternately laminated.
[ハードコートフィルム]
<フィルム基材>
 ハードコートフィルム1のフィルム基材10としては、例えば、透明フィルムが用いられる。透明フィルムの可視光透過率は、好ましくは80%以上、より好ましくは90%以上である。透明フィルムを構成する樹脂材料としては、例えば、透明性、機械強度、および熱安定性に優れる樹脂材料が好ましい。樹脂材料の具体例としては、トリアセチルセルロース等のセルロース系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂)、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、およびこれらの混合物が挙げられる。
[Hard coat film]
<Film substrate>
As the film substrate 10 of the hard coat film 1, for example, a transparent film is used. The visible light transmittance of the transparent film is preferably 80% or higher, more preferably 90% or higher. As the resin material that constitutes the transparent film, for example, a resin material that is excellent in transparency, mechanical strength, and thermal stability is preferable. Specific examples of resin materials include cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) Examples include acrylic resins, cyclic polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
 フィルム基材10は必ずしも透明である必要はない。また、フィルム基材10として、複数のフィルムの積層体を用いてもよい。例えば、後述するように、偏光子の表面に保護フィルムが設けられた偏光板をフィルム基材10として用いてもよい。 The film substrate 10 does not necessarily have to be transparent. A laminate of a plurality of films may also be used as the film substrate 10 . For example, as will be described later, a polarizing plate in which a protective film is provided on the surface of a polarizer may be used as the film substrate 10 .
 フィルム基材10の厚みは特に限定されないが、強度や取扱性等の作業性、薄層性等の観点から、5~300μm程度が好ましく、10~250μmがより好ましく、20~200μmがさらに好ましい。 Although the thickness of the film substrate 10 is not particularly limited, it is preferably about 5 to 300 μm, more preferably 10 to 250 μm, and even more preferably 20 to 200 μm from the viewpoint of strength, workability such as handleability, and thinness.
<ハードコート層>
 フィルム基材10の主面上にハードコート層11を設けることによりハードコートフィルム1が形成される。ハードコート層は硬化樹脂層であり、硬化性樹脂を含む組成物をフィルム基材上に塗布し、樹脂成分を硬化することにより形成される。ハードコート層は、硬化樹脂に加えて微粒子を含んでいてもよい。
<Hard coat layer>
The hard coat film 1 is formed by providing the hard coat layer 11 on the main surface of the film substrate 10 . The hard coat layer is a cured resin layer, and is formed by applying a composition containing a curable resin onto the film substrate and curing the resin component. The hard coat layer may contain fine particles in addition to the cured resin.
(硬化性樹脂)
 ハードコート層11の硬化性樹脂(バインダー樹脂)としては、熱硬化性樹脂、光硬化性樹脂、電子線硬化性樹脂等の硬化性樹脂が好ましく用いられる。硬化性樹脂の種類としてはポリエステル系、アクリル系、ウレタン系、アクリルウレタン系、アミド系、シリコーン系、シリケート系、エポキシ系、メラミン系、オキセタン系、アクリルウレタン系等が挙げられる。これらの中でも、硬度が高く、光硬化が可能であることから、アクリル系樹脂、アクリルウレタン系樹脂、およびエポキシ系樹脂が好ましく、中でもアクリルウレタン系樹脂が好ましい。
(Curable resin)
As the curable resin (binder resin) of the hard coat layer 11, curable resins such as thermosetting resins, photo-curable resins, and electron beam curable resins are preferably used. Types of curable resins include polyester, acrylic, urethane, acrylic urethane, amide, silicone, silicate, epoxy, melamine, oxetane, and acrylic urethane. Among these resins, acrylic resins, acrylic urethane resins, and epoxy resins are preferable because they have high hardness and can be photocured, and acrylic urethane resins are particularly preferable.
 光硬化性樹脂組成物は、2個以上の光重合性(好ましくは紫外線重合性)の官能基を有する多官能化合物を含む。多官能化合物はモノマーでもオリゴマーでもよい。光重合性の多官能化合物としては、1分子中に2個以上の(メタ)アクリロイル基を含む化合物が好ましく用いられる。 The photocurable resin composition contains a polyfunctional compound having two or more photopolymerizable (preferably ultraviolet-polymerizable) functional groups. Polyfunctional compounds may be monomeric or oligomeric. As the photopolymerizable polyfunctional compound, a compound containing two or more (meth)acryloyl groups in one molecule is preferably used.
 1分子中に2個以上の(メタ)アクリロイル基を有する多官能化合物の具体例としては、トリシクロデカンジメタノールジアクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジメチロールプロパントテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、1,9-ノナンジオールジアクリレート、1,10-デカンジオール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジアクリレート、イソシアヌル酸トリ(メタ)アクリレート、エトキシ化グリセリントリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレートおよびこれらのオリゴマーまたはプレポリマー等が挙げられる。なお、本明細書において、「(メタ)アクリル」とはアクリルおよび/またはメタクリルを意味する。 Specific examples of polyfunctional compounds having two or more (meth)acryloyl groups in one molecule include tricyclodecanedimethanol diacrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, and trimethylol. propane triacrylate, pentaerythritol tetra(meth)acrylate, dimethylolpropane tetraacrylate, dipentaerythritol hexa(meth)acrylate, 1,6-hexanediol (meth)acrylate, 1,9-nonanediol diacrylate, 1, 10-decanediol (meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, dipropylene glycol diacrylate, isocyanuric acid tri(meth)acrylate, ethoxylated glycerin triacrylate, ethoxylated pentaerythritol tetra Examples include acrylates and oligomers or prepolymers thereof. In addition, in this specification, "(meth)acryl" means acryl and/or methacryl.
 1分子中に2個以上の(メタ)アクリロイル基を有する多官能化合物は、水酸基を有していてもよい。水酸基を含む多官能化合物を用いることにより、フィルム基材とハードコート層との密着性が向上する傾向がある。1分子中に水酸基および2個以上の(メタ)アクリロイル基を有する化合物としては、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。 A polyfunctional compound having two or more (meth)acryloyl groups in one molecule may have a hydroxyl group. The use of a polyfunctional compound containing a hydroxyl group tends to improve the adhesion between the film substrate and the hard coat layer. Compounds having a hydroxyl group and two or more (meth)acryloyl groups in one molecule include pentaerythritol tri(meth)acrylate and dipentaerythritol penta(meth)acrylate.
 アクリルウレタン樹脂は、多官能化合物として、ウレタン(メタ)アクリレートのモノマーまたはオリゴマーを含む。ウレタン(メタ)アクリレートが有する(メタ)アクリロイル基の数は、3以上が好ましく、4~15がより好ましく、6~12がさらに好ましい。ウレタン(メタ)アクリレートオリゴマーの分子量は、例えば3000以下であり、500~2500が好ましく、800~2000がより好ましい。ウレタン(メタ)アクリレートは、例えば、(メタ)アクリル酸または(メタ)アクリル酸エステルとポリオールとから得られるヒドロキシ(メタ)アクリレートを、ジイソシアネートと反応させることにより得られる。 Acrylic urethane resins contain urethane (meth)acrylate monomers or oligomers as polyfunctional compounds. The number of (meth)acryloyl groups in the urethane (meth)acrylate is preferably 3 or more, more preferably 4-15, and even more preferably 6-12. The molecular weight of the urethane (meth)acrylate oligomer is, for example, 3000 or less, preferably 500-2500, more preferably 800-2000. Urethane (meth)acrylate is obtained, for example, by reacting hydroxy (meth)acrylate obtained from (meth)acrylic acid or (meth)acrylic acid ester and polyol with diisocyanate.
 ハードコート層形成用組成物中の多官能化合物の含有量は、樹脂成分(硬化によりバインダー樹脂を形成するモノマー、オリゴマーおよびプレポリマー)の合計100重量部に対して、50重量部以上が好ましく、60重量部以上がより好ましく、70重量部以上がさらに好ましい。多官能モノマーの含有量が上記範囲であれば、ハードコート層の硬度が高められる傾向がある。 The content of the polyfunctional compound in the composition for forming a hard coat layer is preferably 50 parts by weight or more with respect to a total of 100 parts by weight of the resin components (monomers, oligomers and prepolymers that form a binder resin upon curing). 60 parts by weight or more is more preferable, and 70 parts by weight or more is even more preferable. When the content of the polyfunctional monomer is within the above range, the hardness of the hard coat layer tends to be increased.
(微粒子)
 ハードコート層11が微粒子を含むことにより、表面形状を調整し、防眩性等の光学特性の付与や反射防止層の密着性向上等の作用を持たせることができる。
(fine particles)
By including fine particles in the hard coat layer 11, it is possible to adjust the surface shape, impart optical properties such as antiglare properties, and improve the adhesion of the antireflection layer.
 微粒子としては、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化スズ、酸化インジウム、酸化カドミウム、酸化アンチモン等の無機酸化物微粒子、ガラス微粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル-スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の透明ポリマーからなる架橋又は未架橋の有機系微粒子を特に制限なく使用できる。 Fine particles include inorganic oxide fine particles such as silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide, glass fine particles, polymethyl methacrylate, polystyrene, polyurethane, and acrylic-styrene copolymer. , benzoguanamine, melamine, polycarbonate, and other crosslinked or uncrosslinked organic microparticles can be used without particular limitation.
 微粒子の平均粒子径(平均一次粒子径)は、10nm~10μm程度が好ましい。微粒子は、粒径に応じて、0.5μm~10μm程度のサブミクロンまたはμmオーダーの粒子径を有する微粒子(以下「マイクロ粒子」と記載する場合がある)、10nm~100nm程度の粒子径を有する微粒子(以下「ナノ粒子」と記載する場合がある)、およびマイクロ粒子とナノ粒子の中間の粒子径を有する微粒子に大別できる。 The average particle size (average primary particle size) of fine particles is preferably about 10 nm to 10 μm. Fine particles have a particle diameter of about 0.5 μm to 10 μm, submicrons or μm order (hereinafter sometimes referred to as “microparticles”), and have a particle diameter of about 10 nm to 100 nm. They can be roughly classified into microparticles (hereinafter sometimes referred to as “nanoparticles”) and microparticles having a particle size intermediate between microparticles and nanoparticles.
 ハードコート層11がナノ粒子を含むことにより、表面に微細な凹凸が形成され、ハードコート層11とプライマー層3および反射防止層5との密着性が向上する傾向がある。ナノ粒子としては、無機微粒子が好ましく、中でも無機酸化物微粒子が好ましい。中でも、屈折率が低く、バインダー樹脂との屈折率差を小さくできることから、シリカ粒子が好ましい。 The inclusion of nanoparticles in the hard coat layer 11 tends to form fine irregularities on the surface and improve the adhesion between the hard coat layer 11 and the primer layer 3 and the antireflection layer 5 . As nanoparticles, inorganic fine particles are preferable, and inorganic oxide fine particles are particularly preferable. Among these, silica particles are preferable because they have a low refractive index and can reduce the difference in refractive index from the binder resin.
 ハードコート層11の表面に、無機薄膜との密着性に優れる凹凸形状を形成する観点から、ナノ粒子の平均一次粒子径は、20~80nmが好ましく、25~70nmがより好ましく、30~60nmがさらに好ましい。また、ハードコート層表面での反射光の色付きを抑制する観点から、ナノ粒子の平均一次粒子径は、55nm以下が好ましく、50nm以下がより好ましく、45nm以下がさらに好ましい。平均一次粒子径は、コールターカウント法により測定される重量平均粒子径である。 From the viewpoint of forming an uneven shape with excellent adhesion to the inorganic thin film on the surface of the hard coat layer 11, the average primary particle diameter of the nanoparticles is preferably 20 to 80 nm, more preferably 25 to 70 nm, and more preferably 30 to 60 nm. More preferred. From the viewpoint of suppressing coloring of reflected light on the surface of the hard coat layer, the average primary particle size of the nanoparticles is preferably 55 nm or less, more preferably 50 nm or less, and even more preferably 45 nm or less. The average primary particle size is the weight average particle size measured by the Coulter count method.
 ハードコート層11におけるナノ粒子の量は、バインダー樹脂100重量部に対して、1~150重量部程度であってもよい。ハードコート層11の表面に、無機薄膜との密着性に優れた表面形状を形成する観点から、ハードコート層11におけるナノ粒子の含有量は、バインダー樹脂100重量部に対して、20~100重量部が好ましく、25~90重量部がより好ましく、30~80重量部がさらに好ましい。 The amount of nanoparticles in the hard coat layer 11 may be about 1 to 150 parts by weight with respect to 100 parts by weight of the binder resin. From the viewpoint of forming a surface shape with excellent adhesion to the inorganic thin film on the surface of the hard coat layer 11, the content of the nanoparticles in the hard coat layer 11 is 20 to 100 parts by weight with respect to 100 parts by weight of the binder resin. parts, more preferably 25 to 90 parts by weight, even more preferably 30 to 80 parts by weight.
 ハードコート層11がマイクロ粒子を含むことにより、ハードコート層11の表面およびその上に形成される薄膜の表面に、直径がサブミクロンまたはμmオーダーの突起が形成され、防眩性が付与される。マイクロ粒子は、ハードコート層のバインダー樹脂との屈折率差が小さいことが好ましく、シリカ等の低屈折率無機酸化物粒子、またはポリマー微粒子が好ましい。 By including microparticles in the hard coat layer 11, projections with a diameter of submicron or μm order are formed on the surface of the hard coat layer 11 and the surface of the thin film formed thereon, thereby imparting antiglare properties. . The microparticles preferably have a small refractive index difference from the binder resin of the hard coat layer, and are preferably low refractive index inorganic oxide particles such as silica or polymer fine particles.
 防眩性付与に適した表面形状を形成する観点から、マイクロ粒子の平均一次粒子径は、1~8μmが好ましく、2~5μmがより好ましい。粒子径が小さい場合は、防眩性が不足する傾向があり、粒子径が大きい場合は画像の鮮明度が低下する傾向がある。ハードコート層11におけるマイクロ粒子の含有量は特に制限されないが、バインダー樹脂100重量部に対して1~15重量部が好ましく、2~10重量部がより好ましく、3~8重量部がさらに好ましい。 From the viewpoint of forming a surface shape suitable for imparting antiglare properties, the average primary particle size of the microparticles is preferably 1 to 8 μm, more preferably 2 to 5 μm. When the particle size is small, the antiglare property tends to be insufficient, and when the particle size is large, the definition of the image tends to decrease. The content of the microparticles in the hard coat layer 11 is not particularly limited, but is preferably 1 to 15 parts by weight, more preferably 2 to 10 parts by weight, and even more preferably 3 to 8 parts by weight with respect to 100 parts by weight of the binder resin.
 ハードコート層11は、ナノ粒子およびマイクロ粒子のいずれか一方のみを含んでいてもよく、両方を含んでいてもよい。また、ナノ粒子とマイクロ粒子の中間の粒子径を有する微粒子を含んでいてもよい。 The hard coat layer 11 may contain either one of nanoparticles and microparticles, or may contain both. It may also contain fine particles having a particle size intermediate between nanoparticles and microparticles.
(ハードコート層の形成)
 ハードコート層形成用組成物は、上記のバインダー樹脂成分を含み、必要に応じてバインダー樹脂成分を溶解可能な溶媒を含む。上記の通り、ハードコート層形成用組成物は微粒子を含んでいてもよい。バインダー樹脂成分が光硬化型樹脂である場合には、組成物中に光重合開始剤が含まれることが好ましい。ハードコート層形成用組成物は、上記の他に、レベリング剤、チクソトロピー剤、帯電防止剤、ブロッキング防止剤、分散剤、分散安定剤、酸化防止剤、紫外線吸収剤、消泡剤、増粘剤、界面活性剤、滑剤等の添加剤を含んでいてもよい。
(Formation of hard coat layer)
The composition for forming a hard coat layer contains the binder resin component described above and, if necessary, a solvent capable of dissolving the binder resin component. As described above, the composition for forming a hard coat layer may contain fine particles. When the binder resin component is a photocurable resin, the composition preferably contains a photopolymerization initiator. In addition to the above, the composition for forming a hard coat layer contains a leveling agent, a thixotropic agent, an antistatic agent, an antiblocking agent, a dispersant, a dispersion stabilizer, an antioxidant, an ultraviolet absorber, an antifoaming agent, and a thickener. , surfactants, and lubricants.
 フィルム基材上にハードコート層形成用組成物を塗布し、必要に応じて溶媒の除去および樹脂の硬化を行うことにより、ハードコート層が形成される。ハードコート層形成用組成物の塗布方法としては、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法、コンマコート法等の任意の適切な方法を採用し得る。塗布後の加熱温度は、ハードコート層形成用組成物の組成等に応じて、適切な温度に設定すればよく、例えば、50℃~150℃程度である。バインダー樹脂成分が光硬化性樹脂である場合は、紫外線等の活性エネルギー線を照射することにより光硬化が行われる。照射光の積算光量は、好ましくは100~500mJ/cm程度である。 A hard coat layer is formed by applying the composition for forming a hard coat layer onto a film substrate, and optionally removing the solvent and curing the resin. The hard coat layer-forming composition may be applied by any appropriate method such as bar coating, roll coating, gravure coating, rod coating, slot orifice coating, curtain coating, fountain coating, and comma coating. method can be adopted. The heating temperature after application may be set to an appropriate temperature depending on the composition of the composition for forming a hard coat layer, and is, for example, about 50°C to 150°C. When the binder resin component is a photocurable resin, photocuring is performed by irradiating active energy rays such as ultraviolet rays. The integrated light quantity of the irradiation light is preferably about 100 to 500 mJ/cm 2 .
 ハードコート層11の厚みは特に限定されないが、高い硬度を実現するとともに、表面形状を適切に制御する観点から、1~10μm程度が好ましく、2~9μmがより好ましく、3~8μmがさらに好ましい。 Although the thickness of the hard coat layer 11 is not particularly limited, it is preferably about 1 to 10 μm, more preferably 2 to 9 μm, and even more preferably 3 to 8 μm from the viewpoint of achieving high hardness and appropriately controlling the surface shape.
 ハードコート層11上にプライマー層3および反射防止層5を形成する前に、ハードコート層11とプライマー層3および反射防止層5との密着性のさらなる向上等を目的として、ハードコート層11の表面処理が行われてもよい。表面処理としては、コロナ処理、プラズマ処理、フレーム処理、オゾン処理、プライマー処理、グロー処理、アルカリ処理、酸処理、カップリング剤による処理等の表面改質処理が挙げられる。表面処理として真空プラズマ処理を行ってもよい。真空プラズマ処理により、ハードコート層の表面粗さを調整することもできる。例えば、高放電電力で真空プラズマ処理を行えば、ハードコート層表面の表面凹凸が大きくなり、無機薄膜との密着性が向上する傾向がある。 Before forming the primer layer 3 and the antireflection layer 5 on the hard coat layer 11, for the purpose of further improving the adhesion between the hard coat layer 11 and the primer layer 3 and the antireflection layer 5, the hard coat layer 11 is formed. A surface treatment may be performed. Examples of surface treatment include surface modification treatments such as corona treatment, plasma treatment, flame treatment, ozone treatment, primer treatment, glow treatment, alkali treatment, acid treatment, and treatment with a coupling agent. A vacuum plasma treatment may be performed as the surface treatment. The surface roughness of the hard coat layer can also be adjusted by vacuum plasma treatment. For example, if vacuum plasma treatment is performed at high discharge power, the surface unevenness of the hard coat layer tends to increase and the adhesion to the inorganic thin film tends to improve.
<プライマー層>
 ハードコート層11上には、プライマー層3が形成され、その上に反射防止層5が形成される。ハードコート層11上に接してプライマー層3を設け、プライマー層3上に接して反射防止層5を設けることにより、層間の密着性に優れ、紫外線等の光に長時間晒された場合でも反射防止層の剥離が生じ難い反射防止フィルムが得られる。
<Primer layer>
A primer layer 3 is formed on the hard coat layer 11, and an antireflection layer 5 is formed thereon. By providing the primer layer 3 in contact with the hard coat layer 11 and providing the antireflection layer 5 in contact with the primer layer 3, the adhesion between the layers is excellent, and the reflection is reflected even when exposed to light such as ultraviolet rays for a long time. It is possible to obtain an antireflection film in which the antireflection layer is less likely to peel off.
 プライマー層3は金属酸化物薄膜である。なお、ここでの「金属」とは、シリコン等の半金属を含まない概念である。プライマー層の金属酸化物は、金属元素として、温度298Kにおける金属-酸素間の結合解離エネルギーD 298が、450~780kJ/molである金属を含む。 The primer layer 3 is a metal oxide thin film. Note that the term “metal” here is a concept that does not include semimetals such as silicon. The metal oxide of the primer layer contains, as a metal element, a metal having a metal-oxygen bond dissociation energy D 0 298 at a temperature of 298K of 450 to 780 kJ/mol.
 金属元素Mと酸素Oの結合解離エネルギーD(M-O)は、M-O→M+Oの結合解離における標準エンタルピーの変化量であり、熱化学方程式:
   D(M-O)=Δ(M)+Δ(O)-Δ(MO)
から導出される。Δは、生成エンタルピーである。本明細書においては、298℃における金属-酸素間の結合解離エネルギーD 298(M-O)として、Luo, Y. R.著、Comprehensive Handbook of Chemical Bond Energies, CRC Press, 2007.に記載の値を採用する。
The bond dissociation energy D 0 (MO) between the metal element M and oxygen O is the amount of change in standard enthalpy in the bond dissociation of MO → M+O, and the thermochemical equation:
D 0 (M−O)=Δ f H 0 (M)+Δ f H 0 (O)−Δ f H 0 (MO)
is derived from Δ f H 0 is the enthalpy of formation. In the present specification, the value described in Luo, Y. R., Comprehensive Handbook of Chemical Bond Energies, CRC Press, 2007 is adopted as the bond dissociation energy D 0 298 (MO) between metal and oxygen at 298 ° C. do.
 D 298(M-O)が450~780kJ/molである金属としては、Cr(461±8.7),Al(501.9±10.6),Mo(502),Sn(528),Ru(528±42),Tc(548),Os(575),Re(627±84),V(637),Ti(666.5±5.6),Sc(671.4±1.0),Y(714.1±10.2),W(720±71),Nb(726.5±10.6),Zr(766.1±10.6)等が挙げられる。括弧内の数字は、D 298(M-O)/kJmol-1である。 Metals having a D 0 298 (MO) of 450 to 780 kJ/mol include Cr (461±8.7), Al (501.9±10.6), Mo (502), Sn (528), Ru(528±42), Tc(548), Os(575), Re(627±84), V(637), Ti(666.5±5.6), Sc(671.4±1.0) , Y (714.1±10.2), W (720±71), Nb (726.5±10.6), Zr (766.1±10.6), and the like. The numbers in brackets are D 0 298 (MO)/kJmol −1 .
 プライマー層を構成する金属元素MのD 298(M-O)が大きいほど、紫外線等の光に長時間晒された場合でも、反射防止層の剥離が生じ難く、反射防止フィルムが耐候性に優れる傾向がある。プライマー層を構成する金属元素MのD 298(M-O)は、480kJ/mol以上が好ましく、500kJ/mol以上がより好ましく、520kJ/mol以上であってもよい。 The larger the D 0 298 (M−O) of the metal element M constituting the primer layer, the more difficult it is for the antireflection layer to peel off even when exposed to light such as ultraviolet rays for a long time, and the antireflection film has better weather resistance. tend to be better. D 0 298 (MO) of the metal element M constituting the primer layer is preferably 480 kJ/mol or more, more preferably 500 kJ/mol or more, and may be 520 kJ/mol or more.
 D 298(M-O)が大きいことにより、耐候性が向上する推定理由の1つとして、紫外線による金属-酸素間の結合の開裂が生じ難く、プライマー層が光安定性に優れることが挙げられる。450kJ/molは、波長267nmの光子エネルギーに相当する。そのため、プライマー層の材料が、D 298(M-O)が450kJ/mol以上である金属の酸化物であれば、UVA(波長320~400nm)やUVB(波長280~320nm)を照射しても、金属-酸素間の結合の開裂がほとんど生じず、プライマー層が光劣化し難いため、耐候性に優れると考えられる。 One of the presumed reasons why the weather resistance is improved by having a large D 0 298 (MO) is that the cleavage of the metal-oxygen bond by ultraviolet rays is difficult to occur, and the primer layer has excellent photostability. be done. 450 kJ/mol corresponds to photon energy at a wavelength of 267 nm. Therefore, if the material of the primer layer is a metal oxide having D 0 298 (M−O) of 450 kJ/mol or more, UVA (wavelength 320 to 400 nm) or UVB (wavelength 280 to 320 nm) can be applied. Also, the metal-oxygen bond is hardly cleaved, and the primer layer is not easily degraded by light, so it is considered to be excellent in weather resistance.
 原理上は、D 298(M-O)が大きいほど耐候性に優れると考えられるものの、D 298(M-O)が過度に大きい場合は、完全酸化物のプライマー層を形成した場合に、反射防止層の密着性が不十分となる場合がある。例えば、半金属であるシリコン(Si)のD 298(M-O)は、約800kJ/molであり、化学量論に対して酸素が不足しているSiOx(x<2)プライマー層は反射防止層との密着性に優れているが、化学量論組成のSiOプライマー層を形成した場合は、耐候試験後に反射防止層との密着性が低下する傾向がある。 In principle, the larger the D 0 298 ( M−O), the better the weather resistance . , the adhesion of the antireflection layer may be insufficient. For example, the D 0 298 (M−O) of silicon (Si), a semimetal, is about 800 kJ/mol, and a SiOx (x<2) primer layer lacking oxygen with respect to stoichiometry reflects Adhesion to the antireflection layer is excellent, but when a stoichiometric SiO 2 primer layer is formed, adhesion to the antireflection layer tends to decrease after the weather resistance test.
 そのため、上記の通り、プライマー層を構成する金属元素MのD 298(M-O)は、780kJ/mol以下が好ましい。D 298(M-O)が過度に大きい場合に密着性が低下する理由は定かではないが、1つの可能性として、化学量論組成に対して酸素が不足している場合は、ダングリングボンドが存在するために他の層との密着性が向上するのに対して、化学量論組成では、金属元素Mの酸素との親和性が高く、安定性が高いために、他の層との親和性向上への寄与が小さいことが考えられる。 Therefore, as described above, D 0 298 (MO) of the metal element M constituting the primer layer is preferably 780 kJ/mol or less. It is not clear why the adhesion decreases when D 0 298 (M−O) is too large, but one possibility is that dangling The presence of bonds improves the adhesion with other layers, whereas in the stoichiometric composition, the metal element M has a high affinity for oxygen and high stability, so It is conceivable that the contribution to the improvement of affinity is small.
 D 298(M-O)が450~780kJ/molである金属元素Mの例は上記の通りであるが、上記例示の金属元素の中でも、酸化物の透明性、成膜性、化学的安定性等の観点から、Sc,Y,Ti,Zr,V,Nb,Cr,Mo,W,Tc,Re,Ru,Os,Al,Snが好ましい。特に、反射防止フィルム等の透明性が要求される用途では、酸化物の透明性および化学安定性に優れることから、Ti,Snが好ましい。 Examples of the metal element M having a D 0 298 (MO) of 450 to 780 kJ/mol are as described above. Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Tc, Re, Ru, Os, Al, and Sn are preferred from the viewpoint of properties. In particular, in applications requiring transparency such as antireflection films, Ti and Sn are preferred because they are excellent in oxide transparency and chemical stability.
 プライマー層を構成する金属酸化物は複合酸化物でもよく、ドーパント元素として、上記以外の金属元素や、B,C,Ge,P,As,Sb,Be,Se,Te,Po,At等の半金属元素を含んでいてもよい。光照射後も高い密着性を維持する観点から、プライマー層3を構成する金属酸化物の金属元素の全量(100原子%)に対する上記の金属の割合は、50原子%以上が好ましく、60原子%以上がより好ましく、70原子%以上がさらに好ましく、80原子%以上、90原子%以上、95原子%以上または99原子%以上であってもよい。 The metal oxide constituting the primer layer may be a composite oxide, and as a dopant element, metal elements other than the above, and semi-metals such as B, C, Ge, P, As, Sb, Be, Se, Te, Po, At, etc. It may contain a metal element. From the viewpoint of maintaining high adhesion even after light irradiation, the ratio of the above metal to the total amount (100 atomic %) of the metal elements of the metal oxide constituting the primer layer 3 is preferably 50 atomic % or more, more preferably 60 atomic %. The above is more preferable, 70 atomic % or more is more preferable, and 80 atomic % or more, 90 atomic % or more, 95 atomic % or more, or 99 atomic % or more may be used.
 具体的には、プライマー層3は、金属酸化物の金属元素全量に対するD 298(M-O)が450kJ/mol以上である金属の割合が上記範囲であることが好ましく、D 298(M-O)が500kJ/mol以上である金属の割合が上記範囲であることがより好ましい。また、プライマー層3は、金属酸化物の金属元素全量に対する、Sc,Y,Ti,Zr,V,Nb,Cr,Mo,W,Tc,Re,Ru,Os,Al,Snの含有量の合計が上記範囲であることが好ましく、中でも、TiまたはSnの割合が上記範囲であることが好ましい。すなわち、プライマー層は、酸化チタン(TiO)または酸化錫(SnO)を主成分とするものが特に好ましい。 Specifically, in the primer layer 3, the ratio of the metal having D 0 298 (M−O) of 450 kJ/mol or more with respect to the total amount of metal elements in the metal oxide is preferably within the above range, and D 0 298 (M It is more preferable that the ratio of the metal having —O) of 500 kJ/mol or more is within the above range. In addition, the primer layer 3 is the total content of Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Tc, Re, Ru, Os, Al, and Sn with respect to the total amount of metal elements in the metal oxide. is preferably within the above range, and more preferably, the proportion of Ti or Sn is within the above range. That is, the primer layer is particularly preferably composed mainly of titanium oxide (TiO 2 ) or tin oxide (SnO 2 ).
 上記の通り、ハードコート層11上に、特定の金属の酸化物を含むプライマー層3を形成し、その上に反射防止層5を形成することにより、外線等の光に長時間晒された場合でも、反射防止層の剥離が生じ難く、耐候性に優れる反射防止フィルムが得られる。特に、ハードコート層11がナノ粒子を含む場合に、プライマー層3による反射防止層5の密着性向上が顕著となる傾向がある。 As described above, the primer layer 3 containing a specific metal oxide is formed on the hard coat layer 11, and the antireflection layer 5 is formed thereon. However, peeling of the antireflection layer is unlikely to occur, and an antireflection film having excellent weather resistance can be obtained. In particular, when the hard coat layer 11 contains nanoparticles, the primer layer 3 tends to significantly improve the adhesion of the antireflection layer 5 .
 プライマー層3の厚みは、例えば、0.5~30nm程度であり、好ましくは1~25nmであり、2nm以上または3nm以上でもよい。プライマー層の膜厚が上記範囲であれば、ハードコート層11との密着性がより高められる傾向がある。透明性の観点においては、プライマー層3は、ハードコート層11および反射防止層5との密着性を確保できる範囲で厚みが小さい方が好ましい。プライマー層3の厚みは、20nm以下、15nm以下、10nm以下または8nm以下であってもよい。 The thickness of the primer layer 3 is, for example, about 0.5 to 30 nm, preferably 1 to 25 nm, and may be 2 nm or more or 3 nm or more. When the film thickness of the primer layer is within the above range, there is a tendency that the adhesion to the hard coat layer 11 is further enhanced. From the viewpoint of transparency, it is preferable that the thickness of the primer layer 3 is small within a range in which the adhesion to the hard coat layer 11 and the antireflection layer 5 can be ensured. The thickness of the primer layer 3 may be 20 nm or less, 15 nm or less, 10 nm or less, or 8 nm or less.
<反射防止層>
 反射防止層5は、屈折率の異なる複数の薄膜の積層体である。一般に、反射防止層は、入射光と反射光の逆転した位相が互いに打ち消し合うように、薄膜の光学膜厚(屈折率と厚みの積)が調整される。屈折率の異なる複数の薄膜の多層積層体により、可視光の広帯域の波長範囲において、反射率を小さくできる。反射防止層5を構成する薄膜としては、無機材料が好ましく、金属または半金属の酸化物、窒化物、フッ化物等からなるセラミック材料が好ましく、中でも金属または半金属の酸化物(無機酸化物)が好ましい。
<Antireflection layer>
The antireflection layer 5 is a laminate of a plurality of thin films having different refractive indices. In general, the antireflection layer has an optical thickness (product of refractive index and thickness) of the thin film so that the reversed phases of incident light and reflected light cancel each other out. A multi-layer stack of thin films having different refractive indices can reduce the reflectance in a wide wavelength range of visible light. The thin film constituting the antireflection layer 5 is preferably an inorganic material, preferably a ceramic material made of metal or semimetal oxide, nitride, fluoride, etc. Among them, metal or semimetal oxide (inorganic oxide). is preferred.
 反射防止層5は、好ましくは、高屈折率層と低屈折率層の交互積層体である。空気界面での反射を低減するために、反射防止層5の最外層(ハードコートフィルム1から最も離れた層)として設けられる薄膜54は、低屈折率層であることが好ましい。 The antireflection layer 5 is preferably an alternate laminate of high refractive index layers and low refractive index layers. In order to reduce reflection at the air interface, the thin film 54 provided as the outermost layer (layer farthest from the hard coat film 1) of the antireflection layer 5 is preferably a low refractive index layer.
 高屈折率層51,53は、例えば屈折率が1.9以上、好ましくは2.0以上である。高屈折率材料としては、酸化チタン、酸化ニオブ、酸化ジルコニウム、酸化タンタル、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、アンチモンドープ酸化スズ(ATO)等が挙げられる。中でも、酸化チタンまたは酸化ニオブが好ましい。低屈折率層52,54は、例えば屈折率が1.6以下、好ましくは1.5以下である。低屈折率材料としては、酸化シリコン、窒化チタン、フッ化マグネシウム、フッ化バリウム、フッ化カルシウム、フッ化ハフニウム、フッ化ランタン等が挙げられる。中でも酸化シリコンが好ましい。特に、高屈折率層としての酸化ニオブ(Nb)薄膜51,53と、低屈折率層としての酸化シリコン(SiO)薄膜52,54とを交互に積層することが好ましい。低屈折率層と高屈折率層に加えて、屈折率1.6~1.9程度の中屈折率層が設けられてもよい。 The high refractive index layers 51 and 53 have, for example, a refractive index of 1.9 or more, preferably 2.0 or more. Examples of high refractive index materials include titanium oxide, niobium oxide, zirconium oxide, tantalum oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and antimony-doped tin oxide (ATO). Among them, titanium oxide or niobium oxide is preferable. The low refractive index layers 52 and 54 have, for example, a refractive index of 1.6 or less, preferably 1.5 or less. Examples of low refractive index materials include silicon oxide, titanium nitride, magnesium fluoride, barium fluoride, calcium fluoride, hafnium fluoride, and lanthanum fluoride. Among them, silicon oxide is preferred. In particular, it is preferable to alternately stack niobium oxide (Nb 2 O 5 ) thin films 51 and 53 as high refractive index layers and silicon oxide (SiO 2 ) thin films 52 and 54 as low refractive index layers. A medium refractive index layer having a refractive index of about 1.6 to 1.9 may be provided in addition to the low refractive index layer and the high refractive index layer.
 高屈折率層および低屈折率層の膜厚は、それぞれ、5~200nm程度であり、15~150μm程度が好ましい。屈折率や積層構成等に応じて、可視光の反射率が小さくなるように、各層の膜厚を設計すればよい。例えば、高屈折率層と低屈折率層の積層構成としては、ハードコートフィルム1側から、光学膜厚25nm~55nm程度の高屈折率層51、光学膜厚35nm~55nm程度の低屈折率層52、光学膜厚80nm~240nm程度の高屈折率層53、および光学膜厚120nm~150nm程度の低屈折率層54の4層構成が挙げられる。反射防止層は4層構成に限定されず、2層構成、3層構成、5層構成、または6層以上の積層構成であってもよい。 The film thicknesses of the high refractive index layer and the low refractive index layer are each about 5 to 200 nm, preferably about 15 to 150 μm. The film thickness of each layer may be designed so that the reflectance of visible light is reduced according to the refractive index, lamination structure, and the like. For example, as a laminated structure of a high refractive index layer and a low refractive index layer, from the hard coat film 1 side, a high refractive index layer 51 having an optical thickness of about 25 nm to 55 nm and a low refractive index layer having an optical thickness of about 35 nm to 55 nm 52, a high refractive index layer 53 with an optical thickness of about 80 nm to 240 nm, and a low refractive index layer 54 with an optical thickness of about 120 nm to 150 nm. The antireflection layer is not limited to a 4-layer structure, and may have a 2-layer structure, a 3-layer structure, a 5-layer structure, or a lamination structure of 6 or more layers.
<プライマー層および反射防止層の成膜>
 プライマー層3および反射防止層5を構成する薄膜の成膜方法は特に限定されず、ウェットコーティング法、ドライコーティング法のいずれでもよい。膜厚が均一な薄膜を形成できることから、真空蒸着、CVD,スパッタ、電子線蒸等のドライコーティング法が好ましい。中でも、膜厚の均一性に優れ、かつ緻密な膜を形成しやすいことから、スパッタ法が好ましい。
<Formation of primer layer and antireflection layer>
A method for forming the thin films constituting the primer layer 3 and the antireflection layer 5 is not particularly limited, and may be either a wet coating method or a dry coating method. A dry coating method such as vacuum deposition, CVD, sputtering, or electron beam deposition is preferred because it can form a thin film with a uniform thickness. Among them, the sputtering method is preferable because it is excellent in the uniformity of the film thickness and can easily form a dense film.
 スパッタ法では、ロールトゥーロール方式により、フィルム基材を一方向(長手方向)に搬送しながら、薄膜を連続成膜できる。そのため、ハードコートフィルム1上に、プライマー層3および複数の薄膜からなる反射防止層5を備える反射防止フィルムの生産性を向上できる。 In the sputtering method, a thin film can be formed continuously while transporting the film substrate in one direction (longitudinal direction) by a roll-to-roll method. Therefore, the productivity of the antireflection film including the primer layer 3 and the antireflection layer 5 composed of a plurality of thin films on the hard coat film 1 can be improved.
 スパッタ法では、アルゴン等の不活性ガス、および必要に応じて酸素等の反応性ガスをチャンバー内に導入しながら成膜が行われる。スパッタ法による酸化物層の成膜は、酸化物ターゲットを用いる方法、および(半)金属ターゲットを用いた反応性スパッタのいずれでも実施できる。 In the sputtering method, film formation is performed while introducing an inert gas such as argon and, if necessary, a reactive gas such as oxygen into the chamber. The deposition of the oxide layer by the sputtering method can be carried out by either a method using an oxide target or reactive sputtering using a (semi)metal target.
 高レートで無機酸化物を成膜できることから、反射防止層5を構成する薄膜は、金属または半金属のターゲットを用いた反応性スパッタにより成膜することが好ましい。反応性スパッタに用いるスパッタ電源としては、DCまたはMF-ACが好ましい。 Since the inorganic oxide can be deposited at a high rate, the thin film forming the antireflection layer 5 is preferably deposited by reactive sputtering using a metal or semimetal target. DC or MF-AC is preferable as a sputtering power source used for reactive sputtering.
 反応性スパッタでは、アルゴン等の不活性ガスおよび酸素等の反応性ガスをチャンバー内に導入しながら成膜が行われる。反応性スパッタでは、金属領域と酸化物領域との中間の遷移領域となるように酸素量を調整することが好ましい。金属領域で成膜を行うと、得られる膜の酸素量が化学量論組成に比して小さく酸素不足の状態となり、反射防止層が金属光沢を帯びて透明性が低下する傾向がある。また、酸素量が大きい酸化物領域では、成膜レートが極端に低下する傾向がある。 In reactive sputtering, film formation is performed while introducing an inert gas such as argon and a reactive gas such as oxygen into the chamber. In reactive sputtering, it is preferable to adjust the amount of oxygen so that the transition region is intermediate between the metal region and the oxide region. When the film is formed in the metal region, the amount of oxygen in the obtained film is smaller than the stoichiometric composition, resulting in an oxygen-deficient state, and the antireflection layer tends to have a metallic luster and decrease in transparency. Also, in an oxide region with a large amount of oxygen, the film formation rate tends to be extremely low.
 スパッタ成膜が遷移領域となるように酸素量を調整することにより、高レートで酸化物膜を成膜できる。成膜モードが遷移領域となるように酸素導入量を制御する方法としては、放電のプラズマ発光強度を検知して、成膜室へのガス導入量を制御するプラズマエミッションモニタリング方式(PEM方式)が挙げられる。PEMでは、プラズマ発光強度を検知し、酸素導入量にフィードバックすることにより制御が行われる。例えば、発光強度の制御値(セットポイント)を所定の範囲に設定してPEM制御を行い、酸素導入量を調整することにより、遷移領域での成膜を維持できる。プラズマインピーダンスが一定となるように、すなわち放電電圧が一定となるように酸素導入量を制御するインピーダンス方式による制御を行ってもよい。 An oxide film can be deposited at a high rate by adjusting the amount of oxygen so that sputtering deposition is in the transition region. As a method for controlling the amount of oxygen introduced so that the deposition mode is in the transition region, there is a plasma emission monitoring method (PEM method) in which the plasma emission intensity of the discharge is detected and the amount of gas introduced into the deposition chamber is controlled. mentioned. In PEM, control is performed by detecting the plasma emission intensity and feeding it back to the amount of oxygen introduced. For example, by setting the emission intensity control value (set point) within a predetermined range and performing PEM control to adjust the oxygen introduction amount, film formation in the transition region can be maintained. An impedance method may be used to control the amount of introduced oxygen so that the plasma impedance is constant, that is, the discharge voltage is constant.
 プライマー層3の成膜には、酸化物ターゲットを用いることが好ましい。金属ターゲットを用いる反応性スパッタは、成膜速度が大きい利点を有する反面、酸素等の反応性ガスの導入量のわずかな変化により膜質が変化する場合がある。一方、酸化物ターゲットを用いれば、酸素導入量等の成膜条件が変化した場合であっても、膜質の変化が少ないため、プライマー層の膜質が安定化する。酸化チタンや酸化錫等の導電性酸化物ターゲットを用いれば、DCスパッタにより高レートでの成膜が可能である。導電性を高めるために、少量のドーパントを添加した酸化物ターゲットを用いてもよい。 It is preferable to use an oxide target for forming the primer layer 3 . Reactive sputtering using a metal target has the advantage of a high film formation rate, but on the other hand, the film quality may change due to a slight change in the introduction amount of a reactive gas such as oxygen. On the other hand, if an oxide target is used, the film quality of the primer layer is stabilized because the film quality does not change much even when the film formation conditions such as the amount of oxygen introduced are changed. If a conductive oxide target such as titanium oxide or tin oxide is used, it is possible to form a film at a high rate by DC sputtering. An oxide target with a small amount of dopant added may be used to enhance conductivity.
 プライマー層をスパッタ成膜する際の基板温度は、-30~150℃程度であり、基板材料としてのハードコートフィルムが耐久性を有する範囲であれば特に限定されない。プライマー層をスパッタ成膜する際の圧力やパワー密度は、ターゲットの種類や、プライマー層の膜厚に応じて適宜設定可能である。 The substrate temperature when the primer layer is formed by sputtering is about -30 to 150°C, and is not particularly limited as long as the hard coat film as the substrate material has durability. The pressure and power density for forming the primer layer by sputtering can be appropriately set according to the type of target and the film thickness of the primer layer.
 酸化物ターゲットを用いたスパッタによりプライマー層3を成膜する場合、アルゴン等の不活性ガスに加えて、酸素等の酸化性ガスを導入することが好ましい。酸素を導入することにより、スパッタ時にターゲットから脱離する酸素が補われるため、化学量論組成の酸化物薄膜が形成されやすく、透明性や化学安定性が向上する傾向がある。また、スパッタ成膜時に導入する酸素量の増大に伴って、反射防止層の密着性が向上する傾向がある。スパッタ成膜時の酸素導入量は、不活性ガス100体積部に対して、例えば0.1~100体積部程度であり、0.3体積部以上が好ましく、0.5体積部以上がより好ましい。反射防止層の密着性を高める観点から、スパッタ成膜時の酸素導入量は、不活性ガス100体積部に対して、1体積部以上が好ましく、5体積部以上がより好ましく、10体積部以上がさらに好ましく、15体積部以上または20体積部以上であってもよい。スパッタ成膜時の酸素導入量は、不活性ガス100体積部に対して、80体積部以下、70体積部以下、60体積部以下、50体積部以下、40体積部以下または30体積部以下であってもよい。 When forming the primer layer 3 by sputtering using an oxide target, it is preferable to introduce an oxidizing gas such as oxygen in addition to an inert gas such as argon. By introducing oxygen, oxygen released from the target during sputtering is supplemented, so that an oxide thin film having a stoichiometric composition tends to be easily formed, and transparency and chemical stability tend to be improved. Further, the adhesion of the antireflection layer tends to improve as the amount of oxygen introduced during sputtering film formation increases. The amount of oxygen introduced during sputtering film formation is, for example, about 0.1 to 100 parts by volume, preferably 0.3 parts by volume or more, more preferably 0.5 parts by volume or more, with respect to 100 parts by volume of the inert gas. . From the viewpoint of improving the adhesion of the antireflection layer, the amount of oxygen introduced during sputtering film formation is preferably 1 part by volume or more, more preferably 5 parts by volume or more, and 10 parts by volume or more with respect to 100 parts by volume of the inert gas. is more preferable, and may be 15 parts by volume or more or 20 parts by volume or more. The amount of oxygen introduced during sputtering deposition is 80 parts by volume or less, 70 parts by volume or less, 60 parts by volume or less, 50 parts by volume or less, 40 parts by volume or less, or 30 parts by volume or less with respect to 100 parts by volume of the inert gas. There may be.
 金属ターゲットを用いた反応性スパッタでは、酸素導入量が少ない場合は、酸化物が非化学量論組成となり、プライマー層の透明性が低下する場合があるが、酸化物ターゲットを用いれば、酸素を全く導入しない場合であっても酸素欠損はわずかである。透明電極を形成する場合は、酸素導入量が過度に大きいと導電性が低下する傾向があるが、プライマー層には導電性は要求されないため、酸素導入量が大きい場合でも特段の問題は生じない。むしろ、酸素導入量の増大に伴って、反射防止層の密着性が向上する傾向があり、透明電極等の導電膜を成膜する場合の一般的な条件に比べてより大きな酸素導入量でプライマー層を成膜することが好ましい。 In reactive sputtering using a metal target, if the amount of oxygen introduced is small, the oxide may have a non-stoichiometric composition and the transparency of the primer layer may decrease. Oxygen vacancies are slight even if they are not introduced at all. When forming a transparent electrode, if the amount of oxygen introduced is excessively large, the conductivity tends to decrease. However, since the primer layer does not require conductivity, even if the amount of oxygen introduced is large, no particular problem occurs. . Rather, as the amount of oxygen introduced increases, the adhesion of the antireflection layer tends to improve. It is preferred to deposit a layer.
 ハードコート層と反射防止層の間にプライマー層として酸化シリコンを設けた反射防止フィルムは、プライマー層の膜質変動が大きく、密着性の低下や透明性の低下が生じやすい。酸化シリコンプライマー層の膜質変動要因の1つとして、半金属であるSiの酸化物であるSiOの組成(xの値)の緻密な制御が容易ではないことが挙げられる。 An antireflection film in which a silicon oxide layer is provided as a primer layer between a hard coat layer and an antireflection layer undergoes large fluctuations in film quality of the primer layer, and is likely to cause deterioration in adhesion and transparency. One of the factors that cause the film quality of the silicon oxide primer layer to fluctuate is that it is not easy to precisely control the composition (value of x) of SiO x , which is an oxide of Si, which is a metalloid.
 SiOは、Siターゲットを用いた反応性スパッタにより成膜されるが、わずかな成膜条件の相違に起因して組成が変化する。酸素量が少ない場合は、透明性が低下する傾向があり、酸素量が多い場合は酸素欠損を有さない(化学量論組成の)SiOが生成し、反射防止層の密着性が低下する傾向がある。酸化物ターゲットを用いる場合、完全酸化物の成膜は上記のPEM制御等により反応をモニタしながら酸素量を適切に制御できるが、非化学量論組成の酸化物の成膜では、薄膜に取り込まれる酸素量が一定となるように制御することが容易ではなく、特性のバラつきが生じやすい。 SiO x is deposited by reactive sputtering using a Si target, but the composition changes due to slight differences in deposition conditions. If the amount of oxygen is small, the transparency tends to decrease, and if the amount of oxygen is large, SiO2 (with a stoichiometric composition) having no oxygen vacancies is generated, and the adhesion of the antireflection layer is reduced. Tend. When an oxide target is used, the amount of oxygen can be appropriately controlled while monitoring the reaction by the above-mentioned PEM control or the like in the film formation of a complete oxide. It is not easy to control the amount of oxygen that is absorbed to be constant, and the characteristics tend to vary.
 上記のように、酸化物ターゲットを用いて金属酸化物プライマー層を成膜する場合は、酸素量のズレに起因する特性変化が生じ難く、酸素量の微細な調整を必要としない。そのため、反射防止層の密着性等の品質が安定した反射防止フィルムの提供が可能となる。 As described above, when forming a metal oxide primer layer using an oxide target, characteristic changes due to deviations in the amount of oxygen are unlikely to occur, and fine adjustment of the amount of oxygen is not required. Therefore, it is possible to provide an antireflection film with stable quality such as adhesion of the antireflection layer.
[防汚層]
 反射防止フィルムは、反射防止層5上に、付加的な機能層を備えていてもよい。反射防止層5の最表面の低屈折率層54として酸化シリコン層が配置されている場合は、酸化シリコンの濡れ性が高く、指紋や手垢等の汚染物質が付着しやすい。そのため、外部環境からの汚染防止や、付着した汚染物質の除去を容易とする等の目的で、反射防止層5上に防汚層(不図示)を設けてもよい。
[Anti-fouling layer]
The antireflection film may comprise additional functional layers on the antireflection layer 5 . When a silicon oxide layer is arranged as the outermost low refractive index layer 54 of the antireflection layer 5, the wettability of the silicon oxide is high, and contaminants such as fingerprints and fingerprints are likely to adhere. Therefore, an antifouling layer (not shown) may be provided on the antireflection layer 5 for the purpose of preventing contamination from the external environment and facilitating removal of adhering contaminants.
 反射防止フィルムの表面に防汚層を設ける場合は、界面での反射を低減する観点から、反射防止層5の最表面の低屈折率層54と防汚層との屈折率差が小さいことが好ましい。防汚層の屈折率は、1.6以下が好ましく、1.55以下がより好ましい。防汚層の材料としては、フッ素基含有のシラン系化合物や、フッ素基含有の有機化合物等が好ましい。防汚層は、リバースコート法、ダイコート法、グラビアコート法等のウエット法や、CVD法等のドライ法等により形成できる。防汚層の厚みは、通常、1~100nm程度であり、好ましくは2~50nm、より好ましくは3~30nmである。 When an antifouling layer is provided on the surface of the antireflection film, the difference in refractive index between the low refractive index layer 54 on the outermost surface of the antireflection layer 5 and the antifouling layer should be small from the viewpoint of reducing reflection at the interface. preferable. The refractive index of the antifouling layer is preferably 1.6 or less, more preferably 1.55 or less. As the material for the antifouling layer, fluorine group-containing silane compounds, fluorine group-containing organic compounds, and the like are preferable. The antifouling layer can be formed by a wet method such as a reverse coating method, a die coating method, or a gravure coating method, or a dry method such as a CVD method. The thickness of the antifouling layer is usually about 1 to 100 nm, preferably 2 to 50 nm, more preferably 3 to 30 nm.
[反射防止フィルムの使用形態]
 反射防止フィルムは、例えば液晶ディスプレイや有機ELディスプレイ等の画像表示装置の表面に配置して用いられる。例えば、液晶セルや有機ELセル等の画像表示媒体を含むパネルの視認側表面に反射防止フィルムを配置することにより、外光の反射を低減して、画像表示装置の視認性を向上できる。
[Usage form of antireflection film]
An antireflection film is used, for example, by placing it on the surface of an image display device such as a liquid crystal display or an organic EL display. For example, by arranging an antireflection film on the viewing side surface of a panel including an image display medium such as a liquid crystal cell or an organic EL cell, the reflection of external light can be reduced and the visibility of the image display device can be improved.
 反射防止フィルムを他のフィルムと積層してもよい。例えば、フィルム基材10のハードコート層非形成面に、偏光子を貼り合わせることにより、反射防止層付き偏光板を形成できる。 The antireflection film may be laminated with other films. For example, a polarizing plate with an antireflection layer can be formed by attaching a polarizer to the surface of the film substrate 10 on which the hard coat layer is not formed.
 偏光子としては、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン系配向フィルム等が挙げられる。中でも、高い偏光度を有することから、ポリビニルアルコールや、部分ホルマール化ポリビニルアルコール等のポリビニルアルコール系フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて所定方向に配向させたポリビニルアルコール(PVA)系偏光子が好ましい。 As a polarizer, dichroic substances such as iodine and dichroic dyes are added to hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and partially saponified ethylene-vinyl acetate copolymer films. and a polyene-based oriented film such as a dehydrated product of polyvinyl alcohol or a dehydrochlorinated product of polyvinyl chloride. Among them, since it has a high degree of polarization, a polyvinyl alcohol-based film such as polyvinyl alcohol or partially formalized polyvinyl alcohol is oriented in a predetermined direction by adsorbing a dichroic substance such as iodine or a dichroic dye. Alcohol (PVA) based polarizers are preferred.
 偏光子の表面には、偏光子の保護等を目的として透明保護フィルムが設けられていてもよい。透明保護フィルムは、偏光子の一方の面にのみ貼り合わせられていてもよく、両面に貼り合わせられていてもよい。一般には、偏光子の反射防止フィルム付設面と反対側の面に透明保護フィルムが設けられる。偏光子の反射防止フィルム付設面では、反射防止フィルムが透明保護フィルムとしての機能を兼ね備えるため、透明保護フィルムを設ける必要はないが、偏光子と反射防止フィルムとの間に、透明保護フィルムが設けられていてもよい。 A transparent protective film may be provided on the surface of the polarizer for the purpose of protecting the polarizer. The transparent protective film may be attached only to one surface of the polarizer, or may be attached to both surfaces. In general, a transparent protective film is provided on the surface of the polarizer opposite to the surface provided with the antireflection film. On the side of the polarizer on which the antireflection film is attached, the antireflection film also functions as a transparent protective film, so it is not necessary to provide a transparent protective film, but a transparent protective film may be provided between the polarizer and the antireflection film. may have been
 透明保護フィルムの材料としては、透明フィルム基材の材料として前述したものと同様の材料が好ましく用いられる。偏光子と透明フィルムとの貼り合わせには、接着剤を用いることが好ましい。接着剤としては、アクリル系重合体、シリコン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルアルコール、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系ポリマー、フッ素系ポリマー、ゴム系ポリマー等をベースポリマーとするものを適宜に選択して用いることができる。PVA系偏光子の接着には、ポリビニルアルコール系の接着剤が好ましく用いられる。 As the material for the transparent protective film, the same materials as those described above as the material for the transparent film substrate are preferably used. An adhesive is preferably used for bonding the polarizer and the transparent film. Adhesives are based on acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyvinyl alcohol, polyvinyl ether, vinyl acetate/vinyl chloride copolymer, modified polyolefin, epoxy polymer, fluorine polymer, rubber polymer, etc. Polymers can be appropriately selected and used. A polyvinyl alcohol-based adhesive is preferably used for bonding the PVA-based polarizer.
[反射防止フィルム以外の積層体]
 以上、フィルム基材のハードコート層上にプライマー層を介して無機薄膜として反射防止層を備える反射防止フィルムの実施形態について説明したが、上記のプライマー層は、反射防止層以外の無機薄膜を備える積層体においても、密着性および耐候性向上に寄与し得る。
[Laminates other than antireflection films]
As described above, an embodiment of an antireflection film comprising an antireflection layer as an inorganic thin film on a hard coat layer of a film base via a primer layer has been described, but the primer layer comprises an inorganic thin film other than the antireflection layer. Also in the laminate, it can contribute to the improvement of adhesion and weather resistance.
 無機薄膜の材料としては、金属や金属化合物(金属または半金属の酸化物、窒化物、炭化物、硫化物、フッ化物等)等が挙げられる。無機薄膜は、導電性でも絶縁性でもよく、半導体でもよい。無機薄膜の膜厚(複数の薄膜を含む場合は合計膜厚)は、例えば1nm~1μm程度であり、薄膜の種類や積層体の機能等に応じて、適宜に調整すればよい。  Inorganic thin film materials include metals and metal compounds (metal or metalloid oxides, nitrides, carbides, sulfides, fluorides, etc.). The inorganic thin film may be conductive, insulating, or semiconducting. The film thickness of the inorganic thin film (the total film thickness when a plurality of thin films are included) is, for example, about 1 nm to 1 μm, and may be appropriately adjusted according to the type of thin film, the function of the laminate, and the like.
 以下に、ハードコート層と反射防止層の間にプライマー層を設けた反射防止フィルムの具体例を挙げて本発明をより詳細に説明するが、本発明は以下の具体例に限定されるものではない。 The present invention will be described in more detail below by giving specific examples of an antireflection film having a primer layer provided between a hard coat layer and an antireflection layer, but the present invention is not limited to the following specific examples. do not have.
[ハードコートフィルムの作製]
 紫外線硬化性アクリル系樹脂組成物(DIC製、商品名「GRANDIC PC-1070」、波長405nmにおける屈折率:1.55)に、樹脂成分100重量部に対するシリカ粒子の量が25重量部となるように、オルガノシリカゾル(日産化学社製「MEK-ST-L」、シリカ粒子(無機フィラー)の平均一次粒子径:50nm、シリカ粒子の粒子径分布:30nm~130nm、固形分30重量%)を添加して混合し、ハードコート層形成用組成物を調製した。
[Preparation of hard coat film]
In an ultraviolet curable acrylic resin composition (manufactured by DIC, product name “GRANDIC PC-1070”, refractive index at wavelength 405 nm: 1.55), the amount of silica particles with respect to 100 parts by weight of the resin component is 25 parts by weight. To, organosilica sol (“MEK-ST-L” manufactured by Nissan Chemical Industries, silica particles (inorganic filler) average primary particle size: 50 nm, silica particle particle size distribution: 30 nm to 130 nm, solid content 30% by weight) is added. and mixed to prepare a composition for forming a hard coat layer.
 厚み40μmのトリアセチルセルロースフィルムの片面に、上記の組成物を、乾燥後の厚みが6μmとなるように塗布し、80℃で3分間乾燥した。その後、高圧水銀ランプを用いて、積算光量200mJ/cmの紫外線を照射し、塗布層を硬化させハードコート層を形成した。 The above composition was applied to one side of a 40 μm-thick triacetyl cellulose film so that the thickness after drying was 6 μm, and dried at 80° C. for 3 minutes. After that, using a high-pressure mercury lamp, the coating layer was cured by irradiating ultraviolet light with an accumulated light amount of 200 mJ/cm 2 to form a hard coat layer.
[反射防止フィルム1]
<表面処理>
 0.5Paの真空雰囲気下でハードコートフィルムを搬送しながら、放電電力1.0kWにてハードコート層の表面にアルゴンプラズマ処理を行った。
[Antireflection film 1]
<Surface treatment>
While transporting the hard coat film in a vacuum atmosphere of 0.5 Pa, the surface of the hard coat layer was subjected to argon plasma treatment at a discharge power of 1.0 kW.
<プライマー層および反射防止層の形成>
 プラズマ処理後のハードコートフィルムをロールトゥーロール方式のスパッタ成膜装置に導入し、槽内を1×10-4Paまで減圧した後、フィルムを走行させながら、基板温度-8℃で、4nmのSiOプライマー層、16nmのNb層、19nmのSiO層、102nmのNb層および71nmのSiO層を、ハードコート層形成面に順に成膜した。
<Formation of primer layer and antireflection layer>
The hard coat film after the plasma treatment was introduced into a roll-to-roll type sputtering film forming apparatus, and the pressure in the tank was reduced to 1×10 −4 Pa. Then, while the film was running, the substrate temperature was −8° C., and a thickness of 4 nm was formed. A SiO 2 primer layer, a 16 nm Nb 2 O 5 layer, a 19 nm SiO 2 layer, a 102 nm Nb 2 O 5 layer and a 71 nm SiO 2 layer were formed in order on the hard coat layer forming surface.
 SiOプライマー層の形成には、Siターゲットを用い、アルゴン100体積部に対して20体積部の酸素を導入しながら、圧力0.2Pa、電力密度0.5W/cmの条件でDCスパッタ成膜を行った。 For the formation of the SiO2 primer layer, a Si target was used, and DC sputtering was performed under the conditions of a pressure of 0.2 Pa and a power density of 0.5 W/ cm2 while introducing 20 parts by volume of oxygen to 100 parts by volume of argon. membrane was performed.
 SiO層(低屈折率層)の成膜にはSiターゲット、Nb層(高屈折率層)の形成にはNbターゲットを用い、アルゴン流量400sccm、圧力0.25Paで成膜を行った。SiO層の成膜およびNb層の成膜においては、プラズマ発光モニタリング(PEM)制御により、成膜モードが遷移領域を維持するように導入する酸素量を調整した。 A Si target was used to form the SiO 2 layer (low refractive index layer), and a Nb target was used to form the Nb 2 O 5 layer (high refractive index layer). rice field. In the deposition of the SiO 2 layer and the Nb 2 O 5 layer, the amount of introduced oxygen was adjusted by plasma emission monitoring (PEM) control so that the deposition mode maintained the transition region.
[反射防止フィルム2]
 反射防止フィルム1の作製と同様に、ハードコートフィルムの作製およびアルゴンプラズマによる表面処理を行った。プラズマ処理後のハードコートフィルムをロールトゥーロール方式のスパッタ成膜装置に導入し、槽内を1×10-4Paまで減圧した後、フィルムを走行させながら、基板温度-8℃で、6nmのTiOプライマー層、16nmのNb層、19nmのSiO層、102nmのNb層および71nmのSiO層を、ハードコート層形成面に順に成膜した。
[Antireflection film 2]
In the same manner as in the preparation of antireflection film 1, a hard coat film was prepared and the surface was treated with argon plasma. The hard coat film after the plasma treatment was introduced into a roll-to-roll type sputtering film forming apparatus, and the pressure in the tank was reduced to 1×10 −4 Pa. Then, while the film was running, the substrate temperature was −8° C., and a thickness of 6 nm was formed. A TiO 2 primer layer, a 16 nm Nb 2 O 5 layer, a 19 nm SiO 2 layer, a 102 nm Nb 2 O 5 layer and a 71 nm SiO 2 layer were sequentially deposited on the hard coat layer forming surface.
 TiOプライマー層の形成には、酸化チタンターゲットを用い、アルゴン100体積部に対して6体積部の酸素を導入しながら、圧力0.2Pa、電力密度0.5W/cmの条件でDCスパッタ成膜を行った。SiO層およびNb層は、反射防止フィルム1と同条件で成膜した。 The TiO 2 primer layer was formed by DC sputtering under the conditions of a pressure of 0.2 Pa and a power density of 0.5 W/cm 2 while introducing 6 parts by volume of oxygen to 100 parts by volume of argon using a titanium oxide target. A film was formed. The SiO 2 layer and the Nb 2 O 5 layer were deposited under the same conditions as the antireflection film 1.
[反射防止フィルム3~7]
 プライマー層の形成に用いる酸化物ターゲットを、酸化錫(SnO)、酸化モリブデン(WO)、酸化クロム(CrO)、酸化ニッケル(NiO)、および酸化亜鉛(ZnO)に変更し、成膜時の酸素導入量および膜厚を表1に示す様に変更した。これらの変更以外は、反射防止フィルム2の作製と同様にして、ハードコート層上に、プライマー層を介して反射防止層を備える反射防止フィルムを作製した。
[Antireflection films 3 to 7]
The oxide target used for forming the primer layer was changed to tin oxide (SnO 2 ), molybdenum oxide (WO 3 ), chromium oxide (CrO 3 ), nickel oxide (NiO), and zinc oxide (ZnO), and the film was formed. The amount of oxygen introduced and the film thickness were changed as shown in Table 1. An antireflection film having an antireflection layer on a hard coat layer via a primer layer was produced in the same manner as in the production of antireflection film 2 except for these changes.
[反射防止層の密着性の評価]
<促進耐候試験>
 反射防止フィルムのハードコートフィルム側の面(反射防止層非形成面)を、アクリル系透明粘着剤を介してガラス板上に貼り合わせ、スガ試験機製「紫外線フェードメーターU48」を用いて、温度40℃、湿度20%、放射強度(300~700nm積算照度)500±50W/mの条件で500時間の促進耐候試験を実施した。
[Evaluation of Adhesion of Antireflection Layer]
<Accelerated weathering test>
The surface of the antireflection film on the hard coat film side (surface without antireflection layer) is pasted on a glass plate via a transparent acrylic adhesive, and is heated to 40 using an "UV fade meter U48" manufactured by Suga Test Instruments. An accelerated weather resistance test was performed for 500 hours under the conditions of °C, humidity of 20%, and radiation intensity (accumulated illumination of 300 to 700 nm) of 500 ± 50 W/ m2 .
<密着性の評価>
 促進耐候試験を実施していない試料および促進耐候試験後の試料のそれぞれについて、反射防止層表面に1mm間隔で切り目を入れ、100マスの碁盤目を形成した。次いで、反射防止層の表面が乾燥しないように、イソプロピルアルコール2mLを連続的に滴下し、20mm角のSUS製治具に固定したポリエステルワイパー(サンプラテック製「アンティコンゴールド」)を碁盤目上で摺動させた(荷重:1.5kg、1000往復)。反射防止層がマスの面積の1/4以上の領域で剥離している碁盤目の個数をカウントし、以下の基準に従い、密着性を評価した。
  A:剥離碁盤目数が10個以下
  B:剥離碁盤目数が11~50個
  C:剥離碁盤目数が51個以上
<Evaluation of Adhesion>
For each of the samples not subjected to the accelerated weathering test and the samples after the accelerated weathering test, cuts were made at intervals of 1 mm on the surface of the antireflection layer to form a grid of 100 squares. Next, 2 mL of isopropyl alcohol was continuously dropped so that the surface of the antireflection layer would not dry, and a polyester wiper ("Anticon Gold" manufactured by Sunplatec) fixed to a 20 mm square SUS jig was rubbed on a grid pattern. It was moved (load: 1.5 kg, 1000 reciprocations). The number of grid patterns in which the antireflection layer was peeled off in a region of 1/4 or more of the area of the mass was counted, and the adhesion was evaluated according to the following criteria.
A: The number of peeled grids is 10 or less B: The number of peeled grids is 11 to 50 C: The number of peeled grids is 51 or more
 反射防止フィルム1~7のそれぞれについて、プライマー層の金属種、プライマー層成膜時の酸素導入量(アルゴンに対する体積比)およびプライマー層の膜厚、ならびに促進耐候試験前後の反射防止層の密着性の評価結果を表1に示す。 For each of the antireflection films 1 to 7, the metal type of the primer layer, the amount of oxygen introduced during the formation of the primer layer (volume ratio to argon) and the thickness of the primer layer, and the adhesion of the antireflection layer before and after the accelerated weathering test Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 反射防止フィルム1~7は、促進耐候試験前は、いずれも反射防止層が良好な密着性を示した。シリコンターゲットを用いた反応性スパッタによりSiOプライマー層を形成した反射防止フィルム1は、促進耐候試験後に著しい密着性の低下がみられた。なお、プライマー層成膜時の酸素導入量を、アルゴン100体積部に対して3体積部に変更してSiOx(x<2)プライマー層を成膜した試料(表1にデータ不掲載)では、促進耐候試験後も反射防止層が良好な密着性を示したが、透過率の低下がみられた。 All of the antireflection films 1 to 7 exhibited good adhesion of the antireflection layer before the accelerated weathering test. The anti-reflection film 1, in which the SiO 2 primer layer was formed by reactive sputtering using a silicon target, exhibited a significant decrease in adhesion after the accelerated weathering test. In addition, in the sample (data not shown in Table 1) in which the SiOx (x<2) primer layer was formed by changing the amount of oxygen introduced during the formation of the primer layer to 3 parts by volume with respect to 100 parts by volume of argon, Even after the accelerated weathering test, the antireflection layer exhibited good adhesion, but a decrease in transmittance was observed.
 プライマー層として酸化チタン(Ti-OのD 298=666kJ/mol)を成膜した反射防止フィルム2は、促進耐候試験後も、反射防止層が良好な密着性を示した。プライマー層として酸化錫(Sn-O:D 298=528kJ/mol)を成膜した反射防止フィルム3およびプライマー層として酸化タングステン(W-O:D 298=720kJ/mol)を成膜した反射防止フィルム4も、同様であった。 The antireflection film 2 in which titanium oxide (D 0 298 of Ti—O = 666 kJ/mol) was deposited as a primer layer showed good adhesion of the antireflection layer even after the accelerated weathering test. Antireflection film 3 formed with tin oxide (Sn—O: D 0 298 =528 kJ/mol) as a primer layer and reflection formed with tungsten oxide (WO: D 0 298 =720 kJ/mol) as a primer layer The prevention film 4 was also the same.
 プライマー層として酸化クロム(Cr-O:D 298=461kJ/mol)を成膜した反射防止フィルム5は、反射防止フィルム2~4と比較すると、促進耐候試験後の反射防止層の密着性の低下がみられた。プライマー層として酸化ニッケル(Ni-O:D 298=461kJ/mol)を成膜した反射防止フィルム5、およびプライマー層として酸化亜鉛(Zn-O:D 298<250kJ/mol)を成膜した反射防止フィルム6は、促進耐候試験後に著しい密着性の低下がみられた。 Antireflection film 5 in which chromium oxide (Cr—O: D 0 298 =461 kJ/mol) was deposited as a primer layer had better adhesion of the antireflection layer after the accelerated weathering test than antireflection films 2 to 4. decreased. Antireflection film 5 with nickel oxide (Ni—O: D 0 298 =461 kJ/mol) as a primer layer, and zinc oxide (Zn—O: D 0 298 <250 kJ/mol) as a primer layer. The antireflection film 6 showed a marked decrease in adhesion after the accelerated weathering test.
 以上の結果から、ハードコート層上に、プライマー層として、酸素との結合解離エネルギーが大きい金属元素の酸化物薄膜を形成し、その上に反射防止層等の無機薄膜を形成することにより、耐候試験後も無機薄膜の密着性が高い積層体が得られることが分かる。 From the above results, it can be concluded that by forming an oxide thin film of a metal element having a large bond dissociation energy with oxygen as a primer layer on the hard coat layer and then forming an inorganic thin film such as an antireflection layer thereon, weather resistance can be improved. It can be seen that a laminate with high adhesion of the inorganic thin film can be obtained even after the test.
  1     ハードコートフィルム
  10    フィルム基材
  11    ハードコート層
  3     プライマー層
  5     反射防止層
  51,53 高屈折率層
  52,54 低屈折率層
  100   反射防止フィルム

 
REFERENCE SIGNS LIST 1 hard coat film 10 film substrate 11 hard coat layer 3 primer layer 5 antireflection layer 51, 53 high refractive index layers 52, 54 low refractive index layer 100 antireflection film

Claims (10)

  1.  フィルム基材の一主面上にハードコート層を備えるハードコートフィルムと;前記ハードコート層上に接して設けられたプライマー層と;前記プライマー層上に接して設けられた無機薄膜とを備える積層体であって、
     前記プライマー層は金属酸化物薄膜であり、
     前記金属酸化物の金属元素として、温度298Kにおける金属-酸素間の結合解離エネルギーが450~780kJ/molである金属を含む、
     積層体。
    A laminate comprising: a hard coat film comprising a hard coat layer on one main surface of a film substrate; a primer layer provided on and in contact with said hard coat layer; and an inorganic thin film provided on and in contact with said primer layer being a body,
    The primer layer is a metal oxide thin film,
    The metal element of the metal oxide contains a metal having a metal-oxygen bond dissociation energy of 450 to 780 kJ / mol at a temperature of 298 K,
    laminate.
  2.  フィルム基材の一主面上にハードコート層を備えるハードコートフィルムと;前記ハードコート層上に接して設けられたプライマー層と;前記プライマー層上に接して設けられた無機薄膜とを備える積層体であって、
     前記プライマー層は金属酸化物薄膜であり、
     前記金属酸化物の金属元素として、Sc,Y,Ti,Zr,V,Nb,Cr,Mo,W,Tc,Re,Ru,Os,AlおよびSnからなる群から選択される1種以上を含む、
     積層体。
    A laminate comprising: a hard coat film comprising a hard coat layer on one main surface of a film substrate; a primer layer provided on and in contact with said hard coat layer; and an inorganic thin film provided on and in contact with said primer layer being a body,
    The primer layer is a metal oxide thin film,
    As metal elements of the metal oxide, one or more selected from the group consisting of Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Tc, Re, Ru, Os, Al and Sn ,
    laminate.
  3.  前記プライマー層の厚みが0.5~30nmである、請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the primer layer has a thickness of 0.5 to 30 nm.
  4.  前記ハードコート層が、バインダー樹脂および微粒子を含む、請求項1~3のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the hard coat layer contains a binder resin and fine particles.
  5.  前記ハードコート層が、バインダー樹脂および粒子径10~100nmのナノ粒子を含み、
     前記バインダー樹脂100重量部に対する前記ナノ粒子の含有量が20~100重量部である、請求項1~4のいずれか1項に記載の積層体。
    The hard coat layer contains a binder resin and nanoparticles with a particle size of 10 to 100 nm,
    The laminate according to any one of claims 1 to 4, wherein the content of the nanoparticles is 20 to 100 parts by weight with respect to 100 parts by weight of the binder resin.
  6.  前記無機薄膜が、屈折率が異なる複数の薄膜の積層体からなる反射防止層である、請求項1~5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the inorganic thin film is an antireflection layer comprising a laminate of a plurality of thin films having different refractive indices.
  7.  前記反射防止層を構成する複数の薄膜がいずれも無機酸化物薄膜である、請求項6に記載の積層体。 The laminate according to claim 6, wherein all of the plurality of thin films forming the antireflection layer are inorganic oxide thin films.
  8.  画像表示媒体の視認側表面に、請求項6または7に記載の積層体が配置されている、画像表示装置。 An image display device, wherein the layered product according to claim 6 or 7 is arranged on the viewing side surface of an image display medium.
  9.  請求項1~7のいずれか1項に記載の積層体の製造方法であって、
     ハードコート層上に、酸化物ターゲットを用いたスパッタ法によりプライマー層を形成する、積層体の製造方法。
    A method for producing a laminate according to any one of claims 1 to 7,
    A method for producing a laminate, comprising forming a primer layer on a hard coat layer by a sputtering method using an oxide target.
  10.  前記プライマー層上に、反応性スパッタにより無機薄膜を形成する、請求項9に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 9, wherein an inorganic thin film is formed on the primer layer by reactive sputtering.
PCT/JP2022/012199 2021-05-24 2022-03-17 Layered body and method for manufacturing same, and image display device WO2022249674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237030168A KR20240011660A (en) 2021-05-24 2022-03-17 Laminate, manufacturing method thereof, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021086717A JP2022179907A (en) 2021-05-24 2021-05-24 Laminate body, method for manufacturing the same, and image display device
JP2021-086717 2021-05-24

Publications (1)

Publication Number Publication Date
WO2022249674A1 true WO2022249674A1 (en) 2022-12-01

Family

ID=84229789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012199 WO2022249674A1 (en) 2021-05-24 2022-03-17 Layered body and method for manufacturing same, and image display device

Country Status (4)

Country Link
JP (1) JP2022179907A (en)
KR (1) KR20240011660A (en)
TW (1) TW202306761A (en)
WO (1) WO2022249674A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062920A (en) * 2001-08-28 2003-03-05 Sony Corp Antireflection film
JP2017161893A (en) * 2016-03-03 2017-09-14 日東電工株式会社 Optical laminate
WO2017217526A1 (en) * 2016-06-17 2017-12-21 日東電工株式会社 Reflection preventing film and method for manufacturing same, and reflection preventing layer-attached polarization plate
WO2019168021A1 (en) * 2018-02-28 2019-09-06 大日本印刷株式会社 Functional film, polarizing plate and image display device
WO2021065505A1 (en) * 2019-10-01 2021-04-08 日東電工株式会社 Conductive film, method for manufacturing conductive film, and temperature sensor film
WO2021106788A1 (en) * 2019-11-26 2021-06-03 日東電工株式会社 Antireflection film, method for producing same, and image display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114302A (en) * 2001-10-04 2003-04-18 Sony Corp Antireflection film and method for manufacturing antireflective polarizing plate
WO2016190415A1 (en) 2015-05-27 2016-12-01 デクセリアルズ株式会社 Laminated thin film and method for producing laminated thin film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062920A (en) * 2001-08-28 2003-03-05 Sony Corp Antireflection film
JP2017161893A (en) * 2016-03-03 2017-09-14 日東電工株式会社 Optical laminate
WO2017217526A1 (en) * 2016-06-17 2017-12-21 日東電工株式会社 Reflection preventing film and method for manufacturing same, and reflection preventing layer-attached polarization plate
WO2019168021A1 (en) * 2018-02-28 2019-09-06 大日本印刷株式会社 Functional film, polarizing plate and image display device
WO2021065505A1 (en) * 2019-10-01 2021-04-08 日東電工株式会社 Conductive film, method for manufacturing conductive film, and temperature sensor film
WO2021106788A1 (en) * 2019-11-26 2021-06-03 日東電工株式会社 Antireflection film, method for producing same, and image display device

Also Published As

Publication number Publication date
KR20240011660A (en) 2024-01-26
JP2022179907A (en) 2022-12-06
TW202306761A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP6799176B2 (en) Hard coat film, optical laminate and image display device
JP7057865B2 (en) Anti-reflection film and its manufacturing method, and image display device
TWI543876B (en) Resin film with adhesive layer, laminated film and touch panel
JP7304129B2 (en) Antireflection film, manufacturing method thereof, and polarizing plate with antireflection layer
WO2021106797A1 (en) Antireflection film and image display device
WO2011158735A1 (en) Laminated film, manufacturing method for same, and electronic device
JP6234798B2 (en) Transparent conductive film and use thereof
WO2017217526A1 (en) Reflection preventing film and method for manufacturing same, and reflection preventing layer-attached polarization plate
JP2004047456A (en) Transparent conductive material and touch panel
JP7114669B2 (en) Antireflection film and image display device
WO2022209829A1 (en) Optical multilayer body and image display device
WO2023162999A1 (en) Self-luminous display device
WO2022249674A1 (en) Layered body and method for manufacturing same, and image display device
TW201128239A (en) Optical laminate and manufacturing method thereof as well as polarizing plate and display device using the same
JP2017140799A (en) Transparent laminated film, transparent conductive film, and touch panel having the same and method for producing transparent laminated film
JP7538299B1 (en) Anti-reflection film and image display device
TWI838633B (en) Optical film with anti-fouling layer
WO2024070686A1 (en) Anti-reflection film and image display device
TW202223441A (en) Polarizing plate provided with antireflective layer, and image display device
JP2023047650A (en) Optical film set and image display device
TW202430926A (en) Anti-reflection film and manufacturing method thereof, and image display device
TW202423682A (en) Anti-reflection film, method for manufacturing same, and image display device
JP2023047651A (en) Optical film set and image display device
KR20240133570A (en) Anti-reflection film and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22810951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22810951

Country of ref document: EP

Kind code of ref document: A1