TW201128239A - Optical laminate and manufacturing method thereof as well as polarizing plate and display device using the same - Google Patents

Optical laminate and manufacturing method thereof as well as polarizing plate and display device using the same Download PDF

Info

Publication number
TW201128239A
TW201128239A TW099137589A TW99137589A TW201128239A TW 201128239 A TW201128239 A TW 201128239A TW 099137589 A TW099137589 A TW 099137589A TW 99137589 A TW99137589 A TW 99137589A TW 201128239 A TW201128239 A TW 201128239A
Authority
TW
Taiwan
Prior art keywords
optical
functional layer
light
layer
optical functional
Prior art date
Application number
TW099137589A
Other languages
Chinese (zh)
Inventor
Kazuya Ohishi
Chikara Murata
Takayuki Nakanishi
Hideki Moriuchi
Naoki Serizawa
Original Assignee
Tomoegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Co Ltd filed Critical Tomoegawa Co Ltd
Publication of TW201128239A publication Critical patent/TW201128239A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Abstract

The provided in the present invention are an optical laminate having both properties of antiglare and high contrast and a manufacturing method of the same, as sell as a polarizing plate provided with the same and a display device equipped with the optical laminate or the polarizing plate. The optical laminate comprises a light transmission substrate and at least one optical function layer formed on the light transmission substrate. The optical function layer has a domain structure. The relationship of the film thickness D of the optical function layer and the average particle diameter r of light transmission micro particle contained in the optical function layer is within the range of the equation 3xr < D ≤ 10xr.

Description

201128239 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種設置於液晶顯示器(LCD)、電漿顯 示器(PDP)等顯示器表面的光學層疊體及其製造方法, 且有關一種具備該光學層疊體的偏光板以及具備該光學層 疊體或該偏光板的顯示裝置。 【先前技術】 液晶顯示器、CRT (布朗管(Braun tube))顯示器、 投影顯示器、電漿顯示器、電致發光顯示器等影像顯示裝 置中的影像顯示面被要求賦予耐擦傷性,以防止在操作處 理時受到損傷。為此,在上述顯示器表面配置光學層疊體。 該光學層疊體具有如下構成:在聚對苯二曱酸乙二酯 (polyethylene terephthalate,以下稱為 PET )、三醋酸 纖維素(triacetyl cellulose,以下稱為 TAC )等透光性 基體上層疊有光學功能層。 光學功能層具備所希望的性質。例如’光學功能層具 有硬塗性(hard coat)的光學廣疊體係能夠作為具備硬塗 層的硬塗膜(hard coat film)來使用。另外’在光學功能 層的表面形成有微細凹凸結構的光學層疊體不僅能夠作為 硬塗膜來使用,也能夠作為具備防眩層的防眩膜來使用。 此外,以光學功能層而言,也&lt; 以使用光擴散層、低折射 率層。藉由將這些硬塗層、防眩層等光學功能層以單層形 式使用或者進行複數層式組合而具備有所希望的功能的光 學層疊體的開發正在不斷進展中。 3 322498 201128239 在顯示器的最表面使用防眩膜的情況中,在明亮的房 間使用時,存在有因光擴散而使黑顯示的影像發白、對比 度降低的問題。因此,業界正在尋求一種即使降低防眩性 也能夠實現高對比度的防眩膜(高對比度AG)。亦即,由 於防眩性和對比度是相反的性質,因此,難以使這兩者之 性質要求獲得滿足。 因也,對於能夠兼具防眩性和對比度的防眩膜的開發 正在進行中(例如,參照專利文獻〇。專利文獻丨所記裁 的防眩膜,係藉由在溶劑揮發時所產生的對流而在塗布層 表面形成貝納得穴流(benard cell)結構後,對塗布層所 含的樹脂進行固化而形成的膜。藉由該方法所形成的;以 構成防眩膜的防眩層的膜厚係設定於如下範圍,亦即,防 眩層所包含的微粒的平均粒徑以上、上述微粒的平均粒徑 的3倍以下。 &amp; 專利文獻1 :日本特許第4238936號公報 【發明内容】 (發明所欲解決之課題) 然而,雖然藉由專利文獻i所記載的防眩膜能夠在某 種程度上兼具防眩性和對比度,但防眩性和對比度不充 分。其中一個原因’可舉出··雖然專利文獻i所記載的防 眩膜中齡會在防眩層的面时向凝聚,但由於防眩層的 膜厚在防眩層所包含的錄的平均粒㈣上、上述微粒的 平均粒徑的3倍以下的範圍,因此’微粒的凝聚難以進行。 如果微粒的凝聚難以進行,則防眩層表面的凹凸結構變 322498 4 201128239 小,因此,防眩性不足。另外,相對於防眩層的膜厚,微 粒的平均粒徑較大,因此,形成於表面的凹凸的平均傾斜 角度變大,明室對比度變得不充分。 因此,本發明的目的在於提供一種能夠兼具防眩性和 高對比度的光學層疊體及其製造方法,並提供一種具備該 光學層疊體的偏光板、以及具備該光學層疊體或該偏光板 的顯示裝置。 (解決課題的手段) 本發明藉由下述技術方案來解決上述技術課題。 (1) 一種光學層疊體,係具備透光性基體和設置於 前述透光性基體上的至少一層光學功能層,前述光學功能 層具有_結構(domain structure ),且前述光學功能層的膜 厚D和前述光學功能層所含有的透光性微粒的平均粒徑r 係處於以3xr&lt;DSl〇xr的關係式所表示的範圍。 (2) 根據前述(1)所記載的光學層疊體,其中,前 述光學功能層的膜厚D係處於2μπι至15μιη的範圍。 (3) 根據前述(1)或(2)所記載的光學層疊體, 其中,前述光學功能層所含有的透光性微粒的平均粒徑r 係處於0.5μιη至5·0μιη的範圍。 (4) 根據前述(1)至(3)中任一項所記載的光學 層疊體,其中,形成於前述光學功能層的疇結構係處於每 1mm2有20個至1000個的範圍。 (5) 根據前述(1)至(4)中任一項所記載的光學 層疊體,其中,前述光學功能層表面的算術平均粗糙度Ra 5 322498 201128239 係處於〇.〇5μιη至〇.2〇μπι的範圍内β (6) 根據前述(1)至(5)中任一項所記載的光學 層疊體,其中,前述光學功能層表面的凹凸平均間隔Sm 係處於5〇μιη至2〇〇μιη的範圍内。 (7) 根據前述(1)至(6)中任一項所記載的光學 層且體,其中,刖述光學功能層表面的平均傾斜角度係處 於〇.2。至1.4。的範圍内。 (8) —種偏光板,係具備前述(1)至(7)中任一 項所記载的光學層疊體。 (9) 一種顯示裝置,係具備前述(1)至(7)中任 一項所記载的光學層疊體。 匕(10) —種光學層疊體的製造方法,其中,將混合有 樹月曰成分、透光性微粒和第一溶媒以及第二溶媒的塗料塗 布f透光性基體上以形成塗布層,在使前布層所含有 的前述第一溶媒和第二溶媒揮發時,在塗布層中產生對流 而形成疇結構’然後’使前述塗料中所含有的樹脂成分固 化而形成絲功㈣,前私學魏層_厚D和前述光 學功能層所含有的透光性微粒的平均粒徑^係滿足 3xr&lt;Dgl〇xr的關係式。 (發明效果) 根據本發明’可提供一種能夠兼具防眩性和高對比度 的光學層疊體及其製造方法,並可提供具備該光學層疊體 的偏光板、以及具備該光學層疊體或該偏光板的顯示裝置。 【實施方式】 322498 6 201128239 本實施形態的光學層疊體的構成係為在透光性基體 上設置有光學功能層,其中,上述光學功能層具有脅結構。 第1圖是示意性地表示光學功能層中的轉結構的圖示。(a) 是表示光學層疊體(光學功能層)的表面結構的平面圖,(b) 是表示光學層疊體的側剖面結構的侧剖面圖。 另外’第1圖是概念圖’其中,有時與實際的比例尺 寸不同的情形。第1圖(a)是構成本發明的光學功能層的 放大平面圖。構成本發明的光學功能層中,存在複數個疇 結構21,複數個_結構鄰接存在。另外,在鄰接的缚結構 的間隙中存在非疇結構22。疇結構21是透光性微粒的凝 聚物’非疇結構22是樹脂成分或者未凝聚而獨立存在的透 光性微粒。 第1圖(b)是第1圖(a)所示的A_a線的剖面圖。 光學功能層20形成於透光性基體1〇上。於疇結構21存在 的上部(光學功能層20的表面側)主要形成凸結構,於非 疇結構22存在的上部形成凹結構。亦即,藉由疇結構和非 疇結構形成光學功能層的表面凹凸。另外,由於疇結構21 疋透光性微粒的凝聚物,因此,伴隨著透光性微粒的凝聚 狀態,疇結構21的上部不單是凸結構,而是形成凹凸結構。 藉由疇結構形成的光學功能層的表面凹凸,與採用以 往的微粒所製成的表面凹凸相比,平均傾斜角度變小,因 此’表面的光擴散變小’有利於表現出高對比性能。 疇結構是透光性微粒的凝聚物,凝聚的透光性微粒的 數量較佳為⑽個以上’更佳為300個以上’最佳為5〇〇 322498 7 201128239 個以上。凝聚的透光性微粒的數量越多越佳。藉由多個透 光性微粒集合,能夠在光學功能層上形成平缓的表面凹凸 結構,有助於高對比度。 每單位面積的_結構的數量較佳在1 mm2範圍内為20 至1000個,更佳為30至500個,最佳為50至300個。具 有使疇結構的數量處於該範圍的光學功能層的光學層疊 體,較佳為用作能實現防眩性和高對比度而適用於作為光 學層疊體。如果小於20個,則存在有表面凹凸的間隔增 大、產生刺眼感的問題。如果超過1000個,則存在有表面 凹凸的數量增多、平均傾斜角度變大、凹凸間隔變小且對 比度降低的問題。 _結構的大小和數量存在有如下的互補關係,亦即, 如果增大轉結構的數量,則轉結構的大小變小,如果減少 疇結構的數量,則疇結構的大小變大。以調節疇結構的數 量的方法而言,例如,可舉出調節光學功能層的膜厚的方 法。更具體來講,如果增大光學功能層的膜厚,則疇結構 變大,因此缚結構的數量減少,如果減少光學功能層的膜 厚,則疇結構變小,因此,疇結構的數量增大。 對光學功能層的膜厚Ι).(μπι)和透光性微粒的平均粒 徑r (μιη)進行調節,使之滿足3xr&lt;DSl〇xr的關係式, 如此,容易兼具防眩性和高對比度。更佳為 3.5xrSDS9xr,更佳為4xrSDS8xr。如果D的下限值為 3xr以下,則光學功能層表面的凹凸形狀變小,防眩性不 足。如果D的上限值超過l〇xr,則光學層疊體容易產生捲 8 322498 201128239 曲。 透光性微粒凝聚而成的疇結構的直徑(長徑或短徑中 的任一方)以在50μιη至1 ΟΟμιη的範圍為佳。 藉由該範圍内的脅結構所形成的表面凹凸,由於容易 使入射的光散射,使得防眩性得以提高。 疇結構具有任意的形狀。作為疇結構的形狀,例如, &lt; 可舉出圆形、椭圆形、0字形、:7字形、L字形、或者组合 有這些形狀的多角形。鄰接存在的疇結構各自獨立地具有 任意的形狀。 構成本發明的光學功能層直接或者隔著其他的層而 層疊在透光性基體上,可以層疊在透光性基體的單面,也 可以層疊在兩面。此外,光學層疊體也可以具有其他的層。 以其他的層而言,可舉出例如光擴散層、防污層、偏光基 體、低反射層、其他的功能賦予層(例如,抗靜電層、紫 外線/近紅外線(NIR)吸收層、色純度提升(neon-cut) 層、電磁波屏蔽層、硬塗層)。另外,就該其他的層的位置 而言,例如,在偏光基體的情況中,係設為與前述光學功 能層相反面的前述透光性基體上;在低反射層的情況中, 係為前述光學功能層上,在其他的功能性賦予層的情況 中,係為前述光學功能層的下層。層疊有偏光基體、透光 性基體和光學功能層的層疊體,可作為偏光板使用。另外, 偏光基體、透光性基體和光學功能層可以直接層疊,也可 以隔著黏合層等其他的層來層疊。 &lt;形成疇結構的方法&gt; 9 322498 201128239 鳴結構可湘伴隨著透光性微粒的凝聚的對流作用 來製造。詳細來講,可經由如下步驟製造:乾燥步驟,將 含有樹脂成分、透光性微粒和溶媒的溶液(塗料)塗布在 透光性基體上,伴隨著溶媒的揮發而產生對流;以及固化 :驟,將乾燥後的塗膜固化。更具體來講,通常,藉由將 〜述/合液塗布在透光性基H上,使溶媒從塗布層蒸發來進 行。 雖然併用凝聚和對流的詳細機制(mechanism)尚未 能瞭解清楚,但可做如下推測。 (1) 藉由併用對流和凝聚,首先在塗布後的塗布層 中產生對流疇。 s (2) 接著,在各對流疇内產生凝聚,凝聚的結構隨 著時間的經過而趨於變得巨大,但在對流疇壁處凝聚, 停止成長。 (3) 結果,伴隨著凝聚結構形成了疇結構,而該疇 結構係受到與流疇的尺寸、排列對應的間隔所控制。 關於表面凹凸而言,形成表面凹凸的部分係形成疇結 構。,伴隨著本發明的疇結構的表面凹凸,與使用以往的微 粒製成的表面凹凸相比,平均傾斜角度變小,有利於表面 的光擴散變小、表現出高對比度。 下面’對構成本發明的各層的較佳可使用材料加 明。 乂 §兒 &lt;透光性基體&gt; 以最佳實施形態的透光性基體而言,只要是透光性广尤 322498 10 201128239 沒有特職制,可仙石英麵、賴玻璃等麵,亦可 適當地❹PET、TACH甲酸乙二醇酯(pen)、聚 甲基丙烯酸甲酉旨(PMMA)、聚碳酸酯(pc)、聚醯亞胺 (PI)、聚乙烯(PE)、聚丙烯(pp)、聚乙烯醇(pvA)、 聚氣乙烯(PVC )、環烯烴共聚物(coc )、含降莰烯 (norbornene)樹脂、聚驗石風(p〇lyEtherSulf〇ne ; pEs)、 賽璐玢(cellophane )、芳香族聚醯胺等各種樹脂膜。另外, 用於PDP、LCD的情況下,更佳為使用選自pET膜、TAC 膜以及含降莰烯樹脂膜中的一種。 這些透光性基體的透明性越高越好,以全光線穿透率 (JIS K7105 )而吕,較佳為80〇/〇以上,更佳為9〇〇/〇以上。 另外,以透光性基體的厚度而言,從輕量化的觀點考慮, 以厚度較薄者為佳,但是,考慮到其生產率、操作性,適 合使用Ιμιη至700μιη的範圍的基體,較佳為使用25μιη至 250μιη的基體。 藉由對透光性基體表面實施鹼(alkali)處理、電暈 (corona )處理、電漿處理、濺射處理等加工處理 (treatment)’ 表面活性劑、矽烷耦合(siiane C0Upiing) 劑等底漆塗布(primer coating) ’ Si蒸鍍等薄膜乾式塗布 (dry coating)等’如此,能夠提高透光性基體和光學功 能層的密合性’提高該光學功能層的物理強度、耐化學藥 品性。另外,在透光性基體和光學功能層之間設置其他層 的情況中’藉由上述同樣的方法’也能夠提高各層界面的 密合性,及提高該光學功能層的物理強度、耐藥品性。 11 322498 201128239 &lt;光學功能層&gt; 光予功能層可藉由將含有樹脂成分、透光性微粒和溶 劑的囊料塗布在透光性絲上,使上述溶卿發後,使上 述樹脂成分©化來㈣。光學功騎巾也可以含有其他任 意成分® ^學功能層的厚度較㈣2._幻5一的範圍, μ ’、3.〇gm至1〇 〇μιη的範圍’最佳為* 〇㈣至9 。光學功能層比2 _薄的情況中,在為紫外線固 二=的阻礙而產生固化不良,光學功能層的耐 =耗易變差。光學功能層比15〇帅#的情況中,光 :力月1會因固化收縮而產生捲曲,產生微裂、與透光性 土體的φ合性降低、進而光穿透性降低。並且,隨著膜厚 的增加,以、φ , 要的塗料量會增加,這也是導致成本上升的原 因0 藉由使光學功能層形成表面凹凸結構,能夠將其作為 方層使用。另外,在透光性基體上具有防眩層的層疊體 係能夠作為防眩膜使用。 (樹脂成分) '籌成光學功能層的樹脂成分而言,只要是固化後形 用,、具有足夠的強度並具有透明性的物質,就可以使 Λ1 、特别限制。以前述樹脂成分而言’可舉出熱固性 型樹脂、埶 人U t、塑性型樹脂、電離放射線固化塑樹脂、二液混 9等’其中,以電離放射線固化型樹脂較合適,其 习&quot;牙!1用電、 射線、紫外線照射的固化處理,以簡單的加工 12 322498 201128239 操作就能有效地固化。 以電離放射線固化型樹脂而言,可單獨或者以適當混 合而成的組合物的形式使用具有丙烯醯基、曱基丙烯醯 基、丙烯醯氧基、甲基丙烯醯氧基等自由基聚合性官能基 及具有環氧基、乙烯醚基、氧雜環丁烷基等陽離子聚合性 官能基的單體,低聚物、預聚物。作為單體的例子,可舉 出丙烯酸曱酯、曱基丙烯酸曱酯、曱氧基聚乙二醇甲基丙 烯酸酯、曱基丙烯酸環己酯、甲基丙烯酸苯氧基乙酯、乙 二醇二曱基丙烯酸酯、二新戊四醇六丙烯酸酯、三羥甲基 丙烷三曱基丙烯酸酯、新戊四醇三丙烯酸酯等。作為低聚 物、預聚物,可舉出聚酯丙烯酸酯、聚胺酯丙烯酸酯 (polyurethane acrylate)、多官能胺自旨丙烯酸酯、環氧基丙 烯酸酯、聚醚丙烯酸酯、醇酸丙烯酸酯、三聚氰胺丙烯酸 画旨、聚石夕氧丙烯酸醋等丙稀酸自旨化合物,不飽和聚醋、四 甲撐二醇二縮水甘油醚、丙二醇二縮水甘油醚、新戊二醇 二縮水甘油醚、雙紛A二縮水甘油輕、各種脂環式環氧基 等環氧系化合物,3-乙基-3-羥基甲基氧雜環丁烷、1,4-雙 (((3-乙基-3-氧雜環丁基)曱氧基)曱基)苯、二(1-乙 基(3-氧雜環丁基)甲醚等氧雜環丁烷化合物。這些可以 單獨或者多種混合使用。 在這些電離放射線固化型樹脂中,官能基數為3個以 上的多官能單體,能夠提高固化速度、提高固化物的硬度。 另外,藉由使用多官能胺酯丙烯酸酯,能夠賦予固化物硬 度、柔軟性等。 13 322498 201128239 作為電離放射線固化型樹脂,可使用電離放射線固化 型氟化丙烯酸酯。與其他的氟化丙烯酸酯相比,由於電離 放射線固化型氟化丙烯酸酯為電離放射線固化型,因此, 因分子間產生交聯而達到耐藥品性優異、皂化處理後也表 現出充分的防污性的效果。另外,藉由增加電離放射線固 化型氟化丙烯酸醋的配合量,能夠增大_結構的大小,並 且可減少每單位面積的疇結構數。光學功能層中所含的電 離放射線固化型氟化丙烯酸酯的比例並無特別限制,在構 成光學功能層的樹脂組合物中的固體成分的總質量100質 量份中,以0.05至50質量%數合適,0.2至20質量%又更 合適。如果電離放射線固化型氟化丙烯酸酯的配合量少於 0.05質量%,則拒水效果、光滑性會降低,耐劃傷性、防 汙性、耐藥品性變差。如果電離放射線固化型氟化丙烯酸 酯的配合量多於50質量%,則製膜性有可能變差。 在此,將電離放射線固化型樹脂以及透光性微粒等光 學功能層中的固體成分總稱為“樹脂組合物”。此外,也 可任意地含有電離放射線固化型氟化丙烯酸酯、抗靜電劑 等成分。 作為電離放射線固化型氟化丙烯酸酯,例如,可使用 曱基丙烯酸2-(全氟癸基)乙酯、甲基丙烯酸2_ (全氟-7-甲基辛基)乙酯、曱基丙烯酸3-(全氟-7-曱基辛基)-2-羥基丙酯、甲基丙烯酸2-(全氟-9-曱基癸基)乙酯、曱基 丙烯酸3-(全氟-8-曱基癸基)-2-羥基丙酯、丙烯酸3-全 氟辛基-2-羥基丙酯、丙烯酸2-(全氟癸基)乙酯、丙烯酸 14 322498 201128239 2-(全氟-9-甲基癸基)乙酯、(甲基)丙烯酸十五氟 (甲基)丙稀酸十-氟己酯、(尹基)丙締酸九氟戊:酉旨、 基)丙烯酸七氟丁酯、(甲基)丙烯酸八氟戊酯、(;、』子 丙烯酸五氟丙酯、(甲基)丙烯酸三氟丙酯、(甲基)土) 酸二氟異丙酯、(甲基)丙烯酸三氟乙酯、下述化合物内(烯 至(xxxi)等。另外,下述化合物均表示丙烯酸酯二情況 式中的丙烯醯基均能變更為甲基丙烯醯基。 月'’ [化學式1] CH2OCOCH2CH2CH2CH2C4F9 (i) H OCH2 - I&quot; -CH2〇CO〇HsCH2 ch2ococh=ch2 CH2OCOCH2CH2C8F17 (Π) (iii) ch3ch2—j—ch2ococh=ch2 ch2ococh=ch2 CH20COCH2CH2CH2CH2C8F17 hoch2—|—ch2ococh=ch2 ch2〇coch=ch2 o (iv)BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical laminate disposed on a surface of a display such as a liquid crystal display (LCD) or a plasma display (PDP), and a method of fabricating the same, and a related art A polarizing plate of a laminate and a display device including the optical laminate or the polarizing plate. [Prior Art] The image display surface in an image display device such as a liquid crystal display, a CRT (Braun tube) display, a projection display, a plasma display, or an electroluminescence display is required to impart scratch resistance to prevent handling in operation It was damaged. To this end, an optical laminate is disposed on the surface of the above display. The optical layered body has a structure in which an optical layer is laminated on a light-transmitting substrate such as polyethylene terephthalate (hereinafter referred to as PET) or triacetyl cellulose (hereinafter referred to as TAC). Functional layer. The optical functional layer has desirable properties. For example, an optical wide-layer system having an optically functional layer and a hard coat can be used as a hard coat film having a hard coat layer. Further, the optical layered body in which the fine uneven structure is formed on the surface of the optical function layer can be used not only as a hard coat film but also as an antiglare film having an antiglare layer. Further, in the case of the optical functional layer, the light diffusion layer and the low refractive index layer are also used. The development of an optical layered body having a desired function by using an optical functional layer such as a hard coat layer or an antiglare layer in a single layer or a combination of a plurality of layers is progressing. 3 322498 201128239 In the case where an anti-glare film is used on the outermost surface of the display, when it is used in a bright room, there is a problem that the black display image is whitened and the contrast is lowered due to light diffusion. Therefore, the industry is seeking an anti-glare film (high contrast AG) capable of achieving high contrast even if the anti-glare property is lowered. That is, since the anti-glare property and the contrast are opposite properties, it is difficult to satisfy the property requirements of the two. In addition, the development of an anti-glare film capable of combining anti-glare properties and contrast is underway (for example, refer to the patent document 〇. The anti-glare film described in the patent document is produced by volatilization of a solvent. a film formed by curing a resin contained in a coating layer after forming a Benard cell structure on the surface of the coating layer by convection, formed by the method, and an anti-glare layer constituting the anti-glare film. The film thickness is set to be equal to or less than the average particle diameter of the fine particles contained in the anti-glare layer and not more than three times the average particle diameter of the fine particles. [Patent Document 1] Japanese Patent No. 4238938 (Problems to be Solved by the Invention) However, the anti-glare film described in Patent Document i can have both anti-glare properties and contrast to some extent, but the anti-glare property and contrast are insufficient. One of the reasons' In the case where the anti-glare film described in Patent Document i is concentrated on the surface of the anti-glare layer, the film thickness of the anti-glare layer is on the average particle (four) of the anti-glare layer. Flattening of the above particles In the range of three times or less the particle diameter, it is difficult to carry out the aggregation of the fine particles. If the aggregation of the fine particles is difficult, the uneven structure on the surface of the anti-glare layer is small, and the anti-glare property is insufficient. Since the film thickness of the glare layer is large and the average particle diameter of the fine particles is large, the average inclination angle of the unevenness formed on the surface is increased, and the bright room contrast is insufficient. Therefore, it is an object of the present invention to provide an anti-glare An optical laminate having a high contrast ratio and a method for producing the same, and a polarizing plate including the optical laminate, and a display device including the optical laminate or the polarizing plate. (Means for Solving the Problem) The present invention is The above-described technical problems are solved by the above-described technical problems. (1) An optical layered body comprising a light-transmitting substrate and at least one optical functional layer provided on the light-transmitting substrate, wherein the optical functional layer has a domain structure And the film thickness D of the optical functional layer and the average particle diameter r of the light-transmitting fine particles contained in the optical functional layer are at 3xr &lt; D (2) The optical layered body according to the above aspect, wherein the thickness D of the optical functional layer is in the range of 2 μm to 15 μm. (1) The optical layered product according to the above aspect, wherein the average particle diameter r of the light-transmitting fine particles contained in the optical functional layer is in the range of 0.5 μm to 5.0 μm. The optical layered body according to any one of the above aspects, wherein the domain structure of the optical functional layer is in the range of 20 to 1000 per 1 mm 2 . (5) According to the above (1) to (4) The optical layered body according to any one of the preceding claims, wherein the arithmetic mean roughness Ra 5 322498 201128239 of the surface of the optical functional layer is in the range of 〇.〇5μιη to 〇.2〇μπι β (6) according to the foregoing ( The optical layered body according to any one of the invention, wherein the unevenness interval Sm of the surface of the optical functional layer is in a range of 5 μm to 2 μm. (7) The optical layer according to any one of (1) to (6), wherein the average tilt angle of the surface of the optical functional layer is 〇.2. To 1.4. In the range. (8) A polarizing plate comprising the optical layered body according to any one of the items (1) to (7) above. (9) A display device comprising the optical layered body according to any one of (1) to (7) above. (10) A method for producing an optical layered body, wherein a coating containing a sapphire component, a light-transmitting fine particle, a first solvent, and a second solvent is applied onto a light-transmitting substrate to form a coating layer. When the first solvent and the second solvent contained in the front layer are volatilized, convection occurs in the coating layer to form a domain structure 'and then' the resin component contained in the coating material is solidified to form a silk work (4). The Wei layer_thickness D and the average particle diameter of the light-transmitting fine particles contained in the optical functional layer satisfy the relationship of 3xr &lt; Dgl〇xr. According to the present invention, it is possible to provide an optical layered body which can achieve both anti-glare property and high contrast, and a method for producing the same, and a polarizing plate including the optical layered body, and the optical layered body or the polarized light The display device of the board. [Embodiment] 322498 6 201128239 The optical layered body of the present embodiment has a configuration in which an optical functional layer is provided on a light-transmitting substrate, wherein the optical functional layer has a flank structure. Fig. 1 is a view schematically showing a transition structure in an optical functional layer. (a) is a plan view showing a surface structure of an optical layered body (optical functional layer), and (b) is a side cross-sectional view showing a side cross-sectional structure of the optical layered body. Further, 'the first figure is a conceptual diagram' in which the actual scale is sometimes different. Fig. 1(a) is an enlarged plan view showing an optical functional layer constituting the present invention. In the optical functional layer constituting the present invention, a plurality of domain structures 21 exist, and a plurality of _ structures exist adjacent to each other. In addition, non-domain structures 22 are present in the gaps of adjacent tie structures. The domain structure 21 is a polymer of the light-transmitting fine particles. The non-domain structure 22 is a resin component or a light-transmitting fine particle which does not aggregate and exists independently. Fig. 1(b) is a cross-sectional view taken along line A-a of Fig. 1(a). The optical functional layer 20 is formed on the light-transmitting substrate 1A. The upper portion (the surface side of the optical functional layer 20) where the domain structure 21 exists mainly forms a convex structure, and the upper portion where the non-domain structure 22 exists forms a concave structure. That is, the surface unevenness of the optical functional layer is formed by the domain structure and the non-domain structure. Further, since the domain structure 21 凝聚 the aggregate of the light-transmitting fine particles, the upper portion of the domain structure 21 is not only a convex structure but a concave-convex structure, along with the state of aggregation of the light-transmitting fine particles. The surface unevenness of the optical functional layer formed by the domain structure is smaller than the surface unevenness made by the conventional fine particles, so that the 'light diffusion of the surface becomes small' is advantageous for exhibiting high contrast performance. The domain structure is an aggregate of light-transmitting fine particles, and the number of the light-transmitting fine particles to be aggregated is preferably (10) or more and more preferably 300 or more. Optimum is 5〇〇 322498 7 201128239 or more. The greater the number of condensed light-transmitting particles, the better. By collecting a plurality of light-transmitting particles, a gentle surface unevenness structure can be formed on the optical functional layer, contributing to high contrast. The number of structures per unit area is preferably from 20 to 1,000, more preferably from 30 to 500, and most preferably from 50 to 300, in the range of 1 mm 2 . An optical layered body having an optical functional layer in which the number of domain structures is in this range is preferably used as an optical layered body for use as an antiglare property and high contrast. If it is less than 20, there is a problem in that the interval between the surface irregularities is increased to cause a glare. If it exceeds 1,000, the number of surface irregularities increases, the average inclination angle increases, the unevenness interval becomes small, and the degree of contrast decreases. The size and number of structures have the following complementary relationship, that is, if the number of the rotating structures is increased, the size of the rotating structure becomes small, and if the number of domain structures is reduced, the size of the domain structure becomes large. In order to adjust the number of domain structures, for example, a method of adjusting the film thickness of the optical functional layer can be mentioned. More specifically, if the film thickness of the optical functional layer is increased, the domain structure becomes large, and thus the number of the bonding structures is reduced. If the film thickness of the optical functional layer is reduced, the domain structure becomes small, and therefore, the number of domain structures is increased. Big. The film thickness Ι) of the optical functional layer and the average particle diameter r (μιη) of the light-transmitting fine particles are adjusted so as to satisfy the relationship of 3xr &lt; DSl〇xr, so that it is easy to have both anti-glare properties and High contrast. More preferably 3.5xrSDS9xr, more preferably 4xrSDS8xr. When the lower limit value of D is 3xr or less, the uneven shape on the surface of the optical functional layer becomes small, and the anti-glare property is insufficient. If the upper limit value of D exceeds l〇xr, the optical layered body is liable to produce a roll 8 322498 201128239. The diameter (either one of the long diameter or the short diameter) of the domain structure in which the light-transmitting fine particles are aggregated is preferably in the range of 50 μm to 1 μm. The surface unevenness formed by the flank structure in the range is easy to scatter the incident light, so that the anti-glare property is improved. The domain structure has an arbitrary shape. As the shape of the domain structure, for example, a circle, an ellipse, a 0-shape, a 7-shape, an L-shape, or a polygon in which these shapes are combined may be mentioned. The domain structures adjacent to each other independently have an arbitrary shape. The optical functional layer constituting the present invention may be laminated on one surface of the light-transmitting substrate as it is, or may be laminated on both surfaces, directly or via another layer. Further, the optical layered body may have other layers. Examples of the other layer include a light diffusion layer, an antifouling layer, a polarizing substrate, a low reflection layer, and other function imparting layers (for example, an antistatic layer, an ultraviolet/near infrared (NIR) absorption layer, and a color purity. Lifting (neon-cut) layer, electromagnetic wave shielding layer, hard coating). Further, the position of the other layer is, for example, in the case of a polarizing substrate, on the light-transmitting substrate opposite to the optical function layer; in the case of a low-reflection layer, In the case of another functional layer, the optical functional layer is the lower layer of the optical functional layer. A laminate in which a polarizing substrate, a light-transmitting substrate, and an optical functional layer are laminated can be used as a polarizing plate. Further, the polarizing substrate, the light-transmitting substrate, and the optical functional layer may be directly laminated, or may be laminated via another layer such as an adhesive layer. &lt;Method of Forming Domain Structure&gt; 9 322498 201128239 The structure of the sound can be produced by the convection action of the aggregation of the light-transmitting particles. Specifically, the drying step may be performed by applying a solution (coating) containing a resin component, a light-transmitting fine particle, and a solvent to a light-transmitting substrate, causing convection accompanying evaporation of the solvent; and curing: The cured coating film is cured. More specifically, in general, the solvent is applied from the coating layer by applying the coating solution to the light-transmitting group H. Although the detailed mechanism of cohesion and convection has not been clarified, it can be speculated as follows. (1) By using convection and agglomeration in combination, convection domains are first generated in the coated coating layer. s (2) Next, agglomeration occurs in each convection domain, and the structure of aggregation tends to become large as time passes, but condenses at the wall of the convection domain and stops growing. (3) As a result, a domain structure is formed along with the agglomerated structure, and the domain structure is controlled by an interval corresponding to the size and arrangement of the flow domains. Regarding the surface unevenness, the portion where the surface unevenness is formed forms a domain structure. With the surface unevenness of the domain structure of the present invention, the average tilt angle is smaller than that of the surface irregularities made of the conventional fine particles, which contributes to a small light diffusion of the surface and a high contrast. The following 'environmentally usable materials constituting the layers of the present invention are clarified.乂§儿&lt;translucent substrate&gt; The light-transmissive substrate of the best embodiment is as long as it has a high light transmittance. 322498 10 201128239 has no special system, and can be used for quartz surface, glass or the like. Appropriately ❹ PET, TACH glycolic acid (pen), polymethyl methacrylate (PMMA), polycarbonate (pc), polyimine (PI), polyethylene (PE), polypropylene (pp ), polyvinyl alcohol (pvA), polystyrene (PVC), cyclic olefin copolymer (coc), norbornene resin, polyfluorite (p〇lyEtherSulf〇ne; pEs), celluloid Various resin films such as (cellophane) and aromatic polyamine. Further, in the case of a PDP or an LCD, it is more preferred to use one selected from the group consisting of a pET film, a TAC film, and a norbornene-containing resin film. The higher the transparency of these light-transmitting substrates, the better, and the total light transmittance (JIS K7105) is preferably 80 Å/〇 or more, more preferably 9 Å/〇 or more. In addition, it is preferable that the thickness of the light-transmitting substrate is thinner from the viewpoint of weight reduction, but it is preferable to use a substrate having a range of Ιμηη to 700 μm in consideration of productivity and workability. A matrix of 25 μm to 250 μm was used. By applying alkali treatment, corona treatment, plasma treatment, sputtering treatment, etc. to the surface of the light-transmitting substrate, a primer such as a surfactant or a saneane coupling (Siiane C0Upiing) is applied. Primer coating, such as dry coating, such as Si vapor deposition, can improve the adhesion between the light-transmitting substrate and the optical functional layer, and improve the physical strength and chemical resistance of the optical functional layer. Further, in the case where another layer is provided between the light-transmitting substrate and the optical functional layer, the adhesion of the interface of each layer can be improved by the same method as described above, and the physical strength and chemical resistance of the optical functional layer can be improved. . 11 322498 201128239 &lt;Optical functional layer&gt; The photo-functional layer can be coated with a resin material, a light-transmitting fine particle, and a solvent onto a light-transmitting wire to make the resin component © Hualai (four). The optical work jersey can also contain other optional components. The thickness of the functional layer is greater than that of the (4) 2. illusion 5, the range of μ ', 3. 〇gm to 1 〇〇 μιη 'best is * 〇 (four) to 9 . In the case where the optical functional layer is thinner than 2 _, the curing failure occurs due to the inhibition of the ultraviolet ray, and the resistance of the optical functional layer is likely to be deteriorated. In the case where the optical functional layer is larger than 15 〇 # #, light: force month 1 is curled by curing shrinkage, and microcracking occurs, and the φ property of the light-transmitting soil is lowered, and the light transmittance is lowered. Further, as the film thickness increases, the amount of the coating material to be increased by φ, which is also the cause of the increase in cost. 0 The optical functional layer can be used as a square layer by forming a surface uneven structure. Further, a laminated body having an antiglare layer on a light-transmitting substrate can be used as an anti-glare film. (Resin component) The resin component of the optical functional layer can be made to be particularly limited as long as it is a shape after curing and has sufficient strength and transparency. In the above-mentioned resin component, a thermosetting resin, a human Ut, a plastic resin, an ionizing radiation curable resin, a two-liquid mixture, etc. may be mentioned, and among them, an ionizing radiation-curable resin is suitable. tooth! 1 Curing treatment by electricity, radiation and ultraviolet radiation can be effectively cured by simple processing 12 322498 201128239. In the case of the ionizing radiation-curable resin, a radical polymerizable property such as an acrylonitrile group, a fluorenyl fluorenyl group, an acryloxy group, or a methacryloxy group can be used singly or in a suitably mixed composition. A functional group and a monomer having a cationically polymerizable functional group such as an epoxy group, a vinyl ether group or an oxetanyl group, an oligomer or a prepolymer. Examples of the monomer include decyl acrylate, decyl decyl acrylate, decyloxy polyethylene glycol methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, and ethylene glycol. Dimercapto acrylate, dipentaerythritol hexaacrylate, trimethylolpropane tridecyl acrylate, neopentyl alcohol triacrylate, and the like. Examples of the oligomer and the prepolymer include polyester acrylate, polyurethane acrylate, polyfunctional amine acrylate, epoxy acrylate, polyether acrylate, alkyd acrylate, and melamine. Acrylic acid, polychlorinated vinegar, etc., acrylic acid, unsaturated polyacetate, tetramethyl diol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, double A diglycidil light, epoxy compound such as various alicyclic epoxy groups, 3-ethyl-3-hydroxymethyl oxetane, 1,4-bis(((3-ethyl-3-) An oxetane compound such as oxetanyl)nonyloxy)indolylbenzene or bis(1-ethyl(3-oxetanyl)methyl ether. These may be used singly or in combination. In the ionizing radiation curable resin, the number of functional groups is three or more, and the curing rate can be increased to increase the hardness of the cured product. Further, by using a polyfunctional amine ester acrylate, hardness and flexibility of the cured product can be imparted. Etc. 13 322498 201128239 as ionization As the radiation-curable resin, ionizing radiation-curable fluorinated acrylate can be used. Since the ionizing radiation-curable fluorinated acrylate is ionizing radiation-curable type compared with other fluorinated acrylates, cross-linking occurs between molecules. It is excellent in chemical resistance and exhibits sufficient antifouling properties after saponification treatment. Further, by increasing the amount of ionizing radiation-curable fluorinated acryl vinegar, the size of the _ structure can be increased, and each unit can be reduced. The ratio of the domain structure of the area is not particularly limited, and the ratio of the ionizing radiation-curable fluorinated acrylate contained in the optical functional layer is 100 parts by mass of the total mass of the solid component in the resin composition constituting the optical functional layer. 0.05 to 50% by mass is suitable, and 0.2 to 20% by mass is more suitable. If the amount of the ionizing radiation-curable fluorinated acrylate is less than 0.05% by mass, the water repellency and smoothness are lowered, and scratch resistance, Antifouling property and chemical resistance are deteriorated. If the amount of ionizing radiation-curable fluorinated acrylate is more than 50% by mass, film formation Here, the solid content in the optical functional layer such as the ionizing radiation-curable resin and the light-transmitting fine particles is collectively referred to as a “resin composition.” Further, the ionizing radiation-curable fluorinated acrylate may be optionally contained. A component such as an antistatic agent. As the ionizing radiation-curable fluorinated acrylate, for example, 2-(perfluorodecyl)ethyl methacrylate or 2-(perfluoro-7-methyloctyl) methacrylate can be used. Ethyl ester, 3-(perfluoro-7-fluorenyloctyl)-2-hydroxypropyl methacrylate, 2-(perfluoro-9-fluorenyl)ethyl methacrylate, 3-mercaptoacrylic acid 3- (Perfluoro-8-fluorenylfluorenyl)-2-hydroxypropyl ester, 3-perfluorooctyl-2-hydroxypropyl acrylate, 2-(perfluorodecyl)ethyl acrylate, acrylic acid 14 322498 201128239 2- (Perfluoro-9-methylindenyl)ethyl ester, (meth)acrylic acid, pentafluoro(methyl)acrylic acid, decafluorohexyl ester, (yinyl), propionic acid, nonafluoropentyl ) heptafluorobutyl acrylate, octafluoropentyl (meth) acrylate, pentafluoropropyl acrylate, trifluoropropyl (meth) acrylate, (methyl) clay Difluoroisopropyl acrylate, trifluoroethyl (meth)acrylate, and the following compounds (ene to (xxxi). Further, the following compounds all indicate that the acryl oxime group in the acrylate formula can be changed to a methacryl oxime group.月'' [Chemical Formula 1] CH2OCOCH2CH2CH2CH2C4F9 (i) H OCH2 - I&quot; -CH2〇CO〇HsCH2 ch2ococh=ch2 CH2OCOCH2CH2C8F17 (Π) (iii) ch3ch2—j—ch2ococh=ch2 ch2ococh=ch2 CH20COCH2CH2CH2CH2C8F17 hoch2—|—ch2ococh=ch2 Ch2〇coch=ch2 o (iv)

H3C-CC ch2- 0 CH2-C-^CH2)r-C4F9 ^OCOCH=CH2) 2 0H3C-CC ch2- 0 CH2-C-^CH2)r-C4F9 ^OCOCH=CH2) 2 0

(V) CHr ,ch2· 、CH2· CHr(V) CHr , ch2· , CH2· CHr

o 户-C -C H _C F13 C‘-分-fCH2)^C6Fi3 O 4f〇COCH=CH2) [化學式2] 15 322498 201128239 CH2OCOCH2CH2SCH2CH2C4F9 (vi) hoch2—|—CH2〇COCH=CH2 ch2ococh=ch2 (vi«) (viii) m CH2OCOCH2CH2SCH2CH2C4F3 ch3ch2—|~ch2ococh=ch2 ch2〇c〇ch=ch2 C3H7 CH20C0CH2CH2lic H2CH2C8F17 hoch2—(—ch2〇c〇ch=ch2 ch2〇coch=ch2 ch2ococh2ch2sch2ch2c8f17 CH3CH2—J—ch2ococh=ch2 ch2ococh=ch2o-C-CH_C F13 C'-sub-fCH2)^C6Fi3 O 4f〇COCH=CH2) [Chemical Formula 2] 15 322498 201128239 CH2OCOCH2CH2SCH2CH2C4F9 (vi) hoch2—|—CH2〇COCH=CH2 ch2ococh=ch2 (vi« (viii) m CH2OCOCH2CH2SCH2CH2C4F3 ch3ch2—|~ch2ococh=ch2 ch2〇c〇ch=ch2 C3H7 CH20C0CH2CH2lic H2CH2C8F17 hoch2—(—ch2〇c〇ch=ch2 ch2〇coch=ch2 ch2ococh2ch2sch2ch2c8f17 CH3CH2—J—ch2ococh=ch2 ch2ococh=ch2

CH2OCOCH2CH2SCH2CH2C4F8H ⑻ ch3ch2—[~ch2〇coch=ch2 CH2〇COCH=CH2 CH20C0CH2CH2SCH2CH2(CF(CF3)-0-CF2)3-C2Fs ⑽ CH3CH2—j-CH2〇COCH=CH2 CH2OCOCH=CH2 {xH) CH3CH2 —j-CH2-(OC2H4)S&quot;〇C〇CH=CH2 CHjKOC^rOCOCHsCHz r + s +1 * 3 /OCOCH=CH2 CHf CH2—〇COCH=CH2 《X Q C2H5OCO^CH2-4-CH2CH2—〇COCH2CH2SCH2CH2CeF17 CH2 CH2 一OCOC2H5 [化學式3] 16 322498 201128239 (xiv) (κν) CH2* ch2- CH2· CH2-c2H4- c2h4- C2Hr --^-OCOC^CHaSCHaCHaCeF^ 1 CH=CH炙 - ch3 -|«OCOCH2CH2i!jCH2CH2CB 味CH2OCOCH2CH2SCH2CH2C4F8H (8) ch3ch2—[~ch2〇coch=ch2 CH2〇COCH=CH2 CH20C0CH2CH2SCH2CH2(CF(CF3)-0-CF2)3-C2Fs (10) CH3CH2—j-CH2〇COCH=CH2 CH2OCOCH=CH2 {xH) CH3CH2 —j- CH2-(OC2H4)S&quot;〇C〇CH=CH2 CHjKOC^rOCOCHsCHz r + s +1 * 3 /OCOCH=CH2 CHf CH2—〇COCH=CH2 “XQ C2H5OCO^CH2-4-CH2CH2—〇COCH2CH2SCH2CH2CeF17 CH2 CH2 One OCOC2H5 [Chemical Formula 3] 16 322498 201128239 (xiv) (κν) CH2* ch2-CH2·CH2-c2H4- c2h4- C2Hr --^-OCOC^CHaSCHaCHaCeF^ 1 CH=CH炙- ch3 -|«OCOCH2CH2i!jCH2CH2CB

:OCH=CI h2)3 OCOCHsCH2 CH2 CH2 —-OC〇CH2CH2SCH2CH2p6Fij (xvi) CH3CH2-I—CH2〇CH2-j—CH2CH3 CH2 CH2 - —OOOC H=CH2 、ococh=ch2 /OCOCH2CH2SCH2CH2CeF17 CH2&quot;~OCOCH2CH2SCH2CH2CbF17 (xvii) CH3CH2-p'CH2〇CH2-J—CH2CH3 ch2 ch2—ococh=ch2 \&gt;coch=ch2 ^OCOCHzCHzSCHzCHzCeF^ CH2 CH2-OC〇CH2CH2SCH2CH2CeF17 (xviii) HOCHz—j—CH20CH2-|-CH2-0C0CH=CH2 CH2 CH2 -OCOCH=CH2 nococh=ch2 (xix) (XX) ^ococh=ch2 CH2 CH2——OCOCH2CH2SCH2CH2C6Fu HOCH2—j—CH2〇CH2-[-CH2-OCOCH2CH2SCH2CH2CeF17 ch2 ch2—ococh=ch2 ^OCOCHsCHz OC〇CH=CH&gt;I ch2 chz ococh2ch2sch2ch2c8f17 H2C=HCOCO-CH2—|-CH2OCH2-|—CH2_〇c〇CH2CH2SCH2CH2CbFi7 ch2 ch2 -ococh=ch2 OCOCH2CH2SCH2CH2CBFi7 OCOCH2CH2SCH2CH2C8F17 (xxl) CH2 ?H2_〇COCH2CH2SCH2CH2C8F17 H2C=HCOCO-CH2—|—CH2OCH2-|—CH2-〇C〇CH=CH2 CH, CH,:OCH=CI h2)3 OCOCHsCH2 CH2 CH2 —-OC〇CH2CH2SCH2CH2p6Fij (xvi) CH3CH2-I—CH2〇CH2-j—CH2CH3 CH2 CH2 — —OOOC H=CH2 , ococh=ch2 /OCOCH2CH2SCH2CH2CeF17 CH2&quot;~OCOCH2CH2SCH2CH2CbF17 (xvii) CH3CH2-p'CH2〇CH2-J-CH2CH3 ch2 ch2—ococh=ch2 \&gt;coch=ch2 ^OCOCHzCHzSCHzCHzCeF^ CH2 CH2-OC〇CH2CH2SCH2CH2CeF17 (xviii) HOCHz—j—CH20CH2-|-CH2-0C0CH=CH2 CH2 CH2 -OCOCH=CH2 nococh=ch2 (xix) (XX) ^ococh=ch2 CH2 CH2——OCOCH2CH2SCH2CH2C6Fu HOCH2—j—CH2〇CH2-[-CH2-OCOCH2CH2SCH2CH2CeF17 ch2 ch2—ococh=ch2 ^OCOCHsCHz OC〇CH=CH>I Ch2 chz ococh2ch2sch2ch2c8f17 H2C=HCOCO-CH2—|-CH2OCH2-|—CH2_〇c〇CH2CH2SCH2CH2CbFi7 ch2 ch2 -ococh=ch2 OCOCH2CH2SCH2CH2CBFi7 OCOCH2CH2SCH2CH2C8F17 (xxl) CH2 ?H2_〇COCH2CH2SCH2CH2C8F17 H2C=HCOCO-CH2—|—CH2OCH2-| CH2-〇C〇CH=CH2 CH, CH,

I I ococh=ch2 ococh=ch2 [化學式4] 322498 17 201128239 (xxii)I I ococh=ch2 ococh=ch2 [Chemical Formula 4] 322498 17 201128239 (xxii)

CH2〇COCH2CH2SCH2CH2C4F9 WHCH202CH2+-CH2OCOCH2CH2SCH2CH2C4F3 chzococh=ch2 、 CH2OCOCH2CH2SCH2CH2C4F9 NHC02CH2C-—CH2OCOCH2CH2SCH2CH2C4F9 SCH2〇C〇CHsCH2 CH2OCOCH2CH2N{C3H7}CH2C6F13 NHC02CH2C:~CH2OCOCH2CH2N(C3H7}CH2C6F13 (χχϋί) 0、Η2Ο(Χ&gt;(5Η=α·Ι2 CH2OCOCH2CH2N(C3H7)CH2C6F13 nhco2ch2c—ch2ococh=ch2 、ch2ococh=ch2 CH2OCOCH2CH2§CH2CH2C8F17 (xxiv)CH2〇COCH2CH2SCH2CH2C4F9 WHCH202CH2 + -CH2OCOCH2CH2SCH2CH2C4F3 chzococh = ch2, CH2OCOCH2CH2SCH2CH2C4F9 NHC02CH2C - CH2OCOCH2CH2SCH2CH2C4F9 SCH2〇C〇CHsCH2 CH2OCOCH2CH2N {C3H7} CH2C6F13 NHC02CH2C: ~ CH2OCOCH2CH2N (C3H7} CH2C6F13 (χχϋί) 0, Η2Ο (Χ &gt; (5Η = α · Ι2 CH2OCOCH2CH2N ( C3H7)CH2C6F13 nhco2ch2c—ch2ococh=ch2, ch2ococh=ch2 CH2OCOCH2CH2§CH2CH2C8F17 (xxiv)

NHGO2CH2C——CH2〇COCH2CH2SCH2CH2CbF17 、ch2ococh:ch2 CH2OCOCH2CH2SCH2CHzCbF17 nhco2ch2c^—ch2ococh=ch2 ch2ococh=ch2 ch2ococh=ch2 CH^OCO^CHzSCH^HzCgFjr (XXV)NHGO2CH2C——CH2〇COCH2CH2SCH2CH2CbF17, ch2ococh:ch2 CH2OCOCH2CH2SCH2CHzCbF17 nhco2ch2c^—ch2ococh=ch2 ch2ococh=ch2 ch2ococh=ch2 CH^OCO^CHzSCH^HzCgFjr (XXV)

rNHC〇2CH2CCH2OCH2CCH2〇COCH=CH2 CH20COCH2CH2SCH2CH2C8F17 ch2〇coch=ch2 ch2ococh=ch2 ch2ococh2ch2sch2ch2c8f17 NHC02CH2CCH2〇CH2CCH2〇COCH=CH2 I iH2OCOCH2CH2SCH2CH2C8F17 ch2〇c〇ch=ch2 [化學式5] 18 322498 201128239 (xxvi) o CH2=CHC〇2CH2CH2、“Ji^,,H2CH2OC〇CH2CH2SCH2CH2C6l=13 N N O^N^O CH2CH2〇COCH=CH2 (xxvii) o ch2=ohco2ch2ch2vnA.n^h2ch2ococh2ch2sch2ch2c8f17〇人 CH2CH2OCOCH=CH2 (xxviii) CH^CHCOzCHzCHz^^^k^^CHzCHaOCOCHzCHaSCHaCHzC^gH CH2CH2〇COCH=CH2 (xxix) CH2CH2〇COCH2CH2SCH2CH2C6Fi3 o=p-ch2ch2ococh=ch2 CH2CH2〇COCH=CH2 (xxx) CH2CH2OCOCH2CH2SCH2CH2C8P17 0=P-CH2CH2〇C〇CH=CH2 ch2ch2〇coch=ch2 (XXXi) /CH2OCOCH2CH2SCH2CH2C4F9 nhco2ch2c-~CH2OCOCH2CH2SCH2CH2C4F9 ch2ococh=ch2rNHC〇2CH2CCH2OCH2CCH2〇COCH=CH2 CH20COCH2CH2SCH2CH2C8F17 ch2〇coch=ch2 ch2ococh=ch2 ch2ococh2ch2sch2ch2c8f17 NHC02CH2CCH2〇CH2CCH2〇COCH=CH2 I iH2OCOCH2CH2SCH2CH2C8F17 ch2〇c〇ch=ch2 [Chemical Formula 5] 18 322498 201128239 (xxvi) o CH2=CHC〇2CH2CH2 "Ji^,,H2CH2OC〇CH2CH2SCH2CH2C6l=13 NNO^N^O CH2CH2〇COCH=CH2 (xxvii) o ch2=ohco2ch2ch2vnA.n^h2ch2ococh2ch2sch2ch2c8f17〇人CH2CH2OCOCH=CH2 (xxviii) CH^CHCOzCHzCHz^^^k^^CHzCHaOCOCHzCHaSCHaCHzC^ gH CH2CH2〇COCH=CH2 (xxix) CH2CH2〇COCH2CH2SCH2CH2C6Fi3 o=p-ch2ch2ococh=ch2 CH2CH2〇COCH=CH2 (xxx) CH2CH2OCOCH2CH2SCH2CH2C8P17 0=P-CH2CH2〇C〇CH=CH2 ch2ch2〇coch=ch2 (XXXi) /CH2OCOCH2CH2SCH2CH2C4F9 nhco2ch2c -~CH2OCOCH2CH2SCH2CH2C4F9 ch2ococh=ch2

nhco2ch2cNhco2ch2c

ch2ococh2ch2sch2ch2c4f9 —ch2ococh=ch2 ch2ococh=ch2 322498 19 201128239 這些化合物可以單獨使用或者混合多種來使用 丙烯酸財,從固化物㈣磨耗性和伸長率以私氟化 觀點來看’較佳為具有賴鍵的含氟化烧基的胺的 醋。另外’在氟化两稀酸醋中,較佳多官能氣化、酸 另外,此處的多官能I化丙稀_旨是指具有2個·^。 為3個以上’更佳為4個以上)的(甲基)丙騎氧基者心佳 電離放射線固化型樹脂可以藉由直接照射 來固化,但在藉由照射紫外線進行固化時,需要六射線 合起始劑。另夕卜,以*用的放射線而t,可以是紫,光聚 可見光線、紅外線、電子射線中的任一種。另=,、=線、 射線可以是偏光也可以是非偏光。 #二放 以光聚合起始劑而言’可以單獨或者料組合使 ,酮系、二苯甲酮系、噻噸酮系、苯偶姻、苯偶姻 等自由基聚合起始劑,芳香族重氮鏽鹽、芳香_鹽:芳 香族碘鏽鹽、茂金屬化合物等陽離子聚合起始劑。孤方 另外,可以使電離放射線固化型樹脂含有流平劑 (leveling agent )、抗靜電劑等添加劑。流平劑具有使塗膜 表面的張力均勻化、在形成塗臈前修復缺陷的功用,可採 用界面張力、表面張力都比上述電離放射線固化型樹脂低 的物質。 - 電離放射線固化型樹脂等樹脂成分的配合量,相對於 構成光學功能層的樹脂組合物中的固體成分的總質量,含 有50質量%以上,較佳為60質量%以上。上限 別限制,例如’為99.9質量%。如果小於5〇質量%,^存 322498 20 201128239 在有得不到充分的硬度等問題。 (透光性微粒) 以透光性微粒而言,可使用由丙烯酸樹脂(acrylic resin )、聚笨乙烯樹脂(Polystyrene resin )、苯乙浠·丙烯酸 (styrene-acrync)共聚物、聚乙烯樹脂、環氧樹脂、聚矽 氧樹脂(silicone resin)、聚偏氟乙烯、聚氟化乙烯系樹脂 等形成的有機系的透光性樹脂粒子,二氧化矽、氧化鋁、 氧化鈦、氧化鍅、氧化鈣、氧化錫、氧化銦、氧化銻等無 機系的透光性微粒。透光性微粒的折射率較佳為14〇至 1.75,折射率小於mo或者大於i 75時,與透光性基體或 者樹脂基質的折射率差過大,全光線穿透率降低。另外, 透光性微粒和樹脂成分的折射率之差較佳為〇2以下。透 光性微粒的平均粒徑較佳為處於〇 5μπι至5μιη的範圍更 佳為Ι.Ομιη至3μιη。粒徑小於〇·_時,防眩性降低。另 外,大於5μΐη時,產生刺眼感覺,並且,表面凹凸程产 得過大,使得表面看上去發白,因此不佳。另外上述光 學功能層中含有的透光性微粒的比例並無特別限制,但相 對於樹脂組合物100質量份,其比例為01至2〇質量%時, 在滿足防眩功能、刺眼的光等特性方面較合適,容易控制 光學功能層表面的微細的凹凸形狀和霧度(haze)值。在 此,‘‘折射率’’是指根據JISK_7142的測量值。另外,“ 均粒控”是指用電子顯微鏡實測的i•⑼個粒子的直經的平 均值。 (溶劑) 322498 21 201128239 以溶劑而言’係使用能夠將樹脂組合物中所含的樹脂 成分良好地溶解、且能夠分散透光性微粒的溶劑。 尤其是’以用於形成疇結構形成用表面凹凸的溶劑 (溶媒)而言,較佳為含有第一溶媒和第二溶媒。 藉由加入第一溶媒以及第二溶媒,能夠利用凝聚和對 流而在光學功能層表面製成根據疇結構而形成的表面凹凸 形狀。 第一溶媒是指能良好地分散透光性微粒的溶媒。能夠 使用的第一溶媒係依透光性微粒的種類的不同而不同,例 如’使用PMMA微粒作為透光性微粒的情況中,以第一溶 媒而έ,可使用甲苯等芳香族溶劑、曱基乙基酮(MEK)、 曱基異丁基酮(MIBK)等酮系溶劑。這些第一溶媒可以 使用一種,也可以混合多種來使用。 第二溶媒是指能使透光性微粒適當凝聚的溶媒。能夠 使用的第一溶媒係依透光性微粒的種類的不同而不同,例 如,使用PMMA微粒作為透光性微粒的情況中,以第二溶 媒而言,可使用水、曱醇、乙醇等。這些第二溶媒可以使 用一種,也可以混合多種來使用。 在此,較佳為將樹脂成分、透光性微粒、第一溶媒以 及第二溶媒混合而使用。將該混合好的塗料塗布在透光性 基體上形成塗布層後,使上述塗布層所含的上述第一和第 一溶媒揮發時’在塗布層中容易產生對流。藉由該對流而 在塗布層表面形成疇結構。形成上述疇結構後,藉由對上 述塗料所含有的樹脂進行固化’能夠在光學功能層中形成 22 322498 201128239 轉結構。另外’在形成上述 功能層_厚和平均㈣ H會㈣化後的光學 上所述,混合第-溶媒和第」包含於本發明的範圍。如 易形成用於得到防眩性的表^媒㈣成的光學功能層容 (抗靜電劑) 凹凸,因而較佳。 光學功能層可以含有抗靜 導電劑、導電材料之情形》藉^(亦有將抗靜電劑稱作 止光學層疊體的表面上附著塵導=劑,能夠有效防 堅碟乂抗靜電劑(導電劑) 的具體例子而言,可舉“級銨鹽、㈣鹽 三級胺基等陽離子性基團的各種陽離子性化合物有: ^鹽基、魏㈣基、魏㈣基、膦酸縣等陰離^ ^的陰離子性化合物;胺基酸系、胺基硫酸㈣等兩性化 5物,胺基醇系、甘油系、聚乙二醇系等非離子性化合物; 錫以及鈦的烧氧化物之類的有機金屬化合物以及它們的乙 醯丙酮鹽之類的金職合物等,進1亦可舉出將上述列 舉的化合物進行高分子量化的化合物。另外,具有三級胺 基、四級銨基或金屬螯合部、並且可藉由電離放射線而聚 合的單體或低聚物,或者具有官能基的如耦合劑之類的有 機金屬化合物等聚合性化合物’也可以作為抗靜電劑使用。 另外,可舉出導電性微粒。以導電性微粒的具體例子 而言,可舉出金屬氧化物形成的微粒。以這樣的金屬氧化 物而言,可舉出ZnO、Ce〇2、Sb2〇2、Sn〇2、常被簡稱為 ITO的氧化銦錫、Iri2〇3、A12〇3、摻雜銻之氧化錫(簡稱 為ΑΤΟ)、摻雜鋁之氧化辞(簡稱為AZO)等。上述微粒 322498 23 201128239 是指1微米以下的所謂亞微米大小的微粒,較佳為平均粒 徑是O.lnm至Ο.ίμιη的微粒。 另外,以抗靜電劑(導電劑)的其他具體例子而古, 可舉出導電絲合物。以其㈣而言,並無特職制:例 如,可舉出從脂肪族共軛系的聚乙炔、多並苯 (polyacene )、聚奠(p〇lyazuiene )、芳香族共軛系的聚伸 苯基、雜環式共軛系的聚吼咯、聚噻吩、聚異噻茚、含雜 原子共軛系的聚苯胺、聚噻吩乙炔、混合型共軛系的聚3(笨 乙烯)刀子中具有複數個共耗鍵的共捥系亦即多鏈型共輥 系、它們的導電性聚合物的衍生物、以及將這些共軛高分 子鏈接枝共聚或者嵌段共聚於飽和高分子而得到^高:; 亦即從導電性複合物組成的組中選擇的至少—種。其中, 更較佳為使用聚噻吩、聚苯胺、聚吡咯等有機系抗靜電劑’。 藉由使用上述有機系抗靜電劑,能夠發揮優異的抗靜電性 能’同時提高光學層疊體的全光線穿透率,並且降低霧度 值。另外,為了提高導電性、提高抗靜電性能之目的,也 可以添加有機橫酸、氯化鐵等陰離子作為推 — 劑)。根據摻雜劑的添加效果,聚噻吩的读劑(供電子 J您明性、抗靜雷性 句高而特佳。以上述聚嗟吩而言,也可適火 L , 週田使用低聚噻吩。 从上述衍生物而言,並無特別限制,可舉 块、聚二乙炔的烧基取代物等。 如t笨乙 (偏光基體) 在本發明中,也可以在與光學功能 暮髀U既爲祕丄*μ妨丄竹 刀月b層冲目反面的透光性 I體上層疊偏光基體。藉由將光學功能風 g Λ透光性基體和 322498 24 201128239 偏光基體層疊,能夠製成偏光板。這些層彼此之間可以直 接層疊,也可以隔著黏著層等其他層來層疊。在此,該偏 光基體可以使用只穿透特定的偏光而吸收其他的光的光吸 收型的偏光膜、或只穿透特定的偏光而反射其他光的反射 型的偏光膜。以光吸收型的偏光獏而言,可使用由聚乙烯 醇、聚伸乙烯(polyvinylene)等杈伸而得到的膜,可舉出 例如,對吸附有埃或染料作為雙色性元件的聚乙稀醇進行 單軸拉伸而得到的聚乙烯醇(PVA)膜。以光反射型的偏 光膜而言,例如,可舉出:3M公司製造的“dbeF” ,其 構成為,將拉伸時拉伸方向的折射率不同的2種聚酯樹脂 (PEN以及PEN共聚物)藉由擠製成型技術相互交替層疊 數百層並拉伸者;日東電工社製造的“NIp〇cs,,或Merck 公司製造的“TRANCE MAX”等,其構成為,將膽固醇狀 型(Cholesteric)液晶聚合物層和1/4波長板層疊,將從膽 固醇狀型液晶聚合物層一侧入射的光分離成彼此相反的2 個圓偏光,使一方穿透,並使另一方反射,藉由1/4波長 板將在膽固醇狀型液晶聚合物層中穿透的圓偏光轉換為直 線偏光者。 〈光學層疊體&gt; 將含有上述構成成分的光學功能層形成用塗料塗布 在透光性基體上,然後,藉由熱或者照射電離放射線(例 如’照射電子射線或者紫外線),使該光學功能層形成用塗 料固化’藉此形成光學功能層’可以得到本發明的光學層 疊體。光學功能層可以形成在透光性基體的單面,也可以 25 322498 201128239 形成在兩面上。本發明的光學層疊體具備以下的性質、功 能為佳。 (霧度) 本發明最佳實施形態的光學層疊體的總霧度較佳為3 至13,更佳為4至10.5,最佳為5至9。 (全光線穿透率) 光學層疊體的全光線穿透率較佳為9〇%以上,更佳為 90.5%以上’最佳為91%以上。 (影像鮮明性) 就光學層疊體在皂化處理前的影像鮮明性而言,光梳 寬為0.5mm時’較佳為〇%至,更佳為5%至8〇% ’更 佳為10%至77.5%。 (刺眼感覺) 就光學層疊體的刺眼感覺而言’使與光學層疊體形成 面相反面隔著無色透明的黏著層,貼合於解析度不同的幾 個液晶顯示器表面上’藉由CCD相機進行照相,根據影像 有無輝度偏差來進行判斷。就刺眼感覺而言,以不能用解 析度更高的顯示器確認者為宜,在解析度為101ρρί至 140ppi的液晶顯示器中沒有刺眼感覺者較佳。 (平均傾斜角度) 本發明的光學層疊體在光學功能層的表面具有微細 的凹凸形狀。在此’該微細的凹凸形狀較佳為由根據 ASME95求出的平均傾斜所算出的平均傾斜角度係處於 〇_2°至1.4。的範圍者,更佳為〇 25。至丨.2。,最佳為〇 25。 26 322498 201128239 至、1.0。。如果平均傾斜角度小於〇 2。,則防眩性變差如 均傾斜角度超過14。,則對比度變差,因此,不適於 在顯示器表面的光學層疊體。 (算術平均粗縫度) 另外,關於本發明的光學詹疊體,以光 的微 細凹凸形狀而言,算術平均粗經度Ra較佳為〇〇响至 〇·2μηχ ’更佳為〇 〇5μιη至〇 15μιη,最佳為〇叫工至 〇·1〇μιη。如果算術平均粗糙度Ra小於〇,則光學層 疊體的防眩性不充分。如果算術平均粗糙度Ra超過 〇·2μιη,則光學層疊體的對比度變差。 (凹凸平均間隔) 在本發明中’凹凸平均間隔Sm較佳為50μπι至 2〇〇μηι。如果Sm小於50μιη,則得不到充分的對比度,如 果Sm超過200μιη,則防眩性降低,因此,不適於用在顯 示器表面的光學層疊體。 (麥克貝斯(Macbeth )濃度) 本發明的光學層疊體的麥克貝斯反射濃度係表示:在 使光學膜的透光性基體之與樹脂層相反側的面變黑的狀態 下測量的值越大就越黑。麥克貝斯反射濃度的值較佳為3.2 以上。在顯示器等的表面使用光學膜時’很少在白顯示中 看出大的差異,因此’為了高對比度化,需要強調黑顯示 時的黑度。如果麥克貝斯反射濃度小於3.2,則高對比度 化不充分。 (光澤度) 322498 27 201128239 本發明的光學層疊體的60。光澤度較佳為1〇〇至i3〇 的摩έ*圍。60。光澤度大於13〇時,防眩性降低,因此不佳。 另外’ 60。光澤度小於1〇〇時,雖然防眩性良好,但在表面 的光散射增強,使得明室對比度降低,因此不佳。 &lt;光學層疊體的製造方法&gt; 以在透光性基體上塗布光學功能層形成用塗料的方 法而&amp; ’可應用通常的塗布方式、印刷方式。具體來講, 可使用氣動刮刀(Air Doctor)塗布、棒塗布、刮板(blade) 塗布、刮刀塗布、逆向(reverse)塗布、轉印輥(transfer r〇11)塗布、凹版輥(gravure roll)塗布、接觸塗布(kiss coatlng)、鑄塗(cast coating)、喷塗(Spray coating)、狹 縫喷嘴型(slot orifice )塗布、簾式塗布(calendar coating )、 擋板塗布(dam coating )、浸潰塗布(dip coating )、模塗 (die-coating )等塗布、照相凹版印刷(gravure printing ) 等凹版印刷、網版印刷(screen printing )等孔版印刷等印 刷等。 以下,採用實施例對本發明加以說明,但本發明並不 降於這些實施例。 (製造例1)電離放射線固化型氟化丙烯酸酯A液的合成 在500ml的反應燒瓶中,於25°C,於異佛爾酮二異氰 酸酯22.2g (0.1莫耳)的MIBK (曱基異丁基酮)l〇〇ml 溶液中一邊進行空氣發泡(air bubbling)—邊滴加新戊四醇 三丙烯酸酯59.6g (0.20莫耳)的MIBK 50ml溶液。滴加 結束後,加入二月桂酸二丁基錫0.3g,進一步在7(TC加熱 28 322498 201128239 攪拌4小時。反應結束後,用5%鹽酸100ml來洗滌反應 溶液。分取有機層後,在40°C以下減壓餾除溶媒,由此得 到無色透明黏稠液體形態的胺酯丙烯酸酯80.5g。在200ml 反應燒瓶中投入製備好的胺酯丙烯酸酯40.8g (0.05莫 耳)、全氟辛基乙基硫醇71.9g (0.15莫耳)、MIBK 60g, 使其均勻化。在該混合溶液中於25 °C緩慢加入三乙胺 l.Og。添加結束後,進一步在50°C攪拌3小時。反應結束 後,在50°C以下的條件下,使用蒸發器來減壓餾除三乙 胺,進一步用真空泵乾燥,由此,得到由混合物構成的電 離放射線固化型氟化丙烯酸酯A液,前述混合物含有由結 構式1表示的含氟化烷基的胺酯丙烯酸酯、並進一步含有 丙烯醯基和全氟辛基乙基硫醇的加成反應的位置與前述結 構式1不同的化合物。 [化學式6] 結構式1Ch2ococh2ch2sch2ch2c4f9 —ch2ococh=ch2 ch2ococh=ch2 322498 19 201128239 These compounds may be used singly or in combination of a plurality of kinds of acrylic acid. From the viewpoint of the fluorination property and elongation of the cured product (IV), it is preferable to have a fluorine-containing bond. A sulphur-based amine vinegar. Further, in the fluorinated diacid vinegar, it is preferred to be polyfunctionally vaporized and acid. Further, the polyfunctional propylene acrylate herein has two. It is possible to cure by three or more 'more preferably four or more) (meth) propyl oxy-energy ion-curable radiation-curable resin by direct irradiation, but six rays are required when curing by irradiation with ultraviolet rays Starter. Further, in the case of radiation used for *, t may be any of purple, light-visible visible light, infrared rays, and electron rays. The other =, , = line, the ray may be polarized or non-polarized. #二放中的 Photopolymerization initiator can be used alone or in combination to form a free radical polymerization initiator such as ketone, benzophenone, thioxanthone, benzoin, benzoin, aromatic A diazonium rust salt, an aromatic salt: a cationic polymerization initiator such as an aromatic iodine rust salt or a metallocene compound. In addition, the ionizing radiation-curable resin may contain an additive such as a leveling agent or an antistatic agent. The leveling agent has a function of uniformizing the tension on the surface of the coating film and repairing defects before forming the coating, and a material having a lower interfacial tension and surface tension than the ionizing radiation-curable resin can be used. The amount of the resin component such as the ionizing radiation-curable resin is 50% by mass or more, preferably 60% by mass or more based on the total mass of the solid component in the resin composition constituting the optical functional layer. The upper limit is not limited, for example, '99.9% by mass. If it is less than 5% by mass, there are problems such as insufficient hardness in the case of 322498 20 201128239. (Translucent fine particles) For the light-transmitting fine particles, an acrylic resin, a polystyrene resin, a styrene-acrync copolymer, a polyethylene resin, or the like can be used. Organic light-transmitting resin particles formed of an epoxy resin, a silicone resin, a polyvinylidene fluoride resin, a polyvinyl fluoride resin, or the like, cerium oxide, aluminum oxide, titanium oxide, cerium oxide, oxidation Inorganic light-transmitting fine particles such as calcium, tin oxide, indium oxide, and cerium oxide. The light-transmitting fine particles preferably have a refractive index of from 14 Å to 1.75. When the refractive index is less than or greater than i 75, the difference in refractive index from the light-transmitting substrate or the resin matrix is too large, and the total light transmittance is lowered. Further, the difference in refractive index between the light-transmitting fine particles and the resin component is preferably 〇2 or less. The average particle diameter of the light-transmitting fine particles is preferably in the range of 〇 5 μm to 5 μm, more preferably Ι.Ομηη to 3 μmη. When the particle diameter is less than 〇·_, the anti-glare property is lowered. Further, when it is larger than 5 μΐ, a glare feeling is generated, and the surface unevenness is excessively generated, so that the surface appears white and thus is not preferable. In addition, the ratio of the light-transmitting fine particles contained in the optical functional layer is not particularly limited, and when the ratio is from 01 to 2% by mass based on 100 parts by mass of the resin composition, the antiglare function, glare light, etc. are satisfied. It is suitable in terms of characteristics, and it is easy to control the fine uneven shape and the haze value of the surface of the optical functional layer. Here, ''refractive index'' means a measured value according to JIS K_7142. In addition, "average control" refers to the average of the straightness of i•(9) particles measured by an electron microscope. (Solvent) 322498 21 201128239 In the case of a solvent, a solvent capable of dissolving the resin component contained in the resin composition and dispersing the light-transmitting fine particles is used. In particular, it is preferable that the solvent (solvent) for forming the surface unevenness for forming the domain structure contains the first solvent and the second solvent. By adding the first solvent and the second solvent, it is possible to form a surface uneven shape formed according to the domain structure on the surface of the optical functional layer by agglomeration and convection. The first solvent means a solvent capable of dispersing the light-transmitting fine particles well. The first solvent that can be used differs depending on the type of the light-transmitting fine particles. For example, when PMMA fine particles are used as the light-transmitting fine particles, an aromatic solvent such as toluene or a mercapto group can be used as the first solvent. A ketone solvent such as ethyl ketone (MEK) or mercaptoisobutyl ketone (MIBK). These first solvents may be used singly or in combination of two or more. The second solvent means a solvent which can appropriately agglomerate the light-transmitting fine particles. The first solvent which can be used differs depending on the type of the light-transmitting fine particles. For example, when PMMA fine particles are used as the light-transmitting fine particles, water, decyl alcohol, ethanol or the like can be used as the second solvent. These second solvents may be used singly or in combination of two or more. Here, it is preferred to use a resin component, a light-transmitting fine particle, a first solvent, and a second solvent. After the mixed coating is applied onto the light-transmitting substrate to form a coating layer, when the first and first solvents contained in the coating layer are volatilized, convection tends to occur in the coating layer. A domain structure is formed on the surface of the coating layer by the convection. After the formation of the above domain structure, the resin can be formed in the optical functional layer by curing the resin contained in the above coating material. 22 322498 201128239. Further, in the optical form after the formation of the functional layer _thickness and the average (four) H, the mixing of the first solvent and the ninth is included in the scope of the present invention. It is preferable to form an optical functional layer (antistatic agent) which is easy to form an anti-glare material. The optical functional layer may contain an antistatic conductive agent or a conductive material. (There is also an antistatic agent called a dust-conducting agent on the surface of the optical optical laminate, which can effectively prevent the anti-static agent and the antistatic agent. Specific examples of the agent include various cationic compounds such as a "quaternary ammonium salt" or a (tetra) salt tertiary amino group, and the like: a salt group, a Wei (tetra) group, a Wei (tetra) group, a phosphonic acid group, and the like. An anionic compound derived from ^ ^; an amphoteric compound such as an amino acid or an amine sulfuric acid (tetra); a nonionic compound such as an amino alcohol, a glycerin or a polyethylene glycol; a sintered oxide of tin and titanium Examples of the organometallic compounds such as the organometallic compounds and the gold complexes such as the acetoacetate salts thereof include compounds which polymerize the above-exemplified compounds, and have tertiary amine groups and quaternary ammonium salts. A monomer or oligomer which can be polymerized by ionizing radiation, or a polymerizable compound such as an organometallic compound having a functional group such as a coupling agent can also be used as an antistatic agent. In addition, it can be cited Specific examples of the conductive fine particles include fine particles formed of a metal oxide. Examples of such metal oxides include ZnO, Ce〇2, Sb2〇2, and Sn〇2. Often referred to as ITO indium tin oxide, Iri2〇3, A12〇3, antimony-doped tin oxide (abbreviated as germanium), doped aluminum oxide (abbreviated as AZO), etc. The above particles 322498 23 201128239 means The so-called submicron-sized particles of 1 μm or less are preferably fine particles having an average particle diameter of 0.1 nm to ί. ίμιη. Further, other specific examples of the antistatic agent (conductive agent) may be used as the conductive wire. In the case of (4), there is no special system: for example, polyacetylene, polyacene, p〇lyazuiene, or aromatic conjugated system derived from an aliphatic conjugated system Poly(phenylene), heterocyclic conjugated polyfluorene, polythiophene, polyisothiazide, polyaniline containing hetero atom conjugated system, polythiophene acetylene, mixed conjugated poly 3 (stupid ethylene) a conjugated system having a plurality of covalently consuming bonds in a knives, that is, a multi-chain co-roller system, and a conductive polymer thereof And a derivative obtained by copolymerizing or block-copolymerizing these conjugated polymer chains to a saturated polymer to obtain a high:; that is, at least one selected from the group consisting of conductive composites. In order to use an organic antistatic agent such as polythiophene, polyaniline or polypyrrole, it is possible to exhibit excellent antistatic performance by using the above organic antistatic agent, and at the same time, increase the total light transmittance of the optical laminate and reduce it. In addition, an anion such as an organic acid or a ferric chloride may be added as a pusher for the purpose of improving conductivity and improving antistatic performance. According to the effect of the addition of a dopant, a polythiophene reader ( For the electrons, you have a high-quality, anti-static and high-sounding sentence. Especially in the case of the above-mentioned polyporphin, it is also suitable for L, and Zhoutian uses oligothiophene. The above derivative is not particularly limited, and examples thereof include a mercapto substituted product of polydiacetylene and the like. For example, in the present invention, a polarizing substrate may be laminated on the light transmissive body which is opposite to the optical function 暮髀U. A polarizing plate can be produced by laminating an optical functional wind g Λ light transmissive substrate and a 322498 24 201128239 polarizing substrate. These layers may be laminated directly to each other or may be laminated via another layer such as an adhesive layer. Here, as the polarizing substrate, a light-absorbing type polarizing film that absorbs other light by penetrating only a specific polarized light or a reflective polarizing film that reflects only the specific polarized light and reflects other light can be used. In the case of the light-absorbing polarizing enthalpy, a film obtained by stretching a polyvinyl alcohol or a polyvinylene may be used, and for example, a polyethylene having adsorption of enamel or a dye as a dichroic element may be mentioned. A polyvinyl alcohol (PVA) film obtained by uniaxially stretching an alcohol. The light-reflective type of polarizing film is, for example, "dbeF" manufactured by 3M Company, and is composed of two kinds of polyester resins (PEN and PEN copolymerized) having different refractive indices in the stretching direction during stretching. NI ) 数百 NI NI ; ; ; ; ; NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI NI (Cholesteric) The liquid crystal polymer layer and the 1/4 wavelength plate are laminated, and the light incident from the side of the cholesteric liquid crystal polymer layer is separated into two circularly polarized lights opposite to each other, so that one side penetrates and the other side reflects. The circularly polarized light that is transmitted through the cholesteric liquid crystal polymer layer is converted into a linearly polarized light by a quarter-wavelength plate. <Optical laminated body> A coating for forming an optical functional layer containing the above-described constituent components is applied to the light-transmitting On the substrate, the light of the present invention can then be obtained by thermally or irradiating ionizing radiation (for example, 'irradiation of electron rays or ultraviolet rays) to cure the optical functional layer forming coating 'by thereby forming an optical functional layer' The optical functional layer may be formed on one side of the light-transmitting substrate, or may be formed on both sides of 25 322498 201128239. The optical layered body of the present invention preferably has the following properties and functions. (Haze) The present invention is the most The total optical haze of the optical laminate of the preferred embodiment is preferably from 3 to 13, more preferably from 4 to 10.5, most preferably from 5 to 9. (Total light transmittance) The total light transmittance of the optical laminate is preferably It is 9〇% or more, more preferably 90.5% or more, and the best is 91% or more. (Image sharpness) In terms of image sharpness of the optical laminate before saponification treatment, when the optical comb width is 0.5 mm, it is preferable. 〇% to, more preferably 5% to 8%, more preferably 10% to 77.5%. (Stinging sensation) In terms of the glare of the optical laminate, the surface opposite to the surface of the optical laminate is transparent and colorless. The adhesive layer is applied to the surface of several liquid crystal displays with different resolutions. 'Photographed by a CCD camera to judge whether there is a deviation of the brightness of the image. In terms of glare, it can not be confirmed by a display with higher resolution. It is advisable to have a resolution of 101ρρί It is preferable that there is no glare in the 140 ppi liquid crystal display. (Average tilt angle) The optical layered body of the present invention has a fine uneven shape on the surface of the optical functional layer. Here, the fine uneven shape is preferably obtained according to ASME95. The average tilt angle calculated by the average tilt is in the range of 〇_2° to 1.4, more preferably 〇25. to 丨.2, and most preferably 〇25. 26 322498 201128239 to, 1.0. When the average tilt angle is less than 〇2, the anti-glare property is deteriorated, and if the tilt angle is more than 14, the contrast is deteriorated, and therefore, it is not suitable for the optical layered body on the surface of the display. (Arithmetic Average Roughness) Further, in the optical gimbal of the present invention, in terms of the fine uneven shape of light, the arithmetic mean rough longitude Ra is preferably from 〇〇·2μηχ' more preferably 〇〇5μιη to 〇15μιη, the best is 〇 工 〇 〇 1〇μιη. If the arithmetic mean roughness Ra is smaller than 〇, the anti-glare property of the optical layer stack is insufficient. If the arithmetic mean roughness Ra exceeds 〇·2 μm, the contrast of the optical layered body is deteriorated. (Concave-convex average interval) In the present invention, the unevenness average interval Sm is preferably 50 μm to 2 μm. If Sm is less than 50 μm, sufficient contrast cannot be obtained, and if Sm exceeds 200 μm, the anti-glare property is lowered, and therefore, it is not suitable for the optical laminate used on the surface of the display. (Macbeth concentration) The Macbeth reflection concentration of the optical layered body of the present invention means that the value measured in a state where the surface of the optically transparent substrate of the optical film opposite to the resin layer is blackened is larger. The darker. The value of the Macbeth reflection concentration is preferably 3.2 or more. When an optical film is used on the surface of a display or the like, a large difference is rarely seen in the white display. Therefore, in order to increase the contrast, it is necessary to emphasize the blackness at the time of black display. If the Macbeth reflection concentration is less than 3.2, the high contrast is insufficient. (Gloss) 322498 27 201128239 60 of the optical laminate of the present invention. The gloss is preferably from 1 〇〇 to i3 〇. 60. When the gloss is more than 13 Å, the anti-glare property is lowered, which is not preferable. Also '60. When the gloss is less than 1 Å, although the anti-glare property is good, the light scattering on the surface is enhanced, so that the bright room contrast is lowered, which is not preferable. &lt;Manufacturing method of optical layered body&gt; A general coating method and a printing method can be applied to a method of applying a coating material for forming an optical functional layer on a light-transmitting substrate. Specifically, Air Doctor coating, bar coating, blade coating, blade coating, reverse coating, transfer roller coating, and gravure roll can be used. Coating, contact coating, cast coating, spray coating, slot orifice coating, calendar coating, dam coating, dip coating Printing such as dip coating or die-coating, gravure printing such as gravure printing, and printing such as stencil printing such as screen printing. Hereinafter, the invention will be described by way of examples, but the invention should not be construed as being limited to these examples. (Production Example 1) Synthesis of ionizing radiation-curable fluorinated acrylate A solution In a 500 ml reaction flask, at a temperature of 25 ° C, 22.2 g (0.1 mol) of isophorone diisocyanate was used. The air ketone was air bubbling while adding 59.6 g (0.20 mol) of MIBK 50 ml of pentaerythritol triacrylate. After the completion of the dropwise addition, 0.3 g of dibutyltin dilaurate was added, and further stirred at 7 (TC heating 28 322498 201128239 for 4 hours. After the reaction was completed, the reaction solution was washed with 100 ml of 5% hydrochloric acid. After the organic layer was separated, at 40°. C. The solvent was distilled off under reduced pressure to obtain 80.5 g of an amine ester acrylate in the form of a colorless transparent viscous liquid. The prepared amine ester acrylate 40.8 g (0.05 mol) and perfluorooctyl B were placed in a 200 ml reaction flask. 71.9 g (0.15 mol) and MIBK 60 g of thiol was homogenized, and 1.0 g of triethylamine was slowly added to the mixed solution at 25 ° C. After the addition, the mixture was further stirred at 50 ° C for 3 hours. After the completion of the reaction, triethylamine is distilled off under reduced pressure using an evaporator at 50 ° C or lower, and further dried by a vacuum pump to obtain an ionizing radiation-curable fluorinated acrylate A liquid composed of a mixture. The mixture contains an amine ester acrylate of a fluorine-containing alkyl group represented by Structural Formula 1 and further contains a compound having a different addition reaction position between the propylene group and the perfluorooctylethylthiol than the above Structural Formula 1. Chemical formula 6] Structural formula 1

ch2ococh=ch2 nhco2ch2c 29 322498 201128239 (製❹! 2)含有AT〇紫外線固化型樹脂⑽的合成 製備在'、、屯水4〇〇g中溶解有錫酸钟uog和酒石酸錄卸 3〇g的混合溶液。在_下將該製備所得的溶液以12小時 添加於磐下之溶解有確酸錄l.Og和15〇/〇氨水12g的純水 1000g中’進行水解。此時同時添加10%确酸溶液以使 =值保持於9.0。生成的沈㈣經過濾洗祕,使其再度 二政於,中,製備出固體成分濃度20質量%的金屬氧化物 二驅,11氧化物分散液。將該分散液在溫度lGGt喷霧乾 〇'製備出金屬氧化物則驅物氫氧化物粉體。在空氣氛圍 :,對該粉體在5贿進行2小時的加熱處理,由此得到 ^有Sb之氧化錫(ΑΤΟ)粉末。 使該粉末6〇β分散於濃度4.3質量%的氫氧化鉀水溶 文14〇g中,將分散液保持於30°C,同時用砂磨機粉碎3 小時,而製得溶膠。接著,用離子交換樹脂對該溶膠進行 脫,離子處理’直至PH值達到3.0,接著,加入純水,製 備付固體成分濃度2G質量%的ΑΤΟ分散液。該AT〇分散 液的PH值為3.3。另外,AT〇微粒的平均粒徑為l〇nm。 接著,將ΑΤΟ分散液l〇〇g調節至25。(:,以3分鐘添 ^四乙氧基矽烷(多摩化學(株)製造:正矽酸乙醋,Si〇2 28.8質量%) 4 〇g,然後,攪拌3〇分鐘。之後,以上 刀釦添加乙醇,用30分鐘升溫至50°C,加熱處理15 小時。此時的固體成分濃度為10質量%。 接著’藉由超濾膜過濾,將作為分散介質的水、乙醇 置換為乙醇,製備出固體成分濃度30質量%的用有機石夕化 322498 30 201128239 合物進行表面處理過的ΑΤΟ分散液。 將該用有機矽化合物進行表面處理過的ΑΤΟ分散液 13.1g、新戊四醇三丙烯酸酯(共榮社化學製造的ΡΕ_3Α) 25.6g、胺酯丙烯酸酯(共榮社化學製造的UA306I) 17.1g、 光聚合起始劑(汽巴精化日本製造的Irgacure 184) 2.5g、 乙醇34.2g、甲苯7.5g進行混合,用塗料搖擺器(paint shaker)混合30分鐘,得到固體成分濃度49重量%的含 ΑΤΟ紫外線固化型樹脂B液。 實施例1 將包含前述電離放射線固化型氟化丙稀酸酯Α液、含 ΑΤΟ紫外線固化型樹脂B液的表1所記載的預定混合物, 用分散機(disperser)攪拌30分鐘,由此得到光學功能層 形成用塗料’將該塗料以輥塗方式塗布(線速度:2〇111/分 鐘)在膜厚80μιη、全光線穿透率92%的透明基體的TAC 膜(富士膠捲公司製造,TD80UL)的單面上,在30°C至 50C經過20秒鐘的預備乾燥後,在i〇〇〇c乾燥丨分鐘,在 氮氣氛圍中(氮氣置換),進行紫外線照射(燈:聚光型高 壓水銀燈,燈的輸出功率:12〇w/cm,燈數:4盞,照射 距離.20cm )’藉此使塗布膜固化。如此,得到具有厚度 7.3μιη的光學功能層的實施例1的光學層疊體。 實施例2 將光學功能層形成用塗料變更為包含前述電離放射 322498 31 201128239 線固化型氟化丙烯酸酯A液、含ΑΤΟ紫外線固化型樹脂B 液的表1所記載的預定混合液,除此以外,與實施例1同 樣地操作,得到具有厚度7.2μιη的光學功能層的實施例2 的光學層疊體。 實施例3 將光學功能層形成用塗料變更為包含含ΑΤΟ紫外線 固化型樹脂Β液的表1所記載的預定混合液,除此以外, 與實施例1同樣地操作,得到具有厚度6.0μιη的光學功能 層的實施例3的光學層疊體。 實施例4 除了製成厚度11.Ομπι的光學功能層以外,與實施例2 同樣地操作,得到實施例4的光學層疊體。 比較例1 將光學功能層形成用塗料變更為含有平均粒徑4.Ιμιη 的無定形二氧化矽的表1所記載的預定混合液,除此以 外,與實施例1同樣地操作,得到具有厚度3.5μιη的光學 功能層的比較例1的光學層疊體。 比較例2 將光學功能層形成用塗料變更為包含前述電離放射 線固化型氟化丙烯酸酯Α液、含ΑΤΟ紫外線固化型樹脂Β 32 322498 201128239 液而不含透光性微粒的表1所記載的預定混合液,除此以 外,與實施例1同樣地操作,得到具有厚度7.3μιη的光學 功能層的比較例2的光學層疊體。 比較例3 將光學功能層形成用塗料變更為包含有含ΑΤΟ紫外 線固化型樹脂Β液以及平均粒徑為5μιη的ΡΜΜΑ微粒的 表1所記載的預定混合液,除此以外,與實施例1同樣地 操作,得到具有厚度6.7μιη的光學功能層的比較例3的光 學層疊體。 比較例4 除了製成厚度4·0μιη的光學功能層以外,與實施例2 同樣地操作,得到比較例4的光學層疊體。 33 322498 201128239 表1Ch2ococh=ch2 nhco2ch2c 29 322498 201128239 (manufacturing! 2) Synthetic preparation of AT-containing UV-curable resin (10): a mixture of sulphuric acid uog and tartaric acid in the 4 〇〇g, 4 〇〇g Solution. The solution obtained by the preparation was hydrolyzed under the conditions of 12 hours in 1000 g of pure water dissolved in a crucible and dissolved in 12 g of 15 g/ammonia water. At this time, a 10% acid solution was simultaneously added to maintain the value of 9.0. The resulting precipitate (4) was filtered and washed to prepare a metal oxide second-drive, 11-oxide dispersion having a solid concentration of 20% by mass. The dispersion was spray dried at a temperature of 1 GGt to prepare a metal oxide followed by a hydroxide hydroxide powder. In an air atmosphere: the powder was subjected to heat treatment for 2 hours, thereby obtaining a tin oxide (bismuth) powder having Sb. This powder 6 〇β was dispersed in a concentration of 4.3% by mass of potassium hydroxide in water, and the dispersion was kept at 30 ° C while being pulverized by a sand mill for 3 hours to obtain a sol. Then, the sol was removed by ion exchange resin, and ion-treated until the pH reached 3.0. Then, pure water was added to prepare a ruthenium dispersion having a solid concentration of 2 g% by mass. The AT 〇 dispersion had a pH of 3.3. Further, the average particle diameter of the AT ruthenium particles was 10 〇 nm. Next, the hydrazine dispersion l〇〇g was adjusted to 25. (:, 4 hours of addition of tetraethoxy decane (manufactured by Tama Chemical Co., Ltd.: ruthenium citrate, Si 〇 2 28.8 mass%) 4 〇g, and then stirred for 3 〇 minutes. Ethanol was added, and the temperature was raised to 50° C. over 30 minutes, and heat treatment was carried out for 15 hours. The solid content concentration at this time was 10% by mass. Then, by filtration through an ultrafiltration membrane, water and ethanol as a dispersion medium were replaced with ethanol to prepare. A cerium dispersion surface-treated with a compound having a solid concentration of 30% by mass, which was surface-treated with an organic sulfonium compound 322498 30 201128239. 13.1 g of a cerium dispersion surface-treated with an organic cerium compound, neopentyl alcohol triacrylic acid Ester (ΡΕ_3Α, manufactured by Kyoeisha Chemical Co., Ltd.) 25.6g, urethane acrylate (UA306I, manufactured by Kyoeisha Chemical Co., Ltd.) 17.1g, photopolymerization initiator (Iggure 184, Ciba Specialty Chemicals, Japan) 2.5g, ethanol 34.2 g and 7.5 g of toluene were mixed and mixed with a paint shaker for 30 minutes to obtain a cerium-containing ultraviolet curable resin B liquid having a solid concentration of 49% by weight. Example 1 The above-mentioned ionizing radiation curing type was included. The predetermined mixture described in Table 1 of the fluorinated acrylate oxime solution and the yttrium-containing ultraviolet curable resin B liquid was stirred by a disperser for 30 minutes to obtain a coating material for forming an optical functional layer. Coating by roll coating (linear speed: 2 〇 111 / min) on a single side of a TAC film (Fuji Film Co., Ltd., TD80UL) having a film thickness of 80 μm and a total light transmittance of 92% at 30 ° C to 30 ° C After 50 seconds of preliminary drying, the 50C was dried in i〇〇〇c for a minute, and subjected to ultraviolet irradiation in a nitrogen atmosphere (nitrogen replacement). (Light: concentrating high-pressure mercury lamp, output of the lamp: 12〇w/ Cm, number of lamps: 4 盏, irradiation distance: 20 cm) ' Thereby the coating film was cured. Thus, an optical layered body of Example 1 having an optical functional layer having a thickness of 7.3 μm was obtained. Example 2 Formation of optical functional layer The same procedure as in Example 1 was carried out except that the coating material was changed to the predetermined mixed liquid described in Table 1 including the above-mentioned ionizing radiation 322498 31 201128239 line-curable fluorinated acrylate liquid A and cerium-containing ultraviolet curable resin B liquid. The optical layered body of Example 2 having an optical functional layer having a thickness of 7.2 μm was obtained. Example 3 The coating material for forming an optical functional layer was changed to a predetermined mixed liquid described in Table 1 containing a cerium-containing ultraviolet curable resin mash. An optical layered body of Example 3 having an optical functional layer having a thickness of 6.0 μm was obtained in the same manner as in Example 1. Example 4 The same procedure as in Example 2 was carried out except that an optical functional layer having a thickness of 11. μm was formed. The optical laminate of Example 4 was obtained. Comparative Example 1 The same procedure as in Example 1 was carried out except that the coating material for forming an optical function layer was changed to the predetermined mixed liquid of the amorphous ceria having an average particle diameter of 4. Ιμηη. An optical layered body of Comparative Example 1 of an optical function layer of 3.5 μm. Comparative Example 2 The coating material for forming an optical function layer was changed to a schedule as described in Table 1 including the ionizing radiation-curable fluorinated acrylate liquid, the yttrium-containing ultraviolet-curable resin Β 32 322498 201128239 liquid, and containing no light-transmitting fine particles. An optical layered product of Comparative Example 2 having an optical function layer having a thickness of 7.3 μm was obtained in the same manner as in Example 1 except that the mixture was mixed. Comparative Example 3 The same procedure as in Example 1 was carried out, except that the coating material for forming an optical function layer was changed to a predetermined mixed liquid described in Table 1 containing cerium-containing ultraviolet curable resin mash and cerium fine particles having an average particle diameter of 5 μm. The optical laminate of Comparative Example 3 having an optical functional layer having a thickness of 6.7 μm was obtained. Comparative Example 4 An optical layered product of Comparative Example 4 was obtained in the same manner as in Example 2 except that the optical functional layer having a thickness of 4·0 μm was formed. 33 322498 201128239 Table 1

No 成分 mshi 產品名 質量份 電離放射線固化型氟化丙稀酸醋 A液 0.33 多官能胺酯丙稀酸酿 共榮社化學 UA306I 0.45 實 新戊四醇三丙烯義 曰本化藥 KAYARADPET-30 0.45 施 光聚始劑 &gt;气巴精化日太 Irgacure 184 0.08 例 含ΑΙΌ紫外線固化型樹脂 - B 液(49%) 78.12 1 PMMA ▲子(平均粒徑1.5μτη) - 3.92 乙醇 - 1.00 ΜΕΚ - 15.66 電離放射線固化型敗化丙稀酸酿 _ A液 0.21 多官能胺酯丙稀酸醋 新中材化學 U-6LPA 0.31 實 新戊四醇三丙«^旨 共榮社化學 PE-3A 0.31 施 光聚練始劑 —汽巴精化日太 Irgacure 184 0.04 例 含ΑΙΌ紫外線固化型樹脂 - B 液(49%) 78.70 2 ΡΜΜΑ粒子(平均粒徑1.5μτη) • 3 92 曱苯 - 0.10 乙醇 - 0.56 ΜΕΚ - 15.93 多官能胺酯丙炼酸酿 共榮社化學 UA306I 0.62 實 新戊四醇三丙稀酸S旨 共榮社彳h昼 PE-3A 2.34 施 光聚始劑 汽巴精化日太. Ii]gacure 184 0.08 例 含ΑΙΌ紫外線固化型樹脂 B 液(49%) 78.12 3 PMMA粒子(.平均粒徑1.5um) - 2.18 乙醇 - 1.00 MEK • 15.66 多官能胺酯丙稀酸醋 新中村化學 U-6LPA 5.8 th 氣戊四醇三丙:1½¾旨 _日本化藥 KAYARADPET-30 13.7 較 流平劑 :m— MEGAFACE F471 0.2 干入 伸! 光聚 始劑 汽巴精化日太 Irgacure 184 2.0 1 無定形二氧《ib«夕(平均粒徑4.1μτη) 富士矽化學 Sylophobic702 4.0 甲本 - 16.4 MIBK 38.4 電離放射線固化型氟化丙嫌酸酯 A液 0.21 比 多官能胺酯丙稀酸醋 共榮杜化擧 UA306I 2.37 較 新戊四醇三丙稀酸醋 共榮杜化舉 PE-3A 2.36 例 含ΑΙΌ紫外線固化備脂 B 液(49%) 78.12 2 光聚始劑 _汽巴精化日太 Iigacure 184 0.28 乙醇 _ 1.00 MEK. 15.66 多官能胺醋丙稀酸醋 新中村化學 U-6ULPA 0.62 比 新戊四醇二丙;旨 曰本化缝 KAYARADPET-30 0.61 較 光聚合起始劑 .汽巴精化日太 Iigacure 184 0.08 例 含ΑΙΌ紫外線固化型谢脂 • B 液(49%) 78.12 3 PMMA粒子(;平均粒經5.(^ 3.92 6酵 1.00 MEK - 15.66 34 322498 201128239 &lt;評估方法&gt; 接下來,對實施例和比較例的光學層疊體,評估下述 項目。 (疇數) 關於疇數,藉由使用光學顯微鏡在倍率50倍下對光 學層疊體進行照相,利用目測來測量相片的0.1mm2框内 的内外所存在的轉數。關於在表示0.1 mm2的框内之外所 存在的疇,僅在其能被目測確認為面積在框内占到一半以 上時才對其計數。如上所述地操作,對0.1 mm2框内所存 在的疇數進行計測後,算出每1mm2所存在的疇數。 光學顯微鏡:奥林巴斯(OLUMPUS)製造的BX60 相機:尼康(NIKON)製造的COOLPIXE995 照相模式:穿透 實施例和比較例的光學層疊體顯示於圖中(實施例1 顯示於第2圖,實施例2顯示於第3圖,實施例3顯示於 第4圖,實施例4顯示於第5圖,比較例1顯示於第6圖, 比較例3顯示於第7圖,比較例4顯示於第8圖)。 此外,比較例2的光學層疊體,相對於平均粒徑,其 光學功能層的厚度較薄,因此未形成疇結構,所以未進行 照相。 (全光線穿透率) 關於全光線穿透率,係根據JIS K7105,使用霧度計 (商品名:NDH2000,曰本電色社製造)進行測量。 (霧度值) 35 322498 201128239 關於霧度值,係根據JIS K7105 ’使用霧度計(商品 名:NDH2000 ’日本電色社製造)進行測量。表中的霧度 是總霧度的值。 (算術平均粗縫度、凹凸的平均間隔) 關於算術平均粗糙度Ra和凹凸平均間隔Sm,係根據 HS B0601-1994,採用表面粗糙度測量器(商品名: SurfcorderSE1700a,小阪研究所社製造)進行測量。 (平均傾斜角度) 關於平均傾斜角度,係根據ASME95,採用表面粗糙 度測量器(商品名:Surfcorder SE1700 α,小阪研究所社 製造)求出平均傾斜,根據下式算出平均傾斜角度。 平均傾斜角度=tan_1 (平均傾斜) (影像鮮明性) 根據JIS K7105,採用映像性測量器(商品名: ICM-1DP,Suga試驗機社製造),將測量器設定為穿透模 式,用寬0.5mm的光梳進行測量。 (防眩性) 關於防眩性,在影像鮮明性的值為0至80時設為〇, 在81至90時設為△,在91至100時設為X。 (刺眼感覺) 關於刺眼感覺’係各實施例和各比較例的光學層疊體 形成面的相反面,隔著無色透明的黏著層分別貼合解析度 為50ppi的液晶顯示器(商品名:LC-32GD4,夏普公司製 造)、解析度為lOOppi的液晶顯示器(商品名·· 322498 36 201128239 LL-T1620-B,夏普公司製造)、解析度為12〇ppi的液晶顯 不器(商品名:LC-37GX1W,夏普公司製造)、解析度為 140ppi的液晶顯示器(商品名:vGN_TX72B,索尼公司製 造)、解析度為150ppi的液晶顯示器(商品名: nW8240-PM780,日本休利特—帕卡德公司製造)、解析度 為200PPi的液晶顯示器(商品名:pc cv5〇FW,夏普公 司製造)的晝面表面,在暗室下使液晶顯示器為綠顯示, 然後,在從各液晶TV的法線方向以解析度2〇〇ppi的CCP 相機(CV-2()GC,基恩士公司製造)攝影得到的影像上, 不能確認出輝度偏差時的解析度的值為〇ppi 至50ppi時設 為X ’為51PPi至l〇〇ppi時設為△,為1〇lppi至14〇ppi時 設為〇’為141ppi至200ppi時設為◎。 (明室對比度) 關於明室對比度’係在實施例和比較例的光學層疊體 中,使與光學功能層的形成面之相反面,隔著無色透明的 黏著層貼合於液晶顯示裝置(商品名:LC-37GX1W,夏普 公司製造)的晝面表面’從液晶顯示裝置晝面的正面上方 60°的方向,用螢光燈(商品名:HH4125GL,National公 司製造)使液晶顯示器表面的照度達到2〇〇勒克斯(lux) 後’用色彩輝度計(商品名:BM-5A,拓普康公司製造) 測量使液晶顯示裝置為白顯示和黑顯示時的輝度,藉由以 下的式子對所得到的黑顯示時的輝度(C(j/m2 )和白顯示時 的輝度(cd/m2)進行計算,此時算出的值在8〇〇以下時設 為X,801以上時設為〇。 37 322498 201128239 對比度=白顯示的輝度/黑顯示的輝度 (暗室對比度) 關於暗室對比度,係在實施例和比較例的光學層疊體 中,使與光學功能層的形成面之相反面,隔著無色透明的 黏著層貼合於液晶顯示裝置(商品名:LC-37GX1W,夏普 公司製造)的畫面表面,在暗室條件下,用色彩輝度計(商 品名:BM-5A,拓普康公司製造)測量使液晶顯示裝置為 白顯示和黑顯示時的輝度,用以下的式子對所得到的黑顯 示時的輝度(cd/m2 )和白顯示時的輝度(cd/m2 )進行計 算,此時算出的值為900至1100時設為X,為1101至1300 時設為△,為1301至1500時設為〇。 對比度=白顯示的輝度/黑顯示的輝度 (麥克貝斯濃度) 關於麥克貝斯反射濃度,根據JIS K7654,採用麥克 貝斯反射濃度計(商品名:RD-914,阪田工程公司製造), 用Magic Ink (注冊商標)將實施例和各比較例的光學層疊 體的透光性基體的與樹脂層之相反侧的面塗黑後,測量樹 脂層表面的麥克貝斯反射濃度。 (光澤度) 關於光澤度,根據JIS Z8741,採用光澤計(商品名: VG2000,日本電色社製造),測量60°鏡面光澤度。 得到的結果示於表2中。表中的數據只要沒有特別說 明,皆是進行皂化處理前的光學層疊體的測量結果。 38 322498 201128239 表2 内 容 厚 度 ㈣ 填 料 粒 徑 ㈣ 4數 (個 Anm2) 霧 度 (%) 全 光 線 穿 透 率 (%) Ra ㈣ Sm ㈣ 平 均 傾 斜 角 度 (°) 麥 克 貝 斯 濃 度 光 澤 度 刺 眼 感 覺 防眩性 明 室 對 比 度 暗 室 對 比 度 影 像 鮮 明 性 防 眩 性 實 施 例 1 7.3 1.5 130 6.3 91.7 0.078 117 0.52 3.30 128.3 〇 74.0 〇 〇 〇 實 施 例 2 72 1.5 190 6.6 922 0.069 73 0.57 329 122.3 〇 76.7 〇 〇 〇 實 施 例 3 6.0 1.5 820 2.9 92.1 0.091 95 0.62 336 1312 〇 86.0 Δ 〇 〇 實 施 例 4 11.0 1.5 90 9.7 91.4 0.052 167 026 328 133.3 Δ 76.1 〇 〇 〇 比 較 例 1 3.5 4.1 0 29.0 91.1 0.360 97 3.52 2.15 35.9 X 22 〇 X 〇 比 較 例 2 7.3 未 添 加 0 0.3 92.5 0.020 49 0.43 330 137.8 ◎ 972 X 〇 〇 比 較 例 3 6.7 5.0 820 6.6 90.8 0236 128 1.42 3.08 83.6 X 23.6 〇 X 〇 比 較 例 4 4.0 1.5 370 2.9 92.1 0.043 62 0.45 337 142.5 ◎ 93.6 X 〇 〇 如表2所示,就各實施例的光學層疊體而言,光學功 能層的膜厚D和上述光學功能層所含有的透光性微粒的平 39 322498 201128239 均粒徑r係滿足3xr&lt;DSl〇xr的關係式,因此,能夠實現 防眩性和高對比度(明室和暗室)。尤其是實施例1至3 的光學層疊體,不僅有防眩性和高對比度,對於刺眼感覺 也可達到效果。 另一方面,各比較例的光學層疊體則未滿足上述關係 式3xr&lt;DSl〇xr,因此,不能兼具防眩性和高對比度(明 室和暗室)。 【圖式簡單說明】 第1圖是用於說明構成本發明的光學功能層中的疇結 構的圖,(a)是放大平面圖,(b)是放大側剖面圖。 第2圖是實施例1的光學層疊體的光學顯微鏡相片。 第3圖是實施例2的光學層疊體的光學顯微鏡相片。 第4圖是實施例3的光學層疊體的光學顯微鏡相片。 第5圖是實施例4的光學層疊體的光學顯微鏡相片。 第6圖是比較例1的光學層疊體的光學顯微鏡相片。 第7圖是比較例3的光學層疊體的光學顯微鏡相片。 第8圖是比較例4的光學層疊體的光學顯微鏡相片。 【主要元件符號說明】 1 光學層疊體 10 透光性基體 20 光學功能層 21 疇結構 22 非疇結構 40 322498No Ingredient mshi Product name Part by mass ionizing radiation curing type fluorinated acrylic acid vinegar A liquid 0.33 Polyfunctional amine ester Acrylic acid brewing Kyoeisha Chemical UA306I 0.45 Real neopentyl alcohol tripropylene 曰 曰 曰 KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA Shiguang Polymerization Agent&gt;Air Baking Refined Rita Irgacure 184 0.08 Case Containing Radon Curing Resin - B Solution (49%) 78.12 1 PMMA ▲ (average particle size 1.5μτη) - 3.92 Ethanol - 1.00 ΜΕΚ - 15.66 Ionizing radiation Curing type deficient acrylic acid brewing _ A liquid 0.21 polyfunctional amine ester acrylic acid vinegar new medium chemical U-6LPA 0.31 real neopentyl alcohol tripropylene «^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ — Ciba Refined Ritai Irgacure 184 0.04 ΑΙΌ UV-curable resin - B solution (49%) 78.70 2 ΡΜΜΑ particles (average particle size 1.5μτη) • 3 92 Benzene - 0.10 Ethyl alcohol - 0.56 ΜΕΚ - 15.93 Multifunctional Amino ester propylene sulphuric acid brewing Kyungwon Chemical UA306I 0.62 sinopentaerythritol tripropylene acid S is a total of glory 彳h昼PE-3A 2.34 Shiguang polystarting agent Ciba refined tiantai. Ii]gacure 184 0.08 ΑΙ ΌUV curable resin B solution (49%) 78.12 3 PMMA particles (average particle size 1.5um) - 2.18 ethanol - 1.00 MEK • 15.66 polyfunctional amine ester acrylic acid vinegar Xinzhongcun Chemical U-6LPA 5.8 th gas pentylene Alcohol tripropylene: 11⁄23⁄4 _ Japanese chemical KAYARADPET-30 13.7 Leveling agent: m- MEGAFACE F471 0.2 Dry into the extension! Light polymerization agent Ciba refined day too Irgacure 184 2.0 1 Amorphous dioxygen "ib" (Average particle size 4.1μτη) Fujifilm Chemical Sylophobic702 4.0 Aben - 16.4 MIBK 38.4 Ionizing radiation-curable fluorinated propionate A solution 0.21 Than polyfunctional amine ester acrylate vinegar co-prosperous Duhua UA306I 2.37 New ing Tetraol tripropylene vinegar co-prosperous Duhua lifting PE-3A 2.36 ΑΙΌ UV-cured preparation B liquid (49%) 78.12 2 Photopolymerization agent _ Ciba Jinghua Ritai Iigacure 184 0.28 Ethanol _ 1.00 MEK. 15.66 multi-functional amine acetoacetate vinegar Xinzhongcun Chemical U-6ULPA 0.62 than pentaerythritol dipropylene; the purpose of this chemical seam KAYARADPET-30 0.61 photopolymerization initiator. Ciba Jinghua Ritai Iigacure 184 0.08 cases UV-containing curing谢脂• B solution (49%) 78.12 3 PMMA particles (average granules 5. (^ 3.92 6 leaven 1.00 MEK - 15.66 34 322498 201128239 &lt;evaluation method &gt; Next, optical cascading of the examples and comparative examples Body, evaluate the following items. (Number of domains) Regarding the number of domains, the optical layered body was photographed at an magnification of 50 times using an optical microscope, and the number of revolutions existing inside and outside the frame of 0.1 mm2 of the photograph was measured by visual inspection. Regarding the domain existing outside the frame representing 0.1 mm2, it is counted only when it can be visually confirmed that the area occupies more than half of the frame. As described above, the number of domains existing in the frame of 0.1 mm2 was measured, and the number of domains per 1 mm2 was calculated. Optical microscope: BX60 camera manufactured by OLUMPUS: COOLPIXE995 photographic mode manufactured by NIKON: The optical laminated body of the penetration example and the comparative example is shown in the figure (Example 1 is shown in Fig. 2, Example 2 is shown in Fig. 3, Example 3 is shown in Fig. 4, Example 4 is shown in Fig. 5, Comparative Example 1 is shown in Fig. 6, Comparative Example 3 is shown in Fig. 7, and Comparative Example 4 is shown in Fig. Figure 8). Further, in the optical layered body of Comparative Example 2, since the thickness of the optical function layer was thin with respect to the average particle diameter, the domain structure was not formed, so that no photographing was performed. (Total Light Transmittance) The total light transmittance was measured by a haze meter (trade name: NDH2000, manufactured by Sakamoto Photoelectric Co., Ltd.) in accordance with JIS K7105. (Haze value) 35 322498 201128239 The haze value is measured in accordance with JIS K7105' using a haze meter (trade name: NDH2000' manufactured by Nippon Densh Co., Ltd.). The haze in the table is the value of the total haze. (Arithmetic average roughness and average interval of unevenness) The arithmetic mean roughness Ra and the unevenness average interval Sm are performed by a surface roughness measuring device (trade name: Surfcorder SE1700a, manufactured by Kosaka Research Institute) according to HS B0601-1994. measuring. (Average tilt angle) The average tilt angle was obtained from the ASME 95 using a surface roughness measuring instrument (trade name: Surfcorder SE1700 α, manufactured by Kosei Research Institute Co., Ltd.), and the average tilt angle was calculated from the following equation. Average tilt angle = tan_1 (average tilt) (image sharpness) According to JIS K7105, the image measuring device (trade name: ICM-1DP, manufactured by Suga Test Machine Co., Ltd.) is used, and the measuring device is set to the penetration mode with a width of 0.5. The mm comb is measured. (Anti-glare property) Anti-glare property is set to 〇 when the value of image sharpness is 0 to 80, △ when it is 81 to 90, and X when it is 91 to 100. (Blasting sensation) The glare sensation is a liquid crystal display having a resolution of 50 ppi (product name: LC-32GD4) bonded to the opposite surface of the optical layer forming surface of each of the examples and the comparative examples, respectively, via a colorless and transparent adhesive layer. , manufactured by Sharp Corporation, a liquid crystal display with a resolution of lOOppi (trade name·· 322498 36 201128239 LL-T1620-B, manufactured by Sharp Corporation), and a liquid crystal display with a resolution of 12 〇ppi (trade name: LC-37GX1W) , manufactured by Sharp Corporation, a liquid crystal display with a resolution of 140 ppi (trade name: vGN_TX72B, manufactured by Sony Corporation), and a liquid crystal display with a resolution of 150 ppi (trade name: nW8240-PM780, manufactured by Hewlett-Pacard, Japan) The surface of the liquid crystal display (trade name: pc cv5〇FW, manufactured by Sharp Corporation) having a resolution of 200 PPi, the liquid crystal display is displayed in green under the dark room, and then the resolution is from the normal direction of each liquid crystal TV. The image of the 2 ppi CCP camera (CV-2() GC, manufactured by Keyence Corporation) cannot be confirmed. The resolution of the luminance deviation is 〇ppi to 50ppi. 'Is set to △ when 51PPi l〇〇ppi, is set to square 1〇lppi when 14〇ppi' is set to the time X is 141ppi 200ppi set ◎. (Bright room contrast) In the optical layered body of the examples and the comparative examples, the liquid crystal display device is bonded to the surface of the optical layer of the embodiment and the comparative example via a colorless transparent adhesive layer. Name: LC-37GX1W, manufactured by Sharp Corporation) The surface of the liquid crystal display is illuminated by a fluorescent lamp (trade name: HH4125GL, manufactured by National Corporation) from the front side of the front surface of the liquid crystal display device at 60°. 2 lux, after using a color luminance meter (trade name: BM-5A, manufactured by Topcon Co., Ltd.) to measure the luminance of a liquid crystal display device for white display and black display, by the following formula The luminance (C (j/m2) at the time of black display and the luminance (cd/m2) at the time of white display are calculated, and when the calculated value is 8 〇〇 or less, it is set to X, and when it is 801 or more, it is set to 〇. 37 322498 201128239 Contrast = Brightness of white display / Brightness of black display (dark room contrast) Regarding dark room contrast, in the optical laminate of the examples and the comparative examples, the opposite side to the surface on which the optical functional layer is formed is interposed. The colorless and transparent adhesive layer is attached to the screen surface of a liquid crystal display device (trade name: LC-37GX1W, manufactured by Sharp Corporation), and in a dark room condition, a color luminance meter (trade name: BM-5A, manufactured by Topcon Corporation) The luminance of the liquid crystal display device in the case of white display and black display is measured, and the luminance (cd/m2) at the obtained black display and the luminance (cd/m2) at the time of white display are calculated by the following equation. The calculated value is set to X when it is 900 to 1100, △ when it is 1101 to 1300, and 〇 when it is 1301 to 1500. Contrast = Brightness of white display / Brightness of black display (Macbeth density) About Macbeth reflection The density of the light-transmitting substrate of the optical laminate of the examples and the comparative examples was measured by using a Macbeth reflection densitometer (trade name: RD-914, manufactured by Sakata Engineering Co., Ltd.) according to JIS K7654, using Magic Ink (registered trademark). After the surface on the opposite side to the resin layer was blackened, the Macbeth reflection density on the surface of the resin layer was measured. (Glossiness) Regarding the glossiness, a gloss meter was used according to JIS Z8741 (trade name: VG2000, manufactured by Nippon Denshoku Co., Ltd.) Manufactured, the 60° specular gloss was measured. The results obtained are shown in Table 2. The data in the table are the results of the optical laminate before the saponification treatment unless otherwise specified. 38 322498 201128239 Table 2 Content Thickness (4) Filler particle size (4) 4 number (Anm2) Haze (%) Total light transmittance (%) Ra (4) Sm (4) Average tilt angle (°) Macbeth concentration gloss glare feeling anti-glare bright room contrast dark room contrast image sharp Anti-glare Example 1 7.3 1.5 130 6.3 91.7 0.078 117 0.52 3.30 128.3 〇74.0 〇〇〇Example 2 72 1.5 190 6.6 922 0.069 73 0.57 329 122.3 〇76.7 〇〇〇Example 3 6.0 1.5 820 2.9 92.1 0.091 95 0.62 336 1312 〇86.0 Δ 〇〇Example 4 11.0 1.5 90 9.7 91.4 0.052 167 026 328 133.3 Δ 76.1 〇〇〇Comparative Example 1 3.5 4.1 0 29.0 91.1 0.360 97 3.52 2.15 35.9 X 22 〇X 〇Comparative Example 2 7.3 Not added 0 0.3 92.5 0.020 49 0.43 330 137.8 ◎ 972 X 〇〇Comparative Example 3 6.7 5.0 820 6.6 90.8 0236 128 1 .42 3.08 83.6 X 23.6 〇X 〇Comparative Example 4 4.0 1.5 370 2.9 92.1 0.043 62 0.45 337 142.5 ◎ 93.6 X As shown in Table 2, the film thickness of the optical functional layer for the optical laminate of each example D and the translucent fine particles contained in the optical functional layer are flat 39 322498 201128239 The average particle diameter r satisfies the relationship of 3xr &lt; DSl 〇 xr, and therefore, anti-glare property and high contrast (bright room and dark room) can be achieved. In particular, the optical laminates of Examples 1 to 3 not only have anti-glare properties and high contrast, but also have an effect on glare. On the other hand, the optical layered body of each of the comparative examples did not satisfy the above relationship 3xr &lt; DSl〇xr, and therefore, it was not possible to have both anti-glare property and high contrast (clear room and dark room). BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view for explaining a domain structure constituting an optical functional layer of the present invention, wherein (a) is an enlarged plan view and (b) is an enlarged side sectional view. Fig. 2 is an optical micrograph of the optical layered body of Example 1. Fig. 3 is an optical micrograph of the optical layered body of Example 2. Fig. 4 is an optical micrograph of the optical layered body of Example 3. Fig. 5 is an optical micrograph of the optical layered body of Example 4. Fig. 6 is an optical micrograph of the optical layered body of Comparative Example 1. Fig. 7 is an optical micrograph of the optical layered body of Comparative Example 3. Fig. 8 is an optical micrograph of the optical layered body of Comparative Example 4. [Explanation of main component symbols] 1 Optical laminated body 10 Translucent substrate 20 Optical functional layer 21 Domain structure 22 Non-domain structure 40 322498

Claims (1)

201128239 七、申請專利範圍·· 1. 一種光學層豐體,係具備透光性基體和設置於前述透光 性基體上的至少一層光學功能層,前述光學功能層具有 鳴結構’前述光學功能層的膜厚D和前述絲功能層 所含有的透光性微粒的平均粒徑Γ係處於以關係式 3xr&lt;DSl〇xr所表示的範圍。 2. 如申請專利範圍第1項所述之光學層疊體,其中,前述 光學功旎層的膜厚D係處於2pm至ι5μιη的範圍。“ 3. 如申請專利範圍第1項或第2項所述之光學層疊體,其 中,前述光學功能層所含有的透光性微粒的平均粒裡^ 係處於0.5μιη至5·0μιη的範圍。 (如申請專利範圍第丨至3項中任—項所述之光學層疊 體,其中,形成於前述光學功能層㈣結構係處於ς lmm2有20個至1000個的範圍。 5. 如申料職Μ 1至4财任―韻述之光學層疊 體’其中’前述光學功能層表面的算術平均粗縫度以 係處於0.05μιη至0.20μιη的範圍内。 6. 如申請專利範圍第1至5項中任—項所述之光學層疊 體’其中’前述光學功能層表面的凹凸平均間隔如係 處於50μιη至200μπι的範圍内。 7·如申請專利範圍第1至6項巾任—項所述之光學層疊 體,其中’前述光學功能層表面的平均傾斜角度係處於 〇.2°至1.4。的範圍内。 8· —種偏光板,係具備申請專利範圍第i至7項中任一項 322498 1 201128239 所述之光學層疊體。 9. 一種顯示裝置,係具備申請專利範圍第1至7項中任一 項所述之光學層疊體。 10. —種光學層疊體的製造方法,係將混合有樹脂成分、透 光性微粒和第一溶媒以及第二溶媒的塗料塗布在透光 性基體上而形成塗布層,在使前述塗布層所含有的前述 第一溶媒和第二溶媒揮發時,使塗布層產生對流而形成 疇結構,然後,使前述塗料中所含有的樹脂成分固化而 形成光學功能層,前述光學功能層的膜厚D和前述光 學功能層所含有的透光性微粒的平均粒徑r係滿足 3xr&lt;DSl〇xr的關係式。 2 322498201128239 VII. Patent Application Range 1. An optical layer body comprising a light transmissive substrate and at least one optical functional layer disposed on the light transmissive substrate, wherein the optical functional layer has a sound structure 'the aforementioned optical functional layer The film thickness D and the average particle diameter of the light-transmitting fine particles contained in the silk functional layer are in the range represented by the relationship of 3xr &lt; DSl 〇 xr. 2. The optical layered body according to claim 1, wherein the film thickness D of the optical work layer is in the range of 2 pm to ι 5 μm. The optical layered body according to the first or second aspect of the invention, wherein the optically-transparent fine particles contained in the optical functional layer have an average particle size ranging from 0.5 μm to 5.0 μm. The optical layered body according to any one of the preceding claims, wherein the optical functional layer (four) structure is in the range of 20 to 1000 in the ςlmm2. Μ 1 to 4 Finance--The optical laminate of the rhyme, wherein the arithmetic mean sipe of the surface of the aforementioned optical functional layer is in the range of 0.05 μm to 0.20 μm. 6. The scope of claims 1 to 5 The optical laminate according to the above-mentioned item, wherein the average unevenness of the surface of the optical functional layer is in the range of 50 μm to 200 μm. 7. The object of claim 1 to 6 is as described in the item The optical layered body, wherein the average tilt angle of the surface of the optical function layer is in the range of 〇.2° to 1.4°. 8·-type polarizing plate, which has any one of the claims ii to 322498. 1 201128239 An optical layered body according to any one of the first to seventh aspects of the invention, wherein the optical layered body is mixed with a resin component, The light-transmitting fine particles, the first solvent and the second solvent are applied onto the light-transmitting substrate to form a coating layer, and when the first solvent and the second solvent contained in the coating layer are volatilized, the coating layer is convected. The domain structure is formed, and then the resin component contained in the coating material is cured to form an optical functional layer, and the film thickness D of the optical functional layer and the average particle diameter r of the light-transmitting fine particles contained in the optical functional layer are satisfied. The relation of 3xr&lt;DSl〇xr. 2 322498
TW099137589A 2009-11-04 2010-11-02 Optical laminate and manufacturing method thereof as well as polarizing plate and display device using the same TW201128239A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009252915A JP2011098445A (en) 2009-11-04 2009-11-04 Optical laminate and method for manufacturing the same, and polarizing plate and display device using the same

Publications (1)

Publication Number Publication Date
TW201128239A true TW201128239A (en) 2011-08-16

Family

ID=44190044

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099137589A TW201128239A (en) 2009-11-04 2010-11-02 Optical laminate and manufacturing method thereof as well as polarizing plate and display device using the same

Country Status (4)

Country Link
JP (1) JP2011098445A (en)
KR (1) KR101148305B1 (en)
CN (1) CN102156311A (en)
TW (1) TW201128239A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948763B2 (en) 2011-08-29 2016-07-06 大日本印刷株式会社 Anti-glare film, polarizing plate and image display device
WO2013146023A1 (en) * 2012-03-30 2013-10-03 東京特殊電線株式会社 Laminate inspection method, laminate inspection device and laminate manufacturing apparatus
JP6619784B2 (en) * 2017-09-28 2019-12-11 日東電工株式会社 Method for manufacturing laminated body of optical display device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3507719B2 (en) * 1998-02-17 2004-03-15 大日本印刷株式会社 Anti-glare film, polarizing element and display device
JPH11291381A (en) * 1998-04-14 1999-10-26 Kanegafuchi Chem Ind Co Ltd Transparent conductive film
JP2000238165A (en) * 1999-02-23 2000-09-05 Teijin Ltd Laminate film
JP4418684B2 (en) * 2004-01-06 2010-02-17 ダイセル化学工業株式会社 Anti-glare film
JP4641846B2 (en) * 2004-03-29 2011-03-02 大日本印刷株式会社 Antiglare laminate
KR100653504B1 (en) * 2004-11-04 2006-12-04 주식회사 엘지화학 Light Diffusion Resin Composition
TWI409169B (en) * 2005-02-21 2013-09-21 Dainippon Printing Co Ltd Anti-glare optical laminate
US20070104896A1 (en) * 2005-11-04 2007-05-10 Fujifilm Corporation Optical film, polarizing plate and image display device
CN100356247C (en) * 2005-11-29 2007-12-19 长兴化学工业股份有限公司 Optical thin sheet
JP2009066757A (en) * 2006-02-03 2009-04-02 Nakajima Kogyo Kk Antiglare film
JP5060729B2 (en) * 2006-02-03 2012-10-31 中島工業株式会社 Anti-glare film
KR20090008234A (en) * 2006-03-16 2009-01-21 다이셀 가가꾸 고교 가부시끼가이샤 Anti-dazzling film
US20100246011A1 (en) * 2006-03-29 2010-09-30 Tomoegawa Co., Ltd. Optical film
KR100787049B1 (en) * 2006-08-16 2007-12-21 심현섭 Light diffusing resin compositions, members for illuminating apparatus using the same, and preparing methods thereof
JP2008062538A (en) * 2006-09-08 2008-03-21 Nakajima Kogyo Kk Glare shielding film
CN101324677A (en) * 2007-03-14 2008-12-17 索尼株式会社 Method for producing anti-glare film
JP2008304638A (en) * 2007-06-06 2008-12-18 Sony Corp Anti-glare film and manufacturing method thereof, polarizer and display device
TW200916837A (en) * 2007-08-22 2009-04-16 Tomoegawa Co Ltd Optical laminate
JP5232448B2 (en) * 2007-11-19 2013-07-10 株式会社巴川製紙所 Anti-glare material
JP2009196286A (en) * 2008-02-25 2009-09-03 Toyo Ink Mfg Co Ltd Anti-glare member

Also Published As

Publication number Publication date
JP2011098445A (en) 2011-05-19
CN102156311A (en) 2011-08-17
KR20110049700A (en) 2011-05-12
KR101148305B1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
TWI266073B (en) Antireflection film, polarizing plate and image display device
JP6203796B2 (en) Anti-glare film and display device using the same
JP5593125B2 (en) Optical laminate, polarizing plate and display device
TWI454753B (en) Optical laminate, polarizing plate, display device, and method for making an optical laminate
JP6404372B2 (en) Wavelength conversion member, backlight unit, image display device, and method of manufacturing wavelength conversion member
JP5232448B2 (en) Anti-glare material
TWI490124B (en) Optical layered product, polarizer and display using the optical layered product
TWI454725B (en) Optical laminate film
CN103299217A (en) Anti-reflective film, anti-reflective film production method, polarization plate and image display device
JP5262032B2 (en) Optical laminate manufacturing method, optical laminate, polarizing plate, and image display device
TW200401116A (en) High refraction film, high refraction film-forming coating composition, anti-reflection film, protective film for polarizing plate, polarizing plate and image display device
TW200537127A (en) Antidazzle coating composition, antidazzle film and process for producing the same
TW200807014A (en) Hard-coated antiglare film, and polarizing plate and image display including the same
TW201124278A (en) Optical laminate and method for producing optical laminate
KR20100124657A (en) Anti-glare film, method of manufacturing same, and display device
WO2011135853A1 (en) Optical laminate, polarising plate and display device
TW201118410A (en) Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
JP2013092782A (en) Optical laminate
JP5753285B2 (en) Optical laminate
JP5911785B2 (en) Optical laminate
TW201128239A (en) Optical laminate and manufacturing method thereof as well as polarizing plate and display device using the same
JP2008257160A (en) Optical laminate, polarizing plate and image display apparatus
TWI265307B (en) Antiglare optical film, polarizing plate and display unit using the same
KR20120038701A (en) Anti-glare film, polarizing plate and display device using the same
JP5426329B2 (en) Optical laminate