WO2022260152A1 - Hard coat film, optical member, and image display device - Google Patents

Hard coat film, optical member, and image display device Download PDF

Info

Publication number
WO2022260152A1
WO2022260152A1 PCT/JP2022/023388 JP2022023388W WO2022260152A1 WO 2022260152 A1 WO2022260152 A1 WO 2022260152A1 JP 2022023388 W JP2022023388 W JP 2022023388W WO 2022260152 A1 WO2022260152 A1 WO 2022260152A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard coat
average thickness
coat film
light
Prior art date
Application number
PCT/JP2022/023388
Other languages
French (fr)
Japanese (ja)
Inventor
尚樹 橋本
幸大 宮本
岳仁 淵田
裕貴 水川
豊 角田
豪彦 安藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280041594.3A priority Critical patent/CN117480412A/en
Priority to KR1020237044520A priority patent/KR20240011799A/en
Publication of WO2022260152A1 publication Critical patent/WO2022260152A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness

Definitions

  • the present invention relates to hard coat films, optical members, and image display devices.
  • a hard coat film is a film in which a hard coat layer is provided on the film surface to increase the surface strength, etc., and is widely used in image display devices (Patent Document 1, etc.).
  • an object of the present invention is to provide a hard coat film, an optical member, and an image display device that achieve both surface abrasion resistance and bending resistance.
  • the hard coat film of the present invention is A hard coat layer (B), an optical functional layer (C) and an antifouling layer (D) are laminated in the order described above on at least one surface of the light transmissive substrate (A),
  • the antifouling layer (D) contains fluorine as an element
  • the average thicknesses of the light-transmitting substrate (A), the hard coat layer (B) and the optical function layer (C) are characterized by satisfying the following formulas (1) and (2).
  • dS is the average thickness [ ⁇ m] of the light transmissive substrate (A)
  • dH is the average thickness [ ⁇ m] of the hard coat layer (B)
  • dI is the average thickness [ ⁇ m] of the optical function layer (C).
  • the optical member of the present invention is an optical member containing the hard coat film of the present invention.
  • the image display device of the present invention is an image display device containing the hard coat film of the present invention or the optical member of the present invention.
  • a hard coat film, an optical member, and an image display device that have both surface abrasion resistance and bending resistance.
  • FIG. 1 is a cross-sectional view illustrating the configuration of the hard coat film of the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the hard coat film of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the bending resistance test method of the example.
  • the antifouling layer (D) may have a surface roughness in the range of 1 to 10 nm on the side opposite to the substrate (A).
  • the average thickness of the hard coat layer (B) may be in the range of 2 to 12 ⁇ m.
  • the light-transmitting substrate (A) may have an average thickness of 100 ⁇ m or less.
  • the antifouling layer (D) may have an average thickness in the range of 1 to 30 nm.
  • the hard coat layer (B) may contain at least one selected from the group consisting of organic resin, silicon oxide, titanium oxide and zirconium oxide.
  • the optical member of the present invention may be, for example, a polarizing plate.
  • the hard coat layer (B), the optical function layer (C) and the antifouling layer (D) are arranged in the order described above on only one side of the light-transmitting substrate (A). laminated, An adhesive layer is laminated on the other surface of the light-transmitting substrate (A),
  • the hard coat film may be attached to a member containing glass or a plastic film via the adhesive layer.
  • weight and “mass” may be read interchangeably unless otherwise specified.
  • parts by weight may be read as “parts by weight”
  • parts by weight may be read as “parts by weight”
  • mass% may be read as “% by weight”
  • % by weight may be read as “% by mass”.
  • the hard coat film of the present invention as described above, A hard coat layer (B), an optical functional layer (C) and an antifouling layer (D) are laminated in the order described above on at least one surface of the light transmissive substrate (A), The antifouling layer (D) contains fluorine as an element,
  • the average thicknesses of the light-transmitting substrate (A), the hard coat layer (B) and the optical function layer (C) are characterized by satisfying the following formulas (1) and (2).
  • dS is the average thickness [ ⁇ m] of the light transmissive substrate (A)
  • dH is the average thickness [ ⁇ m] of the hard coat layer (B)
  • dI is the average thickness [ ⁇ m] of the optical function layer (C).
  • FIG. 1 schematically shows an example of the configuration of the hard coat film of the present invention.
  • the hard coat film 10 includes a hard coat layer (B) 12, an optical function layer (C) 13 and an antifouling layer (D) on at least one surface of a light transmissive substrate (A) 11. 14 are stacked in the above order.
  • the antifouling layer (D) 14 contains fluorine as an element.
  • dS is the average thickness [ ⁇ m] of the light transmissive substrate (A) 11 .
  • dH is the average thickness [ ⁇ m] of the hard coat layer (B) 12 .
  • dI is the average thickness [ ⁇ m] of the optical function layer (C) 13 .
  • dF is the average thickness [ ⁇ m] of the antifouling layer (D) 14 .
  • the average thickness dS [ ⁇ m] of the light-transmitting substrate (A) 11, the average thickness dH [ ⁇ m] of the hard coat layer (B) 12, and the average thickness dI [ ⁇ m] of the optical function layer (C) 13 are calculated according to the above formula It satisfies the relationships (1) and (2).
  • “on” or “on the surface” may be in a state of being in direct contact with the surface, or may be in a state of intervening another layer or the like.
  • the hard coat film 10A comprises a hard coat layer (B) 12, an optical functional layer (C) 13 and an antifouling layer (D) on at least one surface of a light transmissive substrate (A) 11. 14 are stacked in the above order.
  • the antifouling layer (D) 14 contains fluorine as an element.
  • the surfaces of the optical functional layer (C) 13 and the antifouling layer (D) 14 formed on the hard coat layer (B) 12 also have the same uneven shape as the surface of the hard coat layer (B) 12. .
  • the hard coat layer (B) 12 contains particles. As illustrated, the hard coat layer (B) 12 is formed by containing particles 12b in a resin layer 12a.
  • “on” or “on the surface” may be in a state of being in direct contact with the surface, or may be in a state of intervening another layer or the like.
  • the light transmissive substrate (A) 11, the hard coat layer (B) 12, the optical function layer (C) 13 and the antifouling layer (D) 14 are directly laminated, which will be described later. It may be laminated via other layers so as to be carried out.
  • each of the layers (A) to (D) may be flat as shown in FIG. 1, or may be uneven as shown in FIG.
  • the method for measuring the "average thickness" of each layer (A) to (D) is not particularly limited, but for example, linear gauge, TEM (transmission electron microscope), fluorescent X-ray, etc. Specifically, for example, it can be measured by the method described in Examples below. Further, for example, even if the surface of each layer (for example, the hard coat layer (B)) has unevenness and the thickness of each part varies, for example, any three points can be detected by imaging in a 1 ⁇ m square field of view. The thickness is measured, and the thickness is measured at 5 points in a 1 ⁇ m square visual field in the same manner, and the average value of the thickness measurement results at 15 points in total is taken as the average thickness, whereby the average thickness can be measured.
  • the hard coat film of the present invention satisfies the following formula (1). That is, the product of the average thickness dH [ ⁇ m] of the hard coat layer (B) and the average thickness dI [ ⁇ m] of the optical function layer (C) is in the range of 0.2-4. 0.2 ⁇ dH ⁇ dI ⁇ 4 (1)
  • dH [ ⁇ m] ⁇ dI [ ⁇ m] may be, for example, 0.2 or more, 0.3 or more, 0.4 or more, or 0.5 or more, for example, 4.0 or less, 3.5 or less , 3.0 or less, or 2.5 or less, for example, 0.2 to 4.0, 0.3 to 3.5, 0.4 to 3.0, or 0.5 to 2.0. 5 may be used.
  • the hard coat film of the present invention satisfies the following formula (2). That is, the average thickness dH [ ⁇ m] of the hard coat layer (B) and the average thickness dH [ ⁇ m] of the hard coat layer (B) are added to the average thickness dS [ ⁇ m] of the light-transmitting substrate (A). ] is in the range of 0.02 to 0.62. 0.02 ⁇ (dH+dI)/dS ⁇ 0.62 (2)
  • (dH [ ⁇ m] + dI [ ⁇ m])/dS [ ⁇ m] may be, for example, 0.02 or more, 0.03 or more, 0.04 or more, or 0.05 or more, for example, 0.6 0.5 or less, 0.4 or less, or 0.3 or less, for example, 0.02 to 0.6, 0.03 to 0.5, 0.04 to 0.4, or It may be from 0.05 to 0.3.
  • the hard coat film of the present invention contains layers other than the light transmissive substrate (A), the hard coat layer (B), the optical function layer (C) and the antifouling layer (D). It may or may not contain
  • the light-transmitting substrate (A), the hard coat layer (B), the optical function layer (C), and the antifouling layer (D) may be directly laminated. You may laminate
  • adheresive layer means “adhesive layer or adhesive layer”.
  • Adhesive layer means “a layer formed by an adhesive”.
  • Adhesive layer means “a layer formed by an adhesive”.
  • an adhesive that has a relatively small adhesive force (adhesive force) and can be removed from the adherend is called an "adhesive”, and has a relatively large adhesive force (adhesive force) that makes it impossible to remove the adherend. Difficult things are sometimes called “adhesives” to distinguish them.
  • a substance with a relatively small adhesive force is called an "adhesive”
  • a substance with a relatively large adhesive force is called an “adhesive”
  • the adhesive layer may be, for example, an adhesive layer formed of an adhesive (adhesive composition).
  • the thickness of the adhesive layer is not particularly limited. may be Although the adhesive is not particularly limited, examples thereof include (meth)acrylic polymers. For example, these may be dissolved or dispersed in a solvent to form a solution or dispersion, which may be used as the pressure-sensitive adhesive (pressure-sensitive adhesive composition). Examples of the solvent include ethyl acetate and the like, and one type thereof may be used alone, or a plurality of types may be used in combination.
  • the concentration of the solute or dispersoid (e.g., the acrylic polymer) in the solution or dispersion may be, for example, 10% by mass or more, or 15% by mass or more, for example, 60% by mass or less, or 50% by mass. % or less, 40 mass % or less, or 25 mass % or less.
  • (meth)acrylic polymer refers to a polymer or copolymer of at least one monomer selected from (meth)acrylic acid, (meth)acrylic acid ester, and (meth)acrylamide.
  • (meth)acrylic acid means “at least one of acrylic acid and methacrylic acid”
  • (meth)acrylic acid ester means “at least one of acrylic acid ester and methacrylic acid ester”.
  • examples of the (meth)acrylic acid ester include linear or branched alkyl esters of (meth)acrylic acid.
  • the number of carbon atoms in the alkyl group may be, for example, 1 or more, 2 or more, 3 or more, or 4 or more, for example, 18 or less, 16 or less. , 14 or less, 12 or less, 10 or less, or 8 or less.
  • Said alkyl groups may be substituted or unsubstituted, for example with one or more substituents.
  • substituents include hydroxyl groups and the like, and in the case of a plurality of substituents, they may be the same or different.
  • Specific examples of the (meth)acrylic acid ester include 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate and the like.
  • the said adhesive may use only one type, and may use multiple types together.
  • the light-transmitting substrate (A) is not particularly limited. A base material etc. are mentioned.
  • the transparent plastic film substrate is not particularly limited, but preferably has excellent visible light transmittance (preferably light transmittance of 90% or more) and excellent transparency (preferably haze value of 1% or less).
  • a transparent plastic film substrate described in JP-A-2008-90263 As the transparent plastic film substrate, one having optically low birefringence is preferably used.
  • the hard coat film of the present invention can also be used for a polarizing plate as a protective film, for example.
  • a film formed of polyolefin or the like having a or norbornene structure is preferable.
  • the transparent plastic film substrate may be the polarizer itself.
  • Such a structure eliminates the need for a protective layer made of TAC or the like and simplifies the structure of the polarizing plate, thereby reducing the number of steps for manufacturing the polarizing plate or the image display device and improving the production efficiency.
  • the polarizing plate can be made thinner.
  • the transparent plastic film substrate is a polarizer, for example, the non-transparent layer functions as a protective layer.
  • the hard coat film of the present invention also functions as a cover plate, for example, when attached to the surface of a liquid crystal cell.
  • the average thickness of the light-transmitting substrate (A) is not particularly limited. 100 ⁇ m or less, such as 90 ⁇ m or less, 80 ⁇ m or less, 70 ⁇ m or less, or 60 ⁇ m or less, for example, 10-100 ⁇ m, 20-90 ⁇ m, 30-80 ⁇ m, 40-70 ⁇ m, or 50 ⁇ m or less. It may be 60 ⁇ m. From the viewpoints of ensuring workability and bending resistance, it is preferable that the average thickness of the light-transmitting substrate (A) is not too large. From the viewpoint of insufficient strength, it is preferable that the average thickness of the light-transmitting substrate (A) is not too small.
  • the method for measuring the average thickness of the light-transmitting substrate (A) is not particularly limited, but for example, it can be measured using a linear gauge as in Examples described later.
  • the refractive index of the light transmissive substrate (A) is not particularly limited.
  • the refractive index ranges, for example, from 1.30 to 1.80 or from 1.40 to 1.70.
  • refractive index refers to the refractive index at a wavelength of 550 nm unless otherwise specified.
  • the method for measuring the refractive index is not particularly limited, but in the case of the refractive index of fine substances such as particles, for example, the Becke method can be used. In the Becke method, a sample to be measured is dispersed in a standard refractive liquid on a slide glass, and the refractive index of the standard refractive liquid when the outline of the sample disappears or becomes blurred when observed with a microscope is used as the refractive index of the sample.
  • the method for measuring the refractive index of a measurement object whose refractive index cannot be measured by the Becke method is not particularly limited, but for example, It can be measured using a general refractometer (instrument for measuring refractive index).
  • the refractometer is also not particularly limited, and examples thereof include an Abbe refractometer. Examples of the Abbe refractometer include a multi-wavelength Abbe refractometer DR-M2/1550 (trade name) manufactured by Atago Co., Ltd.
  • the hard coat layer (B) is not particularly limited, and may be, for example, similar to or similar to a hard coat layer of a general hard coat film.
  • the hard coat layer (B) may be formed of a resin layer.
  • the hard coat layer (B) may or may not contain fillers, thixotropy-imparting agents, surface control agents, pigments, dyes, and the like.
  • the filler is not particularly limited, it may be, for example, particles.
  • the particles are not particularly limited, and may be, for example, organic particles or inorganic particles, and may be amorphous particles or spherical particles. The material for forming the hard coat layer (B) will be described later in detail.
  • the average thickness of the hard coat layer (B) is not particularly limited. for example, 30 ⁇ m or less, 25 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, or 10 ⁇ m or less, for example, 0.5-30 ⁇ m, 1.0-25 ⁇ m, 101.5-20 ⁇ m, 2.0 ⁇ m or less. ⁇ 15 ⁇ m, or 2.5-10 ⁇ m. From the viewpoint of preventing curling and processing defects, it is preferable that the average thickness of the hard coat layer (B) is not too large. From the viewpoint of preventing a decrease in pencil hardness and insufficient hardness, it is preferable that the average thickness of the hard coat layer (B) is not too small.
  • the method for measuring the average thickness of the hard coat layer (B) is not particularly limited, but for example, it can be measured using a linear gauge as in Examples described later.
  • the surface roughness of the surface of the hard coat layer (B) opposite to the substrate (A) is not particularly limited, but is, for example, 1 nm or more, 1.5 nm or more, or 2.0 nm or more. , 2.5 nm or more, or 3.0 nm or more, for example, 10 nm or less, 9.5 nm or less, 9.0 nm or less, 8.5 nm or less, or 8.0 nm or less, for example, It may be 1-10 nm, 1.5-9.5 nm, 2.0-9.0 nm, 2.5-8.5 nm, or 3.0-8.0 nm.
  • the "surface roughness" of each layer of the hard coat film of the present invention refers to the surface roughness on the side opposite to the substrate (A).
  • the surface roughness of the hard coat layer (B) affects, for example, the adhesion between the hard coat layer (B) and the optical function layer (C). From the viewpoint of preventing haze and scratching of the surface, it is preferable that the surface roughness of the hard coat layer (B) is not too large. From the viewpoint of preventing poor adhesion with the optical function layer (C) and preventing deterioration of antiblocking properties, it is preferable that the surface roughness of the hard coat layer (B) is not too small.
  • the method for measuring the surface roughness Ra of each layer of the hard coat film is not particularly limited, but it can be measured, for example, by the following measuring method.
  • the surface roughness of the outermost layer when the surface roughness of the outermost layer is measured, the surface roughness of the layer below it can be generally estimated to be approximately equal to the surface roughness of the outermost layer.
  • the antifouling layer (D) is the outermost layer.
  • the antifouling layer (D) is the outermost layer
  • the optical functional layer (C) and the hard coat layer (B) can be estimated to be approximately equal to the measured value of the surface roughness of the antifouling layer (D).
  • the optical function layer (C) may be, for example, an antireflection layer having an antireflection function.
  • the optical function layer (C) may be an inorganic layer formed of an inorganic substance, for example.
  • the “inorganic substance” includes, for example, an organic-inorganic hybrid material described later.
  • the inorganic substance that is the material for forming the optical function layer (C) is not particularly limited, but may contain, for example, at least one selected from the group consisting of metals, metal oxides, silicon and silicon oxides. .
  • the optical functional layer (C) will be described below with reference to examples.
  • the metal is not particularly limited, but examples thereof include aluminum, zinc, tin, indium, gallium, zirconium, lead and the like.
  • the metal oxide is not particularly limited, but for example, aluminum oxide (eg, Al 2 O 3 ), zinc-tin composite oxide (ZTO), indium-tin composite oxide (ITO), indium-zinc composite oxide (IZO), Gallium-zinc composite oxide (GZO), zirconium oxide (ZrO 2 ), and the like are included.
  • the silicon oxide is, for example, a compound represented by SiOx (0 ⁇ x ⁇ 2). Examples of the silicon oxide include, but are not limited to, silicon dioxide (SiO 2 ).
  • the material for forming the optical functional layer (C) is not particularly limited, and may be the same as the optical functional layer in a general optical film (eg, hard coat film).
  • a general optical film eg, hard coat film
  • the material for forming it may be the same as that of a general antireflection layer.
  • the material for forming the layer may be the same as for general inorganic layers.
  • the optical function layer (C) may consist of only one layer, or may consist of a plurality of layers. Each layer of the optical function layer (C) may be made of only one type of forming material, or may be made of a plurality of types of forming materials.
  • the optical function layer (C) may be a laminate of an adhesion layer and another layer.
  • the adhesion layer is formed on the hard coat layer (B), and then The other layers may be formed.
  • the adhesion layer may be, for example, an ITO layer. ITO has a high refractive index and absorbs light easily, so if the thickness of the ITO layer is too large, for example, antireflection performance may decrease. Therefore, when the optical function layer (C) is an antireflection layer, it is preferable not to increase the thickness of the ITO layer too much.
  • the optical function layer (C) may contain, for example, an organic-inorganic hybrid material.
  • the organic-inorganic hybrid material is not particularly limited, but examples thereof include polysiloxane resins and silsesquioxane resins.
  • the optical function layer (C) may or may not contain, for example, components other than the inorganic substance. Said other component may be, for example, an organic compound.
  • the organic compound is not particularly limited, but may be, for example, various resins.
  • the resin is not particularly limited, for example, it may be the same as the resin that can be used as the material for forming the light-transmitting base material (A), and one type of resin may be used alone or a plurality of types may be used in combination.
  • the resin may be, for example, an acrylic resin or the like.
  • the optical function layer (C) may be formed of a mixture of acrylic resin and zirconium oxide, a mixture of acrylic resin and silicon oxide (silica), or the like.
  • the content is not particularly limited, but may be, for example, 10% by mass or less, 5% by mass or less, or 1% by mass or less. is not particularly limited, but is, for example, a numerical value exceeding 0% by mass.
  • a method for forming the optical function layer (C) is not particularly limited, but a so-called dry process (a forming method that does not use a solvent) is preferable. Specifically, for example, it may be formed by at least one method selected from the group consisting of vacuum deposition, sputtering, and chemical vapor deposition (CVD). Specific methods for vacuum deposition, sputtering, and chemical vapor deposition (CVD) are also not particularly limited, and may be, for example, the same or similar to general methods.
  • the method for forming the optical function layer (C) of the present invention is not particularly limited.
  • the optical function layer (C) having a certain thickness or more is formed by at least one method selected from the group consisting of vacuum deposition, sputtering, and chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the optical function layer (C) of the present invention can be formed.
  • the inorganic substance is not particularly limited, but may contain, for example, at least one material selected from the group consisting of metals, metal oxides, silicon and silicon oxides, as described above.
  • the average thickness of the optical function layer (C) is not particularly limited. For example, it may be 0.5 ⁇ m or less, 0.4 ⁇ m or less, 0.3 ⁇ m or less, 0.2 ⁇ m or less, or 0.1 ⁇ m or less, such as 0.05 to 0.5 ⁇ m, 0.06 to 0.4 ⁇ m. , 0.07-0.3 ⁇ m, 0.08-0.2 ⁇ m, or 0.09-0.1 ⁇ m. From the viewpoint of preventing deterioration of bending resistance, it is preferable that the average thickness of the optical function layer (C) is not too large. From the viewpoint of preventing deterioration of sliding resistance, it is preferable that the average thickness of the optical function layer (C) is not too small. Although the method for measuring the average thickness of the optical function layer (C) is not particularly limited, for example, it can be measured using a TEM (transmission electron microscope) as in Examples described later.
  • the surface roughness of the optical function layer (C) is not particularly limited, but is, for example, the same as the surface roughness of the hard coat layer (B). Moreover, from the viewpoint of preventing haze and scratching of the surface, it is preferable that the surface roughness of the optical function layer (C) is not too large. From the viewpoint of preventing poor adhesion with the antifouling layer (D) and preventing deterioration of antiblocking properties, it is preferable that the surface roughness of the optical function layer (C) is not too small.
  • the antifouling layer (D) is not particularly limited, but may be, for example, similar to or conforming to an antifouling layer used in general optical members and the like.
  • the antifouling layer (D) contains fluorine as an element as described above.
  • the antifouling layer (D) may contain at least one of elemental fluorine and a fluorine compound as an antifouling component.
  • the antifouling component include, but are not particularly limited to, an organic silane compound having a perfluoropolyether group.
  • the antifouling layer (D) may or may not contain components other than the antifouling component.
  • the content is not particularly limited, but is, for example, 50% by mass or less, 25% by mass or less, 20% by mass or less, 10% by mass or less, 5% by mass. % or less, or 1% by mass or less, and the lower limit is not particularly limited, but it is, for example, a numerical value exceeding 0% by mass.
  • the antifouling layer (D) can exhibit high antifouling properties even with a small film thickness, for example, so that the optical function of the optical function layer (C) is less likely to be impaired.
  • the optical function of the optical function layer (C) includes, for example, an antireflection function.
  • the antifouling layer (D) contains fluorine as an element, for example, a low refractive index can be realized, and the refractive index difference with the optical function layer (C) is reduced. Accordingly, for example, the antifouling layer (D) is less likely to change the reflection spectrum of the optical function layer (C), and less likely to impede the optical function (for example, antireflection function) of the optical function layer (C).
  • the antifouling layer (D) in the present invention can achieve, for example, a low refractive index as described above.
  • the antifouling layer (D) in the present invention can be formed (formed) by various methods such as wet coating and vapor deposition, depending on the material used to form the layer. The forming method is not limited.
  • the method for forming the antifouling layer (D) is not particularly limited as described above, but a so-called dry process (a forming method that does not use a solvent) is preferred. Specifically, for example, it may be formed by at least one method selected from the group consisting of vacuum deposition, sputtering, and chemical vapor deposition (CVD). Specific methods for vacuum deposition, sputtering, and chemical vapor deposition (CVD) are also not particularly limited, and may be, for example, the same or similar to general methods.
  • the average thickness of the antifouling layer (D) is not particularly limited, but may be, for example, 1 nm or more, 2 nm or more, 3 nm or more, 4 nm or more, or 5 nm or more. , 24 nm or less, or 22 nm or less, for example, 1-30 nm, 2-28 nm, 3-26 nm, 4-24 nm, or 5-22 nm. From the viewpoint of preventing film detachment (peeling of the antifouling layer (D)), it is preferable that the average thickness of the antifouling layer (D) is not too large.
  • the average thickness of the antifouling layer (D) is not too small.
  • the method for measuring the average thickness of the antifouling layer (D) is not particularly limited, for example, it can be measured using fluorescent X-rays as in Examples described later.
  • the surface roughness of the antifouling layer (D) is not particularly limited. for example, 10 nm or less, 9.5 nm or less, 9.0 nm or less, 8.5 nm or less, or 8.0 nm or less, for example, 1 to 10 nm, 1.5 to 9.5 nm , 2.0-9.0 nm, 2.5-8.5 nm, or 3.0-8.0 nm.
  • a method for measuring the surface roughness is not particularly limited, and is, for example, as described above. From the viewpoints of preventing haze and susceptibility to scratches, it is preferable that the surface roughness of the antifouling layer (D) is not too large. From the viewpoint of antiblocking properties, it is preferable that the surface roughness of the antifouling layer (D) is not too small.
  • the water contact angle of the antifouling layer (D) surface is not particularly limited. ° or more, 110° or more, or 115° or more. From the viewpoint of antifouling performance, it is preferable that the water contact angle of the antifouling layer (D) is not too large.
  • the hard coat film of the present invention can be used, for example, as a clear film or an antiglare film (also called AG film).
  • an antiglare film also called AG film
  • the hard coat layer (B) may be provided with antiglare properties (AG properties).
  • the hard coat film of the present invention may have, for example, a light transmittance of 90% or more at a wavelength of 550 nm for the entire hard coat film.
  • the light transmittance of the entire hard coat film at a wavelength of 550 nm is, for example, 90% or more, 92% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the method for measuring the light transmittance is not particularly limited, but it can be measured, for example, by the following measuring method.
  • the method for producing the hard coat film of the present invention is not particularly limited, and for example, it can be carried out in the same manner as or according to a general method for producing a hard coat film.
  • the method for producing the hard coat film of the present invention will be described below with reference to examples.
  • a light-transmitting substrate (A) is prepared.
  • the material, thickness, etc. of the light-transmitting substrate (A) are, for example, as described above.
  • a hard coat layer (B) is formed on the light transmissive substrate (A).
  • the method for forming the hard coat layer (B) on the light-transmitting substrate (A) is not particularly limited, but is, for example, as follows.
  • the step of forming this hard coat layer (B) may be referred to as a "hard coat layer forming step".
  • a coating solution for forming a hard coat layer hereinafter sometimes simply referred to as “coating solution” or "hard coat layer forming material" is applied onto the light-transmitting substrate (A).
  • a coating film forming step of drying the applied coating liquid to form a coating film is applied onto the light-transmitting substrate (A).
  • the hard coat layer forming step may further include a curing step of curing the coating film.
  • the curing can be performed after the drying, for example, but not limited thereto.
  • the curing can be performed, for example, by heating, light irradiation, or the like.
  • the light is not particularly limited, it may be, for example, ultraviolet light.
  • the light source for the light irradiation is also not particularly limited, and may be, for example, a high-pressure mercury lamp.
  • the coating liquid may be, for example, a coating liquid containing a resin material and a diluent solvent (hereinafter sometimes simply referred to as "solvent").
  • the coating liquid may or may not contain components other than these.
  • the other components include, but are not limited to, thixotropy-imparting agents and fillers.
  • the filler include particles.
  • the particles are not particularly limited, and may be, for example, organic particles or inorganic particles, and may be amorphous particles or spherical particles.
  • the thixotropic agent, the particles, and the like are not particularly limited, but may be, for example, the same as or similar to the thixotropic agent, particles, and the like contained in a general hard coat layer.
  • the particles include acrylic-styrene copolymers, silicone resins, and silica.
  • the resin material contained in the coating liquid may be, for example, the resin itself that forms the hard coat layer (B), or may be a resin material that forms the resin through polymerization, curing, or the like.
  • the resin is not particularly limited, but may be, for example, a thermosetting resin, an ionizing radiation curable resin, or the like.
  • the resin may contain, for example, an acrylate resin (also referred to as acrylic resin), and may contain, for example, a urethane acrylate resin.
  • the resin may be, for example, a copolymer of a curable urethane acrylate resin and a polyfunctional acrylate.
  • the resin material may contain, for example, an oligomer having a functional group and a monomer.
  • the resin forming the hard coat layer (B) may be a copolymer of the oligomer having the functional group and the monomer.
  • the oligomer having the functional group include, but are not particularly limited to, curable urethane acrylate resins.
  • the curable urethane acrylate resin include "UV-1700TL" (trade name) manufactured by Mitsubishi Chemical Corporation, "UT-7314" (trade name) manufactured by Mitsubishi Chemical Corporation, and the like.
  • the monomer include, but are not limited to, polyfunctional acrylates.
  • Examples of the polyfunctional acrylate include trade name "M-920" manufactured by Toagosei Co., Ltd., and the like.
  • the solvent is not particularly limited, and various solvents can be used. One type may be used alone, or two or more types may be used in combination. For example, the optimum solvent type and solvent ratio may be appropriately selected according to the composition of the resin, the types and contents of the nanosilica particles and the thixotropy-imparting agent.
  • the solvent examples include, but are not limited to, alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, t-butyl alcohol (TBA), 2-methoxyethanol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclo ketones such as pentanone; esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as diisopropyl ether and propylene glycol monomethyl ether; glycols such as ethylene glycol and propylene glycol; cellosolves such as ethyl cellosolve and butyl cellosolve ; aliphatic hydrocarbons such as hexane, heptane and octane; and aromatic hydrocarbons such as benzene, toluene and xylene.
  • alcohols such as methanol, ethanol, isopropyl alcohol (
  • the solvent may contain a hydrocarbon solvent and a ketone solvent.
  • Said hydrocarbon solvent may be, for example, an aromatic hydrocarbon.
  • the aromatic hydrocarbon may be, for example, at least one selected from the group consisting of toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene.
  • the ketone solvent may be, for example, cyclopentanone and at least one selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone.
  • the solvent preferably contains the hydrocarbon solvent (eg, toluene), for example, in order to dissolve the thixotropic agent (eg, thickener).
  • the solvent may be, for example, a solvent obtained by mixing the hydrocarbon solvent and the ketone solvent at a mass ratio of 90:10 to 10:90.
  • the mass ratio of the hydrocarbon solvent and the ketone solvent may be, for example, 80:20-20:80, 70:30-30:70, or 40:60-60:40.
  • the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
  • the solvent may contain, for example, toluene, and may further contain at least one selected from the group consisting of ethyl acetate, butyl acetate, IPA, methyl isobutyl ketone, methyl ethyl ketone, methanol, ethanol, and TBA. good.
  • a good solvent for the acrylic film (acrylic resin) can be suitably used.
  • the solvent may be, for example, a solvent containing a hydrocarbon solvent and a ketone solvent, as described above.
  • Said hydrocarbon solvent may be, for example, an aromatic hydrocarbon.
  • the aromatic hydrocarbon may be, for example, at least one selected from the group consisting of toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene.
  • the ketone solvent may be, for example, at least one selected from the group consisting of cyclopentanone, acetone, methylethylketone, methylisobutylketone, diethylketone, cyclohexanone, isophorone, and acetophenone.
  • the solvent may be, for example, a solvent obtained by mixing the hydrocarbon solvent and the ketone solvent at a mass ratio of 90:10 to 10:90.
  • the mass ratio of the hydrocarbon solvent and the ketone solvent may be, for example, 80:20-20:80, 70:30-30:70, or 40:60-60:40.
  • the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
  • the solvent is not particularly limited, but examples include ethyl acetate, methyl ethyl ketone, MIBK (methyl isobutyl ketone), and cyclopentanone. etc., and one type may be used alone or a plurality of types may be used in combination.
  • the solvent may be, for example, a mixed solvent of MIBK and cyclopentanone.
  • the mixing ratio of MIBK and cyclopentanone is not particularly limited, but may be, for example, 90:10 to 10:90, 80:20 to 20:80, 70:30 to 30:70 in mass ratio.
  • the solvent it is possible to exhibit good thixotropic properties in the antiglare hard coat layer-forming material (coating liquid) when the thixotropy-imparting agent is contained.
  • organoclays toluene and xylene can be suitably used alone or in combination. They can be used or used in combination.
  • modified urea butyl acetate and methyl isobutyl ketone can be preferably used alone or in combination.
  • leveling agents can be added to the hard coat layer forming material.
  • a fluorine-based or silicone-based leveling agent can be used for the purpose of preventing coating unevenness (uniformizing the coated surface).
  • a suitable leveling agent can be selected according to the requirements.
  • the amount of the leveling agent compounded is, for example, 5 parts by weight or less, preferably in the range of 0.01 to 5 parts by weight, per 100 parts by weight of the resin.
  • Pigments, fillers, dispersants, plasticizers, UV absorbers, surfactants, antifouling agents, antioxidants, and the like are added to the hard coat layer-forming material as necessary within a range that does not impair the performance. may be These additives may be used singly or in combination of two or more.
  • photopolymerization initiators such as those described in JP-A-2008-88309, can be used for the hard coat layer-forming material.
  • Examples of the method for forming a coating film by coating the hard coat layer-forming material (coating solution) on the light-transmitting substrate (A) include a fountain coating method, a die coating method, a spray coating method, and a gravure coating method.
  • a coating method such as a coating method, a roll coating method, or a bar coating method can be used.
  • the coating film is dried and cured to form a hard coat layer (B).
  • the drying may be, for example, natural drying, air drying by blowing air, heat drying, or a combination thereof.
  • the drying temperature of the hard coat layer forming material (coating liquid) may be, for example, in the range of 30 to 200°C.
  • the drying temperature may be, for example, 40° C. or higher, 50° C. or higher, 60° C. or higher, 70° C. or higher, 80° C. or higher, 90° C. or higher, or 100° C. or higher, 190° C. or lower, 180° C. or lower, 170° C. °C or lower, 160 °C or lower, 150 °C or lower, 140 °C or lower, 135 °C or lower, 130 °C or lower, 120 °C or lower, or 110 °C or lower.
  • the drying time is not particularly limited. may
  • the means for curing the coating film is not particularly limited, but ultraviolet curing is preferable.
  • the irradiation amount of the energy beam source is preferably 50 to 500 mJ/cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
  • the irradiation dose is 50 mJ/cm 2 or more, curing proceeds sufficiently and the hardness of the formed hard coat layer tends to increase. Moreover, if it is 500 mJ/cm 2 or less, coloring of the formed hard coat layer can be prevented.
  • a laminate in which the hard coat layer (B) is laminated on the light-transmitting substrate (A) can be produced.
  • an optical functional layer (C) is formed on the surface of the hard coat layer (B) opposite to the light transmissive substrate (A) (optical functional layer forming step).
  • the method for forming the optical function layer (C) in this optical function layer forming step is not particularly limited, but dry processes are preferred as described above, and examples include vacuum deposition, sputtering, and chemical vapor deposition (CVD). may be formed by at least one method selected from the group consisting of Specific methods for vacuum deposition, sputtering, and chemical vapor deposition (CVD) are also not particularly limited, and may be, for example, the same or similar to general methods.
  • the material, thickness, etc. of the optical function layer (C) are, for example, as described above.
  • the hard coating layer (B) may be formed in order to increase the adhesion between the hard coating layer (B) and the optical functional layer (C).
  • the surface may be surface-treated by methods such as plasma treatment, corona treatment, water washing treatment, and solvent coating. Conditions for this surface treatment are also not particularly limited, and may be, for example, similar to or in conformity with general front surface treatment.
  • the average thickness of the light transmissive substrate (A), the hard coat layer (B) and the optical functional layer (C) is A hard coat layer (B) and an optical function layer (C) are formed so as to satisfy the relationships (1) and (2).
  • an antifouling layer (D) is further formed on the surface of the optical functional layer (C) opposite to the light-transmissive substrate (A) (antifouling layer forming step) to obtain the hard coat film of the present invention.
  • the method (manufacturing method) for forming the antifouling layer (D) in this antifouling layer forming step is not particularly limited, but may be, for example, similar to or conforming to a general antifouling layer forming method. Specifically, for example, as described above, it can be formed by a dry process, such as a vacuum deposition method, a sputtering method, a chemical vapor deposition method (CVD), or the like.
  • This method is not particularly limited, and for example, as described above, it may be similar to or based on general vacuum deposition methods, sputtering methods, and chemical vapor deposition methods (CVD).
  • the material, thickness, etc. of the antifouling layer (D) are, for example, as described above.
  • the hard coat layer (B), the optical functional layer (C) and the antifouling layer (D) are laminated in the order described above on at least one surface of the light transmissive substrate (A).
  • Inventive hardcoat films can be produced.
  • this production method is an example, and the production method of the hard coat film of the present invention is not limited to this.
  • the method for producing the hard coat film of the present invention can be, for example, a continuous production method.
  • the light-transmissive substrate (A) is elongated, and the hard coat film is conveyed while the light-transmissive substrate (A) is conveyed.
  • the manufacturing method may be such that the coating layer forming step, the optical function layer forming step, the antifouling layer forming step, and, if necessary, other steps are performed continuously.
  • the long light-transmitting substrate (A) is in the form of a roll, and the method for producing the hard coat film of the present invention while unwinding the light-transmitting substrate (A) from the roll. may be implemented.
  • the hard coat film of the present invention is not particularly limited.
  • it may be a clear film or an antiglare film (antiglare hard coat film).
  • the optical member of the present invention is not particularly limited, it may be, for example, a polarizing plate.
  • the polarizing plate is also not particularly limited, but may contain, for example, the hard coat film and polarizer of the present invention, and may further contain other constituent elements. Each constituent element of the polarizing plate may be bonded together by, for example, an adhesive or a pressure-sensitive adhesive.
  • the image display device of the present invention is also not particularly limited, and may be any image display device, such as a liquid crystal display device, an organic EL display device, an inorganic EL display device, a plasma display device, and the like.
  • the configuration of the image display device of the present invention is not particularly limited, and may have, for example, the same configuration as a general image display device.
  • an LCD can be manufactured by appropriately assembling components such as a liquid crystal cell, optical members such as a polarizing plate, and, if necessary, an illumination system (backlight, etc.) and incorporating a drive circuit.
  • the application of the image display device of the present invention is not particularly limited, and can be used for any application.
  • Applications include, for example, personal computer monitors, laptop computers, tablets, smartphones, OA equipment such as copiers, mobile phones, clocks, digital cameras, personal digital assistants (PDAs), portable equipment such as portable game machines, video cameras, Household electrical equipment such as televisions and microwave ovens, back monitors, car navigation system monitors, car audio equipment, display equipment such as information monitors for commercial stores, security equipment such as surveillance monitors, nursing care monitors , nursing and medical equipment such as medical monitors, smart glasses, and VR equipment.
  • the image display device of the present invention may be, for example, an image display device having a camera function.
  • the transparent layer in the hard coat film of the present invention may be a transparent layer for a camera hole of an image display device.
  • the present invention it is possible to provide a hard coat film without impairing the transparency of the transparent layer. Therefore, for example, it is possible to provide an image display device without impairing the image quality of camera images. be.
  • the number of parts of substances is parts by mass (parts by weight) unless otherwise specified.
  • Example 1 According to the present invention, a hard coat layer (B), an optical functional layer (C) and an antifouling layer (D) are laminated in the order described above on one surface of a light transmissive substrate (A) in the following manner. of the hard coat film was produced.
  • a polyethylene terephthalate (PET) film (thickness: 65 ⁇ m) was prepared as the light-transmitting substrate (A).
  • a hard coat layer (B) was formed on one surface of the light transmissive substrate (A) (hard coat layer forming step).
  • a mixture of UV-curable monomer and SiO 2 filler (trade name “OPSTAR Z7540”, solid content concentration 56% by mass, manufactured by Arakawa Chemical Industries, Ltd.) 100 parts by mass (solid content conversion), light A polymerization initiator (trade name “IRGACURE906”, manufactured by BASF) 5 parts by mass and a leveling agent (trade name “LE-303”, manufactured by Kyoeisha Chemical Co., Ltd.) 0.1 part by mass are mixed to obtain a mixed solution.
  • a mixed solvent of butyl acetate and MIBK (mass ratio: 50:50) was added to the mixture to adjust the solid content concentration to 40%.
  • an ultraviolet curable resin composition (varnish) was prepared.
  • the resin composition was applied to one side of the PET film (light-transmitting substrate (A)) to form a coating film.
  • This coating film was dried by heating and then cured by UV irradiation.
  • the temperature for heating the coating film was 70° C., and the heating time was 60 seconds.
  • a high-pressure mercury lamp was used as a light source, ultraviolet rays with a wavelength of 365 nm were used, and the cumulative irradiation light amount was set at 300 mJ/cm 2 .
  • a hard coat layer (B) having a thickness of 5 ⁇ m is formed on the PET film (light-transmitting substrate (A)), and the light-transmitting substrate (A) and the hard coat layer (B) are formed.
  • the hard coat layer (B) formed in this example may be simply referred to as "HC layer”.
  • the laminate of the light-transmitting substrate (A) and the hard coat layer (B) produced in this example may be referred to as "HC layer-attached PET film".
  • the average thickness dS of the light transmissive substrate (A) was measured with a linear gauge. Since the light-transmissive substrate (A) of this example has a uniform thickness, it can be estimated that the thickness at any point is equal to the average thickness dS.
  • the average thickness dH of the hard coat layer (B) is obtained by measuring the average thickness of the laminate (HC layer-attached PET film) of the light-transmitting substrate (A) and the hard coat layer (B) with a linear gauge. , and the value obtained by subtracting dS from the value was defined as dH.
  • the thickness of any three points of the laminate was measured by imaging in a field of view of 1 ⁇ m square, and In the same manner, measurements were taken at 5 points in a 1 ⁇ m square field of view, and the average value of the thickness measurement results at a total of 15 points was taken as the average thickness dS+dH.
  • the HC layer surface of the HC layer-attached PET film was plasma-treated under a vacuum atmosphere of 1.0 Pa using a roll-to-roll type plasma treatment apparatus.
  • argon gas was used as an inert gas, and the discharge power was 780W.
  • an adhesion layer and an inorganic oxide base layer are formed in the order described above by a sputtering film formation method (sputter film formation step), thereby achieving the adhesion.
  • An optical functional layer (C) composed of the layer and the inorganic oxide underlayer was formed (optical functional layer forming step). Specifically, first, an indium tin oxide (ITO) layer having a thickness of 2.0 nm as an adhesion layer is first formed on the HC layer of the HC layer-attached PET film by a roll-to-roll type sputtering deposition apparatus. formed.
  • ITO indium tin oxide
  • a SiO 2 layer and a Nb 2 O 5 layer were formed on the ITO layer as inorganic oxide underlayers in the above order so that the total thickness was 0.23 ⁇ m. formed.
  • the SiO 2 layer was formed to have a thickness of 0.11 ⁇ m
  • the Nb 2 O 5 layer was formed to have a thickness of 0.12 ⁇ m.
  • an optical function layer (C) composed of the adhesion layer (ITO layer) and the inorganic oxide base layer (laminated body of the SiO 2 layer and the Nb 2 O 5 layer) was formed.
  • an ITO target is used, argon gas is used as an inert gas, and 10 parts by volume of oxygen gas is used as a reactive gas with respect to 100 parts by volume of the argon gas.
  • the ITO layer was formed by MFAC sputtering at 350 V and the pressure in the film formation chamber (film formation pressure) of 0.4 Pa.
  • a Si target and an Nb target were used, 100 parts by volume of argon gas and 30 parts by volume of oxygen gas were used, the discharge voltage was 350 V, the film formation pressure was 0.3 Pa, and the MFAC The SiO2 layer and the Nb2O5 layer were formed by sputtering .
  • the average thickness dI of the optical function layer (C) was measured by TEM (transmission electron microscope) observation of the cross section. Specifically, first, the surface of the optical functional layer (C) in the laminate of the light transmissive substrate (A), the hard coat layer (B) and the optical functional layer (C) is protected with an FIB resin, and then Cut in the depth direction. The cross section obtained by cutting is observed with a TEM (transmission electron microscope), and in the cross-sectional image, the optical functional layer (C) and the FIB resin protection from the interface between the hard coat layer (B) and the optical functional layer (C). The distance to the interface with the film was defined as the average thickness dI of the optical function layer (C).
  • the thickness of the optical function layer (C) in this example has a substantially uniform thickness, it can be estimated that the thickness at any point is equal to the average thickness dI.
  • the thickness of the optical function layer (C) was measured at the same 15 points as the measurement points of the average thickness dS+dH of the laminate of the light-transmitting substrate (A) and the hard coat layer (B). , and the numerical value obtained by averaging the measurement results of the 15 points was defined as the average thickness dI of the optical function layer (C).
  • the average thickness dI of the optical function layer (C) was measured in the same manner in each example and comparative example described later.
  • the average thickness dI of the optical functional layer (C) can also be measured in the same manner for the hard coat film (on which the antifouling layer (D) is formed) as a finished product.
  • an antifouling layer (D) was formed on the optical function layer (C) (antifouling layer forming step). Specifically, an antifouling layer (D) having a thickness of 10 nm was formed on the inorganic oxide underlayer by a vacuum deposition method using an alkoxysilane compound containing a perfluoropolyether group as a deposition source.
  • the vapor deposition source is a solid content obtained by drying "KY1903-1" (perfluoropolyether group-containing alkoxysilane compound, solid content concentration: 20% by mass) manufactured by Shin-Etsu Chemical Co., Ltd.
  • the heating temperature of the vapor deposition source in the vacuum vapor deposition method was set to 260.degree.
  • the average thickness dF of the antifouling layer (D) was measured in the quantitative mode of a fluorescent X-ray spectrometer (manufactured by Rigaku Corporation, trade name ZXS Primus II).
  • the thickness of the antifouling layer (D) was measured at the same 15 points as the measurement points of the average thickness dS+dH of the laminate of the light-transmitting substrate (A) and the hard coat layer (B). , and the average value of the 15 measurement results was taken as the average thickness dF of the antifouling layer (D).
  • the hard coat layer (B), the optical function layer (C) and the antifouling layer (D) are laminated in the order described above on one surface of the light-transmitting substrate (A).
  • a hard coat film of Example (Example 1) was produced.
  • Examples 2 to 5 and Comparative Examples 1 to 4 Change the average thickness of the hard coat layer (B), the optical function layer (C), and the antifouling layer (D) on one side of the light-transmitting substrate (A) as shown in Table 1 below.
  • Hard coat films of Examples 2 to 5 and Comparative Examples 1 to 4 were produced in the same manner as in Example 1 except for the above.
  • a PET film was used as the light transmissive substrate (A).
  • the SiO 2 layer was formed to have a thickness of 0.15 ⁇ m
  • the Nb 2 O 5 layer was formed to have a thickness of 0.15 ⁇ m.
  • the SiO 2 layer was formed to have a thickness of 0.20 ⁇ m, and the Nb 2 O 5 layer was formed to have a thickness of 0.20 ⁇ m.
  • the SiO 2 layer was formed to have a thickness of 0.05 ⁇ m, and the Nb 2 O 5 layer was formed to have a thickness of 0.05 ⁇ m.
  • Abrasion resistance tests and bending resistance tests were performed on the hard coat films of the examples and comparative examples produced as described above by the following measurement methods.
  • an eraser ( ⁇ 6 mm) manufactured by Minoan was used, the load of the eraser on the surface of the antifouling layer (D) was 1 kgw/6 mm ⁇ , and the moving distance of the eraser on the surface of the antifouling layer (D) (in the reciprocating motion
  • the one-way distance) was set to 20 mm, the moving speed of the eraser was set to 40 rpm, and the number of reciprocating motions of the eraser to the antifouling layer (D) surface was set to 6000 times.
  • the water contact angle ⁇ 0 before rubbing and the water contact angle ⁇ 1 after rubbing of the portion rubbed with an eraser were measured by the following methods.
  • ⁇ Method for measuring water contact angle> The water contact angle of the surface of the antifouling layer (C) opposite to the light-transmitting substrate (A) was measured for each of the hard coat films of Examples and Comparative Examples. First, about 1 ⁇ L of pure water was dropped on the surface of the antifouling layer to form water droplets. Next, the angle formed by water droplets on the surface of the antifouling layer (D) and the surface of the antifouling layer (D) was measured. A contact angle meter (trade name “DMo-501”, manufactured by Kyowa Interface Science Co., Ltd.) was used for the measurement.
  • a pressure-sensitive adhesive composition A used in a bending resistance test described below was prepared by the following method.
  • the reaction solution was heated to 130° C., and the toluene, chain transfer agent and unreacted monomer were removed by drying to obtain a solid acrylic oligomer.
  • the acrylic oligomer had a weight average molecular weight of 5100 and a glass transition temperature (Tg) of 130°C.
  • the hard coat layer (B) 12, the optical functional layer (C) 13, and the antifouling layer (D) 14 in the light-transmitting substrate (A) 11 of the hard coat film are On the surface opposite to the laminated side, acrylic adhesive layer 21 (adhesive composition A, thickness 25 ⁇ m), polyimide film 22 (manufactured by KORON, thickness 50 ⁇ m), acrylic adhesive layer 23 (said Adhesive composition A, thickness 25 ⁇ m), PET film 24 (manufactured by Toray Industries, Inc., thickness 38 ⁇ m), and acrylic adhesive layer 25 (adhesive composition A, thickness 25 ⁇ m) are laminated in this order, A simulated sample 100 simulating an organic EL display device was manufactured.
  • a cylindrical core 200 made of stainless steel and having a diameter of 1 mm was brought into contact with the antifouling layer (D) 14 side of the simulated sample (D).
  • the simulated sample 100 was folded toward the cylindrical core 200 to obtain a folded state.
  • the simulated sample 100 was opened and returned to the state shown in FIG. 3(b). This opening and closing (bending and opening) was repeated 150,000 times. This opening and closing was performed using a durability tester (model number "DMLHB-FS-C", manufactured by YUASA).
  • the folded portion 101 (the contact portion between the simulated sample 100 and the cylindrical core 200) of the simulated sample 100 is irradiated with light from an LED light source (trade name LK-H766B manufactured by Twin Bird Co., Ltd.) and bent.
  • the appearance of the portion 101 was visually inspected by reflection, and the bending resistance was evaluated in the following three grades of ⁇ .
  • No change is observed in the appearance of the bent portion 101 before and after opening and closing.
  • The appearance of the bent portion 101 changes before and after opening and closing, but it is difficult to confirm the state of the change.
  • x The appearance of the bent portion 101 significantly changed before and after opening and closing.
  • Table 1 summarizes the test results of wear resistance and bending resistance tested as described above.
  • the hard coat film of the present invention can be used both as a clear film and as an antiglare film (antiglare hard coat film), and can be used in a wide variety of optical members and image display devices. Therefore, its industrial utility value is enormous.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided is a hard coat film which exhibits both surface wear resistance and bending endurance. This hard coat film (10) has a hard coat layer (B)(12), an optically functional layer (C)(13), and an anti-fouling layer (D)(14) stacked in this order on at least one surface of a light transmitting base material (A)(11). The anti-fouling layer (D) (14) includes fluorine as an element. The average thickness dS [μm] of the light transmitting base material (A)(11), the average thickness dH [μm] of the hard coat layer (B)(12), and the average thickness dI [μm] of the optically functional layer (C)(13) satisfy the following expressions (1) and (2). (1): 0.2 ≤ dH × dI ≤ 4 (2): 0.02 ≤ (dH + dI)/dS ≤ 0.62

Description

ハードコートフィルム、光学部材、及び画像表示装置HARD COAT FILM, OPTICAL MEMBER, AND IMAGE DISPLAY DEVICE
 本発明は、ハードコートフィルム、光学部材、及び画像表示装置に関する。 The present invention relates to hard coat films, optical members, and image display devices.
 ハードコートフィルムは、フィルム表面にハードコート層を設けて表面の強度等を高めたフィルムであり、画像表示装置に広く用いられている(特許文献1等)。 A hard coat film is a film in which a hard coat layer is provided on the film surface to increase the surface strength, etc., and is widely used in image display devices (Patent Document 1, etc.).
特開2008-221746号公報JP 2008-221746 A
 近年、画像表示装置として、可撓性を有するフレキシブルディスプレイ装置等の需要が高まっている。そのような用途にハードコートフィルムを用いる場合、表面の耐摩耗性だけでなく、折り曲げ耐性も必要となる。 In recent years, there has been an increasing demand for flexible display devices and the like as image display devices. When a hard coat film is used for such applications, not only surface wear resistance but also bending resistance are required.
 そこで、本発明は、表面の耐摩耗性と折り曲げ耐性とを両立させたハードコートフィルム、光学部材、及び画像表示装置を提供することを目的とする。 Accordingly, an object of the present invention is to provide a hard coat film, an optical member, and an image display device that achieve both surface abrasion resistance and bending resistance.
 前記目的を達成するために、本発明のハードコートフィルムは、
 光透過性基材(A)の少なくとも一方の面上に、ハードコート層(B)、光学機能層(C)及び防汚層(D)が前記順序で積層され、
 前記防汚層(D)は、元素としてフッ素を含み、
 前記光透過性基材(A)、前記ハードコート層(B)及び前記光学機能層(C)の平均厚みが、下記数式(1)及び(2)の関係を満たすことを特徴とする。
 
0.2≦dH×dI≦4     (1)
0.02≦(dH+dI)/dS≦0.62     (2)
 
 前記数式(1)及び(2)において、
 dSは、前記光透過性基材(A)の平均厚み[μm]であり、
 dHは、前記ハードコート層(B)の平均厚み[μm]であり、
 dIは、前記光学機能層(C)の平均厚み[μm]である。
In order to achieve the above object, the hard coat film of the present invention is
A hard coat layer (B), an optical functional layer (C) and an antifouling layer (D) are laminated in the order described above on at least one surface of the light transmissive substrate (A),
The antifouling layer (D) contains fluorine as an element,
The average thicknesses of the light-transmitting substrate (A), the hard coat layer (B) and the optical function layer (C) are characterized by satisfying the following formulas (1) and (2).

0.2≦dH×dI≦4 (1)
0.02≦(dH+dI)/dS≦0.62 (2)

In the above formulas (1) and (2),
dS is the average thickness [μm] of the light transmissive substrate (A),
dH is the average thickness [μm] of the hard coat layer (B),
dI is the average thickness [μm] of the optical function layer (C).
 本発明の光学部材は、本発明のハードコートフィルムを含む光学部材である。 The optical member of the present invention is an optical member containing the hard coat film of the present invention.
 本発明の画像表示装置は、本発明のハードコートフィルム、又は本発明の光学部材を含む画像表示装置である。 The image display device of the present invention is an image display device containing the hard coat film of the present invention or the optical member of the present invention.
 本発明によれば、表面の耐摩耗性と折り曲げ耐性とを両立させたハードコートフィルム、光学部材、及び画像表示装置を提供することができる。 According to the present invention, it is possible to provide a hard coat film, an optical member, and an image display device that have both surface abrasion resistance and bending resistance.
図1は、本発明のハードコートフィルムの構成を例示する断面図である。FIG. 1 is a cross-sectional view illustrating the configuration of the hard coat film of the present invention. 図2は、本発明のハードコートフィルムの別の例を示す断面図である。FIG. 2 is a cross-sectional view showing another example of the hard coat film of the present invention. 図3は、実施例の折り曲げ耐性試験の方法を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the bending resistance test method of the example.
 つぎに、本発明について、例を挙げてさらに具体的に説明する。ただし、本発明は、以下の説明により、なんら限定されない。 Next, the present invention will be described more specifically with examples. However, the present invention is not limited in any way by the following description.
 本発明のハードコートフィルムは、例えば、前記防汚層(D)において、前記基材(A)とは反対側の面における表面粗さが1~10nmの範囲であってもよい。 In the hard coat film of the present invention, for example, the antifouling layer (D) may have a surface roughness in the range of 1 to 10 nm on the side opposite to the substrate (A).
 本発明のハードコートフィルムは、例えば、前記ハードコート層(B)の平均厚みが2~12μmの範囲であってもよい。 In the hard coat film of the present invention, for example, the average thickness of the hard coat layer (B) may be in the range of 2 to 12 μm.
 本発明のハードコートフィルムは、例えば、前記光透過性基材(A)の平均厚みが100μm以下であってもよい。 In the hard coat film of the present invention, for example, the light-transmitting substrate (A) may have an average thickness of 100 µm or less.
 本発明のハードコートフィルムは、例えば、前記防汚層(D)の平均厚みが1~30nmの範囲であってもよい。 In the hard coat film of the present invention, for example, the antifouling layer (D) may have an average thickness in the range of 1 to 30 nm.
 本発明のハードコートフィルムは、例えば、前記ハードコート層(B)が、有機樹脂、酸化ケイ素、酸化チタン及び酸化ジルコニウムからなる群から選択される少なくとも一つを含んでいてもよい。 In the hard coat film of the present invention, for example, the hard coat layer (B) may contain at least one selected from the group consisting of organic resin, silicon oxide, titanium oxide and zirconium oxide.
 本発明の光学部材は、例えば、偏光板であってもよい。 The optical member of the present invention may be, for example, a polarizing plate.
 本発明の画像表示装置において、例えば、
 前記ハードコートフィルムは、前記光透過性基材(A)の一方のみの面上に、前記ハードコート層(B)、前記光学機能層(C)及び前記防汚層(D)が前記順序で積層され、
 前記光透過性基材(A)の他方の面上に粘接着層が積層され、
 前記ハードコートフィルムは、前記粘接着層によって、ガラスを含む部材又はプラスチックフィルムに貼付されていてもよい。
In the image display device of the present invention, for example,
In the hard coat film, the hard coat layer (B), the optical function layer (C) and the antifouling layer (D) are arranged in the order described above on only one side of the light-transmitting substrate (A). laminated,
An adhesive layer is laminated on the other surface of the light-transmitting substrate (A),
The hard coat film may be attached to a member containing glass or a plastic film via the adhesive layer.
 なお、本発明において、「重量」と「質量」とは、特に断らない限り、互いに読み替えてもよいものとする。例えば、「質量部」は「重量部」と読み替えてもよく、「重量部」は「質量部」と読み替えてもよく、「質量%」は「重量%」と読み替えてもよく、「重量%」は「質量%」と読み替えてもよいものとする。 In the present invention, "weight" and "mass" may be read interchangeably unless otherwise specified. For example, "parts by weight" may be read as "parts by weight", "parts by weight" may be read as "parts by weight", "mass%" may be read as "% by weight", "% by weight" ” may be read as “% by mass”.
[1.ハードコートフィルム]
 本発明のハードコートフィルムは、前述のとおり、
 光透過性基材(A)の少なくとも一方の面上に、ハードコート層(B)、光学機能層(C)及び防汚層(D)が前記順序で積層され、
 前記防汚層(D)は、元素としてフッ素を含み、
 前記光透過性基材(A)、前記ハードコート層(B)及び前記光学機能層(C)の平均厚みが、下記数式(1)及び(2)の関係を満たすことを特徴とする。
 
0.2≦dH×dI≦4     (1)
0.02≦(dH+dI)/dS≦0.62     (2)
 
 前記数式(1)及び(2)において、
 dSは、前記光透過性基材(A)の平均厚み[μm]であり、
 dHは、前記ハードコート層(B)の平均厚み[μm]であり、
 dIは、前記光学機能層(C)の平均厚み[μm]である。
[1. Hard coat film]
The hard coat film of the present invention, as described above,
A hard coat layer (B), an optical functional layer (C) and an antifouling layer (D) are laminated in the order described above on at least one surface of the light transmissive substrate (A),
The antifouling layer (D) contains fluorine as an element,
The average thicknesses of the light-transmitting substrate (A), the hard coat layer (B) and the optical function layer (C) are characterized by satisfying the following formulas (1) and (2).

0.2≦dH×dI≦4 (1)
0.02≦(dH+dI)/dS≦0.62 (2)

In the above formulas (1) and (2),
dS is the average thickness [μm] of the light transmissive substrate (A),
dH is the average thickness [μm] of the hard coat layer (B),
dI is the average thickness [μm] of the optical function layer (C).
[1-1.ハードコートフィルムの構成等]
 図1の断面図に、本発明のハードコートフィルムの構成の一例を模式的に示す。図示のとおり、このハードコートフィルム10は、光透過性基材(A)11の少なくとも一方の面上に、ハードコート層(B)12、光学機能層(C)13及び防汚層(D)14が前記順序で積層されている。防汚層(D)14は、元素としてフッ素を含む。同図において、dSは、光透過性基材(A)11の平均厚み[μm]である。dHは、ハードコート層(B)12の平均厚み[μm]である。dIは、光学機能層(C)13の平均厚み[μm]である。dFは、防汚層(D)14の平均厚み[μm]である。光透過性基材(A)11の平均厚みdS[μm]、ハードコート層(B)12の平均厚みdH[μm]及び光学機能層(C)13の平均厚みdI[μm]は、前記数式(1)及び(2)の関係を満たす。
[1-1. Configuration of hard coat film, etc.]
The cross-sectional view of FIG. 1 schematically shows an example of the configuration of the hard coat film of the present invention. As shown, the hard coat film 10 includes a hard coat layer (B) 12, an optical function layer (C) 13 and an antifouling layer (D) on at least one surface of a light transmissive substrate (A) 11. 14 are stacked in the above order. The antifouling layer (D) 14 contains fluorine as an element. In the figure, dS is the average thickness [μm] of the light transmissive substrate (A) 11 . dH is the average thickness [μm] of the hard coat layer (B) 12 . dI is the average thickness [μm] of the optical function layer (C) 13 . dF is the average thickness [μm] of the antifouling layer (D) 14 . The average thickness dS [μm] of the light-transmitting substrate (A) 11, the average thickness dH [μm] of the hard coat layer (B) 12, and the average thickness dI [μm] of the optical function layer (C) 13 are calculated according to the above formula It satisfies the relationships (1) and (2).
 なお、本発明において、「上に」又は「面上に」は、上に、又は面上に直接接触した状態でもよいし、他の層等を介した状態でもよい。 In addition, in the present invention, "on" or "on the surface" may be in a state of being in direct contact with the surface, or may be in a state of intervening another layer or the like.
 図2の断面図に、本発明のハードコートフィルムの別の一例を模式的に示す。図示のとおり、このハードコートフィルム10Aは、光透過性基材(A)11の少なくとも一方の面上に、ハードコート層(B)12、光学機能層(C)13及び防汚層(D)14が前記順序で積層されている。防汚層(D)14は、元素としてフッ素を含む。図1では各層の表面が平坦であったが、図2では、ハードコート層(B)12における光透過性基材(A)11と反対側の表面に凹凸が形成されている。ハードコート層(B)12上に形成されている光学機能層(C)13及び防汚層(D)14の表面も、ハードコート層(B)12表面と同様の凹凸形状を有している。また、図2では、ハードコート層(B)12が粒子を含む。図示のとおり、ハードコート層(B)12は、樹脂層12a中に粒子12bが含まれて形成されている。 Another example of the hard coat film of the present invention is schematically shown in the cross-sectional view of FIG. As shown, the hard coat film 10A comprises a hard coat layer (B) 12, an optical functional layer (C) 13 and an antifouling layer (D) on at least one surface of a light transmissive substrate (A) 11. 14 are stacked in the above order. The antifouling layer (D) 14 contains fluorine as an element. Although the surface of each layer is flat in FIG. 1, unevenness is formed on the surface of the hard coat layer (B) 12 opposite to the light transmissive substrate (A) 11 in FIG. The surfaces of the optical functional layer (C) 13 and the antifouling layer (D) 14 formed on the hard coat layer (B) 12 also have the same uneven shape as the surface of the hard coat layer (B) 12. . Further, in FIG. 2, the hard coat layer (B) 12 contains particles. As illustrated, the hard coat layer (B) 12 is formed by containing particles 12b in a resin layer 12a.
 なお、本発明において、「上に」又は「面上に」は、上に、又は面上に直接接触した状態でもよいし、他の層等を介した状態でもよい。例えば、図1及び2では、光透過性基材(A)11、ハードコート層(B)12、光学機能層(C)13及び防汚層(D)14が直接積層されているが、後述するように、他の層を介して積層されていてもよい。 In addition, in the present invention, "on" or "on the surface" may be in a state of being in direct contact with the surface, or may be in a state of intervening another layer or the like. For example, in FIGS. 1 and 2, the light transmissive substrate (A) 11, the hard coat layer (B) 12, the optical function layer (C) 13 and the antifouling layer (D) 14 are directly laminated, which will be described later. It may be laminated via other layers so as to be carried out.
 本発明のハードコートフィルムにおいて、前記(A)~(D)の各層は、例えば図1のように平坦でもよいし、例えば図2のように凹凸が形成されていてもよい。 In the hard coat film of the present invention, each of the layers (A) to (D) may be flat as shown in FIG. 1, or may be uneven as shown in FIG.
 本発明のハードコートフィルムにおいて、前記(A)~(D)の各層の「平均厚み」の測定方法は、特に限定されないが、例えば、リニアゲージ、TEM(透過電子顕微鏡)、蛍光X線等を用いて測定可能であり、具体的には、例えば、後述の実施例に記載の方法で測定することができる。また、例えば、各層(例えば前記ハードコート層(B))の表面に凹凸があって各部の厚みにばらつきがある場合であっても、例えば、1μm平方の視野での撮像で任意の3点の厚みを測定し、さらに、同様にして1μm平方の視野で5か所測定し、合計15点の厚みの測定結果を平均した数値を平均厚みとすれば、平均厚みを測定できる。 In the hard coat film of the present invention, the method for measuring the "average thickness" of each layer (A) to (D) is not particularly limited, but for example, linear gauge, TEM (transmission electron microscope), fluorescent X-ray, etc. Specifically, for example, it can be measured by the method described in Examples below. Further, for example, even if the surface of each layer (for example, the hard coat layer (B)) has unevenness and the thickness of each part varies, for example, any three points can be detected by imaging in a 1 μm square field of view. The thickness is measured, and the thickness is measured at 5 points in a 1 μm square visual field in the same manner, and the average value of the thickness measurement results at 15 points in total is taken as the average thickness, whereby the average thickness can be measured.
 前述のとおり、本発明のハードコートフィルムは、下記数式(1)を満たす。すなわち、前記ハードコート層(B)の平均厚みdH[μm]と前記光学機能層(C)の平均厚みdI[μm]との積が、0.2~4の範囲である。
 
0.2≦dH×dI≦4     (1)
As described above, the hard coat film of the present invention satisfies the following formula (1). That is, the product of the average thickness dH [μm] of the hard coat layer (B) and the average thickness dI [μm] of the optical function layer (C) is in the range of 0.2-4.

0.2≦dH×dI≦4 (1)
 前記ハードコート層(B)の平均厚みdH[μm]と前記光学機能層(C)の平均厚みdI[μm]との積dH×dIが0.2未満の場合、ハードコートフィルムの機械的強度が低下し、耐摩耗性が不十分となる。dH[μm]×dI[μm]が4を超える場合、ハードコートフィルムが硬くなりすぎて靭性が不足するため折り曲げ耐性が不十分となり、折り曲げた際にハードコートフィルムの破壊が起こるおそれがある。dH[μm]×dI[μm]は、例えば、0.2以上、0.3以上、0.4以上、又は0.5以上であってもよく、例えば、4.0以下、3.5以下、3.0以下、又は2.5以下であってもよく、例えば、0.2~4.0、0.3~3.5、0.4~3.0、又は0.5~2.5であってもよい。 When the product dH×dI of the average thickness dH [μm] of the hard coat layer (B) and the average thickness dI [μm] of the optical function layer (C) is less than 0.2, the mechanical strength of the hard coat film decreases, resulting in insufficient wear resistance. If dH [μm]×dI [μm] exceeds 4, the hard coat film becomes too hard and lacks toughness, resulting in insufficient bending resistance, which may cause breakage of the hard coat film when bent. dH [μm]×dI [μm] may be, for example, 0.2 or more, 0.3 or more, 0.4 or more, or 0.5 or more, for example, 4.0 or less, 3.5 or less , 3.0 or less, or 2.5 or less, for example, 0.2 to 4.0, 0.3 to 3.5, 0.4 to 3.0, or 0.5 to 2.0. 5 may be used.
 前述のとおり、本発明のハードコートフィルムは、下記数式(2)を満たす。すなわち、前記ハードコート層(B)の平均厚みdH[μm]と前記ハードコート層(B)の平均厚みdH[μm]とを足して前記光透過性基材(A)の平均厚みdS[μm]で割った数値が、0.02~0.62の範囲である。
 
0.02≦(dH+dI)/dS≦0.62     (2)
As described above, the hard coat film of the present invention satisfies the following formula (2). That is, the average thickness dH [μm] of the hard coat layer (B) and the average thickness dH [μm] of the hard coat layer (B) are added to the average thickness dS [μm] of the light-transmitting substrate (A). ] is in the range of 0.02 to 0.62.

0.02≦(dH+dI)/dS≦0.62 (2)
 (dH[μm]+dI[μm])/dS[μm]が0.02未満であることは、ハードコートフィルムにおいて、硬さを担保する前記ハードコート層(B)の厚みと前記光学機能層(C)の厚みとの合計に対し、前記ハードコート層(B)及び前記光学機能層(C)と比較して弾性率が低い前記光透過性基材(A)の厚みが比率として大きすぎることを意味する。このような場合、ハードコートフィルム全体で強度の弱い部材が構成の大部分を占めることにより、耐摩耗性が低くなる。一方、(dH[μm]+dI[μm])/dS[μm]が0.62を超える場合、ハードコートフィルム全体で硬度が大きい部分の占める割合が大きすぎるため、折り曲げ耐性が低くなる。(dH[μm]+dI[μm])/dS[μm]は、例えば、0.02以上、0.03以上、0.04以上、又は0.05以上であってもよく、例えば、0.6以下、0.5以下、0.4以下、又は0.3以下であってもよく、例えば、0.02~0.6、0.03~0.5、0.04~0.4、又は0.05~0.3であってもよい。 (dH [μm] + dI [μm]) / dS [μm] is less than 0.02, in the hard coat film, the thickness of the hard coat layer (B) that ensures hardness and the optical function layer ( The ratio of the thickness of the light-transmitting substrate (A), which has a lower elastic modulus than the hard coat layer (B) and the optical function layer (C), to the total thickness of C) is too large. means In such a case, members having weak strength occupy most of the composition of the entire hard coat film, resulting in low abrasion resistance. On the other hand, if (dH[μm]+dI[μm])/dS[μm] exceeds 0.62, the portion with high hardness accounts for too large a proportion of the entire hard coat film, resulting in low bending resistance. (dH [μm] + dI [μm])/dS [μm] may be, for example, 0.02 or more, 0.03 or more, 0.04 or more, or 0.05 or more, for example, 0.6 0.5 or less, 0.4 or less, or 0.3 or less, for example, 0.02 to 0.6, 0.03 to 0.5, 0.04 to 0.4, or It may be from 0.05 to 0.3.
 また、本発明のハードコートフィルムは、前記光透過性基材(A)、前記ハードコート層(B)、前記光学機能層(C)及び前記防汚層(D)以外の他の層を含んでいてもよいし、含んでいなくてもよい。例えば、前記光透過性基材(A)、前記ハードコート層(B)、前記光学機能層(C)及び前記防汚層(D)は、それぞれ、直接積層されていてもよいが、粘接着層等の他の層を介して積層されていてもよい。また、例えば、前記防汚層(D)の外側に他の層が積層されていてもよいし、積層されていなくてもよい。 In addition, the hard coat film of the present invention contains layers other than the light transmissive substrate (A), the hard coat layer (B), the optical function layer (C) and the antifouling layer (D). It may or may not contain For example, the light-transmitting substrate (A), the hard coat layer (B), the optical function layer (C), and the antifouling layer (D) may be directly laminated. You may laminate|stack via other layers, such as a layer. Further, for example, another layer may or may not be laminated on the outside of the antifouling layer (D).
 なお、本発明において、「粘接着層」は「粘着層又は接着層」を意味する。「粘着層」は「粘着剤により形成された層」を意味する。「接着層」は「接着剤により形成された層」を意味する。一般に、接着力(粘着力)が比較的小さく被着体の再剥離が可能なものを「粘着剤」と呼び、接着力(粘着力)が比較的大きく被着体の再剥離が不可能又は困難なものを「接着剤」と呼んで区別する場合がある。本発明では、接着力(粘着力)が比較的小さいものを「粘着剤」と呼び、接着力(粘着力)が比較的大きいものを「接着剤」と呼ぶが、両者に明確な区別は無い。 In addition, in the present invention, "adhesive layer" means "adhesive layer or adhesive layer". "Adhesive layer" means "a layer formed by an adhesive". "Adhesive layer" means "a layer formed by an adhesive". In general, an adhesive that has a relatively small adhesive force (adhesive force) and can be removed from the adherend is called an "adhesive", and has a relatively large adhesive force (adhesive force) that makes it impossible to remove the adherend. Difficult things are sometimes called "adhesives" to distinguish them. In the present invention, a substance with a relatively small adhesive force (adhesive force) is called an "adhesive", and a substance with a relatively large adhesive force (adhesive force) is called an "adhesive", but there is no clear distinction between the two. .
 前記粘接着層は、例えば、粘着剤(粘着剤組成物)により形成された粘着層でもよい。前記粘着層の厚みは、特に限定されないが、例えば、5μm以上、10μm以上、20μm以上、又は25μm以上であってもよいし、例えば、50μm以下、40μm以下、30μm以下、25μm以下、又は20μm以下であってもよい。前記粘着剤は、特に限定されないが、例えば、(メタ)アクリル系ポリマー等が挙げられる。これらは、例えば、溶媒に溶解又は分散させて溶液又は分散液の形態とし、それを前記粘着剤(粘着剤組成物)として用いてもよい。前記溶媒としては、例えば、酢酸エチル等が挙げられ、1種類のみ用いても複数種類併用してもよい。前記溶液又は分散液中の溶質又は分散質(例えば、前記アクリル系ポリマー)の濃度は、例えば、10質量%以上、又は15質量%以上であってもよく、例えば、60質量%以下、50質量%以下、40質量%以下、又は25質量%以下であってもよい。なお、本発明において、「(メタ)アクリル系ポリマー」は、(メタ)アクリル酸、(メタ)アクリル酸エステル、及び(メタ)アクリルアミドの少なくとも一種類のモノマーの重合体又は共重合体をいう。また、本発明において、(メタ)アクリル酸は、「アクリル酸及びメタクリル酸の少なくとも一方」を意味し、「(メタ)アクリル酸エステル」は、「アクリル酸エステル及びメタクリル酸エステルの少なくとも一方」を意味する。前記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸の直鎖又は分枝アルキルエステル等があげられる。前記(メタ)アクリル酸の直鎖又は分枝アルキルエステルにおいて、アルキル基の炭素数は、例えば、1以上、2以上、3以上、又は4以上であってもよく、例えば、18以下、16以下、14以下、12以下、10以下、又は8以下であってもよい。前記アルキル基は、例えば、1又は複数の置換基で置換されていても置換されていなくてもよい。前記置換基は、例えば、水酸基等が挙げられ、複数の場合は、同一でも異なっていてもよい。前記(メタ)アクリル酸エステルとしては、具体的には、例えば、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート等が挙げられる。また、前記粘着剤は、一種類のみ用いてもよいし、複数種類併用してもよい。 The adhesive layer may be, for example, an adhesive layer formed of an adhesive (adhesive composition). The thickness of the adhesive layer is not particularly limited. may be Although the adhesive is not particularly limited, examples thereof include (meth)acrylic polymers. For example, these may be dissolved or dispersed in a solvent to form a solution or dispersion, which may be used as the pressure-sensitive adhesive (pressure-sensitive adhesive composition). Examples of the solvent include ethyl acetate and the like, and one type thereof may be used alone, or a plurality of types may be used in combination. The concentration of the solute or dispersoid (e.g., the acrylic polymer) in the solution or dispersion may be, for example, 10% by mass or more, or 15% by mass or more, for example, 60% by mass or less, or 50% by mass. % or less, 40 mass % or less, or 25 mass % or less. In the present invention, "(meth)acrylic polymer" refers to a polymer or copolymer of at least one monomer selected from (meth)acrylic acid, (meth)acrylic acid ester, and (meth)acrylamide. In the present invention, (meth)acrylic acid means "at least one of acrylic acid and methacrylic acid", and "(meth)acrylic acid ester" means "at least one of acrylic acid ester and methacrylic acid ester". means. Examples of the (meth)acrylic acid ester include linear or branched alkyl esters of (meth)acrylic acid. In the linear or branched alkyl ester of (meth)acrylic acid, the number of carbon atoms in the alkyl group may be, for example, 1 or more, 2 or more, 3 or more, or 4 or more, for example, 18 or less, 16 or less. , 14 or less, 12 or less, 10 or less, or 8 or less. Said alkyl groups may be substituted or unsubstituted, for example with one or more substituents. Examples of the substituents include hydroxyl groups and the like, and in the case of a plurality of substituents, they may be the same or different. Specific examples of the (meth)acrylic acid ester include 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate and the like. Moreover, the said adhesive may use only one type, and may use multiple types together.
 つぎに、前記(A)~(D)の各層について、例を挙げて説明する。 Next, each of the layers (A) to (D) will be described with examples.
[1-2.光透過性基材(A)]
 前記光透過性基材(A)は、特に限定されないが、例えば、一般的なハードコートフィルムに用いられる光透過性基材と同様であってもよく、具体的には、例えば、透明プラスチックフィルム基材等が挙げられる。前記透明プラスチックフィルム基材は、特に制限されないが、可視光の光線透過率に優れ(好ましくは光線透過率90%以上)、透明性に優れるもの(好ましくはヘイズ値1%以下のもの)が好ましく、例えば、特開2008-90263号公報に記載の透明プラスチックフィルム基材が挙げられる。前記透明プラスチックフィルム基材としては、光学的に複屈折の少ないものが好適に用いられる。本発明のハードコートフィルムは、例えば、保護フィルムとして偏光板に使用することもでき、この場合には、前記透明プラスチックフィルム基材としては、トリアセチルセルロース(TAC)、ポリカーボネート、アクリル系ポリマー、環状ないしノルボルネン構造を有するポリオレフィン等から形成されたフィルムが好ましい。また、本発明において、前記透明プラスチックフィルム基材は、偏光子自体であってもよい。このような構成であると、TAC等からなる保護層を不要とし偏光板の構造を単純化できるので、偏光板もしくは画像表示装置の製造工程数を減少させ、生産効率の向上が図れる。また、このような構成であれば、偏光板を、より薄層化することができる。なお、前記透明プラスチックフィルム基材が偏光子である場合には、例えば、前記非透明層が、保護層としての役割を果たすことになる。また、このような構成であれば、本発明のハードコートフィルムは、例えば、液晶セル表面に装着される場合、カバープレートとしての機能を兼ねることになる。
[1-2. Light-transmitting substrate (A)]
The light-transmitting substrate (A) is not particularly limited. A base material etc. are mentioned. The transparent plastic film substrate is not particularly limited, but preferably has excellent visible light transmittance (preferably light transmittance of 90% or more) and excellent transparency (preferably haze value of 1% or less). , for example, a transparent plastic film substrate described in JP-A-2008-90263. As the transparent plastic film substrate, one having optically low birefringence is preferably used. The hard coat film of the present invention can also be used for a polarizing plate as a protective film, for example. A film formed of polyolefin or the like having a or norbornene structure is preferable. Moreover, in the present invention, the transparent plastic film substrate may be the polarizer itself. Such a structure eliminates the need for a protective layer made of TAC or the like and simplifies the structure of the polarizing plate, thereby reducing the number of steps for manufacturing the polarizing plate or the image display device and improving the production efficiency. Moreover, with such a configuration, the polarizing plate can be made thinner. When the transparent plastic film substrate is a polarizer, for example, the non-transparent layer functions as a protective layer. Further, with such a structure, the hard coat film of the present invention also functions as a cover plate, for example, when attached to the surface of a liquid crystal cell.
 本発明において、前記光透過性基材(A)の平均厚みは、特に制限されないが、例えば、10μm以上、20μm以上、30μm以上、40μm以上、又は50μm以上であってもよく、例えば、前述のとおり100μm以下であってもよく、例えば、90μm以下、80μm以下、70μm以下、又は60μm以下であってもよく、例えば、10~100μm、20~90μm、30~80μm、40~70μm、又は50~60μmであってもよい。加工性の確保、耐折り曲げ性の観点からは、前記光透過性基材(A)の平均厚みが大きすぎないことが好ましい。強度不足の観点からは、前記光透過性基材(A)の平均厚みが小さすぎないことが好ましい。また、前記光透過性基材(A)の平均厚みの測定方法は特に限定されないが、例えば、後述する実施例のようにリニアゲージを用いて測定することができる。 In the present invention, the average thickness of the light-transmitting substrate (A) is not particularly limited. 100 μm or less, such as 90 μm or less, 80 μm or less, 70 μm or less, or 60 μm or less, for example, 10-100 μm, 20-90 μm, 30-80 μm, 40-70 μm, or 50 μm or less. It may be 60 μm. From the viewpoints of ensuring workability and bending resistance, it is preferable that the average thickness of the light-transmitting substrate (A) is not too large. From the viewpoint of insufficient strength, it is preferable that the average thickness of the light-transmitting substrate (A) is not too small. The method for measuring the average thickness of the light-transmitting substrate (A) is not particularly limited, but for example, it can be measured using a linear gauge as in Examples described later.
 前記光透過性基材(A)の屈折率は、特に制限されない。前記屈折率は、例えば、1.30~1.80または1.40~1.70の範囲である。 The refractive index of the light transmissive substrate (A) is not particularly limited. The refractive index ranges, for example, from 1.30 to 1.80 or from 1.40 to 1.70.
 なお、本発明において、「屈折率」は、特に断らない限り、波長550nmの屈折率をいう。また、本発明において、屈折率の測定方法は、特に限定されないが、粒子等の微細な物質の屈折率の場合は、例えば、ベッケ法を用いて測定できる。ベッケ法とは、スライドガラス上で標準屈折液に測定試料を分散させ、顕微鏡で観察した際に、試料の輪郭が消えるか、またはぼやけるときの標準屈折液の屈折率をその試料の屈折率とする測定法である。また、ベッケ法で屈折率を測定できない測定対象物(例えば、防眩性フィルム、防眩層、または防眩層を構成する樹脂等)の屈折率の測定方法は、特に限定されないが、例えば、一般的な屈折計(屈折率測定用の機器)を用いて測定できる。前記屈折計も特に限定されないが、例えば、アッベ屈折計等が挙げられる。前記アッベ屈折計としては、例えば、株式会社アタゴ製の多波長アッベ屈折計DR-M2/1550(商品名)が挙げられる。 In the present invention, "refractive index" refers to the refractive index at a wavelength of 550 nm unless otherwise specified. Moreover, in the present invention, the method for measuring the refractive index is not particularly limited, but in the case of the refractive index of fine substances such as particles, for example, the Becke method can be used. In the Becke method, a sample to be measured is dispersed in a standard refractive liquid on a slide glass, and the refractive index of the standard refractive liquid when the outline of the sample disappears or becomes blurred when observed with a microscope is used as the refractive index of the sample. It is a measurement method that In addition, the method for measuring the refractive index of a measurement object whose refractive index cannot be measured by the Becke method (for example, an antiglare film, an antiglare layer, or a resin constituting an antiglare layer, etc.) is not particularly limited, but for example, It can be measured using a general refractometer (instrument for measuring refractive index). The refractometer is also not particularly limited, and examples thereof include an Abbe refractometer. Examples of the Abbe refractometer include a multi-wavelength Abbe refractometer DR-M2/1550 (trade name) manufactured by Atago Co., Ltd.
[1-3.ハードコート層(B)]
 前記ハードコート層(B)は、特に限定されず、例えば、一般的なハードコートフィルムのハードコート層と同様又はそれに準じてもよい。例えば、前記ハードコート層(B)は、樹脂層により形成されていてもよい。また、例えば、前記ハードコート層(B)は、フィラー、チキソトロピー付与剤、表面調整剤、顔料、染料等を、それぞれ含んでいてもよいし、含んでいなくてもよい。前記フィラーは、特に限定されないが、例えば、粒子等であってもよい。前記粒子は、特に限定されず、例えば、有機粒子でも無機粒子でもよいし、例えば、不定形粒子でも球形粒子でもよい。前記ハードコート層(B)の形成材料について、詳しくは後述する。
[1-3. Hard coat layer (B)]
The hard coat layer (B) is not particularly limited, and may be, for example, similar to or similar to a hard coat layer of a general hard coat film. For example, the hard coat layer (B) may be formed of a resin layer. Further, for example, the hard coat layer (B) may or may not contain fillers, thixotropy-imparting agents, surface control agents, pigments, dyes, and the like. Although the filler is not particularly limited, it may be, for example, particles. The particles are not particularly limited, and may be, for example, organic particles or inorganic particles, and may be amorphous particles or spherical particles. The material for forming the hard coat layer (B) will be described later in detail.
 本発明において、前記ハードコート層(B)の平均厚みは、特に制限されないが、例えば、0.5μm以上、1.0μm以上、1.5μm以上、2.0μm以上、又は2.5μm以上であってもよく、例えば、30μm以下、25μm以下、20μm以下、15μm以下、又は10μm以下であってもよく、例えば、0.5~30μm、1.0~25μm、101.5~20μm、2.0~15μm、又は2.5~10μmであってもよい。カール防止、加工不良発生防止の観点からは、前記ハードコート層(B)の平均厚みが大きすぎないことが好ましい。鉛筆硬度低下防止、硬度不足防止の観点からは、前記ハードコート層(B)の平均厚みが小さすぎないことが好ましい。前記ハードコート層(B)の平均厚みの測定方法は特に限定されないが、例えば、後述する実施例のようにリニアゲージを用いて測定することができる。 In the present invention, the average thickness of the hard coat layer (B) is not particularly limited. for example, 30 μm or less, 25 μm or less, 20 μm or less, 15 μm or less, or 10 μm or less, for example, 0.5-30 μm, 1.0-25 μm, 101.5-20 μm, 2.0 μm or less. ˜15 μm, or 2.5-10 μm. From the viewpoint of preventing curling and processing defects, it is preferable that the average thickness of the hard coat layer (B) is not too large. From the viewpoint of preventing a decrease in pencil hardness and insufficient hardness, it is preferable that the average thickness of the hard coat layer (B) is not too small. The method for measuring the average thickness of the hard coat layer (B) is not particularly limited, but for example, it can be measured using a linear gauge as in Examples described later.
 本発明において、前記ハードコート層(B)の、前記基材(A)とは反対側の面における表面粗さは、特に制限されないが、例えば、1nm以上、1.5nm以上、2.0nm以上、2.5nm以上、又は3.0nm以上であってもよく、例えば、10nm以下、9.5nm以下、9.0nm以下、8.5nm以下、又は8.0nm以下であってもよく、例えば、1~10nm、1.5~9.5nm、2.0~9.0nm、2.5~8.5nm、又は3.0~8.0nmであってもよい。なお、以下において、本発明のハードコートフィルムの各層の「表面粗さ」は、特に断らない限り、前記基材(A)とは反対側の面における表面粗さをいう。前記ハードコート層(B)の表面粗さは、例えば、前記ハードコート層(B)と前記光学機能層(C)との密着性に影響する。また、ヘイズ防止、表面の傷つき防止の観点からは、前記ハードコート層(B)の表面粗さが大きすぎないことが好ましい。前記光学機能層(C)との密着性不良防止、アンチブロッキング性低下防止の観点からは、前記ハードコート層(B)の表面粗さが小さすぎないことが好ましい。 In the present invention, the surface roughness of the surface of the hard coat layer (B) opposite to the substrate (A) is not particularly limited, but is, for example, 1 nm or more, 1.5 nm or more, or 2.0 nm or more. , 2.5 nm or more, or 3.0 nm or more, for example, 10 nm or less, 9.5 nm or less, 9.0 nm or less, 8.5 nm or less, or 8.0 nm or less, for example, It may be 1-10 nm, 1.5-9.5 nm, 2.0-9.0 nm, 2.5-8.5 nm, or 3.0-8.0 nm. In the following, unless otherwise specified, the "surface roughness" of each layer of the hard coat film of the present invention refers to the surface roughness on the side opposite to the substrate (A). The surface roughness of the hard coat layer (B) affects, for example, the adhesion between the hard coat layer (B) and the optical function layer (C). From the viewpoint of preventing haze and scratching of the surface, it is preferable that the surface roughness of the hard coat layer (B) is not too large. From the viewpoint of preventing poor adhesion with the optical function layer (C) and preventing deterioration of antiblocking properties, it is preferable that the surface roughness of the hard coat layer (B) is not too small.
 本発明において、ハードコートフィルムの各層等における表面粗さRaの測定方法は、特に限定されないが、例えば、下記の測定方法により測定できる。本発明のハードコートフィルムにおいては、最外層の表面粗さを測定すれば、その下の層の表面粗さは、通常は、前記最外層の表面粗さにほぼ等しいと推定できる。前記防汚層(D)の上に他の層が形成されていない場合は、前記防汚層(D)が最外層となる。例えば、前記防汚層(D)が最外層である場合、前記防汚層(D)の表面粗さを測定すれば、通常は、前記光学機能層(C)及び前記ハードコート層(B)の表面粗さは、前記防汚層(D)の表面粗さの測定値にほぼ等しいと推定できる。 In the present invention, the method for measuring the surface roughness Ra of each layer of the hard coat film is not particularly limited, but it can be measured, for example, by the following measuring method. In the hard coat film of the present invention, when the surface roughness of the outermost layer is measured, the surface roughness of the layer below it can be generally estimated to be approximately equal to the surface roughness of the outermost layer. When no other layer is formed on the antifouling layer (D), the antifouling layer (D) is the outermost layer. For example, when the antifouling layer (D) is the outermost layer, if the surface roughness of the antifouling layer (D) is measured, usually the optical functional layer (C) and the hard coat layer (B) can be estimated to be approximately equal to the measured value of the surface roughness of the antifouling layer (D).
[表面粗さRaの測定方法]
 本発明のハードコートフィルムにおける前記防汚層(D)表面を、原子間力顕微鏡(商品名「SPI3800」、セイコーインスツルメンツ社製)によって観察し、1μm四方の観察像に基づいて、表面粗さRa(算術平均粗さ)を算出する。
[Method for measuring surface roughness Ra]
The surface of the antifouling layer (D) in the hard coat film of the present invention was observed with an atomic force microscope (trade name “SPI3800”, manufactured by Seiko Instruments Inc.). (Arithmetic mean roughness) is calculated.
[1-4.光学機能層(C)]
 前記光学機能層(C)は、例えば、反射防止機能を有する反射防止層であってもよい。また、前記光学機能層(C)は、例えば、無機物質により形成された無機層であってもよい。なお、本発明において「無機物質」は、例えば、後述する有機無機ハイブリッド材料も含むものとする。前記光学機能層(C)の形成材料である無機物質は、特に限定されないが、例えば、金属、金属酸化物、ケイ素及びケイ素酸化物からなる群から選択される少なくとも一つを含んでいてもよい。以下、前記光学機能層(C)について、例を挙げて説明する。
[1-4. Optical functional layer (C)]
The optical function layer (C) may be, for example, an antireflection layer having an antireflection function. Also, the optical function layer (C) may be an inorganic layer formed of an inorganic substance, for example. In addition, in the present invention, the “inorganic substance” includes, for example, an organic-inorganic hybrid material described later. The inorganic substance that is the material for forming the optical function layer (C) is not particularly limited, but may contain, for example, at least one selected from the group consisting of metals, metal oxides, silicon and silicon oxides. . The optical functional layer (C) will be described below with reference to examples.
 前記光学機能層(C)において、前記金属は、特に限定されないが、例えば、アルミニウム、亜鉛、スズ、インジウム、ガリウム、ジルコニウム、鉛等が挙げられる。前記金属酸化物は、特に限定されないが、例えば、酸化アルミニウム(例えばAl)、亜鉛スズ複合酸化物(ZTO)、インジウムスズ複合酸化物(ITO)、インジウム亜鉛複合酸化物(IZO)、ガリウム亜鉛複合酸化物(GZO)、酸化ジルコニウム(ZrO)等が挙げられる。本発明において、前記ケイ素酸化物は、例えば、SiOx(0<x≦2)で表される化合物である。前記ケイ素酸化物は、特に限定されないが、例えば、二酸化ケイ素(SiO)等が挙げられる。 In the optical function layer (C), the metal is not particularly limited, but examples thereof include aluminum, zinc, tin, indium, gallium, zirconium, lead and the like. The metal oxide is not particularly limited, but for example, aluminum oxide (eg, Al 2 O 3 ), zinc-tin composite oxide (ZTO), indium-tin composite oxide (ITO), indium-zinc composite oxide (IZO), Gallium-zinc composite oxide (GZO), zirconium oxide (ZrO 2 ), and the like are included. In the present invention, the silicon oxide is, for example, a compound represented by SiOx (0<x≦2). Examples of the silicon oxide include, but are not limited to, silicon dioxide (SiO 2 ).
 前記光学機能層(C)の形成材料は特に限定されず、一般的な光学フィルム(例えばハードコートフィルム)における光学機能層と同様でもよい。例えば、前記光学機能層(C)が反射防止層である場合は、その形成材料は、一般的な反射防止層と同様でもよい。例えば、前記光学機能層(C)が無機層である場合は、その形成材料は、一般的な無機層と同様でもよい。また、前記光学機能層(C)は、一層のみからなっていてもよいし、複数の層から形成されていてもよい。前記光学機能層(C)の各層は、それぞれ一種類の形成材料のみからなっていてもよいし、複数種類の形成材料が併用されていてもよい。例えば、前記光学機能層(C)が、密着層と他の層との積層体であってもよい。具体的には、例えば、前記ハードコート層(B)と前記他の層との密着性を高めるために、まず、前記ハードコート層(B)上に前記密着層を形成し、さらにその上に前記他の層を形成してもよい。前記密着層は、例えば、ITO層でもよい。なお、ITOは、高屈折率で、かつ光を吸収しやすいため、ITO層の厚みが大きすぎると、例えば、反射防止性能が低下するおそれがある。このため、前記光学機能層(C)が反射防止層である場合は、ITO層の厚みを大きくし過ぎないことが好ましい。 The material for forming the optical functional layer (C) is not particularly limited, and may be the same as the optical functional layer in a general optical film (eg, hard coat film). For example, when the optical function layer (C) is an antireflection layer, the material for forming it may be the same as that of a general antireflection layer. For example, when the optical function layer (C) is an inorganic layer, the material for forming the layer may be the same as for general inorganic layers. Further, the optical function layer (C) may consist of only one layer, or may consist of a plurality of layers. Each layer of the optical function layer (C) may be made of only one type of forming material, or may be made of a plurality of types of forming materials. For example, the optical function layer (C) may be a laminate of an adhesion layer and another layer. Specifically, for example, in order to increase the adhesion between the hard coat layer (B) and the other layer, first, the adhesion layer is formed on the hard coat layer (B), and then The other layers may be formed. The adhesion layer may be, for example, an ITO layer. ITO has a high refractive index and absorbs light easily, so if the thickness of the ITO layer is too large, for example, antireflection performance may decrease. Therefore, when the optical function layer (C) is an antireflection layer, it is preferable not to increase the thickness of the ITO layer too much.
 前記光学機能層(C)は、例えば、有機無機ハイブリッド材料等を含んでいてもよい。前記有機無機ハイブリッド材料は、特に限定されないが、例えば、ポリシロキサン樹脂、シルセスキオキサン樹脂等が挙げられる。また、前記光学機能層(C)は、例えば、無機物質以外の他の成分を、含んでいてもよいし含んでいなくてもよい。前記他の成分は、例えば、有機化合物でもよい。前記有機化合物は、特に限定されないが、例えば、各種樹脂等でもよい。前記樹脂は特に限定されないが、例えば、前記光透過性基材(A)の形成材料として使用できる樹脂と同様であってもよく、一種類のみ用いても複数種類併用してもよい。前記樹脂は、例えば、アクリル樹脂等であってもよい。例えば、前記光学機能層(C)が、アクリル樹脂と酸化ジルコニウムとの混合物、又はアクリル樹脂と酸化ケイ素(シリカ)との混合物等により形成されていてもよい。前記光学機能層(C)が前記他の成分を含む場合、その含有率は、特に限定されないが、例えば、10質量%以下、5質量%以下、又は1質量%以下あってもよく、下限値は特に限定されないが、例えば0質量%を超える数値である。 The optical function layer (C) may contain, for example, an organic-inorganic hybrid material. The organic-inorganic hybrid material is not particularly limited, but examples thereof include polysiloxane resins and silsesquioxane resins. Further, the optical function layer (C) may or may not contain, for example, components other than the inorganic substance. Said other component may be, for example, an organic compound. The organic compound is not particularly limited, but may be, for example, various resins. Although the resin is not particularly limited, for example, it may be the same as the resin that can be used as the material for forming the light-transmitting base material (A), and one type of resin may be used alone or a plurality of types may be used in combination. The resin may be, for example, an acrylic resin or the like. For example, the optical function layer (C) may be formed of a mixture of acrylic resin and zirconium oxide, a mixture of acrylic resin and silicon oxide (silica), or the like. When the optical function layer (C) contains the other component, the content is not particularly limited, but may be, for example, 10% by mass or less, 5% by mass or less, or 1% by mass or less. is not particularly limited, but is, for example, a numerical value exceeding 0% by mass.
 前記光学機能層(C)を形成する方法は、特に限定されないが、いわゆるドライプロセス(溶媒を用いない形成方法)が好ましい。具体的には、例えば、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)からなる群から選択される少なくとも一つの方法により形成してもよい。真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)を行う具体的な方法も特に限定されず、例えば、一般的な方法と同様又はそれに準じてもよい。 A method for forming the optical function layer (C) is not particularly limited, but a so-called dry process (a forming method that does not use a solvent) is preferable. Specifically, for example, it may be formed by at least one method selected from the group consisting of vacuum deposition, sputtering, and chemical vapor deposition (CVD). Specific methods for vacuum deposition, sputtering, and chemical vapor deposition (CVD) are also not particularly limited, and may be, for example, the same or similar to general methods.
 本発明の前記光学機能層(C)を形成する方法は、特に限定されない。例えば、無機物質を用いて、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)からなる群から選択される少なくとも一つの方法により、ある程度以上の厚みの前記光学機能層(C)を形成することで、本発明の前記光学機能層(C)を形成することができる。前記無機物質は、特に限定されないが、例えば、前述のとおり、金属、金属酸化物、ケイ素及びケイ素酸化物からなる群から選択される少なくとも一つの材料を含んでいてもよい。 The method for forming the optical function layer (C) of the present invention is not particularly limited. For example, using an inorganic substance, the optical function layer (C) having a certain thickness or more is formed by at least one method selected from the group consisting of vacuum deposition, sputtering, and chemical vapor deposition (CVD). By forming, the optical function layer (C) of the present invention can be formed. The inorganic substance is not particularly limited, but may contain, for example, at least one material selected from the group consisting of metals, metal oxides, silicon and silicon oxides, as described above.
 前記光学機能層(C)の平均厚みは、特に限定されないが、例えば、0.05μm以上、0.06μm以上、0.07μm以上、0.08μm以上、又は0.09μm以上であってもよく、例えば、0.5μm以下、0.4μm以下、0.3μm以下、0.2μm以下、又は0.1μm以下であってもよく、例えば、0.05~0.5μm、0.06~0.4μm、0.07~0.3μm、0.08~0.2μm、又は0.09~0.1μmであってもよい。耐折り曲げ性低下防止の観点からは、前記光学機能層(C)の平均厚みが大きすぎないことが好ましい。耐摺動性低下防止の観点からは、前記光学機能層(C)の平均厚みが小さすぎないことが好ましい。前記光学機能層(C)の平均厚みの測定方法は、特に限定されないが、例えば、後述する実施例のようにTEM(透過電子顕微鏡)を用いて測定することができる。 The average thickness of the optical function layer (C) is not particularly limited. For example, it may be 0.5 μm or less, 0.4 μm or less, 0.3 μm or less, 0.2 μm or less, or 0.1 μm or less, such as 0.05 to 0.5 μm, 0.06 to 0.4 μm. , 0.07-0.3 μm, 0.08-0.2 μm, or 0.09-0.1 μm. From the viewpoint of preventing deterioration of bending resistance, it is preferable that the average thickness of the optical function layer (C) is not too large. From the viewpoint of preventing deterioration of sliding resistance, it is preferable that the average thickness of the optical function layer (C) is not too small. Although the method for measuring the average thickness of the optical function layer (C) is not particularly limited, for example, it can be measured using a TEM (transmission electron microscope) as in Examples described later.
 本発明において、前記光学機能層(C)の表面粗さは、特に制限されないが、例えば、前記ハードコート層(B)の表面粗さと同様である。また、ヘイズ防止、表面の傷つき防止の観点からは、前記光学機能層(C)の表面粗さが大きすぎないことが好ましい。前記防汚層(D)との密着性不良防止、アンチブロッキング性低下防止の観点からは、前記光学機能層(C)の表面粗さが小さすぎないことが好ましい。 In the present invention, the surface roughness of the optical function layer (C) is not particularly limited, but is, for example, the same as the surface roughness of the hard coat layer (B). Moreover, from the viewpoint of preventing haze and scratching of the surface, it is preferable that the surface roughness of the optical function layer (C) is not too large. From the viewpoint of preventing poor adhesion with the antifouling layer (D) and preventing deterioration of antiblocking properties, it is preferable that the surface roughness of the optical function layer (C) is not too small.
[1-5.防汚層(D)]
 前記防汚層(D)は、特に限定されないが、例えば、一般的な光学部材等に持ちいれられる防汚層と同様又はそれに準じてもよい。前記防汚層(D)は、前述のとおり、元素としてフッ素を含む。具体的には、例えば、前記防汚層(D)が、防汚成分として、フッ素の単体及びフッ素化合物の少なくとも一方を含んでいてもよい。前記防汚成分としては、特に限定されないが、例えば、パーフルオロポリエーテル基を有する有機シラン化合物等が挙げられる。また、前記防汚層(D)は、前記防汚成分以外の他の成分を含んでいてもよいし、含んでいなくてもよい。前記防汚層(D)が前記他の成分を含む場合、その含有率は、特に限定されないが、例えば、50質量%以下、25質量%以下、20質量%以下、10質量%以下、5質量%以下、又は1質量%以下であってもよく、下限値は特に限定されないが、例えば0質量%を超える数値である。
[1-5. Antifouling layer (D)]
The antifouling layer (D) is not particularly limited, but may be, for example, similar to or conforming to an antifouling layer used in general optical members and the like. The antifouling layer (D) contains fluorine as an element as described above. Specifically, for example, the antifouling layer (D) may contain at least one of elemental fluorine and a fluorine compound as an antifouling component. Examples of the antifouling component include, but are not particularly limited to, an organic silane compound having a perfluoropolyether group. In addition, the antifouling layer (D) may or may not contain components other than the antifouling component. When the antifouling layer (D) contains the other component, the content is not particularly limited, but is, for example, 50% by mass or less, 25% by mass or less, 20% by mass or less, 10% by mass or less, 5% by mass. % or less, or 1% by mass or less, and the lower limit is not particularly limited, but it is, for example, a numerical value exceeding 0% by mass.
 前記防汚層(D)は、元素としてフッ素を含むことで、例えば、薄い膜厚でも高い防汚性を発揮できるため、前記光学機能層(C)の光学機能を阻害しにくい。なお、前記光学機能層(C)の光学機能としては、例えば、反射防止機能等が挙げられる。また、前記防汚層(D)は、元素としてフッ素を含むことで、例えば、低屈折率を実現できて前記光学機能層(C)との屈折率差が小さくなる。これにより、例えば、前記防汚層(D)が前記光学機能層(C)の反射スペクトルを変化させにくく、前記光学機能層(C)の光学機能(例えば反射防止機能等)を阻害しにくい。チタン酸化物等の防汚層と比較した場合、本発明における前記防汚層(D)は、例えば、前述のとおり、低屈折率を実現できる。また、チタン酸化物等の防汚層は、ドライプロセス(溶媒を用いない形成方法)以外の方法で形成することが困難である。このため、防汚層の厚みが大きいと、生産性が低くなるおそれがある。これに対し、本発明における前記防汚層(D)は、その形成材料にもよるが、例えば、ウェットコーティング、蒸着処理等の様々な方法で製膜(形成)することが可能であり、その形成方法は限定されない。 By containing fluorine as an element, the antifouling layer (D) can exhibit high antifouling properties even with a small film thickness, for example, so that the optical function of the optical function layer (C) is less likely to be impaired. The optical function of the optical function layer (C) includes, for example, an antireflection function. In addition, since the antifouling layer (D) contains fluorine as an element, for example, a low refractive index can be realized, and the refractive index difference with the optical function layer (C) is reduced. Accordingly, for example, the antifouling layer (D) is less likely to change the reflection spectrum of the optical function layer (C), and less likely to impede the optical function (for example, antireflection function) of the optical function layer (C). When compared with antifouling layers such as titanium oxide, the antifouling layer (D) in the present invention can achieve, for example, a low refractive index as described above. In addition, it is difficult to form an antifouling layer of titanium oxide or the like by a method other than a dry process (a forming method that does not use a solvent). Therefore, if the thickness of the antifouling layer is large, there is a possibility that the productivity will be low. On the other hand, the antifouling layer (D) in the present invention can be formed (formed) by various methods such as wet coating and vapor deposition, depending on the material used to form the layer. The forming method is not limited.
 前記防汚層(D)を形成する方法は、前述のとおり特に限定されないが、いわゆるドライプロセス(溶媒を用いない形成方法)が好ましい。具体的には、例えば、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)からなる群から選択される少なくとも一つの方法により形成してもよい。真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)を行う具体的な方法も特に限定されず、例えば、一般的な方法と同様又はそれに準じてもよい。 The method for forming the antifouling layer (D) is not particularly limited as described above, but a so-called dry process (a forming method that does not use a solvent) is preferred. Specifically, for example, it may be formed by at least one method selected from the group consisting of vacuum deposition, sputtering, and chemical vapor deposition (CVD). Specific methods for vacuum deposition, sputtering, and chemical vapor deposition (CVD) are also not particularly limited, and may be, for example, the same or similar to general methods.
 前記防汚層(D)の平均厚みは、特に限定されないが、例えば、1nm以上、2nm以上、3nm以上、4nm以上、又は5nm以上であってもよく、例えば、30nm以下、28nm以下、26nm以下、24nm以下、又は22nm以下であってもよく、例えば、1~30nm、2~28nm、3~26nm、4~24nm、又は5~22nmであってもよい。膜脱離(前記防汚層(D)の剥離)防止の観点からは、前記防汚層(D)の平均厚みが大きすぎないことが好ましい。耐摩耗性低下防止、防汚性低下防止の観点からは、前記防汚層(D)の平均厚みが小さすぎないことが好ましい。前記防汚層(D)の平均厚みの測定方法は、特に限定されないが、例えば、後述する実施例のように蛍光X線を用いて測定することができる。 The average thickness of the antifouling layer (D) is not particularly limited, but may be, for example, 1 nm or more, 2 nm or more, 3 nm or more, 4 nm or more, or 5 nm or more. , 24 nm or less, or 22 nm or less, for example, 1-30 nm, 2-28 nm, 3-26 nm, 4-24 nm, or 5-22 nm. From the viewpoint of preventing film detachment (peeling of the antifouling layer (D)), it is preferable that the average thickness of the antifouling layer (D) is not too large. From the viewpoint of preventing deterioration of wear resistance and antifouling properties, it is preferable that the average thickness of the antifouling layer (D) is not too small. Although the method for measuring the average thickness of the antifouling layer (D) is not particularly limited, for example, it can be measured using fluorescent X-rays as in Examples described later.
 本発明において、前記防汚層(D)の表面粗さは、特に制限されないが、例えば、1nm以上、1nm以上、1.5nm以上、2.0nm以上、2.5nm以上、又は3.0nm以上であってもよく、例えば、10nm以下、9.5nm以下、9.0nm以下、8.5nm以下、又は8.0nm以下であってもよく、例えば、1~10nm、1.5~9.5nm、2.0~9.0nm、2.5~8.5nm、又は3.0~8.0nmであってもよい。表面粗さの測定方法は、特に限定されないが、例えば、前述のとおりである。ヘイズ防止、キズの入りやすさの観点からは、前記防汚層(D)の表面粗さが大きすぎないことが好ましい。アンチブロッキング性の観点からは、前記防汚層(D)の表面粗さが小さすぎないことが好ましい。 In the present invention, the surface roughness of the antifouling layer (D) is not particularly limited. for example, 10 nm or less, 9.5 nm or less, 9.0 nm or less, 8.5 nm or less, or 8.0 nm or less, for example, 1 to 10 nm, 1.5 to 9.5 nm , 2.0-9.0 nm, 2.5-8.5 nm, or 3.0-8.0 nm. A method for measuring the surface roughness is not particularly limited, and is, for example, as described above. From the viewpoints of preventing haze and susceptibility to scratches, it is preferable that the surface roughness of the antifouling layer (D) is not too large. From the viewpoint of antiblocking properties, it is preferable that the surface roughness of the antifouling layer (D) is not too small.
 本発明において、前記防汚層(D)表面(前記基材(A)とは反対側の表面における表面)の水接触角は、特に限定されないが、例えば、95°以上、100°以上、105°以上、110°以上、又は115°以上であってもよい。汚れ防止性能の観点からは、前記防汚層(D)の水接触角が大きすぎないことが好ましい。 In the present invention, the water contact angle of the antifouling layer (D) surface (the surface on the side opposite to the substrate (A)) is not particularly limited. ° or more, 110° or more, or 115° or more. From the viewpoint of antifouling performance, it is preferable that the water contact angle of the antifouling layer (D) is not too large.
[1-6.その他]
 本発明のハードコートフィルムは、例えば、クリアフィルム又は防眩性フィルム(AGフィルムともいう)として使用できる。例えば、防眩性フィルムとして用いるためには、例えば、前記ハードコート層(B)に防眩性(AG性)を持たせればよい。
[1-6. others]
The hard coat film of the present invention can be used, for example, as a clear film or an antiglare film (also called AG film). For example, in order to use it as an antiglare film, the hard coat layer (B) may be provided with antiglare properties (AG properties).
 本発明のハードコートフィルムは、例えば、前記ハードコートフィルム全体の波長550nmにおける光透過率が90%以上であってもよい。前記ハードコートフィルム全体の波長550nmにおける光透過率は、例えば、90%以上、92%以上、94%以上、95%以上、96%以上、97%以上、98%以上、又は99%以上であってもよく、例えば、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、又は90%以下であってもよく、例えば、90~100%、90~99%、90~98%、90~97%、90~96%、90~95%、90~94%、90~93%、90~92%、92~100%、92~99%、92~98%、92~97%、92~96%、92~95%、92~94%、92~93%、94~100%、94~99%、94~98%、94~97%、94~96%、94~95%、95~100%、95~99%、95~98%、95~97%、95~96%、96~100%、96~99%、96~98%、96~97%、97~100%、97~99%、97~98%、98~100%、98~99%、又は99~100%であってもよい。ハードコートフィルム全体の光透過率が高いことにより、例えば、偏光板化した際に明るさを損なわない、透明度が高いため外観検査がしやすい、等の利点がある。 The hard coat film of the present invention may have, for example, a light transmittance of 90% or more at a wavelength of 550 nm for the entire hard coat film. The light transmittance of the entire hard coat film at a wavelength of 550 nm is, for example, 90% or more, 92% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more. for example, 100% or less, 99% or less, 98% or less, 97% or less, 96% or less, 95% or less, 94% or less, 93% or less, 92% or less, or even 90% or less well, for example, 90-100%, 90-99%, 90-98%, 90-97%, 90-96%, 90-95%, 90-94%, 90-93%, 90-92%, 92 ~100%, 92-99%, 92-98%, 92-97%, 92-96%, 92-95%, 92-94%, 92-93%, 94-100%, 94-99%, 94 ~98%, 94-97%, 94-96%, 94-95%, 95-100%, 95-99%, 95-98%, 95-97%, 95-96%, 96-100%, 96 It may be ~99%, 96-98%, 96-97%, 97-100%, 97-99%, 97-98%, 98-100%, 98-99%, or 99-100%. Due to the high light transmittance of the entire hard coat film, there are advantages such as not impairing the brightness when made into a polarizing plate, and easy appearance inspection due to high transparency.
 なお、本発明において、光透過率の測定方法は、特に限定されないが、例えば、下記の測定方法により測定できる。 In addition, in the present invention, the method for measuring the light transmittance is not particularly limited, but it can be measured, for example, by the following measuring method.
[光透過率の測定方法]
・装置:積分球式分光透過率測定器(商品名:DOT-3C、村上色彩技術研究所製)
・測定モード:全光線透過率&色彩計算
・光源:D65光源
・視野角:2度視野
・以上の設定で気温23度、湿度50%の測定条件で、波長550nmでの光透過率を測定する。
[Method for measuring light transmittance]
・Apparatus: Integrating sphere type spectral transmittance measuring instrument (product name: DOT-3C, manufactured by Murakami Color Research Laboratory)
・Measurement mode: total light transmittance & color calculation ・Light source: D65 light source ・Viewing angle: 2 degree field of view .
[2.ハードコートフィルムの製造方法]
 本発明のハードコートフィルムの製造方法は、特に限定されず、例えば、一般的なハードコートフィルムの製造方法と同様にして、又はそれに準じて行うことができる。以下に、本発明のハードコートフィルムの製造方法について、例を挙げて説明する。
[2. Method for producing hard coat film]
The method for producing the hard coat film of the present invention is not particularly limited, and for example, it can be carried out in the same manner as or according to a general method for producing a hard coat film. The method for producing the hard coat film of the present invention will be described below with reference to examples.
 まず、光透過性基材(A)を準備する。光透過性基材(A)の材質、厚み等は、例えば前述のとおりである。 First, a light-transmitting substrate (A) is prepared. The material, thickness, etc. of the light-transmitting substrate (A) are, for example, as described above.
 つぎに、光透過性基材(A)上にハードコート層(B)を形成する。光透過性基材(A)上にハードコート層(B)を形成する方法は特に限定されないが、例えば、以下のとおりである。以下、このハードコート層(B)を形成する工程を「ハードコート層形成工程」ということがある。前記ハードコート層形成工程は、例えば、光透過性基材(A)上にハードコート層形成用塗工液(以下、単に「塗工液」又は「ハードコート層形成材料」という場合がある。)を塗工する塗工工程と、塗工した前記塗工液を乾燥させて塗膜を形成する塗膜形成工程とを含んでいてもよい。また、例えば、前記ハードコート層形成工程が、さらに、前記塗膜を硬化させる硬化工程を含んでいてもよい。前記硬化は、例えば、前記乾燥の後に行なうことができるが、これに限定されない。前記硬化は、例えば、加熱、光照射等により行うことができる。前記光は、特に限定されないが、例えば、紫外線等であってもよい。前記光照射の光源も特に限定されないが、例えば、高圧水銀ランプ等であってもよい。 Next, a hard coat layer (B) is formed on the light transmissive substrate (A). The method for forming the hard coat layer (B) on the light-transmitting substrate (A) is not particularly limited, but is, for example, as follows. Hereinafter, the step of forming this hard coat layer (B) may be referred to as a "hard coat layer forming step". In the hard coat layer forming step, for example, a coating solution for forming a hard coat layer (hereinafter sometimes simply referred to as "coating solution" or "hard coat layer forming material") is applied onto the light-transmitting substrate (A). ) and a coating film forming step of drying the applied coating liquid to form a coating film. Further, for example, the hard coat layer forming step may further include a curing step of curing the coating film. The curing can be performed after the drying, for example, but not limited thereto. The curing can be performed, for example, by heating, light irradiation, or the like. Although the light is not particularly limited, it may be, for example, ultraviolet light. The light source for the light irradiation is also not particularly limited, and may be, for example, a high-pressure mercury lamp.
 前記塗工液(ハードコート層形成材料)は、例えば、樹脂材料と希釈溶媒(以下、単に「溶媒」という場合がある。)とを含む塗工液であってもよい。また、前記塗工液は、これら以外の他の成分を含んでいてもよいし、含んでいなくてもよい。前記他の成分としては、特に限定されないが、例えば、チキソトロピー付与剤、フィラー等が挙げられる。前記フィラーとしては、例えば、粒子等が挙げられる。前記粒子は、特に限定されず、例えば、有機粒子でも無機粒子でもよいし、例えば、不定形粒子でも球形粒子でもよい。前記チキソトロピー剤、前記粒子等は、特に限定されないが、例えば、一般的なハードコート層に含まれるチキソトロピー剤、粒子等と同様又はそれに準じてもよい。前記粒子としては、例えば、アクリル-スチレン共重合体、シリコーン樹脂、シリカ等が挙げられる。 The coating liquid (hard coat layer forming material) may be, for example, a coating liquid containing a resin material and a diluent solvent (hereinafter sometimes simply referred to as "solvent"). Moreover, the coating liquid may or may not contain components other than these. Examples of the other components include, but are not limited to, thixotropy-imparting agents and fillers. Examples of the filler include particles. The particles are not particularly limited, and may be, for example, organic particles or inorganic particles, and may be amorphous particles or spherical particles. The thixotropic agent, the particles, and the like are not particularly limited, but may be, for example, the same as or similar to the thixotropic agent, particles, and the like contained in a general hard coat layer. Examples of the particles include acrylic-styrene copolymers, silicone resins, and silica.
 前記塗工液に含まれる前記樹脂材料は、例えば、ハードコート層(B)を形成する樹脂そのものであってもよいし、重合、硬化等により前記樹脂を形成する樹脂材料であってもよい。前記樹脂は、特に限定されないが、例えば、熱硬化性樹脂、電離放射線硬化樹脂等であってもよい。また、前記樹脂は、例えば、アクリレート樹脂(アクリル樹脂ともいう)を含んでいてもよく、例えば、ウレタンアクリレート樹脂を含んでいてもよい。また、前記樹脂は、例えば、硬化型ウレタンアクリレート樹脂及び多官能アクリレートの共重合物であってもよい。 The resin material contained in the coating liquid may be, for example, the resin itself that forms the hard coat layer (B), or may be a resin material that forms the resin through polymerization, curing, or the like. The resin is not particularly limited, but may be, for example, a thermosetting resin, an ionizing radiation curable resin, or the like. Further, the resin may contain, for example, an acrylate resin (also referred to as acrylic resin), and may contain, for example, a urethane acrylate resin. Further, the resin may be, for example, a copolymer of a curable urethane acrylate resin and a polyfunctional acrylate.
 前記樹脂材料は、例えば、官能基を有するオリゴマーとモノマーとを含んでいてもよい。例えば、ハードコート層(B)を形成する樹脂が、前記官能基を有するオリゴマーと前記モノマーとの共重合体であってもよい。前記官能基を有するオリゴマーとしては、特に限定されないが、例えば、硬化型ウレタンアクリレート樹脂等が挙げられる。前記硬化型ウレタンアクリレート樹脂としては、例えば、三菱ケミカル株式会社製の商品名「UV-1700TL」、三菱ケミカル株式会社製の商品名「UT-7314」等が挙げられる。前記モノマーとしては、特に限定されないが、例えば、多官能アクリレート等が挙げられる。前記多官能アクリレートとしては、例えば、東亜合成株式会社製の商品名「M-920」等が挙げられる。 The resin material may contain, for example, an oligomer having a functional group and a monomer. For example, the resin forming the hard coat layer (B) may be a copolymer of the oligomer having the functional group and the monomer. Examples of the oligomer having the functional group include, but are not particularly limited to, curable urethane acrylate resins. Examples of the curable urethane acrylate resin include "UV-1700TL" (trade name) manufactured by Mitsubishi Chemical Corporation, "UT-7314" (trade name) manufactured by Mitsubishi Chemical Corporation, and the like. Examples of the monomer include, but are not limited to, polyfunctional acrylates. Examples of the polyfunctional acrylate include trade name "M-920" manufactured by Toagosei Co., Ltd., and the like.
 前記溶媒は、特に制限されず、種々の溶媒を使用可能であり、一種類を単独で使用してもよいし、二種類以上を併用してもよい。例えば、前記樹脂の組成、前記ナノシリカ粒子及び前記チキソトロピー付与剤の種類、含有量等に応じて、最適な溶媒種類や溶媒比率を適宜選択してもよい。前記溶媒としては、特に限定されないが、例えば、メタノール、エタノール、イソプロピルアルコール(IPA)、ブタノール、t-ブチルアルコール(TBA)、2-メトキシエタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;ジイソプロピルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類;エチレングリコール、プロピレングリコール等のグリコール類;エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類等があげられる。また、例えば、前記溶媒が、炭化水素溶媒と、ケトン溶媒とを含んでいてもよい。前記炭化水素溶媒は、例えば、芳香族炭化水素であってもよい。前記芳香族炭化水素は、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、及びベンゼンからなる群から選択される少なくとも一つであってもよい。前記ケトン溶媒は、例えば、シクロペンタノン、及びアセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロヘキサノン、イソホロン、アセトフェノンからなる群から選択される少なくとも一つであってもよい。前記溶媒は、例えば、チキソトロピー付与剤(例えば増粘剤)を溶解させるために、前記炭化水素溶媒(例えばトルエン)を含むことが好ましい。前記溶媒は、例えば、前記炭化水素溶媒と、前記ケトン溶媒とを、90:10~10:90の質量比で混合した溶媒であってもよい。前記炭化水素溶媒と、前記ケトン溶媒との質量比は、例えば、80:20~20:80、70:30~30:70、又は40:60~60:40等であってもよい。この場合において、例えば、前記炭化水素溶媒がトルエンであり、前記ケトン溶媒がメチルエチルケトンであってもよい。また、前記溶媒は、例えば、トルエンを含むとともに、さらに、酢酸エチル、酢酸ブチル、IPA、メチルイソブチルケトン、メチルエチルケトン、メタノール、エタノール、及びTBAからなる群から選択される少なくとも一つを含んでいてもよい。 The solvent is not particularly limited, and various solvents can be used. One type may be used alone, or two or more types may be used in combination. For example, the optimum solvent type and solvent ratio may be appropriately selected according to the composition of the resin, the types and contents of the nanosilica particles and the thixotropy-imparting agent. Examples of the solvent include, but are not limited to, alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, t-butyl alcohol (TBA), 2-methoxyethanol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclo ketones such as pentanone; esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as diisopropyl ether and propylene glycol monomethyl ether; glycols such as ethylene glycol and propylene glycol; cellosolves such as ethyl cellosolve and butyl cellosolve ; aliphatic hydrocarbons such as hexane, heptane and octane; and aromatic hydrocarbons such as benzene, toluene and xylene. Further, for example, the solvent may contain a hydrocarbon solvent and a ketone solvent. Said hydrocarbon solvent may be, for example, an aromatic hydrocarbon. The aromatic hydrocarbon may be, for example, at least one selected from the group consisting of toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene. The ketone solvent may be, for example, cyclopentanone and at least one selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone. The solvent preferably contains the hydrocarbon solvent (eg, toluene), for example, in order to dissolve the thixotropic agent (eg, thickener). The solvent may be, for example, a solvent obtained by mixing the hydrocarbon solvent and the ketone solvent at a mass ratio of 90:10 to 10:90. The mass ratio of the hydrocarbon solvent and the ketone solvent may be, for example, 80:20-20:80, 70:30-30:70, or 40:60-60:40. In this case, for example, the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone. In addition, the solvent may contain, for example, toluene, and may further contain at least one selected from the group consisting of ethyl acetate, butyl acetate, IPA, methyl isobutyl ketone, methyl ethyl ketone, methanol, ethanol, and TBA. good.
 光透過性基材(A)として、例えば、アクリルフィルムを採用して中間層(浸透層)を形成する場合は、アクリルフィルム(アクリル樹脂)に対する良溶媒が好適に使用できる。その溶媒としては、例えば、前述のとおり、炭化水素溶媒と、ケトン溶媒とを含む溶媒でもよい。前記炭化水素溶媒は、例えば、芳香族炭化水素であってもよい。前記芳香族炭化水素は、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、及びベンゼンからなる群から選択される少なくとも一つであってもよい。前記ケトン溶媒は、例えば、シクロペンタノン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロヘキサノン、イソホロン、及びアセトフェノンからなる群から選択される少なくとも一つであってもよい。前記溶媒は、例えば、前記炭化水素溶媒と、前記ケトン溶媒とを、90:10~10:90の質量比で混合した溶媒であってもよい。前記炭化水素溶媒と、前記ケトン溶媒との質量比は、例えば、80:20~20:80、70:30~30:70、又は40:60~60:40等であってもよい。この場合において、例えば、前記炭化水素溶媒がトルエンであり、前記ケトン溶媒がメチルエチルケトンであってもよい。 For example, when an acrylic film is used as the light-transmitting substrate (A) to form the intermediate layer (permeation layer), a good solvent for the acrylic film (acrylic resin) can be suitably used. The solvent may be, for example, a solvent containing a hydrocarbon solvent and a ketone solvent, as described above. Said hydrocarbon solvent may be, for example, an aromatic hydrocarbon. The aromatic hydrocarbon may be, for example, at least one selected from the group consisting of toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene. The ketone solvent may be, for example, at least one selected from the group consisting of cyclopentanone, acetone, methylethylketone, methylisobutylketone, diethylketone, cyclohexanone, isophorone, and acetophenone. The solvent may be, for example, a solvent obtained by mixing the hydrocarbon solvent and the ketone solvent at a mass ratio of 90:10 to 10:90. The mass ratio of the hydrocarbon solvent and the ketone solvent may be, for example, 80:20-20:80, 70:30-30:70, or 40:60-60:40. In this case, for example, the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
 光透過性基材(A)として、例えば、トリアセチルセルロース(TAC)を用いる場合は、前記溶媒としては、特に限定されないが、例えば、酢酸エチル、メチルエチルケトン、MIBK(メチルイソブチルケトン)、シクロペンタノン等が挙げられ、一種類のみ用いても複数種類併用してもよい。この場合、前記溶媒は、例えば、MIBK及びシクロペンタノンの混合溶媒でもよい。MIBK及びシクロペンタノンの混合比は、特に限定されないが、例えば、質量比で、90:10~10:90、80:20~20:80、70:30~30:70であってもよい。 For example, when triacetyl cellulose (TAC) is used as the light-transmitting substrate (A), the solvent is not particularly limited, but examples include ethyl acetate, methyl ethyl ketone, MIBK (methyl isobutyl ketone), and cyclopentanone. etc., and one type may be used alone or a plurality of types may be used in combination. In this case, the solvent may be, for example, a mixed solvent of MIBK and cyclopentanone. The mixing ratio of MIBK and cyclopentanone is not particularly limited, but may be, for example, 90:10 to 10:90, 80:20 to 20:80, 70:30 to 30:70 in mass ratio.
 また、溶媒を適宜選択することによって、チキソトロピー付与剤を含有する場合において防眩性ハードコート層形成材料(塗工液)へのチキソ性を良好に発現させることができる。例えば、有機粘土を用いる場合には、トルエン及びキシレンを好適に、単独使用又は併用することができ、例えば、酸化ポリオレフィンを用いる場合には、メチルエチルケトン、酢酸エチル、プロピレングリコールモノメチルメーテルを好適に、単独使用又は併用することができ、例えば、変性ウレアを用いる場合には、酢酸ブチル及びメチルイソブチルケトンを好適に、単独使用又は併用することができる。 In addition, by appropriately selecting the solvent, it is possible to exhibit good thixotropic properties in the antiglare hard coat layer-forming material (coating liquid) when the thixotropy-imparting agent is contained. For example, when using organoclays, toluene and xylene can be suitably used alone or in combination. They can be used or used in combination. For example, when modified urea is used, butyl acetate and methyl isobutyl ketone can be preferably used alone or in combination.
 前記ハードコート層形成材料には、各種レベリング剤を添加することができる。前記レベリング剤としては、塗工ムラ防止(塗工面の均一化)を目的に、例えば、フッ素系又はシリコーン系のレベリング剤を用いることができる。本発明では、ハードコート層表面に防汚性が求められる場合、又は、前記他の層反射防止層(低屈折率層)や層間充填剤を含む層がハードコート層上に形成される場合などに応じて、適宜レベリング剤を選定することができる。 Various leveling agents can be added to the hard coat layer forming material. As the leveling agent, for example, a fluorine-based or silicone-based leveling agent can be used for the purpose of preventing coating unevenness (uniformizing the coated surface). In the present invention, when antifouling property is required on the surface of the hard coat layer, or when the other layer antireflection layer (low refractive index layer) or layer containing an interlayer filler is formed on the hard coat layer. A suitable leveling agent can be selected according to the requirements.
 前記レベリング剤の配合量は、前記樹脂100重量部に対して、例えば、5重量部以下、好ましくは0.01~5重量部の範囲である。 The amount of the leveling agent compounded is, for example, 5 parts by weight or less, preferably in the range of 0.01 to 5 parts by weight, per 100 parts by weight of the resin.
 前記ハードコート層形成材料には、必要に応じて、性能を損なわない範囲で、顔料、充填剤、分散剤、可塑剤、紫外線吸収剤、界面活性剤、防汚剤、酸化防止剤等が添加されてもよい。これらの添加剤は一種類を単独で使用してもよく、また二種類以上併用してもよい。 Pigments, fillers, dispersants, plasticizers, UV absorbers, surfactants, antifouling agents, antioxidants, and the like are added to the hard coat layer-forming material as necessary within a range that does not impair the performance. may be These additives may be used singly or in combination of two or more.
 前記ハードコート層形成材料には、例えば、特開2008-88309号公報に記載されるような、従来公知の光重合開始剤を用いることができる。 Conventionally known photopolymerization initiators, such as those described in JP-A-2008-88309, can be used for the hard coat layer-forming material.
 前記ハードコート層形成材料(塗工液)を光透過性基材(A)上に塗工して塗膜を形成する方法としては、例えば、ファンテンコート法、ダイコート法、スプレーコート法、グラビアコート法、ロールコート法、バーコート法等の塗工法を用いることができる。 Examples of the method for forming a coating film by coating the hard coat layer-forming material (coating solution) on the light-transmitting substrate (A) include a fountain coating method, a die coating method, a spray coating method, and a gravure coating method. A coating method such as a coating method, a roll coating method, or a bar coating method can be used.
 つぎに、前述のとおり、前記塗膜を乾燥及び硬化させ、ハードコート層(B)を形成する。前記乾燥は、例えば、自然乾燥でもよいし、風を吹きつけての風乾であってもよいし、加熱乾燥であってもよいし、これらを組み合わせた方法であってもよい。 Next, as described above, the coating film is dried and cured to form a hard coat layer (B). The drying may be, for example, natural drying, air drying by blowing air, heat drying, or a combination thereof.
 前記ハードコート層形成材料(塗工液)の乾燥温度は、例えば、30~200℃の範囲であってもよい。前記乾燥温度は、例えば、40℃以上、50℃以上、60℃以上、70℃以上、80℃以上、90℃以上、又は100℃以上であってもよく、190℃以下、180℃以下、170℃以下、160℃以下、150℃以下、140℃以下、135℃以下、130℃以下、120℃以下、又は110℃以下であってもよい。乾燥時間は特に限定されないが、例えば、30秒以上、40秒以上、50秒以上、又は60秒以上であってもよく、150秒以下、130秒以下、110秒以下、又は90秒以下であってもよい。 The drying temperature of the hard coat layer forming material (coating liquid) may be, for example, in the range of 30 to 200°C. The drying temperature may be, for example, 40° C. or higher, 50° C. or higher, 60° C. or higher, 70° C. or higher, 80° C. or higher, 90° C. or higher, or 100° C. or higher, 190° C. or lower, 180° C. or lower, 170° C. °C or lower, 160 °C or lower, 150 °C or lower, 140 °C or lower, 135 °C or lower, 130 °C or lower, 120 °C or lower, or 110 °C or lower. The drying time is not particularly limited. may
 前記塗膜の硬化手段は、特に制限されないが、紫外線硬化が好ましい。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~500mJ/cmが好ましい。照射量が、50mJ/cm以上であれば、硬化が十分に進行しやすく、形成されるハードコート層の硬度が高くなりやすい。また、500mJ/cm以下であれば、形成されるハードコート層の着色を防止することができる。 The means for curing the coating film is not particularly limited, but ultraviolet curing is preferable. The irradiation amount of the energy beam source is preferably 50 to 500 mJ/cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm. When the irradiation dose is 50 mJ/cm 2 or more, curing proceeds sufficiently and the hardness of the formed hard coat layer tends to increase. Moreover, if it is 500 mJ/cm 2 or less, coloring of the formed hard coat layer can be prevented.
 以上のようにして、光透過性基材(A)上にハードコート層(B)が積層された積層体を製造できる。 As described above, a laminate in which the hard coat layer (B) is laminated on the light-transmitting substrate (A) can be produced.
 つぎに、ハードコート層(B)における、光透過性基材(A)と反対側の面上に光学機能層(C)を形成する(光学機能層形成工程)。この光学機能層形成工程において光学機能層(C)を形成する方法は、特に限定されないが、前述のとおりドライプロセスが好ましく、例えば、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)からなる群から選択される少なくとも一つの方法により形成してもよい。真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)を行う具体的な方法も特に限定されず、例えば、一般的な方法と同様又はそれに準じてもよい。光学機能層(C)の材質、厚み等については、例えば前述のとおりである。また、例えば、光学機能層(C)を形成する光学機能層形成工程に先立ち、ハードコート層(B)と光学機能層(C)との密着性を高めるために、ハードコート層(B)の表面を、プラズマ処理、コロナ処理、水洗処理、溶剤塗布等の方法で表面処理してもよい。この表面処理の条件も特に限定されず、例えば、一般的な正面処理と同様又はそれに準じてもよい。 Next, an optical functional layer (C) is formed on the surface of the hard coat layer (B) opposite to the light transmissive substrate (A) (optical functional layer forming step). The method for forming the optical function layer (C) in this optical function layer forming step is not particularly limited, but dry processes are preferred as described above, and examples include vacuum deposition, sputtering, and chemical vapor deposition (CVD). may be formed by at least one method selected from the group consisting of Specific methods for vacuum deposition, sputtering, and chemical vapor deposition (CVD) are also not particularly limited, and may be, for example, the same or similar to general methods. The material, thickness, etc. of the optical function layer (C) are, for example, as described above. Further, for example, prior to the optical functional layer forming step of forming the optical functional layer (C), the hard coating layer (B) may be formed in order to increase the adhesion between the hard coating layer (B) and the optical functional layer (C). The surface may be surface-treated by methods such as plasma treatment, corona treatment, water washing treatment, and solvent coating. Conditions for this surface treatment are also not particularly limited, and may be, for example, similar to or in conformity with general front surface treatment.
 なお、前記「ハードコート層形成工程」及び前記「光学機能層形成工程」において、光透過性基材(A)、ハードコート層(B)及び光学機能層(C)の平均厚みが、前記数式(1)及び(2)の関係を満たすように、ハードコート層(B)及び光学機能層(C)を形成する。 In the "hard coat layer forming step" and the "optical functional layer forming step", the average thickness of the light transmissive substrate (A), the hard coat layer (B) and the optical functional layer (C) is A hard coat layer (B) and an optical function layer (C) are formed so as to satisfy the relationships (1) and (2).
 さらに、光学機能層(C)における光透過性基材(A)とは反対側の面上に、さらに防汚層(D)を形成し(防汚層形成工程)、本発明のハードコートフィルムを製造することができる。この防汚層形成工程における防汚層(D)の形成方法(製造方法)は、特に限定されないが、例えば、一般的な防汚層の形成方法と同様又はそれに準じてもよい。具体的には、例えば、前述のとおり、ドライプロセスで形成することができ、例えば、真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)等で形成することができる。この方法は、特に限定されず、例えば、前述のとおり、一般的な真空蒸着法、スパッタリング法、及び化学気相成長法(CVD)と同様又はそれらに準じてもよい。防汚層(D)の材質、厚み等については、例えば前述のとおりである。 Furthermore, an antifouling layer (D) is further formed on the surface of the optical functional layer (C) opposite to the light-transmissive substrate (A) (antifouling layer forming step) to obtain the hard coat film of the present invention. can be manufactured. The method (manufacturing method) for forming the antifouling layer (D) in this antifouling layer forming step is not particularly limited, but may be, for example, similar to or conforming to a general antifouling layer forming method. Specifically, for example, as described above, it can be formed by a dry process, such as a vacuum deposition method, a sputtering method, a chemical vapor deposition method (CVD), or the like. This method is not particularly limited, and for example, as described above, it may be similar to or based on general vacuum deposition methods, sputtering methods, and chemical vapor deposition methods (CVD). The material, thickness, etc. of the antifouling layer (D) are, for example, as described above.
 以上のようにして、光透過性基材(A)の少なくとも一方の面上に、ハードコート層(B)、光学機能層(C)及び防汚層(D)が前記順序で積層された本発明のハードコートフィルムを製造することができる。ただし、前述のとおり、この製造方法は例示であって、本発明のハードコートフィルムの製造方法は、これに限定されない。 As described above, the hard coat layer (B), the optical functional layer (C) and the antifouling layer (D) are laminated in the order described above on at least one surface of the light transmissive substrate (A). Inventive hardcoat films can be produced. However, as described above, this production method is an example, and the production method of the hard coat film of the present invention is not limited to this.
 また、本発明のハードコートフィルムの製造方法は、例えば、連続製法とすることが可能である。具体的には、例えば、本発明のハードコートフィルムの製造方法は、前記光透過性基材(A)が長尺状であり、前記光透過性基材(A)を搬送しながら、前記ハードコート層形成工程、前記光学機能層形成工程、前記防汚層形成工程、及び必要に応じて他の工程を連続的に行う製造方法であってもよい。より具体的には、例えば、前記長尺状の光透過性基材(A)がロール状であり、ロールから前記光透過性基材(A)を繰り出しながら本発明のハードコートフィルムの製造方法を実施してもよい。 Also, the method for producing the hard coat film of the present invention can be, for example, a continuous production method. Specifically, for example, in the method for producing a hard coat film of the present invention, the light-transmissive substrate (A) is elongated, and the hard coat film is conveyed while the light-transmissive substrate (A) is conveyed. The manufacturing method may be such that the coating layer forming step, the optical function layer forming step, the antifouling layer forming step, and, if necessary, other steps are performed continuously. More specifically, for example, the long light-transmitting substrate (A) is in the form of a roll, and the method for producing the hard coat film of the present invention while unwinding the light-transmitting substrate (A) from the roll. may be implemented.
[3.ハードコートフィルム、光学部材および画像表示装置]
 本発明のハードコートフィルムは、特に限定されず、例えば、前述のとおり、クリアフィルムであってもよいし、防眩性フィルム(防眩性ハードコートフィルム)であってもよい。
[3. Hard coat film, optical member, and image display device]
The hard coat film of the present invention is not particularly limited. For example, as described above, it may be a clear film or an antiglare film (antiglare hard coat film).
 本発明の光学部材は、特に限定されないが、例えば、偏光板であってもよい。前記偏光板も、特に限定されないが、例えば、本発明のハードコートフィルムおよび偏光子を含んでいてもよいし、さらに、他の構成要素を含んでいてもよい。前記偏光板の各構成要素は、例えば、接着剤または粘着剤等により貼り合わせられていてもよい。 Although the optical member of the present invention is not particularly limited, it may be, for example, a polarizing plate. The polarizing plate is also not particularly limited, but may contain, for example, the hard coat film and polarizer of the present invention, and may further contain other constituent elements. Each constituent element of the polarizing plate may be bonded together by, for example, an adhesive or a pressure-sensitive adhesive.
 本発明の画像表示装置も特に限定されず、どのような画像表示装置でもよいが、例えば、液晶表示装置、有機EL表示装置、無機EL表示装置、プラズマ表示装置等が挙げられる。 The image display device of the present invention is also not particularly limited, and may be any image display device, such as a liquid crystal display device, an organic EL display device, an inorganic EL display device, a plasma display device, and the like.
 本発明の画像表示装置の構成は、特に限定されず、例えば、一般的な画像表示装置と同様の構成であってもよい。例えば、LCDの場合、液晶セル、偏光板等の光学部材、および必要に応じ照明システム(バックライト等)等の各構成部品を適宜に組み立てて駆動回路を組み込むこと等により製造できる。 The configuration of the image display device of the present invention is not particularly limited, and may have, for example, the same configuration as a general image display device. For example, an LCD can be manufactured by appropriately assembling components such as a liquid crystal cell, optical members such as a polarizing plate, and, if necessary, an illumination system (backlight, etc.) and incorporating a drive circuit.
 本発明の画像表示装置の用途は、特に限定されず、任意の用途に使用可能である。その用途としては、例えば、パソコンモニター、ノートパソコン、タブレット、スマートフォン、コピー機等のOA機器、携帯電話、時計、デジタルカメラ、携帯情報端末(PDA)、携帯ゲーム機等の携帯機器、ビデオカメラ、テレビ、電子レンジ等の家庭用電気機器、バックモニター、カーナビゲーションシステム用モニター、カーオーディオ等の車載用機器、商業店舗用インフォメーション用モニター等の展示機器、監視用モニター等の警備機器、介護用モニター、医療用モニター等の介護・医療機器、スマートグラス、VR機器等が挙げられる。本発明の画像表示装置は、例えば、カメラ機能を有する画像表示装置であってもよい。その場合、例えば、前述のとおり、本発明のハードコートフィルムにおける前記透明層が、画像表示装置のカメラホール用の透明層であってもよい。本発明によれば、前述のとおり、透明層の透明性を損なわずにハードコートフィルムを提供することができるので、例えば、カメラ画像の画質を損なわずに画像表示装置を提供することが可能である。 The application of the image display device of the present invention is not particularly limited, and can be used for any application. Applications include, for example, personal computer monitors, laptop computers, tablets, smartphones, OA equipment such as copiers, mobile phones, clocks, digital cameras, personal digital assistants (PDAs), portable equipment such as portable game machines, video cameras, Household electrical equipment such as televisions and microwave ovens, back monitors, car navigation system monitors, car audio equipment, display equipment such as information monitors for commercial stores, security equipment such as surveillance monitors, nursing care monitors , nursing and medical equipment such as medical monitors, smart glasses, and VR equipment. The image display device of the present invention may be, for example, an image display device having a camera function. In that case, for example, as described above, the transparent layer in the hard coat film of the present invention may be a transparent layer for a camera hole of an image display device. According to the present invention, as described above, it is possible to provide a hard coat film without impairing the transparency of the transparent layer. Therefore, for example, it is possible to provide an image display device without impairing the image quality of camera images. be.
 つぎに、本発明の実施例について、比較例と併せて説明する。ただし、本発明は、以下の実施例および比較例により制限されない。 Next, examples of the present invention will be described together with comparative examples. However, the present invention is not limited by the following examples and comparative examples.
 なお、以下の実施例及び比較例において、物質の部数は、特に断らない限り、質量部(重量部)である。 In addition, in the following examples and comparative examples, the number of parts of substances is parts by mass (parts by weight) unless otherwise specified.
〔実施例1〕
 以下のようにして、光透過性基材(A)の一方の面上に、ハードコート層(B)、光学機能層(C)及び防汚層(D)が前記順序で積層された本発明のハードコートフィルムを製造した。
[Example 1]
According to the present invention, a hard coat layer (B), an optical functional layer (C) and an antifouling layer (D) are laminated in the order described above on one surface of a light transmissive substrate (A) in the following manner. of the hard coat film was produced.
 まず、光透過性基材(A)として、ポリエチレンテレフタレート(PET)フィルム(厚み65μm)を準備した。つぎに、その光透過性基材(A)の一方の面に、ハードコート層(B)を形成した(ハードコート層形成工程)。具体的には、まず、紫外線硬化型のモノマー及びSiOフィラーの混合物(商品名「オプスターZ7540」、固形分濃度56質量%、荒川化学工業社製)100質量部(固形分換算)と、光重合開始剤(商品名「IRGACURE906」、BASF社製)5質量部と、レベリング剤(商品名「LE-303」、共栄社化学社製)0.1質量部とを混合して、混合液を得た。その混合液に酢酸ブチルとMIBKとの混合溶媒(質量比は50:50)を添加して固形分濃度を40%に調整した。これにより、紫外線硬化性の樹脂組成物(ワニス)を調製した。その樹脂組成物を、前記PETフィルム(光透過性基材(A))の片面に塗布して塗膜を形成した。この塗膜を、加熱により乾燥させた後、紫外線照射により硬化させた。前記塗膜の加熱の温度は70℃とし、加熱の時間は60秒間とした。前記紫外線照射では、光源として高圧水銀ランプを使用し、波長365nmの紫外線を用い、積算照射光量を300mJ/cmとした。以上のようにして、前記PETフィルム(光透過性基材(A))上に厚み5μmのハードコート層(B)を形成し、光透過性基材(A)とハードコート層(B)との積層体を製造した。なお、以下において、本実施例で形成した前記ハードコート層(B)を、単に「HC層」という場合がある。また、以下において、本実施例で製造した前記光透過性基材(A)とハードコート層(B)との積層体を「HC層付きPETフィルム」という場合がある。 First, a polyethylene terephthalate (PET) film (thickness: 65 μm) was prepared as the light-transmitting substrate (A). Next, a hard coat layer (B) was formed on one surface of the light transmissive substrate (A) (hard coat layer forming step). Specifically, first, a mixture of UV-curable monomer and SiO 2 filler (trade name “OPSTAR Z7540”, solid content concentration 56% by mass, manufactured by Arakawa Chemical Industries, Ltd.) 100 parts by mass (solid content conversion), light A polymerization initiator (trade name “IRGACURE906”, manufactured by BASF) 5 parts by mass and a leveling agent (trade name “LE-303”, manufactured by Kyoeisha Chemical Co., Ltd.) 0.1 part by mass are mixed to obtain a mixed solution. rice field. A mixed solvent of butyl acetate and MIBK (mass ratio: 50:50) was added to the mixture to adjust the solid content concentration to 40%. Thus, an ultraviolet curable resin composition (varnish) was prepared. The resin composition was applied to one side of the PET film (light-transmitting substrate (A)) to form a coating film. This coating film was dried by heating and then cured by UV irradiation. The temperature for heating the coating film was 70° C., and the heating time was 60 seconds. In the ultraviolet irradiation, a high-pressure mercury lamp was used as a light source, ultraviolet rays with a wavelength of 365 nm were used, and the cumulative irradiation light amount was set at 300 mJ/cm 2 . As described above, a hard coat layer (B) having a thickness of 5 μm is formed on the PET film (light-transmitting substrate (A)), and the light-transmitting substrate (A) and the hard coat layer (B) are formed. was manufactured. In the following description, the hard coat layer (B) formed in this example may be simply referred to as "HC layer". Further, hereinafter, the laminate of the light-transmitting substrate (A) and the hard coat layer (B) produced in this example may be referred to as "HC layer-attached PET film".
 なお、本実施例において、光透過性基材(A)の平均厚みdSは、リニアゲージで測定した。本実施例の光透過性基材(A)は、厚みが均一であるため、任意の地点の厚みを平均厚みdSに等しいと推定することができる。また、ハードコート層(B)の平均厚みdHは、前記光透過性基材(A)とハードコート層(B)との積層体(HC層付きPETフィルム)の平均厚みをリニアゲージで測定し、その数値からdSを減算して得られた数値をdHとした。前記光透過性基材(A)とハードコート層(B)との積層体の平均厚みdS+dHについては、1μm平方の視野での撮像で前記積層体の任意の3点の厚みを測定し、さらに、同様にして1μm平方の視野で5か所測定し、合計15点の厚みの測定結果を平均した数値を前記平均厚みdS+dHとした。後述する各実施例及び比較例においても同様である。 In addition, in this example, the average thickness dS of the light transmissive substrate (A) was measured with a linear gauge. Since the light-transmissive substrate (A) of this example has a uniform thickness, it can be estimated that the thickness at any point is equal to the average thickness dS. The average thickness dH of the hard coat layer (B) is obtained by measuring the average thickness of the laminate (HC layer-attached PET film) of the light-transmitting substrate (A) and the hard coat layer (B) with a linear gauge. , and the value obtained by subtracting dS from the value was defined as dH. For the average thickness dS+dH of the laminate of the light-transmitting substrate (A) and the hard coat layer (B), the thickness of any three points of the laminate was measured by imaging in a field of view of 1 μm square, and In the same manner, measurements were taken at 5 points in a 1 μm square field of view, and the average value of the thickness measurement results at a total of 15 points was taken as the average thickness dS+dH. The same applies to each example and comparative example described later.
 つぎに、ロールトゥロール方式のプラズマ処理装置により、前記HC層付きPETフィルムのHC層表面を、1.0Paの真空雰囲気下でプラズマ処理した。このプラズマ処理では、不活性ガスとしてアルゴンガスを用い、放電電力を780Wとした。 Next, the HC layer surface of the HC layer-attached PET film was plasma-treated under a vacuum atmosphere of 1.0 Pa using a roll-to-roll type plasma treatment apparatus. In this plasma treatment, argon gas was used as an inert gas, and the discharge power was 780W.
 つぎに、プラズマ処理後の前記HC層付きPETフィルムのHC層上に、密着層と無機酸化物下地層とをスパッタ成膜法により前記順序で形成することにより(スパッタ成膜工程)、前記密着層及び前記無機酸化物下地層からなる光学機能層(C)を形成した(光学機能層形成工程)。具体的には、まず、ロールトゥロール方式のスパッタ成膜装置により、前記HC層付きPETフィルムのHC層上に、まず、密着層としての厚み2.0nmのインジウムスズ酸化物(ITO)層を形成した。つぎに、同じスパッタ成膜装置により、前記ITO層上に、無機酸化物下地層として、SiO層とNb層とを、前記順序で、厚みの合計が0.23μmとなるように形成した。前記SiO層の厚みは0.11μmとなるように形成し、前記Nb層の厚みは0.12μmとなるように形成した。以上のようにして、前記密着層(ITO層)及び前記無機酸化物下地層(前記SiO層と前記Nb層との積層体)からなる光学機能層(C)を形成した。なお、前記密着層の形成では、ITOターゲットを用い、不活性ガスとしてのアルゴンガスと、前記アルゴンガス100体積部に対して10体積部の反応性ガスとしての酸素ガスとを用い、放電電圧を350Vとし、成膜室内の気圧(成膜気圧)を0.4Paとし、MFACスパッタリングによってITO層を成膜した。前記無機酸化物下地層の形成では、Siターゲット及びNbターゲットを用い、100体積部のアルゴンガス及び30体積部の酸素ガスを用い、放電電圧を350Vとし、成膜気圧を0.3Paとし、MFACスパッタリングによって前記SiO層及び前記Nb層を形成した。 Next, on the HC layer of the HC layer-attached PET film after the plasma treatment, an adhesion layer and an inorganic oxide base layer are formed in the order described above by a sputtering film formation method (sputter film formation step), thereby achieving the adhesion. An optical functional layer (C) composed of the layer and the inorganic oxide underlayer was formed (optical functional layer forming step). Specifically, first, an indium tin oxide (ITO) layer having a thickness of 2.0 nm as an adhesion layer is first formed on the HC layer of the HC layer-attached PET film by a roll-to-roll type sputtering deposition apparatus. formed. Next, using the same sputtering film forming apparatus, a SiO 2 layer and a Nb 2 O 5 layer were formed on the ITO layer as inorganic oxide underlayers in the above order so that the total thickness was 0.23 μm. formed. The SiO 2 layer was formed to have a thickness of 0.11 μm, and the Nb 2 O 5 layer was formed to have a thickness of 0.12 μm. As described above, an optical function layer (C) composed of the adhesion layer (ITO layer) and the inorganic oxide base layer (laminated body of the SiO 2 layer and the Nb 2 O 5 layer) was formed. In forming the adhesion layer, an ITO target is used, argon gas is used as an inert gas, and 10 parts by volume of oxygen gas is used as a reactive gas with respect to 100 parts by volume of the argon gas. The ITO layer was formed by MFAC sputtering at 350 V and the pressure in the film formation chamber (film formation pressure) of 0.4 Pa. In the formation of the inorganic oxide underlayer, a Si target and an Nb target were used, 100 parts by volume of argon gas and 30 parts by volume of oxygen gas were used, the discharge voltage was 350 V, the film formation pressure was 0.3 Pa, and the MFAC The SiO2 layer and the Nb2O5 layer were formed by sputtering .
 なお、本実施例において、光学機能層(C)の平均厚みdIは、断面のTEM(透過電子顕微鏡)観察により測定した。具体的には、まず、前記光透過性基材(A)とハードコート層(B)と光学機能層(C)との積層体における光学機能層(C)表面をFIB樹脂で保護し、その後深さ方向に向かって切断した。切断して得られた断面をTEM(透過電子顕微鏡)で観察し、その断面画像で、ハードコート層(B)と光学機能層(C)との界面から光学機能層(C)とFIB樹脂保護膜との界面までの距離を光学機能層(C)の平均厚みdIとした。なお、本実施例における光学機能層(C)は、厚みがほぼ均一であるため、任意の地点の厚みを平均厚みdIに等しいと推定することができる。ただし、本実施例では、前記光透過性基材(A)とハードコート層(B)との積層体の平均厚みdS+dHの測定点と同じ15点で光学機能層(C)の厚みを測定し、その15点の測定結果を平均した数値を光学機能層(C)の平均厚みdIとした。後述する各実施例及び比較例においても同様の方法で光学機能層(C)の平均厚みdIを測定した。また、完成品の(防汚層(D)を形成した)ハードコートフィルムに対しても、同様の方法で光学機能層(C)の平均厚みdIを測定することができる。 In this example, the average thickness dI of the optical function layer (C) was measured by TEM (transmission electron microscope) observation of the cross section. Specifically, first, the surface of the optical functional layer (C) in the laminate of the light transmissive substrate (A), the hard coat layer (B) and the optical functional layer (C) is protected with an FIB resin, and then Cut in the depth direction. The cross section obtained by cutting is observed with a TEM (transmission electron microscope), and in the cross-sectional image, the optical functional layer (C) and the FIB resin protection from the interface between the hard coat layer (B) and the optical functional layer (C). The distance to the interface with the film was defined as the average thickness dI of the optical function layer (C). Since the optical function layer (C) in this example has a substantially uniform thickness, it can be estimated that the thickness at any point is equal to the average thickness dI. However, in this example, the thickness of the optical function layer (C) was measured at the same 15 points as the measurement points of the average thickness dS+dH of the laminate of the light-transmitting substrate (A) and the hard coat layer (B). , and the numerical value obtained by averaging the measurement results of the 15 points was defined as the average thickness dI of the optical function layer (C). The average thickness dI of the optical function layer (C) was measured in the same manner in each example and comparative example described later. The average thickness dI of the optical functional layer (C) can also be measured in the same manner for the hard coat film (on which the antifouling layer (D) is formed) as a finished product.
 さらに、前記光学機能層(C)上に防汚層(D)を形成した(防汚層形成工程)。具体的には、パーフルオロポリエーテル基含有のアルコキシシラン化合物を蒸着源として用いた真空蒸着法により、厚み10nmの防汚層(D)を、前記無機酸化物下地層上に形成した。なお、前記蒸着源は、信越化学工業社製の「KY1903-1」(パーフルオロポリエーテル基含有アルコキシシラン化合物、固形分濃度20質量%)を乾燥して得た固形分である。また、前記真空蒸着法における前記蒸着源の加熱温度は260℃とした。 Further, an antifouling layer (D) was formed on the optical function layer (C) (antifouling layer forming step). Specifically, an antifouling layer (D) having a thickness of 10 nm was formed on the inorganic oxide underlayer by a vacuum deposition method using an alkoxysilane compound containing a perfluoropolyether group as a deposition source. The vapor deposition source is a solid content obtained by drying "KY1903-1" (perfluoropolyether group-containing alkoxysilane compound, solid content concentration: 20% by mass) manufactured by Shin-Etsu Chemical Co., Ltd. The heating temperature of the vapor deposition source in the vacuum vapor deposition method was set to 260.degree.
 なお、本実施例において、防汚層(D)の平均厚みdFは、蛍光X線分析機器(株式会社リガク製、商品名ZXS PrimusII)の定量モードで測定した。また、本実施例では、前記光透過性基材(A)とハードコート層(B)との積層体の平均厚みdS+dHの測定点と同じ15点で防汚層(D)の厚みを測定し、その15点の測定結果を平均した数値を防汚層(D)の平均厚みdFとした。後述する各実施例及び比較例においても同様である。 In this example, the average thickness dF of the antifouling layer (D) was measured in the quantitative mode of a fluorescent X-ray spectrometer (manufactured by Rigaku Corporation, trade name ZXS Primus II). In this example, the thickness of the antifouling layer (D) was measured at the same 15 points as the measurement points of the average thickness dS+dH of the laminate of the light-transmitting substrate (A) and the hard coat layer (B). , and the average value of the 15 measurement results was taken as the average thickness dF of the antifouling layer (D). The same applies to each example and comparative example described later.
 以上のようにして、光透過性基材(A)の一方の面上に、ハードコート層(B)、光学機能層(C)及び防汚層(D)が前記順序で積層された本実施例(実施例1)のハードコートフィルムを製造した。 As described above, the hard coat layer (B), the optical function layer (C) and the antifouling layer (D) are laminated in the order described above on one surface of the light-transmitting substrate (A). A hard coat film of Example (Example 1) was produced.
〔実施例2~5及び比較例1~4〕
 光透過性基材(A)の一方の面上に、ハードコート層(B)、光学機能層(C)及び防汚層(D)の平均厚みを、それぞれ下記表1に記載したとおりに変更したこと以外は、実施例1と同様にして、実施例2~5及び比較例1~4のハードコートフィルムを製造した。なお、実施例2~5及び比較例1~4において、光透過性基材(A)としては、全てPETフィルムを用いた。比較例1の光学機能層(C)において、SiO層の厚みは0.15μmとなるように形成し、Nb層の厚みは0.15μmとなるように形成した。比較例2及び3の光学機能層(C)において、SiO層の厚みは0.20μmとなるように形成し、Nb層の厚みは0.20μmとなるように形成した。比較例4の光学機能層(C)において、SiO層の厚みは0.05μmとなるように形成し、Nb層の厚みは0.05μmとなるように形成した。
[Examples 2 to 5 and Comparative Examples 1 to 4]
Change the average thickness of the hard coat layer (B), the optical function layer (C), and the antifouling layer (D) on one side of the light-transmitting substrate (A) as shown in Table 1 below. Hard coat films of Examples 2 to 5 and Comparative Examples 1 to 4 were produced in the same manner as in Example 1 except for the above. In Examples 2 to 5 and Comparative Examples 1 to 4, a PET film was used as the light transmissive substrate (A). In the optical function layer (C) of Comparative Example 1, the SiO 2 layer was formed to have a thickness of 0.15 μm, and the Nb 2 O 5 layer was formed to have a thickness of 0.15 μm. In the optical function layer (C) of Comparative Examples 2 and 3, the SiO 2 layer was formed to have a thickness of 0.20 μm, and the Nb 2 O 5 layer was formed to have a thickness of 0.20 μm. In the optical function layer (C) of Comparative Example 4, the SiO 2 layer was formed to have a thickness of 0.05 μm, and the Nb 2 O 5 layer was formed to have a thickness of 0.05 μm.
 以上のようにして製造した前記各実施例及び比較例のハードコートフィルムについて、下記の測定方法により、耐摩耗性試験及び折り曲げ耐性試験を行った。 Abrasion resistance tests and bending resistance tests were performed on the hard coat films of the examples and comparative examples produced as described above by the following measurement methods.
[耐摩耗性試験]
 実施例および比較例の各ハードコートフィルムについて、防汚層(D)表面を消しゴムで擦った前後における前記防汚層(D)表面の防汚性低下の程度を測定し、これを耐摩耗性試験とした。具体的には、以下のとおりである。まず、ハードコートフィルムの防汚層(D)表面に消しゴムを接触させて往復動させることにより擦った。この往復動では、Minoan社製の消しゴム(Φ6mm)を用い、防汚層(D)表面に対する消しゴムの荷重を1kgw/6mmΦとし、防汚層(D)表面上の消しゴムの移動距離(往復動における片道距離)を20mmとし、消しゴムの移動速度を40rpmとし、防汚層(D)表面に対して消しゴムを往復動させる回数は6000往復とした。一方、防汚層(D)表面において、消しゴムで擦った箇所の、擦る前の水接触角θ0と、擦った後の水接触角θ1とを、それぞれ下記の方法で測定した。
[Abrasion resistance test]
For each hard coat film of Examples and Comparative Examples, the degree of deterioration of the antifouling property of the surface of the antifouling layer (D) before and after rubbing the surface of the antifouling layer (D) with an eraser was measured. It was a test. Specifically, it is as follows. First, the surface of the antifouling layer (D) of the hard coat film was rubbed by bringing an eraser into contact with the eraser and reciprocating it. In this reciprocating motion, an eraser (Φ6 mm) manufactured by Minoan was used, the load of the eraser on the surface of the antifouling layer (D) was 1 kgw/6 mmΦ, and the moving distance of the eraser on the surface of the antifouling layer (D) (in the reciprocating motion The one-way distance) was set to 20 mm, the moving speed of the eraser was set to 40 rpm, and the number of reciprocating motions of the eraser to the antifouling layer (D) surface was set to 6000 times. On the other hand, on the surface of the antifouling layer (D), the water contact angle θ0 before rubbing and the water contact angle θ1 after rubbing of the portion rubbed with an eraser were measured by the following methods.
〈水接触角の測定方法〉
 各実施例及び比較例のハードコートフィルムについて、防汚層(C)における光透過性基材(A)とは反対側の表面の水接触角を測定した。まず、防汚層表面に約1μLの純水の滴下によって水滴を形成した。次に防汚層(D)表面上の水滴と防汚層(D)表面とのなす角度を測定した。測定には接触角計(商品名「DMo-501」、協和界面化学社製)を使用した。
<Method for measuring water contact angle>
The water contact angle of the surface of the antifouling layer (C) opposite to the light-transmitting substrate (A) was measured for each of the hard coat films of Examples and Comparative Examples. First, about 1 μL of pure water was dropped on the surface of the antifouling layer to form water droplets. Next, the angle formed by water droplets on the surface of the antifouling layer (D) and the surface of the antifouling layer (D) was measured. A contact angle meter (trade name “DMo-501”, manufactured by Kyowa Interface Science Co., Ltd.) was used for the measurement.
〈耐摩耗性の評価〉
 防汚層(D)表面において、消しゴムで擦った箇所の、擦る前の水接触角θ0と、擦った後の水接触角θ1との差の絶対値|θ0-θ1|を計算した。|θ0-θ1|の値が小さいほど、擦った前後で表面状態の変化が小さく耐摩耗性に優れていると評価した。下記のとおり、耐摩耗性を○△×の三段階で評価した。
 
  ○ : |θ0-θ1|≦20°
  △ : 20°≦|θ0-θ1|≦30°
  × : 30°≦|θ0-θ1|
<Evaluation of wear resistance>
The absolute value |θ0−θ1| of the difference between the water contact angle θ0 before rubbing and the water contact angle θ1 after rubbing was calculated on the surface of the antifouling layer (D). The smaller the value of |θ0−θ1|, the smaller the change in the surface condition before and after rubbing, and the better the abrasion resistance. As shown below, the abrasion resistance was evaluated in three grades of ◯Δ×.

○: |θ0-θ1|≦20°
△: 20°≦|θ0−θ1|≦30°
×: 30°≦|θ0−θ1|
[粘着剤組成物Aの調製]
 後述する折り曲げ耐性試験に用いる粘着剤組成物Aを、以下の方法により調製した。
[Preparation of adhesive composition A]
A pressure-sensitive adhesive composition A used in a bending resistance test described below was prepared by the following method.
(アクリルオリゴマーの調製)
 モノマー成分としてメタクリル酸ジシクロペンタニル(DCPMA)60重量部およびメタクリル酸メチル(MMA)40重量部、連鎖移動剤としてα-チオグリセロール3.5重量部、および重合溶媒としてトルエン100重量部を混合し、窒素雰囲気下にて70℃で1時間撹拌した。次に、熱重合開始剤として2,2’-アゾビスイソブチロニトリル(AIBN)0.2重量部を投入し、70℃で2時間反応させた後、80℃に昇温して2時間反応させた。その後、反応液を130℃に加熱して、トルエン、連鎖移動剤および未反応モノマーを乾燥除去して、固形状のアクリルオリゴマーを得た。アクリルオリゴマーの重量平均分子量は5100、ガラス転移温度(Tg)は130℃であった。
(Preparation of acrylic oligomer)
60 parts by weight of dicyclopentanyl methacrylate (DCPMA) and 40 parts by weight of methyl methacrylate (MMA) as monomer components, 3.5 parts by weight of α-thioglycerol as a chain transfer agent, and 100 parts by weight of toluene as a polymerization solvent are mixed. and stirred at 70° C. for 1 hour under a nitrogen atmosphere. Next, 0.2 parts by weight of 2,2′-azobisisobutyronitrile (AIBN) was added as a thermal polymerization initiator, reacted at 70° C. for 2 hours, and then heated to 80° C. for 2 hours. reacted. After that, the reaction solution was heated to 130° C., and the toluene, chain transfer agent and unreacted monomer were removed by drying to obtain a solid acrylic oligomer. The acrylic oligomer had a weight average molecular weight of 5100 and a glass transition temperature (Tg) of 130°C.
(プレポリマーの重合)
 プレポリマー形成用モノマー成分として、ラウリルアクリレート(LA)43重量部、2-エチルヘキシルアクリレート(2EHA)44重量部、4-ヒドロキシブチルアクリレート(4HBA)6重量部、およびN-ビニル-2-ピロリドン(NVP)7重量部、ならびに光重合開始剤としてIGM Resins製「Omnirad 184」0.015重量部を配合し、紫外線を照射して重合を行い、プレポリマー組成物(重合率;約10%)を得た。
(Polymerization of prepolymer)
As monomer components for forming the prepolymer, 43 parts by weight of lauryl acrylate (LA), 44 parts by weight of 2-ethylhexyl acrylate (2EHA), 6 parts by weight of 4-hydroxybutyl acrylate (4HBA), and N-vinyl-2-pyrrolidone (NVP ) and 0.015 parts by weight of "Omnirad 184" manufactured by IGM Resins as a photopolymerization initiator, and polymerized by irradiating ultraviolet rays to obtain a prepolymer composition (polymerization rate: about 10%). rice field.
(粘着剤組成物の調製)
 上記のプレポリマー組成物100重量部に、後添加成分として、1,6-ヘキサンジオールジアクリレート(HDDA)0.07重量部、上記のオリゴマー:3重量部、およびシランカップリング剤(信越化学工業製「KBM403」):0.3重量部を添加した後、これらを均一に混合して、粘着剤組成物Aを調製した。
(Preparation of adhesive composition)
To 100 parts by weight of the prepolymer composition, 0.07 parts by weight of 1,6-hexanediol diacrylate (HDDA), 3 parts by weight of the above oligomer, and a silane coupling agent (Shin-Etsu Chemical Co., Ltd. ("KBM403"): 0.3 parts by weight were added, and these were uniformly mixed to prepare a pressure-sensitive adhesive composition A.
[折り曲げ耐性試験]
 以下のとおり、実施例および比較例の各ハードコートフィルムを用いて、有機EL表示装置を模擬した模擬サンプルを製造し、これを用いて折り曲げ耐性試験を行った。まず、図3(a)に示すとおり、ハードコートフィルムの光透過性基材(A)11における、ハードコート層(B)12、光学機能層(C)13及び防汚層(D)14が積層された側とは反対側の面に、アクリル系粘着剤層21(前記粘着剤組成物A、厚み25μm)、ポリイミドフィルム22(KORON社製、厚み50μm)、アクリル系粘着剤層23(前記粘着剤組成物A、厚み25μm)、PETフィルム24(東レ株式会社製、厚み38μm)、及びアクリル系粘着剤層25(前記粘着剤組成物A、厚み25μm)を、この順序で積層させて、有機EL表示装置を模擬した模擬サンプル100を製造した。つぎに、図3(b)に示すとおり、模擬サンプル(D)の防汚層(D)14側に直径1mmのステンレス製の円柱芯200を接触させた。その後、図3(c)に示すとおり、模擬サンプル100を円柱芯200側に折りたたんで折り曲げ状態とした。さらにその後、模擬サンプル100を開いて図3(b)の状態に戻した。この開閉(折り曲げ及び開き)を150,000回繰り返した。なお、この開閉は、耐久試験機(型番「DMLHB-FS-C」、YUASA社製)を用いて行った。この開閉150,000回の前後で、模擬サンプル100における折り曲げ部101(模擬サンプル100と円柱芯200との接触部分)にLED光源(ツインバード社製、商品名LK-H766B)で光照射して折り曲げ部101の外観を目視で反射検査し、折り曲げ耐性を下記のとおり○△×の三段階で評価した。
 
 ○:開閉前後で折り曲げ部101の外観に変化が見られない。
 △:開閉前後で折り曲げ部101の外観に変化があるが、変化の状態確認が難しい。
 ×:開閉前後で折り曲げ部101の外観が著しく変化した。
[Bending resistance test]
As described below, using the hard coat films of Examples and Comparative Examples, simulated samples simulating an organic EL display device were manufactured, and a bending resistance test was performed using the simulated samples. First, as shown in FIG. 3A, the hard coat layer (B) 12, the optical functional layer (C) 13, and the antifouling layer (D) 14 in the light-transmitting substrate (A) 11 of the hard coat film are On the surface opposite to the laminated side, acrylic adhesive layer 21 (adhesive composition A, thickness 25 μm), polyimide film 22 (manufactured by KORON, thickness 50 μm), acrylic adhesive layer 23 (said Adhesive composition A, thickness 25 μm), PET film 24 (manufactured by Toray Industries, Inc., thickness 38 μm), and acrylic adhesive layer 25 (adhesive composition A, thickness 25 μm) are laminated in this order, A simulated sample 100 simulating an organic EL display device was manufactured. Next, as shown in FIG. 3B, a cylindrical core 200 made of stainless steel and having a diameter of 1 mm was brought into contact with the antifouling layer (D) 14 side of the simulated sample (D). After that, as shown in FIG. 3(c), the simulated sample 100 was folded toward the cylindrical core 200 to obtain a folded state. After that, the simulated sample 100 was opened and returned to the state shown in FIG. 3(b). This opening and closing (bending and opening) was repeated 150,000 times. This opening and closing was performed using a durability tester (model number "DMLHB-FS-C", manufactured by YUASA). Before and after opening and closing 150,000 times, the folded portion 101 (the contact portion between the simulated sample 100 and the cylindrical core 200) of the simulated sample 100 is irradiated with light from an LED light source (trade name LK-H766B manufactured by Twin Bird Co., Ltd.) and bent. The appearance of the portion 101 was visually inspected by reflection, and the bending resistance was evaluated in the following three grades of ◯Δ×.

◯: No change is observed in the appearance of the bent portion 101 before and after opening and closing.
Δ: The appearance of the bent portion 101 changes before and after opening and closing, but it is difficult to confirm the state of the change.
x: The appearance of the bent portion 101 significantly changed before and after opening and closing.
 以上のようにして試験した耐摩耗性及び折り曲げ耐性の試験結果を、まとめて下記表1に示す。 Table 1 below summarizes the test results of wear resistance and bending resistance tested as described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 前記表1に示したとおり、dH×dIが0.2~4の範囲であり(前記数式(1)を満たし)、かつ、(dH+dI)/dSが0.02~0.62の範囲である(前記数式(2)を満たす)実施例1~5のハードコートフィルムは、いずれも、表面の耐摩耗性と折り曲げ耐性とを両立していた。これに対し、比較例1~4のハードコートフィルムは、いずれも、前記数式(1)及び(2)のいずれかを満たしておらず、その結果、表面の耐摩耗性と折り曲げ耐性とのいずれかが不良であった。 As shown in Table 1 above, dH×dI is in the range of 0.2 to 4 (satisfies the above formula (1)), and (dH+dI)/dS is in the range of 0.02 to 0.62. All of the hard coat films of Examples 1 to 5 (which satisfy the above formula (2)) had both surface abrasion resistance and bending resistance. On the other hand, none of the hard coat films of Comparative Examples 1 to 4 satisfy either of the above-mentioned formulas (1) and (2), and as a result, both surface wear resistance and bending resistance It was bad.
 以上、説明したとおり、本発明によれば、表面の耐摩耗性と折り曲げ耐性とを両立させたハードコートフィルム、光学部材、及び画像表示装置を提供することができる。本発明のハードコートフィルムは、前述のとおり、クリアフィルムとしても、防眩性フィルム(防眩性ハードコートフィルム)としても使用可能であり、かつ、多種多様な光学部材及び画像表示装置に用いることができるため、その産業上利用価値は多大である。 As described above, according to the present invention, it is possible to provide a hard coat film, an optical member, and an image display device that achieve both surface wear resistance and bending resistance. As described above, the hard coat film of the present invention can be used both as a clear film and as an antiglare film (antiglare hard coat film), and can be used in a wide variety of optical members and image display devices. Therefore, its industrial utility value is enormous.
 この出願は、2021年6月11日に出願された日本出願特願2021-098260を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2021-098260 filed on June 11, 2021, and the entire disclosure thereof is incorporated herein.
10、10A ハードコートフィルム
11 光透過性基材(A)
12 ハードコート層(B)
12a 樹脂層
12b 粒子
13 光学機能層(C)
14 防汚層(D)
21、23、25 アクリル系粘着剤層
22 ポリイミドフィルム
24 PETフィルム
100 模擬サンプル
101 折り曲げ部
200 円柱芯
10, 10A Hard coat film 11 Light transmissive substrate (A)
12 Hard coat layer (B)
12a resin layer 12b particles 13 optical function layer (C)
14 antifouling layer (D)
21, 23, 25 Acrylic adhesive layer 22 Polyimide film 24 PET film 100 Simulated sample 101 Folding part 200 Cylindrical core

Claims (10)

  1.  光透過性基材(A)の少なくとも一方の面上に、ハードコート層(B)、光学機能層(C)及び防汚層(D)が前記順序で積層され、
     前記防汚層(D)は、元素としてフッ素を含み、
     前記光透過性基材(A)、前記ハードコート層(B)及び前記光学機能層(C)の平均厚みが、下記数式(1)及び(2)の関係を満たすことを特徴とするハードコートフィルム。
     
    0.2≦dH×dI≦4     (1)
    0.02≦(dH+dI)/dS≦0.62     (2)
     
     前記数式(1)及び(2)において、
     dSは、前記光透過性基材(A)の平均厚み[μm]であり、
     dHは、前記ハードコート層(B)の平均厚み[μm]であり、
     dIは、前記光学機能層(C)の平均厚み[μm]である。
    A hard coat layer (B), an optical functional layer (C) and an antifouling layer (D) are laminated in the order described above on at least one surface of the light transmissive substrate (A),
    The antifouling layer (D) contains fluorine as an element,
    A hard coat characterized in that the average thicknesses of the light-transmitting substrate (A), the hard coat layer (B), and the optical function layer (C) satisfy the relationships of the following formulas (1) and (2). the film.

    0.2≦dH×dI≦4 (1)
    0.02≦(dH+dI)/dS≦0.62 (2)

    In the above formulas (1) and (2),
    dS is the average thickness [μm] of the light transmissive substrate (A),
    dH is the average thickness [μm] of the hard coat layer (B),
    dI is the average thickness [μm] of the optical function layer (C).
  2.  前記防汚層(D)において、前記基材(A)とは反対側の面における表面粗さが1~10nmの範囲である請求項1記載のハードコートフィルム。 The hard coat film according to claim 1, wherein the antifouling layer (D) has a surface roughness of 1 to 10 nm on the side opposite to the substrate (A).
  3.  前記ハードコート層(B)の平均厚みが2~12μmの範囲である請求項1又は2記載のハードコートフィルム。 The hard coat film according to claim 1 or 2, wherein the average thickness of the hard coat layer (B) is in the range of 2 to 12 µm.
  4.  前記光透過性基材(A)の平均厚みが100μm以下である請求項1から3のいずれか一項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 3, wherein the light-transmitting substrate (A) has an average thickness of 100 µm or less.
  5.  前記防汚層(D)の平均厚みが1~30nmの範囲である請求項1から4のいずれか一項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 4, wherein the antifouling layer (D) has an average thickness in the range of 1 to 30 nm.
  6.  前記ハードコート層(B)が、有機樹脂、酸化ケイ素、酸化チタン及び酸化ジルコニウムからなる群から選択される少なくとも一つを含む請求項1から5のいずれか一項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 5, wherein the hard coat layer (B) contains at least one selected from the group consisting of organic resin, silicon oxide, titanium oxide and zirconium oxide.
  7.  請求項1から6のいずれか一項に記載のハードコートフィルムを含む光学部材。 An optical member comprising the hard coat film according to any one of claims 1 to 6.
  8.  偏光板である請求項7記載の光学部材。 The optical member according to claim 7, which is a polarizing plate.
  9.  請求項1から6のいずれか一項に記載のハードコートフィルム、又は請求項7若しくは8記載の光学部材を含む画像表示装置。 An image display device comprising the hard coat film according to any one of claims 1 to 6 or the optical member according to claim 7 or 8.
  10.  前記ハードコートフィルムは、前記光透過性基材(A)の一方のみの面上に、前記ハードコート層(B)、前記光学機能層(C)及び前記防汚層(D)が前記順序で積層され、
     前記光透過性基材(A)の他方の面上に粘接着層が積層され、
     前記ハードコートフィルムは、前記粘接着層によって、ガラスを含む部材又はプラスチックフィルムに貼付されている請求項9記載の画像表示装置。
    In the hard coat film, the hard coat layer (B), the optical function layer (C) and the antifouling layer (D) are arranged in the order described above on only one side of the light-transmitting substrate (A). laminated,
    An adhesive layer is laminated on the other surface of the light-transmitting substrate (A),
    10. The image display device according to claim 9, wherein the hard coat film is attached to a member containing glass or a plastic film through the adhesive layer.
PCT/JP2022/023388 2021-06-11 2022-06-09 Hard coat film, optical member, and image display device WO2022260152A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280041594.3A CN117480412A (en) 2021-06-11 2022-06-09 Hard coat film, optical member, and image display device
KR1020237044520A KR20240011799A (en) 2021-06-11 2022-06-09 Hard coat films, optical elements, and image display devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-098260 2021-06-11
JP2021098260A JP2022189597A (en) 2021-06-11 2021-06-11 Hard coat film, optical member, and image display device

Publications (1)

Publication Number Publication Date
WO2022260152A1 true WO2022260152A1 (en) 2022-12-15

Family

ID=84425251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023388 WO2022260152A1 (en) 2021-06-11 2022-06-09 Hard coat film, optical member, and image display device

Country Status (5)

Country Link
JP (1) JP2022189597A (en)
KR (1) KR20240011799A (en)
CN (1) CN117480412A (en)
TW (1) TW202313334A (en)
WO (1) WO2022260152A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210368A1 (en) * 2022-04-28 2023-11-02 日東電工株式会社 Antireflection film and image display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075325A (en) * 2007-09-20 2009-04-09 Toppan Printing Co Ltd Antireflection film
WO2012157682A1 (en) * 2011-05-16 2012-11-22 大日本印刷株式会社 Method for producing antireflection film, antireflection film, polarizing plate, and image display device
WO2017217526A1 (en) * 2016-06-17 2017-12-21 日東電工株式会社 Reflection preventing film and method for manufacturing same, and reflection preventing layer-attached polarization plate
WO2019107036A1 (en) * 2017-11-29 2019-06-06 日東電工株式会社 Hard coat film, optical layered body, and image display device
WO2021106797A1 (en) * 2019-11-25 2021-06-03 日東電工株式会社 Antireflection film and image display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859128B2 (en) 2007-03-15 2012-01-25 日東電工株式会社 HARD COAT FILM, HARD COAT FILM LAMINATE, AND IMAGE DISPLAY DEVICE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075325A (en) * 2007-09-20 2009-04-09 Toppan Printing Co Ltd Antireflection film
WO2012157682A1 (en) * 2011-05-16 2012-11-22 大日本印刷株式会社 Method for producing antireflection film, antireflection film, polarizing plate, and image display device
WO2017217526A1 (en) * 2016-06-17 2017-12-21 日東電工株式会社 Reflection preventing film and method for manufacturing same, and reflection preventing layer-attached polarization plate
WO2019107036A1 (en) * 2017-11-29 2019-06-06 日東電工株式会社 Hard coat film, optical layered body, and image display device
WO2021106797A1 (en) * 2019-11-25 2021-06-03 日東電工株式会社 Antireflection film and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210368A1 (en) * 2022-04-28 2023-11-02 日東電工株式会社 Antireflection film and image display device

Also Published As

Publication number Publication date
JP2022189597A (en) 2022-12-22
KR20240011799A (en) 2024-01-26
CN117480412A (en) 2024-01-30
TW202313334A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
US7615283B2 (en) Fluoro(meth)acrylate polymer composition suitable for low index layer of antireflective film
JP4080520B2 (en) Antiglare hard coat film, method for producing antiglare hard coat film, optical element, polarizing plate and image display device
US8231973B2 (en) Fluoro(meth)acrylate polymer composition suitable for low index layer of antireflective film
JP2006058574A (en) Hard coat film
JP6950680B2 (en) Protective film, optical film, laminate, polarizing plate, image display device, and manufacturing method of polarizing plate
TWI497106B (en) An anti-reflection film and a polarizing plate using the same
JP2013130887A (en) Optical laminate and hard coat film
TWI489130B (en) An anti-glare hard coat film and a polarizing plate using the same
US8591046B2 (en) Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
JPWO2019107036A1 (en) Hard coat film, optical laminate and image display device
JP4266623B2 (en) Hard coat film
WO2006106756A1 (en) Optical layered product
TW201411175A (en) Substrate for optical film, optical film, polarizing plate, liquid crystal panel and image display apparatus
JP6856028B2 (en) Optical film, polarizing film, method of manufacturing polarizing film, and image display device
WO2022260152A1 (en) Hard coat film, optical member, and image display device
JP2013195550A (en) Optical film and optical display device
TWI598227B (en) Optical film, image display device, and method for producing image display device
JP5672806B2 (en) Optical laminate, polarizing plate, and image display device
JP2008058863A (en) Single layer prism sheet and composite prism sheet
JP2022155885A (en) Hard coat film, optical member, and image display device
JP2013250504A (en) Inorganic thin film transfer material and production method of the same, and molded article with inorganic thin film and production method of molded article
JP2010286803A (en) Anti-reflection film according to bi-layer method
JP2008250266A (en) Antireflective film
WO2019107924A1 (en) Visibility-improving film for display panel, and display device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22820331

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280041594.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237044520

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237044520

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22820331

Country of ref document: EP

Kind code of ref document: A1