WO2024071391A1 - Laminate for display device, display device, and display device equipped with support plate - Google Patents

Laminate for display device, display device, and display device equipped with support plate Download PDF

Info

Publication number
WO2024071391A1
WO2024071391A1 PCT/JP2023/035677 JP2023035677W WO2024071391A1 WO 2024071391 A1 WO2024071391 A1 WO 2024071391A1 JP 2023035677 W JP2023035677 W JP 2023035677W WO 2024071391 A1 WO2024071391 A1 WO 2024071391A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
laminate
layer
support plate
hard coat
Prior art date
Application number
PCT/JP2023/035677
Other languages
French (fr)
Japanese (ja)
Inventor
篤弘 小林
清弘 高地
和滋 堀
治 渡邉
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2024071391A1 publication Critical patent/WO2024071391A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • This disclosure relates to a laminate for a display device, a display device, and a display device with a support plate.
  • a laminate for the display device having various properties such as hard coat properties, abrasion resistance, anti-reflection properties, anti-glare properties, anti-static properties, and anti-fouling properties is arranged as a front panel.
  • Patent Document 1 discloses such a laminate for a display device, which has an impact absorbing layer, a support, and a functional layer, the thickness of the impact absorbing layer being 1 ⁇ m or more, and the maximum value of the ratio (tan ⁇ ) of the loss modulus to the storage modulus in the frequency range of 10 to 105 Hz at 25°C is 2.0 or less.
  • flexible display devices such as foldable displays, rollable displays, bendable displays, and slidable displays have been attracting attention in recent years, and laminates for display devices to be placed on the surface of flexible display devices have been actively developed.
  • slidable displays which allow the screen size to be expanded by sliding the display, have been attracting particular attention in recent years.
  • Laminates for display devices that are placed on the surface of flexible display devices are required to be scratch-resistant. For this reason, it is considered to use laminates for display devices that have a hard coat layer.
  • foldable displays are required to be able to display images without defects even when repeatedly bent, and laminates for display devices that are placed on the surface of flexible display devices are required to have bending resistance that prevents peeling or cracking when repeatedly bent.
  • FIG. 2(a) is a schematic front view of a smartphone with a slidable display
  • FIGS. 2(b) and 2(c) are schematic cross-sectional views taken along line A-A of FIG. 2(a).
  • the smartphone 20 shown in FIG. 2 has a caterpillar structure X for sliding the slidable display 21 stored inside the device and sending it out to the observer when the screen is expanded, and for sliding the slidable display 21 and storing it inside the device when the screen is reduced.
  • Figure 3 shows a partial enlarged view of the caterpillar structure X.
  • the slidable display 21 is arranged on a support plate S (e.g., made of SUS) and is capable of sliding.
  • the support plate S has a linear through pattern P in the bending area with the longitudinal direction perpendicular to the screen expansion direction so that it can be easily bent.
  • the slidable display 21 is generally bent so that the display device laminate, which is the surface material, faces outward.
  • the support plate S has the through pattern P, there are locally high curvature steps. These step steps in the support plate affect the display device laminate, which is the surface material of the display device.
  • a display laminate having a hard coat layer is used as a surface material for a slidable display or rollable display, for example, as shown in Figures 4 and 5
  • cracks may occur in the hard coat layer at the bends (hereinafter sometimes referred to as slide bends or slide bends) in the caterpillar structure X of the display laminate, or lifting may occur in the adhesive layer between the display panel on which the display laminate is disposed and the support plate.
  • This disclosure was made in consideration of the above-mentioned circumstances, and its main objective is to provide a laminate for a display device that has excellent scratch resistance and suppresses defects in the sliding bending portion.
  • One embodiment of the present disclosure provides a laminate for a display device, comprising a resin substrate, a hard coat layer disposed on one side of the resin substrate, and a resin layer disposed on the side of the resin substrate opposite the hard coat layer, the resin layer having a cross-sectional indenter indentation amount of 200 nm or more and 3000 nm or less, the cross-sectional indenter indentation amount of the resin substrate being smaller than the cross-sectional indenter indentation amount of the resin layer, the resin layer having a thickness of 5 ⁇ m or more and 45 ⁇ m or less, and the total thickness of the resin substrate and the resin layer being 50 ⁇ m or more and 130 ⁇ m or less.
  • Another embodiment of the present disclosure provides a display device comprising a display panel and the above-described laminate for a display device arranged on the viewer side of the display panel, the laminate for a display device being arranged so that the hard coat layer side faces the viewer side.
  • Another embodiment of the present disclosure provides a display device with a support plate, comprising the above-mentioned display device and a support plate arranged on the surface of the display device facing the display panel, the display device being a flexible display, and the support plate having a through pattern penetrating in the thickness direction.
  • the present disclosure has the effect of providing a laminate for a display device that has excellent scratch resistance and suppresses defects in the slide bending portion.
  • FIG. 1 is a schematic cross-sectional view illustrating a laminate for a display device according to the present disclosure.
  • FIG. 2(a) is a schematic front view of a smartphone having a slidable display
  • FIG. 2(b) and FIG. 2(c) are schematic cross-sectional views taken along line AA of FIG. 2(a).
  • FIG. 2 is a partially enlarged view of the caterpillar structure.
  • FIG. 1 is a schematic cross-sectional view showing an example of a conventional laminate for a display device.
  • FIG. 1 is a schematic cross-sectional view showing an example of a conventional laminate for a display device.
  • FIG. 1 is a schematic diagram for explaining a slide bending test.
  • FIG. 2 is a schematic top view of a support plate used in a slide bending test.
  • 1 is a schematic cross-sectional view illustrating a display device according to the present disclosure.
  • 1 is a schematic cross-sectional view illustrating a display device according to the present disclosure.
  • 1 is a schematic cross-sectional view illustrating an example of a support plate-attached display device according to the present disclosure.
  • the term “above” or “below” is intended to include both cases in which another component is placed directly above or below a certain component so as to be in contact with the component, and cases in which another component is placed above or below a certain component with another component in between, unless otherwise specified.
  • the term “on the surface side” or “on the surface” is intended to include both cases in which another component is placed directly above or below a certain component so as to be in contact with the component, and cases in which another component is placed above or below a certain component with another component in between, unless otherwise specified.
  • the laminate for a display device and the display device in this disclosure are described in detail below.
  • FIG. 1 is a schematic cross-sectional view showing an example of a display laminate in the present disclosure.
  • the display laminate 10 shown in FIG. 1 has a resin substrate 1, a hard coat layer 2 arranged on one side of the resin substrate 1, and a resin layer 3 arranged on the side of the resin substrate 1 opposite to the hard coat layer 2.
  • the cross-sectional indenter indentation amount of the resin layer 3 is 200 nm or more and 3000 nm or less, and the cross-sectional indenter indentation amount of the resin substrate 1 is smaller than the cross-sectional indenter indentation amount of the resin layer 3.
  • the thickness of the resin layer 3 is 5 ⁇ m or more and 45 ⁇ m or less, and the total thickness of the resin substrate 1 and the resin layer 3 is 50 ⁇ m or more and 130 ⁇ m or less.
  • FIG. 4(a) is a schematic cross-sectional view showing an example of a conventional display laminate.
  • the display laminate 50 shown in FIG. 4(a) has a resin substrate 51 and a hard coat layer 52.
  • FIG. 4(b) is an explanatory diagram of a slide bending test performed on a test piece in which the display laminate 50 is bonded to a support plate S via an adhesive layer 53, simulating slide bending during use of a slidable display.
  • FIG. 4(b) in this slide bending test, a problem occurs in which the adhesive layer 53 floats off the support plate S. This is presumably because the resin substrate 51 is too hard to follow the high curvature that exists locally on the support plate S. This problem also occurs during use of an actual slidable display, and the adhesive layer between the display panel and the support plate peels off from the display panel, etc.
  • FIG. 5(a) is a schematic cross-sectional view showing another example of a conventional laminate for a display device.
  • the laminate for a display device 60 shown in FIG. 5(a) has a resin layer 61 and a hard coat layer 62.
  • FIG. 5(b) is an explanatory diagram of a slide bending test simulating slide bending during use of a slidable display, performed on a test piece in which the laminate for a display device 60 is bonded to a support plate S via an adhesive layer 63. As shown in FIG. 5(b), cracks occur in the hard coat layer 62 during this slide bending test.
  • the laminate for a display device has a resin layer disposed on one side of the resin substrate that has a thickness equal to or greater than a predetermined value and also has a cross-sectional indenter depression amount equal to or greater than a predetermined value, and therefore functions as a step absorption layer. Therefore, the laminate for a display device can follow the steps of the support plate when slidably bent.
  • the laminate for a display device according to the present disclosure is disposed on the observer side of a display panel and used as a display device, peeling of the adhesive layer between the display panel disposed via an adhesive layer on the surface of the support plate that constitutes a caterpillar structure and the support plate can be suppressed in a screen expansion area such as a slidable display.
  • the combined thickness of the resin substrate and the resin layer is equal to or greater than a predetermined value, it is possible to reduce the curvature of areas with locally high curvature caused by the support plates that make up the caterpillar structure when the screen is expanded, and it is possible to prevent locally high curvature from being applied to the hard coat layer. This makes it possible to suppress the occurrence of cracks in the hard coat layer.
  • the laminate for a display device of the present disclosure has a hard coat layer, the thickness of the resin layer is equal to or less than a predetermined value, and a resin substrate that is harder than the resin layer is present, so that the laminate has excellent scratch resistance.
  • slide bending resistance The property of suppressing defects in the slide bending portion as described above is sometimes referred to as slide bending resistance.
  • the laminate for a display device of the present disclosure has a resin substrate, a hard coat layer disposed on one surface of the resin substrate, and a resin layer disposed on the surface of the resin substrate opposite to the hard coat layer. That is, the laminate for a display device of the present disclosure has the resin layer, the resin substrate, and the hard coat layer in this order in the stacking direction.
  • the display device laminate of the present disclosure will be described in detail below.
  • the resin layer used in the display device laminate of the present disclosure can absorb steps caused by the support plate constituting the caterpillar structure used in the screen expansion region of a slidable display, etc. This can suppress peeling between the support plate constituting the caterpillar structure and the display panel arranged on the surface of the support plate via an adhesive layer in the screen expansion region of a slidable display, etc.
  • cross-sectional indenter indentation amount of the resin layer in the present disclosure is 200 nm or more, preferably 250 nm or more, and more preferably 280 nm or more.
  • the cross-sectional indenter indentation amount of the resin layer is 3000 nm or less, preferably 2800 nm or less, and more preferably 2000 nm or less.
  • the cross-sectional indenter indentation amount of the resin layer is obtained by performing an indentation test in which a Berkovich indenter is pressed into the resin layer with a constant load, and measuring the displacement d at that time. Specifically, first, a block is produced by embedding a laminate for a display device cut to 1 mm x 10 mm in embedding resin, and then a uniform slice with a thickness of 70 nm to 100 nm without holes is cut out from this block using a general slice production method. An ultramicrotome EM UC7 from Leica Microsystems Inc. is used to produce the slices. The remaining block from which the uniform slice without holes is cut out is used as the measurement sample.
  • a nanoindenter (TI950 TriboIndenter manufactured by Bruker) is used to vertically indent the center of the cross section of the resin layer with a maximum load of 200 ⁇ N for 40 seconds under the following measurement conditions using a Berkovich indenter (triangular pyramid, TI-0039 manufactured by Bruker), and the displacement (indentation depth) d at that time is measured.
  • the Berkovich indenter is pressed into a portion 500 nm or more away from each of the two ends of the resin layer toward the center of the resin layer.
  • the displacement d was the arithmetic average value of the values obtained by measuring at 10 points. Note that if the measured values include any that deviate from the arithmetic average value by ⁇ 20% or more, the measured values are excluded and remeasured. Whether or not there are any measured values that deviate from the arithmetic mean by ⁇ 20% or more is determined by whether the value (%) calculated by (A-B)/B x 100, where A is the measured value and B is the arithmetic mean, is ⁇ 20% or more.
  • Control method Load control (maximum load 200 ⁇ N) Lift amount: 0 nm Preload: 0.5 ⁇ N Loading speed: 5 ⁇ N/sec. Maximum load holding time: 10 sec. Unloading speed: 5 ⁇ N/sec. Temperature: 23° C. Relative humidity: 50%
  • the resin layer used in the present disclosure preferably has a total light transmittance of, for example, 80% or more, more preferably 85% or more, and even more preferably 88% or more. Such a high total light transmittance allows a laminate for a display device to have good transparency.
  • the total light transmittance of the resin layer can be measured in accordance with JIS K7361-1, for example, using a haze meter HM150 manufactured by Murakami Color Research Laboratory.
  • the thickness of the resin layer in the present disclosure is 5 ⁇ m or more, and preferably 10 ⁇ m or more. By having the thickness in the above range, a step absorption performance can be obtained.
  • the thickness of the resin layer is thin. Specifically, it is 45 ⁇ m or less, and may be 35 ⁇ m or less, 30 ⁇ m or less, or 25 ⁇ m or less. By having a thickness within the above range, good storage within the display device can be obtained, and the hardness of the hard coat layer surface can be maintained, so that scratch resistance can be maintained.
  • the material of the resin layer in the present disclosure is not particularly limited as long as the cross-sectional indenter pressing amount of the resin layer falls within the above-mentioned range and is transparent, and examples thereof include urethane-based resins, acrylic gels, silicone gels, etc.
  • urethane-based resins are preferred, and ionizing radiation curable urethane-based resins and thermoplastic polyurethanes (TPUs) are particularly preferred.
  • the urethane-based resin is a resin having a urethane bond.
  • Thermoplastic polyurethane is a polyurethane that exhibits plasticity when heated, and generally refers to a polyurethane that has a linear structure with a certain degree of high molecular weight.
  • Thermoplastic polyurethane can be obtained, for example, by copolymerization of polyisocyanate, polymeric polyol, and chain extender.
  • the polyisocyanate is, for example, an aliphatic, alicyclic, or aromatic diisocyanate, with aromatic diisocyanate being preferred.
  • the polymer polyol is preferably a polyether polyol or polyester polyol having a molecular weight of 500 or more and 8000 or less, more preferably 600 or more and 4000 or less.
  • polyether polyols include polyoxyethylene glycol, polyoxypropylene glycol, polyoxyethyleneoxypropylene glycol, polyoxytetramethylene glycol, and polyoxyhexamethylene glycol. Among these, polyoxytetramethylene glycol is preferred.
  • the polyester polyol is preferably an aliphatic polyester polyol derived from an aliphatic dicarboxylic acid and an aliphatic diol.
  • the ionizing radiation curable urethane resin is a cured product of an ionizing radiation curable urethane resin composition, and preferably a cured product of an ultraviolet ray curable urethane resin composition.
  • the ionizing radiation curable urethane resin composition contains a urethane (meth)acrylate.
  • the urethane (meth)acrylate may be any of a monomer, an oligomer, and a prepolymer.
  • the number of (meth)acryloyl groups (functionality) in the urethane (meth)acrylate is preferably 2 or more and 4 or less.
  • the term "(meth)acryloyl group” includes both "acryloyl group” and "methacryloyl group”.
  • the weight average molecular weight of the urethane (meth)acrylate is preferably 1500 or more and 20000 or less.
  • the ionizing radiation curable urethane resin composition may contain a (meth)acrylate compound.
  • the (meth)acrylate compound include a monofunctional (meth)acrylate compound and a polyfunctional (meth)acrylate compound.
  • the ionizing radiation curable urethane resin composition may contain, for example, one or both of a monofunctional (meth)acrylate compound and a polyfunctional (meth)acrylate compound.
  • acrylic gels can be used as long as they are polymers made by polymerizing monomers containing acrylic esters, which are used in adhesives, etc.
  • acrylic gels that can be used include those obtained by polymerizing or copolymerizing acrylic monomers such as ethyl (meth)acrylate, n-propyl (meth)acrylate, i-propyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-hexyl (meth)acrylate, n-amyl (meth)acrylate, i-amyl (meth)acrylate, octyl (meth)acrylate, i-octyl (meth)acrylate, i-myristyl (meth)acrylate, lauryl (meth)acrylate, nonyl (meth)acrylate, i-n
  • Silicone gel means a solid state obtained by gelling silicone oil.
  • Two-liquid addition reaction type silicone gel is preferably used, especially from the viewpoint of not generating reaction by-products (outgassing).
  • Two-liquid addition reaction type silicone gel is obtained by hydrosilylation reaction of a silicone polymer (base) having a vinyl group with a silicone polymer (curing agent) having a hydroxyl group in the presence of a platinum catalyst.
  • base silicone polymer
  • curing agent silicone polymer having a hydroxyl group in the presence of a platinum catalyst.
  • various conventionally known silicon compounds can be appropriately selected and used, and silicon compounds commercially available as various silicone materials may also be used.
  • the substituent of the silicon atom is not particularly limited, and examples thereof include alkyl groups having 1 to 10 carbon atoms such as methyl groups, ethyl groups, and propyl groups, cycloalkyl groups having 5 to 10 carbon atoms such as cyclopentyl groups and cyclohexyl groups, alkenyl groups having 2 to 10 carbon atoms such as vinyl groups and allyl groups, aryl groups having 5 to 20 carbon atoms such as phenyl groups and tolyl groups, and those in which some of the hydrogen atoms of these substituents have been replaced with other atoms or substituents.
  • two-liquid reaction heat addition silicone gels include CF-5106 (product name: manufactured by Dow Corning Toray Co., Ltd.), KE-1012A/B (product name: manufactured by Shin-Etsu Silicones Co., Ltd.), and XE14-685(A)/(B) (product name: manufactured by Momentive Corporation).
  • These silicone gels are made from silicone resin, which is the raw material, separated into liquid A and liquid B, and can be used by mixing the two liquids in a specified ratio.
  • the resin layer may contain ultraviolet absorbers, spectral transmittance adjusters, antifouling agents, inorganic particles and/or organic particles, etc., as long as the cross-sectional indenter pressing amount of the resin layer falls within the above-mentioned range and a transparent resin layer can be obtained.
  • the method for forming a resin layer may be, for example, a method for applying a resin composition to one side of a resin substrate, optionally via a primer layer.
  • the application method is not particularly limited as long as it can be applied to a desired thickness, and may be, for example, a general application method such as gravure coating, gravure reverse coating, gravure offset coating, spin coating, roll coating, reverse roll coating, blade coating, dip coating, or screen printing.
  • the resin layer can be formed by a transfer method in which a resin layer is transferred to one side of a resin substrate, or by a method in which a film-like resin layer is attached to one side of a resin substrate via a primer layer.
  • Resin substrate The resin substrate in the present disclosure is disposed between the resin layer and the hard coat layer, has a predetermined film thickness together with the resin layer, and is formed of a material harder than the resin layer. Therefore, it is possible to reduce the curvature of the area with high curvature locally caused by the support plate constituting the caterpillar structure used in the screen expansion area of a slideable display, etc., and to prevent the hard coat layer from being locally subjected to high curvature. This makes it possible to suppress the occurrence of cracks in the hard coat layer.
  • cross-sectional indenter indentation amount of the resin substrate in the present disclosure is smaller than the cross-sectional indenter indentation amount of the resin layer described above.
  • the cross-sectional indenter indentation amount of the resin substrate is, for example, less than 200 nm, preferably 180 nm or less.
  • the method for measuring the cross-sectional indenter indentation amount of the resin substrate is the same as the method described in "I. Resin layer" above.
  • Young's modulus of the resin substrate in the present disclosure is preferably 2 GPa or more, more preferably 4 GPa or more, particularly preferably 5 GPa or more. This is because it is possible to reduce the curvature of the area with high curvature locally, and prevent the hard coat layer from being locally subjected to high curvature. Note that the resin substrate used is one with a Young's modulus of 12 GPa or less.
  • the Young's modulus of the resin substrate is measured by the following tensile test method.
  • a sample is obtained by first cutting out a single-layered resin substrate layer measuring 0.5 cm x 7 cm from the resin substrate. Then, both ends of the cut sample are fixed to a chucking jig attached to a Tensilon universal testing machine (product name "RTC-1310A", manufactured by Orientec Co., Ltd.) so that the longitudinal direction of the cut sample is the tensile direction. Then, a tensile test is performed by pulling the sample at 25°C and a tensile speed of 10 mm/min using the Tensilon universal testing machine.
  • RTC-1310A Tensilon universal testing machine
  • the Young's modulus is calculated by determining the slope of the line connecting the stress when the strain is 0.05% and the stress when the strain is 0.25% in accordance with JIS K7161-4.
  • the Young's modulus is the arithmetic average value obtained from three measurements.
  • the thickness of the resin substrate is not particularly limited as long as the total thickness of the resin substrate and the resin layer falls within the range described below, but may be, for example, 20 ⁇ m or more, 30 ⁇ m or more, or 65 ⁇ m or more. On the other hand, it may be, for example, 125 ⁇ m or less, 100 ⁇ m or less, or 80 ⁇ m or less.
  • the resin constituting the resin substrate used in the present disclosure is not particularly limited as long as the cross-sectional indenter indentation amount of the resin substrate is the above-mentioned cross-sectional indenter indentation amount and a resin substrate having transparency can be obtained, and examples thereof include polyester-based resins, polyimide-based resins, cellulose-based resins, etc.
  • polyimide resin refers to a polymer having an imide bond in the main chain.
  • polyimide resins include polyimide, polyamideimide, polyesterimide, polyetherimide, etc.
  • polyester resins include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate (PEN), etc.
  • cellulose resins include triacetyl cellulose (TAC), etc.
  • TAC triacetyl cellulose
  • polyester resins are preferred. These resins may be used alone or in combination of two or more.
  • polyimide resins, PET, TAC, etc. are preferably used in this disclosure.
  • the resin substrate may further contain additives as necessary.
  • additives include ultraviolet absorbers, light stabilizers, antioxidants, inorganic particles, silica fillers for smooth winding, surfactants for improving film-forming and defoaming properties, and adhesion improvers.
  • the laminate for a display device in the present disclosure has a hard coat layer on the surface of the resin substrate opposite to the resin layer.
  • the hard coat layer is a member for increasing the surface hardness. By disposing the hard coat layer, it is possible to improve scratch resistance.
  • the hard coat layer in this disclosure may be a single layer or may have a multi-layer structure of two or more layers.
  • hard coat layer refers to a member for increasing surface hardness, and specifically refers to a layer having a hard coat layer in a configuration in which the laminate for a display device in the present disclosure has a hard coat layer, and exhibits a hardness of "H" or more when a pencil hardness test specified in JIS K 5600-5-4 (1999) is carried out.
  • the pencil hardness of the surface of the hard coat layer side of the laminate for a display device according to the present disclosure is preferably H or more, more preferably 2H or more, and even more preferably 3H or more.
  • the pencil hardness is measured by the pencil hardness test specified in JIS K5600-5-4 (1999).
  • the pencil hardness test specified in JIS K5600-5-4 (1999) can be performed on the surface of the hard coat layer side of the laminate for a display device using a test pencil specified in JIS-S-6006, and the highest pencil hardness that does not cause scratches can be evaluated.
  • the measurement conditions can be an angle of 45°, a load of 750 g, a speed of 0.5 mm/sec to 1 mm/sec, and a temperature of 23 ⁇ 2°C.
  • a pencil hardness tester for example, a pencil scratch coating hardness tester manufactured by Toyo Seiki Co., Ltd. can be used.
  • the thickness of the hard coat layer may be appropriately selected according to the material of the hard coat layer, the function of the hard coat layer, and the use of the laminate for display device.
  • the thickness of the hard coat layer is preferably 5 ⁇ m or more, and may be 10 ⁇ m or more. If the thickness of the hard coat layer is the above value or more, scratch resistance can be reliably obtained. On the other hand, the thickness of the hard coat layer is, for example, 20 ⁇ m or less.
  • the thickness of the hard coat layer can be about several tens of nm.
  • the material for the hard coat layer for example, an organic material, an inorganic material, or an organic-inorganic composite material can be used.
  • the material of the hard coat layer is preferably an organic material.
  • the hard coat layer preferably contains a cured product of a resin composition containing a polymerizable compound.
  • the cured product of a resin composition containing a polymerizable compound can be obtained by subjecting the polymerizable compound to a polymerization reaction by a known method, using a polymerization initiator as necessary.
  • the polymerizable compound has at least one polymerizable functional group in the molecule.
  • the polymerizable compound for example, at least one of a radical polymerizable compound and a cationic polymerizable compound can be used.
  • a radically polymerizable compound is a compound that has a radically polymerizable group.
  • the radically polymerizable group of a radically polymerizable compound is not particularly limited as long as it is a functional group that can cause a radical polymerization reaction, but examples include groups that contain a carbon-carbon unsaturated double bond, and specific examples include a vinyl group and a (meth)acryloyl group. Note that when a radically polymerizable compound has two or more radically polymerizable groups, these radically polymerizable groups may be the same or different.
  • the number of radically polymerizable groups that the radically polymerizable compound has in one molecule is preferably 2 or more, and more preferably 3 or more, in order to improve the hardness of the hard coat layer.
  • a compound having a (meth)acryloyl group is preferable.
  • polyfunctional (meth)acrylate monomers and oligomers having several (meth)acryloyl groups in the molecule and a molecular weight of several hundred to several thousand such as urethane (meth)acrylate, polyester (meth)acrylate, epoxy (meth)acrylate, melamine (meth)acrylate, polyfluoroalkyl (meth)acrylate, silicone (meth)acrylate, etc., can be preferably used.
  • polyfunctional (meth)acrylate polymers having two or more (meth)acryloyl groups in the side chain of the acrylate polymer can also be preferably used.
  • polyfunctional (meth)acrylate monomers having two or more (meth)acryloyl groups in one molecule can be preferably used.
  • the hardness of the hard coat layer can be improved and the adhesion can be further improved.
  • polyfunctional (meth)acrylate oligomers or polymers having two or more (meth)acryloyl groups in one molecule By including a cured product of a polyfunctional (meth)acrylate oligomer or polymer in the hard coat layer, the hardness and bending resistance of the hard coat layer can be improved, and the adhesion can be further improved.
  • (meth)acryloyl refers to both acryloyl and methacryloyl
  • (meth)acrylate refers to both acrylate and methacrylate
  • polyfunctional (meth)acrylate monomers include those described in JP 2019-132930 A. Among them, from the viewpoints of high reactivity, improved hardness of the hard coat layer, and adhesion, those having 3 to 6 (meth)acryloyl groups in one molecule are preferred.
  • pentaerythritol triacrylate PETA
  • dipentaerythritol hexaacrylate DPHA
  • pentaerythritol tetraacrylate PETTA
  • dipentaerythritol pentaacrylate DPPA
  • trimethylolpropane tri(meth)acrylate tripentaerythritol octa(meth)acrylate, tetrapentaerythritol deca(meth)acrylate, etc.
  • pentaerythritol tri(meth)acrylate dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexaacrylate, and those modified with PO, EO, or caprolactone are preferred.
  • the resin composition may contain a monofunctional (meth)acrylate monomer as a radically polymerizable compound to adjust hardness and viscosity, improve adhesion, etc.
  • monofunctional (meth)acrylate monomers include those described in JP 2019-132930 A.
  • a cationic polymerizable compound is a compound that has a cationic polymerizable group.
  • the cationic polymerizable group of a cationic polymerizable compound is not particularly limited as long as it is a functional group that can cause a cationic polymerization reaction, and examples of the cationic polymerizable group include an epoxy group, an oxetanyl group, and a vinyl ether group.
  • these cationic polymerizable groups may be the same or different.
  • the number of cationic polymerizable groups that the cationic polymerizable compound has in one molecule is preferably 2 or more, and more preferably 3 or more, in order to improve the hardness of the hard coat layer.
  • cationic polymerizable compounds compounds having at least one of epoxy and oxetanyl groups as cationic polymerizable groups are preferred, and compounds having at least two of epoxy and oxetanyl groups in one molecule are more preferred.
  • Cyclic ether groups such as epoxy and oxetanyl groups are preferred because they cause little shrinkage during polymerization.
  • cyclic ether groups compounds having epoxy groups have the advantages of being readily available in a variety of structures, not adversely affecting the durability of the resulting hard coat layer, and being easy to control compatibility with radically polymerizable compounds.
  • oxetanyl groups have the advantages of having a higher degree of polymerization and lower toxicity than epoxy groups, and of accelerating the network formation rate obtained from the cationic polymerizable compound in the coating film when the resulting hard coat layer is combined with a compound having an epoxy group, and forming an independent network without leaving unreacted monomers in the film even in areas where the radically polymerizable compound is mixed.
  • Cationically polymerizable compounds having epoxy groups include, for example, alicyclic epoxy resins obtained by epoxidizing polyglycidyl ethers of polyhydric alcohols having alicyclic rings or compounds containing cyclohexene rings or cyclopentene rings with a suitable oxidizing agent such as hydrogen peroxide or peracid; aliphatic epoxy resins such as polyglycidyl ethers of aliphatic polyhydric alcohols or their alkylene oxide adducts, polyglycidyl esters of aliphatic long-chain polybasic acids, and homopolymers and copolymers of glycidyl (meth)acrylate; glycidyl ethers produced by reacting bisphenols such as bisphenol A, bisphenol F, and hydrogenated bisphenol A, or derivatives thereof such as alkylene oxide adducts or caprolactone adducts, with epichlorohydrin, and novolac epoxy resins, etc., which are
  • alicyclic epoxy resins examples include those described in JP 2018-104682 A.
  • the cured resin composition containing the polymerizable compound contained in the hard coat layer can be analyzed using a Fourier transform infrared spectrophotometer (FTIR) or a pyrolysis gas chromatograph (GC-MS), and the decomposition products of the polymer can be analyzed using a combination of high performance liquid chromatography, a gas chromatograph mass spectrometer, NMR, elemental analysis, XPS/ESCA, and TOF-SIMS.
  • FTIR Fourier transform infrared spectrophotometer
  • GC-MS pyrolysis gas chromatograph
  • the resin composition may contain a polymerization initiator as necessary.
  • a radical polymerization initiator, a cationic polymerization initiator, a radical and cationic polymerization initiator, etc. may be appropriately selected and used. These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations, and cause radical polymerization and cationic polymerization to proceed. Note that there are cases where the polymerization initiator is completely decomposed and does not remain in the hard coat layer.
  • radical polymerization initiators and cationic polymerization initiators include those described in JP 2018-104682 A.
  • the hard coat layer preferably contains inorganic or organic particles, and more preferably inorganic fine particles. When the hard coat layer contains particles, the hardness can be improved.
  • inorganic particles examples include metal oxide particles such as silica (SiO 2 ), aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide, metal fluoride particles such as magnesium fluoride and sodium fluoride, metal particles, metal sulfide particles, and metal nitride particles.
  • metal oxide particles are preferred, and at least one selected from silica particles and aluminum oxide particles is more preferred, with silica particles being even more preferred, because excellent hardness can be obtained.
  • the inorganic particles are preferably reactive inorganic particles having photoreactive reactive functional groups on at least a portion of the particle surface that undergo a crosslinking reaction between the inorganic particles themselves or between the inorganic particles and at least one type of polymerizable compound to form a covalent bond.
  • the hardness of the hard coat layer can be further improved by crosslinking between the reactive inorganic particles themselves or between the reactive inorganic particles and at least one type of radically polymerizable compound and cationic polymerizable compound.
  • Reactive inorganic particles have at least a portion of their surface coated with an organic component, and have reactive functional groups on the surface introduced by the organic component.
  • a reactive functional group for example, a polymerizable unsaturated group is preferably used, and a photocurable unsaturated group is more preferably used.
  • the reactive functional group for example, ethylenically unsaturated bonds such as (meth)acryloyl groups, vinyl groups, and allyl groups, and epoxy groups can be mentioned.
  • the reactive silica particles are not particularly limited, and conventionally known ones can be used, such as the reactive silica particles described in JP 2008-165040 A.
  • Commercially available reactive silica particles include, for example, MIBK-SD, MIBK-SDMS, MIBK-SDL, and MIBK-SDZL manufactured by Nissan Chemical Industries, Ltd., and V8802 and V8803 manufactured by JGC Catalysts and Chemicals Co., Ltd.
  • the silica particles may be spherical silica particles, but are preferably irregular silica particles. Spherical silica particles and irregular silica particles may be mixed.
  • irregular silica particles refer to silica particles having random potato-like irregularities on the surface. Since irregular silica particles have a larger surface area than spherical silica particles, the inclusion of such irregular silica particles increases the contact area with the resin components, etc., and the hardness of the hard coat layer can be improved.
  • the particles are atypical silica particles can be confirmed by observing the cross section of the hard coat layer using an electron microscope.
  • the average particle size of the inorganic particles is preferably 5 nm or more, and more preferably 10 nm or more, from the viewpoint of improving hardness. If the average particle size of the inorganic particles is too small, it may be difficult to manufacture the particles, and the particles may be prone to agglomeration. Furthermore, from the viewpoint of transparency, the average particle size of the inorganic particles is preferably 200 nm or less, more preferably 100 nm or less, and even more preferably 50 nm or less. If the average particle size of the inorganic particles is too large, there is a risk that large irregularities may be formed in the hard coat layer or that the haze may become high.
  • the average particle size of the inorganic particles can be measured by observing the cross section of the hard coat layer with an electron microscope, and the average particle size is the average of the particle sizes of 10 arbitrarily selected particles.
  • the average particle size of the irregular silica particles is the average of the maximum (long axis) and minimum (short axis) distances between two points on the periphery of the irregular silica particles that appear when the hard coat layer is observed in cross section with a microscope.
  • the hardness of the hard coat layer can be controlled by adjusting the size and content of the inorganic particles.
  • the content of the silica particles is preferably 25 parts by mass or more and 100 parts by mass or less per 100 parts by mass of the polymerizable compound.
  • the hard coat layer used in the present disclosure may contain an ultraviolet absorbing agent. It is possible to suppress the deterioration of the resin layer due to ultraviolet rays. In particular, when the resin layer contains polyimide, it is possible to suppress the color change over time of the resin layer containing polyimide. In addition, in a display device including the laminate for a display device, it is possible to suppress the deterioration of a member arranged on the display panel side of the laminate for a display device, such as a polarizer, due to ultraviolet rays.
  • the hard coat layer in this disclosure may also contain an antifouling agent. This can impart antifouling properties to the laminate for display devices.
  • the hard coat layer in the present disclosure may further contain different additives as necessary.
  • the additives are appropriately selected depending on the function to be imparted to the hard coat layer, and are not particularly limited.
  • the additives include inorganic or organic particles for adjusting the refractive index, infrared absorbing agents, anti-glare agents, antifouling agents, antistatic agents, colorants such as blue and purple dyes, leveling agents, surfactants, lubricants, various sensitizers, flame retardants, adhesion promoters, polymerization inhibitors, antioxidants, light stabilizers, surface modifiers, spectral transmittance adjusters, etc.
  • Method for forming a hard coat layer is appropriately selected depending on the material of the hard coat layer, and examples thereof include a method of applying a curable resin composition for a hard coat layer containing the polymerizable compound on the resin substrate and curing the composition, a vapor deposition method, a sputtering method, and the like.
  • the method for applying the curable resin composition for the hard coat layer onto the resin substrate is not particularly limited as long as it is a method that allows application to the desired thickness, and examples of common application methods include gravure coating, gravure reverse coating, gravure offset coating, spin coating, roll coating, reverse roll coating, blade coating, dip coating, and screen printing.
  • a transfer method can also be used to form a coating film of the resin composition for the hard coat layer.
  • the coating film of the curable resin composition for the hard coat layer is dried as necessary to remove the solvent.
  • drying methods include vacuum drying, heat drying, and a combination of these drying methods.
  • the coating film can be dried by heating at a temperature of 30°C to 120°C for 10 seconds to 180 seconds.
  • the method for curing the coating of the curable resin composition for the hard coat layer is appropriately selected depending on the polymerizable group of the polymerizable compound, and for example, at least one of light irradiation and heating can be used.
  • ultraviolet light For light irradiation, ultraviolet light, visible light, electron beams, ionizing radiation, etc. are mainly used.
  • ultraviolet curing for example, ultraviolet light emitted from light rays of an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, etc. can be used.
  • the irradiation amount of the energy ray source can be, for example, about 50 mJ/ cm2 or more and 5000 mJ/ cm2 or less as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
  • the treatment can be performed at a temperature of, for example, 40°C or higher and 120°C or lower.
  • the reaction can also be carried out by leaving the mixture at room temperature (25°C) for 24 hours or more.
  • the laminate for a display device of the present disclosure essentially comprises the above-mentioned resin layer, resin substrate, and hard coat layer, but may also have other layers described below.
  • Adhesive layer for attachment The laminate for a display device of the present disclosure may have an adhesive layer for attachment on the surface of the resin layer opposite to the resin substrate.
  • the laminate for a display device may be attached to, for example, a display panel or the like via the adhesive layer for attachment.
  • the adhesive used in the attachment adhesive layer is not particularly limited as long as it is transparent and capable of adhering the display device laminate to a display panel or the like, and examples thereof include heat-curing adhesives, ultraviolet-curing adhesives, two-component curing adhesives, hot-melt adhesives, and pressure-sensitive adhesives (so-called pressure-sensitive adhesives).
  • the attachment adhesive layer contains a pressure-sensitive adhesive, that is, it is preferable that the attachment adhesive layer is a pressure-sensitive adhesive layer.
  • Examples of pressure-sensitive adhesives used in the pressure-sensitive adhesive layer include acrylic adhesives, silicone adhesives, rubber adhesives, and urethane adhesives, and can be appropriately selected depending on the material of the impact absorbing layer. Of these, acrylic adhesives are preferable because they have excellent transparency, weather resistance, durability, and heat resistance, and are low cost.
  • the thickness of the attachment adhesive layer is, for example, preferably 10 ⁇ m to 100 ⁇ m, more preferably 15 ⁇ m to 60 ⁇ m, and even more preferably 25 ⁇ m to 50 ⁇ m. If the attachment adhesive layer is too thin, it may not be possible to sufficiently bond the display device laminate to the display panel, etc. Furthermore, if the attachment adhesive layer is too thick, flexibility may be impaired.
  • an adhesive film may be used.
  • an adhesive composition may be applied onto a support or a polyimide substrate to form the attachment adhesive layer.
  • the laminate for a display device of the present disclosure may have a peelable separator layer on the surface opposite to the resin layer of the attachment adhesive layer.
  • the laminate for a display device of the present disclosure may have an antifouling layer on the side of the hard coat layer opposite to the resin substrate. By disposing the antifouling layer, it is possible to impart antifouling properties to the laminate for a display device.
  • the material for the antifouling layer a general material for an antifouling layer may be applied.
  • the thickness of the antifouling layer is, for example, preferably 1 nm or more and 30 nm or less, more preferably 2 nm or more and 20 nm or less, and even more preferably 3 nm or more and 10 nm or less. If the thickness of the antifouling layer is within the above range, it is possible to improve the antifouling properties and durability.
  • the method for forming the antifouling layer is appropriately selected depending on the material of the antifouling layer, and examples include a method in which a resin composition for the antifouling layer is applied onto the hard coat layer and cured, a vacuum deposition method, a sputtering method, etc.
  • Primer layer The display laminate of the present disclosure may have a primer layer between the resin substrate and the resin layer.
  • the primer layer can improve the adhesion between the resin substrate and the resin layer.
  • a primer layer may be provided between the resin substrate and the hard coat layer.
  • the material for the primer layer is not particularly limited as long as it is a material that can increase the adhesion between the resin substrate and the resin layer or between the resin substrate and the hard coat layer, and examples thereof include resins.
  • resins include (meth)acrylic resins, urethane resins, (meth)acrylic urethane copolymers, vinyl chloride-vinyl acetate copolymers, polyesters, butyral resins, chlorinated polypropylene, chlorinated polyethylene, epoxy resins, silicone resins, and the like. These resins may be used alone or in combination of two or more.
  • the thickness of the primer layer may be any thickness that can increase the adhesion between the resin substrate and the resin layer or between the resin substrate and the hard coat layer, and may be, for example, from 0.1 ⁇ m to 10 ⁇ m, and preferably from 0.2 ⁇ m to 5 ⁇ m.
  • the method of forming the primer layer can be, for example, a method of applying a primer layer composition onto a resin substrate.
  • the application method include general application methods such as gravure coating, gravure reverse coating, gravure offset coating, spin coating, roll coating, reverse roll coating, blade coating, dip coating, and screen printing.
  • a transfer method can also be used to form the primer layer.
  • the laminate for a display device of the present disclosure may have an antireflection layer on the side of the hard coat layer opposite to the resin substrate. By disposing the antireflection layer, it is possible to suppress reflection of external light and improve visibility.
  • the material constituting the anti-reflection layer preferably has a certain degree of light transparency and a certain degree of flexibility. Specific examples include materials that can be used for general anti-reflection layers, so a description of these will be omitted here.
  • the laminate for a display device of the present disclosure further has the following characteristics.
  • the laminate for a display device of the present disclosure has a total thickness of the resin substrate and resin layer of 50 ⁇ m or more, preferably 70 ⁇ m or more.
  • the total thickness is 130 ⁇ m or less, preferably 120 ⁇ m or less.
  • the repulsive force in the bending direction can be suppressed, the step of the support plate can be followed, and the lifting of the adhesive layer can be suppressed.
  • the stretching of the hard coat layer arranged on the outermost periphery can be suppressed in the sliding bending part, and the occurrence of cracks can be reliably suppressed.
  • the laminate for a display device of the present disclosure preferably has the slide bending resistance as described above.
  • the slide bending resistance of the laminate for a display device can be evaluated by carrying out a slide bending test described below. The slide bending test is carried out as follows.
  • FIG. 6 is a schematic diagram for explaining the slide bending test.
  • a display laminate having a size of 20 mm ⁇ 100 mm is prepared.
  • the prepared display laminate 10 is attached to a test support plate 31 via a test adhesive layer 32 to obtain a test piece 30.
  • a schematic top view of the test support plate 31 is shown in FIG. 7(a).
  • the test support plate is a SUS304 plate having a thickness of 150 ⁇ m, on which a through pattern is formed by etching.
  • the numerical values in FIG. 7 indicate the length (mm).
  • FIG. 7(b) is a partial enlarged view of one block in FIG. 7(a)
  • FIG. 7(c) is a partial enlarged view of FIG. 7(b).
  • the test adhesive layer 32 is specifically 3M Adhesive 8146-1 (the thickness of the adhesive layer after peeling off the separator is 25 ⁇ m).
  • the test piece 30 is bent so that the test support plate 31 faces inward, and one end of the test piece 30 is opposed to the other end in the longitudinal direction.
  • the test piece 30 is set in a slide tester (Yuasa Corp. DMLHB-FU).
  • the other end is slid with a slide length (stroke length) of 35 mm, a slide speed of 30 rpm, and a slide diameter d of 8.0 mm (radius 4.0 mm), and is repeatedly moved back and forth.
  • the laminate disclosed herein preferably does not experience lifting of the adhesive layer or cracks in the hard coat layer when subjected to 200,000 reciprocating motions in the above-mentioned slide bending test.
  • the thickness of the laminate for a display device of the present disclosure is, for example, preferably 55 ⁇ m or more and 150 ⁇ m or less, more preferably 70 ⁇ m or more and 140 ⁇ m or less, and even more preferably 85 ⁇ m or more and 130 ⁇ m or less. If the thickness of the laminate for a display device is in the above range, flexibility can be increased, and further, it becomes easy to accommodate it in a display device such as a slideable display.
  • the laminate for a display device preferably has a total light transmittance of, for example, 80% or more, more preferably 85% or more, and even more preferably 88% or more. Such a high total light transmittance allows the laminate for a display device to have good transparency.
  • the total light transmittance of the laminate for display devices can be measured in accordance with JIS K7361-1, for example, using a haze meter HM150 manufactured by Murakami Color Research Laboratory.
  • the haze of the laminate for a display device in the present disclosure is, for example, preferably 2.0% or less, more preferably 1.5% or less, and even more preferably 1.0% or less. Such a low haze allows the laminate for a display device to have good transparency.
  • the haze of the laminate for display devices can be measured in accordance with JIS K-7136, for example, using a haze meter HM150 manufactured by Murakami Color Research Laboratory.
  • the laminate for a display device according to the present disclosure is a member disposed on the viewer side of the display panel in a display device.
  • the laminate for a display device according to the present disclosure is disposed on the surface of a display device, it is preferably disposed so that the surface on the resin layer side is on the display panel side and the surface on the hard coat layer side is on the outside.
  • the method for disposing the display device laminate of the present disclosure on the surface of the display device is not particularly limited, and examples include a method using an adhesive layer.
  • An example of the adhesive layer is an adhesive layer for attaching the display device laminate.
  • the laminate for display devices in the present disclosure can be used in display devices used in electronic devices such as smartphones, tablet terminals, wearable terminals, personal computers, televisions, digital signage, public information displays (PIDs), and in-vehicle displays.
  • the laminate for display devices in the present disclosure can be used in flexible displays, and is preferably used in slidable displays and rollable displays, and is more preferably used in slidable displays.
  • a display device in the present disclosure includes a display panel and the above-described laminate for a display device, which is disposed on the viewer's side of the display panel.
  • FIG. 8 is a schematic cross-sectional view showing an example of a display device according to the present disclosure.
  • the display device 40 includes a display panel 41 and a laminate 10 for a display device arranged on the viewer's side of the display panel 41.
  • the laminate 10 for a display device and the display panel 41 can be bonded together, for example, via an attachment adhesive layer 42.
  • the surface of the hard coat layer 2 of the laminate 10 for a display device constitutes the surface 40A of the display device 40.
  • the display panel 41 is adhered by an adhesive layer to a support plate having a linear through pattern with its longitudinal direction perpendicular to the screen expansion direction in the area that will become the bent portion.
  • FIG. 9 is a schematic cross-sectional view showing another example of a display device according to the present disclosure.
  • a display device 40 has, in this order, a housing 43 housing a battery and the like, a protective film 44, a display panel 41, a touch panel member 45, and a display device laminate 10.
  • An attachment adhesive layer 42 is disposed between the display panel 41 and the touch panel member 45, and between the touch panel member 45 and the display device laminate 10, and these members are fixed to each other by the attachment adhesive layer 42.
  • the display panel 41 is adhered to the support plate (not shown) by an adhesive layer.
  • the laminate for a display device in this disclosure is similar to "A. Laminate for a display device" described above, so a description thereof will be omitted here.
  • Display panels in this disclosure include, for example, display panels used in display devices such as liquid crystal display devices, organic EL display devices, and LED display devices.
  • the display device of the present disclosure can have a touch panel member between the display panel and the display device laminate.
  • the display device in the present disclosure is preferably a flexible display.
  • flexible displays include slidable displays, rollable displays, and foldable displays.
  • the display device in the present disclosure is preferably a display that is bent so that the laminate for a display device faces outward and that bends while sliding.
  • the display device in the present disclosure is more preferably a slidable display and a rollable display. Since the display device in the present disclosure has the above-mentioned laminate for a display device, it has excellent abrasion resistance and sliver bending resistance, and is suitable as a flexible display, as well as a slidable display and a rollable display.
  • the display device with support plate in the present disclosure includes a display device and a support plate arranged on a surface of the display device on the display panel side, the display device being a flexible display, and the support plate having a through pattern penetrating in the thickness direction.
  • FIG. 10 is a schematic cross-sectional view showing an example of a display device with a support plate according to the present disclosure.
  • the display device with a support plate 70 has the above-mentioned display device 40 and a support plate S arranged on the surface 40B of the display panel 41 side of the display device 40.
  • the "surface 40B of the display device 40 on the display panel 41 side” refers to the surface of the display device 40 located on the display panel 41 side when the display device laminate 10 is used as a reference.
  • the display device 40 is a flexible display.
  • the support plate S has a through pattern (through hole) penetrating in the thickness direction. Since the support plate S has a through pattern, it is easy to bend together with the display device.
  • the support plate has a through pattern, there is a step with a high curvature locally, and the above-mentioned defects are likely to occur.
  • the display device with a support plate according to the present disclosure has the above-mentioned display device laminate, defects in the bending portion (particularly the sliding bending portion) can be suppressed for the above-mentioned reasons.
  • the display device in the present disclosure is a flexible display.
  • flexible displays include slidable displays, rollable displays, and foldable displays. Of these, a display that bends while sliding while placed on a support plate S is preferred. In other words, it is more preferred that the display device in the present disclosure is a slidable display or a rollable display.
  • the support plate is preferably made of metal (e.g., SUS).
  • the through pattern in the support plate is preferably a linear through pattern, and in particular, is preferably a linear through pattern with the longitudinal direction perpendicular to the sliding direction (screen expansion direction) (the direction into the paper in FIG. 10).
  • the support plate preferably has a plurality of through patterns.
  • the support plate preferably has a plurality of blocks along the sliding direction, each block consisting of a group of a plurality of closely spaced through patterns (through holes).
  • the width of each through pattern in the sliding direction is, for example, 0.1 mm or more, and may be 0.2 mm or more.
  • the support plate may be, for example, 1 mm or less, and may be 0.5 mm or less.
  • the thickness of the support plate is, for example, 100 ⁇ m or more, and may be 150 ⁇ m or more. Alternatively, it is, for example, 300 ⁇ m or less.
  • an adhesive layer 71 is disposed between the support plate S and the display panel 41.
  • the adhesive layer disposed between the support plate and the display panel may be the same as the attachment adhesive layer described above.
  • Example 1 a PET film having a thickness shown in Table 2 was prepared as a resin substrate.
  • a hard coat layer was formed on one surface of the resin substrate using the following composition for hard coat layer.
  • compositions for hard coat layers and the methods for forming hard coat layers used in the examples and comparative examples are as follows. ⁇ Preparation of hard coat layer composition> First, the components were mixed so as to obtain the composition shown below to obtain a composition for a hard coat layer.
  • a hard coat layer composition was applied to one side of the resin substrate with a bar coater to form a coating film.
  • the formed coating film was heated at 70°C for 1 minute to evaporate the solvent in the coating film.
  • ultraviolet irradiation device manufactured by Fusion UV Systems Japan, light source H bulb
  • ultraviolet light was irradiated to an integrated light amount of 300 mJ/ cm2 under conditions of an oxygen concentration of 200 ppm or less, and the coating film was completely cured (fully cured).
  • a hard coat layer with a film thickness of 5 ⁇ m was formed.
  • a resin layer was formed on the surface of the resin substrate opposite the hard coat layer using a resin layer composition. This resulted in a laminate for a display device.
  • the resin layer compositions and resin layer forming methods used in the examples and comparative examples are as follows. ⁇ Preparation of Resin Layer Composition> The components were mixed so as to obtain the compositions shown in Table 1, thereby obtaining resin layer compositions 1 to 6.
  • Urethane acrylate 1 Urethane acrylate (product name "UV3310B", manufactured by Nippon Synthetic Chemical Industry Co., Ltd., bifunctional)
  • Urethane acrylate 2 Urethane acrylate (product name "UV2000B”, manufactured by Nippon Synthetic Chemical Industry Co., Ltd., bifunctional)
  • Acrylate compound 1 a mixture of tripentaerythritol acrylate, mono- and dipentaerythritol acrylate, and polypentaerythritol acrylate (product name: Viscoat #802, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
  • Acrylate compound 2 ethoxylated pentaerythritol tetraacrylate (
  • the resin layer composition shown in Table 2 was applied to the surface of the resin substrate opposite to the hard coat layer with a bar coater to form a coating film.
  • the formed coating film was heated at 70°C for 2 minutes to evaporate the solvent in the coating film.
  • ultraviolet irradiation device manufactured by Fusion UV Systems Japan, light source H bulb
  • ultraviolet light was irradiated to an integrated light amount of 300 mJ/ cm2 under conditions of an oxygen concentration of 200 ppm or less, and the coating film was completely cured (fully cured).
  • a resin layer having a thickness shown in Table 2 was formed.
  • the total thickness of the resin substrate and the resin layer is shown in Table 2.
  • Example 2 A laminate for a display device was obtained in the same manner as in Example 1, except that instead of forming a resin layer using a resin layer composition, a resin film made of 100 ⁇ m thermoplastic urethane (product name "DUS270-CER", manufactured by Seedham) was sliced to the film thickness shown in Table 2 (Example 2: 35 ⁇ m, Example 7: 20 ⁇ m, Example 12: 5 ⁇ m) and attached to a resin substrate to form a resin layer.
  • a resin film made of 100 ⁇ m thermoplastic urethane product name "DUS270-CER", manufactured by Seedham
  • a laminate for a display device having a size of 20 mm x 100 mm was prepared. As shown in FIG. 6(a), the prepared laminate for a display device 10 was attached to a test support plate 31 via a test adhesive layer 32 so as not to cause curling, to obtain a test piece 30.
  • the test support plate 31 was a SUS304 plate having a thickness of 150 ⁇ m and a through pattern as shown in FIG. 7.
  • the test adhesive layer 32 was 3M Adhesive 8146-1 (adhesive layer thickness after peeling off separator is 25 ⁇ m).
  • the support plate 31 is bent so that it faces inward, and one end side and the other end side in the longitudinal direction are opposed to each other, and in this state, it is set in a slide tester (product name "DMLHB-FU” manufactured by Yuasa Systems Machinery Co., Ltd.).
  • a slide tester product name "DMLHB-FU” manufactured by Yuasa Systems Machinery Co., Ltd.
  • the other end side is slid with a slide length (stroke length) of 35 mm, a slide speed of 30 rpm, and a slide diameter d of 7.0 mm (radius 3.5 mm), and the slide is reciprocated 200,000 times (condition 1).
  • the slide bending test was repeated 200,000 times (condition 2).
  • the slide diameter d is the distance between one end side and the other end side in the longitudinal direction of the display laminate. The results of the slide bending test were evaluated according to the following criteria.
  • Comparative Example 1 had low scratch resistance because the resin layer was too thick.
  • Comparative Example 2 the indenter pressing amount of the resin layer was too large and too soft, so the scratch resistance was low.
  • Comparative Example 3 the indenter pressing amount of the resin layer was too small and too hard, so the adhesive layer lifted.
  • Comparative Example 4 the total thickness of the resin substrate and the resin layer was too thin, so sufficient step absorption performance could not be obtained, and cracks occurred in the hard coat layer.
  • Comparative Example 5 the total thickness of the resin substrate and the resin layer was too thick, so the adhesive layer lifted.
  • Examples 1 to 12 had excellent scratch resistance and good results in the slide bending test. In Example 12, the resin layer was thinner than the other examples, and slight lifting occurred in the adhesive layer under condition 1, but it was not a problem in practical use (B * ).
  • a laminate for a display device comprising: a resin substrate; a hard coat layer disposed on one side of the resin substrate; and a resin layer disposed on a side of the resin substrate opposite the hard coat layer, wherein a cross-sectional indenter indentation amount of the resin layer is 200 nm or more and 3000 nm or less, a cross-sectional indenter indentation amount of the resin substrate is smaller than a cross-sectional indenter indentation amount of the resin layer, a thickness of the resin layer is 5 ⁇ m or more and 45 ⁇ m or less, and a total thickness of the resin substrate and the resin layer is 50 ⁇ m or more and 130 ⁇ m or less.
  • [5] A laminate for a display device according to any one of [1] to [4], wherein when a test piece prepared by bonding the laminate for a display device to a test support plate via a test adhesive layer is subjected to the following slide bending test with a slide diameter of 7.0 mm and the slide is moved back and forth 200,000 times, peeling of the test adhesive layer and cracks do not occur in the hard coat layer.
  • Slide bending test A display laminate measuring 20 mm x 100 mm is prepared, and a test specimen is obtained by bonding the laminate to a 150 ⁇ m thick SUS304 test support plate having a through pattern via a test adhesive layer.
  • test specimen is bent so that the test support plate is on the inside, and one end side and the other end side in the longitudinal direction are opposed to each other, and in this state, the test specimen is set in a slide tester (Yuasa Corporation DMLHB-FU).
  • slide tester Yamaasa Corporation DMLHB-FU
  • the other end side is slid with a slide length (stroke length) of 35 mm and a slide speed of 30 rpm, and repeatedly reciprocated.
  • a display device comprising: a display panel; and a laminate for a display device according to any one of [1] to [6], which is arranged on a viewer side of the display panel, and the laminate for a display device is arranged so that the hard coat layer side faces the viewer side.
  • a display device with a support plate comprising: the display device described in [7]; and a support plate arranged on a surface of the display device facing the display panel, wherein the display device is a flexible display, and the support plate has a through pattern penetrating in the thickness direction.
  • resin substrate 2 hard coat layer 3: resin layer 10: laminate for display device 40: display device 41: display panel 42: light-transmitting adhesive layer 43: housing 44: protective film 45: touch panel member

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a laminate for a display device, the laminate having a resin substrate, a hard coat layer disposed on one surface of the resin substrate, and a resin layer disposed on the surface of the resin substrate on the reverse side thereof from the hard coat layer, the amount of cross-sectional indentation by an indenter in the resin layer being 200-3000 nm, the amount of cross-sectional indentation by an indenter in the resin substrate being smaller than the amount of cross-sectional indentation by an indenter in the resin layer, the thickness of the resin layer being 5-45 µm, and the total thickness of the resin substrate and the resin layer being 50-130 µm.

Description

表示装置用積層体、表示装置および支持板付き表示装置Laminate for display device, display device, and display device with support plate
 本開示は、表示装置用積層体、表示装置および支持板付き表示装置に関する。 This disclosure relates to a laminate for a display device, a display device, and a display device with a support plate.
 表示装置の表面には、前面板として、例えばハードコート性、耐摩耗性、反射防止性、防眩性、帯電防止性、防汚性等、種々の性能を有する表示装置用積層体が配置されている。 On the surface of the display device, a laminate for the display device having various properties such as hard coat properties, abrasion resistance, anti-reflection properties, anti-glare properties, anti-static properties, and anti-fouling properties is arranged as a front panel.
 このような表示装置用積層体としては、例えば、特許文献1には、衝撃吸収層と支持体と機能層とを有し、前記衝撃吸収層の膜厚は1μm以上であり、前記衝撃吸収層は、25℃において、周波数10~105Hzの範囲の貯蔵弾性率に対する損失弾性率の比(tanδ)の最大値が2.0以下である表示装置用積層体が開示されている。 For example, Patent Document 1 discloses such a laminate for a display device, which has an impact absorbing layer, a support, and a functional layer, the thickness of the impact absorbing layer being 1 μm or more, and the maximum value of the ratio (tan δ) of the loss modulus to the storage modulus in the frequency range of 10 to 105 Hz at 25°C is 2.0 or less.
 一方、近年、フォルダブルディスプレイ、ローラブルディスプレイ、ベンダブルディスプレイ、スライダブルディスプレイ等のフレキシブル表示装置が注目されており、フレキシブル表示装置の表面に配置される表示装置用積層体の開発が盛んに進められている。中でも、スライダブルディスプレイは、ディスプレイをスライドさせることにより画面の大きさを拡張することができ、近年、特に着目されている。 On the other hand, flexible display devices such as foldable displays, rollable displays, bendable displays, and slidable displays have been attracting attention in recent years, and laminates for display devices to be placed on the surface of flexible display devices have been actively developed. Among them, slidable displays, which allow the screen size to be expanded by sliding the display, have been attracting particular attention in recent years.
特開2021-14014号公報JP 2021-14014 A
 フレキシブル表示装置の表面に配置される表示装置用積層体には、耐擦傷性が求められている。そのため、ハードコート層を有する表示装置用積層体を用いることが考えられる。フレキシブル表示装置の中でも折り畳み式のフォルダブルディスプレイにおいては、繰り返し屈曲させても表示不良が発生しないことが求められ、フレキシブル表示装置の表面に配置される表示装置用積層体には、繰り返し屈曲させたときに、剥がれやクラックが生じない屈曲耐性が求められる。  Laminates for display devices that are placed on the surface of flexible display devices are required to be scratch-resistant. For this reason, it is considered to use laminates for display devices that have a hard coat layer. Among flexible display devices, foldable displays are required to be able to display images without defects even when repeatedly bent, and laminates for display devices that are placed on the surface of flexible display devices are required to have bending resistance that prevents peeling or cracking when repeatedly bent.
 これに対し、スライダブルディスプレイやローラブルディスプレイにハードコート層を有する表示装置用積層体を用いた場合は、折り畳み式のフォルダブルディスプレイとは異なる以下のような不具合が生じる場合がある。 In contrast, when a laminate for a display device having a hard coat layer is used in a slidable display or rollable display, the following problems may occur that are different from those in a foldable display.
 図2(a)は、スライダブルディスプレイを有するスマートフォンの概略正面図であり、図2(b)および図2(c)は、図2(a)のA-A概略断面図である。図2に示すスマートフォン20は、画面拡張時には、デバイス内部に収納されていたスライダブルディスプレイ21をスライドさせて観察者側に送り出し、画面縮小時には、スライダブルディスプレイ21をスライドさせてデバイス内部に収納するためのキャタピラー構造Xを有する。 FIG. 2(a) is a schematic front view of a smartphone with a slidable display, and FIGS. 2(b) and 2(c) are schematic cross-sectional views taken along line A-A of FIG. 2(a). The smartphone 20 shown in FIG. 2 has a caterpillar structure X for sliding the slidable display 21 stored inside the device and sending it out to the observer when the screen is expanded, and for sliding the slidable display 21 and storing it inside the device when the screen is reduced.
 図3に、キャタピラー構造Xの部分拡大図を示す。具体的には、スライダブルディスプレイ21は、支持板S(例えば、SUS製)上に配置された状態でスライド可能となっている。支持板Sは屈曲部となる領域に、曲がりやすくなるように、画面拡張方向に対し垂直方向を長手方向とする直線状の貫通パターンPを有している。キャタピラー構造Xは、一般的に、スライダブルディスプレイ21が、表面材である表示装置用積層体が外側となるように曲げられる。また、支持板Sは、貫通パターンPを有するため、局所的に曲率が高い段差が存在する。この支持板の段差は、表示装置の表面材である表示装置用積層体に影響する。 Figure 3 shows a partial enlarged view of the caterpillar structure X. Specifically, the slidable display 21 is arranged on a support plate S (e.g., made of SUS) and is capable of sliding. The support plate S has a linear through pattern P in the bending area with the longitudinal direction perpendicular to the screen expansion direction so that it can be easily bent. In the caterpillar structure X, the slidable display 21 is generally bent so that the display device laminate, which is the surface material, faces outward. In addition, because the support plate S has the through pattern P, there are locally high curvature steps. These step steps in the support plate affect the display device laminate, which is the surface material of the display device.
 そのため、ハードコート層を有する表示装置用積層体を、スライダブルディスプレイやローラブルディスプレイの表面材として用いた場合には、例えば、図4および図5に示すように、表示装置用積層体のキャタピラー構造Xにおける屈曲部(以下、スライド屈曲部、もしくはスライド屈曲とする場合がある。)においてハードコート層にクラックが生じたり、表示装置用積層体が配置された表示パネルと支持板との間の接着層に浮きが生じたりする場合がある。 Therefore, when a display laminate having a hard coat layer is used as a surface material for a slidable display or rollable display, for example, as shown in Figures 4 and 5, cracks may occur in the hard coat layer at the bends (hereinafter sometimes referred to as slide bends or slide bends) in the caterpillar structure X of the display laminate, or lifting may occur in the adhesive layer between the display panel on which the display laminate is disposed and the support plate.
 本開示は、上記実情に鑑みてなされたものであり、優れた耐擦傷性を有し、スライド屈曲部における不具合を抑制した表示装置用積層体を提供することを主目的とする。 This disclosure was made in consideration of the above-mentioned circumstances, and its main objective is to provide a laminate for a display device that has excellent scratch resistance and suppresses defects in the sliding bending portion.
 本開示の一実施形態は、樹脂基材と、上記樹脂基材の一方の面に配置されたハードコート層と、上記樹脂基材の上記ハードコート層とは反対側の面に配置された樹脂層と、を有し、上記樹脂層の断面インデンター押し込み量は、200nm以上3000nm以下であり、上記樹脂基材の断面インデンター押し込み量は、上記樹脂層の断面インデンター押し込み量よりも小さく、上記樹脂層の厚さが5μm以上45μm以下であり、上記樹脂基材および上記樹脂層の合計厚さが50μm以上130μm以下である、表示装置用積層体を提供する。 One embodiment of the present disclosure provides a laminate for a display device, comprising a resin substrate, a hard coat layer disposed on one side of the resin substrate, and a resin layer disposed on the side of the resin substrate opposite the hard coat layer, the resin layer having a cross-sectional indenter indentation amount of 200 nm or more and 3000 nm or less, the cross-sectional indenter indentation amount of the resin substrate being smaller than the cross-sectional indenter indentation amount of the resin layer, the resin layer having a thickness of 5 μm or more and 45 μm or less, and the total thickness of the resin substrate and the resin layer being 50 μm or more and 130 μm or less.
 本開示の他の一実施形態は、表示パネルと、上記表示パネルの観察者側に配置された、上述の表示装置用積層体と、を備え、上記表示装置用積層体は、上記ハードコート層側が観察者側となるように配置される、表示装置を提供する。 Another embodiment of the present disclosure provides a display device comprising a display panel and the above-described laminate for a display device arranged on the viewer side of the display panel, the laminate for a display device being arranged so that the hard coat layer side faces the viewer side.
 本開示の他の一実施形態は、上述の表示装置と、上記表示装置の上記表示パネル側の面に配置された支持板と、を有し、上記表示装置はフレキシブルディスプレイであり、上記支持板は厚さ方向に貫通する貫通パターンを有する、支持板付き表示装置を提供する。 Another embodiment of the present disclosure provides a display device with a support plate, comprising the above-mentioned display device and a support plate arranged on the surface of the display device facing the display panel, the display device being a flexible display, and the support plate having a through pattern penetrating in the thickness direction.
 本開示においては、優れた耐擦傷性を有し、スライド屈曲部における不具合を抑制した表示装置用積層体を提供することができるという効果を奏する。 The present disclosure has the effect of providing a laminate for a display device that has excellent scratch resistance and suppresses defects in the slide bending portion.
本開示における表示装置用積層体を例示する概略断面図である。1 is a schematic cross-sectional view illustrating a laminate for a display device according to the present disclosure. 図2(a)はスライダブルディスプレイを有するスマートフォンの概略正面図であり、図2(b)および図2(c)は図2(a)のA-A概略断面図である。FIG. 2(a) is a schematic front view of a smartphone having a slidable display, and FIG. 2(b) and FIG. 2(c) are schematic cross-sectional views taken along line AA of FIG. 2(a). キャタピラー構造の部分拡大図である。FIG. 2 is a partially enlarged view of the caterpillar structure. 従来の表示装置用積層体の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a conventional laminate for a display device. 従来の表示装置用積層体の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a conventional laminate for a display device. スライド屈曲試験を説明するための模式図である。FIG. 1 is a schematic diagram for explaining a slide bending test. スライド屈曲試験に用いる支持板の概略上面図である。FIG. 2 is a schematic top view of a support plate used in a slide bending test. 本開示における表示装置を例示する概略断面図である。1 is a schematic cross-sectional view illustrating a display device according to the present disclosure. 本開示における表示装置を例示する概略断面図である。1 is a schematic cross-sectional view illustrating a display device according to the present disclosure. 本開示における支持板付き表示装置の一例を示す概略断面図である。1 is a schematic cross-sectional view illustrating an example of a support plate-attached display device according to the present disclosure.
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Below, an embodiment of the present disclosure will be described with reference to the drawings. However, the present disclosure can be implemented in many different forms, and should not be interpreted as being limited to the description of the embodiment exemplified below. Furthermore, in order to make the explanation clearer, the drawings may show the width, thickness, shape, etc. of each part in a schematic manner compared to the actual form, but these are merely examples and do not limit the interpretation of the present disclosure. Furthermore, in this specification and each figure, elements similar to those described above with reference to the previous figures are given the same reference numerals, and detailed explanations may be omitted as appropriate.
 本明細書において、ある部材の上に他の部材を配置する態様を表現するにあたり、単に「上に」、あるいは「下に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。また、本明細書において、ある部材の面に他の部材を配置する態様を表現するにあたり、単に「面側に」または「面に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上、あるいは直下に他の部材を配置する場合と、ある部材の上方、あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含むものとする。 In this specification, when describing a mode in which another component is placed on a certain component, the term "above" or "below" is intended to include both cases in which another component is placed directly above or below a certain component so as to be in contact with the component, and cases in which another component is placed above or below a certain component with another component in between, unless otherwise specified. Also, in this specification, when describing a mode in which another component is placed on the surface of a certain component, the term "on the surface side" or "on the surface" is intended to include both cases in which another component is placed directly above or below a certain component so as to be in contact with the component, and cases in which another component is placed above or below a certain component with another component in between, unless otherwise specified.
 以下、本開示における表示装置用積層体および表示装置について詳細に説明する。 The laminate for a display device and the display device in this disclosure are described in detail below.
A.表示装置用積層体
 図1は、本開示における表示装置用積層体の一例を示す概略断面図である。図1に示す表示装置用積層体10は、樹脂基材1と、樹脂基材1の一方の面に配置されたハードコート層2と、樹脂基材1のハードコート層2とは反対側の面に配置された樹脂層3と、を有する。また、樹脂層3の断面インデンター押し込み量は、200nm以上3000nm以下であり、樹脂基材1の断面インデンター押し込み量は、樹脂層3の断面インデンター押し込み量よりも小さい。さらに、樹脂層3の厚さが5μm以上45μm以下であり、樹脂基材1および樹脂層3の合計厚さが50μm以上130μm以下である。
A. Display laminate FIG. 1 is a schematic cross-sectional view showing an example of a display laminate in the present disclosure. The display laminate 10 shown in FIG. 1 has a resin substrate 1, a hard coat layer 2 arranged on one side of the resin substrate 1, and a resin layer 3 arranged on the side of the resin substrate 1 opposite to the hard coat layer 2. The cross-sectional indenter indentation amount of the resin layer 3 is 200 nm or more and 3000 nm or less, and the cross-sectional indenter indentation amount of the resin substrate 1 is smaller than the cross-sectional indenter indentation amount of the resin layer 3. Furthermore, the thickness of the resin layer 3 is 5 μm or more and 45 μm or less, and the total thickness of the resin substrate 1 and the resin layer 3 is 50 μm or more and 130 μm or less.
 図4(a)は、従来の表示装置用積層体の一例を示す概略断面図である。図4(a)に示す表示装置用積層体50は、樹脂基材51およびハードコート層52を有する。図4(b)は、表示装置用積層体50を、支持板Sと接着層53を介して接合させた試験片について、スライダブルディスプレイ使用時のスライド屈曲を模したスライド屈曲試験を行った場合の説明図である。図4(b)に示すように、このスライド屈曲試験において、接着層53が支持板Sから浮く問題が生じる。これは、樹脂基材51が硬いために、支持板Sの局所的に存在する高い曲率に追従することができないためと推察される。この問題は、実際のスライダブルディスプレイ使用時にも生じ、表示パネルおよび支持板の間の接着層が表示パネル等から剥がれてしまう。 FIG. 4(a) is a schematic cross-sectional view showing an example of a conventional display laminate. The display laminate 50 shown in FIG. 4(a) has a resin substrate 51 and a hard coat layer 52. FIG. 4(b) is an explanatory diagram of a slide bending test performed on a test piece in which the display laminate 50 is bonded to a support plate S via an adhesive layer 53, simulating slide bending during use of a slidable display. As shown in FIG. 4(b), in this slide bending test, a problem occurs in which the adhesive layer 53 floats off the support plate S. This is presumably because the resin substrate 51 is too hard to follow the high curvature that exists locally on the support plate S. This problem also occurs during use of an actual slidable display, and the adhesive layer between the display panel and the support plate peels off from the display panel, etc.
 図5(a)は、従来の表示装置用積層体の別の一例を示す概略断面図である。図5(a)に示す表示装置用積層体60は、樹脂層61およびハードコート層62を有する。図5(b)は、表示装置用積層体60を、支持板Sと接着層63を介して接合させた試験片について、スライダブルディスプレイ使用時のスライド屈曲を模したスライド屈曲試験を行った場合の説明図である。図5(b)に示すように、このスライド屈曲試験において、ハードコート層62にクラックが生じる。これは、樹脂層61が支持板Sの段差に追従するものの、支持板Sの局所的に存在する高い曲率にハードコート層62が追従できずに、クラックが生じると推察される。この問題は、実際のスライダブルディスプレイ使用時にも生じ、ハードコート層にクラックが生じてしまう。 FIG. 5(a) is a schematic cross-sectional view showing another example of a conventional laminate for a display device. The laminate for a display device 60 shown in FIG. 5(a) has a resin layer 61 and a hard coat layer 62. FIG. 5(b) is an explanatory diagram of a slide bending test simulating slide bending during use of a slidable display, performed on a test piece in which the laminate for a display device 60 is bonded to a support plate S via an adhesive layer 63. As shown in FIG. 5(b), cracks occur in the hard coat layer 62 during this slide bending test. It is presumed that this is because, although the resin layer 61 follows the steps of the support plate S, the hard coat layer 62 cannot follow the high curvature that exists locally on the support plate S, causing cracks. This problem also occurs during actual use of a slidable display, causing cracks in the hard coat layer.
 これに対し、本開示における表示装置用積層体は、樹脂基材の一方の面に配置されている樹脂層が、所定の値以上の厚さを有し、さらに、所定の値以上の断面インデンター押込み量を有するため、段差吸収層として機能する。そのため、表示装置用積層体は、スライド屈曲時に支持板の段差に追従することができる。これにより、本開示の表示装置用積層体を、表示パネルの観察者側に配置して表示装置として用いた際に、スライダブルディスプレイ等の画面拡張領域において、キャタピラー構造を構成する支持板表面に接着層を介して配置された表示パネルと、上記支持板と、の間での接着層の剥がれを抑制することができる。 In contrast, the laminate for a display device according to the present disclosure has a resin layer disposed on one side of the resin substrate that has a thickness equal to or greater than a predetermined value and also has a cross-sectional indenter depression amount equal to or greater than a predetermined value, and therefore functions as a step absorption layer. Therefore, the laminate for a display device can follow the steps of the support plate when slidably bent. As a result, when the laminate for a display device according to the present disclosure is disposed on the observer side of a display panel and used as a display device, peeling of the adhesive layer between the display panel disposed via an adhesive layer on the surface of the support plate that constitutes a caterpillar structure and the support plate can be suppressed in a screen expansion area such as a slidable display.
 また、樹脂層より硬い樹脂基材が配置され、さらに樹脂基材および樹脂層の合計厚さが所定の値以上であるため、画面拡張時に、キャタピラー構造を構成する支持板に起因する、局所的に生じる曲率が高い領域の曲率を緩和することが可能となり、ハードコート層に局所的に高い曲率が加わることを防ぐことができる。これにより、ハードコート層のクラックの発生を抑制することができる。 In addition, because a resin substrate harder than the resin layer is disposed, and the combined thickness of the resin substrate and the resin layer is equal to or greater than a predetermined value, it is possible to reduce the curvature of areas with locally high curvature caused by the support plates that make up the caterpillar structure when the screen is expanded, and it is possible to prevent locally high curvature from being applied to the hard coat layer. This makes it possible to suppress the occurrence of cracks in the hard coat layer.
 さらに、本開示の表示装置用積層体は、ハードコート層を有し、樹脂層の厚さが所定の値以下であり、樹脂層より硬い樹脂基材が存在するため、優れた耐擦傷性を有するものとなる。 Furthermore, the laminate for a display device of the present disclosure has a hard coat layer, the thickness of the resin layer is equal to or less than a predetermined value, and a resin substrate that is harder than the resin layer is present, so that the laminate has excellent scratch resistance.
 なお、上述したようなスライド屈曲部における不具合を抑制する性質を、スライド屈曲耐性と称する場合がある。 The property of suppressing defects in the slide bending portion as described above is sometimes referred to as slide bending resistance.
 本開示の表示装置用積層体は、樹脂基材と、樹脂基材の一方の表面に配置されたハードコート層と、樹脂基材のハードコート層とは反対側の表面に配置された樹脂層と、を有する。すなわち、本開示における表示装置用積層体は、積層方向において、樹脂層、樹脂基材およびハードコート層をこの順に有する。
 以下、本開示の表示装置積層体について、詳細に説明する。
The laminate for a display device of the present disclosure has a resin substrate, a hard coat layer disposed on one surface of the resin substrate, and a resin layer disposed on the surface of the resin substrate opposite to the hard coat layer. That is, the laminate for a display device of the present disclosure has the resin layer, the resin substrate, and the hard coat layer in this order in the stacking direction.
The display device laminate of the present disclosure will be described in detail below.
I.樹脂層
 本開示の表示装置積層体に用いられる樹脂層は、スライダブルディスプレイ等の画面拡張領域で用いられるキャタピラー構造を構成する支持板により生じる段差を吸収することができる。これにより、スライダブルディスプレイ等の画面拡張領域において、キャタピラー構造を構成する支持板と、上記支持板表面に接着層を介して配置された表示パネルとの間での剥がれを抑制することができる。
I. Resin Layer The resin layer used in the display device laminate of the present disclosure can absorb steps caused by the support plate constituting the caterpillar structure used in the screen expansion region of a slidable display, etc. This can suppress peeling between the support plate constituting the caterpillar structure and the display panel arranged on the surface of the support plate via an adhesive layer in the screen expansion region of a slidable display, etc.
1.断面インデンター押し込み量
 本開示における樹脂層の断面インデンター押し込み量は、200nm以上であり、好ましくは250nm以上であり、より好ましくは280nm以上である。樹脂層の断面インデンター押し込み量が上記範囲であることにより、段差吸収性能が得られ、表示パネルと支持板との間の接着層の浮きを抑制することができる。
1. Cross-sectional indenter indentation amount The cross-sectional indenter indentation amount of the resin layer in the present disclosure is 200 nm or more, preferably 250 nm or more, and more preferably 280 nm or more. By having the cross-sectional indenter indentation amount of the resin layer in the above range, step absorption performance can be obtained and lifting of the adhesive layer between the display panel and the support plate can be suppressed.
 一方、樹脂層の断面インデンター押し込み量は、3000nm以下であり、好ましくは2800nm以下であり、より好ましくは2000nm以下である。樹脂層の断面インデンター押し込み量が上記範囲であることにより、ハードコート表面の硬度を維持することが可能となり、高い耐擦傷性が得られる。 On the other hand, the cross-sectional indenter indentation amount of the resin layer is 3000 nm or less, preferably 2800 nm or less, and more preferably 2000 nm or less. By having the cross-sectional indenter indentation amount of the resin layer in the above range, it is possible to maintain the hardness of the hard coat surface, and high scratch resistance is obtained.
 本開示において、樹脂層の断面インデンター押し込み量は、樹脂層に一定荷重でバーコビッチ圧子を押し込む押込み試験を行い、そのときの変位量dを測定して得られる。具体的には、まず、1mm×10mmに切り出した表示装置用積層体を包埋樹脂によって包埋したブロックを作製し、このブロックから一般的な切片作製方法によって穴等がない均一な、厚さ70nm以上100nm以下の切片を切り出す。切片の作製には、ライカマイクロシステムズ株式会社のウルトラミクロトーム EM UC7を用いる。そして、この穴等がない均一な切片が切り出された残りのブロックを測定サンプルとする。次いで、このような測定サンプルにおける上記切片が切り出されることによって得られた断面において、ナノインデンター(Bruker(ブルーカー)社製のTI950 TriboIndenter)を用いて、圧子としてバーコビッチ(Berkovich)圧子(三角錐、Bruker社製のTI-0039)を用いて、以下の測定条件で樹脂層の断面中央に40秒かけて最大荷重200μNで垂直に押し込み、そのときの変位量(押込み深さ)dを測定する。ここで、バーコビッチ圧子は、樹脂層の側縁の影響を避けるために、樹脂層の両側端からそれぞれ樹脂層の中央側に500nm以上離れた部分に押し込む。変位量dは、10箇所測定して得られた値の算術平均値とした。なお、測定値の中に算術平均値から±20%以上外れるものが含まれている場合は、その測定値を除外し再測定を行うものとする。測定値の中に算術平均値から±20%以上外れているものが存在するか否かは、測定値をAとし、算術平均値をBとしたとき、(A-B)/B×100によって求められる値(%)が±20%以上であるかによって判断するものとする。 In the present disclosure, the cross-sectional indenter indentation amount of the resin layer is obtained by performing an indentation test in which a Berkovich indenter is pressed into the resin layer with a constant load, and measuring the displacement d at that time. Specifically, first, a block is produced by embedding a laminate for a display device cut to 1 mm x 10 mm in embedding resin, and then a uniform slice with a thickness of 70 nm to 100 nm without holes is cut out from this block using a general slice production method. An ultramicrotome EM UC7 from Leica Microsystems Inc. is used to produce the slices. The remaining block from which the uniform slice without holes is cut out is used as the measurement sample. Next, in the cross section obtained by cutting out the above-mentioned slice from such a measurement sample, a nanoindenter (TI950 TriboIndenter manufactured by Bruker) is used to vertically indent the center of the cross section of the resin layer with a maximum load of 200 μN for 40 seconds under the following measurement conditions using a Berkovich indenter (triangular pyramid, TI-0039 manufactured by Bruker), and the displacement (indentation depth) d at that time is measured. Here, in order to avoid the influence of the side edges of the resin layer, the Berkovich indenter is pressed into a portion 500 nm or more away from each of the two ends of the resin layer toward the center of the resin layer. The displacement d was the arithmetic average value of the values obtained by measuring at 10 points. Note that if the measured values include any that deviate from the arithmetic average value by ±20% or more, the measured values are excluded and remeasured. Whether or not there are any measured values that deviate from the arithmetic mean by ±20% or more is determined by whether the value (%) calculated by (A-B)/B x 100, where A is the measured value and B is the arithmetic mean, is ±20% or more.
(測定条件)
・制御方法:荷重制御(最大荷重200μN)
・リフト量:0nm
・予荷重(PreLoad):0.5μN
・荷重速度:5μN/秒
・最大荷重での保持時間:10秒
・除荷速度:5μN/秒
・温度:23℃
・相対湿度:50%
(Measurement condition)
Control method: Load control (maximum load 200 μN)
Lift amount: 0 nm
Preload: 0.5 μN
Loading speed: 5 μN/sec. Maximum load holding time: 10 sec. Unloading speed: 5 μN/sec. Temperature: 23° C.
Relative humidity: 50%
2.全光線透過率
 本開示に用いられる樹脂層は、全光線透過率が、例えば80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。このように全光線透過率が高いことにより、透明性が良好な表示装置用積層体とすることができる。
2. Total Light Transmittance The resin layer used in the present disclosure preferably has a total light transmittance of, for example, 80% or more, more preferably 85% or more, and even more preferably 88% or more. Such a high total light transmittance allows a laminate for a display device to have good transparency.
 ここで、樹脂層の全光線透過率は、JIS K7361-1に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。 The total light transmittance of the resin layer can be measured in accordance with JIS K7361-1, for example, using a haze meter HM150 manufactured by Murakami Color Research Laboratory.
3.厚さ
 本開示における樹脂層の厚さは、5μm以上であり、好ましくは10μm以上である。厚さが上記範囲であることにより、段差吸収性能が得られる。
3. Thickness The thickness of the resin layer in the present disclosure is 5 μm or more, and preferably 10 μm or more. By having the thickness in the above range, a step absorption performance can be obtained.
 一方、スライダブルディスプレイやローラブルディスプレイ等の表示装置内への収容性等の観点から、樹脂層の厚さは薄い方が好ましい。具体的には、45μm以下であり、35μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよい。厚さが上記範囲であることにより、表示装置内への良好な収容性が得られ、またハードコート層表明の硬さを維持できることから、耐擦傷性を維持することができる。 On the other hand, from the viewpoint of the ease of storage within a display device such as a slidable display or rollable display, it is preferable that the thickness of the resin layer is thin. Specifically, it is 45 μm or less, and may be 35 μm or less, 30 μm or less, or 25 μm or less. By having a thickness within the above range, good storage within the display device can be obtained, and the hardness of the hard coat layer surface can be maintained, so that scratch resistance can be maintained.
4.樹脂層の材料
 本開示における樹脂層の材料としては、樹脂層の断面インデンター押し込み量が上述の範囲となり、かつ、透明な材料であれば、特に限定されないが、ウレタン系樹脂、アクリル系ゲル、シリコーン系ゲル等が挙げられる。本開示においては、ウレタン系樹脂が好ましく、中でも電離放射線硬化型ウレタン系樹脂や熱可塑性ポリウレタン(TPU)が特に好ましい。ウレタン系樹脂は、ウレタン結合を有する樹脂である。
4. Material of the resin layer The material of the resin layer in the present disclosure is not particularly limited as long as the cross-sectional indenter pressing amount of the resin layer falls within the above-mentioned range and is transparent, and examples thereof include urethane-based resins, acrylic gels, silicone gels, etc. In the present disclosure, urethane-based resins are preferred, and ionizing radiation curable urethane-based resins and thermoplastic polyurethanes (TPUs) are particularly preferred. The urethane-based resin is a resin having a urethane bond.
 熱可塑性ポリウレタンは、加熱により可塑性を示すポリウレタンであり、一般に、ある程度高分子量化された直鎖構造を有するポリウレタンを意味する。熱可塑ポリウレタンは、例えば、ポリイソシアネート、高分子ポリオールおよび鎖伸長剤の共重合により得ることができる。ポリイソシアネートとしては、例えば、脂肪族、脂環族または芳香族のジイソシアネートであり、芳香族のジイソシアネートが好ましい。 Thermoplastic polyurethane is a polyurethane that exhibits plasticity when heated, and generally refers to a polyurethane that has a linear structure with a certain degree of high molecular weight. Thermoplastic polyurethane can be obtained, for example, by copolymerization of polyisocyanate, polymeric polyol, and chain extender. The polyisocyanate is, for example, an aliphatic, alicyclic, or aromatic diisocyanate, with aromatic diisocyanate being preferred.
 高分子ポリオールとしては、分子量が好ましくは500以上8000以下、より好ましくは600以上4000以下程度のポリエーテルポリオールまたはポリエステルポリオールが好ましい。ポリエーテルポリオールとしては、例えば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシエチレンオキシプロピレングリコール、ポリオキシテトラメチレングリコール、ポリオキシヘキサメチレングリコール等が挙げられる。これらの中でも、ポリオキシテトラメチレングリコールが好ましい。ポリエステルポリオールとしては、好ましくは脂肪族ジカルボン酸と脂肪族ジオールとから誘導される脂肪族ポリエステルポリオールである。 The polymer polyol is preferably a polyether polyol or polyester polyol having a molecular weight of 500 or more and 8000 or less, more preferably 600 or more and 4000 or less. Examples of polyether polyols include polyoxyethylene glycol, polyoxypropylene glycol, polyoxyethyleneoxypropylene glycol, polyoxytetramethylene glycol, and polyoxyhexamethylene glycol. Among these, polyoxytetramethylene glycol is preferred. The polyester polyol is preferably an aliphatic polyester polyol derived from an aliphatic dicarboxylic acid and an aliphatic diol.
 電離放射線硬化型ウレタン系樹脂とは、電離放射線硬化性ウレタン系樹脂組成物の硬化物であり、中でも、紫外線硬化性ウレタン系樹脂組成物の硬化物が好ましい。電離放射線硬化性ウレタン系樹脂組成物は、ウレタン(メタ)アクリレートを含む。ウレタン(メタ)アクリレートは、モノマー、オリゴマー、およびプレポリマーのいずれであってもよい。ウレタン(メタ)アクリレート中の(メタ)アクリロイル基の数(官能基数)は、2以上4以下であることが好ましい。なお、「(メタ)アクリロイル基」とは、「アクリロイル基」および「メタクリロイル基」の両方を含む意味である。ウレタン(メタ)アクリレートの重量平均分子量は、1500以上20000以下であることが好ましい。電離放射線硬化性ウレタン系樹脂組成物は、(メタ)アクリレート化合物を有していてもよい。(メタ)アクリレート化合物としては、単官能(メタ)アクリレート化合物および多官能(メタ)アクリレート化合物が挙げられる。電離放射線硬化性ウレタン系樹脂組成物は、例えば、単官能(メタ)アクリレート化合物および多官能(メタ)アクリレート化合物の一方または両方を有していてもよい。(メタ)アクリレート化合物、特に、多官能(メタ)アクリレート化合物の種類や配合量を調整することで、樹脂層の断面インデンター押し込み量の調整が可能となる。 The ionizing radiation curable urethane resin is a cured product of an ionizing radiation curable urethane resin composition, and preferably a cured product of an ultraviolet ray curable urethane resin composition. The ionizing radiation curable urethane resin composition contains a urethane (meth)acrylate. The urethane (meth)acrylate may be any of a monomer, an oligomer, and a prepolymer. The number of (meth)acryloyl groups (functionality) in the urethane (meth)acrylate is preferably 2 or more and 4 or less. The term "(meth)acryloyl group" includes both "acryloyl group" and "methacryloyl group". The weight average molecular weight of the urethane (meth)acrylate is preferably 1500 or more and 20000 or less. The ionizing radiation curable urethane resin composition may contain a (meth)acrylate compound. Examples of the (meth)acrylate compound include a monofunctional (meth)acrylate compound and a polyfunctional (meth)acrylate compound. The ionizing radiation curable urethane resin composition may contain, for example, one or both of a monofunctional (meth)acrylate compound and a polyfunctional (meth)acrylate compound. By adjusting the type and amount of the (meth)acrylate compound, particularly the polyfunctional (meth)acrylate compound, it is possible to adjust the cross-sectional indenter pressing depth of the resin layer.
 アクリル系ゲルとしては、粘着剤などに用いられている、アクリル酸エステルを含むモノマーを重合してなるポリマーであれば種々のものを使用することができる。具体的には、アクリル系ゲルとしては、例えば、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-アミル(メタ)アクリレート、i-アミル(メタ)アクリレート、オクチル(メタ)アクリレート、i-オクチル(メタ)アクリレート、i-ミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ノニル(メタ)アクリレート、i-ノニル(メタ)アクリレート、i-デシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、i-ステアリル(メタ)アクリレート等のアクリル系モノマーを重合または共重合したものを用いることができる。本明細書において、「(メタ)アクリレート」とは、「アクリレート」および「メタクリレート」の両方を含む意味である。なお、上記(共)重合する際に使用するアクリル酸エステルは、単独で用いる他、2種類以上を併用してもよい。 A variety of acrylic gels can be used as long as they are polymers made by polymerizing monomers containing acrylic esters, which are used in adhesives, etc. Specifically, examples of acrylic gels that can be used include those obtained by polymerizing or copolymerizing acrylic monomers such as ethyl (meth)acrylate, n-propyl (meth)acrylate, i-propyl (meth)acrylate, n-butyl (meth)acrylate, i-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-hexyl (meth)acrylate, n-amyl (meth)acrylate, i-amyl (meth)acrylate, octyl (meth)acrylate, i-octyl (meth)acrylate, i-myristyl (meth)acrylate, lauryl (meth)acrylate, nonyl (meth)acrylate, i-nonyl (meth)acrylate, i-decyl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate, and i-stearyl (meth)acrylate. In this specification, "(meth)acrylate" means both "acrylate" and "methacrylate". The acrylic acid ester used in the (co)polymerization may be used alone or in combination of two or more kinds.
 シリコーンゲルとは、シリコーンオイルをゲル化して固体状になったものを意味し、特に反応副生成物(アウトガス)の発生がない観点から、2液付加反応型シリコーンゲルが好ましく用いられる。2液付加反応型シリコーンゲルは、白金触媒下、ビニル基を持つシリコーンポリマー(主剤)と水酸基を持つシリコーンポリマー(硬化剤)とのヒドロシリル化反応によって得られる。2液付加反応型シリコーンの原料としては、従来公知の各種ケイ素化合物を適宜選択して用いることができ、種々のシリコーン材料として市販されているケイ素化合物を用いてもよい。また、ケイ素原子の置換基も特に限定されるものではなく、例えば、メチル基、エチル基、及びプロピル基などの炭素数1~10のアルキル基、シクロペンチル基、及びシクロヘキシル基などの炭素数5~10のシクロアルキル基、ビニル基、及びアリル基などの炭素数2~10のアルケニル基、フェニル基、及びトリル基などの炭素数5~20のアリール基のほか、これらの置換基の水素原子の一部が他の原子又は置換基で置換されたものであってもよい。  Silicone gel means a solid state obtained by gelling silicone oil. Two-liquid addition reaction type silicone gel is preferably used, especially from the viewpoint of not generating reaction by-products (outgassing). Two-liquid addition reaction type silicone gel is obtained by hydrosilylation reaction of a silicone polymer (base) having a vinyl group with a silicone polymer (curing agent) having a hydroxyl group in the presence of a platinum catalyst. As the raw material of two-liquid addition reaction type silicone, various conventionally known silicon compounds can be appropriately selected and used, and silicon compounds commercially available as various silicone materials may also be used. In addition, the substituent of the silicon atom is not particularly limited, and examples thereof include alkyl groups having 1 to 10 carbon atoms such as methyl groups, ethyl groups, and propyl groups, cycloalkyl groups having 5 to 10 carbon atoms such as cyclopentyl groups and cyclohexyl groups, alkenyl groups having 2 to 10 carbon atoms such as vinyl groups and allyl groups, aryl groups having 5 to 20 carbon atoms such as phenyl groups and tolyl groups, and those in which some of the hydrogen atoms of these substituents have been replaced with other atoms or substituents.
 2液反応型の加熱付加型のシリコーンゲルとしては、具体的には、CF-5106(商品名:東レ・ダウコーニング社製)、KE-1012A/B(商品名:信越シリコーン社製)、XE14-685(A)/(B)(商品名:モメンティブ社製)などが挙げられる。これらのシリコーンゲルは、原料であるシリコーン樹脂がA液及びB液に分かれており、この両液を所定比率で混合することにより使用できる。 Specific examples of two-liquid reaction heat addition silicone gels include CF-5106 (product name: manufactured by Dow Corning Toray Co., Ltd.), KE-1012A/B (product name: manufactured by Shin-Etsu Silicones Co., Ltd.), and XE14-685(A)/(B) (product name: manufactured by Momentive Corporation). These silicone gels are made from silicone resin, which is the raw material, separated into liquid A and liquid B, and can be used by mixing the two liquids in a specified ratio.
 樹脂層は、樹脂層の断面インデンター押し込み量が上述の範囲となり、透明性を有する樹脂層を得ることができる限り、紫外線吸収剤、分光透過率調整剤、防汚剤、無機粒子および/または有機粒子等を含んでいてもよい。 The resin layer may contain ultraviolet absorbers, spectral transmittance adjusters, antifouling agents, inorganic particles and/or organic particles, etc., as long as the cross-sectional indenter pressing amount of the resin layer falls within the above-mentioned range and a transparent resin layer can be obtained.
5.樹脂層の形成方法
 本開示における樹脂層の形成方法としては、例えば、樹脂基材の一方の面に、必要に応じてプライマー層を介して、樹脂組成物を塗布する方法が挙げられる。塗布方法としては、所望の厚さで塗布可能な方法であれば特に制限はなく、例えばグラビアコート法、グラビアリバースコート法、グラビアオフセットコート法、スピンコート法、ロールコート法、リバースロールコート法、ブレードコート法、ディップコート法、スクリーン印刷法等の一般的な塗布方法が挙げられる。
5. Method for forming a resin layer In the present disclosure, the method for forming a resin layer may be, for example, a method for applying a resin composition to one side of a resin substrate, optionally via a primer layer. The application method is not particularly limited as long as it can be applied to a desired thickness, and may be, for example, a general application method such as gravure coating, gravure reverse coating, gravure offset coating, spin coating, roll coating, reverse roll coating, blade coating, dip coating, or screen printing.
 また、樹脂層の形成方法としては、樹脂基材の一方の面に樹脂層を転写する転写法や、樹脂基材の一方の面に、プライマー層を介してフィルム状の樹脂層を貼り合わせる方法を用いることができる。 The resin layer can be formed by a transfer method in which a resin layer is transferred to one side of a resin substrate, or by a method in which a film-like resin layer is attached to one side of a resin substrate via a primer layer.
II.樹脂基材
 本開示における樹脂基材は、上記樹脂層と上記ハードコート層との間に配置されるものであり、上記樹脂層と合わせて所定の膜厚を有し、上記樹脂層より硬い材料で形成されている。このため、スライダブルディスプレイ等の画面拡張領域で用いられるキャタピラー構造を構成する支持板に起因する、局所的に生じる曲率が高い領域の曲率を緩和することが可能となり、ハードコート層に局所的に高い曲率が加わることを防ぐことができる。これにより、ハードコート層のクラックの発生を抑制することができる。
II. Resin substrate The resin substrate in the present disclosure is disposed between the resin layer and the hard coat layer, has a predetermined film thickness together with the resin layer, and is formed of a material harder than the resin layer. Therefore, it is possible to reduce the curvature of the area with high curvature locally caused by the support plate constituting the caterpillar structure used in the screen expansion area of a slideable display, etc., and to prevent the hard coat layer from being locally subjected to high curvature. This makes it possible to suppress the occurrence of cracks in the hard coat layer.
1.断面インデンター押し込み量
 本開示における樹脂基材の断面インデンター押し込み量は、上述した樹脂層の断面インデンター押し込み量よりも小さい。樹脂基材の断面インデンター押し込み量が、上樹脂層の断面インデンター押し込み量よりも小さいことにより、ハードコート層へのクラックの発生を抑制することができる。樹脂基材の断面インデンター押し込み量は、例えば、200nm未満であり、好ましくは180nm以下である。樹脂基材の断面インデンター押し込み量の測定方法は、上述した「I.樹脂層」で記載した方法と同様である。
1. Cross-sectional indenter indentation amount The cross-sectional indenter indentation amount of the resin substrate in the present disclosure is smaller than the cross-sectional indenter indentation amount of the resin layer described above. By making the cross-sectional indenter indentation amount of the resin substrate smaller than the cross-sectional indenter indentation amount of the upper resin layer, it is possible to suppress the occurrence of cracks in the hard coat layer. The cross-sectional indenter indentation amount of the resin substrate is, for example, less than 200 nm, preferably 180 nm or less. The method for measuring the cross-sectional indenter indentation amount of the resin substrate is the same as the method described in "I. Resin layer" above.
2.ヤング率
 本開示における樹脂基材のヤング率は、2GPa以上であることが好ましく、中でも、4GPa以上、特に5Gpa以上であることが好ましい。局所的に生じる曲率が高い領域の曲率を緩和することが可能となり、ハードコート層に局所的に高い曲率が加わることを防ぐことができるからである。なお、樹脂基材は12Gpa以下のものが用いられる。
2. Young's modulus The Young's modulus of the resin substrate in the present disclosure is preferably 2 GPa or more, more preferably 4 GPa or more, particularly preferably 5 GPa or more. This is because it is possible to reduce the curvature of the area with high curvature locally, and prevent the hard coat layer from being locally subjected to high curvature. Note that the resin substrate used is one with a Young's modulus of 12 GPa or less.
 本開示において、樹脂基材のヤング率は以下の引張試験方法により測定される。引張試験は、まず、樹脂基材から0.5cm×7cmの大きさの単層構造の樹脂基材層に切り出すことによりサンプルを得る。次いで、テンシロン万能試験機(製品名「RTC-1310A」、オリエンテック社製)に付属しているチャッキング用治具に、切り出したサンプルの長手方向が引張り方向となるようにサンプルの両端を固定する。次いで、上記テンシロン万能試験機を用いて、サンプルを25℃、引張速度10mm/分で引張ることにより、引張試験を行う。樹脂基材層の上記引張試験から得られた応力-歪み曲線において、JIS K7161-4に準拠し、歪みが0.05%のときの応力と、歪みが0.25%のときの応力を結ぶ直線の傾きを求めることよって、ヤング率を求める。ヤング率は、3回測定して得られた値の算術平均値とする。 In this disclosure, the Young's modulus of the resin substrate is measured by the following tensile test method. In the tensile test, a sample is obtained by first cutting out a single-layered resin substrate layer measuring 0.5 cm x 7 cm from the resin substrate. Then, both ends of the cut sample are fixed to a chucking jig attached to a Tensilon universal testing machine (product name "RTC-1310A", manufactured by Orientec Co., Ltd.) so that the longitudinal direction of the cut sample is the tensile direction. Then, a tensile test is performed by pulling the sample at 25°C and a tensile speed of 10 mm/min using the Tensilon universal testing machine. In the stress-strain curve obtained from the tensile test of the resin substrate layer, the Young's modulus is calculated by determining the slope of the line connecting the stress when the strain is 0.05% and the stress when the strain is 0.25% in accordance with JIS K7161-4. The Young's modulus is the arithmetic average value obtained from three measurements.
3.樹脂基材の厚さ
 樹脂基材の厚さは、樹脂基材および樹脂層の合計厚さが後述する範囲となる厚さであれば特に限定されないが、例えば、20μm以上であり、30μm以上であってもよく、65μm以上であってもよい。一方、例えば、125μm以下であり、100μm以下であってもよく、80μm以下であってもよい。
3. Thickness of Resin Substrate The thickness of the resin substrate is not particularly limited as long as the total thickness of the resin substrate and the resin layer falls within the range described below, but may be, for example, 20 μm or more, 30 μm or more, or 65 μm or more. On the other hand, it may be, for example, 125 μm or less, 100 μm or less, or 80 μm or less.
4.樹脂基材の材料
 本開示に用いられる樹脂基材を構成する樹脂としては、樹脂基材の断面インデンター押し込み量が上述した断面インデンター押し込み量となり、かつ、透明性を有する樹脂基材を得ることができるものであれば特に限定されるものではなく、例えば、ポリエステル系樹脂、ポリイミド系樹脂、セルロース系樹脂等が挙げられる。
4. Materials for Resin Substrate The resin constituting the resin substrate used in the present disclosure is not particularly limited as long as the cross-sectional indenter indentation amount of the resin substrate is the above-mentioned cross-sectional indenter indentation amount and a resin substrate having transparency can be obtained, and examples thereof include polyester-based resins, polyimide-based resins, cellulose-based resins, etc.
 本開示において、ポリイミド系樹脂とは、主鎖にイミド結合を有する高分子をいう。ポリイミド系樹脂としては、例えば、ポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエーテルイミド等が挙げられる。ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等が挙げられる。セルロース系樹脂としては、例えば、トリアセチルセルロース(TAC)等が挙げられる。中でも、ポリエステル系樹脂が好ましい。これらの樹脂は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。本開示においては、中でも、ポリイミド系樹脂、PET、TAC等が好適に用いられる。 In this disclosure, polyimide resin refers to a polymer having an imide bond in the main chain. Examples of polyimide resins include polyimide, polyamideimide, polyesterimide, polyetherimide, etc. Examples of polyester resins include polyethylene terephthalate (PET), polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate (PEN), etc. Examples of cellulose resins include triacetyl cellulose (TAC), etc. Among these, polyester resins are preferred. These resins may be used alone or in combination of two or more. Among these, polyimide resins, PET, TAC, etc. are preferably used in this disclosure.
 樹脂基材は、必要に応じて、添加剤をさらに含有することができる。添加剤としては、例えば、紫外線吸収剤、光安定剤、酸化防止剤、無機粒子、巻き取りを円滑にするためのシリカフィラー、製膜性や脱泡性を向上させる界面活性剤、密着性向上剤等が挙げられる。 The resin substrate may further contain additives as necessary. Examples of additives include ultraviolet absorbers, light stabilizers, antioxidants, inorganic particles, silica fillers for smooth winding, surfactants for improving film-forming and defoaming properties, and adhesion improvers.
III.ハードコート層
 本開示における表示装置用積層体は、樹脂基材の樹脂層とは反対側の面に、ハードコート層を有する。ハードコート層は、表面硬度を高めるための部材である。ハードコート層が配置されていることにより、耐傷性を向上させることができる。
III. Hard Coat Layer The laminate for a display device in the present disclosure has a hard coat layer on the surface of the resin substrate opposite to the resin layer. The hard coat layer is a member for increasing the surface hardness. By disposing the hard coat layer, it is possible to improve scratch resistance.
 本開示におけるハードコート層は、単層であってもよく、2層以上の多層構造を有していてもよい。 The hard coat layer in this disclosure may be a single layer or may have a multi-layer structure of two or more layers.
1.鉛筆硬度
 ここで、「ハードコート層」とは、表面硬度を高めるための部材であり、具体的には、本開示における表示装置用積層体がハードコート層を有する構成において、JIS K 5600-5-4(1999)で規定される鉛筆硬度試験を行った場合に、「H」以上の硬度を示すものをいう。
1. Pencil Hardness Here, the term "hard coat layer" refers to a member for increasing surface hardness, and specifically refers to a layer having a hard coat layer in a configuration in which the laminate for a display device in the present disclosure has a hard coat layer, and exhibits a hardness of "H" or more when a pencil hardness test specified in JIS K 5600-5-4 (1999) is carried out.
 本開示における表示装置用積層体のハードコート層側の表面の鉛筆硬度は、H以上であることが好ましく、2H以上であることがより好ましく、3H以上であることがさらに好ましい。 The pencil hardness of the surface of the hard coat layer side of the laminate for a display device according to the present disclosure is preferably H or more, more preferably 2H or more, and even more preferably 3H or more.
 ここで、鉛筆硬度は、JIS K5600-5-4(1999)で規定される鉛筆硬度試験で測定される。具体的には、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験を表示装置用積層体のハードコート層側の表面に行い、傷が付かない最も高い鉛筆硬度を評価することにより行うことができる。測定条件としては、角度45°、荷重750g、速度0.5mm/秒以上1mm/秒以下、温度23±2℃とすることができる。鉛筆硬度試験機としては、例えば、東洋精機(株)製 鉛筆引っかき塗膜硬さ試験機を用いることができる。 Here, the pencil hardness is measured by the pencil hardness test specified in JIS K5600-5-4 (1999). Specifically, the pencil hardness test specified in JIS K5600-5-4 (1999) can be performed on the surface of the hard coat layer side of the laminate for a display device using a test pencil specified in JIS-S-6006, and the highest pencil hardness that does not cause scratches can be evaluated. The measurement conditions can be an angle of 45°, a load of 750 g, a speed of 0.5 mm/sec to 1 mm/sec, and a temperature of 23±2°C. As a pencil hardness tester, for example, a pencil scratch coating hardness tester manufactured by Toyo Seiki Co., Ltd. can be used.
2.厚さ
 ハードコート層の厚さは、ハードコート層の材料や、ハードコート層が有する機能及び表示装置用積層体の用途により適宜選択されればよい。例えばハードコート層の材料が有機材料である場合、ハードコート層の厚さは、5μm以上が好ましく、10μm以上であってもよい。ハードコート層の厚さが上記値以上であれば、耐擦傷性を確実に得ることができる。一方、ハードコート層の厚さは、例えば、20μm以下である。
2. Thickness The thickness of the hard coat layer may be appropriately selected according to the material of the hard coat layer, the function of the hard coat layer, and the use of the laminate for display device. For example, when the material of the hard coat layer is an organic material, the thickness of the hard coat layer is preferably 5 μm or more, and may be 10 μm or more. If the thickness of the hard coat layer is the above value or more, scratch resistance can be reliably obtained. On the other hand, the thickness of the hard coat layer is, for example, 20 μm or less.
 また、例えばハードコート層の材料が無機材料である場合、ハードコート層の厚さは、数十nm程度とすることができる。 In addition, for example, if the material of the hard coat layer is an inorganic material, the thickness of the hard coat layer can be about several tens of nm.
3.ハードコート層の材料
 ハードコート層の材料としては、例えば、有機材料、無機材料、有機無機複合材料等を用いることができる。
3. Materials for the Hard Coat Layer As the material for the hard coat layer, for example, an organic material, an inorganic material, or an organic-inorganic composite material can be used.
 中でも、ハードコート層の材料は有機材料であることが好ましい。具体的には、ハードコート層は、重合性化合物を含む樹脂組成物の硬化物を含むことが好ましい。重合性化合物を含む樹脂組成物の硬化物は、重合性化合物を、必要に応じて重合開始剤を用い、公知の方法で重合反応させることにより得ることができる。 Among these, the material of the hard coat layer is preferably an organic material. Specifically, the hard coat layer preferably contains a cured product of a resin composition containing a polymerizable compound. The cured product of a resin composition containing a polymerizable compound can be obtained by subjecting the polymerizable compound to a polymerization reaction by a known method, using a polymerization initiator as necessary.
(1)重合性化合物
 重合性化合物は、分子内に重合性官能基を少なくとも1つ有するものである。重合性化合物としては、例えば、ラジカル重合性化合物およびカチオン重合性化合物の少なくとも1種を用いることができる。
(1) Polymerizable Compound The polymerizable compound has at least one polymerizable functional group in the molecule. As the polymerizable compound, for example, at least one of a radical polymerizable compound and a cationic polymerizable compound can be used.
 ラジカル重合性化合物とは、ラジカル重合性基を有する化合物である。ラジカル重合性化合物が有するラジカル重合性基としては、ラジカル重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、炭素-炭素不飽和二重結合を含む基などが挙げられ、具体的には、ビニル基、(メタ)アクリロイル基などが挙げられる。なお、ラジカル重合性化合物が2個以上のラジカル重合性基を有する場合、これらのラジカル重合性基はそれぞれ同一であってもよいし、異なっていてもよい。 A radically polymerizable compound is a compound that has a radically polymerizable group. The radically polymerizable group of a radically polymerizable compound is not particularly limited as long as it is a functional group that can cause a radical polymerization reaction, but examples include groups that contain a carbon-carbon unsaturated double bond, and specific examples include a vinyl group and a (meth)acryloyl group. Note that when a radically polymerizable compound has two or more radically polymerizable groups, these radically polymerizable groups may be the same or different.
 ラジカル重合性化合物が1分子中に有するラジカル重合性基の数は、ハードコート層の硬度が向上する点から、2つ以上であることが好ましく、さらに3つ以上であることが好ましい。 The number of radically polymerizable groups that the radically polymerizable compound has in one molecule is preferably 2 or more, and more preferably 3 or more, in order to improve the hardness of the hard coat layer.
 ラジカル重合性化合物としては、反応性の高さの点から、中でも(メタ)アクリロイル基を有する化合物が好ましく、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、メラミン(メタ)アクリレート、ポリフルオロアルキル(メタ)アクリレート、シリコーン(メタ)アクリレート等と称される分子内に数個の(メタ)アクリロイル基を有する分子量が数百から数千の多官能(メタ)アクリレートモノマー及びオリゴマーを好ましく使用できる。また、アクリレートポリマーの側鎖に(メタ)アクリロイル基を2個以上有する多官能(メタ)アクリレートポリマーも好ましく使用できる。中でも、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートモノマーを好ましく使用できる。ハードコート層が、多官能(メタ)アクリレートモノマーの硬化物を含むことにより、ハードコート層の硬度を向上させ、さらに密着性を向上させることができる。また、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートオリゴマー又はポリマーも好ましく使用できる。ハードコート層が、多官能(メタ)アクリレートオリゴマー又はポリマーの硬化物を含むことにより、ハードコート層の硬度及び屈曲耐性を向上させ、さらに、密着性を向上させることができる。 As the radical polymerizable compound, from the viewpoint of high reactivity, a compound having a (meth)acryloyl group is preferable. For example, polyfunctional (meth)acrylate monomers and oligomers having several (meth)acryloyl groups in the molecule and a molecular weight of several hundred to several thousand, such as urethane (meth)acrylate, polyester (meth)acrylate, epoxy (meth)acrylate, melamine (meth)acrylate, polyfluoroalkyl (meth)acrylate, silicone (meth)acrylate, etc., can be preferably used. In addition, polyfunctional (meth)acrylate polymers having two or more (meth)acryloyl groups in the side chain of the acrylate polymer can also be preferably used. Among them, polyfunctional (meth)acrylate monomers having two or more (meth)acryloyl groups in one molecule can be preferably used. By including a cured product of a polyfunctional (meth)acrylate monomer in the hard coat layer, the hardness of the hard coat layer can be improved and the adhesion can be further improved. Also preferably used are polyfunctional (meth)acrylate oligomers or polymers having two or more (meth)acryloyl groups in one molecule. By including a cured product of a polyfunctional (meth)acrylate oligomer or polymer in the hard coat layer, the hardness and bending resistance of the hard coat layer can be improved, and the adhesion can be further improved.
 なお、本明細書において、(メタ)アクリロイルとは、アクリロイル及びメタクリロイルの各々を表し、(メタ)アクリレートとは、アクリレート及びメタクリレートの各々を表す。 In this specification, (meth)acryloyl refers to both acryloyl and methacryloyl, and (meth)acrylate refers to both acrylate and methacrylate.
 多官能(メタ)アクリレートモノマーの具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。中でも、反応性が高く、ハードコート層の硬度が向上する点、及び密着性の点から、1分子中に3個以上6個以下の(メタ)アクリロイル基を有するものが好ましく、例えば、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールテトラアクリレート(PETTA)、ジペンタエリスリトールペンタアクリレート(DPPA)、トリメチロールプロパントリ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート等を好ましく用いることができ、特に、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びジペンタエリスリトールヘキサアクリレート、並びにこれらをPO、EO、又はカプロラクトン変性したものから選ばれる少なくとも1種が好ましい。 Specific examples of polyfunctional (meth)acrylate monomers include those described in JP 2019-132930 A. Among them, from the viewpoints of high reactivity, improved hardness of the hard coat layer, and adhesion, those having 3 to 6 (meth)acryloyl groups in one molecule are preferred. For example, pentaerythritol triacrylate (PETA), dipentaerythritol hexaacrylate (DPHA), pentaerythritol tetraacrylate (PETTA), dipentaerythritol pentaacrylate (DPPA), trimethylolpropane tri(meth)acrylate, tripentaerythritol octa(meth)acrylate, tetrapentaerythritol deca(meth)acrylate, etc. can be preferably used, and in particular, at least one selected from pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and dipentaerythritol hexaacrylate, and those modified with PO, EO, or caprolactone are preferred.
 樹脂組成物は、ラジカル重合性化合物として、硬度や粘度調整、密着性の向上等のために、単官能(メタ)アクリレートモノマーを含んでいてもよい。単官能(メタ)アクリレートモノマーの具体例については、例えば特開2019-132930号公報に記載のものを挙げることができる。 The resin composition may contain a monofunctional (meth)acrylate monomer as a radically polymerizable compound to adjust hardness and viscosity, improve adhesion, etc. Specific examples of monofunctional (meth)acrylate monomers include those described in JP 2019-132930 A.
 カチオン重合性化合物とは、カチオン重合性基を有する化合物である。カチオン重合性化合物が有するカチオン重合性基としては、カチオン重合反応を生じ得る官能基であればよく、特に限定されないが、例えば、エポキシ基、オキセタニル基、ビニルエーテル基などが挙げられる。なお、カチオン重合性化合物が2個以上のカチオン重合性基を有する場合、これらのカチオン重合性基はそれぞれ同一であってもよいし、異なっていてもよい。 A cationic polymerizable compound is a compound that has a cationic polymerizable group. The cationic polymerizable group of a cationic polymerizable compound is not particularly limited as long as it is a functional group that can cause a cationic polymerization reaction, and examples of the cationic polymerizable group include an epoxy group, an oxetanyl group, and a vinyl ether group. When a cationic polymerizable compound has two or more cationic polymerizable groups, these cationic polymerizable groups may be the same or different.
 カチオン重合性化合物が1分子中に有するカチオン重合性基の数は、ハードコート層の硬度が向上する点から、2つ以上であることが好ましく、さらに3つ以上であることが好ましい。 The number of cationic polymerizable groups that the cationic polymerizable compound has in one molecule is preferably 2 or more, and more preferably 3 or more, in order to improve the hardness of the hard coat layer.
 また、カチオン重合性化合物としては、中でも、カチオン重合性基としてエポキシ基及びオキセタニル基の少なくとも1種を有する化合物が好ましく、エポキシ基及びオキセタニル基の少なくとも1種を1分子中に2個以上有する化合物がより好ましい。エポキシ基、オキセタニル基等の環状エーテル基は、重合反応に伴う収縮が小さいという点から好ましい。また、環状エーテル基のうちエポキシ基を有する化合物は多様な構造の化合物が入手し易く、得られたハードコート層の耐久性に悪影響を与えず、ラジカル重合性化合物との相溶性もコントロールし易いという利点がある。また、環状エーテル基のうちオキセタニル基は、エポキシ基と比較して重合度が高い、低毒性であり、得られたハードコート層を、エポキシ基を有する化合物と組み合わせた際に塗膜中でのカチオン重合性化合物から得られるネットワーク形成速度を早め、ラジカル重合性化合物と混在する領域でも未反応のモノマーを膜中に残さずに独立したネットワークを形成する等の利点がある。 Among the cationic polymerizable compounds, compounds having at least one of epoxy and oxetanyl groups as cationic polymerizable groups are preferred, and compounds having at least two of epoxy and oxetanyl groups in one molecule are more preferred. Cyclic ether groups such as epoxy and oxetanyl groups are preferred because they cause little shrinkage during polymerization. Among cyclic ether groups, compounds having epoxy groups have the advantages of being readily available in a variety of structures, not adversely affecting the durability of the resulting hard coat layer, and being easy to control compatibility with radically polymerizable compounds. Among cyclic ether groups, oxetanyl groups have the advantages of having a higher degree of polymerization and lower toxicity than epoxy groups, and of accelerating the network formation rate obtained from the cationic polymerizable compound in the coating film when the resulting hard coat layer is combined with a compound having an epoxy group, and forming an independent network without leaving unreacted monomers in the film even in areas where the radically polymerizable compound is mixed.
 エポキシ基を有するカチオン重合性化合物としては、例えば、脂環族環を有する多価アルコールのポリグリシジルエーテル又は、シクロヘキセン環、シクロペンテン環含有化合物を、過酸化水素、過酸等の適当な酸化剤でエポキシ化する事によって得られる脂環族エポキシ樹脂;脂肪族多価アルコール、又はそのアルキレンオキサイド付加物のポリグリシジルエーテル、脂肪族長鎖多塩基酸のポリグリシジルエステル、グリシジル(メタ)アクリレートのホモポリマー、コポリマーなどの脂肪族エポキシ樹脂;ビスフェノールA、ビスフェノールFや水添ビスフェノールA等のビスフェノール類、又はそれらのアルキレンオキサイド付加体、カプロラクトン付加体等の誘導体と、エピクロルヒドリンとの反応によって製造されるグリシジルエーテル、及びノボラックエポキシ樹脂等でありビスフェノール類から誘導されるグリシジルエーテル型エポキシ樹脂等が挙げられる。 Cationically polymerizable compounds having epoxy groups include, for example, alicyclic epoxy resins obtained by epoxidizing polyglycidyl ethers of polyhydric alcohols having alicyclic rings or compounds containing cyclohexene rings or cyclopentene rings with a suitable oxidizing agent such as hydrogen peroxide or peracid; aliphatic epoxy resins such as polyglycidyl ethers of aliphatic polyhydric alcohols or their alkylene oxide adducts, polyglycidyl esters of aliphatic long-chain polybasic acids, and homopolymers and copolymers of glycidyl (meth)acrylate; glycidyl ethers produced by reacting bisphenols such as bisphenol A, bisphenol F, and hydrogenated bisphenol A, or derivatives thereof such as alkylene oxide adducts or caprolactone adducts, with epichlorohydrin, and novolac epoxy resins, etc., which are glycidyl ether-type epoxy resins derived from bisphenols.
 脂環族エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、および、オキセタニル基を有するカチオン重合性化合物の具体例については、例えば特開2018-104682号公報に記載のものを挙げることができる。 Specific examples of alicyclic epoxy resins, glycidyl ether type epoxy resins, and cationic polymerizable compounds having an oxetanyl group include those described in JP 2018-104682 A.
 なお、ハードコート層に含まれる重合性化合物を含む樹脂組成物の硬化物は、フーリエ変換赤外分光光度計(FTIR)、熱分解ガスクロマトグラフ装置(GC-MS)や、重合物の分解物について、高速液体クロマトグラフィー、ガスクロマトグラフ質量分析計、NMR、元素分析、XPS/ESCA及びTOF-SIMS等の組み合わせを用いて分析することができる。 The cured resin composition containing the polymerizable compound contained in the hard coat layer can be analyzed using a Fourier transform infrared spectrophotometer (FTIR) or a pyrolysis gas chromatograph (GC-MS), and the decomposition products of the polymer can be analyzed using a combination of high performance liquid chromatography, a gas chromatograph mass spectrometer, NMR, elemental analysis, XPS/ESCA, and TOF-SIMS.
(2)重合開始剤
 樹脂組成物は、必要に応じて重合開始剤を含有していてもよい。重合開始剤としては、ラジカル重合開始剤、カチオン重合開始剤、ラジカル及びカチオン重合開始剤等を適宜選択して用いることができる。これらの重合開始剤は、光照射及び加熱の少なくとも一種により分解されて、ラジカルもしくはカチオンを発生してラジカル重合とカチオン重合を進行させるものである。なお、ハードコート層中には、重合開始剤が全て分解されて残留していない場合もある。
(2) Polymerization initiator The resin composition may contain a polymerization initiator as necessary. As the polymerization initiator, a radical polymerization initiator, a cationic polymerization initiator, a radical and cationic polymerization initiator, etc. may be appropriately selected and used. These polymerization initiators are decomposed by at least one of light irradiation and heating to generate radicals or cations, and cause radical polymerization and cationic polymerization to proceed. Note that there are cases where the polymerization initiator is completely decomposed and does not remain in the hard coat layer.
 ラジカル重合開始剤およびカチオン重合開始剤の具体例については、例えば特開2018-104682号公報に記載のものを挙げることができる。 Specific examples of radical polymerization initiators and cationic polymerization initiators include those described in JP 2018-104682 A.
(3)粒子
 ハードコート層は、無機又は有機粒子を含有することが好ましく、無機微粒子を含有することがより好ましい。ハードコート層が粒子を含有することにより、硬度を向上させることができる。
(3) Particles The hard coat layer preferably contains inorganic or organic particles, and more preferably inorganic fine particles. When the hard coat layer contains particles, the hardness can be improved.
 無機粒子としては、例えば、シリカ(SiO)、酸化アルミニウム、ジルコニア、チタニア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、インジウムスズ酸化物(ITO)、酸化アンチモン、酸化セリウム等の金属酸化物粒子、フッ化マグネシウム、フッ化ナトリウム等の金属フッ化物粒子、金属粒子、金属硫化物粒子、金属窒化物粒子等が挙げられる。中でも、金属酸化物粒子が好ましく、シリカ粒子及び酸化アルミニウム粒子から選ばれる少なくとも一種がより好ましく、シリカ粒子がさらに好ましい。優れた硬度が得られるからである。 Examples of inorganic particles include metal oxide particles such as silica (SiO 2 ), aluminum oxide, zirconia, titania, zinc oxide, germanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), antimony oxide, and cerium oxide, metal fluoride particles such as magnesium fluoride and sodium fluoride, metal particles, metal sulfide particles, and metal nitride particles. Among these, metal oxide particles are preferred, and at least one selected from silica particles and aluminum oxide particles is more preferred, with silica particles being even more preferred, because excellent hardness can be obtained.
 また、無機粒子は、当該無機粒子表面に当該無機粒子同士又は重合性化合物の少なくとも1種との間で架橋反応し、共有結合が形成可能な光反応性を有する反応性官能基を少なくとも粒子表面の一部に有する反応性無機粒子であることが好ましい。反応性無機粒子同士又は反応性無機粒子とラジカル重合性化合物及びカチオン重合性化合物の少なくとも1種との間で架橋反応することにより、ハードコート層の硬度をさらに向上させることができる。 The inorganic particles are preferably reactive inorganic particles having photoreactive reactive functional groups on at least a portion of the particle surface that undergo a crosslinking reaction between the inorganic particles themselves or between the inorganic particles and at least one type of polymerizable compound to form a covalent bond. The hardness of the hard coat layer can be further improved by crosslinking between the reactive inorganic particles themselves or between the reactive inorganic particles and at least one type of radically polymerizable compound and cationic polymerizable compound.
 反応性無機粒子は、少なくとも表面の一部に有機成分が被覆され、当該有機成分により導入された反応性官能基を表面に有する。反応性官能基としては、例えば、重合性不飽和基が好適に用いられ、より好ましくは光硬化性不飽和基である。反応性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合、及びエポキシ基等が挙げられる。 Reactive inorganic particles have at least a portion of their surface coated with an organic component, and have reactive functional groups on the surface introduced by the organic component. As the reactive functional group, for example, a polymerizable unsaturated group is preferably used, and a photocurable unsaturated group is more preferably used. As the reactive functional group, for example, ethylenically unsaturated bonds such as (meth)acryloyl groups, vinyl groups, and allyl groups, and epoxy groups can be mentioned.
 反応性シリカ粒子としては特に限定されず、従来公知のものを用いることができ、例えば、特開2008-165040号公報記載の反応性シリカ粒子等が挙げられる。また、反応性シリカ粒子の市販品としては、例えば、日産化学工業社製;MIBK-SD、MIBK-SDMS、MIBK-SDL、MIBK-SDZL、日揮触媒化成社製;V8802、V8803等が挙げられる。 The reactive silica particles are not particularly limited, and conventionally known ones can be used, such as the reactive silica particles described in JP 2008-165040 A. Commercially available reactive silica particles include, for example, MIBK-SD, MIBK-SDMS, MIBK-SDL, and MIBK-SDZL manufactured by Nissan Chemical Industries, Ltd., and V8802 and V8803 manufactured by JGC Catalysts and Chemicals Co., Ltd.
 また、シリカ粒子は、球状シリカ粒子であってもよいが、異型シリカ粒子であることが好ましい。球状シリカ粒子と異型シリカ粒子とを混合させてもよい。なお、本明細書において、異型シリカ粒子とは、ジャガイモ状のランダムな凹凸を表面に有する形状のシリカ粒子を意味する。異型シリカ粒子は、その表面積が球状シリカ粒子と比較して大きいため、このような異型シリカ粒子を含有することで、上記樹脂成分等との接触面積が大きくなり、ハードコート層の硬度をより優れたものとすることができる。 The silica particles may be spherical silica particles, but are preferably irregular silica particles. Spherical silica particles and irregular silica particles may be mixed. In this specification, irregular silica particles refer to silica particles having random potato-like irregularities on the surface. Since irregular silica particles have a larger surface area than spherical silica particles, the inclusion of such irregular silica particles increases the contact area with the resin components, etc., and the hardness of the hard coat layer can be improved.
 なお、異型シリカ粒子か否かは、ハードコート層の電子顕微鏡による断面観察により確認することができる。 Whether or not the particles are atypical silica particles can be confirmed by observing the cross section of the hard coat layer using an electron microscope.
 無機粒子の平均粒径は、硬度向上の点から、5nm以上であることが好ましく、10nm以上であることがより好ましい。無機粒子の平均粒径が小さすぎると、粒子の製造が困難であり、また粒子同士が凝集しやすくなるおそれがある。また、無機粒子の平均粒径は、透明性の点から、200nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることがさらに好ましい。無機粒子の平均粒径が大きすぎると、ハードコート層に大きな凹凸が形成されるおそれや、ヘーズが高くなるおそれがある。 The average particle size of the inorganic particles is preferably 5 nm or more, and more preferably 10 nm or more, from the viewpoint of improving hardness. If the average particle size of the inorganic particles is too small, it may be difficult to manufacture the particles, and the particles may be prone to agglomeration. Furthermore, from the viewpoint of transparency, the average particle size of the inorganic particles is preferably 200 nm or less, more preferably 100 nm or less, and even more preferably 50 nm or less. If the average particle size of the inorganic particles is too large, there is a risk that large irregularities may be formed in the hard coat layer or that the haze may become high.
 ここで、無機粒子の平均粒径は、ハードコート層の電子顕微鏡による断面観察により測定することができ、任意に選択した10個の粒子の粒径の平均を平均粒径とする。なお、異型シリカ粒子の平均粒径は、ハードコート層の断面顕微鏡観察にて現れた異型シリカ粒子の外周の2点間距離の最大値(長径)と最小値(短径)との平均値である。 Here, the average particle size of the inorganic particles can be measured by observing the cross section of the hard coat layer with an electron microscope, and the average particle size is the average of the particle sizes of 10 arbitrarily selected particles. The average particle size of the irregular silica particles is the average of the maximum (long axis) and minimum (short axis) distances between two points on the periphery of the irregular silica particles that appear when the hard coat layer is observed in cross section with a microscope.
 無機粒子の大きさ及び含有量を調整することで、ハードコート層の硬度を制御できる。例えば、シリカ粒子の含有量は、上記重合性化合物100質量部に対して、25質量部以上、100質量部以下であることが好ましい。 The hardness of the hard coat layer can be controlled by adjusting the size and content of the inorganic particles. For example, the content of the silica particles is preferably 25 parts by mass or more and 100 parts by mass or less per 100 parts by mass of the polymerizable compound.
(4)添加剤
 本開示に用いられるハードコート層は、紫外線吸収剤を含有していてもよい。上記樹脂層の紫外線による劣化を抑制することができる。中でも、上記樹脂層がポリイミドを含有する場合には、ポリイミドを含有する樹脂層の経時的な色変化を抑制することができる。また、表示装置用積層体を備える表示装置において、表示装置用積層体よりも表示パネル側に配置されている部材、例えば偏光子等の紫外線による劣化を抑制することができる。
(4) Additives The hard coat layer used in the present disclosure may contain an ultraviolet absorbing agent. It is possible to suppress the deterioration of the resin layer due to ultraviolet rays. In particular, when the resin layer contains polyimide, it is possible to suppress the color change over time of the resin layer containing polyimide. In addition, in a display device including the laminate for a display device, it is possible to suppress the deterioration of a member arranged on the display panel side of the laminate for a display device, such as a polarizer, due to ultraviolet rays.
 また、本開示におけるハードコート層は、防汚剤を含有していてもよい。表示装置用積層体に防汚性を付与することができる。 The hard coat layer in this disclosure may also contain an antifouling agent. This can impart antifouling properties to the laminate for display devices.
 さらに、本開示におけるハードコート層は、必要に応じて、異なる添加剤をさらに含有することができる。添加剤としては、ハードコート層に付与する機能に応じて適宜選択され、特に限定はされないが、例えば、屈折率を調整するための無機又は有機粒子、赤外線吸収剤、防眩剤、防汚剤、帯電防止剤、青色色素や紫色色素等の着色剤、レベリング剤、界面活性剤、易滑剤、各種増感剤、難燃剤、接着付与剤、重合禁止剤、酸化防止剤、光安定化剤、表面改質剤、分光透過率調整剤等が挙げられる。 Furthermore, the hard coat layer in the present disclosure may further contain different additives as necessary. The additives are appropriately selected depending on the function to be imparted to the hard coat layer, and are not particularly limited. Examples of the additives include inorganic or organic particles for adjusting the refractive index, infrared absorbing agents, anti-glare agents, antifouling agents, antistatic agents, colorants such as blue and purple dyes, leveling agents, surfactants, lubricants, various sensitizers, flame retardants, adhesion promoters, polymerization inhibitors, antioxidants, light stabilizers, surface modifiers, spectral transmittance adjusters, etc.
4.ハードコート層の形成方法
 ハードコート層の形成方法としては、ハードコート層の材料等に応じて適宜され、例えば、上記樹脂基材上に、上記重合性化合物等を含むハードコート層用硬化性樹脂組成物を塗布し、硬化させる方法や、蒸着法、スパッタリング法等が挙げられる。
4. Method for forming a hard coat layer The method for forming a hard coat layer is appropriately selected depending on the material of the hard coat layer, and examples thereof include a method of applying a curable resin composition for a hard coat layer containing the polymerizable compound on the resin substrate and curing the composition, a vapor deposition method, a sputtering method, and the like.
 上記樹脂基材上にハードコート層用硬化性樹脂組成物を塗布する方法としては、目的とする厚さで塗布可能な方法であれば特に制限はなく、例えばグラビアコート法、グラビアリバースコート法、グラビアオフセットコート法、スピンコート法、ロールコート法、リバースロールコート法、ブレードコート法、ディップコート法、スクリーン印刷法等の一般的な塗布方法が挙げられる。また、ハードコート層用樹脂組成物の塗膜の形成方法として転写法を用いることもできる。 The method for applying the curable resin composition for the hard coat layer onto the resin substrate is not particularly limited as long as it is a method that allows application to the desired thickness, and examples of common application methods include gravure coating, gravure reverse coating, gravure offset coating, spin coating, roll coating, reverse roll coating, blade coating, dip coating, and screen printing. A transfer method can also be used to form a coating film of the resin composition for the hard coat layer.
 ハードコート層用硬化性樹脂組成物の塗膜は、必要に応じて乾燥することにより溶剤を除去する。乾燥方法としては、例えば、減圧乾燥又は加熱乾燥、さらにはこれらの乾燥を組み合わせる方法等が挙げられる。例えば、30℃以上120℃以下の温度で10秒間以上180秒間以下加熱することで乾燥させることができる。 The coating film of the curable resin composition for the hard coat layer is dried as necessary to remove the solvent. Examples of drying methods include vacuum drying, heat drying, and a combination of these drying methods. For example, the coating film can be dried by heating at a temperature of 30°C to 120°C for 10 seconds to 180 seconds.
 ハードコート層用硬化性樹脂組成物の塗膜を硬化させる方法としては、重合性化合物の重合性基に応じて適宜選択され、例えば、光照射及び加熱の少なくともいずれかを用いることができる。 The method for curing the coating of the curable resin composition for the hard coat layer is appropriately selected depending on the polymerizable group of the polymerizable compound, and for example, at least one of light irradiation and heating can be used.
 光照射には、主に、紫外線、可視光線、電子線、電離放射線等が使用される。紫外線硬化の場合には、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプ等の光線から発する紫外線等を使用することができる。エネルギー線源の照射量は、例えば、紫外線波長365nmでの積算露光量として、50mJ/cm以上5000mJ/cm以下程度とすることができる。 For light irradiation, ultraviolet light, visible light, electron beams, ionizing radiation, etc. are mainly used. In the case of ultraviolet curing, for example, ultraviolet light emitted from light rays of an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, etc. can be used. The irradiation amount of the energy ray source can be, for example, about 50 mJ/ cm2 or more and 5000 mJ/ cm2 or less as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
 加熱をする場合は、例えば、40℃以上120℃以下の温度にて処理することができる。また、室温(25℃)で24時間以上放置することにより反応を行ってもよい。 When heating is performed, the treatment can be performed at a temperature of, for example, 40°C or higher and 120°C or lower. The reaction can also be carried out by leaving the mixture at room temperature (25°C) for 24 hours or more.
IV.その他の層
 本開示の表示装置用積層体は、上記樹脂層、樹脂基材、およびハードコート層を必須とするものであるが、下記に示すその他の層を有していてもよい。
IV. Other Layers The laminate for a display device of the present disclosure essentially comprises the above-mentioned resin layer, resin substrate, and hard coat layer, but may also have other layers described below.
1.貼付用接着層
 本開示の表示装置用積層体は、樹脂層の樹脂基材とは反対側の面に、貼付用接着層を有することができる。貼付用接着層を介して、表示装置用積層体を例えば表示パネル等に貼り合わせることができる。
1. Adhesive layer for attachment The laminate for a display device of the present disclosure may have an adhesive layer for attachment on the surface of the resin layer opposite to the resin substrate. The laminate for a display device may be attached to, for example, a display panel or the like via the adhesive layer for attachment.
 貼付用接着層に用いられる接着剤としては、透明性を有し、表示装置用積層体を表示パネル等に接着することが可能な接着剤であれば特に限定されるものではなく、例えば、熱硬化型接着剤、紫外線硬化型接着剤、2液硬化型接着剤、熱溶融型接着剤、感圧接着剤(いわゆる粘着剤)等を挙げることができる。中でも、貼付用接着層は感圧接着剤を含有することが好ましく、すなわち感圧接着層であることが好ましい。感圧接着層に用いられる感圧接着剤としては、例えば、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤、ウレタン系粘着剤等を挙げることができ、上記の衝撃吸収層の材料等に応じて適宜選択することができる。中でも、アクリル系粘着剤が好ましい。透明性、耐候性、耐久性、耐熱性に優れ、低コストだからである。 The adhesive used in the attachment adhesive layer is not particularly limited as long as it is transparent and capable of adhering the display device laminate to a display panel or the like, and examples thereof include heat-curing adhesives, ultraviolet-curing adhesives, two-component curing adhesives, hot-melt adhesives, and pressure-sensitive adhesives (so-called pressure-sensitive adhesives). Of these, it is preferable that the attachment adhesive layer contains a pressure-sensitive adhesive, that is, it is preferable that the attachment adhesive layer is a pressure-sensitive adhesive layer. Examples of pressure-sensitive adhesives used in the pressure-sensitive adhesive layer include acrylic adhesives, silicone adhesives, rubber adhesives, and urethane adhesives, and can be appropriately selected depending on the material of the impact absorbing layer. Of these, acrylic adhesives are preferable because they have excellent transparency, weather resistance, durability, and heat resistance, and are low cost.
 貼付用接着層の厚さは、例えば、10μm以上100μm以下であることが好ましく、より好ましくは15μm以上60μm以下、さらに好ましくは25μm以上50μm以下とすることができる。貼付用接着層の厚さが薄すぎると、表示装置用積層体と表示パネル等とを十分に接着することができないおそれがある。また、貼付用接着層の厚さが厚すぎると、フレキシブル性が損なわれる場合がある。 The thickness of the attachment adhesive layer is, for example, preferably 10 μm to 100 μm, more preferably 15 μm to 60 μm, and even more preferably 25 μm to 50 μm. If the attachment adhesive layer is too thin, it may not be possible to sufficiently bond the display device laminate to the display panel, etc. Furthermore, if the attachment adhesive layer is too thick, flexibility may be impaired.
 貼付用接着層としては、例えば接着フィルムを用いてもよい。また、例えば支持体またはポリイミド基材等の上に接着剤組成物を塗布して、貼付用接着層を形成してもよい。本開示の表示装置用積層体は、貼付用接着層の樹脂層とは反対側の面に、剥離可能なセパレーター層を有していてもよい。 As the attachment adhesive layer, for example, an adhesive film may be used. Also, for example, an adhesive composition may be applied onto a support or a polyimide substrate to form the attachment adhesive layer. The laminate for a display device of the present disclosure may have a peelable separator layer on the surface opposite to the resin layer of the attachment adhesive layer.
2.防汚層
 本開示の表示装置用積層体は、ハードコート層の樹脂基材とは反対側の面に、防汚層を有することができる。防汚層が配置されていることにより、表示装置用積層体に防汚性を付与することができる。防汚層の材料としては、一般的な防汚層の材料を適用することができる。
2. Antifouling layer The laminate for a display device of the present disclosure may have an antifouling layer on the side of the hard coat layer opposite to the resin substrate. By disposing the antifouling layer, it is possible to impart antifouling properties to the laminate for a display device. As the material for the antifouling layer, a general material for an antifouling layer may be applied.
 防汚層の厚さは、例えば、1nm以上30nm以下であることが好ましく、2nm以上20nm以下であることがより好ましく、3nm以上10nm以下であることがさらに好ましい。防汚層の厚さが上記範囲内であれば、防汚性および耐久性を良くすることができる。 The thickness of the antifouling layer is, for example, preferably 1 nm or more and 30 nm or less, more preferably 2 nm or more and 20 nm or less, and even more preferably 3 nm or more and 10 nm or less. If the thickness of the antifouling layer is within the above range, it is possible to improve the antifouling properties and durability.
 防汚層の形成方法としては、防汚層の材料に応じ適宜選択され、例えば、ハードコート層上に防汚層用樹脂組成物を塗布し、硬化させる方法、真空蒸着法、スパッタリング法等が挙げられる。 The method for forming the antifouling layer is appropriately selected depending on the material of the antifouling layer, and examples include a method in which a resin composition for the antifouling layer is applied onto the hard coat layer and cured, a vacuum deposition method, a sputtering method, etc.
3.プライマー層
 本開示における表示装置用積層体は、上記樹脂基材と上記樹脂層との間にプライマー層を有していてもよい。プライマー層により、樹脂基材と樹脂層との密着性を向上させることができる。また、同様の理由により、上記樹脂基材と上記ハードコート層との間にプライマー層を有していてもよい。
3. Primer layer The display laminate of the present disclosure may have a primer layer between the resin substrate and the resin layer. The primer layer can improve the adhesion between the resin substrate and the resin layer. For the same reason, a primer layer may be provided between the resin substrate and the hard coat layer.
 プライマー層の材料としては、樹脂基材と樹脂層との密着性または樹脂基材とハードコート層との密着性を高めることができる材料であれば特に限定されるものではなく、例えば樹脂を挙げることができる。樹脂としては、例えば、(メタ)アクリル樹脂、ウレタン樹脂、(メタ)アクリルウレタン共重合体、塩化ビニル-酢酸ビニル共重合体、ポリエステル、ブチラール樹脂、塩素化ポリプロピレン、塩素化ポリエチレン、エポキシ樹脂、シリコーン樹脂等が挙げられる。これらの樹脂は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The material for the primer layer is not particularly limited as long as it is a material that can increase the adhesion between the resin substrate and the resin layer or between the resin substrate and the hard coat layer, and examples thereof include resins. Examples of resins include (meth)acrylic resins, urethane resins, (meth)acrylic urethane copolymers, vinyl chloride-vinyl acetate copolymers, polyesters, butyral resins, chlorinated polypropylene, chlorinated polyethylene, epoxy resins, silicone resins, and the like. These resins may be used alone or in combination of two or more.
 プライマー層の厚さとしては、樹脂基材と樹脂層との密着性または樹脂基材とハードコート層との密着性を高めることが可能な厚さであればよく、例えば、0.1μm以上10μm以下とすることができ、好ましくは0.2μm以上5μm以下とすることができる。 The thickness of the primer layer may be any thickness that can increase the adhesion between the resin substrate and the resin layer or between the resin substrate and the hard coat layer, and may be, for example, from 0.1 μm to 10 μm, and preferably from 0.2 μm to 5 μm.
 プライマー層の形成方法としては、例えば、樹脂基材上にプライマー層用組成物を塗布する方法が挙げられる。塗布方法としては、例えば、グラビアコート法、グラビアリバースコート法、グラビアオフセットコート法、スピンコート法、ロールコート法、リバースロールコート法、ブレードコート法、ディップコート法、スクリーン印刷法等の一般的な塗布方法が挙げられる。また、プライマー層の形成方法として、転写法を用いることもできる。 The method of forming the primer layer can be, for example, a method of applying a primer layer composition onto a resin substrate. Examples of the application method include general application methods such as gravure coating, gravure reverse coating, gravure offset coating, spin coating, roll coating, reverse roll coating, blade coating, dip coating, and screen printing. A transfer method can also be used to form the primer layer.
4.反射防止層
 本開示の表示装置用積層体は、ハードコート層の樹脂基材とは反対側の面に、反射防止層を有することができる。反射防止層が配置されていることにより、外光の反射を抑制することができ、視認性を高めることが可能となる。
4. Antireflection Layer The laminate for a display device of the present disclosure may have an antireflection layer on the side of the hard coat layer opposite to the resin substrate. By disposing the antireflection layer, it is possible to suppress reflection of external light and improve visibility.
 反射防止層を構成する材料には、所定の光透過性を有し、また所定のフレキシブル性を有する材料を用いることが好ましい。具体的には、一般的な反射防止層に用いることができる材料が挙げられるため、ここでの記載は省略する。 The material constituting the anti-reflection layer preferably has a certain degree of light transparency and a certain degree of flexibility. Specific examples include materials that can be used for general anti-reflection layers, so a description of these will be omitted here.
V.その他
 本開示の表示装置用積層体は、さらに下記に示す特徴を有するものである。
V. Others The laminate for a display device of the present disclosure further has the following characteristics.
1.樹脂基材および樹脂層の合計厚さ
 本開示の表示装置用積層体は、樹脂基材および樹脂層の合計厚さが50μm以上であり、好ましくは、70μm以上である。合計厚さが上記範囲であることにより、上記スライド屈曲部において、ハードコート層が局所的に高い曲率となることを防ぐことができるため、ハードコート層へのクラックの発生を抑制することができる。
 一方、合計厚さは、130μm以下であり、好ましくは、120μm以下である。合計厚さが上記範囲であることにより、屈曲方向に対する反発力を抑制することができ、支持板の段差に追従することができ、接着層の浮きを抑制することができる。また、スライド屈曲部において、最外周に配置されるハードコート層の伸びを抑制することができ、クラックの発生を確実に抑制することができる。
1. Total thickness of resin substrate and resin layer The laminate for a display device of the present disclosure has a total thickness of the resin substrate and resin layer of 50 μm or more, preferably 70 μm or more. By having the total thickness in the above range, it is possible to prevent the hard coat layer from having a high curvature locally at the sliding bending portion, and therefore it is possible to suppress the occurrence of cracks in the hard coat layer.
On the other hand, the total thickness is 130 μm or less, preferably 120 μm or less. By having the total thickness in the above range, the repulsive force in the bending direction can be suppressed, the step of the support plate can be followed, and the lifting of the adhesive layer can be suppressed. In addition, the stretching of the hard coat layer arranged on the outermost periphery can be suppressed in the sliding bending part, and the occurrence of cracks can be reliably suppressed.
2.スライド屈曲耐性
 本開示の表示装置用積層体は、上述したようなスライド屈曲耐性を有することが好ましい。具体的には、表示装置用積層体のスライド屈曲耐性は、下記に説明するスライド屈曲試験を行い、評価することができる。スライド屈曲試験は、以下のようにして行われる。
2. Slide bending resistance The laminate for a display device of the present disclosure preferably has the slide bending resistance as described above. Specifically, the slide bending resistance of the laminate for a display device can be evaluated by carrying out a slide bending test described below. The slide bending test is carried out as follows.
[スライド屈曲試験]
 図6は、スライド屈曲試験を説明するための模式図である。まず、20mm×100mmの大きさの表示装置用積層体を準備する。図6(a)に示すように、準備した表示装置用積層体10を試験用支持板31に試験用接着層32を介して貼り合わせて試験片30を得る。ここで、試験用支持板31の概略上面図を図7(a)に示す。図7に示すように、試験用支持板は、厚さ150μmのSUS304板に、エッチングで貫通パターンを形成したものである。なお、図7中の数値は長さ(mm)を示す。図7(b)は図7(a)の1ブロックの部分拡大図であり、図7(c)は図7(b)の部分拡大図である。試験用接着層32は、具体的には、3M社製粘着8146-1(セパレーターを剥離した後の粘着層の厚みが25μm)である。
[Slide bending test]
FIG. 6 is a schematic diagram for explaining the slide bending test. First, a display laminate having a size of 20 mm×100 mm is prepared. As shown in FIG. 6(a), the prepared display laminate 10 is attached to a test support plate 31 via a test adhesive layer 32 to obtain a test piece 30. Here, a schematic top view of the test support plate 31 is shown in FIG. 7(a). As shown in FIG. 7, the test support plate is a SUS304 plate having a thickness of 150 μm, on which a through pattern is formed by etching. The numerical values in FIG. 7 indicate the length (mm). FIG. 7(b) is a partial enlarged view of one block in FIG. 7(a), and FIG. 7(c) is a partial enlarged view of FIG. 7(b). The test adhesive layer 32 is specifically 3M Adhesive 8146-1 (the thickness of the adhesive layer after peeling off the separator is 25 μm).
 次に、図6(b)に示すように、試験片30を、試験用支持板31が内側となるように屈曲させ、長手方向の一端側と他端側とを対向させ、その状態でスライド試験機(ユアサ(株)DMLHB-FU)にセットする。次いで、上記一端側を固定した状態で、他端側をスライド長(ストローク長さ)35mm、スライド速度30rpm、スライド径dを8.0mm(半径4.0mm)としてスライドさせ、繰り返し往復させる。 Next, as shown in FIG. 6(b), the test piece 30 is bent so that the test support plate 31 faces inward, and one end of the test piece 30 is opposed to the other end in the longitudinal direction. In this state, the test piece 30 is set in a slide tester (Yuasa Corp. DMLHB-FU). Next, with the one end fixed, the other end is slid with a slide length (stroke length) of 35 mm, a slide speed of 30 rpm, and a slide diameter d of 8.0 mm (radius 4.0 mm), and is repeatedly moved back and forth.
 本開示における積層体は、上述のスライド屈曲試験において往復を20万回繰り返し行った場合において、接着層の浮きおよびハードコート層にクラックが生じないことが好ましい。 The laminate disclosed herein preferably does not experience lifting of the adhesive layer or cracks in the hard coat layer when subjected to 200,000 reciprocating motions in the above-mentioned slide bending test.
 また、スライド径dを7mm(半径3.5mm)に変更した上述のスライド屈曲試験において往復を20万回繰り返し行った場合において、接着層の浮きおよびハードコート層にクラックが生じないことがより好ましい。 Furthermore, when the slide diameter d is changed to 7 mm (radius 3.5 mm) in the above-mentioned slide bending test and the slide is repeatedly moved back and forth 200,000 times, it is more preferable that no lifting of the adhesive layer or cracks occur in the hard coat layer.
 特に、スライド径dを6mm(半径3.0mm)に変更した上述のスライド屈曲試験において往復を20万回繰り返し行った場合において、接着層の浮きおよびハードコート層にクラックが生じないことが好ましい。 In particular, when the slide diameter d is changed to 6 mm (radius 3.0 mm) in the above-mentioned slide bending test and the slide is repeatedly moved back and forth 200,000 times, it is preferable that no lifting of the adhesive layer or cracks occur in the hard coat layer.
3.厚さ
 本開示の表示装置用積層体の厚さは、例えば、55μm以上150μm以下であることが好ましく、70μm以上140μm以下であることがより好ましく、85μm以上130μm以下であることがさらに好ましい。表示装置用積層体の厚さが上記範囲であれば、フレキシブル性を高めることができ、さらに、スライダブルディスプレイ等の表示装置内への収容が容易となる。
3. Thickness The thickness of the laminate for a display device of the present disclosure is, for example, preferably 55 μm or more and 150 μm or less, more preferably 70 μm or more and 140 μm or less, and even more preferably 85 μm or more and 130 μm or less. If the thickness of the laminate for a display device is in the above range, flexibility can be increased, and further, it becomes easy to accommodate it in a display device such as a slideable display.
4.全光線透過率およびヘーズ
 本開示における表示装置用積層体は、全光線透過率が、例えば80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることがさらに好ましい。このように全光線透過率が高いことにより、透明性が良好な表示装置用積層体とすることができる。
4. Total Light Transmittance and Haze The laminate for a display device according to the present disclosure preferably has a total light transmittance of, for example, 80% or more, more preferably 85% or more, and even more preferably 88% or more. Such a high total light transmittance allows the laminate for a display device to have good transparency.
 ここで、表示装置用積層体の全光線透過率は、JIS K7361-1に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。 The total light transmittance of the laminate for display devices can be measured in accordance with JIS K7361-1, for example, using a haze meter HM150 manufactured by Murakami Color Research Laboratory.
 本開示における表示装置用積層体のヘーズは、例えば2.0%以下であることが好ましく、1.5%以下であることがより好ましく、1.0%以下であることがさらに好ましい。このようにヘーズが低いことにより、透明性が良好な表示装置用積層体とすることができる。 The haze of the laminate for a display device in the present disclosure is, for example, preferably 2.0% or less, more preferably 1.5% or less, and even more preferably 1.0% or less. Such a low haze allows the laminate for a display device to have good transparency.
 ここで、表示装置用積層体のヘーズは、JIS K-7136に準拠して測定することができ、例えば村上色彩技術研究所製のヘイズメーターHM150により測定することができる。 The haze of the laminate for display devices can be measured in accordance with JIS K-7136, for example, using a haze meter HM150 manufactured by Murakami Color Research Laboratory.
VI.用途
 本開示の表示装置用積層体は、表示装置において、表示パネルよりも観察者側に配置される部材である。
 本開示における表示装置用積層体は、表示装置の表面に配置する場合、樹脂層側の面が表示パネル側、ハードコート層側の面が外側になるように配置されていることが好ましい。
VI. Uses The laminate for a display device according to the present disclosure is a member disposed on the viewer side of the display panel in a display device.
When the laminate for a display device according to the present disclosure is disposed on the surface of a display device, it is preferably disposed so that the surface on the resin layer side is on the display panel side and the surface on the hard coat layer side is on the outside.
 本開示における表示装置用積層体を表示装置の表面に配置する方法としては、特に限定されず、例えば、接着層を介する方法等が挙げられる。接着層としては、表示装置用積層体の貼付用接着層が挙げられる。 The method for disposing the display device laminate of the present disclosure on the surface of the display device is not particularly limited, and examples include a method using an adhesive layer. An example of the adhesive layer is an adhesive layer for attaching the display device laminate.
 本開示における表示装置用積層体は、例えば、スマートフォン、タブレット端末、ウェアラブル端末、パーソナルコンピュータ、テレビジョン、デジタルサイネージ、パブリックインフォメーションディスプレイ(PID)、車載ディスプレイ等の電子機器に用いられる表示装置に用いることができる。中でも、本開示における表示装置用積層体は、フレキシブルディスプレイに用いることができ、スライダブルディスプレイ、ローラブルディスプレイに好ましく用いることができ、スライダブルディスプレイにより好ましく用いることができる。 The laminate for display devices in the present disclosure can be used in display devices used in electronic devices such as smartphones, tablet terminals, wearable terminals, personal computers, televisions, digital signage, public information displays (PIDs), and in-vehicle displays. In particular, the laminate for display devices in the present disclosure can be used in flexible displays, and is preferably used in slidable displays and rollable displays, and is more preferably used in slidable displays.
B.表示装置
 本開示における表示装置は、表示パネルと、上記表示パネルの観察者側に配置された、上述の表示装置用積層体と、を備える。
B. Display Device A display device in the present disclosure includes a display panel and the above-described laminate for a display device, which is disposed on the viewer's side of the display panel.
 図8は、本開示における表示装置の一例を示す概略断面図である。図8に示すように、表示装置40は、表示パネル41と、表示パネル41の観察者側に配置された表示装置用積層体10と、を備える。表示装置40においては、表示装置用積層体10と表示パネル41とは、例えば、添付用接着層42を介して貼り合わせることができる。表示装置40においては、表示装置用積層体10のハードコート層2の表面が、表示装置40の表面40Aを構成している。 FIG. 8 is a schematic cross-sectional view showing an example of a display device according to the present disclosure. As shown in FIG. 8, the display device 40 includes a display panel 41 and a laminate 10 for a display device arranged on the viewer's side of the display panel 41. In the display device 40, the laminate 10 for a display device and the display panel 41 can be bonded together, for example, via an attachment adhesive layer 42. In the display device 40, the surface of the hard coat layer 2 of the laminate 10 for a display device constitutes the surface 40A of the display device 40.
 なお、ここでは図示しないが、表示パネル41は、「A.表示装置用積層体」の項で説明したように、屈曲部となる領域に、画面拡張方向に対し垂直方向を長手方向とする直線状の貫通パターンを有する支持板上に接着層により接着されている。 Although not shown here, as explained in the section "A. Laminate for display device", the display panel 41 is adhered by an adhesive layer to a support plate having a linear through pattern with its longitudinal direction perpendicular to the screen expansion direction in the area that will become the bent portion.
 図9は、本開示における表示装置の別の一例を示す概略断面図である。図9に示すように、表示装置40は、電池等が収納された筐体43、保護フィルム44、表示パネル41、タッチパネル部材45、および表示装置用積層体10をこの順に有する。表示パネル41とタッチパネル部材45との間、タッチパネル部材45と表示装置用積層体10との間には、添付用接着層42が配置されており、これら部材は添付用接着層42によって互いに固定されている。この例でも同様に、表示パネル41は、図示略の上記支持板に接着層により接着されている。 FIG. 9 is a schematic cross-sectional view showing another example of a display device according to the present disclosure. As shown in FIG. 9, a display device 40 has, in this order, a housing 43 housing a battery and the like, a protective film 44, a display panel 41, a touch panel member 45, and a display device laminate 10. An attachment adhesive layer 42 is disposed between the display panel 41 and the touch panel member 45, and between the touch panel member 45 and the display device laminate 10, and these members are fixed to each other by the attachment adhesive layer 42. Similarly in this example, the display panel 41 is adhered to the support plate (not shown) by an adhesive layer.
 本開示における表示装置用積層体については、上述の「A.表示装置用積層体」と同様であるため、ここでの説明は省略する。 The laminate for a display device in this disclosure is similar to "A. Laminate for a display device" described above, so a description thereof will be omitted here.
 本開示における表示パネルとしては、例えば、液晶表示装置、有機EL表示装置、LED表示装置等の表示装置に用いられる表示パネルを挙げることができる。 Display panels in this disclosure include, for example, display panels used in display devices such as liquid crystal display devices, organic EL display devices, and LED display devices.
 本開示における表示装置は、表示パネルと表示装置用積層体との間にタッチパネル部材を有することができる。 The display device of the present disclosure can have a touch panel member between the display panel and the display device laminate.
 本開示における表示装置は、フレキシブルディスプレイであることが好ましい。フレキシブルディスプレイとしては、スライダブルディスプレイ、ローラブルディスプレイ、フォルダブルディスプレイ等が挙げられる。中でも、本開示における表示装置は、表示装置用積層体が外側になるように屈曲され、かつ、スライドしながら屈曲するディスプレイであることが好ましい。すなわち、本開示における表示装置は、スライダブルディスプレイおよびローラブルディスプレイであることがより好ましい。本開示における表示装置は、上述の表示装置用積層体を有することから、耐擦傷性および耐スライブル屈曲性に優れており、フレキシブルディスプレイ、さらにはスライダブルディスプレイおよびローラブルディスプレイとして好適である。 The display device in the present disclosure is preferably a flexible display. Examples of flexible displays include slidable displays, rollable displays, and foldable displays. In particular, the display device in the present disclosure is preferably a display that is bent so that the laminate for a display device faces outward and that bends while sliding. In other words, the display device in the present disclosure is more preferably a slidable display and a rollable display. Since the display device in the present disclosure has the above-mentioned laminate for a display device, it has excellent abrasion resistance and sliver bending resistance, and is suitable as a flexible display, as well as a slidable display and a rollable display.
C.支持板付き表示装置
 本開示における支持板付き表示装置は、表示装置と、上記表示装置の上記表示パネル側の面に配置された支持板と、を有し、上記表示装置はフレキシブルディスプレイであり、上記支持板は厚さ方向に貫通する貫通パターンを有する、支持板付き表示装置である。
C. Display device with support plate The display device with support plate in the present disclosure includes a display device and a support plate arranged on a surface of the display device on the display panel side, the display device being a flexible display, and the support plate having a through pattern penetrating in the thickness direction.
 図10は、本開示における支持板付き表示装置の一例を示す概略断面図である。図10に示すように、支持板付き表示装置70は、上述の表示装置40と、表示装置40の表示パネル41側の面40Bに配置された支持板Sと、を有する。「表示装置40の表示パネル41側の面40B」とは、表示装置用積層体10を基準とした場合に表示パネル41側に位置する、表示装置40の面をいう。表示装置40は、フレキシブルディスプレイである。支持板Sは、厚さ方向に貫通する貫通パターン(貫通孔)を有している。支持板Sが、貫通パターンを有していることで、表示装置と共に屈曲しやすい。一方で、支持板が貫通パターンを有していることで、局所的に曲率が高い段差が存在するため、上述した不具合が生じやすい。一方、本開示における支持板付き表示装置は、上述した表示装置用積層体を有するため、上述した理由により、屈曲部(特には、スライド屈曲部)における不具合を抑制することができる。 10 is a schematic cross-sectional view showing an example of a display device with a support plate according to the present disclosure. As shown in FIG. 10, the display device with a support plate 70 has the above-mentioned display device 40 and a support plate S arranged on the surface 40B of the display panel 41 side of the display device 40. The "surface 40B of the display device 40 on the display panel 41 side" refers to the surface of the display device 40 located on the display panel 41 side when the display device laminate 10 is used as a reference. The display device 40 is a flexible display. The support plate S has a through pattern (through hole) penetrating in the thickness direction. Since the support plate S has a through pattern, it is easy to bend together with the display device. On the other hand, since the support plate has a through pattern, there is a step with a high curvature locally, and the above-mentioned defects are likely to occur. On the other hand, since the display device with a support plate according to the present disclosure has the above-mentioned display device laminate, defects in the bending portion (particularly the sliding bending portion) can be suppressed for the above-mentioned reasons.
 本開示における表示装置は、フレキシブルディスプレイである。フレキシブルディスプレイとしては、スライダブルディスプレイ、ローラブルディスプレイ、フォルダブルディスプレイ等が挙げられる。中でも、支持板S上に配置された状態でスライドしながら屈曲するディスプレイであることが好ましい。即ち、本開示における表示装置は、スライダブルディスプレイおよびローラブルディスプレイであることがより好ましい。 The display device in the present disclosure is a flexible display. Examples of flexible displays include slidable displays, rollable displays, and foldable displays. Of these, a display that bends while sliding while placed on a support plate S is preferred. In other words, it is more preferred that the display device in the present disclosure is a slidable display or a rollable display.
 表示装置の他の特徴については、上述の「B.表示装置」と同様であるため、ここでの説明は省略する。 Other features of the display device are the same as those described above in "B. Display device," so a description of them will be omitted here.
 支持板は、金属製(例えば、SUS製)であることが好ましい。支持板における貫通パターンは、直線状の貫通パターンであることが好ましく、中でも、スライド方向(画面拡張方向)に対し垂直方向(図10において紙面奥行き方向)を長手方向とする直線状の貫通パターンであることが好ましい。支持板は、複数の貫通パターンを有することが好ましい。例えば、図7に示す試験用支持板のように、支持板は、複数の密集した貫通パターン(貫通孔)の群からなるブロックを、スライド方向に沿って複数有していることが好ましい。各貫通パターンのスライド方向における幅(図10の符号W)は、例えば、0.1mm以上であり、0.2mm以上であってもよい。一方、例えば、1mm以下であり、0.5mm以下であってもよい。支持板の厚さとしては、例えば、100μm以上であり、150μm以上であってもよい。一方、例えば、300μm以下である。 The support plate is preferably made of metal (e.g., SUS). The through pattern in the support plate is preferably a linear through pattern, and in particular, is preferably a linear through pattern with the longitudinal direction perpendicular to the sliding direction (screen expansion direction) (the direction into the paper in FIG. 10). The support plate preferably has a plurality of through patterns. For example, as in the test support plate shown in FIG. 7, the support plate preferably has a plurality of blocks along the sliding direction, each block consisting of a group of a plurality of closely spaced through patterns (through holes). The width of each through pattern in the sliding direction (symbol W in FIG. 10) is, for example, 0.1 mm or more, and may be 0.2 mm or more. Alternatively, it may be, for example, 1 mm or less, and may be 0.5 mm or less. The thickness of the support plate is, for example, 100 μm or more, and may be 150 μm or more. Alternatively, it is, for example, 300 μm or less.
 図10に示すように、支持板Sと、表示パネル41との間には、接着層71が配置されていることが好ましい。支持板と表示パネルとの間に配置される接着層としては、上述した貼付用接着層と同様のものが挙げられる。 As shown in FIG. 10, it is preferable that an adhesive layer 71 is disposed between the support plate S and the display panel 41. The adhesive layer disposed between the support plate and the display panel may be the same as the attachment adhesive layer described above.
 なお、本開示は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。 Note that this disclosure is not limited to the above-described embodiments. The above-described embodiments are merely examples, and anything that has substantially the same configuration as the technical ideas described in the claims of this disclosure and provides similar effects is included within the technical scope of this disclosure.
 以下、実施例および比較例を示し、本開示をさらに説明する。 The following examples and comparative examples will further explain this disclosure.
(実施例1、実施例3~実施例6、実施例8~11、比較例1~5)
 まず、樹脂基材として、表2に示す厚さを有するPETを準備した。樹脂基材の片面に、下記ハードコート層用組成物を用い、ハードコート層を形成した。
(Example 1, Examples 3 to 6, Examples 8 to 11, Comparative Examples 1 to 5)
First, a PET film having a thickness shown in Table 2 was prepared as a resin substrate. A hard coat layer was formed on one surface of the resin substrate using the following composition for hard coat layer.
 実施例および比較例で用いたハードコート層用組成物およびハードコート層の形成方法は以下の通りである。
<ハードコート層用組成物の調製>
 まず、下記に示す組成となるように各成分を配合して、ハードコート層用組成物を得た。
(ハードコート層用組成物)
・ウレタンアクリレート(製品名「UX5000」、日本化薬株式会社製):30質量部
・ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(製品名「M403」、東亜合成株式会社製):35質量部
・多官能アクリレートポリマー(製品名「アクリット8KX-012C」、大成ファインケミカル株式会社製):35質量部(固形分100%換算値)
・フッ素系レベリング剤(製品名「F568」、DIC社製):0.2質量部(固形分100%換算値)
・重合開始剤(1-ヒドロキシシクロヘキシルフェニルケトン、製品名「Omnirad184」、IGM Resins B.V.社製):3質量部
・メチルイソブチルケトン(MIBK):150質量部
 なお、「固形分100%換算値」とは、溶剤希釈品中の固形分を100%としたときの値である。
The compositions for hard coat layers and the methods for forming hard coat layers used in the examples and comparative examples are as follows.
<Preparation of hard coat layer composition>
First, the components were mixed so as to obtain the composition shown below to obtain a composition for a hard coat layer.
(Hard Coat Layer Composition)
Urethane acrylate (product name "UX5000", manufactured by Nippon Kayaku Co., Ltd.): 30 parts by mass Mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (product name "M403", manufactured by Toa Gosei Co., Ltd.): 35 parts by mass Multifunctional acrylate polymer (product name "Acrylit 8KX-012C", manufactured by Taisei Fine Chemical Co., Ltd.): 35 parts by mass (based on 100% solids)
Fluorine-based leveling agent (product name "F568", manufactured by DIC Corporation): 0.2 parts by mass (based on 100% solids)
Polymerization initiator (1-hydroxycyclohexyl phenyl ketone, product name "Omnirad 184", manufactured by IGM Resins B.V.): 3 parts by mass Methyl isobutyl ketone (MIBK): 150 parts by mass Note that "value converted to 100% solid content" refers to a value when the solid content in the solvent-diluted product is taken as 100%.
<ハードコート層の形成>
 樹脂基材の片面に、バーコーターでハードコート層用組成物を塗布して、塗膜を形成した。そして、形成した塗膜に対して、70℃、1分間加熱することにより塗膜中の溶剤を蒸発させた。次いで、紫外線照射装置(フュージョンUVシステムズジャパン社製、光源Hバルブ)を用いて、酸素濃度が200ppm以下の条件下にて、紫外線を積算光量が300mJ/cmとなるように照射し、塗膜を完全硬化(フルキュア)させた。これにより、膜厚が5μmのハードコート層を形成した。
<Formation of hard coat layer>
A hard coat layer composition was applied to one side of the resin substrate with a bar coater to form a coating film. The formed coating film was heated at 70°C for 1 minute to evaporate the solvent in the coating film. Next, using an ultraviolet irradiation device (manufactured by Fusion UV Systems Japan, light source H bulb), ultraviolet light was irradiated to an integrated light amount of 300 mJ/ cm2 under conditions of an oxygen concentration of 200 ppm or less, and the coating film was completely cured (fully cured). As a result, a hard coat layer with a film thickness of 5 μm was formed.
 次いで、上記樹脂基材のハードコート層側とは反対側の面に、樹脂層用組成物を用い、樹脂層を形成した。これにより、表示装置用積層体を得た。 Next, a resin layer was formed on the surface of the resin substrate opposite the hard coat layer using a resin layer composition. This resulted in a laminate for a display device.
 実施例および比較例で用いた樹脂層用組成物および樹脂層の形成方法は以下の通りである。
<樹脂層用組成物の調製>
 表1に示す組成となるように各成分を配合し、樹脂層用組成物1~6を得た。
・ウレタンアクリレート1:ウレタンアクリレート(製品名「UV3310B」、日本合成化学社製、2官能)
・ウレタンアクリレート2:ウレタンアクリレート(製品名「UV2000B」、日本合成化学社製、2官能)
・アクリレート化合物1:トリペンタエリスリトールアクリレート、モノおよびジペンタエリスリトールアクリレート、ならびにポリペンタエリスリトールアクリレートの混合物(製品名「ビスコート#802」、大阪有機化学工業社製)
・アクリレート化合物2:エトキシ化ペンタエリスリトールテトラアクリレート(製品名「ATM-35E」、新中村化学工業株式会社製)
・アクリレート化合物3:フェノキシエチルアクリレート(製品名「ビスコート#192」、大阪有機化学工業社製)
・重合開始剤:1-ヒドロキシシクロヘキシルフェニルケトン(製品名「Omnirad184」、IGM Resins B.V.社製)
・防汚剤:製品名「BYK-302」、ビックケミー社製
・溶媒:メチルイソブチルケトン(MIBK)
The resin layer compositions and resin layer forming methods used in the examples and comparative examples are as follows.
<Preparation of Resin Layer Composition>
The components were mixed so as to obtain the compositions shown in Table 1, thereby obtaining resin layer compositions 1 to 6.
Urethane acrylate 1: Urethane acrylate (product name "UV3310B", manufactured by Nippon Synthetic Chemical Industry Co., Ltd., bifunctional)
Urethane acrylate 2: Urethane acrylate (product name "UV2000B", manufactured by Nippon Synthetic Chemical Industry Co., Ltd., bifunctional)
Acrylate compound 1: a mixture of tripentaerythritol acrylate, mono- and dipentaerythritol acrylate, and polypentaerythritol acrylate (product name: Viscoat #802, manufactured by Osaka Organic Chemical Industry Co., Ltd.)
Acrylate compound 2: ethoxylated pentaerythritol tetraacrylate (product name "ATM-35E", manufactured by Shin-Nakamura Chemical Co., Ltd.)
Acrylate compound 3: phenoxyethyl acrylate (product name "Viscoat #192", manufactured by Osaka Organic Chemical Industry Ltd.)
Polymerization initiator: 1-hydroxycyclohexyl phenyl ketone (product name "Omnirad 184", manufactured by IGM Resins B.V.)
・Anti-fouling agent: Product name "BYK-302", manufactured by BYK-Chemie ・Solvent: Methyl isobutyl ketone (MIBK)
<樹脂層の形成>
 樹脂基材のハードコート層と反対となる面側に、バーコーターで表2に示す樹脂層用組成物を塗布して、塗膜を形成した。そして、形成した塗膜に対して、70℃、2分間加熱することにより塗膜中の溶剤を蒸発させた。次いで、紫外線照射装置(フュージョンUVシステムズジャパン社製、光源Hバルブ)を用いて、酸素濃度が200ppm以下の条件下にて、紫外線を積算光量が300mJ/cmとなるように照射し、塗膜を完全硬化(フルキュア)させた。これにより、表2に示す膜厚の樹脂層を形成した。樹脂基材および樹脂層の合計厚さを表2に示す。
<Formation of Resin Layer>
The resin layer composition shown in Table 2 was applied to the surface of the resin substrate opposite to the hard coat layer with a bar coater to form a coating film. The formed coating film was heated at 70°C for 2 minutes to evaporate the solvent in the coating film. Next, using an ultraviolet irradiation device (manufactured by Fusion UV Systems Japan, light source H bulb), ultraviolet light was irradiated to an integrated light amount of 300 mJ/ cm2 under conditions of an oxygen concentration of 200 ppm or less, and the coating film was completely cured (fully cured). As a result, a resin layer having a thickness shown in Table 2 was formed. The total thickness of the resin substrate and the resin layer is shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2、実施例7および実施例12)
 樹脂層用組成物を用いて樹脂層を形成する代わりに、100μmの熱可塑ウレタンからなる樹脂膜(製品名「DUS270-CER」、シーダム社製)を、表2に示す膜厚(実施例2:35μm、実施例7:20μm、実施例12:5μm)にスライスして、樹脂基材に貼り付け、樹脂層を形成したこと以外は、実施例1と同様にして、表示装置用積層体を得た。
(Examples 2, 7 and 12)
A laminate for a display device was obtained in the same manner as in Example 1, except that instead of forming a resin layer using a resin layer composition, a resin film made of 100 μm thermoplastic urethane (product name "DUS270-CER", manufactured by Seedham) was sliced to the film thickness shown in Table 2 (Example 2: 35 μm, Example 7: 20 μm, Example 12: 5 μm) and attached to a resin substrate to form a resin layer.
[インデンター押込み量測定]
 実施例1~12および比較例1~5で得られた表示装置用積層体について、樹脂基材および樹脂層の断面インデンター押込み量を、上述した「A.表示装置用積層体 I.樹脂層」で記載した方法と同様にして測定した。結果を表2に示す。
[Indenter push-in measurement]
For the laminates for displays obtained in Examples 1 to 12 and Comparative Examples 1 to 5, the cross-sectional indenter indentation depths of the resin substrate and the resin layer were measured in the same manner as described in "A. Laminates for displays I. Resin layer" above. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価]
(スチールウール試験(耐擦傷性試験))
 まず、4cm×10cmの大きさの積層体の樹脂層側の面に、PET基材の片面に接着層を有する保護フィルム(PET基材の厚さ:100μm以上125μm以下、接着層の厚さ:10μm以上25μm以下)をカールが発生しないように貼り合わせた後、テスター産業社製の学振型摩擦堅牢度試験機AB-301の試験台に、上記積層体の端部をセロハンテープで固定した。次に、#0000のスチールウール(日本スチールウール社製のボンスター#0000)を用い、スチールウールを2cm×2cmの治具に固定して、温度23±5℃、湿度40±10%RHにて、荷重:500g、往復速度:40rpm、往復距離:40mm、スチールウールの設置面積:4cmの条件で、表示装置用積層体のハードコート層側の面を1000往復擦った。そして、傷の有無を透過および反射で確認した。結果を表3に示す。
[evaluation]
(Steel wool test (scratch resistance test))
First, a protective film having an adhesive layer on one side of a PET substrate (PET substrate thickness: 100 μm to 125 μm, adhesive layer thickness: 10 μm to 25 μm) was attached to the resin layer side of a laminate having a size of 4 cm x 10 cm so as not to cause curling, and then the end of the laminate was fixed with cellophane tape to the test stand of a Gakushin-type friction fastness tester AB-301 manufactured by Tester Sangyo Co., Ltd. Next, using #0000 steel wool (Bonstar #0000 manufactured by Nippon Steel Wool Co., Ltd.), the steel wool was fixed to a jig of 2 cm x 2 cm, and the hard coat layer side of the laminate for display device was rubbed back and forth 1000 times under the conditions of temperature 23 ± 5 ° C., humidity 40 ± 10% RH, load: 500 g, reciprocating speed: 40 rpm, reciprocating distance: 40 mm, and steel wool installation area: 4 cm 2. Then, the presence or absence of scratches was confirmed by transmission and reflection. The results are shown in Table 3.
(スライド屈曲試験)
 得られた積層体に対して、スライド屈曲試験を行い、耐屈曲性を評価した。まず、20mm×100mmの大きさの表示装置用積層体を準備する。図6(a)に示すように、準備した表示装置用積層体10を試験用支持板31に試験用接着層32を介してカールが発生しないように貼り合わせて試験片30を得た。試験用支持板31は、図7に示す、貫通パターンを有する厚さ150μmのSUS304板を用いた。試験用接着層32は、3M社製粘着8146-1(セパレーターを剥離した後の粘着層の厚みが25μm)とした。
(Slide bending test)
The obtained laminate was subjected to a slide bending test to evaluate the bending resistance. First, a laminate for a display device having a size of 20 mm x 100 mm was prepared. As shown in FIG. 6(a), the prepared laminate for a display device 10 was attached to a test support plate 31 via a test adhesive layer 32 so as not to cause curling, to obtain a test piece 30. The test support plate 31 was a SUS304 plate having a thickness of 150 μm and a through pattern as shown in FIG. 7. The test adhesive layer 32 was 3M Adhesive 8146-1 (adhesive layer thickness after peeling off separator is 25 μm).
 次に、図6(b)に示す様に、支持板31が内側となるように屈曲させ、長手方向の一端側と他端側とを対向させ、その状態でスライド試験機(製品名「DMLHB-FU」 ユアサシステム機製)にセットする。次いで、上記一端側を固定した状態で、他端側をスライド長(ストローク長さ)35mm、スライド速度30rpm、スライド径d7.0mm(半径3.5mm)としてスライドさせ、20万回繰り返し往復させた(条件1)。また、スライド径dを6mm(半径3.0mm)に変更した以外は同様の条件で、上述のスライド屈曲試験において往復を20万回繰り返し行った(条件2)。なお、スライド径dは、表示装置用積層体の長手方向の一端側および他端側の間隔である。スライド屈曲試験の結果は、下記の基準で評価した。 Next, as shown in FIG. 6(b), the support plate 31 is bent so that it faces inward, and one end side and the other end side in the longitudinal direction are opposed to each other, and in this state, it is set in a slide tester (product name "DMLHB-FU" manufactured by Yuasa Systems Machinery Co., Ltd.). Next, with the one end side fixed, the other end side is slid with a slide length (stroke length) of 35 mm, a slide speed of 30 rpm, and a slide diameter d of 7.0 mm (radius 3.5 mm), and the slide is reciprocated 200,000 times (condition 1). In addition, under the same conditions except that the slide diameter d was changed to 6 mm (radius 3.0 mm), the slide bending test was repeated 200,000 times (condition 2). The slide diameter d is the distance between one end side and the other end side in the longitudinal direction of the display laminate. The results of the slide bending test were evaluated according to the following criteria.
・クラック評価
A:条件2でも積層体のハードコート層(HC層)にクラックが生じなかった。
B:条件2では積層体のハードコート層(HC層)にクラックが生じたが、条件1ではクラックが生じなかった。
C:条件2および条件1で積層体のハードコート層(HC層)にクラックが生じた。
Crack evaluation A: Even under condition 2, no cracks were generated in the hard coat layer (HC layer) of the laminate.
B: Under condition 2, cracks occurred in the hard coat layer (HC layer) of the laminate, but under condition 1, no cracks occurred.
C: Under conditions 2 and 1, cracks occurred in the hard coat layer (HC layer) of the laminate.
・浮き評価
A:条件2でも支持板から接着層の浮きは生じなかった。
B:条件2では支持板から接着層の浮きが生じたが、条件1では接着層の浮きが生じなかった。
C:条件2および条件1で支持板から接着層の浮きが生じた。
Lifting evaluation A: Even under condition 2, the adhesive layer did not lift off from the support plate.
B: Under condition 2, the adhesive layer peeled off from the support plate, but under condition 1, no peeling of the adhesive layer occurred.
C: Under conditions 2 and 1, the adhesive layer peeled off from the support plate.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、比較例1は、樹脂層の厚さが厚いために、耐擦傷性が低いことが確認された。また、比較例2は、樹脂層のインデンター押込み量が大きすぎ、柔らかすぎるために、耐擦傷性が低いことが確認された。比較例3は樹脂層のインデンター押込み量が小さすぎ、硬いために、接着層の浮きが生じた。比較例4は、樹脂基材および樹脂層の合計厚さが薄すぎるために、十分な段差吸収性能を得ることができず、ハードコート層にクラックが生じた。比較例5は、樹脂基材および樹脂層の合計厚さが厚すぎるために、接着層に浮きが生じた。実施例1~12は、優れた耐擦傷性を有し、かつ、スライド屈曲試験結果が良好であった。なお、実施例12は、樹脂層の厚さが他の実施例よりも薄く、条件1で接着層に僅かに浮きが生じていたが、実用上問題ない程度であった(B)。 As shown in Table 3, it was confirmed that Comparative Example 1 had low scratch resistance because the resin layer was too thick. In Comparative Example 2, the indenter pressing amount of the resin layer was too large and too soft, so the scratch resistance was low. In Comparative Example 3, the indenter pressing amount of the resin layer was too small and too hard, so the adhesive layer lifted. In Comparative Example 4, the total thickness of the resin substrate and the resin layer was too thin, so sufficient step absorption performance could not be obtained, and cracks occurred in the hard coat layer. In Comparative Example 5, the total thickness of the resin substrate and the resin layer was too thick, so the adhesive layer lifted. Examples 1 to 12 had excellent scratch resistance and good results in the slide bending test. In Example 12, the resin layer was thinner than the other examples, and slight lifting occurred in the adhesive layer under condition 1, but it was not a problem in practical use (B * ).
 すなわち、本開示においては、以下の発明を提供できる。 In other words, this disclosure provides the following inventions:
[1]
 樹脂基材と、前記樹脂基材の一方の面に配置されたハードコート層と、前記樹脂基材の前記ハードコート層とは反対側の面に配置された樹脂層と、を有し、前記樹脂層の断面インデンター押し込み量は、200nm以上3000nm以下であり、前記樹脂基材の断面インデンター押し込み量は、前記樹脂層の断面インデンター押し込み量よりも小さく、前記樹脂層の厚さが5μm以上45μm以下であり、前記樹脂基材および前記樹脂層の合計厚さが50μm以上130μm以下である、表示装置用積層体。
[1]
1. A laminate for a display device comprising: a resin substrate; a hard coat layer disposed on one side of the resin substrate; and a resin layer disposed on a side of the resin substrate opposite the hard coat layer, wherein a cross-sectional indenter indentation amount of the resin layer is 200 nm or more and 3000 nm or less, a cross-sectional indenter indentation amount of the resin substrate is smaller than a cross-sectional indenter indentation amount of the resin layer, a thickness of the resin layer is 5 μm or more and 45 μm or less, and a total thickness of the resin substrate and the resin layer is 50 μm or more and 130 μm or less.
[2]
 前記樹脂基材の断面インデンター押し込み量は、200nm未満である、[1]に記載の表示装置用積層体。
[2]
The laminate for a display device according to [1], wherein a cross-sectional indenter indentation depth of the resin substrate is less than 200 nm.
[3]
 前記樹脂基材は、ポリエチレンテレフタレート、トリアセチルセルロースおよびポリイミドのいずれか1以上を含む、[1]または[2]に記載の表示装置用積層体。
[3]
The laminate for a display device according to [1] or [2], wherein the resin substrate contains at least one of polyethylene terephthalate, triacetyl cellulose, and polyimide.
[4]
 前記ハードコート層の厚さが5μm以上20μm以下である、[1]から[3]までのいずれかに記載の表示装置用積層体。
[4]
The laminate for a display device according to any one of [1] to [3], wherein the hard coat layer has a thickness of 5 μm or more and 20 μm or less.
[5]
 前記表示装置用積層体を試験用支持板に試験用接着層を介して貼り合わせて作製した試験片に対する下記スライド屈曲試験において、スライド径を7.0mmとして往復を20万回繰り返し行った場合に、前記試験用接着層の剥がれおよび前記ハードコート層にクラックが生じない、[1]から[4]までのいずれかに記載の表示装置用積層体。
[スライド屈曲試験]
 20mm×100mmの大きさの表示装置用積層体を準備し、貫通パターンを有する厚さ150μmのSUS304製の試験用支持板に試験用接着層を介して貼り合わせて試験片を得る。前記試験片を、前記試験用支持板が内側となるように屈曲させ、長手方向の一端側と他端側とを対向させ、その状態でスライド試験機(ユアサ(株)DMLHB-FU)にセットする。次いで、前記一端側を固定した状態で、前記他端側をスライド長(ストローク長さ)35mm、スライド速度30rpmとしてスライドさせ、繰り返し往復させる。
[5]
A laminate for a display device according to any one of [1] to [4], wherein when a test piece prepared by bonding the laminate for a display device to a test support plate via a test adhesive layer is subjected to the following slide bending test with a slide diameter of 7.0 mm and the slide is moved back and forth 200,000 times, peeling of the test adhesive layer and cracks do not occur in the hard coat layer.
[Slide bending test]
A display laminate measuring 20 mm x 100 mm is prepared, and a test specimen is obtained by bonding the laminate to a 150 μm thick SUS304 test support plate having a through pattern via a test adhesive layer. The test specimen is bent so that the test support plate is on the inside, and one end side and the other end side in the longitudinal direction are opposed to each other, and in this state, the test specimen is set in a slide tester (Yuasa Corporation DMLHB-FU). Next, with the one end side fixed, the other end side is slid with a slide length (stroke length) of 35 mm and a slide speed of 30 rpm, and repeatedly reciprocated.
[6]
 前記樹脂層の前記樹脂基材とは反対側の面に、貼付用接着層を有する、[1]から[5]までのいずれかに記載の表示装置用積層体。
[6]
The laminate for a display device according to any one of [1] to [5], further comprising an adhesive layer for attachment on a surface of the resin layer opposite to the resin substrate.
[7]
 表示パネルと、前記表示パネルの観察者側に配置された、[1]から[6]までのいずれかに記載の表示装置用積層体と、を備え、前記表示装置用積層体は、前記ハードコート層側が観察者側となるように配置される、表示装置。
[7]
A display device comprising: a display panel; and a laminate for a display device according to any one of [1] to [6], which is arranged on a viewer side of the display panel, and the laminate for a display device is arranged so that the hard coat layer side faces the viewer side.
[8]
 [7]に記載の表示装置と、前記表示装置の前記表示パネル側の面に配置された支持板と、を有し、前記表示装置はフレキシブルディスプレイであり、前記支持板は厚さ方向に貫通する貫通パターンを有する、支持板付き表示装置。
[8]
A display device with a support plate, comprising: the display device described in [7]; and a support plate arranged on a surface of the display device facing the display panel, wherein the display device is a flexible display, and the support plate has a through pattern penetrating in the thickness direction.
[9]
 前記表示装置は、前記支持板上に配置された状態でスライドしながら屈曲するディスプレイである、[8]に記載の支持板付き表示装置
[9]
The display device with a support plate according to [8], wherein the display device is a display that is bent while sliding in a state where it is disposed on the support plate.
[10]
 前記貫通パターンは、スライドする方向に対し垂直方向を長手方向とする直線状の貫通パターンである、[9]に記載の支持板付き表示装置。
[10]
The display device with a support plate according to [9], wherein the through pattern is a linear through pattern whose longitudinal direction is perpendicular to the sliding direction.
[11]
 前記表示装置と前記支持板との間に、接着層を有する、[8]から[10]までのいずれかに記載の支持板付き表示装置。
[11]
The support plate-attached display device according to any one of [8] to [10], further comprising an adhesive layer between the display device and the support plate.
 1 … 樹脂基材
 2 … ハードコート層
 3 … 樹脂層
 10… 表示装置用積層体
 40… 表示装置
 41… 表示パネル
 42… 光透過性接着層
 43… 筐体
 44… 保護フィルム
 45… タッチパネル部材
REFERENCE SIGNS LIST 1: resin substrate 2: hard coat layer 3: resin layer 10: laminate for display device 40: display device 41: display panel 42: light-transmitting adhesive layer 43: housing 44: protective film 45: touch panel member

Claims (11)

  1.  樹脂基材と、
     前記樹脂基材の一方の面に配置されたハードコート層と、
     前記樹脂基材の前記ハードコート層とは反対側の面に配置された樹脂層と、を有し、
     前記樹脂層の断面インデンター押し込み量は、200nm以上3000nm以下であり、
     前記樹脂基材の断面インデンター押し込み量は、前記樹脂層の断面インデンター押し込み量よりも小さく、
     前記樹脂層の厚さが5μm以上45μm以下であり、
     前記樹脂基材および前記樹脂層の合計厚さが50μm以上130μm以下である、表示装置用積層体。
    A resin substrate;
    a hard coat layer disposed on one surface of the resin substrate;
    a resin layer disposed on a surface of the resin substrate opposite to the hard coat layer,
    The cross-sectional indentation depth of the resin layer is 200 nm or more and 3000 nm or less,
    The cross-sectional indenter indentation amount of the resin substrate is smaller than the cross-sectional indenter indentation amount of the resin layer,
    The thickness of the resin layer is 5 μm or more and 45 μm or less,
    The laminate for a display device, wherein the total thickness of the resin substrate and the resin layer is 50 μm or more and 130 μm or less.
  2.  前記樹脂基材の断面インデンター押し込み量は、200nm未満である、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the cross-sectional indenter indentation amount of the resin substrate is less than 200 nm.
  3.  前記樹脂基材は、ポリエチレンテレフタレート、トリアセチルセルロースおよびポリイミドのいずれか1以上を含む、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the resin substrate contains one or more of polyethylene terephthalate, triacetyl cellulose, and polyimide.
  4.  前記ハードコート層の厚さが5μm以上20μm以下である、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, wherein the thickness of the hard coat layer is 5 μm or more and 20 μm or less.
  5.  前記表示装置用積層体を試験用支持板に試験用接着層を介して貼り合わせて作製した試験片に対する下記スライド屈曲試験において、スライド径を7.0mmとして往復を20万回繰り返し行った場合に、前記試験用接着層の剥がれおよび前記ハードコート層にクラックが生じない、請求項1に記載の表示装置用積層体。
    [スライド屈曲試験]
     20mm×100mmの大きさの表示装置用積層体を準備し、貫通パターンを有する厚さ150μmのSUS304製の試験用支持板に試験用接着層を介して貼り合わせて試験片を得る。前記試験片を、前記試験用支持板が内側となるように屈曲させ、長手方向の一端側と他端側とを対向させ、その状態でスライド試験機(ユアサ(株)DMLHB-FU)にセットする。次いで、前記一端側を固定した状態で、前記他端側をスライド長(ストローク長さ)35mm、スライド速度30rpmとしてスライドさせ、繰り返し往復させる。
    2. The laminate for a display device according to claim 1, wherein when a test piece prepared by bonding the laminate for a display device to a test support plate via a test adhesive layer is subjected to the following slide bending test with a slide diameter of 7.0 mm and the slide is repeatedly moved back and forth 200,000 times, peeling of the test adhesive layer and cracks do not occur in the hard coat layer.
    [Slide bending test]
    A display laminate measuring 20 mm x 100 mm is prepared, and a test specimen is obtained by bonding the laminate to a 150 μm thick SUS304 test support plate having a through pattern via a test adhesive layer. The test specimen is bent so that the test support plate is on the inside, and one end side and the other end side in the longitudinal direction are opposed to each other, and in this state, the test specimen is set in a slide tester (Yuasa Corporation DMLHB-FU). Next, with the one end side fixed, the other end side is slid with a slide length (stroke length) of 35 mm and a slide speed of 30 rpm, and is repeatedly reciprocated.
  6.  前記樹脂層の前記樹脂基材とは反対側の面に、貼付用接着層を有する、請求項1に記載の表示装置用積層体。 The laminate for a display device according to claim 1, which has an adhesive layer for attachment on the surface of the resin layer opposite the resin substrate.
  7.  表示パネルと、前記表示パネルの観察者側に配置された、請求項1から請求項6までのいずれかの請求項に記載の表示装置用積層体と、を備え、前記表示装置用積層体は、前記ハードコート層側が観察者側となるように配置される、表示装置。 A display device comprising a display panel and a laminate for a display device according to any one of claims 1 to 6, which is arranged on the viewer side of the display panel, and the laminate for a display device is arranged so that the hard coat layer side faces the viewer side.
  8.  請求項7に記載の表示装置と、前記表示装置の前記表示パネル側の面に配置された支持板と、を有し、前記表示装置はフレキシブルディスプレイであり、前記支持板は厚さ方向に貫通する貫通パターンを有する、支持板付き表示装置。 A display device with a support plate, comprising the display device according to claim 7 and a support plate arranged on the display panel side of the display device, the display device being a flexible display, and the support plate having a through pattern penetrating in the thickness direction.
  9.  前記表示装置は、前記支持板上に配置された状態でスライドしながら屈曲するディスプレイである、請求項8に記載の支持板付き表示装置。 The display device with support plate according to claim 8, wherein the display device is a display that bends while sliding while being placed on the support plate.
  10.  前記貫通パターンは、スライドする方向に対し垂直方向を長手方向とする直線状の貫通パターンである、請求項9に記載の支持板付き表示装置。 The display device with a support plate according to claim 9, wherein the through pattern is a linear through pattern with a longitudinal direction perpendicular to the sliding direction.
  11.  前記表示装置と前記支持板との間に、接着層を有する、請求項8に記載の支持板付き表示装置。 The display device with support plate according to claim 8, having an adhesive layer between the display device and the support plate.
PCT/JP2023/035677 2022-09-29 2023-09-29 Laminate for display device, display device, and display device equipped with support plate WO2024071391A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022156246 2022-09-29
JP2022-156246 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024071391A1 true WO2024071391A1 (en) 2024-04-04

Family

ID=90478162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035677 WO2024071391A1 (en) 2022-09-29 2023-09-29 Laminate for display device, display device, and display device equipped with support plate

Country Status (1)

Country Link
WO (1) WO2024071391A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043627A1 (en) * 2016-09-01 2018-03-08 大日本印刷株式会社 Optical film and image display device
WO2021060559A1 (en) * 2019-09-27 2021-04-01 大日本印刷株式会社 Front plate for display device, flexible organic electroluminescence display device, laminate for display device, and laminate
US20220121244A1 (en) * 2020-10-19 2022-04-21 Samsung Electronics Co., Ltd. Method for controlling window and electronic device therefor
WO2022108271A1 (en) * 2020-11-17 2022-05-27 삼성전자 주식회사 Electronic device including flexible display, and touch control method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043627A1 (en) * 2016-09-01 2018-03-08 大日本印刷株式会社 Optical film and image display device
WO2021060559A1 (en) * 2019-09-27 2021-04-01 大日本印刷株式会社 Front plate for display device, flexible organic electroluminescence display device, laminate for display device, and laminate
US20220121244A1 (en) * 2020-10-19 2022-04-21 Samsung Electronics Co., Ltd. Method for controlling window and electronic device therefor
WO2022108271A1 (en) * 2020-11-17 2022-05-27 삼성전자 주식회사 Electronic device including flexible display, and touch control method therefor

Similar Documents

Publication Publication Date Title
JP4084985B2 (en) Hard coat film
JP4216031B2 (en) Hard coat film for touch panel or display
CN109073789B (en) Hard coating film
JP2006058574A (en) Hard coat film
JP2008197320A (en) Antiglare coating composition, antiglare film, and method for manufacturing the same
JP5020913B2 (en) Hard coat film for touch panel or display
JP2001287308A (en) Plastic laminate and image display protecting film
JP2009029126A (en) Hard coat film and its manufacturing method
JP4266623B2 (en) Hard coat film
JP5728191B2 (en) Hard coat layer surface forming film, method for producing optical member with hard coat layer, and optical member with hard coat layer
TW201819189A (en) Film for increasing a feel of writing (film for an input pen device)
KR20130018475A (en) Laminate
JP2004143201A (en) Active energy ray curing composition, method for forming cured film using the same and cured product thereof and antireflection body
WO2020203062A1 (en) Layered film for molding
TW201825279A (en) Film for increasing a feel of writing (Film for an input pen device)
WO2024071391A1 (en) Laminate for display device, display device, and display device equipped with support plate
JP5628617B2 (en) Manufacturing method of optical member with hard coat layer, film for forming hard coat layer surface, and optical member with hard coat layer
US11891491B2 (en) Writing feel improving sheet with which a writing feel of writing on paper with a ballpoint pen is obtained
KR20220074409A (en) Optical laminate and flexible display device including the same
WO2024080358A1 (en) Display device member and display device
US20220269356A1 (en) Writing feel improving sheet
WO2023054468A1 (en) Multilayer body for display devices, and display device
JP7265332B2 (en) touch panel
JP2004110781A (en) Touch panel film
KR20220107410A (en) Cover window for flexible display device and flexible display device