WO2021111813A1 - Optical member and production method therefor - Google Patents

Optical member and production method therefor Download PDF

Info

Publication number
WO2021111813A1
WO2021111813A1 PCT/JP2020/041669 JP2020041669W WO2021111813A1 WO 2021111813 A1 WO2021111813 A1 WO 2021111813A1 JP 2020041669 W JP2020041669 W JP 2020041669W WO 2021111813 A1 WO2021111813 A1 WO 2021111813A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
optical member
index layer
high refractive
Prior art date
Application number
PCT/JP2020/041669
Other languages
French (fr)
Japanese (ja)
Inventor
正章 能勢
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2021111813A1 publication Critical patent/WO2021111813A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical member and a method for producing the same, and more particularly to an optical member having a salt water resistance and a photocatalytic effect and having an antireflection layer having a reduced spectral reflectance in the visible light region and a method for producing the same.
  • a camera is installed in the vehicle to support the driving of the vehicle. More specifically, a camera that captures the rear or side of the vehicle is mounted on the vehicle body, and the image captured by the camera is displayed in a position that can be seen by the driver to reduce the blind spot and drive the vehicle. It contributes to safe driving through support.
  • in-vehicle cameras are often mounted outside the vehicle, and there are strict requirements for guaranteeing environmental resistance for the lenses used.
  • SiO 2 or MgF 2 which is a component of the antireflection layer on the lens surface, is dissolved in salt water to change the spectral reflectance, which causes ghosts and flares.
  • Patent Document 1 since there is a need for an antireflection layer having a self-cleaning property (photocatalytic effect) in an optical system lens used outdoors, a TIO having a film thickness of 200 nm or more is required to obtain the photocatalytic effect. It is disclosed that two membranes are required. However, in the TiO 2 film a plurality of TiO 2 film is formed on the thick film, the reduction of the average spectral reflectance would spectral reflectance more than 10 percent of the visible light region is not sufficient.
  • the lens surface of the optical member has self-cleaning property and reduced spectral reflectance without any change in spectral reflectance or generation of ghost or flare due to dissolution and peeling of the main component. Appearance is awaited.
  • the present invention has been made in view of the above problems and situations, and the problems to be solved are an optical member having a salt water resistance and a photocatalytic effect, and an antireflection layer having a reduced spectral reflectance in the visible light region. It is to provide the manufacturing method.
  • the present inventor is an optical member having a dielectric multilayer film on a substrate, which is the uppermost layer of the dielectric multilayer film.
  • the refractive index layer contains a specific compound
  • the high refractive index layer immediately below the uppermost layer contains a metal oxide having photocatalytic properties
  • the thickness of the high refractive index layer is within a specific range. It has been found that an optical member having a salt water resistance and a photocatalytic effect and having an antireflection layer having a reduced spectral reflectance in the visible light region and a method for producing the same can be obtained by the optical member.
  • the dielectric multilayer film has at least a low refractive index layer L (1), a high refractive index layer H (2), and an antireflection layer AR from the surface.
  • the low refractive index layer L (1) has a refractive index of less than 1.7 with respect to the helium d line
  • the high refractive index layer H (2) has a refractive index of 1.7 or more with respect to the helium d line.
  • At least the low refractive index layer L (1) contains yttrium fluoride (YF 3 ).
  • the high refractive index layer H (2) contains a metal oxide having photocatalytic properties, and the thickness of the high refractive index layer H (2) is in the range of 200 to 550 nm.
  • the refractive index of the low refractive index layers L (1) and L (3) with respect to the helium d line is less than 1.7, and the refraction of the high refractive index layers H (2) and H (4) with respect to the helium d line.
  • the rate is 1.7 or higher
  • the low refractive index layers L (1) and L (3) contain yttrium fluoride (YF 3 ).
  • the high refractive index layers H (2) and H (4) contain a metal oxide having photocatalytic properties, and the sum of the thicknesses of the high refractive index layers H (2) and H (4) is 200.
  • the optical member according to item 1 or 2 wherein the metal oxide is titanium oxide (TiO 2). 4. The optical member according to any one of items 1 to 3, wherein the thickness of the low refractive index layer L (1) is in the range of 60 to 120 nm. 5. The optical member according to any one of items 2 to 4, wherein the thickness of the low refractive index layer L (3) is in the range of 3 to 23 nm. 6. The optical member according to any one of items 1 to 5, wherein the antireflection layer AR has a layer containing at least silicon oxide (SiO 2). 7. Described in any one of items 1 to 6, wherein the spectral reflectance with respect to light incident from the normal direction is 1.5% or less on average in the light wavelength range of 420 to 680 nm.
  • Optical member 8. A method for manufacturing an optical member according to any one of items 1 to 7, wherein the optical member is manufactured.
  • a method for manufacturing an optical member which comprises forming the layer containing TiO 2 and the layer containing SiO 2 by using an ion-assisted deposition method.
  • an optical member having a salt water resistance and a photocatalytic effect and having an antireflection layer having a reduced spectral reflectance in the visible light region, and a method for manufacturing the same.
  • the optical member of the present invention is an optical member having a plurality of antireflection layers on a substrate, and is characterized by containing yttrium fluoride (YF 3), which is a low refractive index material, in the uppermost layer. ..
  • the SiO 2- containing layer forming the uppermost layer of the conventional dielectric multilayer film has a problem in salt water resistance.
  • the SiO 2- containing layer is 5 nm from the surface due to salt water with respect to the spectral reflectance of the sample before the salt spray test.
  • the spectral reflectance of the sample at a light wavelength of 550 nm changes remarkably from about 0.5% to about 3.0%. Due to such changes, for example, when the uppermost layer of the antireflection layer (dielectric multilayer film) on the lens is dissolved and peeled off by the external environment (salt water), flare and ghost are generated, which deteriorates from the initial performance. it is conceivable that.
  • yttrium fluoride which is a metal fluoride, is calculated to be about 1.3 from the solubility and density in salt water when the layer thickness is the same as that of the SiO 2 containing layer in the salt spray test. It is presumed that it has excellent resistance to fluoride water (solubility).
  • yttrium fluoride has an excellent permeability of the photocatalyst from the lower layer because the filling rate in the film when the film is formed is about the same as that of SiO 2.
  • MgF 2 reffractive index 1.385
  • Al 2 O 3 refractive index 1.620
  • YF 3 is considered to be an excellent material that satisfies the characteristics required as the uppermost layer from the viewpoints of salt water resistance, photocatalytic permeability, and refractive index (reduction of spectral reflectance).
  • the high refractive index layer H (2) or the high refractive index layers H (2) and H (4) contains a metal oxide having photocatalytic properties, and the high refractive index layer H (2) ), Or the total layer thickness of the high refractive index layers H (2) and H (4) is in the range of 200 to 550 nm.
  • the antireflection layer becomes an antireflection layer due to interference when the optical film thickness (refractive index nd / wavelength ⁇ ) is 1/4 (0.25) or 1/2 (0.5). ing.
  • the layer constituting the antireflection layer has a layer thickness larger than 1 / 2 ⁇ , interference occurs in the reflected light and the phases do not match well, so that the spectral reflection characteristics deteriorate.
  • the high refractive index layer H (2) or the high refractive index layer H (2) containing the metal oxide having the photocatalytic property is used.
  • the sum of the thicknesses of H (4) is preferably in the range of 200 to 550 nm, and the sum of the thicknesses of the high refractive index layers H (2) and H (4) is in the range of 200 to 550 nm. As there is, the latter method of dividing into two layers to reduce the thickness per layer is considered to be more effective.
  • Sectional drawing which shows the structure of the optical member of this invention
  • Sectional drawing which shows another structure of the optical member of this invention
  • Schematic diagram showing an example of an IAD thin-film deposition apparatus Graph measuring the spectral reflectance of an optical member sample Graph measuring the spectral reflectance of an optical member sample Graph measuring the spectral reflectance of an optical member sample Graph measuring the spectral reflectance of an optical member sample
  • Schematic diagram showing a photocatalytic effect evaluation method Schematic diagram showing a photocatalytic effect evaluation method
  • Schematic diagram showing a photocatalytic effect evaluation method Schematic diagram showing a photocatalytic effect evaluation method
  • the optical member of the present invention is an optical member having a dielectric multilayer film on a substrate, and the dielectric multilayer film has a low refractive index layer L (1) and a high refractive index layer H (2) at least from the surface.
  • the low refractive index layer L (1) has a refractive index of less than 1.7 with respect to the helium d line, and the high refractive index layer H (2) has the helium d line.
  • the low refractive index layer L (1) contains yttrium fluoride (YF 3 ), and the high refractive index layer H (2) is a photocatalytic metal. It is characterized by containing an oxide and having a thickness of the high refractive index layer H (2) in the range of 200 to 550 nm. This feature is a technical feature common to or corresponding to the following embodiments.
  • the optical member of the present invention is an optical member having a dielectric multilayer film on a substrate, and the dielectric multilayer film has a low refractive index layer L (1) and a high refractive index layer H (1) at least from the surface. 2), low refractive index layer L (3), high refractive index layer H (4), and antireflection layer AR, with respect to the helium d line of the low refractive index layers L (1) and L (3).
  • the refractive index is less than 1.7
  • the refractive indexes of the high refractive index layers H (2) and H (4) with respect to the helium d line are 1.7 or more
  • the low refractive index layers L (1) and L (3) contains yttrium fluoride (YF 3 )
  • the high refractive index layers H (2) and H (4) contain a metal oxide having photocatalytic properties
  • the high refractive index is in the range of 200 to 550 nm.
  • the metal oxide is TiO 2 has high photocatalytic property and imparts excellent self-cleaning property to the optical member. This is a preferred embodiment.
  • the thickness of the low refractive index layer L (1) is in the range of 60 to 120 nm from the viewpoint of reducing salt water resistance and spectral transmittance.
  • the thickness of the low refractive index layer L (3) is in the range of 3 to 23 nm from the viewpoint of further improving salt water resistance by providing two layers containing YF 3 as an intermediate layer. is there.
  • the antireflection layer inside the optical member it is preferable to have a layer containing at least SiO 2 as the antireflection layer inside the optical member as the low refractive index material.
  • the spectral reflectance with respect to light incident from the normal direction is preferably 1.5% or less on average in the light wavelength range of 420 to 680 nm, and more preferably 0.5% on average. The following is more preferable from the viewpoint of improving the visibility of the image captured as the in-vehicle lens.
  • the layer containing TiO 2 and the layer containing SiO 2 are subjected to an ion-assisted deposition method (“IAD vacuum deposition method” or simply “IAD”.
  • IAD vacuum deposition method or simply “IAD”.
  • Forming using the method is a preferable method for producing an optical member from the viewpoint of being able to form a denser film and further improving salt water resistance.
  • the optical member of the present invention is an optical member having a dielectric multilayer film on a substrate, and the dielectric multilayer film has a low refractive index layer L (1) and a high refractive index layer H (2) at least from the surface.
  • the low refractive index layer L (1) has a refractive index of less than 1.7 with respect to the helium d line, and the high refractive index layer H (2) has the helium d line.
  • the low refractive index layer L (1) contains yttrium fluoride (hereinafter, may be referred to as “YF 3 ”), and the high refractive index layer L (1) has a refractive index of 1.7 or more.
  • H (2) contains a photocatalytic metal oxide, and the thickness of the high refractive index layer H (2) is in the range of 200 to 550 nm.
  • the optical member of the present invention is an optical member having a dielectric multilayer film on a substrate, and the dielectric multilayer film has a low refractive index layer L (1) and a high refractive index layer H (1) at least from the surface. 2), low refractive index layer L (3), high refractive index layer H (4), and antireflection layer AR, with respect to the helium d line of the low refractive index layers L (1) and L (3).
  • the refractive index is less than 1.7
  • the refractive indexes of the high refractive index layers H (2) and H (4) with respect to the helium d line are 1.7 or more
  • the low refractive index layers L (1) and L (3) contains yttrium fluoride (YF 3 )
  • the high refractive index layers H (2) and H (4) contain a metal oxide having photocatalytic properties
  • the high refractive index is in the range of 200 to 550 nm.
  • the sum of the thicknesses of the high refractive index layers H (2) and H (4) is preferably in the range of 200 to 290 nm from the viewpoint of developing photocatalytic property and reducing spectral reflectance.
  • FIG. 1 is a cross-sectional view showing the configuration of the optical member of the present invention.
  • FIG. 1A is a cross-sectional view showing the optical member 100 according to the first embodiment.
  • the dielectric multilayer film 115 having an antireflection function is, for example, the high refractive index layers 103 and 105 having a refractive index higher than the refractive index of the glass substrate 101 constituting the lens, and lower than the high refractive index layer. It contains an antireflection layer AR107 composed of low refractive index layers 102, 104 and 106 having a refractive index, and a high refractive index layer H (2) 108 and YF 3 which are layers containing a metal oxide having a photocatalytic property. It has a low refractive index layer L (1) which is the uppermost layer.
  • the antireflection layer AR preferably has a multilayer structure in which the high refractive index layer and the low refractive index layer are alternately laminated.
  • the optical member of the present invention has a spectral reflectance of preferably 1.5% or less with respect to light incident from the normal direction in a light wavelength range of 420 to 680 nm, as an in-vehicle lens. This is preferable from the viewpoint of improving the visibility of the captured image. Further, the spectral reflectance is more preferably 0.5% or less on average.
  • the average spectral reflectance for example, in the optical wavelength range of 380 to 780 nm, the spectral reflectance with respect to light incident from the normal direction is measured using a visible differential light measuring machine USPM-RU III manufactured by Olympus.
  • the spectral reflectance values in the visible light wavelength range of 420 to 680 nm can be appropriately extracted and averaged to obtain the average spectral reflectance.
  • the uppermost layer 109 according to the present invention is a metal fluoride layer containing YF 3 as a main component.
  • the refractive index of the uppermost layer with respect to the helium d-line (light wavelength 587.56 nm) is less than 1.7, which is a preferable range of the refractive index from the viewpoint of reducing the spectral reflectance.
  • the layer directly below the uppermost layer according to the present invention refers to the high refractive index layer H (2) 108, which is a layer containing a photocatalytic metal oxide in FIG. 1A.
  • the refractive index of the high refractive index layer H (2) 108 with respect to the helium d line (light wavelength 587.56 nm) is 1.7 or more, which is a preferable range of the refractive index from the viewpoint of reducing the spectral reflectance. ..
  • FIG. 1B is a cross-sectional view showing the optical member 100 according to the second embodiment.
  • the dielectric multilayer film 115 having an antireflection function is, for example, the high refractive index layers 103 and 105 having a refractive index higher than the refractive index of the glass substrate 101 constituting the lens, and lower than the high refractive index layer.
  • High refractive index layers H (2) 108 and H (4) which are layers containing a low refractive index layer 102, 104, 106 having a refractive index and an antireflection layer AR107 and a metal oxide having a photocatalytic property. It has 110, a low refractive index layer L (1) which is the uppermost layer containing YF 3, and L (3) 111 which is an intermediate layer.
  • the low refractive index layer L (3) may be hereinafter referred to as an “intermediate layer”.
  • the layer constituting the antireflection layer has a layer thickness significantly larger than 1 / 2 ⁇ , interference occurs in the reflected light and the phases do not match well, so that the spectral reflection characteristics deteriorate.
  • it is effective to thicken the layer containing the metal oxide having the photocatalytic property, but if it is thickened, the spectral reflectance cannot be reduced. Therefore, in order to reduce the spectral reflectance and further effectively exhibit the photocatalytic property, as shown in FIG. 1B, the high refractive index layers H (2) and H (4) containing the metal oxide having the photocatalytic property. ), It is effective to design the layer so that the total layer thickness is in the range of 200 to 550 nm.
  • the optical member of the present invention shown in FIG. 1 is formed by laminating a low refractive index layer, a high refractive index layer, an uppermost layer 109 according to the present invention, and a layer immediately below it on a substrate 101 to form a dielectric multilayer film.
  • the uppermost layer and the layer immediately below the uppermost layer according to the present invention may be formed on both sides of the substrate 101. That is, it is preferable that the uppermost layer and the layer immediately below the uppermost layer according to the present invention are on the side exposed to the external environment, but not on the exposed side, for example, on the inner side opposite to the exposed side.
  • the uppermost layer according to the present invention and the layer immediately below the upper layer may be formed.
  • the optical member of the present invention can also be applied to an optical member such as an antireflection member or a heat shield member.
  • the low refractive index layers L (1) and L according to the present invention. (3) is a layer containing YF 3 as a main component, and the “main component” means that the YF 3 contained in the layer is preferably 90% by mass or more, preferably 95% by mass or more. It is more preferable, and particularly preferably, it is contained in an amount of 98% by mass or more.
  • the refractive index of the low refractive index layer L (1) with respect to the light wavelength of 587.56 nm (d line) is less than 1.7, which is a preferable range of the refractive index from the viewpoint of reducing the spectral reflectance.
  • a more preferable refractive index is in the range of 1.45 to 1.55.
  • the thickness of the low refractive index layer L (1) is preferably in the range of 60 to 120 nm from the viewpoint of salt water resistance and reduction of spectral reflectance, and similarly, the low refractive index layer L which is an intermediate layer.
  • the thickness of (3) is preferably in the range of 3 to 23 nm.
  • a vacuum deposition method is used for the vapor deposition system, a sputtering method, a magnetron sputtering method, etc. are used for the sputtering system. It is preferable to utilize it.
  • metal fluoride it is preferable not to use the IAD method or the like because the metal fluoride is decomposed by ion irradiation.
  • the degree of decompression in the chamber is usually in the range of 1 ⁇ 10 -4 to 1 ⁇ 10 -1 Pa, preferably 1 ⁇ 10 -3 to 1 ⁇ 10 -2 Pa.
  • the film formation rate is within the range of 1 to 10 ⁇ / sec, specifically, using BES-1300 manufactured by Syncron, for example, a heating temperature of 340 ° C., a starting vacuum degree of 1.33 ⁇ 10 -3 Pa, and film formation. It is preferable to form a film at a rate of 7 ⁇ / sec. Further, the same applies to the case where the SiO 2- containing layer and the MgF 2- containing layer are formed without using the IAD method.
  • the dielectric multilayer film having an antireflection function has a higher refractive index than the substrate. It has a high refractive index layer having a refractive index and a low refractive index layer having a refractive index lower than that of the high refractive index layer. It is preferable to have a multilayer structure in which these high refractive index layers and low refractive index layers are alternately laminated.
  • the number of layers is not particularly limited, but it is preferable that the number of layers is 12 or less from the viewpoint of maintaining high productivity and obtaining an antireflection layer.
  • the number of layers depends on the required optical performance, but the reflectance of the entire visible light region can be reduced by laminating about 3 to 8 layers, and the upper limit is 12 layers or less. This is preferable in that it is possible to prevent the film from being peeled off due to an increase in stress of the film.
  • the refractive index of the high refractive index layer with respect to the light wavelength of 587.56 nm is in the range of 1.9 to 2.45, and the refractive index of the low refractive index layer with respect to the light wavelength of 587.56 nm is 1.3 to 1.5. It is preferably within the range of.
  • the material used for the antireflection layer AR of the dielectric multilayer film (high refractive index layer, low refractive index layer) according to the present invention is preferably, for example, Ti, Ta, Nb, Zr, Ce, La, Al, Oxides such as Si and Hf, or oxidation compounds combining these, and MgF 2 are suitable. Further, by stacking a plurality of layers of different dielectric materials, it is possible to add a function of reducing the reflectance of the entire visible light region.
  • the low refractive index layer is made of a material having a refractive index lower than that of the substrate, and in the present invention, it is preferably SiO 2 or a mixture of SiO 2 and Al 2 O 3. In particular, a layer containing SiO 2 is preferable from the viewpoint of reducing the spectral reflectance.
  • the high refractive index layer is composed of a material having a higher refractive index than that of the substrate.
  • a material having a higher refractive index than that of the substrate For example, a mixture of Ta oxide and Ti oxide, Ti oxide, Ta oxide, and La oxide. It is preferably a mixture of oxides of and Ti. In the present invention, it is preferably Ta 2 O 5 or TiO 2 , and more preferably Ta 2 O 5 .
  • the high-refractive index layer H (2) or the layers containing TiO 2 in the high-refractive index layers H (2) and H (4) are used as a photocatalytic layer having a self-cleaning function.
  • the self-cleaning function of TiO 2 refers to the effect of photocatalyst on organic matter decomposition. This is because when TiO 2 is irradiated with ultraviolet light, OH radicals are generated after electrons are emitted, and organic substances are decomposed by the strong oxidizing power of the OH radicals.
  • the sum of the thicknesses of the high refractive index layer H (2) or the high refractive index layers H (2) and H (4) is preferably in the range of 200 to 550 nm, and the high refractive index is preferably in the range of 200 to 550 nm.
  • the latter method of reducing the metal oxide content per layer by dividing into two layers so that the sum of the thicknesses of the rate layers H (2) and H (4) is in the range of 200 to 550 nm is available. It is more effective.
  • the sum of the thicknesses of the high refractive index layers H (2) and H (4) is preferably in the range of 200 to 290 nm from the viewpoint of developing photocatalytic property and reducing spectral reflectance.
  • the thickness of the dielectric multilayer film (the total thickness when a plurality of layers are laminated) is preferably in the range of 50 nm to 5 ⁇ m. When the thickness is 50 nm or more, the optical characteristics of antireflection can be exhibited, and when the thickness is 5 ⁇ m or less, surface deformation due to the film stress of the multilayer film itself can be prevented. It is preferably in the range of 100 nm to 1 ⁇ m.
  • a reactive sputtering method such as a sputtering method for an inorganic material (for example, magnetron cathode sputtering, flat plate magnetron sputtering, 2-pole AC flat plate magnetron sputtering, 2-pole AC rotating magnetron sputtering, etc.) Includes), vapor deposition methods (eg, resistance heating vapor deposition, electron beam deposition, ion beam deposition, plasma-assisted vapor deposition, and vacuum vapor deposition using the IAD method), thermal CVD method, catalytic chemical vapor deposition method (Cat-CVD). ), Capacitive bonded plasma CVD method (CCP-CVD), optical CVD method, plasma CVD method (PE-CVD), epitaxial growth method, chemical vapor deposition method such as atomic layer growth method, or the like.
  • vapor deposition methods eg, resistance heating vapor deposition, electron beam deposition, ion beam deposition, plasma-assisted vapor deposition, and vacuum
  • the vacuum deposition method uses the IAD method.
  • the IAD method is a method in which the high kinetic energy of ions is applied during film formation to form a dense film or to increase the adhesion of the film.
  • the ion beam method is an ionization method irradiated from an ion source. This is a method of accelerating the adherend material with the generated gas molecules to form a film on the surface of the substrate.
  • the IAD method is also referred to as an "ion beam assist method".
  • FIG. 2 is a schematic view showing an example of a vacuum deposition apparatus using the IAD method.
  • the vacuum vapor deposition apparatus 1 using the IAD method includes a dome 3 in the chamber 2, and the substrate 4 is arranged along the dome 3.
  • the thin-film deposition source 5 includes an electron gun or a resistance heating device that evaporates the vapor-deposited substance, and the thin-film deposition material 6 scatters from the vapor deposition source 5 toward the substrate 4 and condenses and solidifies on the substrate 4.
  • the ion beam 8 is irradiated from the IAD ion source 7 toward the substrate, and the high kinetic energy of the ions is applied during the film formation to form a dense film or enhance the adhesion of the film.
  • a plurality of thin-film deposition sources 5 may be arranged at the bottom of the chamber 2.
  • one vapor deposition source is shown as the vapor deposition source 5, but the number of the vapor deposition sources 5 may be plural.
  • the film-forming material (deposited material) of the vapor deposition source 5 is generated by an electron gun to generate the vapor-deposited substance 6, and the film-forming material is scattered and adhered to the substrate 4 (for example, a glass plate) installed in the chamber 2.
  • a layer made of a material for example, a low refractive index material of the antireflection layer AR, SiO 2 , MgF 2 , or Al 2 O 3 layer, or a high refractive index material such as Ta 2 O 5 or TiO 2
  • a film is formed on the substrate 4. Further, it is preferable to use a vacuum deposition method using the same IAD method for the high refractive index layers H (2) and H (4) according to the present invention.
  • the chamber 2 is provided with a vacuum exhaust system (not shown), whereby the inside of the chamber 2 is evacuated.
  • the degree of decompression in the chamber is usually in the range of 1 ⁇ 10 -4 to 1 ⁇ 10 -1 Pa, preferably 1 ⁇ 10 -3 to 1 ⁇ 10 ⁇ 2 Pa.
  • the dome 3 holds at least one holder (not shown) for holding the substrate 4, and is also called a vapor deposition umbrella.
  • the dome 3 has an arcuate cross section, passes through the center of a string connecting both ends of the arc, and has a rotationally symmetric shape that rotates with an axis perpendicular to the string as a rotationally symmetric axis. As the dome 3 rotates about the shaft at a constant speed, for example, the substrate 4 held by the dome 3 via the holder revolves around the shaft at a constant speed.
  • the dome 3 can hold a plurality of holders side by side in the radial direction of rotation (radial direction of revolution) and the direction of rotation (revolutionary direction). As a result, it is possible to simultaneously form a film on a plurality of substrates 4 held by a plurality of holders, and it is possible to improve the manufacturing efficiency of the device.
  • the IAD ion source 7 is a device that introduces argon or oxygen gas into the main body to ionize them and irradiates the ionized gas molecules (ion beam 8) toward the substrate 4.
  • the ion source Kaufmann type (filament), hollow cathode type, RF type, bucket type, duoplasmatron type and the like can be applied.
  • the molecules of the film-forming material evaporating from a plurality of evaporation sources can be pressed against the substrate 4, and a film having high adhesion and density can be formed on the substrate.
  • a film can be formed on the 4.
  • the IAD ion source 7 is installed at the bottom of the chamber 2 so as to face the substrate 4, it may be installed at a position deviated from the facing axis.
  • the ion beam used in the IAD method is used at a lower vacuum degree than the ion beam used in the ion beam sputtering method, and tends to have a lower acceleration voltage.
  • an ion beam having an acceleration voltage of 100 to 2000 V, an ion beam having a current density of 1 to 120 ⁇ A / cm 2 , or an ion beam having an acceleration voltage of 500 to 1500 V and a current density of 1 to 120 ⁇ A / cm 2 can be used.
  • the irradiation time of the ion beam can be set to, for example, 1 to 800 seconds, and the number of particles irradiated by the ion beam can be set, for example, 1 ⁇ 10 13 to 5 ⁇ 10 17 particles / cm 2 .
  • the ion beam used in the film forming step can be an oxygen ion beam, an argon ion beam, or an ion beam of a mixed gas of oxygen and argon.
  • the oxygen introduction amount is within the range of 30 to 60 sccm and the argon introduction amount is within the range of 0 to 10 sccm.
  • "Sccm" is an abbreviation for standard cc / min, and is a unit indicating how many cc flowed per minute at 1 atm (atmospheric pressure 1013 hPa) and 0 ° C.
  • the monitor system (not shown) is a system that monitors the wavelength characteristics of the layer formed on the substrate 4 by monitoring the layer that evaporates from each vapor deposition source 5 and adheres to itself during vacuum film formation. .. With this monitor system, it is possible to grasp the optical characteristics (for example, spectral transmittance, spectral reflectance, optical layer thickness, etc.) of the layer formed on the substrate 4.
  • the monitor system also includes a crystal layer thickness monitor, and can monitor the physical layer thickness of the layer formed on the substrate 4. This monitor system also functions as a control unit that controls ON / OFF switching of a plurality of evaporation sources 5 and ON / OFF switching of the IAD ion source 7 according to the monitoring result of the layer.
  • base material As the base material according to the present invention, specifically, glass is preferably applied, and glass used for ordinary optical lenses is preferable. As the glass, for example, glass such as quartz, borosilicate glass, or chemically tempered glass is preferably used.
  • the thickness of the base material according to the present invention is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m.
  • optical member of the present invention examples include an in-vehicle or outdoor optical lens, and in particular, a lens for an in-vehicle camera (a lens constituting a lens unit). preferable.
  • An "in-vehicle camera” is a camera installed on the outside of the vehicle body, which is installed at the rear part of the vehicle body and used for rear confirmation, or installed at the front part of the vehicle body for front confirmation. Alternatively, it is used for checking the side or for checking the distance to the vehicle in front.
  • Such a lens unit for an in-vehicle camera is composed of a plurality of lenses, and more specifically, is composed of an object-side lens arranged on the object side and an image-side lens group arranged on the image side.
  • the image-side lens group includes a plurality of lenses and a diaphragm provided between the lenses.
  • the lens on the object side has an exposed surface exposed to the outside air, and the optical member of the present invention is used as the lens having this exposed surface.
  • optical member of the present invention examples include an outdoor installation type surveillance camera, and among the lenses constituting the surveillance camera, the optical member of the present invention is used as lenses having an exposed surface exposed to the outside air. Be done.
  • Table I summarizes the film forming conditions and the refractive index of the film forming material on the d line.
  • the film forming materials used in the examples are as follows.
  • ⁇ Optical member No. Preparation of 1> (Anti-reflection layer AR: film formation of low refractive index layer and high refractive index layer) Film formation material for low refractive index layer: SiO 2
  • the above-mentioned base material is installed in a vacuum vapor deposition apparatus, the film-forming material is loaded into the first evaporation source, vapor deposition is carried out at a film-forming rate of 4 ⁇ / sec, and a low refractive index with a thickness of 36.7 nm is formed on the base material. A layer was formed.
  • the low refractive index layer is formed by the IAD method, with an acceleration voltage of 1000 V, an acceleration current of 1000 mA, and a neutralization (bias) current of 1200 mA.
  • Amount of gas introduced during film formation by vapor deposition is a 2 ⁇ 10 -2 PA
  • IAD introduced gas was carried out by O 2 50 sccm, Ar gas 0 sccm, the neutral gas O 2 50 sccm conditions.
  • High refractive index layer film forming material A600
  • the above-mentioned base material is installed in a vacuum vapor deposition apparatus, the film-forming material is loaded into the second evaporation source, vapor deposition is carried out at a film-forming rate of 2.0 ⁇ / sec, and the thickness is 11.
  • a high refractive index layer of 0 nm was formed.
  • the formation of the high refractive index layer was similarly carried out by the IAD method.
  • a low refractive index layer and a high refractive index layer were laminated and formed on the formed high refractive index layer under the layer thickness conditions shown in Table II to prepare a total of five dielectric multilayer films.
  • Photocatalyst layer High refractive index layer H (2) or film formation of high refractive index layers H (2) and H (4)
  • Photocatalyst layer film forming material TiO 2
  • the film-forming material was loaded into the third evaporation source on the substrate on which the film was formed up to the above five layers, and the film was deposited at a film-forming rate of 2.0 ⁇ / sec, and the thickness was 129.3 nm on the low refractive index layer.
  • the photocatalyst layer H (4) was formed.
  • the photocatalyst layer was similarly formed by the IAD method at an acceleration voltage of 500 V, an acceleration current of 500 mA, and a neutralization (bias) current of 750 mA.
  • a high refractive index layer H (2) having a photocatalytic property of 121.0 nm was formed.
  • Top layer and intermediate layer film forming material YF 3
  • the film-forming material is loaded into the fourth evaporation source on the base material on which the lower layer is formed, and the film is deposited at a film-forming rate of 4.0 ⁇ / sec, and the uppermost layer having a thickness of 80.6 nm is deposited on the photocatalyst layer.
  • the low refractive index layer L (1) was formed, and the intermediate layer L (3) having a thickness of 11.7 nm was formed in the same manner.
  • thin-film deposition was performed at a film formation rate of 2.2 ⁇ / sec and 4.0 ⁇ / sec, respectively, using an electron gun.
  • FIGS. 3 to 6 The measurement results are shown in FIGS. 3 to 6. Ranks were performed based on the shape of the spectral reflectance. The above is acceptable, but it is preferably ⁇ to ⁇ .
  • The average spectral reflectance in the visible light region is 0.5% or less, which is excellent:
  • FIG. ⁇ Although the spectral reflectance in the visible light region is slightly disturbed, the average spectral reflectance is 1.0% or less, which is not a problem:
  • Fig. 4 ⁇ Although the spectral reflectance in the visible light region is disturbed, the average spectral reflectance is 1.5% or less, and there is no practical problem:
  • FIG. X There is a large disturbance in the spectral reflectance in the visible light region, and the average spectral reflectance exceeds 1.5%, which is a practical problem: Fig. 6
  • ⁇ Measurement of spectral reflectance> The spectral reflectance of the optical member sample before and after the salt spray test was measured, and if the average value of the spectral reflectance in the light wavelength range of 420 to 680 nm fluctuated within 0.1%, it was evaluated as ⁇ and 0. The case where the fluctuation exceeds 0.1% and is within 0.15% is marked with ⁇ , and the case where the fluctuation exceeds 0.15% is marked with ⁇ . ⁇ The above was regarded as a pass.
  • FIG. 7A A schematic diagram of the lighting device 200 for evaluating the lighting arrangement is shown in FIG. 7A.
  • the marker surface 205 on the uppermost layer side of the produced optical member sample 204 is on the UV light 202 side, and the sample is placed on the flat plate 203.
  • Ink is applied in 1 step with about 5 points x 2 steps.
  • the contact angle with water is as follows: After leaving the sample for 24 hours in an atmosphere with a temperature of 23 ° C and a relative humidity of 55%, a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., product) in an atmosphere with a temperature of 23 ° C and a relative humidity of 55%. Using the name DropMaster DM100), the contact angle of pure water 1 minute after dropping 1 ⁇ l of pure water was measured. It should be noted that the measurement is performed 7 times, and the value is the average of 5 measured values excluding the maximum value and the minimum value of the measured values. In order for the uppermost layer to exhibit hydrophilicity, the contact angle is preferably 30 ° or less.
  • the optical member having one evaluation level ⁇ is in the present invention, the overall evaluation is ⁇ , and the optical member having only the better evaluation level ⁇ or ⁇ is rated as ⁇ , and the ranking is performed.
  • Table II and Table III below show the configuration, manufacturing method, and evaluation results of the optical member sample.
  • No. 1 which is an optical member sample having the constitution of the present invention.
  • 1, 2, 6, 7, 9 to 13, and 15 are excellent in spectral reflectance and salt water resistance, and further, because a TiO 2 containing layer is provided in the optical member as a photocatalyst layer, It can be seen that it exhibits a photocatalytic effect and is also excellent in self-cleaning property.
  • the optical member 4 having SiO 2 in the uppermost layer was inferior in salt water resistance
  • the optical member 5 using MgF 2 in the intermediate layer L (3) was inferior in photocatalytic property.
  • the optical member of the present invention is an optical member having salt water resistance and a photocatalytic effect and having an antireflection layer having a reduced spectral reflectance in the visible light region, and is used in the outside air for in-vehicle use or outdoor use (surveillance camera, etc.). It is preferably used for an optical lens on the exposed surface side to be exposed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Filters (AREA)

Abstract

The present invention addresses the problem of providing an optical member having an antireflective layer having salt water resistance, photocatalytic effect, and a reduced spectral reflectance in the visible light region, and a production method therefor. This optical member has a dielectric multilayer film on a substrate, the optical member being characterized in that the dielectric multilayer film at least comprises, from the surface, a low refractive index layer L (1), a high refractive index layer H (2), and an antireflective layer AR, the refractive index of the low refractive index layer L (1) with respect to the helium d-line is less than 1.7, the refractive index of the high refractive index layer H (2) with respect to the helium d-line is 1.7 or higher, at least the low refractive index layer L (1) contains yttrium fluoride (YF3), the high refractive index layer H (2) contains a photocatalytic metal oxide, and the thickness of the high refractive index layer H (2) falls in the range of 200 to 550 nm.

Description

光学部材及びその製造方法Optical member and its manufacturing method
 本発明は、光学部材及びその製造方法に関し、より詳しくは、塩水耐性と光触媒効果を有し、可視光域の分光反射率が低減された反射防止層を有する光学部材及びその製造方法に関する。 The present invention relates to an optical member and a method for producing the same, and more particularly to an optical member having a salt water resistance and a photocatalytic effect and having an antireflection layer having a reduced spectral reflectance in the visible light region and a method for producing the same.
 車両の運転支援のため、車両にカメラを搭載することが行われている。より具体的には、車両の後方や側方を撮像するカメラを自動車の車体に搭載し、当該カメラによって撮像された映像を運転者が視認可能な位置に表示することによって死角を減らし、当該運転支援により安全運転に貢献するものである。 A camera is installed in the vehicle to support the driving of the vehicle. More specifically, a camera that captures the rear or side of the vehicle is mounted on the vehicle body, and the image captured by the camera is displayed in a position that can be seen by the driver to reduce the blind spot and drive the vehicle. It contributes to safe driving through support.
 ところで、車載カメラは車外に取り付けられる場合が多く、用いられるレンズについては、耐環境性への保証要求が厳しい。例えば、レンズへの塩水噴霧試験において、レンズ表面にある反射防止層の成分であるSiO2又はMgF2は塩水に溶解することで分光反射率が変化すると、ゴーストやフレアの発生の原因となる。 By the way, in-vehicle cameras are often mounted outside the vehicle, and there are strict requirements for guaranteeing environmental resistance for the lenses used. For example, in a salt spray test on a lens, SiO 2 or MgF 2, which is a component of the antireflection layer on the lens surface, is dissolved in salt water to change the spectral reflectance, which causes ghosts and flares.
 また、特許文献1には、屋外で使用される光学系レンズにはセルフクリーニング性(光触媒効果)を有する反射防止層のニーズがあるため、当該光触媒効果を得るには200nm以上の膜厚のTiO2膜が必要であることが開示されている。しかしながら、複数のTiO2膜を厚膜に形成したTiO2膜では、可視光域の平均分光反射率が10%を超えてしまい分光反射率の低減が十分でなかった。 Further, in Patent Document 1, since there is a need for an antireflection layer having a self-cleaning property (photocatalytic effect) in an optical system lens used outdoors, a TIO having a film thickness of 200 nm or more is required to obtain the photocatalytic effect. It is disclosed that two membranes are required. However, in the TiO 2 film a plurality of TiO 2 film is formed on the thick film, the reduction of the average spectral reflectance would spectral reflectance more than 10 percent of the visible light region is not sufficient.
 したがって、前記レンズ表面には塩水噴霧試験において、主成分の溶解剥離による分光反射率の変化やゴーストやフレアの発生がなく、セルフクリーニング性を有し、かつ分光反射率が低減された光学部材の出現が待たれている。 Therefore, in the salt spray test, the lens surface of the optical member has self-cleaning property and reduced spectral reflectance without any change in spectral reflectance or generation of ghost or flare due to dissolution and peeling of the main component. Appearance is awaited.
特開2003-287601号公報Japanese Unexamined Patent Publication No. 2003-287601
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、塩水耐性と光触媒効果を有し、可視光域の分光反射率が低減された反射防止層を有する光学部材及びその製造方法を提供することである。 The present invention has been made in view of the above problems and situations, and the problems to be solved are an optical member having a salt water resistance and a photocatalytic effect, and an antireflection layer having a reduced spectral reflectance in the visible light region. It is to provide the manufacturing method.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、基板上に、誘電体多層膜を有する光学部材であって、前記誘電体多層膜の最上層である低屈折率層が特定の化合物を含有し、当該最上層の直下にある高屈折率層が光触媒性を有する金属酸化物を含有し、当該高屈折率層の厚さが特定の範囲内であることを特徴とする光学部材によって、塩水耐性と光触媒効果を有し、可視光域の分光反射率が低減された反射防止層を有する光学部材及びその製造方法が得られることを見出した。 In the process of examining the cause of the above problem in order to solve the above-mentioned problems, the present inventor is an optical member having a dielectric multilayer film on a substrate, which is the uppermost layer of the dielectric multilayer film. The refractive index layer contains a specific compound, the high refractive index layer immediately below the uppermost layer contains a metal oxide having photocatalytic properties, and the thickness of the high refractive index layer is within a specific range. It has been found that an optical member having a salt water resistance and a photocatalytic effect and having an antireflection layer having a reduced spectral reflectance in the visible light region and a method for producing the same can be obtained by the optical member.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above problem according to the present invention is solved by the following means.
 1.基板上に、誘電体多層膜を有する光学部材であって、
 前記誘電体多層膜が、少なくとも表面から低屈折率層L(1)、高屈折率層H(2)、及び反射防止層ARを有する構成であり、
 前記低屈折率層L(1)のヘリウムd線に対する屈折率が1.7未満であり、前記高屈折率層H(2)の前記ヘリウムd線に対する屈折率が1.7以上であり、
 少なくとも前記低屈折率層L(1)が、フッ化イットリウム(YF3)を含有し、
 前記高屈折率層H(2)が、光触媒性を有する金属酸化物を含有し、かつ、当該高屈折率層H(2)の厚さが200~550nmの範囲内であることを特徴とする光学部材。
 2.基板上に、誘電体多層膜を有する光学部材であって、
 前記誘電体多層膜が、少なくとも表面から低屈折率層L(1)、高屈折率層H(2)、低屈折率層L(3)、高屈折率層H(4)、及び反射防止層ARの構成であり、
 前記低屈折率層L(1)及びL(3)のヘリウムd線に対する屈折率が1.7未満であり、前記高屈折率層H(2)及びH(4)の前記ヘリウムd線に対する屈折率が1.7以上であり、
 前記低屈折率層L(1)及びL(3)が、フッ化イットリウム(YF3)を含有し、
 前記高屈折率層H(2)及びH(4)が、光触媒性を有する金属酸化物を含有し、かつ、当該高屈折率層H(2)及びH(4)の厚さの和が200~550nmの範囲内であることを特徴とする光学部材。
 3.前記金属酸化物が、酸化チタン(TiO2)であることを特徴とする第1項又は第2項に記載の光学部材。
 4.前記低屈折率層L(1)の厚さが、60~120nmの範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載の光学部材。
 5.前記低屈折率層L(3)の厚さが、3~23nmの範囲内であることを特徴とする第2項から第4項までのいずれか一項に記載の光学部材。
 6.前記反射防止層ARが、少なくとも酸化ケイ素(SiO2)を含有する層を有することを特徴とする第1項から第5項までのいずれか一項に記載の光学部材。
 7.光波長420~680nmの範囲において、法線方向からの光入射に対する分光反射率が、平均1.5%以下であることを特徴とする第1項から第6項までのいずれか一項に記載の光学部材。
 8.第1項から第7項までのいずれか一項に記載の光学部材を製造する光学部材の製造方法であって、
 前記TiO2を含有する層、及び前記SiO2を含有する層を、イオンアシストデポジション法を用いて形成することを特徴とする光学部材の製造方法。
1. 1. An optical member having a dielectric multilayer film on a substrate.
The dielectric multilayer film has at least a low refractive index layer L (1), a high refractive index layer H (2), and an antireflection layer AR from the surface.
The low refractive index layer L (1) has a refractive index of less than 1.7 with respect to the helium d line, and the high refractive index layer H (2) has a refractive index of 1.7 or more with respect to the helium d line.
At least the low refractive index layer L (1) contains yttrium fluoride (YF 3 ).
The high refractive index layer H (2) contains a metal oxide having photocatalytic properties, and the thickness of the high refractive index layer H (2) is in the range of 200 to 550 nm. Optical member.
2. An optical member having a dielectric multilayer film on a substrate.
The dielectric multilayer film has at least a low refractive index layer L (1), a high refractive index layer H (2), a low refractive index layer L (3), a high refractive index layer H (4), and an antireflection layer from the surface. It is the composition of AR,
The refractive index of the low refractive index layers L (1) and L (3) with respect to the helium d line is less than 1.7, and the refraction of the high refractive index layers H (2) and H (4) with respect to the helium d line. The rate is 1.7 or higher,
The low refractive index layers L (1) and L (3) contain yttrium fluoride (YF 3 ).
The high refractive index layers H (2) and H (4) contain a metal oxide having photocatalytic properties, and the sum of the thicknesses of the high refractive index layers H (2) and H (4) is 200. An optical member having a range of about 550 nm.
3. 3. The optical member according to item 1 or 2 , wherein the metal oxide is titanium oxide (TiO 2).
4. The optical member according to any one of items 1 to 3, wherein the thickness of the low refractive index layer L (1) is in the range of 60 to 120 nm.
5. The optical member according to any one of items 2 to 4, wherein the thickness of the low refractive index layer L (3) is in the range of 3 to 23 nm.
6. The optical member according to any one of items 1 to 5, wherein the antireflection layer AR has a layer containing at least silicon oxide (SiO 2).
7. Described in any one of items 1 to 6, wherein the spectral reflectance with respect to light incident from the normal direction is 1.5% or less on average in the light wavelength range of 420 to 680 nm. Optical member.
8. A method for manufacturing an optical member according to any one of items 1 to 7, wherein the optical member is manufactured.
A method for manufacturing an optical member, which comprises forming the layer containing TiO 2 and the layer containing SiO 2 by using an ion-assisted deposition method.
 本発明の上記手段により、塩水耐性と光触媒効果を有し、可視光域の分光反射率が低減された反射防止層を有する光学部材及びその製造方法を提供することができる。 According to the above means of the present invention, it is possible to provide an optical member having a salt water resistance and a photocatalytic effect and having an antireflection layer having a reduced spectral reflectance in the visible light region, and a method for manufacturing the same.
 本発明の効果の発現機構ないし作用機構については、以下のとおりである。 The mechanism of expression or mechanism of action of the effect of the present invention is as follows.
 本発明の光学部材は、基板上に、反射防止層を複数有する光学部材であって、最上層に低屈折率材料であるフッ化イットリウム(YF3)を含有することを特徴とするものである。 The optical member of the present invention is an optical member having a plurality of antireflection layers on a substrate, and is characterized by containing yttrium fluoride (YF 3), which is a low refractive index material, in the uppermost layer. ..
 従来の誘電体多層膜の最上層を形成するSiO2含有層は、塩水耐性に問題があり、例えば塩水噴霧試験前の試料の分光反射率に対して、塩水によってSiO2含有層が表面から5nmから20nm程度溶解すると、光波長550nmにおける試料の分光反射率は、0.5%から3.0%程度まで顕著に変化する。このような変化によって、例えば、レンズ上の反射防止層(誘電体多層膜)の最上層が外的環境(塩水)によって溶解剥離したときには、フレアやゴーストが発生し、製造当初性能から劣化するものと考えられる。 The SiO 2- containing layer forming the uppermost layer of the conventional dielectric multilayer film has a problem in salt water resistance. For example, the SiO 2- containing layer is 5 nm from the surface due to salt water with respect to the spectral reflectance of the sample before the salt spray test. When dissolved at about 20 nm, the spectral reflectance of the sample at a light wavelength of 550 nm changes remarkably from about 0.5% to about 3.0%. Due to such changes, for example, when the uppermost layer of the antireflection layer (dielectric multilayer film) on the lens is dissolved and peeled off by the external environment (salt water), flare and ghost are generated, which deteriorates from the initial performance. it is conceivable that.
 これは、SiO2含有層の塩水噴霧試験では、塩水の25℃でのpHが7程度(弱アルカリ性)であるのでSi-O結合が切断されやすくなり、含有層が徐々に塩水に溶解し剥離していくものと推察される。したがって、当該pHの領域で酸化物や水酸化物の活量がイオンのそれよりも大きい元素としてイットリウムを含有し、さらにフッ素原子を含有することで表面の水接触角が大きく撥水性を発現することから、金属フッ化物であるフッ化イットリウム(YF3)は、前記塩水噴霧試験において、SiO2含有層と同じ層厚である場合に塩水に対する溶解性と密度とから、計算上約1.3倍塩水耐性(溶解性)に優れているものと推察される。 This is because in the salt spray test of the SiO 2 containing layer, the pH of the salt water at 25 ° C. is about 7 (weakly alkaline), so that the Si—O bond is easily broken, and the containing layer gradually dissolves in the salt water and peels off. It is presumed that it will be done. Therefore, yttrium is contained as an element in which the activity of oxides and hydroxides is larger than that of ions in the pH range, and by further containing a fluorine atom, the water contact angle of the surface is large and water repellency is exhibited. Therefore, yttrium fluoride (YF 3 ), which is a metal fluoride, is calculated to be about 1.3 from the solubility and density in salt water when the layer thickness is the same as that of the SiO 2 containing layer in the salt spray test. It is presumed that it has excellent resistance to fluoride water (solubility).
 また、フッ化イットリウム(YF3)は成膜したときの膜中の充填率がSiO2と同程度であることから、下層からの光触媒の透過性に優れている。
 他の低屈折率性材料としてMgF2(屈折率1.385)は、膜中の充填率が高いことから下層からの光触媒の透過性が劣る。また、Al23(屈折率1.620)は、同様に塩水耐性や、下層からの光触媒の透過性が劣る。それらに対して、YF3は塩水耐性、光触媒透過性、及び屈折率(分光反射率の低減)の観点から、最上層として必要な特性を満たす優れた材料であると考えられる。
Further, yttrium fluoride (YF 3 ) has an excellent permeability of the photocatalyst from the lower layer because the filling rate in the film when the film is formed is about the same as that of SiO 2.
As another low refractive index material, MgF 2 (refractive index 1.385) has a high filling rate in the film, so that the permeability of the photocatalyst from the lower layer is inferior. Further, Al 2 O 3 (refractive index 1.620) is also inferior in salt water resistance and permeability of the photocatalyst from the lower layer. On the other hand, YF 3 is considered to be an excellent material that satisfies the characteristics required as the uppermost layer from the viewpoints of salt water resistance, photocatalytic permeability, and refractive index (reduction of spectral reflectance).
 本発明は、前記高屈折率層H(2)、又は前記高屈折率層H(2)とH(4)が、光触媒性を有する金属酸化物を含有し、当該高屈折率層H(2)、又は高屈折率層H(2)とH(4)の合計の層厚が200~550nmの範囲内であることを特徴とする。 In the present invention, the high refractive index layer H (2) or the high refractive index layers H (2) and H (4) contains a metal oxide having photocatalytic properties, and the high refractive index layer H (2) ), Or the total layer thickness of the high refractive index layers H (2) and H (4) is in the range of 200 to 550 nm.
 反射防止層は、光学的膜厚(屈折率nd/波長λ)が1/4(0.25)又は1/2(0.5)とすれば干渉が起こり反射防止層となることが知られている。 It is known that the antireflection layer becomes an antireflection layer due to interference when the optical film thickness (refractive index nd / wavelength λ) is 1/4 (0.25) or 1/2 (0.5). ing.
 したがって、反射防止層を構成する層に、1/2λより大きい層厚があると、反射光に干渉が生じ、位相がうまく合わないことによって分光反射特性が悪化する。 Therefore, if the layer constituting the antireflection layer has a layer thickness larger than 1 / 2λ, interference occurs in the reflected light and the phases do not match well, so that the spectral reflection characteristics deteriorate.
 一方、光触媒性を高めるには光触媒性を有する金属酸化物を含有する層を厚くすることが有効であるが、あまり厚くすると分光反射率を低減することができない。したがって、分光反射率を低減し、さらに光触媒性を有効に発現するには、光触媒性を有する金属酸化物を含有する前記高屈折率層H(2)、又は高屈折率層H(2)とH(4)の厚さの和が200~550nmの範囲内であることが好ましく、さらに前記高屈折率層H(2)とH(4)の厚さの和が200~550nmの範囲内であるように、2層に分割して1層当たりの厚さを低減する後者の方法がより効果的であると考えられる。 On the other hand, in order to enhance the photocatalytic property, it is effective to thicken the layer containing the metal oxide having the photocatalytic property, but if it is too thick, the spectral reflectance cannot be reduced. Therefore, in order to reduce the spectral reflectance and further effectively exhibit the photocatalytic property, the high refractive index layer H (2) or the high refractive index layer H (2) containing the metal oxide having the photocatalytic property is used. The sum of the thicknesses of H (4) is preferably in the range of 200 to 550 nm, and the sum of the thicknesses of the high refractive index layers H (2) and H (4) is in the range of 200 to 550 nm. As there is, the latter method of dividing into two layers to reduce the thickness per layer is considered to be more effective.
本発明の光学部材の構成を示す断面図Sectional drawing which shows the structure of the optical member of this invention 本発明の光学部材の別の構成を示す断面図Sectional drawing which shows another structure of the optical member of this invention IAD蒸着装置の一例を示す模式図Schematic diagram showing an example of an IAD thin-film deposition apparatus 光学部材サンプルの分光反射率を測定したグラフGraph measuring the spectral reflectance of an optical member sample 光学部材サンプルの分光反射率を測定したグラフGraph measuring the spectral reflectance of an optical member sample 光学部材サンプルの分光反射率を測定したグラフGraph measuring the spectral reflectance of an optical member sample 光学部材サンプルの分光反射率を測定したグラフGraph measuring the spectral reflectance of an optical member sample 光触媒効果評価方法を示した概略図Schematic diagram showing a photocatalytic effect evaluation method 光触媒効果評価方法を示した概略図Schematic diagram showing a photocatalytic effect evaluation method 光触媒効果評価方法を示した概略図Schematic diagram showing a photocatalytic effect evaluation method
 本発明の光学部材は、基板上に、誘電体多層膜を有する光学部材であって、前記誘電体多層膜が、少なくとも表面から低屈折率層L(1)、高屈折率層H(2)、及び反射防止層ARを有する構成であり、前記低屈折率層L(1)のヘリウムd線に対する屈折率が1.7未満であり、前記高屈折率層H(2)の前記ヘリウムd線に対する屈折率が1.7以上であり、少なくとも前記低屈折率層L(1)が、フッ化イットリウム(YF3)を含有し、前記高屈折率層H(2)が、光触媒性を有する金属酸化物を含有し、かつ、当該高屈折率層H(2)の厚さが200~550nmの範囲内であることを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。 The optical member of the present invention is an optical member having a dielectric multilayer film on a substrate, and the dielectric multilayer film has a low refractive index layer L (1) and a high refractive index layer H (2) at least from the surface. The low refractive index layer L (1) has a refractive index of less than 1.7 with respect to the helium d line, and the high refractive index layer H (2) has the helium d line. The low refractive index layer L (1) contains yttrium fluoride (YF 3 ), and the high refractive index layer H (2) is a photocatalytic metal. It is characterized by containing an oxide and having a thickness of the high refractive index layer H (2) in the range of 200 to 550 nm. This feature is a technical feature common to or corresponding to the following embodiments.
 さらに、本発明の光学部材は、基板上に、誘電体多層膜を有する光学部材であって、前記誘電体多層膜が、少なくとも表面から低屈折率層L(1)、高屈折率層H(2)、低屈折率層L(3)、高屈折率層H(4)、及び反射防止層ARの構成であり、前記低屈折率層L(1)及びL(3)のヘリウムd線に対する屈折率が1.7未満であり、前記高屈折率層H(2)及びH(4)の前記ヘリウムd線に対する屈折率が1.7以上であり、前記低屈折率層L(1)及びL(3)が、フッ化イットリウム(YF3)を含有し、前記高屈折率層H(2)及びH(4)が、光触媒性を有する金属酸化物を含有し、かつ、当該高屈折率層H(2)及びH(4)の厚さの和が200~550nmの範囲内であることを特徴とする。 Further, the optical member of the present invention is an optical member having a dielectric multilayer film on a substrate, and the dielectric multilayer film has a low refractive index layer L (1) and a high refractive index layer H (1) at least from the surface. 2), low refractive index layer L (3), high refractive index layer H (4), and antireflection layer AR, with respect to the helium d line of the low refractive index layers L (1) and L (3). The refractive index is less than 1.7, the refractive indexes of the high refractive index layers H (2) and H (4) with respect to the helium d line are 1.7 or more, and the low refractive index layers L (1) and L (3) contains yttrium fluoride (YF 3 ), and the high refractive index layers H (2) and H (4) contain a metal oxide having photocatalytic properties, and the high refractive index The sum of the thicknesses of the layers H (2) and H (4) is in the range of 200 to 550 nm.
 本発明の実施態様としては、本発明の効果発現の観点から、前記金属酸化物が、TiO2であることが、高い光触媒性を有し、優れたセルフクリーニング性を光学部材に付与する観点から好ましい態様である。 As an embodiment of the present invention, from the viewpoint of exhibiting the effect of the present invention, from the viewpoint that the metal oxide is TiO 2 has high photocatalytic property and imparts excellent self-cleaning property to the optical member. This is a preferred embodiment.
 前記低屈折率層L(1)の厚さが、60~120nmの範囲内であることが、塩水耐性と分光透過率を低減する観点から、好ましい層厚である。 It is preferable that the thickness of the low refractive index layer L (1) is in the range of 60 to 120 nm from the viewpoint of reducing salt water resistance and spectral transmittance.
 前記低屈折率層L(3)の厚さが、3~23nmの範囲内であることが、YF3含有層を中間層として2層設けることで、塩水耐性をより向上する観点から好ましい態様である。 It is preferable that the thickness of the low refractive index layer L (3) is in the range of 3 to 23 nm from the viewpoint of further improving salt water resistance by providing two layers containing YF 3 as an intermediate layer. is there.
 また、反射防止性の観点から、光学部材の内側にある反射防止層として、少なくともSiO2を含有する層を有することが、低屈折率性材料として好ましい。 Further, from the viewpoint of antireflection, it is preferable to have a layer containing at least SiO 2 as the antireflection layer inside the optical member as the low refractive index material.
 本発明の光学部材の分光反射率は、光波長420~680nmの範囲において法線方向からの光入射に対する分光反射率が、平均1.5%以下であることが好ましく、さらに平均0.5%以下であることが、車載用のレンズとして撮像された映像の視認性を向上する観点から、より好ましい。 Regarding the spectral reflectance of the optical member of the present invention, the spectral reflectance with respect to light incident from the normal direction is preferably 1.5% or less on average in the light wavelength range of 420 to 680 nm, and more preferably 0.5% on average. The following is more preferable from the viewpoint of improving the visibility of the image captured as the in-vehicle lens.
 本発明の光学部材を製造する光学部材の製造方法は、前記TiO2を含有する層、及び前記SiO2を含有する層を、イオンアシストデポジション法(「IAD真空蒸着法」又は簡単に「IAD法」ともいう。)を用いて形成することは、より緻密な膜を形成でき、塩水耐性をより向上する観点から、好ましい光学部材の製造方法である。 In the method for manufacturing an optical member of the present invention, the layer containing TiO 2 and the layer containing SiO 2 are subjected to an ion-assisted deposition method (“IAD vacuum deposition method” or simply “IAD”. Forming using the method (also referred to as “method”) is a preferable method for producing an optical member from the viewpoint of being able to form a denser film and further improving salt water resistance.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
 ≪本発明の光学部材の概要≫
 本発明の光学部材は、基板上に、誘電体多層膜を有する光学部材であって、前記誘電体多層膜が、少なくとも表面から低屈折率層L(1)、高屈折率層H(2)、及び反射防止層ARを有する構成であり、前記低屈折率層L(1)のヘリウムd線に対する屈折率が1.7未満であり、前記高屈折率層H(2)の前記ヘリウムd線に対する屈折率が1.7以上であり、少なくとも前記低屈折率層L(1)が、フッ化イットリウム(以下、「YF3」と表記する場合がある。)を含有し、前記高屈折率層H(2)が、光触媒性を有する金属酸化物を含有し、かつ、当該高屈折率層H(2)の厚さが200~550nmの範囲内であることを特徴とする。
<< Outline of the Optical Member of the Present Invention >>
The optical member of the present invention is an optical member having a dielectric multilayer film on a substrate, and the dielectric multilayer film has a low refractive index layer L (1) and a high refractive index layer H (2) at least from the surface. The low refractive index layer L (1) has a refractive index of less than 1.7 with respect to the helium d line, and the high refractive index layer H (2) has the helium d line. The low refractive index layer L (1) contains yttrium fluoride (hereinafter, may be referred to as “YF 3 ”), and the high refractive index layer L (1) has a refractive index of 1.7 or more. H (2) contains a photocatalytic metal oxide, and the thickness of the high refractive index layer H (2) is in the range of 200 to 550 nm.
 さらに、本発明の光学部材は、基板上に、誘電体多層膜を有する光学部材であって、前記誘電体多層膜が、少なくとも表面から低屈折率層L(1)、高屈折率層H(2)、低屈折率層L(3)、高屈折率層H(4)、及び反射防止層ARの構成であり、前記低屈折率層L(1)及びL(3)のヘリウムd線に対する屈折率が1.7未満であり、前記高屈折率層H(2)及びH(4)の前記ヘリウムd線に対する屈折率が1.7以上であり、前記低屈折率層L(1)及びL(3)が、フッ化イットリウム(YF3)を含有し、前記高屈折率層H(2)及びH(4)が、光触媒性を有する金属酸化物を含有し、かつ、当該高屈折率層H(2)及びH(4)の厚さの和が200~550nmの範囲内であることを特徴とする。 Further, the optical member of the present invention is an optical member having a dielectric multilayer film on a substrate, and the dielectric multilayer film has a low refractive index layer L (1) and a high refractive index layer H (1) at least from the surface. 2), low refractive index layer L (3), high refractive index layer H (4), and antireflection layer AR, with respect to the helium d line of the low refractive index layers L (1) and L (3). The refractive index is less than 1.7, the refractive indexes of the high refractive index layers H (2) and H (4) with respect to the helium d line are 1.7 or more, and the low refractive index layers L (1) and L (3) contains yttrium fluoride (YF 3 ), and the high refractive index layers H (2) and H (4) contain a metal oxide having photocatalytic properties, and the high refractive index The sum of the thicknesses of the layers H (2) and H (4) is in the range of 200 to 550 nm.
 中でも、前記高屈折率層H(2)及びH(4)の厚さの和は、200~290nmの範囲内であることが、光触媒性の発現と分光反射率の低減の観点から、好ましい。 Above all, the sum of the thicknesses of the high refractive index layers H (2) and H (4) is preferably in the range of 200 to 290 nm from the viewpoint of developing photocatalytic property and reducing spectral reflectance.
 図1は、本発明の光学部材の構成を示す断面図である。 FIG. 1 is a cross-sectional view showing the configuration of the optical member of the present invention.
 図1Aは、第1の実施形態である光学部材100を示す断面図である。 FIG. 1A is a cross-sectional view showing the optical member 100 according to the first embodiment.
 反射防止機能を有する誘電体多層膜115は、例えば、レンズを構成するガラス製の基板101の屈折率よりも高い屈折率を有する高屈折率層103、105と、前記高屈折率層よりも低い屈折率を有する低屈折率層102、104、106から構成される反射防止層AR107と、光触媒性を有する金属酸化物を含有する層である高屈折率層H(2)108とYF3を含有する最上層である低屈折率層L(1)を有する。 The dielectric multilayer film 115 having an antireflection function is, for example, the high refractive index layers 103 and 105 having a refractive index higher than the refractive index of the glass substrate 101 constituting the lens, and lower than the high refractive index layer. It contains an antireflection layer AR107 composed of low refractive index layers 102, 104 and 106 having a refractive index, and a high refractive index layer H (2) 108 and YF 3 which are layers containing a metal oxide having a photocatalytic property. It has a low refractive index layer L (1) which is the uppermost layer.
 本発明に係る前記反射防止層ARは、前記高屈折率層と、前記低屈折率層とが交互に積層された多層構造を有することが好ましい。本発明の光学部材は、光波長420~680nmの範囲において、法線方向からの光入射に対する分光反射率が好ましくは平均分光反射率として1.5%以下であることが、車載用のレンズとして撮像された映像の視認性を向上する観点から、好ましい。さらに、当該分光反射率は平均分光反射率が0.5%以下であることがより好ましい。 The antireflection layer AR according to the present invention preferably has a multilayer structure in which the high refractive index layer and the low refractive index layer are alternately laminated. The optical member of the present invention has a spectral reflectance of preferably 1.5% or less with respect to light incident from the normal direction in a light wavelength range of 420 to 680 nm, as an in-vehicle lens. This is preferable from the viewpoint of improving the visibility of the captured image. Further, the spectral reflectance is more preferably 0.5% or less on average.
 前記平均分光反射率は、例えば、380~780nmの範囲の光波長域で、オリンパス社製顕微分光測定機USPM-RU IIIを用いて、法線方向からの光入射に対する分光反射率を測定し、可視光域である光波長420~680nmの範囲の分光反射率値を適宜抽出して平均し、平均分光反射率として求めることができる。 For the average spectral reflectance, for example, in the optical wavelength range of 380 to 780 nm, the spectral reflectance with respect to light incident from the normal direction is measured using a visible differential light measuring machine USPM-RU III manufactured by Olympus. The spectral reflectance values in the visible light wavelength range of 420 to 680 nm can be appropriately extracted and averaged to obtain the average spectral reflectance.
 本発明に係る最上層109は、YF3を含有する主成分として含有する金属フッ化物層である。当該最上層のヘリウムd線(光波長587.56nm)に対する屈折率は、1.7未満であることが、分光反射率の低減の観点から好ましい屈折率の範囲である。 The uppermost layer 109 according to the present invention is a metal fluoride layer containing YF 3 as a main component. The refractive index of the uppermost layer with respect to the helium d-line (light wavelength 587.56 nm) is less than 1.7, which is a preferable range of the refractive index from the viewpoint of reducing the spectral reflectance.
 本発明に係る最上層の直下層とは、図1Aにおける光触媒性を有する金属酸化物を含有する層である高屈折率層H(2)108をいう。当該高屈折率層H(2)108のヘリウムd線(光波長587.56nm)に対する屈折率は、1.7以上であることが、分光反射率の低減の観点から好ましい屈折率の範囲である。 The layer directly below the uppermost layer according to the present invention refers to the high refractive index layer H (2) 108, which is a layer containing a photocatalytic metal oxide in FIG. 1A. The refractive index of the high refractive index layer H (2) 108 with respect to the helium d line (light wavelength 587.56 nm) is 1.7 or more, which is a preferable range of the refractive index from the viewpoint of reducing the spectral reflectance. ..
 図1Bは第2の実施形態である光学部材100を示す断面図である。 FIG. 1B is a cross-sectional view showing the optical member 100 according to the second embodiment.
 反射防止機能を有する誘電体多層膜115は、例えば、レンズを構成するガラス製の基板101の屈折率よりも高い屈折率を有する高屈折率層103、105と、前記高屈折率層よりも低い屈折率を有する低屈折率層102、104、106から構成される反射防止層AR107と、光触媒性を有する金属酸化物を含有する層である高屈折率層H(2)108とH(4)110と、YF3を含有する最上層である低屈折率層L(1)と中間層となるL(3)111を有する。低屈折率層L(3)は以下、「中間層」いう場合がある。  The dielectric multilayer film 115 having an antireflection function is, for example, the high refractive index layers 103 and 105 having a refractive index higher than the refractive index of the glass substrate 101 constituting the lens, and lower than the high refractive index layer. High refractive index layers H (2) 108 and H (4), which are layers containing a low refractive index layer 102, 104, 106 having a refractive index and an antireflection layer AR107 and a metal oxide having a photocatalytic property. It has 110, a low refractive index layer L (1) which is the uppermost layer containing YF 3, and L (3) 111 which is an intermediate layer. The low refractive index layer L (3) may be hereinafter referred to as an “intermediate layer”.
 前述のとおり、反射防止層を構成する層に、1/2λより著しく大きい層厚があると、反射光に干渉が生じ、位相がうまく合わないことによって分光反射特性が悪化する。一方、光触媒性を高めるには光触媒性を有する金属酸化物を含有する層を厚くすることが有効であるが、厚くすると分光反射率を低減することができない。したがって、分光反射率を低減し、さらに光触媒性を有効に発現するには、図1Bで示すように、光触媒性を有する金属酸化物を含有する前記高屈折率層H(2)とH(4)のように2層に分割し、合計の層厚が200~550nmの範囲内となるように設計することが有効である。 As described above, if the layer constituting the antireflection layer has a layer thickness significantly larger than 1 / 2λ, interference occurs in the reflected light and the phases do not match well, so that the spectral reflection characteristics deteriorate. On the other hand, in order to enhance the photocatalytic property, it is effective to thicken the layer containing the metal oxide having the photocatalytic property, but if it is thickened, the spectral reflectance cannot be reduced. Therefore, in order to reduce the spectral reflectance and further effectively exhibit the photocatalytic property, as shown in FIG. 1B, the high refractive index layers H (2) and H (4) containing the metal oxide having the photocatalytic property. ), It is effective to design the layer so that the total layer thickness is in the range of 200 to 550 nm.
 なお、図1で示す本発明の光学部材は、基板101上に低屈折率層、高屈折率層及び本発明に係る最上層109とその直下層108が積層されて誘電体多層膜を構成しているが、基板101の両側に本発明に係る最上層とその直下層とが形成されていてもよい。すなわち、本発明に係る最上層とその直下層は外部環境に曝露される側にあることが好ましい態様であるが、曝露される側ではなく、例えば、曝露される側とは反対側となる内側に内部環境変動の影響を防止するために、本発明に係る最上層とその直下層とが形成されていてもよい。また、本発明の光学部材は、レンズ以外に、例えば反射防止部材や遮熱部材などの光学部材に適用することもできる。 The optical member of the present invention shown in FIG. 1 is formed by laminating a low refractive index layer, a high refractive index layer, an uppermost layer 109 according to the present invention, and a layer immediately below it on a substrate 101 to form a dielectric multilayer film. However, the uppermost layer and the layer immediately below the uppermost layer according to the present invention may be formed on both sides of the substrate 101. That is, it is preferable that the uppermost layer and the layer immediately below the uppermost layer according to the present invention are on the side exposed to the external environment, but not on the exposed side, for example, on the inner side opposite to the exposed side. In order to prevent the influence of internal environmental changes, the uppermost layer according to the present invention and the layer immediately below the upper layer may be formed. In addition to the lens, the optical member of the present invention can also be applied to an optical member such as an antireflection member or a heat shield member.
〔1〕誘電体多層膜の構成と製造方法
 〔1.1〕低屈折率層L(1)及びL(3)の構成と製造方法
 本発明に係る前記低屈折率層L(1)及びL(3)は、YF3を主成分とする層であり、「主成分」とするとは、当該層に含有されるYF3が、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、特に好ましくは98質量%以上含有することである。
[1] Structure and manufacturing method of dielectric multilayer film [1.1] Structure and manufacturing method of low refractive index layers L (1) and L (3) The low refractive index layers L (1) and L according to the present invention. (3) is a layer containing YF 3 as a main component, and the “main component” means that the YF 3 contained in the layer is preferably 90% by mass or more, preferably 95% by mass or more. It is more preferable, and particularly preferably, it is contained in an amount of 98% by mass or more.
 前記低屈折率層L(1)の光波長587.56nm(d線)に対する屈折率は、1.7未満であることが、分光反射率の低減の観点から好ましい屈折率の範囲である。より好ましい屈折率は1.45~1.55の範囲である。 The refractive index of the low refractive index layer L (1) with respect to the light wavelength of 587.56 nm (d line) is less than 1.7, which is a preferable range of the refractive index from the viewpoint of reducing the spectral reflectance. A more preferable refractive index is in the range of 1.45 to 1.55.
 前記低屈折率層L(1)の厚さは、60~120nmの範囲内であることが塩水耐性と分光反射率の低減の観点から好ましく、同様に、中間層である前記低屈折率層L(3)の厚さは、3~23nmの範囲内であることが好ましい。 The thickness of the low refractive index layer L (1) is preferably in the range of 60 to 120 nm from the viewpoint of salt water resistance and reduction of spectral reflectance, and similarly, the low refractive index layer L which is an intermediate layer. The thickness of (3) is preferably in the range of 3 to 23 nm.
 本発明の好ましい低屈折率層L(1)及びL(3)の成膜方法としては、高い生産性を確保するため、蒸着系では真空蒸着法、スパッタ系ではスパッタリング法、マグネトロンスパッタリング法等を活用することが好ましい。なお金属フッ化物の成膜は、イオン照射により金属フッ化物が分解するため、IAD法等を用いないことが好ましい。 As a preferable method for forming the low refractive index layers L (1) and L (3) of the present invention, in order to ensure high productivity, a vacuum deposition method is used for the vapor deposition system, a sputtering method, a magnetron sputtering method, etc. are used for the sputtering system. It is preferable to utilize it. In the film formation of metal fluoride, it is preferable not to use the IAD method or the like because the metal fluoride is decomposed by ion irradiation.
 成膜条件として真空蒸着法を採用する場合は、チャンバー内の減圧度が、通常1×10-4~1×10-1Pa、好ましくは1×10-3~1×10-2Paの範囲にし、成膜速度が1~10Å/secの範囲内、具体的には、例えばシンクロン社製BES-1300を用いて、加熱温度340℃、開始真空度1.33×10-3Pa及び成膜レート7Å/secで成膜することが好ましい。また、SiO2含有層やMgF2含有層はIAD法を用いないで成膜する場合も上記と同様である。 When the vacuum deposition method is adopted as the film forming condition, the degree of decompression in the chamber is usually in the range of 1 × 10 -4 to 1 × 10 -1 Pa, preferably 1 × 10 -3 to 1 × 10 -2 Pa. The film formation rate is within the range of 1 to 10 Å / sec, specifically, using BES-1300 manufactured by Syncron, for example, a heating temperature of 340 ° C., a starting vacuum degree of 1.33 × 10 -3 Pa, and film formation. It is preferable to form a film at a rate of 7 Å / sec. Further, the same applies to the case where the SiO 2- containing layer and the MgF 2- containing layer are formed without using the IAD method.
 〔1.2〕反射防止層AR、高屈折率層H(2)及びH〔4〕の構成と製造方法
 反射防止機能を有する誘電体多層膜は、前述のとおり、基板の屈折率よりも高い屈折率を有する高屈折率層と、前記高屈折率層よりも低い屈折率を有する低屈折率層とを有する。これら高屈折率層と、低屈折率層とが交互に積層された多層構造を有することが好ましい。層数に関しては特に制限されるものではないが、12層以内であることが高い生産性を維持して反射防止層を得る観点から、好ましい。すなわち、積層数は、要求される光学性能によるが、おおむね3~8層程度の積層をすることで、可視光域全体の反射率を低下させることができ、上限数としては12層以下であることが、膜の応力が大きくなって膜が剥がれたりすることを防止できる点で好ましい。
[1.2] Configuration and Manufacturing Method of Antireflection Layer AR, High Refractive Index Layers H (2) and H [4] As described above, the dielectric multilayer film having an antireflection function has a higher refractive index than the substrate. It has a high refractive index layer having a refractive index and a low refractive index layer having a refractive index lower than that of the high refractive index layer. It is preferable to have a multilayer structure in which these high refractive index layers and low refractive index layers are alternately laminated. The number of layers is not particularly limited, but it is preferable that the number of layers is 12 or less from the viewpoint of maintaining high productivity and obtaining an antireflection layer. That is, the number of layers depends on the required optical performance, but the reflectance of the entire visible light region can be reduced by laminating about 3 to 8 layers, and the upper limit is 12 layers or less. This is preferable in that it is possible to prevent the film from being peeled off due to an increase in stress of the film.
 高屈折率層の光波長587.56nmに対する屈折率は、1.9~2.45の範囲内であり、低屈折率層の光波長587.56nmに対する屈折率は、1.3~1.5の範囲内であることが、好ましい。 The refractive index of the high refractive index layer with respect to the light wavelength of 587.56 nm is in the range of 1.9 to 2.45, and the refractive index of the low refractive index layer with respect to the light wavelength of 587.56 nm is 1.3 to 1.5. It is preferably within the range of.
 本発明に係る誘電体多層膜(高屈折率層、低屈折率層)の反射防止層ARに用いられる材料としては、好ましくは、例えば、Ti、Ta、Nb、Zr、Ce、La、Al、Si、及びHfなどの酸化物、又はこれらを組み合わせた酸化化合物及びMgF2が適している。また、異なる誘電体材料を複数層積み重ねることで、可視光域全体の反射率を低下させた機能を付加することができる。 The material used for the antireflection layer AR of the dielectric multilayer film (high refractive index layer, low refractive index layer) according to the present invention is preferably, for example, Ti, Ta, Nb, Zr, Ce, La, Al, Oxides such as Si and Hf, or oxidation compounds combining these, and MgF 2 are suitable. Further, by stacking a plurality of layers of different dielectric materials, it is possible to add a function of reducing the reflectance of the entire visible light region.
 前記低屈折率層は、基板よりも屈折率が低い材料から構成され、本発明においては、SiO2やその他、SiO2とAl23の混合物などであることが好ましい。特に、SiO2を含有する層であることが、分光反射率の低減の観点から好ましい。 The low refractive index layer is made of a material having a refractive index lower than that of the substrate, and in the present invention, it is preferably SiO 2 or a mixture of SiO 2 and Al 2 O 3. In particular, a layer containing SiO 2 is preferable from the viewpoint of reducing the spectral reflectance.
 前記高屈折率層は、基板よりも屈折率が高い材料から構成され、例えば、Taの酸化物とTiの酸化物の混合物や、その他、Tiの酸化物、Taの酸化物、Laの酸化物とTiの酸化物の混合物などであることが好ましい。本発明においては、Ta25やTiO2であることが好ましく、より好ましくはTa25である。 The high refractive index layer is composed of a material having a higher refractive index than that of the substrate. For example, a mixture of Ta oxide and Ti oxide, Ti oxide, Ta oxide, and La oxide. It is preferably a mixture of oxides of and Ti. In the present invention, it is preferably Ta 2 O 5 or TiO 2 , and more preferably Ta 2 O 5 .
 なお、本発明の光学部材において、前記高屈折率層H(2)、又は高屈折率層H(2)及びH(4)に、TiO2を含有する層をセルフクリーニング機能を有する光触媒層として用いる。TiO2のセルフクリーニング機能とは、光触媒による有機物分解効果をいう。これは、TiO2に紫外光が照射されたときに、電子が放出された後にOHラジカルが生じ、当該OHラジカルの強い酸化力によって有機物を分解するものである。本発明の光学部材にTiO2含有層を加えることで、光学部材に付着した有機物等が汚れとして光学系を汚染するのを防止することができる。その際は、上層のYF3含有層は、やや粗である膜質であることが、OHラジカルが移動しやすく、光学部材表面の防汚性を向上できるため好ましい。 In the optical member of the present invention, the high-refractive index layer H (2) or the layers containing TiO 2 in the high-refractive index layers H (2) and H (4) are used as a photocatalytic layer having a self-cleaning function. Use. The self-cleaning function of TiO 2 refers to the effect of photocatalyst on organic matter decomposition. This is because when TiO 2 is irradiated with ultraviolet light, OH radicals are generated after electrons are emitted, and organic substances are decomposed by the strong oxidizing power of the OH radicals. By adding the TiO 2 containing layer to the optical member of the present invention, it is possible to prevent organic substances and the like adhering to the optical member from contaminating the optical system as dirt. In that case, it is preferable that the upper YF 3- containing layer has a slightly coarse film quality because OH radicals can easily move and the antifouling property on the surface of the optical member can be improved.
 前述のとおり、前記高屈折率層H(2)、又は前記高屈折率層H(2)とH(4)の厚さの和が200~550nmの範囲内であることが好ましく、前記高屈折率層H(2)とH(4)の厚さの和が200~550nmの範囲内であるように、2層に分割して1層当たりの金属酸化物含有量を低減する後者の方法がより効果的である。 As described above, the sum of the thicknesses of the high refractive index layer H (2) or the high refractive index layers H (2) and H (4) is preferably in the range of 200 to 550 nm, and the high refractive index is preferably in the range of 200 to 550 nm. The latter method of reducing the metal oxide content per layer by dividing into two layers so that the sum of the thicknesses of the rate layers H (2) and H (4) is in the range of 200 to 550 nm is available. It is more effective.
 中でも、前記高屈折率層H(2)及びH(4)の厚さの和は、200~290nmの範囲内であることが、光触媒性の発現と分光反射率の低減の観点から、好ましい。 Above all, the sum of the thicknesses of the high refractive index layers H (2) and H (4) is preferably in the range of 200 to 290 nm from the viewpoint of developing photocatalytic property and reducing spectral reflectance.
 誘電体多層膜の厚さ(複数層積層した場合の全体の厚さ)は、好ましくは、50nm~5μmの範囲内である。厚さが50nm以上であれば、反射防止の光学特性を発揮させることができ、厚さが5μm以下であれば、多層膜自体の膜応力による面変形が発生するのを防止することができる。好ましくは、100nm~1μmの範囲内である。 The thickness of the dielectric multilayer film (the total thickness when a plurality of layers are laminated) is preferably in the range of 50 nm to 5 μm. When the thickness is 50 nm or more, the optical characteristics of antireflection can be exhibited, and when the thickness is 5 μm or less, surface deformation due to the film stress of the multilayer film itself can be prevented. It is preferably in the range of 100 nm to 1 μm.
 基板上に金属酸化物等の薄膜を形成する方法として、無機材料をスパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、2極AC平板マグネトロンスパッタリング、2極AC回転マグネトロンスパッタリングなど、反応性スパッタ法を含む。)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着、及びIAD法を用いる真空蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法等の化学蒸着法等によって層形成することが好ましい。 As a method for forming a thin film such as a metal oxide on a substrate, a reactive sputtering method such as a sputtering method for an inorganic material (for example, magnetron cathode sputtering, flat plate magnetron sputtering, 2-pole AC flat plate magnetron sputtering, 2-pole AC rotating magnetron sputtering, etc.) Includes), vapor deposition methods (eg, resistance heating vapor deposition, electron beam deposition, ion beam deposition, plasma-assisted vapor deposition, and vacuum vapor deposition using the IAD method), thermal CVD method, catalytic chemical vapor deposition method (Cat-CVD). ), Capacitive bonded plasma CVD method (CCP-CVD), optical CVD method, plasma CVD method (PE-CVD), epitaxial growth method, chemical vapor deposition method such as atomic layer growth method, or the like.
 本発明では、IAD法を用いる真空蒸着法(IAD法)であることが好ましい。 In the present invention, it is preferable that the vacuum deposition method (IAD method) uses the IAD method.
 IAD法は、成膜中にイオンの持つ高い運動エネルギーを作用させて緻密な膜としたり、膜の密着力を高めたりする方法であり、例えばイオンビームによる方法は、イオンソースから照射されるイオン化されたガス分子により被着材料を加速し、基板表面に成膜する方法である。IAD法は、「イオンビームアシスト法」ともいう。 The IAD method is a method in which the high kinetic energy of ions is applied during film formation to form a dense film or to increase the adhesion of the film. For example, the ion beam method is an ionization method irradiated from an ion source. This is a method of accelerating the adherend material with the generated gas molecules to form a film on the surface of the substrate. The IAD method is also referred to as an "ion beam assist method".
 図2は、IAD法を用いた真空蒸着装置の一例を示す模式図である。 FIG. 2 is a schematic view showing an example of a vacuum deposition apparatus using the IAD method.
 IAD法を用いた真空蒸着装置1(以下、本発明ではIAD蒸着装置ともいう。)は、チャンバー2内にドーム3を具備し、ドーム3に沿って基板4が配置される。蒸着源5は蒸着物質を蒸発させる電子銃、又は抵抗加熱装置を具備し、蒸着源5から蒸着物質6が、基板4に向けて飛散し、基板4上で凝結、固化する。その際、IADイオンソース7より基板に向けてイオンビーム8を照射し、成膜中にイオンの持つ高い運動エネルギーを作用させて緻密な膜としたり、膜の密着力を高めたりする。 The vacuum vapor deposition apparatus 1 using the IAD method (hereinafter, also referred to as an IAD vapor deposition apparatus in the present invention) includes a dome 3 in the chamber 2, and the substrate 4 is arranged along the dome 3. The thin-film deposition source 5 includes an electron gun or a resistance heating device that evaporates the vapor-deposited substance, and the thin-film deposition material 6 scatters from the vapor deposition source 5 toward the substrate 4 and condenses and solidifies on the substrate 4. At that time, the ion beam 8 is irradiated from the IAD ion source 7 toward the substrate, and the high kinetic energy of the ions is applied during the film formation to form a dense film or enhance the adhesion of the film.
 ここで基板4は、一例としてガラスが挙げられる。 Here, as an example of the substrate 4, glass can be mentioned.
 チャンバー2の底部には、複数の蒸着源5が配置されうる。ここでは、蒸着源5として1個の蒸着源を示しているが、蒸着源5の個数は複数あってもよい。蒸着源5の成膜材料(蒸着材料)を電子銃によって蒸着物質6を発生させ、チャンバー2内に設置される基板4(例えばガラス板)に成膜材料を飛散、付着させることにより、成膜材料からなる層(例えば、反射防止層ARの低屈折率素材である、SiO2、MgF2、又はAl23層や、高屈折率素材である、Ta25やTiO2など)が基板4上に成膜される。また、本発明に係る高屈折率層H(2)やH(4)も同様なIAD法を用いる真空蒸着法を用いることが好ましい。 A plurality of thin-film deposition sources 5 may be arranged at the bottom of the chamber 2. Here, one vapor deposition source is shown as the vapor deposition source 5, but the number of the vapor deposition sources 5 may be plural. The film-forming material (deposited material) of the vapor deposition source 5 is generated by an electron gun to generate the vapor-deposited substance 6, and the film-forming material is scattered and adhered to the substrate 4 (for example, a glass plate) installed in the chamber 2. A layer made of a material (for example, a low refractive index material of the antireflection layer AR, SiO 2 , MgF 2 , or Al 2 O 3 layer, or a high refractive index material such as Ta 2 O 5 or TiO 2) A film is formed on the substrate 4. Further, it is preferable to use a vacuum deposition method using the same IAD method for the high refractive index layers H (2) and H (4) according to the present invention.
 また、チャンバー2には、図示しない真空排気系が設けられており、これによってチャンバー2内が真空引きされる。チャンバー内の減圧度は、通常1×10-4~1×10-1Pa、好ましくは1×10-3~1×10-2Paの範囲である。 Further, the chamber 2 is provided with a vacuum exhaust system (not shown), whereby the inside of the chamber 2 is evacuated. The degree of decompression in the chamber is usually in the range of 1 × 10 -4 to 1 × 10 -1 Pa, preferably 1 × 10 -3 to 1 × 10 −2 Pa.
 ドーム3は、基板4を保持するホルダー(不図示)を、少なくとも1個保持するものであり、蒸着傘とも呼ばれる。このドーム3は、断面円弧状であり、円弧の両端を結ぶ弦の中心を通り、その弦に垂直な軸を回転対称軸として回転する回転対称形状となっている。ドーム3が軸を中心に例えば一定速度で回転することにより、ホルダーを介してドーム3に保持された基板4は、軸の周りに一定速度で公転する。 The dome 3 holds at least one holder (not shown) for holding the substrate 4, and is also called a vapor deposition umbrella. The dome 3 has an arcuate cross section, passes through the center of a string connecting both ends of the arc, and has a rotationally symmetric shape that rotates with an axis perpendicular to the string as a rotationally symmetric axis. As the dome 3 rotates about the shaft at a constant speed, for example, the substrate 4 held by the dome 3 via the holder revolves around the shaft at a constant speed.
 このドーム3は、複数のホルダーを回転半径方向(公転半径方向)及び回転方向(公転方向)に並べて保持することが可能である。これにより、複数のホルダーによって保持された複数の基板4上に同時に成膜することが可能となり、素子の製造効率を向上させることができる。 The dome 3 can hold a plurality of holders side by side in the radial direction of rotation (radial direction of revolution) and the direction of rotation (revolutionary direction). As a result, it is possible to simultaneously form a film on a plurality of substrates 4 held by a plurality of holders, and it is possible to improve the manufacturing efficiency of the device.
 IADイオンソース7は、本体内部にアルゴンや酸素ガスを導入してこれらをイオン化させ、イオン化されたガス分子(イオンビーム8)を基板4に向けて照射する機器である。イオン源としては、カウフマン型(フィラメント)、ホローカソード型、RF型、バケット型、デュオプラズマトロン型等を適用することができる。IADイオンソース7から上記のガス分子を基板4に照射することにより、例えば複数の蒸発源から蒸発する成膜材料の分子を基板4に押し付けることができ、密着性及び緻密性の高い膜を基板4上に成膜することができる。IADイオンソース7は、チャンバー2の底部において基板4に対向するように設置されているが、対向軸からずれた位置に設置されていても構わない。 The IAD ion source 7 is a device that introduces argon or oxygen gas into the main body to ionize them and irradiates the ionized gas molecules (ion beam 8) toward the substrate 4. As the ion source, Kaufmann type (filament), hollow cathode type, RF type, bucket type, duoplasmatron type and the like can be applied. By irradiating the substrate 4 with the above gas molecules from the IAD ion source 7, for example, the molecules of the film-forming material evaporating from a plurality of evaporation sources can be pressed against the substrate 4, and a film having high adhesion and density can be formed on the substrate. A film can be formed on the 4. Although the IAD ion source 7 is installed at the bottom of the chamber 2 so as to face the substrate 4, it may be installed at a position deviated from the facing axis.
 IAD法で用いるイオンビームは、イオンビームスパッタリング法で用いられるイオンビームよりは、低真空度で用いられ、加速電圧も低い傾向にある。例えば加速電圧が100~2000Vのイオンビーム、電流密度が1~120μA/cm2のイオンビーム、又は加速電圧が500~1500Vで電流密度が1~120μA/cm2のイオンビームを用いることができる。成膜工程において、イオンビームの照射時間は例えば1~800秒とすることができ、またイオンビームの粒子照射数は例えば1×1013~5×1017個/cm2とすることができる。成膜工程に用いられるイオンビームは、酸素のイオンビーム、アルゴンのイオンビーム、又は酸素とアルゴンの混合ガスのイオンビームとすることができる。例えば、酸素導入量30~60sccm、アルゴン導入量0~10sccmの範囲内とすることが好ましい。「sccm」とは、standard cc/minの略であり、1気圧(大気圧1013hPa)、0℃で1分間あたりに何cc流れたかを示す単位である。 The ion beam used in the IAD method is used at a lower vacuum degree than the ion beam used in the ion beam sputtering method, and tends to have a lower acceleration voltage. For example, an ion beam having an acceleration voltage of 100 to 2000 V, an ion beam having a current density of 1 to 120 μA / cm 2 , or an ion beam having an acceleration voltage of 500 to 1500 V and a current density of 1 to 120 μA / cm 2 can be used. In the film forming step, the irradiation time of the ion beam can be set to, for example, 1 to 800 seconds, and the number of particles irradiated by the ion beam can be set, for example, 1 × 10 13 to 5 × 10 17 particles / cm 2 . The ion beam used in the film forming step can be an oxygen ion beam, an argon ion beam, or an ion beam of a mixed gas of oxygen and argon. For example, it is preferable that the oxygen introduction amount is within the range of 30 to 60 sccm and the argon introduction amount is within the range of 0 to 10 sccm. "Sccm" is an abbreviation for standard cc / min, and is a unit indicating how many cc flowed per minute at 1 atm (atmospheric pressure 1013 hPa) and 0 ° C.
 モニターシステム(不図示)は、真空成膜中に各蒸着源5から蒸発して自身に付着する層を監視することにより、基板4上に成膜される層の波長特性を監視するシステムである。このモニターシステムにより、基板4上に成膜される層の光学特性(例えば分光透過率、分光反射率、光学層厚など)を把握することができる。また、モニターシステムは、水晶層厚モニターも含んでおり、基板4上に成膜される層の物理層厚を監視することもできる。このモニターシステムは、層の監視結果に応じて、複数の蒸発源5のON/OFFの切り替えやIADイオンソース7のON/OFFの切り替え等を制御する制御部としても機能する。 The monitor system (not shown) is a system that monitors the wavelength characteristics of the layer formed on the substrate 4 by monitoring the layer that evaporates from each vapor deposition source 5 and adheres to itself during vacuum film formation. .. With this monitor system, it is possible to grasp the optical characteristics (for example, spectral transmittance, spectral reflectance, optical layer thickness, etc.) of the layer formed on the substrate 4. The monitor system also includes a crystal layer thickness monitor, and can monitor the physical layer thickness of the layer formed on the substrate 4. This monitor system also functions as a control unit that controls ON / OFF switching of a plurality of evaporation sources 5 and ON / OFF switching of the IAD ion source 7 according to the monitoring result of the layer.
 〔1.3〕基材
 本発明に係る基材としては、具体的には、ガラスの適用が好ましく、通常の光学レンズに用いられるガラスであることが好ましい。前記ガラスとしては、例えば、石英、ホウ珪酸ガラス、又は化学的強化ガラスなどのガラスが好ましく用いられる。
[1.3] Base material As the base material according to the present invention, specifically, glass is preferably applied, and glass used for ordinary optical lenses is preferable. As the glass, for example, glass such as quartz, borosilicate glass, or chemically tempered glass is preferably used.
 本発明に係る基材の厚さ(2層以上の積層構造である場合はその総厚)は、10~200μmであることが好ましく、20~150μmであることがより好ましい。 The thickness of the base material according to the present invention (in the case of a laminated structure of two or more layers, the total thickness thereof) is preferably 10 to 200 μm, more preferably 20 to 150 μm.
 〔2〕車載用又は屋外用の光学部材
 本発明の光学部材としては、車載用又は屋外用の光学レンズが挙げられ、特に、車載カメラ用のレンズ(レンズユニットを構成するレンズ)であることが好ましい。
[2] In-vehicle or outdoor optical member Examples of the optical member of the present invention include an in-vehicle or outdoor optical lens, and in particular, a lens for an in-vehicle camera (a lens constituting a lens unit). preferable.
 「車載カメラ」とは、自動車の車体の外方側に設置されるカメラであって、車体の後方部に設置されて後方確認用に使用されたり、車体の前方部に設置されて前方確認用又は側方確認用や、前車との距離の確認用などとして使用される。 An "in-vehicle camera" is a camera installed on the outside of the vehicle body, which is installed at the rear part of the vehicle body and used for rear confirmation, or installed at the front part of the vehicle body for front confirmation. Alternatively, it is used for checking the side or for checking the distance to the vehicle in front.
 このような車載カメラ用のレンズユニットは、複数枚のレンズによって構成され、詳しくは、物体側に配置される物体側レンズと、像側に配置される像側レンズ群とで構成される。像側レンズ群は、複数枚のレンズとレンズ間に設けられた絞りを備えている。 Such a lens unit for an in-vehicle camera is composed of a plurality of lenses, and more specifically, is composed of an object-side lens arranged on the object side and an image-side lens group arranged on the image side. The image-side lens group includes a plurality of lenses and a diaphragm provided between the lenses.
 このような複数のレンズのうち、物体側レンズが外気に露出される露出面となっており、この露出面を有するレンズとして本発明の光学部材が用いられる。 Among such a plurality of lenses, the lens on the object side has an exposed surface exposed to the outside air, and the optical member of the present invention is used as the lens having this exposed surface.
 また、前記光学部材の応用例としては、屋外設置型の監視カメラなどが挙げられ、当該監視カメラを構成するレンズのうち、外気に露出される露出面を有するレンズンズとして本発明の光学部材が用いられる。 Further, examples of application of the optical member include an outdoor installation type surveillance camera, and among the lenses constituting the surveillance camera, the optical member of the present invention is used as lenses having an exposed surface exposed to the outside air. Be done.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, the indication of "parts" or "%" is used, but unless otherwise specified, it indicates "parts by mass" or "% by mass".
 <光学部材サンプルの作製>
 図2で示すIAD蒸着装置を用いて、IAD法による蒸着を以下の条件で行った(成膜材料の後の(IAD)という表記はIAD法を用いたことを示す。)。
<Preparation of optical member sample>
Using the IAD vapor deposition apparatus shown in FIG. 2, vapor deposition by the IAD method was performed under the following conditions (the notation (IAD) after the film forming material indicates that the IAD method was used).
 なお、IADを用いない成膜は、図2の蒸着源5のみを使用して蒸着成膜を行った。成膜条件及び成膜材料のd線における屈折率をまとめて表Iに示した。 For the film formation without IAD, the film deposition was performed using only the vapor deposition source 5 in FIG. Table I summarizes the film forming conditions and the refractive index of the film forming material on the d line.
 実施例で用いた成膜材料は以下の通りである。 The film forming materials used in the examples are as follows.
 〈成膜材料〉
 YF3:Merck社製 商品名 YF3
 SiO2:Merck社製 商品名 SiO2
 OA600:キャノンオプトロン社製 商品名 OA600 Ta25、TiO、Ti25混合物
 TiO2:富士チタン社製 商品名 Ti35
 MgF2:Merck社製 商品名 MgF2
 〈基板〉
  TAF1:HOYA社製
 〈誘電体多層膜の形成〉
 (チャンバー内条件)
  加熱温度   340℃
  開始真空度  3.0×10-3Pa
 (成膜材料の蒸発源)
  電子銃
<Film film material>
YF 3 : Merck product name YF 3
SiO 2 : Merck product name SiO 2
OA600: Made by Canon Optron Product name OA600 Ta 2 O 5 , TiO, Ti 2 O 5 mixture TiO 2 : Made by Fuji Titanium Product name Ti 3 O 5
MgF 2 : Merck product name MgF 2
<substrate>
TAF1: Made by HOYA <Formation of dielectric multilayer film>
(Conditions in the chamber)
Heating temperature 340 ° C
Starting vacuum degree 3.0 × 10 -3 Pa
(Evaporation source of film-forming material)
Electron gun
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <光学部材No.1の作製>
 (反射防止層AR:低屈折率層及び高屈折率層の成膜)
 低屈折率層の成膜材料:SiO2
 上記の基材を真空蒸着装置に設置して、第1蒸発源に前記成膜材料を装填し、成膜速度4Å/secで蒸着し、基材上に厚さが36.7nmの低屈折率層を形成した。
<Optical member No. Preparation of 1>
(Anti-reflection layer AR: film formation of low refractive index layer and high refractive index layer)
Film formation material for low refractive index layer: SiO 2
The above-mentioned base material is installed in a vacuum vapor deposition apparatus, the film-forming material is loaded into the first evaporation source, vapor deposition is carried out at a film-forming rate of 4 Å / sec, and a low refractive index with a thickness of 36.7 nm is formed on the base material. A layer was formed.
 当該低屈折率層の形成はIAD法によって行い、加速電圧1000V、加速電流1000mA、中和(バイアス)電流1200mAで、蒸着装置はシンクロン社製BES-1300及びIAD装置はシンクロン社製NIS-175を用いた。蒸着成膜時のガス導入量は2×10-2PAとし、IAD導入ガスはO250sccm、Arガス0sccm、ニュートラルガスO250sccmの条件で行った。 The low refractive index layer is formed by the IAD method, with an acceleration voltage of 1000 V, an acceleration current of 1000 mA, and a neutralization (bias) current of 1200 mA. Using. Amount of gas introduced during film formation by vapor deposition is a 2 × 10 -2 PA, IAD introduced gas was carried out by O 2 50 sccm, Ar gas 0 sccm, the neutral gas O 2 50 sccm conditions.
 高屈折率層の成膜材料:A600
 上記の基材を真空蒸着装置に設置して、第2蒸発源に前記成膜材料を装填し、成膜速度2.0Å/secで蒸着し、上記低屈折率層上に厚さが11.0nmの高屈折率層を形成した。当該高屈折率層の形成は、同様にIAD法によって行った。
High refractive index layer film forming material: A600
The above-mentioned base material is installed in a vacuum vapor deposition apparatus, the film-forming material is loaded into the second evaporation source, vapor deposition is carried out at a film-forming rate of 2.0 Å / sec, and the thickness is 11. A high refractive index layer of 0 nm was formed. The formation of the high refractive index layer was similarly carried out by the IAD method.
 上記形成した高屈折率層上に、表IIに記載の層厚条件で低屈折率層及び高屈折率層を積層成膜し、合計5層の誘電体多層膜を作製した。 A low refractive index layer and a high refractive index layer were laminated and formed on the formed high refractive index layer under the layer thickness conditions shown in Table II to prepare a total of five dielectric multilayer films.
 (光触媒層:高屈折率層H(2)、又は高屈折率層H(2)とH(4)の成膜)
 光触媒層の成膜材料:TiO2
 上記5層まで成膜した基材に、第3蒸発源に前記成膜材料を装填し、成膜速度2.0Å/secで蒸着し、上記低屈折率層上に厚さが129.3nmの光触媒層H(4)を形成した。当該光触媒層の成膜は、同様にIAD法によって行い、加速電圧500V、加速電流500mA、中和(バイアス)電流750mAで行った。
(Photocatalyst layer: High refractive index layer H (2) or film formation of high refractive index layers H (2) and H (4))
Photocatalyst layer film forming material: TiO 2
The film-forming material was loaded into the third evaporation source on the substrate on which the film was formed up to the above five layers, and the film was deposited at a film-forming rate of 2.0 Å / sec, and the thickness was 129.3 nm on the low refractive index layer. The photocatalyst layer H (4) was formed. The photocatalyst layer was similarly formed by the IAD method at an acceleration voltage of 500 V, an acceleration current of 500 mA, and a neutralization (bias) current of 750 mA.
 同様にして121.0nmの光触媒性を有する高屈折率層H(2)を成膜した。 Similarly, a high refractive index layer H (2) having a photocatalytic property of 121.0 nm was formed.
 (最上層:低屈折率層L(1)及び中間層L(3)の成膜)
 最上層及び中間層の成膜材料:YF3
 前記下層を製膜した基材上に、第4蒸発源に前記成膜材料を装填し、成膜速度4.0Å/secで蒸着し、上記光触媒層上に厚さが80.6nmの最上層である低屈折率層L(1)を形成した
 同様にして11.7nmの中間層L(3)を成膜した。
(Top layer: film formation of low refractive index layer L (1) and intermediate layer L (3))
Top layer and intermediate layer film forming material: YF 3
The film-forming material is loaded into the fourth evaporation source on the base material on which the lower layer is formed, and the film is deposited at a film-forming rate of 4.0 Å / sec, and the uppermost layer having a thickness of 80.6 nm is deposited on the photocatalyst layer. The low refractive index layer L (1) was formed, and the intermediate layer L (3) having a thickness of 11.7 nm was formed in the same manner.
 <光学部材サンプルNo.2~No.16の作製>
 光学部材サンプルNo.1の作製と同様にして、表II及び表IIIの層構成及び層厚を有する誘電体多層膜を形成し、光学部材サンプルNo.2~No.16を作製した。
<Optical member sample No. 2-No. Preparation of 16>
Optical member sample No. In the same manner as in the production of No. 1, a dielectric multilayer film having the layer structure and layer thickness of Tables II and III was formed, and the optical member sample No. 2-No. 16 was made.
 なお、低屈折率材料として、SiO2及びMgF2を用いた光学部材については、電子銃を用いて、それぞれ成膜速度2.2Å/sec及び4.0Å/secで蒸着成膜した。 For the optical member using SiO 2 and MgF 2 as the low refractive index materials, thin-film deposition was performed at a film formation rate of 2.2 Å / sec and 4.0 Å / sec, respectively, using an electron gun.
 ≪評価≫
 得られた光学部材サンプルNo.1~No.16を用いて以下の評価を実施した。
≪Evaluation≫
The obtained optical member sample No. 1 to No. The following evaluation was carried out using 16.
 (1)分光反射率の測定
 380~780nmの範囲の光波長域で、オリンパス社製顕微分光測定機USPM-RU IIIを用いて、法線方向からの光入射に対する分光反射率を測定し、可視光域(420~680nm)における10nm毎の分光反射率値を抽出して平均し、平均分光反射率とした。
(1) Measurement of spectral reflectance In the light wavelength range of 380 to 780 nm, the spectral reflectance for light incident from the normal direction is measured and visible using the USPM-RU III microscopic differential light measuring machine manufactured by Olympus. The spectral reflectance values for each 10 nm in the light region (420 to 680 nm) were extracted and averaged to obtain the average spectral reflectance.
 測定した結果を、図3~図6に示した。分光反射率の形状から、ランク分けを実施した。△以上を合格としたが、望ましくは〇~◎である。
 ◎:可視光域の平均分光反射率が、0.5%以下であり優れている:図3
 〇:可視光域の分光反射率にやや乱れはあるものの、平均分光反射率は1.0%以下であり問題ない:図4
 △:可視光域の分光反射率に乱れはあるものの、平均分光反射率は1.5%以下であり、実用上問題ない:図5
 ×:可視光域の分光反射率に大きな乱れがあり、平均分光反射率は1.5%を超えており、実用上問題がある:図6
The measurement results are shown in FIGS. 3 to 6. Ranks were performed based on the shape of the spectral reflectance. The above is acceptable, but it is preferably 〇 to ◎.
⊚: The average spectral reflectance in the visible light region is 0.5% or less, which is excellent: FIG.
〇: Although the spectral reflectance in the visible light region is slightly disturbed, the average spectral reflectance is 1.0% or less, which is not a problem: Fig. 4
Δ: Although the spectral reflectance in the visible light region is disturbed, the average spectral reflectance is 1.5% or less, and there is no practical problem: FIG.
X: There is a large disturbance in the spectral reflectance in the visible light region, and the average spectral reflectance exceeds 1.5%, which is a practical problem: Fig. 6
 (2)塩水噴霧試験
 得られた光学部材サンプルを用いて以下の評価を行った。
(2) Salt spray test The following evaluation was performed using the obtained optical member sample.
 〈塩水噴霧試験〉
 下記(a)~(c)を1サイクルとし、8サイクル実施した。
 (a)35±2℃の噴霧層内温度にて、25±2℃の溶剤を光学部材サンプルの最上層側に2時間噴霧する。
 (b)噴霧終了後、40±2℃、95%RHにて22時間放置する。
 (c)(a)及び(b)を4回繰り返した後に、25℃、55%RHに72時間放置する。
 〈溶剤〉
 使用溶質:NaCl、MgCl2、CaCl2
 溶質濃度:5±1質量%
<Salt spray test>
Eight cycles were carried out, with the following (a) to (c) as one cycle.
(A) At the temperature inside the spray layer of 35 ± 2 ° C., the solvent of 25 ± 2 ° C. is sprayed on the uppermost layer side of the optical member sample for 2 hours.
(B) After spraying is completed, the mixture is left at 40 ± 2 ° C. and 95% RH for 22 hours.
(C) After repeating (a) and (b) four times, the mixture is left at 25 ° C. and 55% RH for 72 hours.
<solvent>
Solutes used: NaCl, MgCl 2 , CaCl 2
Solute concentration: 5 ± 1% by mass
 〈分光反射率の測定〉
 塩水噴霧試験の前後の光学部材サンプルの分光反射率を測定し、光波長420~680nmの範囲における分光反射率の平均値として、0.1%以内の変動である場合を合格として〇とし、0.1%を超え0.15%以内の変動である場合を△とし、0.15%を超える変動である場合を×とした。△以上を合格とした。
<Measurement of spectral reflectance>
The spectral reflectance of the optical member sample before and after the salt spray test was measured, and if the average value of the spectral reflectance in the light wavelength range of 420 to 680 nm fluctuated within 0.1%, it was evaluated as 〇 and 0. The case where the fluctuation exceeds 0.1% and is within 0.15% is marked with Δ, and the case where the fluctuation exceeds 0.15% is marked with ×. △ The above was regarded as a pass.
 (3)光触媒効果評価方法
 得られた光学部材サンプルを用いて以下の評価を行った。
(3) Photocatalytic effect evaluation method The following evaluation was performed using the obtained optical member sample.
 (a)照明配置
 評価用の照明装置200の模式図を図7Aに示す。
(A) A schematic diagram of the lighting device 200 for evaluating the lighting arrangement is shown in FIG. 7A.
 UVライト202を黒い筐体201に設置する。 Install the UV light 202 in the black housing 201.
 作製した光学部材サンプル204の最上層側のマーカー面205をUVライト202側にしてサンプルを平板203上に設置する。 The marker surface 205 on the uppermost layer side of the produced optical member sample 204 is on the UV light 202 side, and the sample is placed on the flat plate 203.
 UVライト202と光学部材サンプル204間が30mmになるように高さを調整する。 Adjust the height so that the distance between the UV light 202 and the optical member sample 204 is 30 mm.
 (b)ペンの塗り方
 光触媒面に、Ink intelligent社のThe Visualiserペンで線を引く。
(B) How to apply the pen Draw a line on the photocatalyst surface with the The Visualizer pen manufactured by Ink intensity.
 線を引くイメージより、点状にインク(図7B206)を落とすイメージで行う。 From the image of drawing a line, the image of dropping ink (Fig. 7B206) in dots is used.
 インクは1段で5点程度×2段で塗る。 Ink is applied in 1 step with about 5 points x 2 steps.
 (c)UVライト照射
 UVライト(YAZAWA社製BL20)のコンセントを入れるとランプ点灯がする。
(C) UV light irradiation When the outlet of the UV light (BL20 manufactured by YAZAWA) is plugged in, the lamp lights up.
 30mmの高さで、1hで10Jの積算光量でUVライトを照射する。 At a height of 30 mm, irradiate UV light with an integrated light intensity of 10 J for 1 hour.
 1時間後、2時間後の色の変化を確認する。 Check the color change after 1 hour and 2 hours.
 (d)色評価
 取り出し直後では色味が安定しないため、取り出し後30分以上経過してから各時間での色変化を評価する(図7B)。光触媒効果がある場合は、色変化は青から透明になる(光触媒効果「あり」)。
 評価ランクは以下のとおりであり、〇以上が合格である。
 ◎:図7Cの色変化5であり光触媒効果が特に優れている
 〇:図7Cの色変化4であり光触媒効果が優れている
 △:図7Cの色変化3であり光触媒効果はやや劣る
 ×:図7Cの色変化2であり光触媒効果は劣り問題である
(D) Color evaluation Since the color tone is not stable immediately after taking out, the color change at each time is evaluated after 30 minutes or more have passed after taking out (FIG. 7B). If there is a photocatalytic effect, the color change will change from blue to transparent (photocatalytic effect "yes").
The evaluation ranks are as follows, and 〇 or higher is a pass.
⊚: Color change 5 in FIG. 7C and photocatalytic effect is particularly excellent 〇: Color change 4 in FIG. 7C and photocatalytic effect is excellent Δ: Color change 3 in FIG. 7C and photocatalytic effect is slightly inferior ×: It is the color change 2 of FIG. 7C, and the photocatalytic effect is inferior, which is a problem.
 (4)水との接触角の測定
 得られた光学部材サンプルを用いて、最上層の水との接触角を求めた。
(4) Measurement of contact angle with water Using the obtained optical member sample, the contact angle with water in the uppermost layer was determined.
 対水接触角は、温度23℃、相対湿度55%の雰囲気下で試料を24時間放置後、温度23℃、相対湿度55%の雰囲気下で、接触角計(協和界面科学株式会社製、商品名DropMaster DM100)を用いて、純水1μlを滴下1分後における純水の接触角を測定した。なお、7回測定を行い、測定値の最大値、最小値を除いた5つの測定値を平均した値である。
 最上層が親水性を発現するには、前記接触角は30°以下であることが好ましい。
The contact angle with water is as follows: After leaving the sample for 24 hours in an atmosphere with a temperature of 23 ° C and a relative humidity of 55%, a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., product) in an atmosphere with a temperature of 23 ° C and a relative humidity of 55%. Using the name DropMaster DM100), the contact angle of pure water 1 minute after dropping 1 μl of pure water was measured. It should be noted that the measurement is performed 7 times, and the value is the average of 5 measured values excluding the maximum value and the minimum value of the measured values.
In order for the uppermost layer to exhibit hydrophilicity, the contact angle is preferably 30 ° or less.
 (5)総合評価
 分光反射率、塩水噴霧試験及び光触媒効果の総合評価として、不合格レベル×の性能を一つでも有する光学部材及び評価レベル△を二つ以上有する光学部材は比較例とした。
(5) Comprehensive evaluation As a comprehensive evaluation of the spectral reflectance, the salt spray test, and the photocatalytic effect, an optical member having at least one performance of failure level × and an optical member having two or more evaluation levels Δ were used as comparative examples.
 評価レベル△を一つ有する光学部材は本発明内ではあるが、総合評価は△とし、より優れている評価レベル〇又は◎のみ有する光学部材を○とし、ランク分けを行った。 Although the optical member having one evaluation level Δ is in the present invention, the overall evaluation is Δ, and the optical member having only the better evaluation level 〇 or ◎ is rated as ◯, and the ranking is performed.
 以下の表II及び表IIIに、光学部材サンプルの構成、作製方法及び評価結果を示す。 Table II and Table III below show the configuration, manufacturing method, and evaluation results of the optical member sample.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表II及び表IIIから、本発明の構成の光学部材サンプルであるNo.1、2、6、7、9~13、及び15は、比較例に対して、分光反射率及び塩水耐性に優れ、さらに光触媒層として光学部材内にTiO2含有層を設けていることから、光触媒効果を発現し、セルフクリーニング性にも優れることが分かる。 From Table II and Table III, No. 1 which is an optical member sample having the constitution of the present invention. Compared to the comparative examples, 1, 2, 6, 7, 9 to 13, and 15 are excellent in spectral reflectance and salt water resistance, and further, because a TiO 2 containing layer is provided in the optical member as a photocatalyst layer, It can be seen that it exhibits a photocatalytic effect and is also excellent in self-cleaning property.
 一方、SiO2を最上層に有する光学部材4は塩水耐性に劣り、MgF2を中間層L(3)に用いた光学部材5は光触媒性に劣る結果であった。 On the other hand, the optical member 4 having SiO 2 in the uppermost layer was inferior in salt water resistance, and the optical member 5 using MgF 2 in the intermediate layer L (3) was inferior in photocatalytic property.
 本発明の光学部材は、塩水耐性と光触媒効果を有し、可視光域の分光反射率が低減された反射防止層を有する光学部材であり、車載用又は屋外用(監視カメラ等)の外気に露出される露出面側の光学レンズに好適に利用される。 The optical member of the present invention is an optical member having salt water resistance and a photocatalytic effect and having an antireflection layer having a reduced spectral reflectance in the visible light region, and is used in the outside air for in-vehicle use or outdoor use (surveillance camera, etc.). It is preferably used for an optical lens on the exposed surface side to be exposed.
 1 IAD蒸着装置
 2 チャンバー
 3 ドーム
 4 基板
 5 蒸着源
 6 蒸着物質
 7 IADイオンソース
 8 イオンビーム
 100 光学部材誘電体多層膜
 101 基板
 102 低屈折率層
 103 高屈折率層
 104 低屈折率層
 105 高屈折率層
 106 低屈折率層
 107 反射防止層AR
 108 高屈折率層H(2)
 109 低屈折率層L(1)
 110 高屈折率層H(4)
 111 低屈折率層L(3)
 115 誘電体多層膜
 200 光触媒評価装置
 201 黒い筐体
 202 UVランプ
 203 平板
 204 光学部材サンプル
 205 マーカー面
 206 インク
1 IAD vapor deposition equipment 2 chamber 3 dome 4 substrate 5 vapor deposition source 6 vapor deposition material 7 IAD ion source 8 ion beam 100 optical member dielectric multilayer film 101 substrate 102 low refractive index layer 103 high refractive index layer 104 low refractive index layer 105 high refractive index Rate layer 106 Low refractive index layer 107 Antireflection layer AR
108 High refractive index layer H (2)
109 Low refractive index layer L (1)
110 High refractive index layer H (4)
111 Low refractive index layer L (3)
115 Dielectric multilayer film 200 Photocatalyst evaluation device 201 Black housing 202 UV lamp 203 Flat plate 204 Optical member sample 205 Marker surface 206 Ink

Claims (8)

  1.  基板上に、誘電体多層膜を有する光学部材であって、
     前記誘電体多層膜が、少なくとも表面から低屈折率層L(1)、高屈折率層H(2)、及び反射防止層ARを有する構成であり、
     前記低屈折率層L(1)のヘリウムd線に対する屈折率が1.7未満であり、前記高屈折率層H(2)の前記ヘリウムd線に対する屈折率が1.7以上であり、
     少なくとも前記低屈折率層L(1)が、フッ化イットリウム(YF3)を含有し、
     前記高屈折率層H(2)が、光触媒性を有する金属酸化物を含有し、かつ、当該高屈折率層H(2)の厚さが200~550nmの範囲内であることを特徴とする光学部材。
    An optical member having a dielectric multilayer film on a substrate.
    The dielectric multilayer film has at least a low refractive index layer L (1), a high refractive index layer H (2), and an antireflection layer AR from the surface.
    The low refractive index layer L (1) has a refractive index of less than 1.7 with respect to the helium d line, and the high refractive index layer H (2) has a refractive index of 1.7 or more with respect to the helium d line.
    At least the low refractive index layer L (1) contains yttrium fluoride (YF 3 ).
    The high refractive index layer H (2) contains a metal oxide having photocatalytic properties, and the thickness of the high refractive index layer H (2) is in the range of 200 to 550 nm. Optical member.
  2.  基板上に、誘電体多層膜を有する光学部材であって、
     前記誘電体多層膜が、少なくとも表面から低屈折率層L(1)、高屈折率層H(2)、低屈折率層L(3)、高屈折率層H(4)、及び反射防止層ARの構成であり、
     前記低屈折率層L(1)及びL(3)のヘリウムd線に対する屈折率が1.7未満であり、前記高屈折率層H(2)及びH(4)の前記ヘリウムd線に対する屈折率が1.7以上であり、
     前記低屈折率層L(1)及びL(3)が、フッ化イットリウム(YF3)を含有し、
     前記高屈折率層H(2)及びH(4)が、光触媒性を有する金属酸化物を含有し、かつ、当該高屈折率層H(2)及びH(4)の厚さの和が200~550nmの範囲内であることを特徴とする光学部材。
    An optical member having a dielectric multilayer film on a substrate.
    The dielectric multilayer film has at least a low refractive index layer L (1), a high refractive index layer H (2), a low refractive index layer L (3), a high refractive index layer H (4), and an antireflection layer from the surface. It is the composition of AR,
    The refractive index of the low refractive index layers L (1) and L (3) with respect to the helium d line is less than 1.7, and the refraction of the high refractive index layers H (2) and H (4) with respect to the helium d line. The rate is 1.7 or higher,
    The low refractive index layers L (1) and L (3) contain yttrium fluoride (YF 3 ).
    The high refractive index layers H (2) and H (4) contain a metal oxide having photocatalytic properties, and the sum of the thicknesses of the high refractive index layers H (2) and H (4) is 200. An optical member having a range of about 550 nm.
  3.  前記金属酸化物が、酸化チタン(TiO2)であることを特徴とする請求項1又は請求項2に記載の光学部材。 The optical member according to claim 1 or 2 , wherein the metal oxide is titanium oxide (TiO 2).
  4.  前記低屈折率層L(1)の厚さが、60~120nmの範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載の光学部材。 The optical member according to any one of claims 1 to 3, wherein the thickness of the low refractive index layer L (1) is in the range of 60 to 120 nm.
  5.  前記低屈折率層L(3)の厚さが、3~23nmの範囲内であることを特徴とする請求項2から請求項4までのいずれか一項に記載の光学部材。 The optical member according to any one of claims 2 to 4, wherein the thickness of the low refractive index layer L (3) is in the range of 3 to 23 nm.
  6.  前記反射防止層ARが、少なくとも酸化ケイ素(SiO2)を含有する層を有することを特徴とする請求項1から請求項5までのいずれか一項に記載の光学部材。 The optical member according to any one of claims 1 to 5, wherein the antireflection layer AR has a layer containing at least silicon oxide (SiO 2).
  7.  光波長420~680nmの範囲において、法線方向からの光入射に対する分光反射率が、平均1.5%以下であることを特徴とする請求項1から請求項6までのいずれか一項に記載の光学部材。 The invention according to any one of claims 1 to 6, wherein the spectral reflectance with respect to light incident from the normal direction is 1.5% or less on average in the light wavelength range of 420 to 680 nm. Optical member.
  8.  請求項1から請求項7までのいずれか一項に記載の光学部材を製造する光学部材の製造方法であって、
     前記TiO2を含有する層、及び前記SiO2を含有する層を、イオンアシストデポジション法を用いて形成することを特徴とする光学部材の製造方法。
    A method for manufacturing an optical member according to any one of claims 1 to 7, wherein the optical member is manufactured.
    A method for manufacturing an optical member, which comprises forming the layer containing TiO 2 and the layer containing SiO 2 by using an ion-assisted deposition method.
PCT/JP2020/041669 2019-12-03 2020-11-09 Optical member and production method therefor WO2021111813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019218450A JP2023007511A (en) 2019-12-03 2019-12-03 Optical member and its manufacturing method
JP2019-218450 2019-12-03

Publications (1)

Publication Number Publication Date
WO2021111813A1 true WO2021111813A1 (en) 2021-06-10

Family

ID=76221918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041669 WO2021111813A1 (en) 2019-12-03 2020-11-09 Optical member and production method therefor

Country Status (2)

Country Link
JP (1) JP2023007511A (en)
WO (1) WO2021111813A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409271A (en) * 2022-01-17 2022-04-29 郴州旗滨光伏光电玻璃有限公司 Double-layer coated photovoltaic glass and production method and production line thereof
WO2023054468A1 (en) * 2021-09-30 2023-04-06 大日本印刷株式会社 Multilayer body for display devices, and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322366A (en) * 1998-05-11 1999-11-24 Nikon Corp Film, optical member and suppression of attachment of surface contaminant
JP2003149406A (en) * 2002-07-12 2003-05-21 Topcon Corp Ir antireflection film
JP2003177205A (en) * 2002-11-28 2003-06-27 Mitsubishi Electric Corp Antireflection film for ir region
JP2015506895A (en) * 2011-11-30 2015-03-05 コーニング インコーポレイテッド Optical coating methods, equipment, and products
CN108710169A (en) * 2018-08-03 2018-10-26 浙江大学 Radiation refrigeration optical filter and its preparation method and application
CN208921891U (en) * 2018-11-29 2019-05-31 南通建达光电有限公司 A kind of medical treatment perspective optical mirror slip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322366A (en) * 1998-05-11 1999-11-24 Nikon Corp Film, optical member and suppression of attachment of surface contaminant
JP2003149406A (en) * 2002-07-12 2003-05-21 Topcon Corp Ir antireflection film
JP2003177205A (en) * 2002-11-28 2003-06-27 Mitsubishi Electric Corp Antireflection film for ir region
JP2015506895A (en) * 2011-11-30 2015-03-05 コーニング インコーポレイテッド Optical coating methods, equipment, and products
CN108710169A (en) * 2018-08-03 2018-10-26 浙江大学 Radiation refrigeration optical filter and its preparation method and application
CN208921891U (en) * 2018-11-29 2019-05-31 南通建达光电有限公司 A kind of medical treatment perspective optical mirror slip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054468A1 (en) * 2021-09-30 2023-04-06 大日本印刷株式会社 Multilayer body for display devices, and display device
CN114409271A (en) * 2022-01-17 2022-04-29 郴州旗滨光伏光电玻璃有限公司 Double-layer coated photovoltaic glass and production method and production line thereof

Also Published As

Publication number Publication date
JP2023007511A (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP5622468B2 (en) Lens manufacturing method and lens
US8789944B2 (en) Optical article and optical article production method
EP2286985B1 (en) Method of producing a plastic lens having an antistatic coating
WO2021111813A1 (en) Optical member and production method therefor
JP7375772B2 (en) Dielectric multilayer film, its manufacturing method, and optical components using the same
TWI588517B (en) Optical element
JP2010140008A (en) Optical article and method for manufacturing the same
JP7279713B2 (en) Optical thin film, optical member, and method for producing optical thin film
CN112225171B (en) Method for producing film
US20200166672A1 (en) Optical member and producing method of optical member
JP2007310335A (en) Front surface mirror
US12024767B2 (en) Dielectric film, method for producing same and optical member using same
JP7476564B2 (en) Superhydrophilic film, its manufacturing method, and optical member
US20230251401A1 (en) Hydrophilic film manufacturing method, hydrophilic film, and optical member
JP2010072636A (en) Optical article and method for manufacturing the same
EP1802452B1 (en) Optical element with an opaque chrome coating having an aperture and method of making same
JP4327056B2 (en) Method for forming amorphous titanium oxide thin film and photocatalytic composite thin film
JP2010072635A (en) Optical article and method for manufacturing the same
WO2018216540A1 (en) Lens having hydrophilic anti-reflection film and production method therefor
TWI750642B (en) Microstructure manufacturing method and microstructure manufacturing device
WO2023042438A1 (en) Light blocking film, multilayer antireflection film, method for producing said light blocking film, method for producing said multilayer antireflection film, and optical member
US20230266673A1 (en) Optical element, in particular for reflecting euv radiation, optical arrangement, and method for manufacturing an optical element
CN114196924A (en) Coating method of vacuum ultraviolet aluminum reflector on surface of copper substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20895063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20895063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP