WO2023042438A1 - Light blocking film, multilayer antireflection film, method for producing said light blocking film, method for producing said multilayer antireflection film, and optical member - Google Patents
Light blocking film, multilayer antireflection film, method for producing said light blocking film, method for producing said multilayer antireflection film, and optical member Download PDFInfo
- Publication number
- WO2023042438A1 WO2023042438A1 PCT/JP2022/011218 JP2022011218W WO2023042438A1 WO 2023042438 A1 WO2023042438 A1 WO 2023042438A1 JP 2022011218 W JP2022011218 W JP 2022011218W WO 2023042438 A1 WO2023042438 A1 WO 2023042438A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- layer
- film
- shielding
- shielding film
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 136
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 64
- 230000000903 blocking effect Effects 0.000 title abstract 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000011651 chromium Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 27
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 27
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 27
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 26
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium(IV) oxide Inorganic materials O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229940090961 chromium dioxide Drugs 0.000 claims abstract description 24
- 150000001875 compounds Chemical class 0.000 claims abstract description 15
- 230000003595 spectral effect Effects 0.000 claims description 121
- 238000002834 transmittance Methods 0.000 claims description 48
- 239000000758 substrate Substances 0.000 claims description 47
- 239000000463 material Substances 0.000 claims description 46
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 24
- -1 AlF2 Inorganic materials 0.000 claims description 15
- 238000000151 deposition Methods 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 229910052786 argon Inorganic materials 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 9
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 9
- 229910005693 GdF3 Inorganic materials 0.000 claims description 8
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 8
- 101000929049 Xenopus tropicalis Derriere protein Proteins 0.000 claims description 8
- 229910009520 YbF3 Inorganic materials 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 8
- FPHIOHCCQGUGKU-UHFFFAOYSA-L difluorolead Chemical compound F[Pb]F FPHIOHCCQGUGKU-UHFFFAOYSA-L 0.000 claims description 8
- 229910017557 NdF3 Inorganic materials 0.000 claims description 7
- 229910001610 cryolite Inorganic materials 0.000 claims description 7
- 229910020187 CeF3 Inorganic materials 0.000 claims description 6
- 229910002319 LaF3 Inorganic materials 0.000 claims description 6
- 229910009527 YF3 Inorganic materials 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 6
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 3
- 238000013461 design Methods 0.000 abstract description 45
- 239000000126 substance Substances 0.000 abstract description 21
- 239000010408 film Substances 0.000 description 238
- 230000015572 biosynthetic process Effects 0.000 description 49
- 230000000694 effects Effects 0.000 description 42
- 238000005259 measurement Methods 0.000 description 22
- 238000007740 vapor deposition Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 15
- 230000008021 deposition Effects 0.000 description 12
- 238000010884 ion-beam technique Methods 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 230000004907 flux Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000000087 stabilizing effect Effects 0.000 description 6
- 238000001771 vacuum deposition Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000002708 enhancing effect Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004050 hot filament vapor deposition Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910005690 GdF 3 Inorganic materials 0.000 description 1
- 229910017768 LaF 3 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
Definitions
- the present invention relates to a light-shielding film, a multilayer antireflection film, a method for producing them, and an optical member. More specifically, the present invention relates to a light-shielding film and a multilayer anti-reflection film having excellent light-shielding properties and anti-reflection properties, methods for producing them, and optical members.
- Patent Document 1 discloses an invention in which an inner wall surface of an optical member is coated with a black coating film made of a film-forming resin containing a plurality of fine particles having a plurality of types of shapes.
- Patent Document 2 an inorganic material is used for the light shielding film provided in the optical member, and the light shielding film is a combination of a plurality of light absorbing layers and a low refractive index layer having a refractive index of 1.7 or less.
- the light shielding film is a combination of a plurality of light absorbing layers and a low refractive index layer having a refractive index of 1.7 or less.
- the present invention has been made in view of the above problems and circumstances, and the problem to be solved is a light-shielding film and a multilayer anti-reflection film that are excellent in light-shielding properties, light anti-reflection properties, and chemical stability, and their design values and
- An object of the present invention is to provide a manufacturing method and an optical member with little deviation from measured values.
- the present inventors investigated the causes of the above problems, and found that a light shielding film containing chromium and silicon dioxide becomes unstable due to the influence of oxygen.
- the inventors have discovered that layers affect stability and find ways to improve that stability. That is, the above problems related to the present invention are solved by the following means.
- a light-shielding film having at least a light-shielding layer and a layer in contact with the light-shielding layer, wherein the light-shielding layer contains chromium and silicon dioxide, and at least one of the layers in contact with the light-shielding layer contains a compound other than an oxide.
- a light-shielding film characterized by containing:
- At least one of the layers in contact with the light shielding layer is composed of MgF2 , AlF2 , NdF3 , LaF3 , YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 and CeF3 2.
- a multilayer antireflection film comprising a light-shielding film, comprising the light-shielding film according to any one of items 1 to 5 as the light-shielding film, and being in contact with at least one of the light-shielding layers.
- Multilayer antireflection coating characterized by having at least an optical interference layer thereon
- An optical member comprising at least a light-shielding film on a substrate, wherein the light-shielding film according to any one of items 1 to 5 is provided as the light-shielding film.
- a light-shielding film and a multilayer anti-reflection film having excellent light-shielding properties, anti-reflection properties, and chemical stability, and a manufacturing method and an optical member with little deviation between their design values and measured values are provided. be able to.
- the light shielding layer of the light shielding film of the present invention contains chromium and silicon dioxide.
- the inclusion of chromium and silicon dioxide in the light-shielding layer is useful for enhancing the light-shielding properties and antireflection properties of the light-shielding film.
- oxygen moves between the light-shielding layer and the oxide, resulting in a change in the chemical properties of the mixture of chromium and silicon dioxide in the light-shielding layer.
- the layer in contact with the light-shielding layer containing chromium and silicon dioxide is a layer containing a compound other than an oxide, thereby preventing the movement of oxygen from the outside of the light-shielding layer and reducing the chemical composition of the light-shielding layer.
- a light-shielding film is formed which is optically stable without undergoing a thermal change and is excellent in light-shielding properties and light reflectivity. Therefore, it is possible to manufacture a light-shielding film or the like with little divergence between the design value and the actual measurement value.
- a conceptual diagram showing the simplest configuration of the light shielding film of the present invention Conceptual diagram of an example showing the configuration of a multilayer antireflection film having surface antireflection effects
- Conceptual diagram of an example showing the configuration of a multilayer antireflection film having a back-surface antireflection effect Conceptual diagram of an example showing the configuration of a multilayer antireflection film having antireflection effects on both the front and back surfaces
- the light-shielding film of the present invention is a light-shielding film having at least a light-shielding layer and a layer in contact with the light-shielding layer, wherein the light-shielding layer contains chromium and silicon dioxide, and at least one of the layers in contact with the light-shielding layer is , containing a compound other than an oxide.
- This feature is a technical feature common to or corresponding to each of the following embodiments (aspects).
- At least one of the layers in contact with the light shielding layer is MgF2 , AlF2 , NdF3, LaF3 , YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5.
- At least one of the layers in contact with the light shielding layer contains a sulfide.
- the sulfide is ZnS.
- the average spectral transmittance in the wavelength region of 400 to 700 nm is preferably 2% or less.
- the multilayer antireflection film comprising the light shielding film of the present invention has at least a light interference layer on at least one layer in contact with the light shielding layer.
- the multilayer antireflection film has a spectral characteristic adjusting layer between the layer in contact with the light shielding layer and the light interference layer.
- the average spectral reflectance of the multilayer antireflection film in the wavelength region of 400 to 700 nm is 2% or less.
- the light-shielding film is preferably manufactured by forming the light-shielding layer by forming a film of a mixture of chromium and silicon dioxide in an argon gas atmosphere.
- the light-shielding film is preferably manufactured by forming the light-shielding layer by forming a film of a mixture of chromium and silicon dioxide in a nitrogen gas atmosphere.
- the manufacturing process of the multilayer antireflection film includes a step of forming a light shielding film and a step of laminating at least a light interference layer on the light shielding film, so that the multilayer antireflection film is preferably manufactured.
- An optical member having at least a light shielding film on a substrate preferably includes the light shielding film of the present invention as the light shielding film.
- the optical member preferably has a light interference layer formed on the light shielding film from the viewpoint of antireflection properties.
- the optical member has a light interference layer formed between the base material and the light shielding film.
- the light-shielding film of the present invention is a light-shielding film having at least a light-shielding layer and a layer in contact with the light-shielding layer, wherein the light-shielding layer contains chromium and silicon dioxide, and at least the layer in contact with the light-shielding layer is One is characterized by containing compounds other than oxides.
- FIG. 1 is a conceptual diagram showing the simplest structure of the light shielding film of the present invention.
- the light-shielding film of the present invention has a light-shielding layer having excellent light-shielding properties and antireflection properties on a substrate, and in order to stabilize the chemical properties of the light-shielding layer, The effects of the present invention are exhibited by forming the layer in contact with the light shielding layer to be a layer containing a compound other than an oxide.
- Substrate The substrate for use in the present invention is not particularly limited, and resins such as cycloolefin copolymers (COC), cycloolefin polymers (COP) and polyester resins can be mentioned.
- COC cycloolefin copolymers
- COP cycloolefin polymers
- polyester resins can be mentioned.
- the light-shielding layer constituting the light-shielding film of the present invention contains chromium and silicon dioxide.
- the film-forming material used for forming the light-shielding layer is not particularly limited as long as it contains chromium and silicon dioxide .
- 3mm Patinal a mixture of Cr (45%) + SiO 2 (50-60%), hereinafter the product name is referred to as "BlackA").
- (1.3) Layer in Contact with Light-Shielding Layer The inclusion of chromium and silicon dioxide in the light-shielding layer is useful for enhancing the light-shielding properties and antireflection properties of the light-shielding film.
- oxygen moves between the light-shielding layer and the oxide, resulting in a change in the chemical properties of the mixture of chromium and silicon dioxide in the light-shielding layer.
- Optical properties such as the refractive index and light absorption coefficient of the light-shielding film having the light-shielding layer are changed, and the light-shielding properties and anti-reflection properties are deteriorated.
- a layer containing a compound other than an oxide as at least one of the layers in contact with the light-shielding layer, that is, the adjacent layers, it is possible to suppress the change in the optical properties of the light-shielding layer due to the movement of oxygen.
- At least one of the layers in contact with the light-shielding layer must be formed of a compound film-forming material other than an oxide, but the other layer can also use an oxide as a film-forming material.
- Film-forming materials that are compounds other than oxides include, for example, MgF2 , AlF2 , NdF3 , LaF3 , YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 , CeF3 , ZnS, etc. are mentioned.
- At least one of the layers in contact with the light shielding layer is made of MgF2 , AlF2 , NdF3 , LaF3, YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 , CeF3 Containing any selected fluoride is preferable from the viewpoint of stabilizing the chemical properties of the light-shielding film.
- At least one of the layers in contact with the light shielding layer contains sulfide from the viewpoint of stabilizing the chemical properties of the light shielding film.
- the sulfide is ZnS from the viewpoint of stabilizing the chemical properties of the light shielding film.
- the average spectral transmittance of the light shielding film in the wavelength region of 400 to 700 nm is preferably 2% or less from the viewpoint of light shielding properties.
- “transmittance” means the ratio of transmitted radiant flux or luminous flux to incident radiant flux or luminous flux under given conditions (New Color Chemistry Handbook 2nd edition Ed., page 222), the unit is "1".
- “spectral transmittance” in the present invention means transmittance (%) for light of a specific wavelength in the above definition of "transmittance”.
- the "average spectral transmittance” according to the present invention means the average value of the spectral transmittance at each wavelength measured within the spectral wavelength range of 400 to 700 nm.
- the spectral transmittance of the light-shielding film is measured with a spectrophotometer U-4100 manufactured by Hitachi, Ltd., and the average value of the spectral transmittances at 31 points at intervals of 10 nm in the spectral wavelength range of 400 to 700 nm is taken.
- the value of the average spectral transmittance is obtained by the following formula (1).
- Average spectral transmittance (%) ( T400 + T410 +...+ T690 + T700 )/31
- T 400 indicates a spectral transmittance value (%) at a light wavelength of 400 nm
- T 410 indicates a spectral transmittance value (%) at a light wavelength of 410 nm, and so on.
- Refractive index is the value of the ratio of the speed of light in a vacuum to the speed of light in a substance, that is, (speed of light in a vacuum)/(speed of light in a substance). It is a value that describes how light travels in matter. Since the speed of light in a substance changes with the wavelength of the light, the refractive index also changes with the wavelength of the light. Refractions described herein are refractive indices for the d-line of helium (wavelength 587.56 nm), unless otherwise specified. In addition, the refractive index according to the present invention is a measured value at room temperature (25° C.).
- the refractive index of a substance is an important controlling factor affecting the reflection, absorption, and transmission of light when incident light. Therefore, the refractive index of the film-forming material of each layer constituting the light-shielding film and the multilayer anti-reflection film is greatly related to the light-reflecting property.
- the refractive index of the material used for the light shielding film or antireflection film according to the present invention is preferably in the range of 1.33 to 2.5.
- film forming materials having a refractive index within the above range include BlackA, MgF 2 , YF 3 , SiO 2 , AlF 2 , H 4 (LaTiO 3 ), NdF 3 and LaF, which are used in the light shielding layer and adjacent layers. 3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 , CeF3 , ZnS , Al2O3 , ZrTiO4 and the like.
- the multilayer antireflection film of the present invention is a multilayer antireflection film comprising a light-shielding film, wherein the light-shielding film of the present invention is provided as the light-shielding film, and at least one of the light-shielding layers includes: It is characterized by having at least an optical interference layer on the contacting layer.
- the multilayer antireflection film of the present invention preferably has one or more layers, and is preferably formed on a substrate. Specifically, it has a light shielding film composed of two or more layers, has at least an optical interference layer, and has at least one low refractive index layer and at least one high refractive index layer as its configuration. and the uppermost layer farthest from the substrate is preferably the low refractive index layer.
- the "low refractive index layer” refers to a layer formed by using a film-forming material having a refractive index of less than 1.6
- the high refractive index layer refers to a layer having a refractive index of 1.9. It refers to a layer formed by using the film-forming materials described above.
- the number of layers is not particularly limited, it is preferably 30 layers or less from the viewpoint of obtaining an optical interference layer while maintaining high productivity. That is, the number of layers depends on the required optical performance, but by laminating about 2 to 26 layers, the reflectance of the entire visible light region can be reduced, and the upper limit is 30 layers or less. This is preferable in that it can prevent peeling of the film due to an increase in the stress of the film.
- FIG. 2 is a conceptual diagram showing one example of the configuration of a multilayer antireflection film having a surface antireflection effect, which is one of them.
- the “surface” means “the surface on the side opposite to the substrate side when viewed from the light shielding film”, and the “surface antireflection effect” means “on the side of the substrate when viewed from the light shielding film. The effect of preventing reflection of light incident from the opposite surface.
- the light interference layer is formed on the light shielding film and serves to prevent reflection of light incident from the surface.
- the performance of the multilayer antireflection coating of the invention is further enhanced.
- the multilayer antireflection film of the present invention is provided with a light shielding film, and from the viewpoint of antireflection properties, it is necessary to have at least a light interference layer on a layer in contact with at least one light shielding layer.
- the "light interference layer” according to the present invention means that the reflected light, i.e. A layer that has the function of reducing the combined light of the reflected light reflected by each layer.
- the structure of the light interference layer various modes of structure can be adopted, but it is preferable to have a structure in which layers having different refractive indexes, for example, low refractive index layers and high refractive index layers are alternately laminated.
- Oxides can also be used as the film-forming material used for the optical interference layer according to the present invention. and an oxidized compound that is a combination of
- film-forming materials that are compounds other than oxides can also be used, such as MgF2 , AlF2 , NdF3 , LaF3, YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , and Na5.
- Al 3 F 14 , CeF 3 , ZnS and the like are included.
- the light interference layer according to the present invention can add a function of reducing the reflectance of the entire visible light region by stacking a plurality of different film forming materials as described above.
- the thickness of the light interference layer according to the present invention is preferably in the range of 50 to 3000 nm. If the thickness is 50 nm or more, anti-reflection optical properties can be exhibited, and if the thickness is 3000 nm or less, surface deformation due to the film stress of the multilayer film itself can be prevented. Preferably, it is in the range of 60-2000 nm.
- a spectral characteristic adjustment layer may be provided between the layer in contact with the light shielding layer and the light interference layer from the viewpoint of light shielding properties and light antireflection properties. good.
- FIG. 3 is a conceptual diagram showing an example of the configuration of a multilayer antireflection film having a back-surface antireflection effect among various forms of the multilayer antireflection film according to the present invention.
- the "back surface” means “the surface on the substrate side when viewed from the light shielding film”
- the “antireflection effect on the back surface” means “the effect of light entering from the substrate side when viewed from the light shielding film.
- the spectral characteristic adjustment layer is formed between the light interference layer and the light shielding film, maintains the function of the light interference layer, and prevents reflection from the rear surface of the light shielding film. adjustment layer.
- FIG. 4A shows a conceptual diagram of an example of an optical member having multilayer antireflection coatings on both sides of a substrate.
- the layer structure shown in FIG. 4A further enhances the light shielding property and the light antireflection property.
- a spectral characteristic adjusting layer may be provided between the layers.
- the multi-layer antireflection coating simultaneously satisfies the role of preventing reflection of light incident from the surface and the role of maintaining and enhancing the function of the light interference layer, thereby further enhancing the effect of the invention. be able to.
- the average spectral reflectance of the multilayer antireflection film in the wavelength region of 400 to 700 nm is preferably 2% or less from the viewpoint of antireflection properties.
- “reflectance” means the ratio of reflected radiant flux or luminous flux to incident radiant flux or luminous flux under given conditions. Ed., page 222), the unit is “1".
- “spectral reflectance” in the present invention means reflectance (%) for light of a specific wavelength in the above definition of "reflectance”.
- the "average spectral reflectance” according to the present invention means the average value of the spectral reflectance at each wavelength measured within the spectral wavelength range of 400 to 700 nm.
- the spectral reflectance is measured with a microscopic spectrophotometer USPM-RU III manufactured by Olympus, and the average value of the spectral reflectance at 31 points at intervals of 10 nm in the spectral wavelength region of 400 to 700 nm is taken.
- the value of average spectral reflectance is obtained by the following formula (1).
- R 400 indicates a spectral reflectance value (%) at a light wavelength of 400 nm
- R 410 indicates a spectral reflectance value (%) at a light wavelength of 410 nm, and so on.
- Deviation between Design Values and Measured Values In the present invention, as described above, by preventing the movement of oxygen from the outside to the light-shielding layer, the components of the light-shielding layer are optically stabilized. It is possible to reduce the range of divergence between the design values of the film's ideal optical characteristics and the measured values when the film is actually used after production.
- Judgment of whether the divergence width between the design value and the actual measurement value is large is made when the design value and the actual measurement value are graphed within the light wavelength range of 400 to 700 nm and the spectral reflectance is separated by 1% or more. This was done by determining whether the area covered by the graph occupied 50% or more of the line on the graph.
- the design value of the spectral reflectance is calculated with the thin film calculation software TF-CALC (Software Spectra, Inc), the reflectance Target (400-700 nm, set to 0.5%) is input, and the film configuration and Calculated by optimizing the film thickness.
- TF-CALC Software Spectra, Inc
- the measured value of the spectral reflectance is calculated by measuring the spectral reflectance for light incident from the normal direction using the Olympus microspectrophotometer USPM-RU III.
- FIG. 5 shows the relationship between the spectral reflectance value R ref required for a conventional light-shielding film and the measured spectral reflectance value D ref of the light-shielding film of the present invention when Black A is used as the film forming material. It is a conceptual diagram representing.
- the measured value D ref of the spectral reflectance of the light shielding film of the present invention in the light wavelength range of 400 to 700 nm, is the spectral reflectance required for the conventional light shielding film according to the graph shape shown in FIG. below the value R ref .
- Judgment as to whether or not the divergence width between the design value and the actual measurement value is large is made when the design value and the actual measurement value are graphed within the light wavelength range of 400 to 700 nm and the spectral transmittance is separated by 1% or more. This was done by determining whether the area covered by the graph occupied 50% or more of the line on the graph.
- the design value of the spectral transmittance is calculated with the thin film calculation software TF-CALC (Software Spectra, Inc), the transmittance Target (400-700 nm, set to 0.5%) is input, and the film configuration and Calculated by optimizing the film thickness.
- TF-CALC Software Spectra, Inc
- the measured value of the spectral transmittance is calculated using a spectrophotometer U4100 (manufactured by Hitachi High-Technologies Corporation).
- FIG. 6 shows the relationship between the spectral transmittance value R tra required for a conventional light shielding film and the measured spectral transmittance value D tra of the light shielding film of the present invention when Black A is used as the film forming material. It is a conceptual diagram representing.
- the measured value D tra of the spectral transmittance of the light shielding film of the present invention corresponds to the spectral transmittance required for the conventional light shielding film according to the graph shape shown in FIG. below the value Rtra .
- the optical member of the present invention is an optical member including at least a light-shielding film on a base material, and is characterized in that the light-shielding film of the present invention is provided as the light-shielding film.
- the optical member has a light interference layer formed on the light shielding film from the viewpoint of antireflection property. From the viewpoint of antireflection properties, it is preferable that the optical member has a light interference layer formed between the substrate and the light shielding film.
- the optical member of the present invention is preferably used as a light shielding member for mobile cameras and camera optical systems. Examples of the optical member of the present invention include an optical member having a layer structure as shown in FIGS. 1 to 4 described above. Substrates according to the present invention include, but are not limited to, resins such as cycloolefin copolymers (COC), cycloolefin polymers (COP) and polyester resins.
- the method for producing a light-shielding film of the present invention is a method for producing the above-described light-shielding film, wherein the light-shielding layer is formed in an argon gas or nitrogen gas atmosphere with chromium and It is preferably formed by depositing a mixture of silicon dioxide.
- the method for producing a multilayer antireflection film of the present invention is a method for producing the above-described multilayer antireflection film of the present invention, comprising: forming the light shielding film; It is preferable to have a step of laminating at least an optical interference layer on the substrate.
- the multi-layer anti-reflection film is preferably manufactured by including the step of forming a light-shielding film and the step of laminating at least a light interference layer on the light-shielding film.
- Various known methods can be used as a method for forming the light shielding layer, the layer in contact with the light shielding layer, the light interference layer, and the spectral characteristic adjusting layer on the substrate.
- Cat-CVD catalytic chemical vapor deposition method
- CCP-CVD capacitively coupled plasma CVD method
- PE-CVD plasma CVD method
- an epitaxial growth method a chemical vapor deposition method such as an atomic layer deposition method, or the like to form the layer.
- the film-forming materials used in the production of the light-shielding film and the multilayer antireflection film of the present invention are as described above . , GdF 3 , YbF 3 , PbF 2 , Na 3 AlF 6 , Na 5 Al 3 F 14 and CeF 3, etc.), the IAD method or the like is used because the metal fluoride is decomposed by ion irradiation during film formation. preferably not.
- the degree of pressure reduction in the chamber is usually 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 1 Pa, preferably 1 ⁇ 10 ⁇ 3 to 3 ⁇ 10 ⁇ 2 Pa. and the film formation rate is in the range of 1 to 10 ⁇ /sec. It is preferable to form each layer at a film-forming speed suitable for each film-forming material.
- Examples of the form of the light shielding film and the multilayer antireflection film formed on the substrate include the forms shown in FIGS.
- Each layer of the light-shielding film and the multilayer antireflection film is formed in order from the substrate side according to "Method for Forming Each Constituent Layer".
- the deposition source of the vapor deposition device used When forming each layer of the light-shielding film and multilayer anti-reflection film, the deposition source of the vapor deposition device used is appropriately loaded with the film-forming material, but when forming the light-shielding layer, the vapor deposition source of the vapor deposition device used contains chromium and silicon dioxide. A film forming material containing a compound other than an oxide is loaded into the vapor deposition source of the vapor deposition apparatus to be used when forming a layer in contact with the light shielding layer.
- FIG. 7 is a flow chart showing an example of the flow of the manufacturing process of the light-shielding film
- FIG. 9 is a flow chart showing an example of the manufacturing process flow of a multilayer antireflection film having a back-surface antireflection effect
- FIG. 4 is a flow chart showing an example of the flow of a membrane manufacturing process.
- FIG. 7 shows the flow of the manufacturing process for producing the light shielding film of FIG. 1
- FIG. 8 shows the flow of the manufacturing process for producing the multilayer antireflection film of FIG. 2
- FIG. 9 shows the flow of the manufacturing process for fabricating the membrane.
- the steps from D1 for forming the front-surface antireflection optical interference layer to D2 for forming the rear-surface antireflection spectral characteristic adjustment layer are not collective steps, but are performed between D1 and D2.
- D3 includes the step of taking out the multilayer anti-reflection film being formed from the film forming apparatus and setting the optical member on the mask jig for forming the light shielding film in the atmosphere. to start film formation again.
- FIG. 11 is a schematic diagram showing an example of a vacuum deposition apparatus.
- a vacuum deposition apparatus 1 comprises a dome 3 in a chamber 2 along which a substrate 4 is arranged.
- the vapor deposition source 5 is provided with an electron gun or a resistance heating device for evaporating the vapor deposition material.
- the substrate is irradiated with an ion beam 8 from an IAD ion source 7, and the high kinetic energy of the ions is applied during the film formation to form a dense film, or to increase the adhesion of the film.
- An example of the substrate 4 is glass.
- a plurality of deposition sources 5 may be arranged at the bottom of the chamber 2 . Although one vapor deposition source is shown as the vapor deposition source 5 here, the number of vapor deposition sources 5 may be plural.
- a deposition material 6 is generated from the deposition material (evaporation material) of the deposition source 5 by an electron gun, and the deposition material is scattered and adhered to a substrate 4 (for example, a glass plate) installed in the chamber 2 to form a film. A layer of material is deposited on the substrate 4 .
- the chamber 2 is provided with an evacuation system (not shown), which evacuates the inside of the chamber 2 .
- the degree of pressure reduction in the chamber is usually 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 1 Pa, preferably 1 ⁇ 10 ⁇ 3 to 3 ⁇ 10 ⁇ 2 Pa.
- the dome 3 holds at least one holder (not shown) that holds the substrate 4, and is also called a vapor deposition umbrella.
- the dome 3 has an arcuate cross section, and has a rotationally symmetrical shape that passes through the center of a chord connecting both ends of the arc and rotates about an axis perpendicular to the chord.
- the dome 3 can hold a plurality of holders side by side in the rotation radial direction (revolution radial direction) and the rotation direction (revolution direction). As a result, it is possible to form films simultaneously on a plurality of substrates 4 held by a plurality of holders, thereby improving the manufacturing efficiency of the device.
- the IAD ion source 7 is a device that introduces argon gas or oxygen gas into its main body, ionizes them, and irradiates the substrate 4 with the ionized gas molecules (ion beam 8 ).
- a Kaufmann type (filament), a hollow cathode type, an RF type, a bucket type, a duoplasmatron type, or the like can be applied.
- the molecules of the film-forming material evaporated from, for example, a plurality of evaporation sources can be pressed against the substrate 4, and a film with high adhesion and high density can be formed on the substrate. 4 can be deposited.
- the IAD ion source 7 is installed at the bottom of the chamber 2 so as to face the substrate 4, but may be installed at a position shifted from the facing axis.
- the ion beam used in the IAD method tends to be used in a lower degree of vacuum and at a lower acceleration voltage than the ion beam used in the ion beam sputtering method.
- an ion beam with an acceleration voltage of 100 to 2000 V and an ion beam with a current density of 1 to 120 ⁇ A/cm 2 can be used.
- the ion beam used in the film formation process can be an oxygen ion beam, an argon ion beam, or an ion beam of a mixed gas of oxygen and argon.
- a monitor system (not shown) monitors the wavelength characteristics of the layers formed on the substrate 4 by monitoring the layers that evaporate from the vapor deposition sources 5 and adhere to themselves during vacuum film formation. . With this monitor system, it is possible to grasp the optical properties of the layers formed on the substrate 4 (for example, spectral transmittance, spectral reflectance, optical layer thickness, etc.).
- the monitoring system also includes a quartz layer thickness monitor to monitor the physical layer thickness of layers deposited on the substrate 4 .
- This monitor system also functions as a control unit that controls ON/OFF switching of the plurality of evaporation sources 5, ON/OFF switching of the IAD ion source 7, etc., according to the layer monitoring results.
- the layer thickness of each layer was measured by the following method.
- Each layer is formed on the layer formed in (1) under the film formation conditions shown in Table I below, the spectral reflectance is measured, and the refractive index and layer thickness of the layer are calculated from the amount of change. .
- the film-forming materials used in the examples are as follows.
- Table I shows the film forming conditions when each layer was formed using each film forming material.
- Table I shows the film forming conditions when each layer was formed using each film forming material.
- AlF 2 is used as a film forming material when forming each layer
- each layer is formed under the ⁇ conditions (AlF 2 )> shown in Table I
- YbF 3 is used
- Each layer is formed under ⁇ Conditions (YbF 3 )> shown in Table I.
- the description of "a layer of the th layer counting from the base material” will be referred to as "the th layer”.
- the description of "the third layer counted from the base material” is referred to as "the third layer”.
- sample optical member A1 A light shielding layer containing chromium and silicon dioxide and having a thickness of 1500 nm was formed on the substrate under ⁇ Conditions (BlackA)> shown in Table I above. Next, a layer containing a compound other than an oxide having a thickness of 114 nm (a layer in contact with the light-shielding layer) was formed on the light-shielding layer under ⁇ Conditions (MgF 2 )> shown in Table I above. An optical member A1 was produced.
- sample optical member A2 A light shielding layer containing chromium and silicon dioxide and having a thickness of 1500 nm was formed on the substrate under ⁇ Conditions (BlackA)> shown in Table I above. Next, under the ⁇ conditions (SiO 2 )> shown in Table I, a layer containing an oxide having a thickness of 188 nm (a layer in contact with the light shielding layer) was formed on the light shielding layer, thereby forming a sample optical member. A2 was produced.
- sample optical member A3 A light shielding layer containing chromium and silicon dioxide and having a thickness of 1500 nm was formed on the substrate under ⁇ Conditions (BlackA)> shown in Table I above. Next, a layer containing an oxide having a thickness of 114 nm (layer in contact with the light-shielding layer) was formed on the light-shielding layer under ⁇ Condition (H4)> shown in Table I, thereby forming a sample optical member A3. was made.
- FIG. 12 shows a graph of the spectral reflectance of the sample optical members A1 to A3.
- the sample optical member A1 has a smaller divergence width between the design value and the measured value than the sample optical members A2 and A3.
- the optical member containing the compound in the layer in contact with the light-shielding layer is less affected by oxygen and is chemically more stable than the optical member containing the oxide in the layer in contact with the light-shielding layer. It can be seen that the antireflection effect is excellent.
- A. Preparation of Optical Member Equipped with Light-Shielding Film [Optical member No. Production of 1] (A.1) Formation of light-shielding film (A.1.1) Formation of light-shielding layer (first layer) Light-shielding with a thickness of 1500 nm on the base material under ⁇ conditions (BlackA)> shown in Table I above formed a layer.
- the "surface” means “the side opposite to the substrate side when viewed from the light shielding film”.
- surface antireflection effect means “effect of preventing reflection of light incident from the surface opposite to the substrate side when viewed from the light shielding film”.
- argon (Ar) gas as an inert gas when forming the light shielding layer as described above, the oxidation of the light shielding film BlackA is suppressed and the refractive index and light absorption coefficient of the light shielding layer are increased. Since the absorption coefficient of the light shielding film is increased, even if the thickness of the light shielding layer is thin, the same transmittance can be ensured. It became possible to obtain results equivalent to those of 4.
- argon (Ar) gas r is introduced as an inert gas in the above manufacturing method, the same effect can be obtained even if nitrogen (N 2 ) gas is used instead of argon (Ar) gas.
- optical member No. Preparation of 6 to 25 The deposition materials and layer thicknesses of the 1st to 8th layers (light-shielding layer, layer in contact with the light-shielding layer, and light interference layer) were changed as shown in Tables III to VI. Applying the conditions, the optical member No. 6-25 were made.
- the “back surface” means “the surface on the substrate side when viewed from the light shielding film”, and the “back surface”
- antireflection effect means "the effect of preventing reflection of light incident from the substrate side when viewed from the light shielding film”.
- Optical member No. 26 Formation of multilayer antireflection film (C.1.1) Formation of light interference layers (1st to 8th layers) ⁇ condition (H4)> or ⁇ condition (MgF 2 ) shown in Table I )> were applied according to the layer order of Table VII to form the optical interference layers (1st to 8th layers).
- D. Multilayer antireflection film having antireflection effects on both front and back surfaces [Optical member No. Production of 30] (D.1) Formation of a layer having an antireflection effect on the rear surface of the multilayer antireflection film (D.1.1) Formation of the light interference layer (1st to 8th layers) )> or ⁇ Conditions (MgF 2 )> were applied according to the layer order in Table VIII to form optical interference layers (1st to 8th layers). After that, the optical member was temporarily removed from the film forming apparatus, and the optical member in the process of production was set on a mask jig for forming a light shielding film in the atmosphere.
- Optical member No. 1 was provided with a multilayer antireflection film having an antireflection effect on both the front surface and the back surface, which was formed with the layer structure shown in Table VIII by the above steps. 30 was made.
- the design value of the spectral reflectance of No. 29 was calculated with thin film calculation software TF-CALC (Sotfware Spectra, Inc).
- the reflectance Target 400 to 700 nm, set to 0.5%) was input, and the film configuration and film thickness were optimized based on the needle method.
- the performance of each optical member was evaluated by extracting spectral reflectance values for each 10 nm from 400 to 700 nm and graphing them, and evaluating the deviation width between the design value and the actual measurement value of each optical member.
- the design value of the average spectral reflectance was calculated according to the calculation method described above.
- ⁇ Measured value> Using a microspectrophotometer USPM-RU III manufactured by Olympus Corporation, the spectral reflectance with respect to incident light from the normal direction was measured. At that time, the performance of each optical member was evaluated by extracting spectral reflectance values for each 10 nm from 400 to 700 nm and graphing them, and evaluating the divergence width between the design value and the actual measurement value of each optical member. At the same time, the actual measurement value of the average spectral reflectance was calculated according to the calculation method described above.
- ⁇ Evaluation method> The deviation width between the design value and the actual measurement value of each optical member was evaluated according to the following criteria.
- “large divergence between design value and actual measurement value” means, for example, optical members A2 and A3 in FIG. When graphed, the area where the two values are separated by 1% or more in terms of spectral reflectance occupies 50% or more of the line on the graph. The range of deviation from the actual measurement value is small.”
- spectral transmittance was measured using a spectrophotometer U4100 (manufactured by Hitachi High-Technologies Corporation). At that time, spectral transmittance values were extracted for each 10 nm from 400 to 700 nm and graphed, and the performance of each optical member was evaluated by evaluating the deviation width between the design value and the actual measurement value of each optical member. At the same time, the design value of the average spectral transmittance was calculated according to the calculation method described above.
- ⁇ Evaluation method> The deviation width between the design value and the actual measurement value of each optical member was evaluated according to the following criteria.
- “the range of divergence between the design value and the measured value is large” means that when the design value and the measured value are graphed within the light wavelength range of 400 to 700 nm, both values are spectral transmittance.
- the case where the area separated by 1% or more occupies 50% or more of the line on the graph is defined as "the divergence width between the design value and the actual measurement value is small" when this is not the case.
- the optical members of the examples have a small divergence from the preset design values in terms of spectral reflectance and spectral transmittance. It was found that a light-shielding film and a multilayer anti-reflection film having excellent light-shielding properties, light anti-reflection properties, and chemical stability can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
The present invention addresses the problem of providing: a light blocking film and a multilayer antireflection film, each of which has excellent light blocking properties, antireflection properties and chemical stability; a method for producing this light blocking film or this multilayer antireflection film, the method being suppressed in deviation between the design value and the measured value; and an optical member. The present invention provides a light blocking film which comprises at least a light blocking layer and one or more layers that are in contact with the light blocking layer, and which is characterized in that: the light blocking layer contains chromium and silicon dioxide; and at least one of the one or more layers that are in contact with the light blocking layer contains a compound other than an oxide.
Description
本発明は、遮光膜、多層反射防止膜、それらの製造方法及び光学部材に関する。より詳しくは、遮光性及び光反射防止性に優れた遮光膜及び多層反射防止膜、それらの製造方法及び光学部材に関する。
The present invention relates to a light-shielding film, a multilayer antireflection film, a method for producing them, and an optical member. More specifically, the present invention relates to a light-shielding film and a multilayer anti-reflection film having excellent light-shielding properties and anti-reflection properties, methods for producing them, and optical members.
近年、携帯カメラやガラスプリズム等の光学部材においては、いわゆるゴーストやフレアなどの発生の問題を解決するため、光学部材の内壁面に、光反射防止対策や遮光対策を施すことが求められている。
例えば特許文献1では、光学部材の内壁面に複数の種類の形状からなる複数の微粒子を含む皮膜形成用樹脂からなる黒色塗装膜が被膜された発明が開示されている。 In recent years, in optical members such as mobile cameras and glass prisms, in order to solve the problem of the occurrence of so-called ghosts and flares, it is required to take measures to prevent light reflection and light shielding on the inner wall surface of the optical members. .
For example,Patent Document 1 discloses an invention in which an inner wall surface of an optical member is coated with a black coating film made of a film-forming resin containing a plurality of fine particles having a plurality of types of shapes.
例えば特許文献1では、光学部材の内壁面に複数の種類の形状からなる複数の微粒子を含む皮膜形成用樹脂からなる黒色塗装膜が被膜された発明が開示されている。 In recent years, in optical members such as mobile cameras and glass prisms, in order to solve the problem of the occurrence of so-called ghosts and flares, it is required to take measures to prevent light reflection and light shielding on the inner wall surface of the optical members. .
For example,
これは、光学部材に有機物を用いた墨ぬりを施すことにより分光反射率を低下させ、ゴースト、フレアを防止しようとするものであるが、墨ぬり範囲の寸法精度の確保が難しく、墨は有機物であるため耐久性の確保も難しいという問題があった。
また、分光反射率を低下させたまま光学的性質を安定化させることが難しいという課題も残されていた。 This is intended to reduce the spectral reflectance and prevent ghosts and flares by applying black ink to optical members using organic substances. Therefore, there is a problem that it is difficult to ensure durability.
In addition, there remains the problem that it is difficult to stabilize the optical properties while reducing the spectral reflectance.
また、分光反射率を低下させたまま光学的性質を安定化させることが難しいという課題も残されていた。 This is intended to reduce the spectral reflectance and prevent ghosts and flares by applying black ink to optical members using organic substances. Therefore, there is a problem that it is difficult to ensure durability.
In addition, there remains the problem that it is difficult to stabilize the optical properties while reducing the spectral reflectance.
これに対して、特許文献2では、光学部材に備えられた遮光膜に無機物を用いており、複数の光吸収層と、屈折率が1.7以下の低屈折率層とを組み合わせた遮光膜を用いることにより、遮光膜に入射する光を遮光するだけでなく、その表面(基体側及び基体と反対側の表面)からの反射光を低減している。
しかしながら、前記特許文献2に開示されている遮光膜も、安定性の観点から改善の余地が残されていることが、本発明者の検討によりわかった。 On the other hand, inPatent Document 2, an inorganic material is used for the light shielding film provided in the optical member, and the light shielding film is a combination of a plurality of light absorbing layers and a low refractive index layer having a refractive index of 1.7 or less. By using , not only light incident on the light-shielding film is shielded, but also reflected light from its surface (the substrate side and the surface opposite to the substrate) is reduced.
However, the study by the present inventors has revealed that the light-shielding film disclosed inPatent Document 2 still has room for improvement from the viewpoint of stability.
しかしながら、前記特許文献2に開示されている遮光膜も、安定性の観点から改善の余地が残されていることが、本発明者の検討によりわかった。 On the other hand, in
However, the study by the present inventors has revealed that the light-shielding film disclosed in
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、遮光性及び光反射防止性並びに化学的安定性に優れた遮光膜及び多層反射防止膜、それらの設計値と実測値との乖離が少ない製造方法及び光学部材を提供することである。
The present invention has been made in view of the above problems and circumstances, and the problem to be solved is a light-shielding film and a multilayer anti-reflection film that are excellent in light-shielding properties, light anti-reflection properties, and chemical stability, and their design values and An object of the present invention is to provide a manufacturing method and an optical member with little deviation from measured values.
本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、クロム及び二酸化ケイ素を含有する遮光膜は酸素の影響で不安定になることを見出し、かつ、遮光層に接する層が安定性に影響すること及びその安定性の改善策を見出すことによって本発明に至った。
すなわち、本発明に係る上記課題は、以下の手段により解決される。 In order to solve the above problems, the present inventors investigated the causes of the above problems, and found that a light shielding film containing chromium and silicon dioxide becomes unstable due to the influence of oxygen. The inventors have discovered that layers affect stability and find ways to improve that stability.
That is, the above problems related to the present invention are solved by the following means.
すなわち、本発明に係る上記課題は、以下の手段により解決される。 In order to solve the above problems, the present inventors investigated the causes of the above problems, and found that a light shielding film containing chromium and silicon dioxide becomes unstable due to the influence of oxygen. The inventors have discovered that layers affect stability and find ways to improve that stability.
That is, the above problems related to the present invention are solved by the following means.
1.少なくとも、遮光層と前記遮光層に接する層とを有する遮光膜であって、前記遮光層が、クロム及び二酸化ケイ素を含有し、前記遮光層に接する層の少なくとも一つが、酸化物以外の化合物を含有することを特徴とする遮光膜。
1. A light-shielding film having at least a light-shielding layer and a layer in contact with the light-shielding layer, wherein the light-shielding layer contains chromium and silicon dioxide, and at least one of the layers in contact with the light-shielding layer contains a compound other than an oxide. A light-shielding film characterized by containing:
2.前記遮光層に接する層の少なくとも一つが、MgF2、AlF2、NdF3、LaF3、YF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14及びCeF3から選ばれるいずれかのフッ化物を含有することを特徴とする第1項に記載の遮光膜。
2. at least one of the layers in contact with the light shielding layer is composed of MgF2 , AlF2 , NdF3 , LaF3 , YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 and CeF3 2. The light-shielding film according to claim 1, containing any selected fluoride.
3.前記遮光層に接する層の少なくとも一つが、硫化物を含有することを特徴とする第1項又は第2項に記載の遮光膜。
3. 3. The light-shielding film according to item 1 or 2, wherein at least one of the layers in contact with the light-shielding layer contains a sulfide.
4.前記硫化物が、ZnSであることを特徴とする第3項に記載の遮光膜。
4. 4. The light shielding film according to item 3, wherein the sulfide is ZnS.
5.400~700nmの波長領域内における平均分光透過率が、2%以下であることを特徴とする第1項から第4項までのいずれか一項に記載の遮光膜。
5. The light shielding film according to any one of items 1 to 4, wherein the average spectral transmittance in the wavelength region of 400 to 700 nm is 2% or less.
6.遮光膜を備えた多層反射防止膜であって、前記遮光膜として、第1項から第5項までのいずれか一項に記載の遮光膜を備え、かつ、少なくとも一つの前記遮光層に接する層上に少なくとも光干渉層を有することを特徴とする多層反射防止膜
6. A multilayer antireflection film comprising a light-shielding film, comprising the light-shielding film according to any one of items 1 to 5 as the light-shielding film, and being in contact with at least one of the light-shielding layers. Multilayer antireflection coating characterized by having at least an optical interference layer thereon
7.前記遮光層に接する層と前記光干渉層の間に分光特性の調整層を有することを特徴とする第6項に記載の多層反射防止膜。
7. 7. The multilayer antireflection film according to item 6, further comprising a spectral characteristic adjusting layer between the layer in contact with the light shielding layer and the light interference layer.
8.400~700nmの波長領域内における平均分光反射率が、2%以下であることを特徴とする第6項又は第7項に記載の多層反射防止膜。
8. The multilayer antireflection film according to item 6 or 7, wherein the average spectral reflectance in the wavelength region of 400 to 700 nm is 2% or less.
9.第1項から第5項までのいずれか一項に記載の遮光膜を製造する遮光膜の製造方法であって、前記遮光層を、アルゴンガス雰囲気下にて、クロム及び二酸化ケイ素の混合物成膜して形成することを特徴とする遮光膜の製造方法。
9. A light-shielding film manufacturing method for manufacturing the light-shielding film according to any one of items 1 to 5, wherein the light-shielding layer is formed by forming a mixture of chromium and silicon dioxide in an argon gas atmosphere. A method for manufacturing a light-shielding film, characterized in that the film is formed by
10.第1項から第5項までのいずれか一項に記載の遮光膜を製造する遮光膜の製造方法であって、前記遮光層を、窒素ガス雰囲気下にて、クロム及び二酸化ケイ素の混合物を成膜して形成することを特徴とする遮光膜の製造方法。
10. A light-shielding film manufacturing method for manufacturing the light-shielding film according to any one of items 1 to 5, wherein the light-shielding layer is formed by forming a mixture of chromium and silicon dioxide in a nitrogen gas atmosphere. A method for producing a light-shielding film, characterized by forming a film.
11.第6項から第8項までのいずれか一項に記載の多層反射防止膜を製造する多層反射防止膜の製造方法であって、前記遮光膜を形成する工程と、前記遮光膜上に少なくとも光干渉層を積層する工程を有することを特徴とする多層反射防止膜の製造方法。
11. 9. A method for manufacturing a multilayer antireflection film according to any one of items 6 to 8, comprising: forming the light shielding film; 1. A method for producing a multilayer antireflection coating, comprising the step of laminating an interference layer.
12.基材上に、少なくとも遮光膜を備えた光学部材であって、前記遮光膜として、第1項から第5項までのいずれか一項に記載の遮光膜を備えていることを特徴とする光学部材。
12. An optical member comprising at least a light-shielding film on a substrate, wherein the light-shielding film according to any one of items 1 to 5 is provided as the light-shielding film. Element.
13.前記遮光膜上に、光干渉層が形成されていることを特徴とする第12項に記載の光学部材。
13. 13. The optical member according to item 12, wherein a light interference layer is formed on the light shielding film.
14.前記基材と前記遮光膜との間に、光干渉層が形成されていることを特徴とする第12項又は第13項に記載の光学部材。
14. 14. The optical member according to item 12 or 13, wherein a light interference layer is formed between the base material and the light shielding film.
本発明の上記手段により、遮光性及び光反射防止性並びに化学的安定性に優れた遮光膜及び多層反射防止膜、それらの設計値と実測値との乖離が少ない製造方法及び光学部材を提供することができる。
本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 By means of the above means of the present invention, a light-shielding film and a multilayer anti-reflection film having excellent light-shielding properties, anti-reflection properties, and chemical stability, and a manufacturing method and an optical member with little deviation between their design values and measured values are provided. be able to.
Although the expression mechanism or action mechanism of the effects of the present invention has not been clarified, it is speculated as follows.
本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 By means of the above means of the present invention, a light-shielding film and a multilayer anti-reflection film having excellent light-shielding properties, anti-reflection properties, and chemical stability, and a manufacturing method and an optical member with little deviation between their design values and measured values are provided. be able to.
Although the expression mechanism or action mechanism of the effects of the present invention has not been clarified, it is speculated as follows.
本発明の遮光膜が有する遮光層は、クロム及び二酸化ケイ素を含有している。
遮光層がクロム及び二酸化ケイ素を含有することは、遮光膜の遮光性及び光反射防止性を上げるためには有用である。
しかし、前記遮光層が酸化物に接すると前記遮光層と酸化物との間で酸素の移動が起こるため、前記遮光層のクロム及び二酸化ケイ素の混合物の化学的性質に変化が生じてしまい、前記遮光層を有する遮光膜の屈折率や光吸収係数等の光学的性質に変化が起き、遮光性及び光反射防止性が低下してしまうことが、本発明者の検討で明らかになった。
また、上記遮光性及び光反射防止性が低下するため、これらの光学特性の当初の設計値と製造後の実測値とに乖離が生ずるということも明らかになった。
本発明では、クロム及び二酸化ケイ素を含有する遮光層に接する層を、酸化物以外の化合物を含有する層とすることにより、遮光層の外部からの酸素の移動を防ぎ、遮光層の成分が化学的に変化せず光学的に安定化し、遮光性及び光反射性に優れた遮光膜が形成される。したがって、設計値と実測値との乖離が少ない遮光膜等を製造できる。 The light shielding layer of the light shielding film of the present invention contains chromium and silicon dioxide.
The inclusion of chromium and silicon dioxide in the light-shielding layer is useful for enhancing the light-shielding properties and antireflection properties of the light-shielding film.
However, when the light-shielding layer is in contact with the oxide, oxygen moves between the light-shielding layer and the oxide, resulting in a change in the chemical properties of the mixture of chromium and silicon dioxide in the light-shielding layer. The present inventor's investigation revealed that the optical properties such as the refractive index and the light absorption coefficient of the light shielding film having the light shielding layer are changed, and the light shielding property and the light antireflection property are deteriorated.
In addition, it has also been clarified that since the light shielding property and the antireflection property are deteriorated, a discrepancy occurs between the originally designed values of these optical properties and the actually measured values after production.
In the present invention, the layer in contact with the light-shielding layer containing chromium and silicon dioxide is a layer containing a compound other than an oxide, thereby preventing the movement of oxygen from the outside of the light-shielding layer and reducing the chemical composition of the light-shielding layer. A light-shielding film is formed which is optically stable without undergoing a thermal change and is excellent in light-shielding properties and light reflectivity. Therefore, it is possible to manufacture a light-shielding film or the like with little divergence between the design value and the actual measurement value.
遮光層がクロム及び二酸化ケイ素を含有することは、遮光膜の遮光性及び光反射防止性を上げるためには有用である。
しかし、前記遮光層が酸化物に接すると前記遮光層と酸化物との間で酸素の移動が起こるため、前記遮光層のクロム及び二酸化ケイ素の混合物の化学的性質に変化が生じてしまい、前記遮光層を有する遮光膜の屈折率や光吸収係数等の光学的性質に変化が起き、遮光性及び光反射防止性が低下してしまうことが、本発明者の検討で明らかになった。
また、上記遮光性及び光反射防止性が低下するため、これらの光学特性の当初の設計値と製造後の実測値とに乖離が生ずるということも明らかになった。
本発明では、クロム及び二酸化ケイ素を含有する遮光層に接する層を、酸化物以外の化合物を含有する層とすることにより、遮光層の外部からの酸素の移動を防ぎ、遮光層の成分が化学的に変化せず光学的に安定化し、遮光性及び光反射性に優れた遮光膜が形成される。したがって、設計値と実測値との乖離が少ない遮光膜等を製造できる。 The light shielding layer of the light shielding film of the present invention contains chromium and silicon dioxide.
The inclusion of chromium and silicon dioxide in the light-shielding layer is useful for enhancing the light-shielding properties and antireflection properties of the light-shielding film.
However, when the light-shielding layer is in contact with the oxide, oxygen moves between the light-shielding layer and the oxide, resulting in a change in the chemical properties of the mixture of chromium and silicon dioxide in the light-shielding layer. The present inventor's investigation revealed that the optical properties such as the refractive index and the light absorption coefficient of the light shielding film having the light shielding layer are changed, and the light shielding property and the light antireflection property are deteriorated.
In addition, it has also been clarified that since the light shielding property and the antireflection property are deteriorated, a discrepancy occurs between the originally designed values of these optical properties and the actually measured values after production.
In the present invention, the layer in contact with the light-shielding layer containing chromium and silicon dioxide is a layer containing a compound other than an oxide, thereby preventing the movement of oxygen from the outside of the light-shielding layer and reducing the chemical composition of the light-shielding layer. A light-shielding film is formed which is optically stable without undergoing a thermal change and is excellent in light-shielding properties and light reflectivity. Therefore, it is possible to manufacture a light-shielding film or the like with little divergence between the design value and the actual measurement value.
本発明の遮光膜は、少なくとも、遮光層と前記遮光層に接する層とを有する遮光膜であって、前記遮光層が、クロム及び二酸化ケイ素を含有し、前記遮光層に接する層の少なくとも一つが、酸化物以外の化合物を含有することを特徴とする。
この特徴は、下記各実施形態(態様)に共通する又は対応する技術的特徴である。 The light-shielding film of the present invention is a light-shielding film having at least a light-shielding layer and a layer in contact with the light-shielding layer, wherein the light-shielding layer contains chromium and silicon dioxide, and at least one of the layers in contact with the light-shielding layer is , containing a compound other than an oxide.
This feature is a technical feature common to or corresponding to each of the following embodiments (aspects).
この特徴は、下記各実施形態(態様)に共通する又は対応する技術的特徴である。 The light-shielding film of the present invention is a light-shielding film having at least a light-shielding layer and a layer in contact with the light-shielding layer, wherein the light-shielding layer contains chromium and silicon dioxide, and at least one of the layers in contact with the light-shielding layer is , containing a compound other than an oxide.
This feature is a technical feature common to or corresponding to each of the following embodiments (aspects).
本発明の実施態様としては、前記遮光層に接する層の少なくとも一つが、MgF2、AlF2、NdF3、LaF3、YF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14及びCeF3から選ばれるいずれかのフッ化物を含有することが遮光膜の化学的性質の安定化の観点から好ましい。
As an embodiment of the present invention, at least one of the layers in contact with the light shielding layer is MgF2 , AlF2 , NdF3, LaF3 , YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5. From the viewpoint of stabilizing the chemical properties of the light-shielding film, it is preferable to contain any one of fluorides selected from Al 3 F 14 and CeF 3 .
前記遮光層に接する層の少なくとも一つが、硫化物を含有することが、遮光膜の化学的性質の安定化の観点から好ましい。
From the viewpoint of stabilizing the chemical properties of the light shielding film, it is preferable that at least one of the layers in contact with the light shielding layer contains a sulfide.
前記硫化物が、ZnSであることが遮光膜の化学的性質の安定化の観点からより好ましい。
From the viewpoint of stabilizing the chemical properties of the light shielding film, it is more preferable that the sulfide is ZnS.
400~700nmの波長領域内における平均分光透過率が、2%以下であることが遮光性の観点から好ましい。
From the viewpoint of light shielding properties, the average spectral transmittance in the wavelength region of 400 to 700 nm is preferably 2% or less.
本発明の遮光膜を備えた多層反射防止膜が、少なくとも一つの前記遮光層に接する層上に少なくとも光干渉層を有することが光反射防止性の観点から好ましい。
From the viewpoint of antireflection properties, it is preferable that the multilayer antireflection film comprising the light shielding film of the present invention has at least a light interference layer on at least one layer in contact with the light shielding layer.
前記多層反射防止膜が、前記遮光層に接する層と前記光干渉層の間に分光特性の調整層を有することが遮光性及び光反射防止性の観点から好ましい。
From the viewpoint of light shielding properties and antireflection properties, it is preferable that the multilayer antireflection film has a spectral characteristic adjusting layer between the layer in contact with the light shielding layer and the light interference layer.
前記多層反射防止膜の400~700nmの波長領域内における平均分光反射率が、2%以下であることが光反射防止性の観点から好ましい。
From the viewpoint of antireflection properties, it is preferable that the average spectral reflectance of the multilayer antireflection film in the wavelength region of 400 to 700 nm is 2% or less.
前記遮光膜は、前記遮光層を、アルゴンガス雰囲気下にて、クロム及び二酸化ケイ素の混合物を成膜して形成することにより好適に製造される。
The light-shielding film is preferably manufactured by forming the light-shielding layer by forming a film of a mixture of chromium and silicon dioxide in an argon gas atmosphere.
前記遮光膜は、前記遮光層を、窒素ガス雰囲気下にて、クロム及び二酸化ケイ素の混合物を成膜して形成することにより好適に製造される。
The light-shielding film is preferably manufactured by forming the light-shielding layer by forming a film of a mixture of chromium and silicon dioxide in a nitrogen gas atmosphere.
前記多層反射防止膜の製造工程が、遮光膜を形成する工程と、前記遮光膜上に少なくとも光干渉層を積層する工程を有することにより、前記多層反射防止膜が好適に製造される。
The manufacturing process of the multilayer antireflection film includes a step of forming a light shielding film and a step of laminating at least a light interference layer on the light shielding film, so that the multilayer antireflection film is preferably manufactured.
基材上に、少なくとも遮光膜を備えた光学部材は、前記遮光膜として、本発明の遮光膜を備えることが好適である。
An optical member having at least a light shielding film on a substrate preferably includes the light shielding film of the present invention as the light shielding film.
前記光学部材は、前記遮光膜上に、光干渉層が形成されていることが光反射防止性の観点から好ましい。
The optical member preferably has a light interference layer formed on the light shielding film from the viewpoint of antireflection properties.
前記光学部材が、前記基材と前記遮光膜との間に、光干渉層が形成されていることが光反射防止性の観点から好ましい。
From the viewpoint of antireflection properties, it is preferable that the optical member has a light interference layer formed between the base material and the light shielding film.
以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
The following is a detailed description of the present invention, its components, and the forms and modes for carrying out the present invention. In the present application, "-" is used to mean that the numerical values before and after it are included as the lower limit and the upper limit.
1.遮光膜
本発明の遮光膜は、少なくとも、遮光層と前記遮光層に接する層とを有する遮光膜であって、前記遮光層が、クロム及び二酸化ケイ素を含有し、前記遮光層に接する層の少なくとも一つが、酸化物以外の化合物を含有することを特徴とする。 1. Light-shielding film The light-shielding film of the present invention is a light-shielding film having at least a light-shielding layer and a layer in contact with the light-shielding layer, wherein the light-shielding layer contains chromium and silicon dioxide, and at least the layer in contact with the light-shielding layer is One is characterized by containing compounds other than oxides.
本発明の遮光膜は、少なくとも、遮光層と前記遮光層に接する層とを有する遮光膜であって、前記遮光層が、クロム及び二酸化ケイ素を含有し、前記遮光層に接する層の少なくとも一つが、酸化物以外の化合物を含有することを特徴とする。 1. Light-shielding film The light-shielding film of the present invention is a light-shielding film having at least a light-shielding layer and a layer in contact with the light-shielding layer, wherein the light-shielding layer contains chromium and silicon dioxide, and at least the layer in contact with the light-shielding layer is One is characterized by containing compounds other than oxides.
図1は、本発明の遮光膜の最も簡単な構成を表した概念図である。
図1のように、本発明の遮光膜は、基材上に遮光性及び光反射防止性に優れた遮光層を有しており、かつ、当該遮光層の化学的性質を安定化させるため、当該遮光層に接する層を酸化物以外の化合物を含有する層とすることにより本発明の効果が発現する。 FIG. 1 is a conceptual diagram showing the simplest structure of the light shielding film of the present invention.
As shown in FIG. 1, the light-shielding film of the present invention has a light-shielding layer having excellent light-shielding properties and antireflection properties on a substrate, and in order to stabilize the chemical properties of the light-shielding layer, The effects of the present invention are exhibited by forming the layer in contact with the light shielding layer to be a layer containing a compound other than an oxide.
図1のように、本発明の遮光膜は、基材上に遮光性及び光反射防止性に優れた遮光層を有しており、かつ、当該遮光層の化学的性質を安定化させるため、当該遮光層に接する層を酸化物以外の化合物を含有する層とすることにより本発明の効果が発現する。 FIG. 1 is a conceptual diagram showing the simplest structure of the light shielding film of the present invention.
As shown in FIG. 1, the light-shielding film of the present invention has a light-shielding layer having excellent light-shielding properties and antireflection properties on a substrate, and in order to stabilize the chemical properties of the light-shielding layer, The effects of the present invention are exhibited by forming the layer in contact with the light shielding layer to be a layer containing a compound other than an oxide.
(1.1)基材
本発明に係る基材としては、特に制限はないが、シクロオレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)及びポリエステル樹脂等の樹脂が挙げられる。 (1.1) Substrate The substrate for use in the present invention is not particularly limited, and resins such as cycloolefin copolymers (COC), cycloolefin polymers (COP) and polyester resins can be mentioned.
本発明に係る基材としては、特に制限はないが、シクロオレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)及びポリエステル樹脂等の樹脂が挙げられる。 (1.1) Substrate The substrate for use in the present invention is not particularly limited, and resins such as cycloolefin copolymers (COC), cycloolefin polymers (COP) and polyester resins can be mentioned.
(1.2)遮光層
本発明の遮光膜を構成する遮光層は、クロム及び二酸化ケイ素を含有している。
遮光層を形成する際に用いられる成膜材料としては、クロム及び二酸化ケイ素を含有していれば特に制限はないが、例えばBlackA(Cr、SiO2)(Merck社製のBlackA powder less than 0.3mm Patinal(Cr(45%)+SiO2(50~60%)の混合物、以下製品名を「BlackA」と表記する。)が挙げられる。 (1.2) Light-Shielding Layer The light-shielding layer constituting the light-shielding film of the present invention contains chromium and silicon dioxide.
The film-forming material used for forming the light-shielding layer is not particularly limited as long as it contains chromium and silicon dioxide . 3mm Patinal (a mixture of Cr (45%) + SiO 2 (50-60%), hereinafter the product name is referred to as "BlackA").
本発明の遮光膜を構成する遮光層は、クロム及び二酸化ケイ素を含有している。
遮光層を形成する際に用いられる成膜材料としては、クロム及び二酸化ケイ素を含有していれば特に制限はないが、例えばBlackA(Cr、SiO2)(Merck社製のBlackA powder less than 0.3mm Patinal(Cr(45%)+SiO2(50~60%)の混合物、以下製品名を「BlackA」と表記する。)が挙げられる。 (1.2) Light-Shielding Layer The light-shielding layer constituting the light-shielding film of the present invention contains chromium and silicon dioxide.
The film-forming material used for forming the light-shielding layer is not particularly limited as long as it contains chromium and silicon dioxide . 3mm Patinal (a mixture of Cr (45%) + SiO 2 (50-60%), hereinafter the product name is referred to as "BlackA").
(1.3)遮光層に接する層
遮光層がクロム及び二酸化ケイ素を含有することは、遮光膜の遮光性及び光反射防止性を上げるためには有用である。
しかし、前記遮光層が酸化物に接すると前記遮光層と酸化物との間で酸素の移動が起こるため、前記遮光層のクロム及び二酸化ケイ素の混合物の化学的性質に変化が生じてしまい、前記遮光層を有する遮光膜の屈折率や光吸収係数等の光学的性質に変化が起き、遮光性及び光反射防止性が低下してしまう。
そこで、前記遮光層に接する層すなわち隣接層の少なくとも一つを、酸化物以外の化合物を含有する層とすることにより酸素の移動による前記遮光層の光学的性質の変化を抑制することができる。 (1.3) Layer in Contact with Light-Shielding Layer The inclusion of chromium and silicon dioxide in the light-shielding layer is useful for enhancing the light-shielding properties and antireflection properties of the light-shielding film.
However, when the light-shielding layer is in contact with the oxide, oxygen moves between the light-shielding layer and the oxide, resulting in a change in the chemical properties of the mixture of chromium and silicon dioxide in the light-shielding layer. Optical properties such as the refractive index and light absorption coefficient of the light-shielding film having the light-shielding layer are changed, and the light-shielding properties and anti-reflection properties are deteriorated.
Therefore, by using a layer containing a compound other than an oxide as at least one of the layers in contact with the light-shielding layer, that is, the adjacent layers, it is possible to suppress the change in the optical properties of the light-shielding layer due to the movement of oxygen.
遮光層がクロム及び二酸化ケイ素を含有することは、遮光膜の遮光性及び光反射防止性を上げるためには有用である。
しかし、前記遮光層が酸化物に接すると前記遮光層と酸化物との間で酸素の移動が起こるため、前記遮光層のクロム及び二酸化ケイ素の混合物の化学的性質に変化が生じてしまい、前記遮光層を有する遮光膜の屈折率や光吸収係数等の光学的性質に変化が起き、遮光性及び光反射防止性が低下してしまう。
そこで、前記遮光層に接する層すなわち隣接層の少なくとも一つを、酸化物以外の化合物を含有する層とすることにより酸素の移動による前記遮光層の光学的性質の変化を抑制することができる。 (1.3) Layer in Contact with Light-Shielding Layer The inclusion of chromium and silicon dioxide in the light-shielding layer is useful for enhancing the light-shielding properties and antireflection properties of the light-shielding film.
However, when the light-shielding layer is in contact with the oxide, oxygen moves between the light-shielding layer and the oxide, resulting in a change in the chemical properties of the mixture of chromium and silicon dioxide in the light-shielding layer. Optical properties such as the refractive index and light absorption coefficient of the light-shielding film having the light-shielding layer are changed, and the light-shielding properties and anti-reflection properties are deteriorated.
Therefore, by using a layer containing a compound other than an oxide as at least one of the layers in contact with the light-shielding layer, that is, the adjacent layers, it is possible to suppress the change in the optical properties of the light-shielding layer due to the movement of oxygen.
前記遮光層に接する層のうち少なくとも一つの層は、酸化物以外の化合物の成膜材料によって形成される必要があるが、他の一つの層は酸化物を成膜材料として用いることもできる。
酸化物以外の化合物である成膜材料としては、例えばMgF2、AlF2、NdF3、LaF3、YF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14、CeF3、ZnS等が挙げられる。
前記遮光層に接する層の少なくとも一つが、MgF2、AlF2、NdF3、LaF3、YF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14、CeF3から選ばれるいずれかのフッ化物を含有することが遮光膜の化学的性質の安定化の観点から好ましい。 At least one of the layers in contact with the light-shielding layer must be formed of a compound film-forming material other than an oxide, but the other layer can also use an oxide as a film-forming material.
Film-forming materials that are compounds other than oxides include, for example, MgF2 , AlF2 , NdF3 , LaF3 , YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 , CeF3 , ZnS, etc. are mentioned.
At least one of the layers in contact with the light shielding layer is made of MgF2 , AlF2 , NdF3 , LaF3, YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 , CeF3 Containing any selected fluoride is preferable from the viewpoint of stabilizing the chemical properties of the light-shielding film.
酸化物以外の化合物である成膜材料としては、例えばMgF2、AlF2、NdF3、LaF3、YF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14、CeF3、ZnS等が挙げられる。
前記遮光層に接する層の少なくとも一つが、MgF2、AlF2、NdF3、LaF3、YF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14、CeF3から選ばれるいずれかのフッ化物を含有することが遮光膜の化学的性質の安定化の観点から好ましい。 At least one of the layers in contact with the light-shielding layer must be formed of a compound film-forming material other than an oxide, but the other layer can also use an oxide as a film-forming material.
Film-forming materials that are compounds other than oxides include, for example, MgF2 , AlF2 , NdF3 , LaF3 , YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 , CeF3 , ZnS, etc. are mentioned.
At least one of the layers in contact with the light shielding layer is made of MgF2 , AlF2 , NdF3 , LaF3, YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 , CeF3 Containing any selected fluoride is preferable from the viewpoint of stabilizing the chemical properties of the light-shielding film.
また、前記遮光層に接する層の少なくとも一つが、硫化物を含有することも、遮光膜の化学的性質の安定化の観点から好ましい。
It is also preferable that at least one of the layers in contact with the light shielding layer contains sulfide from the viewpoint of stabilizing the chemical properties of the light shielding film.
また、前記硫化物が、ZnSであることも遮光膜の化学的性質の安定化の観点からより好ましい。
Further, it is more preferable that the sulfide is ZnS from the viewpoint of stabilizing the chemical properties of the light shielding film.
(1.4)平均分光透過率
前記遮光膜の400~700nmの波長領域内における平均分光透過率が、2%以下であることが遮光性の観点から好ましい。
ここで、「透過率(transmittance)」とは、与えられた条件において、入射した放射束又は光束に対する、透過した放射束又は光束の比率のことをいい(新編色彩化学ハンドブック第2版 日本色彩学会編 222頁)、単位は「1」である。
ただし、本発明における「分光透過率」とは、上記「透過率」の定義において、特定波長の光に対する透過率(%)をいう。
また、本発明に係る「平均分光透過率」とは、分光波長400~700nmの範囲内において測定した各波長における分光透過率の平均値をいう。 (1.4) Average Spectral Transmittance The average spectral transmittance of the light shielding film in the wavelength region of 400 to 700 nm is preferably 2% or less from the viewpoint of light shielding properties.
Here, "transmittance" means the ratio of transmitted radiant flux or luminous flux to incident radiant flux or luminous flux under given conditions (New Color Chemistry Handbook 2nd edition Ed., page 222), the unit is "1".
However, "spectral transmittance" in the present invention means transmittance (%) for light of a specific wavelength in the above definition of "transmittance".
Further, the "average spectral transmittance" according to the present invention means the average value of the spectral transmittance at each wavelength measured within the spectral wavelength range of 400 to 700 nm.
前記遮光膜の400~700nmの波長領域内における平均分光透過率が、2%以下であることが遮光性の観点から好ましい。
ここで、「透過率(transmittance)」とは、与えられた条件において、入射した放射束又は光束に対する、透過した放射束又は光束の比率のことをいい(新編色彩化学ハンドブック第2版 日本色彩学会編 222頁)、単位は「1」である。
ただし、本発明における「分光透過率」とは、上記「透過率」の定義において、特定波長の光に対する透過率(%)をいう。
また、本発明に係る「平均分光透過率」とは、分光波長400~700nmの範囲内において測定した各波長における分光透過率の平均値をいう。 (1.4) Average Spectral Transmittance The average spectral transmittance of the light shielding film in the wavelength region of 400 to 700 nm is preferably 2% or less from the viewpoint of light shielding properties.
Here, "transmittance" means the ratio of transmitted radiant flux or luminous flux to incident radiant flux or luminous flux under given conditions (New Color Chemistry Handbook 2nd edition Ed., page 222), the unit is "1".
However, "spectral transmittance" in the present invention means transmittance (%) for light of a specific wavelength in the above definition of "transmittance".
Further, the "average spectral transmittance" according to the present invention means the average value of the spectral transmittance at each wavelength measured within the spectral wavelength range of 400 to 700 nm.
具体的には、日立社製分光光度計U-4100にて遮光膜の分光透過率を測定し、分光波長400~700nmの波長領域における10nmおきで31点の分光透過率の平均値とする。
平均分光透過率の値は下記式(1)のようにして求める。 Specifically, the spectral transmittance of the light-shielding film is measured with a spectrophotometer U-4100 manufactured by Hitachi, Ltd., and the average value of the spectral transmittances at 31 points at intervals of 10 nm in the spectral wavelength range of 400 to 700 nm is taken.
The value of the average spectral transmittance is obtained by the following formula (1).
平均分光透過率の値は下記式(1)のようにして求める。 Specifically, the spectral transmittance of the light-shielding film is measured with a spectrophotometer U-4100 manufactured by Hitachi, Ltd., and the average value of the spectral transmittances at 31 points at intervals of 10 nm in the spectral wavelength range of 400 to 700 nm is taken.
The value of the average spectral transmittance is obtained by the following formula (1).
式(1):
平均分光透過率(%)=(T400+T410+・・・・+T690+T700)/31
ここで、例えばT400は光波長400nmにおける分光透過率の値(%)、T410は光波長410nmにおける分光透過率の値(%)等々、をそれぞれ示す。 Formula (1):
Average spectral transmittance (%)=( T400 + T410 +...+ T690 + T700 )/31
Here, for example, T 400 indicates a spectral transmittance value (%) at a light wavelength of 400 nm, T 410 indicates a spectral transmittance value (%) at a light wavelength of 410 nm, and so on.
平均分光透過率(%)=(T400+T410+・・・・+T690+T700)/31
ここで、例えばT400は光波長400nmにおける分光透過率の値(%)、T410は光波長410nmにおける分光透過率の値(%)等々、をそれぞれ示す。 Formula (1):
Average spectral transmittance (%)=( T400 + T410 +...+ T690 + T700 )/31
Here, for example, T 400 indicates a spectral transmittance value (%) at a light wavelength of 400 nm, T 410 indicates a spectral transmittance value (%) at a light wavelength of 410 nm, and so on.
(1.5)屈折率
「屈折率」とは、物質中の光の速度に対する真空中の光の速度の比の値すなわち(真空中の光の速度)/(物質中の光の速度)の値であり、物質中での光の進み方を記述する上での指標である。
物質中の光の速度は、当該光の波長により変化することから、屈折率も光の波長により変化する。
本明細書に記載する屈折は、特に断りがない限り、ヘリウムのd線(波長587.56nm)に対する屈折率である。
なお、本発明に係る屈折率は、室温(25℃)における測定値である。
なお、物質の屈折率は、光が入射したとき、光の反射、吸収、及び透過に影響及ぼす重要な支配因子である。
したがって、遮光膜や多層反射防止膜を構成する各層の成膜材料の屈折率は、光反射防止性に大きく関わってくる。 (1.5) Refractive index “Refractive index” is the value of the ratio of the speed of light in a vacuum to the speed of light in a substance, that is, (speed of light in a vacuum)/(speed of light in a substance). It is a value that describes how light travels in matter.
Since the speed of light in a substance changes with the wavelength of the light, the refractive index also changes with the wavelength of the light.
Refractions described herein are refractive indices for the d-line of helium (wavelength 587.56 nm), unless otherwise specified.
In addition, the refractive index according to the present invention is a measured value at room temperature (25° C.).
It should be noted that the refractive index of a substance is an important controlling factor affecting the reflection, absorption, and transmission of light when incident light.
Therefore, the refractive index of the film-forming material of each layer constituting the light-shielding film and the multilayer anti-reflection film is greatly related to the light-reflecting property.
「屈折率」とは、物質中の光の速度に対する真空中の光の速度の比の値すなわち(真空中の光の速度)/(物質中の光の速度)の値であり、物質中での光の進み方を記述する上での指標である。
物質中の光の速度は、当該光の波長により変化することから、屈折率も光の波長により変化する。
本明細書に記載する屈折は、特に断りがない限り、ヘリウムのd線(波長587.56nm)に対する屈折率である。
なお、本発明に係る屈折率は、室温(25℃)における測定値である。
なお、物質の屈折率は、光が入射したとき、光の反射、吸収、及び透過に影響及ぼす重要な支配因子である。
したがって、遮光膜や多層反射防止膜を構成する各層の成膜材料の屈折率は、光反射防止性に大きく関わってくる。 (1.5) Refractive index “Refractive index” is the value of the ratio of the speed of light in a vacuum to the speed of light in a substance, that is, (speed of light in a vacuum)/(speed of light in a substance). It is a value that describes how light travels in matter.
Since the speed of light in a substance changes with the wavelength of the light, the refractive index also changes with the wavelength of the light.
Refractions described herein are refractive indices for the d-line of helium (wavelength 587.56 nm), unless otherwise specified.
In addition, the refractive index according to the present invention is a measured value at room temperature (25° C.).
It should be noted that the refractive index of a substance is an important controlling factor affecting the reflection, absorption, and transmission of light when incident light.
Therefore, the refractive index of the film-forming material of each layer constituting the light-shielding film and the multilayer anti-reflection film is greatly related to the light-reflecting property.
本発明に係る遮光膜又は反射防止膜に用いる材料の屈折率は、1.33~2.5の範囲であることが好ましい。
上記範囲内の屈折率を有する成膜材料としては、例えば前記遮光層及び隣接層等において用いられるBlackA、MgF2、YF3、SiO2、AlF2、H4(LaTiO3)、NdF3、LaF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14、CeF3、ZnS、Al2O3、ZrTiO4等が挙げられる。 The refractive index of the material used for the light shielding film or antireflection film according to the present invention is preferably in the range of 1.33 to 2.5.
Examples of film forming materials having a refractive index within the above range include BlackA, MgF 2 , YF 3 , SiO 2 , AlF 2 , H 4 (LaTiO 3 ), NdF 3 and LaF, which are used in the light shielding layer and adjacent layers. 3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 , CeF3 , ZnS , Al2O3 , ZrTiO4 and the like.
上記範囲内の屈折率を有する成膜材料としては、例えば前記遮光層及び隣接層等において用いられるBlackA、MgF2、YF3、SiO2、AlF2、H4(LaTiO3)、NdF3、LaF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14、CeF3、ZnS、Al2O3、ZrTiO4等が挙げられる。 The refractive index of the material used for the light shielding film or antireflection film according to the present invention is preferably in the range of 1.33 to 2.5.
Examples of film forming materials having a refractive index within the above range include BlackA, MgF 2 , YF 3 , SiO 2 , AlF 2 , H 4 (LaTiO 3 ), NdF 3 and LaF, which are used in the light shielding layer and adjacent layers. 3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 , CeF3 , ZnS , Al2O3 , ZrTiO4 and the like.
2.多層反射防止膜
本発明の多層反射防止膜は、遮光膜を備えた多層反射防止膜であって、前記遮光膜として、前述の本発明の遮光膜を備え、かつ、少なくとも一つの前記遮光層に接する層上に少なくとも光干渉層を有することを特徴とする。
本発明の多層反射防止膜は、1層以上であることが好ましく、基板上に形成されていることが好ましい。
具体的には、2層以上で構成される遮光膜を備え、少なくとも光干渉層を有し、その構成として、少なくとも1層の低屈折率層と、少なくとも1層の高屈折率層とを有し、前記基板から最も遠い最上層が前記低屈折率層であることが好ましい。 2. Multilayer Antireflection Film The multilayer antireflection film of the present invention is a multilayer antireflection film comprising a light-shielding film, wherein the light-shielding film of the present invention is provided as the light-shielding film, and at least one of the light-shielding layers includes: It is characterized by having at least an optical interference layer on the contacting layer.
The multilayer antireflection film of the present invention preferably has one or more layers, and is preferably formed on a substrate.
Specifically, it has a light shielding film composed of two or more layers, has at least an optical interference layer, and has at least one low refractive index layer and at least one high refractive index layer as its configuration. and the uppermost layer farthest from the substrate is preferably the low refractive index layer.
本発明の多層反射防止膜は、遮光膜を備えた多層反射防止膜であって、前記遮光膜として、前述の本発明の遮光膜を備え、かつ、少なくとも一つの前記遮光層に接する層上に少なくとも光干渉層を有することを特徴とする。
本発明の多層反射防止膜は、1層以上であることが好ましく、基板上に形成されていることが好ましい。
具体的には、2層以上で構成される遮光膜を備え、少なくとも光干渉層を有し、その構成として、少なくとも1層の低屈折率層と、少なくとも1層の高屈折率層とを有し、前記基板から最も遠い最上層が前記低屈折率層であることが好ましい。 2. Multilayer Antireflection Film The multilayer antireflection film of the present invention is a multilayer antireflection film comprising a light-shielding film, wherein the light-shielding film of the present invention is provided as the light-shielding film, and at least one of the light-shielding layers includes: It is characterized by having at least an optical interference layer on the contacting layer.
The multilayer antireflection film of the present invention preferably has one or more layers, and is preferably formed on a substrate.
Specifically, it has a light shielding film composed of two or more layers, has at least an optical interference layer, and has at least one low refractive index layer and at least one high refractive index layer as its configuration. and the uppermost layer farthest from the substrate is preferably the low refractive index layer.
ここで、本発明においては、「低屈折率層」とは屈折率が1.6より小さい成膜材料を用いることにより形成された層をいい、高屈折率層とは屈折率が1.9以上の成膜材料を用いることにより形成された層をいう。
Here, in the present invention, the "low refractive index layer" refers to a layer formed by using a film-forming material having a refractive index of less than 1.6, and the high refractive index layer refers to a layer having a refractive index of 1.9. It refers to a layer formed by using the film-forming materials described above.
層数に関しては特に制限されるものではないが、30層以内であることが、高い生産性を維持して光干渉層を得る観点から好ましい。
すなわち、積層数は、要求される光学性能によるが、おおむね2~26層程度の積層をすることで、可視光域全体の反射率を低下させることができ、上限数としては30層以下であることが、膜の応力が大きくなって膜が剥がれたりすることを防止できる点で好ましい。 Although the number of layers is not particularly limited, it is preferably 30 layers or less from the viewpoint of obtaining an optical interference layer while maintaining high productivity.
That is, the number of layers depends on the required optical performance, but by laminating about 2 to 26 layers, the reflectance of the entire visible light region can be reduced, and the upper limit is 30 layers or less. This is preferable in that it can prevent peeling of the film due to an increase in the stress of the film.
すなわち、積層数は、要求される光学性能によるが、おおむね2~26層程度の積層をすることで、可視光域全体の反射率を低下させることができ、上限数としては30層以下であることが、膜の応力が大きくなって膜が剥がれたりすることを防止できる点で好ましい。 Although the number of layers is not particularly limited, it is preferably 30 layers or less from the viewpoint of obtaining an optical interference layer while maintaining high productivity.
That is, the number of layers depends on the required optical performance, but by laminating about 2 to 26 layers, the reflectance of the entire visible light region can be reduced, and the upper limit is 30 layers or less. This is preferable in that it can prevent peeling of the film due to an increase in the stress of the film.
本発明に係る多層反射防止膜は種々の形態があり、そのうちの一つである表面反射防止効果を有する多層反射防止膜の構成を表した一例の概念図を図2に示す。
There are various forms of the multilayer antireflection film according to the present invention, and FIG. 2 is a conceptual diagram showing one example of the configuration of a multilayer antireflection film having a surface antireflection effect, which is one of them.
なお、本発明において「表面」とは、「遮光膜から見て基材側と逆側の面」のことであり、「表面反射防止効果」とは、「遮光膜から見て基材側と逆側の面から入射する光の反射を防止する効果」のことである。
In the present invention, the “surface” means “the surface on the side opposite to the substrate side when viewed from the light shielding film”, and the “surface antireflection effect” means “on the side of the substrate when viewed from the light shielding film. The effect of preventing reflection of light incident from the opposite surface.
図2に示す多層反射防止膜の構成においては、光干渉層は遮光膜上に形成され、表面から入射する光の反射を防止する役割を果たすための層であり、この層を有することで本発明の多層反射防止膜の性能がより高まる。
In the structure of the multilayer antireflection film shown in FIG. 2, the light interference layer is formed on the light shielding film and serves to prevent reflection of light incident from the surface. The performance of the multilayer antireflection coating of the invention is further enhanced.
(2.1)光干渉層
本発明の多層反射防止膜は、遮光膜を備えており、少なくとも一つの前記遮光層に接する層上に少なくとも光干渉層を有することが光反射防止性の観点から好ましい。
本発明に係る「光干渉層」とは、積層された各層の界面からの反射光同士の干渉作用(各層からの反射波が干渉によって、互いに打消し合う作用)を利用して、反射光すなわち各層で反射した反射光の合成光を低減させる機能を有する層をいう。
当該光干渉層の構成としては、種々の態様の構成を採り得るが、屈折率が異なる層、例えば低屈折率層と高屈折率層を交互に積層した構成であることが好ましい。 (2.1) Light Interference Layer The multilayer antireflection film of the present invention is provided with a light shielding film, and from the viewpoint of antireflection properties, it is necessary to have at least a light interference layer on a layer in contact with at least one light shielding layer. preferable.
The "light interference layer" according to the present invention means that the reflected light, i.e. A layer that has the function of reducing the combined light of the reflected light reflected by each layer.
As the structure of the light interference layer, various modes of structure can be adopted, but it is preferable to have a structure in which layers having different refractive indexes, for example, low refractive index layers and high refractive index layers are alternately laminated.
本発明の多層反射防止膜は、遮光膜を備えており、少なくとも一つの前記遮光層に接する層上に少なくとも光干渉層を有することが光反射防止性の観点から好ましい。
本発明に係る「光干渉層」とは、積層された各層の界面からの反射光同士の干渉作用(各層からの反射波が干渉によって、互いに打消し合う作用)を利用して、反射光すなわち各層で反射した反射光の合成光を低減させる機能を有する層をいう。
当該光干渉層の構成としては、種々の態様の構成を採り得るが、屈折率が異なる層、例えば低屈折率層と高屈折率層を交互に積層した構成であることが好ましい。 (2.1) Light Interference Layer The multilayer antireflection film of the present invention is provided with a light shielding film, and from the viewpoint of antireflection properties, it is necessary to have at least a light interference layer on a layer in contact with at least one light shielding layer. preferable.
The "light interference layer" according to the present invention means that the reflected light, i.e. A layer that has the function of reducing the combined light of the reflected light reflected by each layer.
As the structure of the light interference layer, various modes of structure can be adopted, but it is preferable to have a structure in which layers having different refractive indexes, for example, low refractive index layers and high refractive index layers are alternately laminated.
本発明に係る光干渉層に用いられる成膜材料としては、酸化物も用いることができ、例えばTi、Ta、Nb、Zr、Ce、La、Al、Si、及びHfなどの酸化物、又はこれらを組み合わせた酸化化合物が挙げられる。
また、酸化物以外の化合物である成膜材料も用いることができ、例えばMgF2、AlF2、NdF3、LaF3、YF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14、CeF3、ZnS等が挙げられる。
本発明に係る光干渉層は、上記のような異なる成膜材料を複数層積み重ねることで、可視光域全体の反射率を低下させた機能を付加することができる。 Oxides can also be used as the film-forming material used for the optical interference layer according to the present invention. and an oxidized compound that is a combination of
In addition, film-forming materials that are compounds other than oxides can also be used, such as MgF2 , AlF2 , NdF3 , LaF3, YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , and Na5. Al 3 F 14 , CeF 3 , ZnS and the like are included.
The light interference layer according to the present invention can add a function of reducing the reflectance of the entire visible light region by stacking a plurality of different film forming materials as described above.
また、酸化物以外の化合物である成膜材料も用いることができ、例えばMgF2、AlF2、NdF3、LaF3、YF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14、CeF3、ZnS等が挙げられる。
本発明に係る光干渉層は、上記のような異なる成膜材料を複数層積み重ねることで、可視光域全体の反射率を低下させた機能を付加することができる。 Oxides can also be used as the film-forming material used for the optical interference layer according to the present invention. and an oxidized compound that is a combination of
In addition, film-forming materials that are compounds other than oxides can also be used, such as MgF2 , AlF2 , NdF3 , LaF3, YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , and Na5. Al 3 F 14 , CeF 3 , ZnS and the like are included.
The light interference layer according to the present invention can add a function of reducing the reflectance of the entire visible light region by stacking a plurality of different film forming materials as described above.
本発明に係る光干渉層の厚さ(複数層積層した場合の全体の厚さ)は、好ましくは、50~3000nmの範囲内である。厚さが50nm以上であれば、反射防止の光学特性を発揮させることができ、厚さが3000nm以下であれば、多層膜自体の膜応力による面変形が発生するのを防止することができる。
好ましくは、60~2000nmの範囲内である。 The thickness of the light interference layer according to the present invention (total thickness when multiple layers are laminated) is preferably in the range of 50 to 3000 nm. If the thickness is 50 nm or more, anti-reflection optical properties can be exhibited, and if the thickness is 3000 nm or less, surface deformation due to the film stress of the multilayer film itself can be prevented.
Preferably, it is in the range of 60-2000 nm.
好ましくは、60~2000nmの範囲内である。 The thickness of the light interference layer according to the present invention (total thickness when multiple layers are laminated) is preferably in the range of 50 to 3000 nm. If the thickness is 50 nm or more, anti-reflection optical properties can be exhibited, and if the thickness is 3000 nm or less, surface deformation due to the film stress of the multilayer film itself can be prevented.
Preferably, it is in the range of 60-2000 nm.
(2.2)分光特性の調整層
前記多層反射防止膜が、前記遮光層に接する層と前記光干渉層の間に遮光性及び光反射防止性の観点から分光特性の調整層を設けてもよい。 (2.2) Spectral characteristic adjustment layer In the multilayer antireflection film, a spectral characteristic adjustment layer may be provided between the layer in contact with the light shielding layer and the light interference layer from the viewpoint of light shielding properties and light antireflection properties. good.
前記多層反射防止膜が、前記遮光層に接する層と前記光干渉層の間に遮光性及び光反射防止性の観点から分光特性の調整層を設けてもよい。 (2.2) Spectral characteristic adjustment layer In the multilayer antireflection film, a spectral characteristic adjustment layer may be provided between the layer in contact with the light shielding layer and the light interference layer from the viewpoint of light shielding properties and light antireflection properties. good.
本発明に係る多層反射防止膜の種々の形態の中の、裏面反射防止効果を有する多層反射防止膜の構成を表した一例の概念図を図3に示す。
FIG. 3 is a conceptual diagram showing an example of the configuration of a multilayer antireflection film having a back-surface antireflection effect among various forms of the multilayer antireflection film according to the present invention.
なお、本発明において「裏面」とは、「遮光膜から見て基材側の面」のことであり、「裏面反射防止効果」とは、「遮光膜から見て基材側から入射する光の反射を防止する効果」のことである。
In the present invention, the "back surface" means "the surface on the substrate side when viewed from the light shielding film", and the "antireflection effect on the back surface" means "the effect of light entering from the substrate side when viewed from the light shielding film. The effect of preventing the reflection of
図3に示す多層反射防止膜の構成においては、分光特性の調整層は光干渉層と遮光膜との間に形成され、光干渉層の機能を維持し、遮光膜の裏面反射防止のための調整層である。
In the structure of the multi-layer antireflection film shown in FIG. 3, the spectral characteristic adjustment layer is formed between the light interference layer and the light shielding film, maintains the function of the light interference layer, and prevents reflection from the rear surface of the light shielding film. adjustment layer.
本発明に係る多層反射防止膜の効果をより高めるためには、遮光膜の両面にて光反射防止効果をもつ層が形成されていることが好ましい。
基材の両側に多層反射防止膜を有した光学部材の一例の概念図を図4Aに示す。 In order to further enhance the effect of the multilayer antireflection film according to the present invention, it is preferable that a layer having an antireflection effect is formed on both sides of the light shielding film.
FIG. 4A shows a conceptual diagram of an example of an optical member having multilayer antireflection coatings on both sides of a substrate.
基材の両側に多層反射防止膜を有した光学部材の一例の概念図を図4Aに示す。 In order to further enhance the effect of the multilayer antireflection film according to the present invention, it is preferable that a layer having an antireflection effect is formed on both sides of the light shielding film.
FIG. 4A shows a conceptual diagram of an example of an optical member having multilayer antireflection coatings on both sides of a substrate.
本発明の多層反射防止膜においては、図4Aのような層構成をとることにより、遮光性と光反射防止性がより高まるが、図4Bのように、遮光層に接する層と前記光干渉層の間に遮光性及び光反射防止性の観点から分光特性の調整層を設けてもよい。
In the multilayer antireflection film of the present invention, the layer structure shown in FIG. 4A further enhances the light shielding property and the light antireflection property. From the viewpoint of light shielding properties and antireflection properties, a spectral characteristic adjusting layer may be provided between the layers.
図4Bのような構成とすることにより、表面から入射する光の反射を防止する役割と光干渉層の機能を維持し、より高める役割を同時に満たす多層反射防止膜となり、より発明の効果を高めることができる。
By adopting the configuration shown in FIG. 4B, the multi-layer antireflection coating simultaneously satisfies the role of preventing reflection of light incident from the surface and the role of maintaining and enhancing the function of the light interference layer, thereby further enhancing the effect of the invention. be able to.
(2.3)平均分光反射率
前記多層反射防止膜の400~700nmの波長領域内における平均分光反射率が、2%以下であることが光反射防止性の観点から好ましい。
ここで、「反射率(reflectance)」とは、与えられた条件において、入射した放射束又は光束に対する、反射した放射束又は光束の比率のことをいい(新編色彩化学ハンドブック第2版 日本色彩学会編 222頁)、単位は「1」である。
ただし、本発明における「分光反射率」とは、上記「反射率」の定義において、特定波長の光に対する反射率(%)をいう。
また、本発明に係る「平均分光反射率」とは、分光波長400~700nmの範囲内において測定した各波長における分光反射率の平均値をいう。 (2.3) Average Spectral Reflectance The average spectral reflectance of the multilayer antireflection film in the wavelength region of 400 to 700 nm is preferably 2% or less from the viewpoint of antireflection properties.
Here, "reflectance" means the ratio of reflected radiant flux or luminous flux to incident radiant flux or luminous flux under given conditions. Ed., page 222), the unit is "1".
However, "spectral reflectance" in the present invention means reflectance (%) for light of a specific wavelength in the above definition of "reflectance".
Further, the "average spectral reflectance" according to the present invention means the average value of the spectral reflectance at each wavelength measured within the spectral wavelength range of 400 to 700 nm.
前記多層反射防止膜の400~700nmの波長領域内における平均分光反射率が、2%以下であることが光反射防止性の観点から好ましい。
ここで、「反射率(reflectance)」とは、与えられた条件において、入射した放射束又は光束に対する、反射した放射束又は光束の比率のことをいい(新編色彩化学ハンドブック第2版 日本色彩学会編 222頁)、単位は「1」である。
ただし、本発明における「分光反射率」とは、上記「反射率」の定義において、特定波長の光に対する反射率(%)をいう。
また、本発明に係る「平均分光反射率」とは、分光波長400~700nmの範囲内において測定した各波長における分光反射率の平均値をいう。 (2.3) Average Spectral Reflectance The average spectral reflectance of the multilayer antireflection film in the wavelength region of 400 to 700 nm is preferably 2% or less from the viewpoint of antireflection properties.
Here, "reflectance" means the ratio of reflected radiant flux or luminous flux to incident radiant flux or luminous flux under given conditions. Ed., page 222), the unit is "1".
However, "spectral reflectance" in the present invention means reflectance (%) for light of a specific wavelength in the above definition of "reflectance".
Further, the "average spectral reflectance" according to the present invention means the average value of the spectral reflectance at each wavelength measured within the spectral wavelength range of 400 to 700 nm.
本発明に係る多層反射防止膜においては、光が表面から入射する場合と裏面から入射する場合があり得ることから、実施例においては、分光反射率は、表面分光反射率と裏面分光反射率との両方の測定値について必要に応じて算出した。
具体的には、オリンパス社製顕微分光測定機USPM-RU IIIにて分光反射率を測定し、分光波長400~700nmの波長領域における10nmおきで31点の分光反射率の平均値とする。
平均分光反射率の値は下記式(1)のようにして求める。 In the multilayer antireflection film according to the present invention, light may be incident from the front surface or from the back surface. were calculated as necessary for both measurements.
Specifically, the spectral reflectance is measured with a microscopic spectrophotometer USPM-RU III manufactured by Olympus, and the average value of the spectral reflectance at 31 points at intervals of 10 nm in the spectral wavelength region of 400 to 700 nm is taken.
The value of average spectral reflectance is obtained by the following formula (1).
具体的には、オリンパス社製顕微分光測定機USPM-RU IIIにて分光反射率を測定し、分光波長400~700nmの波長領域における10nmおきで31点の分光反射率の平均値とする。
平均分光反射率の値は下記式(1)のようにして求める。 In the multilayer antireflection film according to the present invention, light may be incident from the front surface or from the back surface. were calculated as necessary for both measurements.
Specifically, the spectral reflectance is measured with a microscopic spectrophotometer USPM-RU III manufactured by Olympus, and the average value of the spectral reflectance at 31 points at intervals of 10 nm in the spectral wavelength region of 400 to 700 nm is taken.
The value of average spectral reflectance is obtained by the following formula (1).
式(1) 平均分光反射率(%)=(R400+R410+・・・・+R690+R700)/31
Formula (1) Average spectral reflectance (%)=( R400 + R410 +...+ R690 + R700 )/31
ここで、例えばR400は光波長400nmにおける分光反射率の値(%)、R410は光波長410nmにおける分光反射率の値(%)等々、をそれぞれ示す。
Here, for example, R 400 indicates a spectral reflectance value (%) at a light wavelength of 400 nm, R 410 indicates a spectral reflectance value (%) at a light wavelength of 410 nm, and so on.
3.設計値と実測値との乖離
本発明では、前述のように外部から遮光層への酸素の移動を防ぐことにより、遮光層の成分を光学的に安定化させることから、遮光膜及び多層反射防止膜の理想的な光学的特性の設計値と製造後に実際に使用した際の実測値との乖離幅を小さく抑えることができる。 3. Deviation between Design Values and Measured Values In the present invention, as described above, by preventing the movement of oxygen from the outside to the light-shielding layer, the components of the light-shielding layer are optically stabilized. It is possible to reduce the range of divergence between the design values of the film's ideal optical characteristics and the measured values when the film is actually used after production.
本発明では、前述のように外部から遮光層への酸素の移動を防ぐことにより、遮光層の成分を光学的に安定化させることから、遮光膜及び多層反射防止膜の理想的な光学的特性の設計値と製造後に実際に使用した際の実測値との乖離幅を小さく抑えることができる。 3. Deviation between Design Values and Measured Values In the present invention, as described above, by preventing the movement of oxygen from the outside to the light-shielding layer, the components of the light-shielding layer are optically stabilized. It is possible to reduce the range of divergence between the design values of the film's ideal optical characteristics and the measured values when the film is actually used after production.
(3.1)分光反射率の値の乖離
分光反射率において、あらかじめ設定しておいた設計値と実際に測定した実測値との乖離幅が小さければ、酸素の影響が減少し化学的に安定であることがわかり、その結果として光反射防止効果に優れていることがわかる。 (3.1) Deviation of Spectral Reflectance Values In terms of spectral reflectance, if the divergence between the preset design value and the actually measured value is small, the effect of oxygen is reduced and the material is chemically stable. As a result, it can be seen that the antireflection effect is excellent.
分光反射率において、あらかじめ設定しておいた設計値と実際に測定した実測値との乖離幅が小さければ、酸素の影響が減少し化学的に安定であることがわかり、その結果として光反射防止効果に優れていることがわかる。 (3.1) Deviation of Spectral Reflectance Values In terms of spectral reflectance, if the divergence between the preset design value and the actually measured value is small, the effect of oxygen is reduced and the material is chemically stable. As a result, it can be seen that the antireflection effect is excellent.
設計値と実測値との乖離幅が大きいかどうかの判断は、光波長400~700nmの範囲内において、設計値と実測値をグラフ化したときに両値が分光反射率で1%以上離れている領域がグラフ上の線の50%以上を占めるかどうかにより行った。
Judgment of whether the divergence width between the design value and the actual measurement value is large is made when the design value and the actual measurement value are graphed within the light wavelength range of 400 to 700 nm and the spectral reflectance is separated by 1% or more. This was done by determining whether the area covered by the graph occupied 50% or more of the line on the graph.
分光反射率の設計値は、薄膜計算ソフトTF-CALC(Sotfware Spectra,Inc)にて算出し、反射率Target(400~700nm 0.5%に設定)を入力し、ニードル法に基づき膜構成と膜厚を最適化することにより算出される。
The design value of the spectral reflectance is calculated with the thin film calculation software TF-CALC (Software Spectra, Inc), the reflectance Target (400-700 nm, set to 0.5%) is input, and the film configuration and Calculated by optimizing the film thickness.
また、分光反射率の実測値は、オリンパス社製顕微分光測定機USPM-RU IIIを用いて、法線方向からの光入射に対する分光反射率を測定することにより算出される。
In addition, the measured value of the spectral reflectance is calculated by measuring the spectral reflectance for light incident from the normal direction using the Olympus microspectrophotometer USPM-RU III.
図5は、成膜材料にBlackAを用いたとき、従来の遮光膜に必要とされる分光反射率の値Rrefと、本発明の遮光膜の分光反射率の実測値Drefとの関係を表す概念図である。
FIG. 5 shows the relationship between the spectral reflectance value R ref required for a conventional light-shielding film and the measured spectral reflectance value D ref of the light-shielding film of the present invention when Black A is used as the film forming material. It is a conceptual diagram representing.
すなわち、本発明の遮光膜における分光反射率の実測値Drefは、400~700nmの範囲内の光波長においては、図5に示すグラフ形状によって従来の遮光膜に必要とされる分光反射率の値Rrefを下回る。
That is, the measured value D ref of the spectral reflectance of the light shielding film of the present invention, in the light wavelength range of 400 to 700 nm, is the spectral reflectance required for the conventional light shielding film according to the graph shape shown in FIG. below the value R ref .
(3.2)分光透過率の値の乖離
分光透過率において、あらかじめ設定しておいた設計値との乖離幅が小さければ、酸素の影響が減少し化学的に安定であることがわかり、その結果として光反射防止効果に優れていることがわかる。 (3.2) Deviation of Spectral Transmittance Values In terms of spectral transmittance, if the range of divergence from the preset design value is small, it is found that the influence of oxygen is reduced and the product is chemically stable. As a result, it can be seen that the antireflection effect is excellent.
分光透過率において、あらかじめ設定しておいた設計値との乖離幅が小さければ、酸素の影響が減少し化学的に安定であることがわかり、その結果として光反射防止効果に優れていることがわかる。 (3.2) Deviation of Spectral Transmittance Values In terms of spectral transmittance, if the range of divergence from the preset design value is small, it is found that the influence of oxygen is reduced and the product is chemically stable. As a result, it can be seen that the antireflection effect is excellent.
設計値と実測値との乖離幅が大きいかどうかの判断は、光波長400~700nmの範囲内において、設計値と実測値をグラフ化したときに両値が分光透過率で1%以上離れている領域がグラフ上の線の50%以上を占めるかどうかにより行った。
Judgment as to whether or not the divergence width between the design value and the actual measurement value is large is made when the design value and the actual measurement value are graphed within the light wavelength range of 400 to 700 nm and the spectral transmittance is separated by 1% or more. This was done by determining whether the area covered by the graph occupied 50% or more of the line on the graph.
分光透過率の設計値は、薄膜計算ソフトTF-CALC(Sotfware Spectra,Inc)にて算出し、透過率Target(400~700nm 0.5%に設定)を入力し、ニードル法に基づき膜構成と膜厚を最適化することにより算出される。
The design value of the spectral transmittance is calculated with the thin film calculation software TF-CALC (Software Spectra, Inc), the transmittance Target (400-700 nm, set to 0.5%) is input, and the film configuration and Calculated by optimizing the film thickness.
また、分光透過率の実測値は、分光光度計U4100(日立ハイテクノロジーズ社製)を用いて測定することにより算出される。
Also, the measured value of the spectral transmittance is calculated using a spectrophotometer U4100 (manufactured by Hitachi High-Technologies Corporation).
図6は、成膜材料にBlackAを用いたとき、従来の遮光膜に必要とされる分光透過率の値Rtraと、本発明の遮光膜の分光透過率の実測値Dtraとの関係を表す概念図である。
FIG. 6 shows the relationship between the spectral transmittance value R tra required for a conventional light shielding film and the measured spectral transmittance value D tra of the light shielding film of the present invention when Black A is used as the film forming material. It is a conceptual diagram representing.
すなわち、本発明の遮光膜における分光透過率の実測値Dtraは、400~700nmの範囲内の光波長においては、図5に示すグラフ形状によって従来の遮光膜に必要とされる分光透過率の値Rtraを下回る。
That is, the measured value D tra of the spectral transmittance of the light shielding film of the present invention, in the light wavelength range of 400 to 700 nm, corresponds to the spectral transmittance required for the conventional light shielding film according to the graph shape shown in FIG. below the value Rtra .
4.光学部材
本発明の光学部材は、基材上に、少なくとも遮光膜を備えた光学部材であって、前記遮光膜として、前述の本発明の遮光膜を備えていることを特徴とする。 4. Optical Member The optical member of the present invention is an optical member including at least a light-shielding film on a base material, and is characterized in that the light-shielding film of the present invention is provided as the light-shielding film.
本発明の光学部材は、基材上に、少なくとも遮光膜を備えた光学部材であって、前記遮光膜として、前述の本発明の遮光膜を備えていることを特徴とする。 4. Optical Member The optical member of the present invention is an optical member including at least a light-shielding film on a base material, and is characterized in that the light-shielding film of the present invention is provided as the light-shielding film.
前記光学部材は、前記遮光膜上に、光干渉層が形成されていることが光反射防止性の観点から好ましい。
前記光学部材が、前記基材と前記遮光膜との間に、光干渉層が形成されていることが光反射防止性の観点から好ましい。
本発明の光学部材は、携帯カメラ、カメラ光学系の遮光部材用途に用いることが好ましい。
本発明の光学部材としては、例えば前述した図1~図4のような層構成を有する光学部材が挙げられる。
本発明に係る基材としては、制限はないが、シクロオレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)及びポリエステル樹脂等の樹脂が挙げられる。 It is preferable that the optical member has a light interference layer formed on the light shielding film from the viewpoint of antireflection property.
From the viewpoint of antireflection properties, it is preferable that the optical member has a light interference layer formed between the substrate and the light shielding film.
The optical member of the present invention is preferably used as a light shielding member for mobile cameras and camera optical systems.
Examples of the optical member of the present invention include an optical member having a layer structure as shown in FIGS. 1 to 4 described above.
Substrates according to the present invention include, but are not limited to, resins such as cycloolefin copolymers (COC), cycloolefin polymers (COP) and polyester resins.
前記光学部材が、前記基材と前記遮光膜との間に、光干渉層が形成されていることが光反射防止性の観点から好ましい。
本発明の光学部材は、携帯カメラ、カメラ光学系の遮光部材用途に用いることが好ましい。
本発明の光学部材としては、例えば前述した図1~図4のような層構成を有する光学部材が挙げられる。
本発明に係る基材としては、制限はないが、シクロオレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)及びポリエステル樹脂等の樹脂が挙げられる。 It is preferable that the optical member has a light interference layer formed on the light shielding film from the viewpoint of antireflection property.
From the viewpoint of antireflection properties, it is preferable that the optical member has a light interference layer formed between the substrate and the light shielding film.
The optical member of the present invention is preferably used as a light shielding member for mobile cameras and camera optical systems.
Examples of the optical member of the present invention include an optical member having a layer structure as shown in FIGS. 1 to 4 described above.
Substrates according to the present invention include, but are not limited to, resins such as cycloolefin copolymers (COC), cycloolefin polymers (COP) and polyester resins.
5.遮光膜及び多層反射防止膜の製造方法
本発明の遮光膜の製造方法は、前述の遮光膜を製造する製造方法であって、前記遮光層を、アルゴンガス又は窒素ガス雰囲気下にて、クロム及び二酸化ケイ素の混合物を成膜して形成することが好ましい。
また、本発明の多層反射防止膜の製造方法は、前述の本発明の多層反射防止膜を製造する多層反射防止膜の製造方法であって、前記遮光膜を形成する工程と、前記遮光膜上に少なくとも光干渉層を積層する工程を有することが好ましい。 5. Method for Producing Light-Shielding Film and Multi-Layer Antireflection Film The method for producing a light-shielding film of the present invention is a method for producing the above-described light-shielding film, wherein the light-shielding layer is formed in an argon gas or nitrogen gas atmosphere with chromium and It is preferably formed by depositing a mixture of silicon dioxide.
Further, the method for producing a multilayer antireflection film of the present invention is a method for producing the above-described multilayer antireflection film of the present invention, comprising: forming the light shielding film; It is preferable to have a step of laminating at least an optical interference layer on the substrate.
本発明の遮光膜の製造方法は、前述の遮光膜を製造する製造方法であって、前記遮光層を、アルゴンガス又は窒素ガス雰囲気下にて、クロム及び二酸化ケイ素の混合物を成膜して形成することが好ましい。
また、本発明の多層反射防止膜の製造方法は、前述の本発明の多層反射防止膜を製造する多層反射防止膜の製造方法であって、前記遮光膜を形成する工程と、前記遮光膜上に少なくとも光干渉層を積層する工程を有することが好ましい。 5. Method for Producing Light-Shielding Film and Multi-Layer Antireflection Film The method for producing a light-shielding film of the present invention is a method for producing the above-described light-shielding film, wherein the light-shielding layer is formed in an argon gas or nitrogen gas atmosphere with chromium and It is preferably formed by depositing a mixture of silicon dioxide.
Further, the method for producing a multilayer antireflection film of the present invention is a method for producing the above-described multilayer antireflection film of the present invention, comprising: forming the light shielding film; It is preferable to have a step of laminating at least an optical interference layer on the substrate.
(5.1)遮光膜及び多層反射防止膜の製造における各構成層の形成方法
本発明の遮光膜は、不活性ガスとしてアルゴンガス又は窒素ガスを用いて、遮光層をアルゴンガス又は窒素ガス雰囲気下にて、クロム及び二酸化ケイ素の混合物を成膜して形成することにより好適に製造される。
前記多層反射防止膜の製造工程が、遮光膜を形成する工程と、前記遮光膜上に少なくとも光干渉層を積層する工程を有することにより、前記多層反射防止膜が好適に製造される。 (5.1) Method for Forming Each Constituent Layer in Manufacturing Light-Shielding Films and Multilayer Antireflection Films It is preferably manufactured by depositing and forming a mixture of chromium and silicon dioxide below.
The multi-layer anti-reflection film is preferably manufactured by including the step of forming a light-shielding film and the step of laminating at least a light interference layer on the light-shielding film.
本発明の遮光膜は、不活性ガスとしてアルゴンガス又は窒素ガスを用いて、遮光層をアルゴンガス又は窒素ガス雰囲気下にて、クロム及び二酸化ケイ素の混合物を成膜して形成することにより好適に製造される。
前記多層反射防止膜の製造工程が、遮光膜を形成する工程と、前記遮光膜上に少なくとも光干渉層を積層する工程を有することにより、前記多層反射防止膜が好適に製造される。 (5.1) Method for Forming Each Constituent Layer in Manufacturing Light-Shielding Films and Multilayer Antireflection Films It is preferably manufactured by depositing and forming a mixture of chromium and silicon dioxide below.
The multi-layer anti-reflection film is preferably manufactured by including the step of forming a light-shielding film and the step of laminating at least a light interference layer on the light-shielding film.
前述した遮光層、遮光層に接する層、光干渉層及び分光特性の調整層の各層を基材上に形成する方法としては、公知の各種の方法を用いることができるが、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、2極AC平板マグネトロンスパッタリング、2極AC回転マグネトロンスパッタリングなど、反応性スパッタ法を含む。)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着、及びIAD法を用いる真空蒸着など)、熱CVD法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法等の化学蒸着法等によって層形成することが好ましい。
Various known methods can be used as a method for forming the light shielding layer, the layer in contact with the light shielding layer, the light interference layer, and the spectral characteristic adjusting layer on the substrate. magnetron cathode sputtering, flat plate magnetron sputtering, bipolar AC flat plate magnetron sputtering, bipolar AC rotating magnetron sputtering, including reactive sputtering methods), vapor deposition methods (e.g. resistance heating vapor deposition, electron beam vapor deposition, ion beam vapor deposition, plasma assisted deposition, and vacuum deposition using the IAD method), thermal CVD method, catalytic chemical vapor deposition method (Cat-CVD), capacitively coupled plasma CVD method (CCP-CVD), optical CVD method, plasma CVD method (PE- CVD), an epitaxial growth method, a chemical vapor deposition method such as an atomic layer deposition method, or the like to form the layer.
本発明の遮光膜及び多層反射防止膜の製造時に用いられる成膜材料は、前述のとおりであるが、成膜材料として金属フッ化物(例えばMgF2、AlF2、NdF3、LaF3、YF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14及びCeF3等)を用いる場合、成膜時に、イオン照射により金属フッ化物が分解するため、IAD法等を用いないことが好ましい。
The film-forming materials used in the production of the light-shielding film and the multilayer antireflection film of the present invention are as described above . , GdF 3 , YbF 3 , PbF 2 , Na 3 AlF 6 , Na 5 Al 3 F 14 and CeF 3, etc.), the IAD method or the like is used because the metal fluoride is decomposed by ion irradiation during film formation. preferably not.
各層の形成条件として真空蒸着法を採用する場合は、チャンバー内の減圧度が、通常1×10-4~1×10-1Pa、好ましくは1×10-3~3×10-2Paの範囲にし、成膜速度が1~10Å/secの範囲内、具体的には、例えばシンクロン社製BES-1300DNを用いて、加熱温度:340℃、開始真空度1.33×10-3Pa及び各成膜材料にあわせた成膜速度で各層を形成することが好ましい。
When vacuum deposition is employed as the formation condition of each layer, the degree of pressure reduction in the chamber is usually 1×10 −4 to 1×10 −1 Pa, preferably 1×10 −3 to 3×10 −2 Pa. and the film formation rate is in the range of 1 to 10 Å/sec. It is preferable to form each layer at a film-forming speed suitable for each film-forming material.
基材上に形成される遮光膜及び多層反射防止膜の形態としては、例えば図1~図4に示す形態が挙げられ、前述の「(5.1)遮光膜及び多層反射防止膜の製造における各構成層の形成方法」に従って基材側から順に遮光膜及び多層反射防止膜の各層が形成される。
Examples of the form of the light shielding film and the multilayer antireflection film formed on the substrate include the forms shown in FIGS. Each layer of the light-shielding film and the multilayer antireflection film is formed in order from the substrate side according to "Method for Forming Each Constituent Layer".
遮光膜及び多層反射防止膜の各層の形成時には、使用する蒸着装置の蒸着源に適宜成膜材料を装填するが、遮光層の形成時には、使用する蒸着装置の蒸着源にクロム及び二酸化ケイ素を含有する成膜材料を装填し、遮光層に接する層の形成時には、使用する蒸着装置の蒸着源に酸化物以外の化合物を含有する成膜材料を装填する。
When forming each layer of the light-shielding film and multilayer anti-reflection film, the deposition source of the vapor deposition device used is appropriately loaded with the film-forming material, but when forming the light-shielding layer, the vapor deposition source of the vapor deposition device used contains chromium and silicon dioxide. A film forming material containing a compound other than an oxide is loaded into the vapor deposition source of the vapor deposition apparatus to be used when forming a layer in contact with the light shielding layer.
(5.2)製造工程の流れ
図7は、遮光膜の製造工程の流れの一例を表すフローチャートであり、図8は、表面反射防止効果を有する多層反射防止膜の製造工程の流れの一例を表すフローチャートであり、図9は、裏面反射防止効果を有する多層反射防止膜の製造工程の流れの一例を表すフローチャートであり、図10は、表面と裏面の両方の反射防止効果を有する多層反射防止膜の製造工程の流れの一例を表すフローチャートである。 (5.2) Flow of Manufacturing Process FIG. 7 is a flow chart showing an example of the flow of the manufacturing process of the light-shielding film, and FIG. 9 is a flow chart showing an example of the manufacturing process flow of a multilayer antireflection film having a back-surface antireflection effect, and FIG. 4 is a flow chart showing an example of the flow of a membrane manufacturing process.
図7は、遮光膜の製造工程の流れの一例を表すフローチャートであり、図8は、表面反射防止効果を有する多層反射防止膜の製造工程の流れの一例を表すフローチャートであり、図9は、裏面反射防止効果を有する多層反射防止膜の製造工程の流れの一例を表すフローチャートであり、図10は、表面と裏面の両方の反射防止効果を有する多層反射防止膜の製造工程の流れの一例を表すフローチャートである。 (5.2) Flow of Manufacturing Process FIG. 7 is a flow chart showing an example of the flow of the manufacturing process of the light-shielding film, and FIG. 9 is a flow chart showing an example of the manufacturing process flow of a multilayer antireflection film having a back-surface antireflection effect, and FIG. 4 is a flow chart showing an example of the flow of a membrane manufacturing process.
すなわち、図1の遮光膜を作製する製造工程の流れを図7は表しており、図2の多層反射防止膜を作製する製造工程の流れを図8は表しており、図3の多層反射防止膜を作製する製造工程の流れを図9は表している。
なお、図10においては、表面反射防止用の光干渉層の形成をするD1から裏面反射防止用の分光特性の調整層を形成するD2までの工程は一括工程ではなく、D1とD2との間には、一旦成膜装置から形成中の多層反射防止膜を取り出し、大気下にて遮光膜成膜用のマスク治具に光学部材をセットする工程があり、D3からは光学部材を成膜装置に戻して再び成膜を始める。 7 shows the flow of the manufacturing process for producing the light shielding film of FIG. 1, FIG. 8 shows the flow of the manufacturing process for producing the multilayer antireflection film of FIG. 2, and FIG. FIG. 9 shows the flow of the manufacturing process for fabricating the membrane.
In FIG. 10, the steps from D1 for forming the front-surface antireflection optical interference layer to D2 for forming the rear-surface antireflection spectral characteristic adjustment layer are not collective steps, but are performed between D1 and D2. D3 includes the step of taking out the multilayer anti-reflection film being formed from the film forming apparatus and setting the optical member on the mask jig for forming the light shielding film in the atmosphere. to start film formation again.
なお、図10においては、表面反射防止用の光干渉層の形成をするD1から裏面反射防止用の分光特性の調整層を形成するD2までの工程は一括工程ではなく、D1とD2との間には、一旦成膜装置から形成中の多層反射防止膜を取り出し、大気下にて遮光膜成膜用のマスク治具に光学部材をセットする工程があり、D3からは光学部材を成膜装置に戻して再び成膜を始める。 7 shows the flow of the manufacturing process for producing the light shielding film of FIG. 1, FIG. 8 shows the flow of the manufacturing process for producing the multilayer antireflection film of FIG. 2, and FIG. FIG. 9 shows the flow of the manufacturing process for fabricating the membrane.
In FIG. 10, the steps from D1 for forming the front-surface antireflection optical interference layer to D2 for forming the rear-surface antireflection spectral characteristic adjustment layer are not collective steps, but are performed between D1 and D2. D3 includes the step of taking out the multilayer anti-reflection film being formed from the film forming apparatus and setting the optical member on the mask jig for forming the light shielding film in the atmosphere. to start film formation again.
(5.3)蒸着装置
図11は、真空蒸着装置の一例を示す模式図である。
真空蒸着装置1は、チャンバー2内にドーム3を具備し、ドーム3に沿って基板4が配置される。
蒸着源5は蒸着物質を蒸発させる電子銃、又は抵抗加熱装置を具備し、蒸着源5から蒸着物質6が、基板4に向けて飛散し、基板4上で凝結、固化する。
IAD法を用いる場合は、その際、IADイオンソース7より基板に向けてイオンビーム8を照射し、成膜中にイオンの持つ高い運動エネルギーを作用させて緻密な膜としたり、膜の密着力を高めたりする。
ここで基板4は、一例としてガラスが挙げられる。 (5.3) Vapor Deposition Apparatus FIG. 11 is a schematic diagram showing an example of a vacuum deposition apparatus.
Avacuum deposition apparatus 1 comprises a dome 3 in a chamber 2 along which a substrate 4 is arranged.
Thevapor deposition source 5 is provided with an electron gun or a resistance heating device for evaporating the vapor deposition material.
When the IAD method is used, the substrate is irradiated with anion beam 8 from an IAD ion source 7, and the high kinetic energy of the ions is applied during the film formation to form a dense film, or to increase the adhesion of the film. to increase
An example of thesubstrate 4 is glass.
図11は、真空蒸着装置の一例を示す模式図である。
真空蒸着装置1は、チャンバー2内にドーム3を具備し、ドーム3に沿って基板4が配置される。
蒸着源5は蒸着物質を蒸発させる電子銃、又は抵抗加熱装置を具備し、蒸着源5から蒸着物質6が、基板4に向けて飛散し、基板4上で凝結、固化する。
IAD法を用いる場合は、その際、IADイオンソース7より基板に向けてイオンビーム8を照射し、成膜中にイオンの持つ高い運動エネルギーを作用させて緻密な膜としたり、膜の密着力を高めたりする。
ここで基板4は、一例としてガラスが挙げられる。 (5.3) Vapor Deposition Apparatus FIG. 11 is a schematic diagram showing an example of a vacuum deposition apparatus.
A
The
When the IAD method is used, the substrate is irradiated with an
An example of the
チャンバー2の底部には、複数の蒸着源5が配置されうる。
ここでは、蒸着源5として1個の蒸着源を示しているが、蒸着源5の個数は複数あってもよい。
蒸着源5の成膜材料(蒸着材料)を電子銃によって蒸着物質6を発生させ、チャンバー2内に設置される基板4(例えばガラス板)に成膜材料を飛散、付着させることにより、成膜材料からなる層が基板4上に成膜される。 A plurality ofdeposition sources 5 may be arranged at the bottom of the chamber 2 .
Although one vapor deposition source is shown as thevapor deposition source 5 here, the number of vapor deposition sources 5 may be plural.
Adeposition material 6 is generated from the deposition material (evaporation material) of the deposition source 5 by an electron gun, and the deposition material is scattered and adhered to a substrate 4 (for example, a glass plate) installed in the chamber 2 to form a film. A layer of material is deposited on the substrate 4 .
ここでは、蒸着源5として1個の蒸着源を示しているが、蒸着源5の個数は複数あってもよい。
蒸着源5の成膜材料(蒸着材料)を電子銃によって蒸着物質6を発生させ、チャンバー2内に設置される基板4(例えばガラス板)に成膜材料を飛散、付着させることにより、成膜材料からなる層が基板4上に成膜される。 A plurality of
Although one vapor deposition source is shown as the
A
また、チャンバー2には、図示しない真空排気系が設けられており、これによってチャンバー2内が真空引きされる。
チャンバー内の減圧度は、通常1×10-4~1×10-1Pa、好ましくは1×10-3~3×10-2Paの範囲である。 In addition, thechamber 2 is provided with an evacuation system (not shown), which evacuates the inside of the chamber 2 .
The degree of pressure reduction in the chamber is usually 1×10 −4 to 1×10 −1 Pa, preferably 1×10 −3 to 3×10 −2 Pa.
チャンバー内の減圧度は、通常1×10-4~1×10-1Pa、好ましくは1×10-3~3×10-2Paの範囲である。 In addition, the
The degree of pressure reduction in the chamber is usually 1×10 −4 to 1×10 −1 Pa, preferably 1×10 −3 to 3×10 −2 Pa.
ドーム3は、基板4を保持するホルダー(不図示)を、少なくとも1個保持するものであり、蒸着傘とも呼ばれる。
このドーム3は、断面円弧状であり、円弧の両端を結ぶ弦の中心を通り、その弦に垂直な軸を回転対称軸として回転する回転対称形状となっている。
ドーム3が軸を中心に例えば一定速度で回転することにより、ホルダーを介してドーム3に保持された基板4は、軸の周りに一定速度で公転する。 Thedome 3 holds at least one holder (not shown) that holds the substrate 4, and is also called a vapor deposition umbrella.
Thedome 3 has an arcuate cross section, and has a rotationally symmetrical shape that passes through the center of a chord connecting both ends of the arc and rotates about an axis perpendicular to the chord.
When thedome 3 rotates around the axis at a constant speed, for example, the substrate 4 held by the dome 3 via the holder revolves around the axis at a constant speed.
このドーム3は、断面円弧状であり、円弧の両端を結ぶ弦の中心を通り、その弦に垂直な軸を回転対称軸として回転する回転対称形状となっている。
ドーム3が軸を中心に例えば一定速度で回転することにより、ホルダーを介してドーム3に保持された基板4は、軸の周りに一定速度で公転する。 The
The
When the
このドーム3は、複数のホルダーを回転半径方向(公転半径方向)及び回転方向(公転方向)に並べて保持することが可能である。
これにより、複数のホルダーによって保持された複数の基板4上に同時に成膜することが可能となり、素子の製造効率を向上させることができる。 Thedome 3 can hold a plurality of holders side by side in the rotation radial direction (revolution radial direction) and the rotation direction (revolution direction).
As a result, it is possible to form films simultaneously on a plurality ofsubstrates 4 held by a plurality of holders, thereby improving the manufacturing efficiency of the device.
これにより、複数のホルダーによって保持された複数の基板4上に同時に成膜することが可能となり、素子の製造効率を向上させることができる。 The
As a result, it is possible to form films simultaneously on a plurality of
IADイオンソース7は、本体内部にアルゴンガスや酸素ガスを導入してこれらをイオン化させ、イオン化されたガス分子(イオンビーム8)を基板4に向けて照射する機器である。
イオン源としては、カウフマン型(フィラメント)、ホローカソード型、RF型、バケット型、デュオプラズマトロン型等を適用することができる。
IADイオンソース7から上記のガス分子を基板4に照射することにより、例えば複数の蒸発源から蒸発する成膜材料の分子を基板4に押し付けることができ、密着性及び緻密性の高い膜を基板4上に成膜することができる。
IADイオンソース7は、チャンバー2の底部において基板4に対向するように設置されているが、対向軸からずれた位置に設置されていても構わない。 The IAD ion source 7 is a device that introduces argon gas or oxygen gas into its main body, ionizes them, and irradiates thesubstrate 4 with the ionized gas molecules (ion beam 8 ).
As the ion source, a Kaufmann type (filament), a hollow cathode type, an RF type, a bucket type, a duoplasmatron type, or the like can be applied.
By irradiating thesubstrate 4 with the above gas molecules from the IAD ion source 7, the molecules of the film-forming material evaporated from, for example, a plurality of evaporation sources can be pressed against the substrate 4, and a film with high adhesion and high density can be formed on the substrate. 4 can be deposited.
The IAD ion source 7 is installed at the bottom of thechamber 2 so as to face the substrate 4, but may be installed at a position shifted from the facing axis.
イオン源としては、カウフマン型(フィラメント)、ホローカソード型、RF型、バケット型、デュオプラズマトロン型等を適用することができる。
IADイオンソース7から上記のガス分子を基板4に照射することにより、例えば複数の蒸発源から蒸発する成膜材料の分子を基板4に押し付けることができ、密着性及び緻密性の高い膜を基板4上に成膜することができる。
IADイオンソース7は、チャンバー2の底部において基板4に対向するように設置されているが、対向軸からずれた位置に設置されていても構わない。 The IAD ion source 7 is a device that introduces argon gas or oxygen gas into its main body, ionizes them, and irradiates the
As the ion source, a Kaufmann type (filament), a hollow cathode type, an RF type, a bucket type, a duoplasmatron type, or the like can be applied.
By irradiating the
The IAD ion source 7 is installed at the bottom of the
IAD法で用いるイオンビームは、イオンビームスパッタリング法で用いられるイオンビームよりは、低真空度で用いられ、加速電圧も低い傾向にある。
例えば加速電圧が100~2000Vのイオンビーム、電流密度が1~120μA/cm2のイオンビーム、を用いることができる。
成膜工程に用いられるイオンビームは、酸素のイオンビーム、アルゴンのイオンビーム、又は酸素とアルゴンの混合ガスのイオンビームとすることができる。
例えば、酸素ガス導入量30~60sccm、アルゴンガス導入量0~10sccmの範囲内とすることが好ましい。 The ion beam used in the IAD method tends to be used in a lower degree of vacuum and at a lower acceleration voltage than the ion beam used in the ion beam sputtering method.
For example, an ion beam with an acceleration voltage of 100 to 2000 V and an ion beam with a current density of 1 to 120 μA/cm 2 can be used.
The ion beam used in the film formation process can be an oxygen ion beam, an argon ion beam, or an ion beam of a mixed gas of oxygen and argon.
For example, it is preferable to set the amount of oxygen gas to be introduced in the range of 30 to 60 sccm and the amount of argon gas to be introduced in the range of 0 to 10 sccm.
例えば加速電圧が100~2000Vのイオンビーム、電流密度が1~120μA/cm2のイオンビーム、を用いることができる。
成膜工程に用いられるイオンビームは、酸素のイオンビーム、アルゴンのイオンビーム、又は酸素とアルゴンの混合ガスのイオンビームとすることができる。
例えば、酸素ガス導入量30~60sccm、アルゴンガス導入量0~10sccmの範囲内とすることが好ましい。 The ion beam used in the IAD method tends to be used in a lower degree of vacuum and at a lower acceleration voltage than the ion beam used in the ion beam sputtering method.
For example, an ion beam with an acceleration voltage of 100 to 2000 V and an ion beam with a current density of 1 to 120 μA/cm 2 can be used.
The ion beam used in the film formation process can be an oxygen ion beam, an argon ion beam, or an ion beam of a mixed gas of oxygen and argon.
For example, it is preferable to set the amount of oxygen gas to be introduced in the range of 30 to 60 sccm and the amount of argon gas to be introduced in the range of 0 to 10 sccm.
モニターシステム(不図示)は、真空成膜中に各蒸着源5から蒸発して自身に付着する層を監視することにより、基板4上に成膜される層の波長特性を監視するシステムである。
このモニターシステムにより、基板4上に成膜される層の光学特性(例えば分光透過率、分光反射率、光学層厚など)を把握することができる。
また、モニターシステムは、水晶層厚モニターも含んでおり、基板4上に成膜される層の物理層厚を監視することもできる。
このモニターシステムは、層の監視結果に応じて、複数の蒸発源5のON/OFFの切り替えやIADイオンソース7のON/OFFの切り替え等を制御する制御部としても機能する。 A monitor system (not shown) monitors the wavelength characteristics of the layers formed on thesubstrate 4 by monitoring the layers that evaporate from the vapor deposition sources 5 and adhere to themselves during vacuum film formation. .
With this monitor system, it is possible to grasp the optical properties of the layers formed on the substrate 4 (for example, spectral transmittance, spectral reflectance, optical layer thickness, etc.).
The monitoring system also includes a quartz layer thickness monitor to monitor the physical layer thickness of layers deposited on thesubstrate 4 .
This monitor system also functions as a control unit that controls ON/OFF switching of the plurality ofevaporation sources 5, ON/OFF switching of the IAD ion source 7, etc., according to the layer monitoring results.
このモニターシステムにより、基板4上に成膜される層の光学特性(例えば分光透過率、分光反射率、光学層厚など)を把握することができる。
また、モニターシステムは、水晶層厚モニターも含んでおり、基板4上に成膜される層の物理層厚を監視することもできる。
このモニターシステムは、層の監視結果に応じて、複数の蒸発源5のON/OFFの切り替えやIADイオンソース7のON/OFFの切り替え等を制御する制御部としても機能する。 A monitor system (not shown) monitors the wavelength characteristics of the layers formed on the
With this monitor system, it is possible to grasp the optical properties of the layers formed on the substrate 4 (for example, spectral transmittance, spectral reflectance, optical layer thickness, etc.).
The monitoring system also includes a quartz layer thickness monitor to monitor the physical layer thickness of layers deposited on the
This monitor system also functions as a control unit that controls ON/OFF switching of the plurality of
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these. In the examples, "parts" or "%" are used, but "mass parts" or "mass%" are indicated unless otherwise specified.
(光学部材形成の概要と成膜材料及び成膜条件)
蒸着装置BES-1300DN(シンクロン社製)を用いて、ガラス基材としてH-ZF52GT(nd=1.8467、成都光明社製)を用いて、基材の一方の面上に、各層を基材側から順に形成することにより各種の光学部材を形成した。 (Outline of formation of optical member, film-forming material and film-forming conditions)
Using a vapor deposition apparatus BES-1300DN (manufactured by Syncron Co., Ltd.), using H-ZF52GT (nd = 1.8467, manufactured by Chengdu Guangming Co., Ltd.) as a glass substrate, each layer on one side of the substrate. Various optical members were formed by sequentially forming from the side.
蒸着装置BES-1300DN(シンクロン社製)を用いて、ガラス基材としてH-ZF52GT(nd=1.8467、成都光明社製)を用いて、基材の一方の面上に、各層を基材側から順に形成することにより各種の光学部材を形成した。 (Outline of formation of optical member, film-forming material and film-forming conditions)
Using a vapor deposition apparatus BES-1300DN (manufactured by Syncron Co., Ltd.), using H-ZF52GT (nd = 1.8467, manufactured by Chengdu Guangming Co., Ltd.) as a glass substrate, each layer on one side of the substrate. Various optical members were formed by sequentially forming from the side.
(層厚の測定)
上記各層の層厚は以下の方法によって測定した。 (Measurement of layer thickness)
The layer thickness of each layer was measured by the following method.
上記各層の層厚は以下の方法によって測定した。 (Measurement of layer thickness)
The layer thickness of each layer was measured by the following method.
(1)あらかじめ基材上に、測定する層を1/4λ(λ=550nm)の層厚で成膜し、分光反射率を測定しておく。
(1) A layer to be measured is formed in advance on a base material with a layer thickness of 1/4λ (λ=550 nm), and the spectral reflectance is measured.
(2)前記(1)で形成した層に下記表Iに示す成膜条件で各層を成膜し、分光反射率を測定して、その変化量から当該層の屈折率と層厚を計算する。
実施例で用いた成膜材料は以下のとおりである。 (2) Each layer is formed on the layer formed in (1) under the film formation conditions shown in Table I below, the spectral reflectance is measured, and the refractive index and layer thickness of the layer are calculated from the amount of change. .
The film-forming materials used in the examples are as follows.
実施例で用いた成膜材料は以下のとおりである。 (2) Each layer is formed on the layer formed in (1) under the film formation conditions shown in Table I below, the spectral reflectance is measured, and the refractive index and layer thickness of the layer are calculated from the amount of change. .
The film-forming materials used in the examples are as follows.
(成膜材料)
(1)BlackA powder less than 0.3mm Patinal(Merck社製、Cr〔45%〕+SiO2〔50~60%〕の混合物、以下製品名を「BlackA」と表記する。)
(2)Magnesium fluoride granules about 1-2.5mm(MgF2)Patinal(Merck社製、以下製品名を「MgF2」と表記する。)
(3)Substance H4 granules about 0.1-2mm Patinal(Merck社製、LaTiO3〔99%〕、以下製品名を「H4」と表記する。)
(4)YF3(Merck社製)
(5)Silicon dioxide granules about 1-4mm(SiO2)Patinal(Merck社製、以下製品名を「SiO2」と表記する。)
(6)AlF2(Merck社製)
(7)NdF3(Merck社製)
(8)LaF3(Merck社製)
(9)GdF3(Merck社製)
(10)YbF3(Merck社製)
(11)PbF2(Merck社製)
(12)Na3AlF6(Merck社製)
(13)Na5Al3F14(Merck社製)
(14)CeF3(Merck社製)
(15)ZnS(Merck社製)
(16)Al2O3(Merck社製)
(17)ZrTiO4(Merck社製) (Deposition material)
(1) BlackA powder less than 0.3mm Patinal (manufactured by Merck, a mixture of Cr [45%] + SiO 2 [50-60%], hereinafter the product name is referred to as "BlackA".)
(2) Magnesium fluoride granules about 1-2.5mm ( MgF2 ) Patinal (manufactured by Merck, hereinafter the product name is referred to as " MgF2 ")
(3) Substance H4 granules about 0.1-2 mm Patinal (manufactured by Merck, LaTiO 3 [99%], hereinafter the product name is referred to as "H4".)
(4) YF 3 (manufactured by Merck)
(5) Silicon dioxide granules about 1-4 mm (SiO 2 ) Patinal (manufactured by Merck, hereinafter the product name is referred to as “SiO 2 ”)
(6) AlF2 (manufactured by Merck)
(7) NdF3 (manufactured by Merck)
(8) LaF 3 (manufactured by Merck)
(9) GdF3 (manufactured by Merck)
(10) YbF3 (manufactured by Merck)
(11) PbF2 (manufactured by Merck)
(12) Na 3 AlF 6 (manufactured by Merck)
( 13) Na5Al3F14 ( manufactured by Merck)
(14) CeF3 (manufactured by Merck)
(15) ZnS (manufactured by Merck)
(16) Al2O3 ( manufactured by Merck)
(17) ZrTiO4 (manufactured by Merck)
(1)BlackA powder less than 0.3mm Patinal(Merck社製、Cr〔45%〕+SiO2〔50~60%〕の混合物、以下製品名を「BlackA」と表記する。)
(2)Magnesium fluoride granules about 1-2.5mm(MgF2)Patinal(Merck社製、以下製品名を「MgF2」と表記する。)
(3)Substance H4 granules about 0.1-2mm Patinal(Merck社製、LaTiO3〔99%〕、以下製品名を「H4」と表記する。)
(4)YF3(Merck社製)
(5)Silicon dioxide granules about 1-4mm(SiO2)Patinal(Merck社製、以下製品名を「SiO2」と表記する。)
(6)AlF2(Merck社製)
(7)NdF3(Merck社製)
(8)LaF3(Merck社製)
(9)GdF3(Merck社製)
(10)YbF3(Merck社製)
(11)PbF2(Merck社製)
(12)Na3AlF6(Merck社製)
(13)Na5Al3F14(Merck社製)
(14)CeF3(Merck社製)
(15)ZnS(Merck社製)
(16)Al2O3(Merck社製)
(17)ZrTiO4(Merck社製) (Deposition material)
(1) BlackA powder less than 0.3mm Patinal (manufactured by Merck, a mixture of Cr [45%] + SiO 2 [50-60%], hereinafter the product name is referred to as "BlackA".)
(2) Magnesium fluoride granules about 1-2.5mm ( MgF2 ) Patinal (manufactured by Merck, hereinafter the product name is referred to as " MgF2 ")
(3) Substance H4 granules about 0.1-2 mm Patinal (manufactured by Merck, LaTiO 3 [99%], hereinafter the product name is referred to as "H4".)
(4) YF 3 (manufactured by Merck)
(5) Silicon dioxide granules about 1-4 mm (SiO 2 ) Patinal (manufactured by Merck, hereinafter the product name is referred to as “SiO 2 ”)
(6) AlF2 (manufactured by Merck)
(7) NdF3 (manufactured by Merck)
(8) LaF 3 (manufactured by Merck)
(9) GdF3 (manufactured by Merck)
(10) YbF3 (manufactured by Merck)
(11) PbF2 (manufactured by Merck)
(12) Na 3 AlF 6 (manufactured by Merck)
( 13) Na5Al3F14 ( manufactured by Merck)
(14) CeF3 (manufactured by Merck)
(15) ZnS (manufactured by Merck)
(16) Al2O3 ( manufactured by Merck)
(17) ZrTiO4 (manufactured by Merck)
まず、表Iに各成膜材料を用いて各層を形成したときの成膜条件を示す。
表Iにおいては、例えば成膜材料として各層の形成時にAlF2を用いた場合には、表Iに示す<条件(AlF2)>にて各層を形成し、YbF3を用いた場合には、表Iに示す<条件(YbF3)>にて各層を形成する。
以下、実施例の記載において、「基材から数えて~層目の層」の記載を「第~層」と表記するものとする。
例えば「基材から数えて3層目の層」の記載は「第3層」とする。 First, Table I shows the film forming conditions when each layer was formed using each film forming material.
In Table I, for example, when AlF 2 is used as a film forming material when forming each layer, each layer is formed under the <conditions (AlF 2 )> shown in Table I, and when YbF 3 is used, Each layer is formed under <Conditions (YbF 3 )> shown in Table I.
Hereinafter, in the description of the examples, the description of "a layer of the th layer counting from the base material" will be referred to as "the th layer".
For example, the description of "the third layer counted from the base material" is referred to as "the third layer".
表Iにおいては、例えば成膜材料として各層の形成時にAlF2を用いた場合には、表Iに示す<条件(AlF2)>にて各層を形成し、YbF3を用いた場合には、表Iに示す<条件(YbF3)>にて各層を形成する。
以下、実施例の記載において、「基材から数えて~層目の層」の記載を「第~層」と表記するものとする。
例えば「基材から数えて3層目の層」の記載は「第3層」とする。 First, Table I shows the film forming conditions when each layer was formed using each film forming material.
In Table I, for example, when AlF 2 is used as a film forming material when forming each layer, each layer is formed under the <conditions (AlF 2 )> shown in Table I, and when YbF 3 is used, Each layer is formed under <Conditions (YbF 3 )> shown in Table I.
Hereinafter, in the description of the examples, the description of "a layer of the th layer counting from the base material" will be referred to as "the th layer".
For example, the description of "the third layer counted from the base material" is referred to as "the third layer".
(遮光膜の分光反射率及び分光透過率の設計値と実測値の乖離幅の確認)
実施例における光学部材の作製の前に、まず、遮光膜の形成時に、遮光層に接する層が酸化物を含有する場合と酸化物以外を含有する場合とで、分光反射率及び分光透過率の設計値と実測値に与える影響を確かめるため、以下の手順によりサンプル用光学部材A1、A2及びA3を作製した。
上記のサンプル用光学部材としては、図1の層構成によるものを作製した。 (Confirmation of deviation width between design value and actual measurement value of spectral reflectance and spectral transmittance of light shielding film)
Before preparing the optical members in the examples, first, when the light-shielding film was formed, the spectral reflectance and the spectral transmittance were measured depending on whether the layer in contact with the light-shielding layer contained an oxide or a layer other than an oxide. Sample optical members A1, A2, and A3 were produced according to the following procedure in order to confirm the effects on the design values and actual measurement values.
As the sample optical member, one having the layer structure shown in FIG. 1 was produced.
実施例における光学部材の作製の前に、まず、遮光膜の形成時に、遮光層に接する層が酸化物を含有する場合と酸化物以外を含有する場合とで、分光反射率及び分光透過率の設計値と実測値に与える影響を確かめるため、以下の手順によりサンプル用光学部材A1、A2及びA3を作製した。
上記のサンプル用光学部材としては、図1の層構成によるものを作製した。 (Confirmation of deviation width between design value and actual measurement value of spectral reflectance and spectral transmittance of light shielding film)
Before preparing the optical members in the examples, first, when the light-shielding film was formed, the spectral reflectance and the spectral transmittance were measured depending on whether the layer in contact with the light-shielding layer contained an oxide or a layer other than an oxide. Sample optical members A1, A2, and A3 were produced according to the following procedure in order to confirm the effects on the design values and actual measurement values.
As the sample optical member, one having the layer structure shown in FIG. 1 was produced.
(1)各サンプル用光学部材の作製
前記表Iに示した成膜条件に従って下記各種光学部材を作製した。
[サンプル用光学部材A1の作製]
前記表Iに示した<条件(BlackA)>にて、基材上に厚さが1500nmのクロム及び二酸化ケイ素を含有する遮光層を形成した。
次に、前記表Iに示した<条件(MgF2)>にて、遮光層上に厚さが114nmの酸化物以外の化合物を含有する層(遮光層に接する層)を形成することによりサンプル用光学部材A1を作製した。 (1) Production of Optical Members for Each Sample Various optical members were produced according to the film formation conditions shown in Table I above.
[Preparation of sample optical member A1]
A light shielding layer containing chromium and silicon dioxide and having a thickness of 1500 nm was formed on the substrate under <Conditions (BlackA)> shown in Table I above.
Next, a layer containing a compound other than an oxide having a thickness of 114 nm (a layer in contact with the light-shielding layer) was formed on the light-shielding layer under <Conditions (MgF 2 )> shown in Table I above. An optical member A1 was produced.
前記表Iに示した成膜条件に従って下記各種光学部材を作製した。
[サンプル用光学部材A1の作製]
前記表Iに示した<条件(BlackA)>にて、基材上に厚さが1500nmのクロム及び二酸化ケイ素を含有する遮光層を形成した。
次に、前記表Iに示した<条件(MgF2)>にて、遮光層上に厚さが114nmの酸化物以外の化合物を含有する層(遮光層に接する層)を形成することによりサンプル用光学部材A1を作製した。 (1) Production of Optical Members for Each Sample Various optical members were produced according to the film formation conditions shown in Table I above.
[Preparation of sample optical member A1]
A light shielding layer containing chromium and silicon dioxide and having a thickness of 1500 nm was formed on the substrate under <Conditions (BlackA)> shown in Table I above.
Next, a layer containing a compound other than an oxide having a thickness of 114 nm (a layer in contact with the light-shielding layer) was formed on the light-shielding layer under <Conditions (MgF 2 )> shown in Table I above. An optical member A1 was produced.
[サンプル用光学部材A2の作製]
前記表Iに示した<条件(BlackA)>にて、基材上に厚さが1500nmのクロム及び二酸化ケイ素を含有する遮光層を形成した。
次に、前記表Iに示した<条件(SiO2)>にて、遮光層上に厚さが188nmの酸化物を含有する層(遮光層に接する層)を形成することによりサンプル用光学部材A2を作製した。 [Production of sample optical member A2]
A light shielding layer containing chromium and silicon dioxide and having a thickness of 1500 nm was formed on the substrate under <Conditions (BlackA)> shown in Table I above.
Next, under the <conditions (SiO 2 )> shown in Table I, a layer containing an oxide having a thickness of 188 nm (a layer in contact with the light shielding layer) was formed on the light shielding layer, thereby forming a sample optical member. A2 was produced.
前記表Iに示した<条件(BlackA)>にて、基材上に厚さが1500nmのクロム及び二酸化ケイ素を含有する遮光層を形成した。
次に、前記表Iに示した<条件(SiO2)>にて、遮光層上に厚さが188nmの酸化物を含有する層(遮光層に接する層)を形成することによりサンプル用光学部材A2を作製した。 [Production of sample optical member A2]
A light shielding layer containing chromium and silicon dioxide and having a thickness of 1500 nm was formed on the substrate under <Conditions (BlackA)> shown in Table I above.
Next, under the <conditions (SiO 2 )> shown in Table I, a layer containing an oxide having a thickness of 188 nm (a layer in contact with the light shielding layer) was formed on the light shielding layer, thereby forming a sample optical member. A2 was produced.
[サンプル用光学部材A3の作製]
前記表Iに示した<条件(BlackA)>にて、基材上に厚さが1500nmのクロム及び二酸化ケイ素を含有する遮光層を形成した。
次に、前記表Iに示した<条件(H4)>にて、遮光層上に厚さが114nmの酸化物を含有する層(遮光層に接する層)を形成することによりサンプル用光学部材A3を作製した。 [Production of sample optical member A3]
A light shielding layer containing chromium and silicon dioxide and having a thickness of 1500 nm was formed on the substrate under <Conditions (BlackA)> shown in Table I above.
Next, a layer containing an oxide having a thickness of 114 nm (layer in contact with the light-shielding layer) was formed on the light-shielding layer under <Condition (H4)> shown in Table I, thereby forming a sample optical member A3. was made.
前記表Iに示した<条件(BlackA)>にて、基材上に厚さが1500nmのクロム及び二酸化ケイ素を含有する遮光層を形成した。
次に、前記表Iに示した<条件(H4)>にて、遮光層上に厚さが114nmの酸化物を含有する層(遮光層に接する層)を形成することによりサンプル用光学部材A3を作製した。 [Production of sample optical member A3]
A light shielding layer containing chromium and silicon dioxide and having a thickness of 1500 nm was formed on the substrate under <Conditions (BlackA)> shown in Table I above.
Next, a layer containing an oxide having a thickness of 114 nm (layer in contact with the light-shielding layer) was formed on the light-shielding layer under <Condition (H4)> shown in Table I, thereby forming a sample optical member A3. was made.
(2)設計値と実測値の乖離幅
上記により得られたサンプル用光学部材A1~A3について、光波長400~700nmの範囲内における分光反射率と分光透過率の設計値及び実測値を算出した。
サンプル用光学部材A1~A3の分光反射率をグラフ化したものを図12に示す。 (2) Deviation range between design values and actual measurement values For the sample optical members A1 to A3 obtained above, design values and actual measurement values of spectral reflectance and spectral transmittance within the light wavelength range of 400 to 700 nm were calculated. .
FIG. 12 shows a graph of the spectral reflectance of the sample optical members A1 to A3.
上記により得られたサンプル用光学部材A1~A3について、光波長400~700nmの範囲内における分光反射率と分光透過率の設計値及び実測値を算出した。
サンプル用光学部材A1~A3の分光反射率をグラフ化したものを図12に示す。 (2) Deviation range between design values and actual measurement values For the sample optical members A1 to A3 obtained above, design values and actual measurement values of spectral reflectance and spectral transmittance within the light wavelength range of 400 to 700 nm were calculated. .
FIG. 12 shows a graph of the spectral reflectance of the sample optical members A1 to A3.
なお、分光透過率に関しては、各光学部材で設計値と実測値との乖離幅がほぼ見られなかったことからグラフについては省略する。
Regarding the spectral transmittance, since there was almost no difference between the design value and the measured value for each optical member, the graph is omitted.
図12を見てわかるように、分光反射率に関しては、サンプル用光学部材A1の方がサンプル用光学部材A2及びA3よりも設計値と実測値との乖離幅が小さく、このことにより酸化物以外の化合物を遮光層に接する層に含有している光学部材が、酸化物を遮光層に接する層に含有している光学部材よりも酸素の影響が減少し化学的に安定で、その結果として光反射防止効果に優れていることがわかる。
As can be seen from FIG. 12, with respect to the spectral reflectance, the sample optical member A1 has a smaller divergence width between the design value and the measured value than the sample optical members A2 and A3. The optical member containing the compound in the layer in contact with the light-shielding layer is less affected by oxygen and is chemically more stable than the optical member containing the oxide in the layer in contact with the light-shielding layer. It can be seen that the antireflection effect is excellent.
A.遮光膜を備えた光学部材の作製
[光学部材No.1の作製]
(A.1)遮光膜の形成
(A.1.1)遮光層(第1層)の形成
前記表Iに示した<条件(BlackA)>にて、基材上に厚さが1500nmの遮光層を形成した。 A. Preparation of Optical Member Equipped with Light-Shielding Film [Optical member No. Production of 1]
(A.1) Formation of light-shielding film (A.1.1) Formation of light-shielding layer (first layer) Light-shielding with a thickness of 1500 nm on the base material under <conditions (BlackA)> shown in Table I above formed a layer.
[光学部材No.1の作製]
(A.1)遮光膜の形成
(A.1.1)遮光層(第1層)の形成
前記表Iに示した<条件(BlackA)>にて、基材上に厚さが1500nmの遮光層を形成した。 A. Preparation of Optical Member Equipped with Light-Shielding Film [Optical member No. Production of 1]
(A.1) Formation of light-shielding film (A.1.1) Formation of light-shielding layer (first layer) Light-shielding with a thickness of 1500 nm on the base material under <conditions (BlackA)> shown in Table I above formed a layer.
(A.1.2)遮光層に接する層(第2層)の形成
前記表Iに示した<条件(MgF2)>にて、遮光層(第1層)上に厚さが81.2nmの層(遮光層に接する層)を形成した。 (A.1.2) Formation of a layer (second layer) in contact with the light shielding layer A thickness of 81.2 nm on the light shielding layer (first layer) under <Conditions (MgF 2 )> shown in Table I above. layer (layer in contact with the light shielding layer) was formed.
前記表Iに示した<条件(MgF2)>にて、遮光層(第1層)上に厚さが81.2nmの層(遮光層に接する層)を形成した。 (A.1.2) Formation of a layer (second layer) in contact with the light shielding layer A thickness of 81.2 nm on the light shielding layer (first layer) under <Conditions (MgF 2 )> shown in Table I above. layer (layer in contact with the light shielding layer) was formed.
(A.2)光学部材の作製
上記の工程により表IIに示す層構成にて形成された遮光膜を備えた光学部材No.1を作製した。 (A.2) Fabrication of optical member Optical member No. 1 provided with a light-shielding film having a layer structure shown in Table II through the above steps. 1 was produced.
上記の工程により表IIに示す層構成にて形成された遮光膜を備えた光学部材No.1を作製した。 (A.2) Fabrication of optical member Optical member No. 1 provided with a light-shielding film having a layer structure shown in Table II through the above steps. 1 was produced.
[光学部材No.2及び3の作製]
第1層と第2層の成膜材料及び層厚を表IIのように変更し、各成膜材料にあわせて表Iの条件を適用して光学部材No.2及び3を作製した。 [Optical member No. Preparation of 2 and 3]
The film forming materials and layer thicknesses of the first layer and the second layer were changed as shown in Table II, and the conditions in Table I were applied according to each film forming material. 2 and 3 were made.
第1層と第2層の成膜材料及び層厚を表IIのように変更し、各成膜材料にあわせて表Iの条件を適用して光学部材No.2及び3を作製した。 [Optical member No. Preparation of 2 and 3]
The film forming materials and layer thicknesses of the first layer and the second layer were changed as shown in Table II, and the conditions in Table I were applied according to each film forming material. 2 and 3 were made.
B.表面反射防止効果を有する多層反射防止膜を備えた光学部材の作製
前述のように、本発明において「表面」とは、「遮光膜から見て基材側と逆側の面」のことであり、「表面反射防止効果」とは、「遮光膜から見て基材側と逆側の面から入射する光の反射を防止する効果」のことである。 B. Production of Optical Member Equipped with Multilayer Antireflection Film Having Surface Antireflection Effect As described above, in the present invention, the "surface" means "the side opposite to the substrate side when viewed from the light shielding film". , "surface antireflection effect" means "effect of preventing reflection of light incident from the surface opposite to the substrate side when viewed from the light shielding film".
前述のように、本発明において「表面」とは、「遮光膜から見て基材側と逆側の面」のことであり、「表面反射防止効果」とは、「遮光膜から見て基材側と逆側の面から入射する光の反射を防止する効果」のことである。 B. Production of Optical Member Equipped with Multilayer Antireflection Film Having Surface Antireflection Effect As described above, in the present invention, the "surface" means "the side opposite to the substrate side when viewed from the light shielding film". , "surface antireflection effect" means "effect of preventing reflection of light incident from the surface opposite to the substrate side when viewed from the light shielding film".
[光学部材No.4の作製]
(B.1)遮光膜の形成
(B.1.1)遮光層(第1層)の形成
前記表Iに示した<条件(BlackA)>にて、基材上に厚さが1500nmの遮光層を形成した。 [Optical member No. Production of 4]
(B.1) Formation of light-shielding film (B.1.1) Formation of light-shielding layer (first layer) Light-shielding with a thickness of 1500 nm on the base material under <conditions (BlackA)> shown in Table I above formed a layer.
(B.1)遮光膜の形成
(B.1.1)遮光層(第1層)の形成
前記表Iに示した<条件(BlackA)>にて、基材上に厚さが1500nmの遮光層を形成した。 [Optical member No. Production of 4]
(B.1) Formation of light-shielding film (B.1.1) Formation of light-shielding layer (first layer) Light-shielding with a thickness of 1500 nm on the base material under <conditions (BlackA)> shown in Table I above formed a layer.
(B.1.2)遮光層に接する層(第2層)の形成
前記表Iに示した<条件(MgF2)>にて、遮光層(第1層)上に厚さが8.0nmの層(遮光層に接する層)を形成した。 (B.1.2) Formation of a layer (second layer) in contact with the light-shielding layer Under <conditions (MgF 2 )> shown in Table I above, the thickness is 8.0 nm on the light-shielding layer (first layer). layer (layer in contact with the light shielding layer) was formed.
前記表Iに示した<条件(MgF2)>にて、遮光層(第1層)上に厚さが8.0nmの層(遮光層に接する層)を形成した。 (B.1.2) Formation of a layer (second layer) in contact with the light-shielding layer Under <conditions (MgF 2 )> shown in Table I above, the thickness is 8.0 nm on the light-shielding layer (first layer). layer (layer in contact with the light shielding layer) was formed.
(B.2)多層反射防止膜の形成
(B.2.1)光干渉層(第3層~第8層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表IIIの層順に従って適用し、遮光層に接する層(第2層)上に各層を形成することにより、光干渉層を形成した。 (B.2) Formation of multilayer antireflection film (B.2.1) Formation of light interference layer (3rd to 8th layers) )> was applied according to the layer order shown in Table III, and each layer was formed on the layer (second layer) in contact with the light shielding layer to form a light interference layer.
(B.2.1)光干渉層(第3層~第8層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表IIIの層順に従って適用し、遮光層に接する層(第2層)上に各層を形成することにより、光干渉層を形成した。 (B.2) Formation of multilayer antireflection film (B.2.1) Formation of light interference layer (3rd to 8th layers) )> was applied according to the layer order shown in Table III, and each layer was formed on the layer (second layer) in contact with the light shielding layer to form a light interference layer.
(B.3)光学部材の作製
上記の工程により表IIIに示す層構成にて形成された表面反射防止効果を有する多層反射防止膜を備えた光学部材No.4を作製した。 (B.3) Fabrication of optical member Optical member No. 1 provided with a multi-layer antireflection film having a surface antireflection effect formed with the layer structure shown in Table III by the above steps. 4 was produced.
上記の工程により表IIIに示す層構成にて形成された表面反射防止効果を有する多層反射防止膜を備えた光学部材No.4を作製した。 (B.3) Fabrication of optical member Optical member No. 1 provided with a multi-layer antireflection film having a surface antireflection effect formed with the layer structure shown in Table III by the above steps. 4 was produced.
[光学部材No.5の作製]
[光学部材No.4の作製]における(B.1.1)遮光層(第1層)の形成において、前記表Iに示した<条件(BlackA)>を<条件(BlackA:Ar)>とし、遮光層の形成時に不活性ガスとしてアルゴン(Ar)ガスを導入したこと以外は、第1層~第8層(遮光層、遮光層に接する層及び光干渉層)の成膜材料及び層厚を表IIIのように変更し、各成膜材料にあわせて表Iの条件を適用して光学部材No.5を作製した。
上記のように遮光層の形成時に不活性ガスとしてアルゴン(Ar)ガスを導入することで、遮光膜BlackAの酸化が抑制され、遮光層の屈折率と光吸収係数が増大する。
遮光膜の吸収係数が大きくなることより遮光層の膜厚が薄くても同等の透過率が確保でき、光学部材No.4と同等の結果を得ることが可能となった。
なお、上記の作製方法では不活性ガスとしてアルゴン(Ar)ガスrを導入したが、アルゴン(Ar)ガスのかわりに窒素(N2)ガスを用いたとしても同様の効果を得ることができる。 [Optical member No. Production of 5]
[Optical member No. 4] in (B.1.1) Formation of the light shielding layer (first layer), <Condition (BlackA)> shown in Table I above is changed to <Condition (BlackA: Ar)> to form the light shielding layer. Except that argon (Ar) gas was sometimes introduced as an inert gas, the deposition materials and layer thicknesses of the 1st to 8th layers (light-shielding layer, layer in contact with the light-shielding layer, and light interference layer) were as shown in Table III. , and applying the conditions in Table I in accordance with each film forming material, the optical member No. 5 was produced.
By introducing argon (Ar) gas as an inert gas when forming the light shielding layer as described above, the oxidation of the light shielding film BlackA is suppressed and the refractive index and light absorption coefficient of the light shielding layer are increased.
Since the absorption coefficient of the light shielding film is increased, even if the thickness of the light shielding layer is thin, the same transmittance can be ensured. It became possible to obtain results equivalent to those of 4.
Although argon (Ar) gas r is introduced as an inert gas in the above manufacturing method, the same effect can be obtained even if nitrogen (N 2 ) gas is used instead of argon (Ar) gas.
[光学部材No.4の作製]における(B.1.1)遮光層(第1層)の形成において、前記表Iに示した<条件(BlackA)>を<条件(BlackA:Ar)>とし、遮光層の形成時に不活性ガスとしてアルゴン(Ar)ガスを導入したこと以外は、第1層~第8層(遮光層、遮光層に接する層及び光干渉層)の成膜材料及び層厚を表IIIのように変更し、各成膜材料にあわせて表Iの条件を適用して光学部材No.5を作製した。
上記のように遮光層の形成時に不活性ガスとしてアルゴン(Ar)ガスを導入することで、遮光膜BlackAの酸化が抑制され、遮光層の屈折率と光吸収係数が増大する。
遮光膜の吸収係数が大きくなることより遮光層の膜厚が薄くても同等の透過率が確保でき、光学部材No.4と同等の結果を得ることが可能となった。
なお、上記の作製方法では不活性ガスとしてアルゴン(Ar)ガスrを導入したが、アルゴン(Ar)ガスのかわりに窒素(N2)ガスを用いたとしても同様の効果を得ることができる。 [Optical member No. Production of 5]
[Optical member No. 4] in (B.1.1) Formation of the light shielding layer (first layer), <Condition (BlackA)> shown in Table I above is changed to <Condition (BlackA: Ar)> to form the light shielding layer. Except that argon (Ar) gas was sometimes introduced as an inert gas, the deposition materials and layer thicknesses of the 1st to 8th layers (light-shielding layer, layer in contact with the light-shielding layer, and light interference layer) were as shown in Table III. , and applying the conditions in Table I in accordance with each film forming material, the optical member No. 5 was produced.
By introducing argon (Ar) gas as an inert gas when forming the light shielding layer as described above, the oxidation of the light shielding film BlackA is suppressed and the refractive index and light absorption coefficient of the light shielding layer are increased.
Since the absorption coefficient of the light shielding film is increased, even if the thickness of the light shielding layer is thin, the same transmittance can be ensured. It became possible to obtain results equivalent to those of 4.
Although argon (Ar) gas r is introduced as an inert gas in the above manufacturing method, the same effect can be obtained even if nitrogen (N 2 ) gas is used instead of argon (Ar) gas.
[光学部材No.6~25の作製]
第1層~第8層(遮光層、遮光層に接する層及び光干渉層)の成膜材料及び層厚を表III~表VIのように変更し、各成膜材料にあわせて表Iの条件を適用して光学部材No.6~25を作製した。 [Optical member No. Preparation of 6 to 25]
The deposition materials and layer thicknesses of the 1st to 8th layers (light-shielding layer, layer in contact with the light-shielding layer, and light interference layer) were changed as shown in Tables III to VI. Applying the conditions, the optical member No. 6-25 were made.
第1層~第8層(遮光層、遮光層に接する層及び光干渉層)の成膜材料及び層厚を表III~表VIのように変更し、各成膜材料にあわせて表Iの条件を適用して光学部材No.6~25を作製した。 [Optical member No. Preparation of 6 to 25]
The deposition materials and layer thicknesses of the 1st to 8th layers (light-shielding layer, layer in contact with the light-shielding layer, and light interference layer) were changed as shown in Tables III to VI. Applying the conditions, the optical member No. 6-25 were made.
C.裏面反射防止効果を有する多層反射防止膜を備えた光学部材の作製
前述のように、本発明において「裏面」とは、「遮光膜から見て基材側の面」のことであり、「裏面反射防止効果」とは、「遮光膜から見て基材側から入射する光の反射を防止する効果」のことである。 C. Production of Optical Member Equipped with Multilayer Antireflection Film Having Backside Antireflection Effect As described above, in the present invention, the “back surface” means “the surface on the substrate side when viewed from the light shielding film”, and the “back surface” The term "antireflection effect" means "the effect of preventing reflection of light incident from the substrate side when viewed from the light shielding film".
前述のように、本発明において「裏面」とは、「遮光膜から見て基材側の面」のことであり、「裏面反射防止効果」とは、「遮光膜から見て基材側から入射する光の反射を防止する効果」のことである。 C. Production of Optical Member Equipped with Multilayer Antireflection Film Having Backside Antireflection Effect As described above, in the present invention, the “back surface” means “the surface on the substrate side when viewed from the light shielding film”, and the “back surface” The term "antireflection effect" means "the effect of preventing reflection of light incident from the substrate side when viewed from the light shielding film".
[光学部材No.26の作製]
(C.1)多層反射防止膜の形成
(C.1.1)光干渉層(第1層~第8層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、光干渉層(第1層~第8層)を形成した。 [Optical member No. 26]
(C.1) Formation of multilayer antireflection film (C.1.1) Formation of light interference layers (1st to 8th layers) <condition (H4)> or <condition (MgF 2 ) shown in Table I )> were applied according to the layer order of Table VII to form the optical interference layers (1st to 8th layers).
(C.1)多層反射防止膜の形成
(C.1.1)光干渉層(第1層~第8層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、光干渉層(第1層~第8層)を形成した。 [Optical member No. 26]
(C.1) Formation of multilayer antireflection film (C.1.1) Formation of light interference layers (1st to 8th layers) <condition (H4)> or <condition (MgF 2 ) shown in Table I )> were applied according to the layer order of Table VII to form the optical interference layers (1st to 8th layers).
(C.2)光学部材の作製
上記の工程により表VIIに示す層構成にて形成された裏面反射防止効果を有する多層反射防止膜を備えた光学部材No.26を作製した。 (C.2) Fabrication of optical member Optical member No. 1 provided with a multilayer antireflection film having an antireflection effect on the back surface and formed with the layer structure shown in Table VII through the above steps. 26 was made.
上記の工程により表VIIに示す層構成にて形成された裏面反射防止効果を有する多層反射防止膜を備えた光学部材No.26を作製した。 (C.2) Fabrication of optical member Optical member No. 1 provided with a multilayer antireflection film having an antireflection effect on the back surface and formed with the layer structure shown in Table VII through the above steps. 26 was made.
[光学部材No.27の作製]
(C.3)多層反射防止膜の形成
(C.3.1)光干渉層(第1層~第7層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、光干渉層(第1層~第7層)を形成した。 [Optical member No. 27]
(C.3) Formation of multilayer antireflection film (C.3.1) Formation of optical interference layers (1st to 7th layers) <condition (H4)> or <condition (MgF 2 ) shown in Table I above )> were applied according to the layer order of Table VII to form the optical interference layers (1st to 7th layers).
(C.3)多層反射防止膜の形成
(C.3.1)光干渉層(第1層~第7層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、光干渉層(第1層~第7層)を形成した。 [Optical member No. 27]
(C.3) Formation of multilayer antireflection film (C.3.1) Formation of optical interference layers (1st to 7th layers) <condition (H4)> or <condition (MgF 2 ) shown in Table I above )> were applied according to the layer order of Table VII to form the optical interference layers (1st to 7th layers).
(C.4)遮光膜の形成
(C.4.1)遮光層に接する層(第8層)の形成
前記表Iに示した<条件(MgF2)>にて、第7層上に厚さが94.1nmの層(遮光層に接する層)を形成した。 (C.4) Formation of light shielding film (C.4.1) Formation of layer ( 8th layer) in contact with light shielding layer A layer having a thickness of 94.1 nm (a layer in contact with the light shielding layer) was formed.
(C.4.1)遮光層に接する層(第8層)の形成
前記表Iに示した<条件(MgF2)>にて、第7層上に厚さが94.1nmの層(遮光層に接する層)を形成した。 (C.4) Formation of light shielding film (C.4.1) Formation of layer ( 8th layer) in contact with light shielding layer A layer having a thickness of 94.1 nm (a layer in contact with the light shielding layer) was formed.
(C.4.2)遮光層の形成
前記表Iに示した<条件(BlackA)>にて、遮光層に接する層(第8層)上に厚さが1500nmの遮光層を形成した。 (C.4.2) Formation of Light-Shielding Layer A light-shielding layer having a thickness of 1500 nm was formed on the layer (eighth layer) in contact with the light-shielding layer under <Conditions (BlackA)> shown in Table I above.
前記表Iに示した<条件(BlackA)>にて、遮光層に接する層(第8層)上に厚さが1500nmの遮光層を形成した。 (C.4.2) Formation of Light-Shielding Layer A light-shielding layer having a thickness of 1500 nm was formed on the layer (eighth layer) in contact with the light-shielding layer under <Conditions (BlackA)> shown in Table I above.
(C.5)光学部材の作製
上記の工程により表VIIに示す層構成にて形成された裏面反射防止効果を有する多層反射防止膜を備えた光学部材No.27を作製した。 (C.5) Fabrication of optical member Optical member No. 1 provided with a multilayer antireflection film having a back-surface antireflection effect and formed with the layer structure shown in Table VII through the above steps. 27 was made.
上記の工程により表VIIに示す層構成にて形成された裏面反射防止効果を有する多層反射防止膜を備えた光学部材No.27を作製した。 (C.5) Fabrication of optical member Optical member No. 1 provided with a multilayer antireflection film having a back-surface antireflection effect and formed with the layer structure shown in Table VII through the above steps. 27 was made.
[光学部材No.28の作製]
(C.6)多層反射防止膜の形成
(C.6.1)光干渉層(第1層~第8層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、光干渉層(第1層~第8層)を形成した。 [Optical member No. Preparation of 28]
(C.6) Formation of multilayer antireflection film (C.6.1) Formation of optical interference layers (1st to 8th layers) <condition (H4)> or <condition (MgF 2 ) shown in Table I above )> were applied according to the layer order of Table VII to form the optical interference layers (1st to 8th layers).
(C.6)多層反射防止膜の形成
(C.6.1)光干渉層(第1層~第8層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、光干渉層(第1層~第8層)を形成した。 [Optical member No. Preparation of 28]
(C.6) Formation of multilayer antireflection film (C.6.1) Formation of optical interference layers (1st to 8th layers) <condition (H4)> or <condition (MgF 2 ) shown in Table I above )> were applied according to the layer order of Table VII to form the optical interference layers (1st to 8th layers).
(C.6.2)分光特性の調整層(第9層~第17層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、光干渉層(第1層~第8層)上に分光特性の調整層(第9層~第17層)を形成した。 (C.6.2) Formation of spectral characteristic adjustment layers (9th to 17th layers) <Condition (H4)> or <Condition (MgF 2 )> shown in Table I above according to the layer order in Table VII Then, spectral characteristic adjustment layers (9th to 17th layers) were formed on the optical interference layers (1st to 8th layers).
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、光干渉層(第1層~第8層)上に分光特性の調整層(第9層~第17層)を形成した。 (C.6.2) Formation of spectral characteristic adjustment layers (9th to 17th layers) <Condition (H4)> or <Condition (MgF 2 )> shown in Table I above according to the layer order in Table VII Then, spectral characteristic adjustment layers (9th to 17th layers) were formed on the optical interference layers (1st to 8th layers).
(C.7)遮光膜の形成
(C.7.1)遮光層に接する層(第18層)の形成
前記表Iに示した<条件(MgF2)>にて、分光特性の調整層(第9層~第17層)上に厚さが8.0nmの層(遮光層に接する層)を形成した。 (C.7) Formation of light-shielding film (C.7.1) Formation of layer (18th layer) in contact with light-shielding layer Under <Conditions (MgF 2 )> shown in Table I above, the spectral characteristic adjustment layer ( A layer having a thickness of 8.0 nm (a layer in contact with the light-shielding layer) was formed on the 9th to 17th layers).
(C.7.1)遮光層に接する層(第18層)の形成
前記表Iに示した<条件(MgF2)>にて、分光特性の調整層(第9層~第17層)上に厚さが8.0nmの層(遮光層に接する層)を形成した。 (C.7) Formation of light-shielding film (C.7.1) Formation of layer (18th layer) in contact with light-shielding layer Under <Conditions (MgF 2 )> shown in Table I above, the spectral characteristic adjustment layer ( A layer having a thickness of 8.0 nm (a layer in contact with the light-shielding layer) was formed on the 9th to 17th layers).
(C.7.2)遮光層(第19層)の形成
前記表Iに示した<条件(BlackA)>にて、遮光層に接する層(第18層)上に厚さが1500nmの遮光層を形成した。 (C.7.2) Formation of a light-shielding layer (19th layer) A light-shielding layer with a thickness of 1500 nm on the layer (18th layer) in contact with the light-shielding layer under <Condition (BlackA)> shown in Table I above. formed.
前記表Iに示した<条件(BlackA)>にて、遮光層に接する層(第18層)上に厚さが1500nmの遮光層を形成した。 (C.7.2) Formation of a light-shielding layer (19th layer) A light-shielding layer with a thickness of 1500 nm on the layer (18th layer) in contact with the light-shielding layer under <Condition (BlackA)> shown in Table I above. formed.
(C.8)光学部材の作製
上記の工程により表VIIに示す層構成にて形成された裏面反射防止効果を有する多層反射防止膜を備えた光学部材No.28を作製した。 (C.8) Fabrication of optical member Optical member No. 1 provided with a multi-layered antireflection film having an antireflection effect on the rear surface and formed with the layer structure shown in Table VII through the above steps. 28 was made.
上記の工程により表VIIに示す層構成にて形成された裏面反射防止効果を有する多層反射防止膜を備えた光学部材No.28を作製した。 (C.8) Fabrication of optical member Optical member No. 1 provided with a multi-layered antireflection film having an antireflection effect on the rear surface and formed with the layer structure shown in Table VII through the above steps. 28 was made.
[光学部材No.29の作製]
(C.9)多層反射防止膜の形成
(C.9.1)光干渉層(第1層~第8層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、光干渉層(第1層~第8層)を形成した。 [Optical member No. Preparation of 29]
(C.9) Formation of multilayer antireflection coating (C.9.1) Formation of light interference layers (1st to 8th layers) <condition (H4)> or <condition (MgF 2 ) shown in Table I )> were applied according to the layer order of Table VII to form the optical interference layers (1st to 8th layers).
(C.9)多層反射防止膜の形成
(C.9.1)光干渉層(第1層~第8層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、光干渉層(第1層~第8層)を形成した。 [Optical member No. Preparation of 29]
(C.9) Formation of multilayer antireflection coating (C.9.1) Formation of light interference layers (1st to 8th layers) <condition (H4)> or <condition (MgF 2 ) shown in Table I )> were applied according to the layer order of Table VII to form the optical interference layers (1st to 8th layers).
(C.9.2)分光特性の調整層(第9層~第16層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、第8層上に分光特性の調整層(第9層~第16層)を形成した。 (C.9.2) Formation of spectral characteristic adjustment layers (9th to 16th layers) <Condition (H4)> or <Condition (MgF 2 )> shown in Table I above according to the layer order in Table VII Then, spectral characteristics adjusting layers (9th to 16th layers) were formed on the 8th layer.
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIの層順に従って適用し、第8層上に分光特性の調整層(第9層~第16層)を形成した。 (C.9.2) Formation of spectral characteristic adjustment layers (9th to 16th layers) <Condition (H4)> or <Condition (MgF 2 )> shown in Table I above according to the layer order in Table VII Then, spectral characteristics adjusting layers (9th to 16th layers) were formed on the 8th layer.
(C.10)遮光膜の形成
(C.10.1)遮光層に接する層(第17層)の形成
前記表Iに示した<条件(MgF2)>にて、分光特性の調整層(第9層~第16層)上に厚さが40.7nmの層(遮光層に接する層)を形成した。 (C.10) Formation of light-shielding film (C.10.1) Formation of layer (17th layer) in contact with light-shielding layer Under <conditions (MgF 2 )> shown in Table I above, the spectral characteristic adjustment layer ( A layer (a layer in contact with the light-shielding layer) having a thickness of 40.7 nm was formed on the 9th to 16th layers).
(C.10.1)遮光層に接する層(第17層)の形成
前記表Iに示した<条件(MgF2)>にて、分光特性の調整層(第9層~第16層)上に厚さが40.7nmの層(遮光層に接する層)を形成した。 (C.10) Formation of light-shielding film (C.10.1) Formation of layer (17th layer) in contact with light-shielding layer Under <conditions (MgF 2 )> shown in Table I above, the spectral characteristic adjustment layer ( A layer (a layer in contact with the light-shielding layer) having a thickness of 40.7 nm was formed on the 9th to 16th layers).
(C.10.2)遮光層(第18層)の形成
前記表Iに示した<条件(BlackA)>にて、遮光層に接する層(第17層)上に厚さが1500nmの遮光層を形成した。 (C.10.2) Formation of a light-shielding layer (18th layer) A light-shielding layer with a thickness of 1500 nm on the layer (17th layer) in contact with the light-shielding layer under <Condition (BlackA)> shown in Table I above. formed.
前記表Iに示した<条件(BlackA)>にて、遮光層に接する層(第17層)上に厚さが1500nmの遮光層を形成した。 (C.10.2) Formation of a light-shielding layer (18th layer) A light-shielding layer with a thickness of 1500 nm on the layer (17th layer) in contact with the light-shielding layer under <Condition (BlackA)> shown in Table I above. formed.
(C.11)光学部材の作製
上記の工程により表VIIに示す層構成にて形成された裏面反射防止効果を有する多層反射防止膜を備えた光学部材No.29を作製した。 (C.11) Fabrication of optical member Optical member No. 1 provided with a multilayer antireflection film having a back-surface antireflection effect and formed with the layer structure shown in Table VII through the above steps. 29 was made.
上記の工程により表VIIに示す層構成にて形成された裏面反射防止効果を有する多層反射防止膜を備えた光学部材No.29を作製した。 (C.11) Fabrication of optical member Optical member No. 1 provided with a multilayer antireflection film having a back-surface antireflection effect and formed with the layer structure shown in Table VII through the above steps. 29 was made.
D.表面と裏面の両方の反射防止効果を有する多層反射防止膜
[光学部材No.30の作製]
(D.1)多層反射防止膜の裏面反射防止効果を有する層の形成
(D.1.1)光干渉層(第1層~第8層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIIの層順に従って適用し、光干渉層(第1層~第8層)を形成した。
その後一旦成膜装置から取り出し、大気下にて遮光膜成膜用のマスク治具に作製途中の光学部材をセットした。 D. Multilayer antireflection film having antireflection effects on both front and back surfaces [Optical member No. Production of 30]
(D.1) Formation of a layer having an antireflection effect on the rear surface of the multilayer antireflection film (D.1.1) Formation of the light interference layer (1st to 8th layers) )> or <Conditions (MgF 2 )> were applied according to the layer order in Table VIII to form optical interference layers (1st to 8th layers).
After that, the optical member was temporarily removed from the film forming apparatus, and the optical member in the process of production was set on a mask jig for forming a light shielding film in the atmosphere.
[光学部材No.30の作製]
(D.1)多層反射防止膜の裏面反射防止効果を有する層の形成
(D.1.1)光干渉層(第1層~第8層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIIの層順に従って適用し、光干渉層(第1層~第8層)を形成した。
その後一旦成膜装置から取り出し、大気下にて遮光膜成膜用のマスク治具に作製途中の光学部材をセットした。 D. Multilayer antireflection film having antireflection effects on both front and back surfaces [Optical member No. Production of 30]
(D.1) Formation of a layer having an antireflection effect on the rear surface of the multilayer antireflection film (D.1.1) Formation of the light interference layer (1st to 8th layers) )> or <Conditions (MgF 2 )> were applied according to the layer order in Table VIII to form optical interference layers (1st to 8th layers).
After that, the optical member was temporarily removed from the film forming apparatus, and the optical member in the process of production was set on a mask jig for forming a light shielding film in the atmosphere.
(D.1.2)分光特性の調整層(第9層~第17層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIIの層順に従って適用し、光干渉層(第1層~第8層)上に分光特性の調整層(第9層~第17層)を形成した。 (D.1.2) Formation of spectral characteristic adjustment layers (9th to 17th layers) <Condition (H4)> or <Condition (MgF 2 )> shown in Table I above according to the layer order in Table VIII Then, spectral characteristic adjustment layers (9th to 17th layers) were formed on the optical interference layers (1st to 8th layers).
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIIの層順に従って適用し、光干渉層(第1層~第8層)上に分光特性の調整層(第9層~第17層)を形成した。 (D.1.2) Formation of spectral characteristic adjustment layers (9th to 17th layers) <Condition (H4)> or <Condition (MgF 2 )> shown in Table I above according to the layer order in Table VIII Then, spectral characteristic adjustment layers (9th to 17th layers) were formed on the optical interference layers (1st to 8th layers).
(D.1.3)分光特性の調整層の形成と一括の工程にて形成される遮光層に接する層(第18層)の形成
なお、調整層の形成と一括の工程にて、前記表Iに示した<条件(MgF2)>にて、分光特性の調整層(第9層~第17層)上に厚さが8.0nmの層(遮光層に接する層)を形成した。 (D.1.3) Formation of a layer (eighteenth layer) in contact with a light-shielding layer formed in a step of forming a spectral characteristic adjustment layer and a batch process Under <conditions (MgF 2 )> shown in I, a layer (a layer in contact with the light-shielding layer) having a thickness of 8.0 nm was formed on the spectral characteristic adjustment layers (9th to 17th layers).
なお、調整層の形成と一括の工程にて、前記表Iに示した<条件(MgF2)>にて、分光特性の調整層(第9層~第17層)上に厚さが8.0nmの層(遮光層に接する層)を形成した。 (D.1.3) Formation of a layer (eighteenth layer) in contact with a light-shielding layer formed in a step of forming a spectral characteristic adjustment layer and a batch process Under <conditions (MgF 2 )> shown in I, a layer (a layer in contact with the light-shielding layer) having a thickness of 8.0 nm was formed on the spectral characteristic adjustment layers (9th to 17th layers).
(D.2)遮光膜の形成
(D.2.1)遮光層に接する層(第18層)の形成
上記の工程により遮光層に接する層(第18層)は形成されていることから、次工程として遮光層の形成を始めた。 (D.2) Formation of light-shielding film (D.2.1) Formation of layer (18th layer) in contact with light-shielding layer As the next step, formation of a light shielding layer was started.
(D.2.1)遮光層に接する層(第18層)の形成
上記の工程により遮光層に接する層(第18層)は形成されていることから、次工程として遮光層の形成を始めた。 (D.2) Formation of light-shielding film (D.2.1) Formation of layer (18th layer) in contact with light-shielding layer As the next step, formation of a light shielding layer was started.
(D.2.2)遮光層(第19層)の形成
再び成膜装置に上記の層が形成された光学部材を戻した上で、前記表Iに示した<条件(BlackA)>にて、遮光層に接する層(第18層)上に厚さが1500nmの遮光層を形成した。 (D.2.2) Formation of Light-Shielding Layer (19th Layer) After returning the optical member on which the above layer was formed to the film-forming apparatus, under <Condition (BlackA)> shown in Table I above, , a light shielding layer having a thickness of 1500 nm was formed on the layer (18th layer) in contact with the light shielding layer.
再び成膜装置に上記の層が形成された光学部材を戻した上で、前記表Iに示した<条件(BlackA)>にて、遮光層に接する層(第18層)上に厚さが1500nmの遮光層を形成した。 (D.2.2) Formation of Light-Shielding Layer (19th Layer) After returning the optical member on which the above layer was formed to the film-forming apparatus, under <Condition (BlackA)> shown in Table I above, , a light shielding layer having a thickness of 1500 nm was formed on the layer (18th layer) in contact with the light shielding layer.
(D.2.3)遮光層に接する層(第20層)の形成
前記表Iに示した<条件(MgF2)>にて、遮光層(第19層)上に厚さが8.0nmの層(遮光層に接する層)を形成した。 (D.2.3) Formation of a layer (20th layer) in contact with the light-shielding layer Under <conditions (MgF 2 )> shown in Table I above, the thickness is 8.0 nm on the light-shielding layer (19th layer). layer (layer in contact with the light shielding layer) was formed.
前記表Iに示した<条件(MgF2)>にて、遮光層(第19層)上に厚さが8.0nmの層(遮光層に接する層)を形成した。 (D.2.3) Formation of a layer (20th layer) in contact with the light-shielding layer Under <conditions (MgF 2 )> shown in Table I above, the thickness is 8.0 nm on the light-shielding layer (19th layer). layer (layer in contact with the light shielding layer) was formed.
(D.3)多層反射防止膜の表面反射防止効果を有する層の形成
(D.3.1)光干渉層(第21層~第26層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIIの層順に従って適用し、遮光層に接する層(第20層)上に各層を形成することにより、光干渉層を形成した。 (D.3) Formation of layer having surface antireflection effect of multilayer antireflection film (D.3.1) Formation of light interference layer (21st to 26th layers) )> or <Condition (MgF 2 )> according to the order of layers shown in Table VIII, and each layer was formed on the layer (20th layer) in contact with the light shielding layer to form a light interference layer.
(D.3.1)光干渉層(第21層~第26層)の形成
前記表Iに示した<条件(H4)>又は<条件(MgF2)>を表VIIIの層順に従って適用し、遮光層に接する層(第20層)上に各層を形成することにより、光干渉層を形成した。 (D.3) Formation of layer having surface antireflection effect of multilayer antireflection film (D.3.1) Formation of light interference layer (21st to 26th layers) )> or <Condition (MgF 2 )> according to the order of layers shown in Table VIII, and each layer was formed on the layer (20th layer) in contact with the light shielding layer to form a light interference layer.
(D.4)光学部材の作製
上記の工程により表VIIIに示す層構成にて形成された表面と裏面の両方の反射防止効果を有する多層反射防止膜を備えた光学部材No.30を作製した。 (D.4) Fabrication of optical member Optical member No. 1 was provided with a multilayer antireflection film having an antireflection effect on both the front surface and the back surface, which was formed with the layer structure shown in Table VIII by the above steps. 30 was made.
上記の工程により表VIIIに示す層構成にて形成された表面と裏面の両方の反射防止効果を有する多層反射防止膜を備えた光学部材No.30を作製した。 (D.4) Fabrication of optical member Optical member No. 1 was provided with a multilayer antireflection film having an antireflection effect on both the front surface and the back surface, which was formed with the layer structure shown in Table VIII by the above steps. 30 was made.
≪分光反射率及び分光透過率≫
(1)分光反射率
<設計値>
得られた光学部材サンプルNo.1~No.29の分光反射率の設計値を薄膜計算ソフトTF-CALC(Sotfware Spectra,Inc)にて算出した。
薄膜設計は、反射率Target(400~700nm 0.5%に設定)を入力し、ニードル法に基づき膜構成と膜厚を最適化した。
その際、400~700nmにおける10nm毎の分光反射率値を抽出してグラフ化し、各光学部材の設計値と実測値の乖離幅を評価することにより各光学部材の性能を評価した。
また、同時に前述の計算方法にしたがって、平均分光反射率の設計値を算出した。 <<Spectral reflectance and spectral transmittance>>
(1) Spectral reflectance <design value>
The obtained optical member sample No. 1 to No. The design value of the spectral reflectance of No. 29 was calculated with thin film calculation software TF-CALC (Sotfware Spectra, Inc).
For the thin film design, the reflectance Target (400 to 700 nm, set to 0.5%) was input, and the film configuration and film thickness were optimized based on the needle method.
At that time, the performance of each optical member was evaluated by extracting spectral reflectance values for each 10 nm from 400 to 700 nm and graphing them, and evaluating the deviation width between the design value and the actual measurement value of each optical member.
At the same time, the design value of the average spectral reflectance was calculated according to the calculation method described above.
(1)分光反射率
<設計値>
得られた光学部材サンプルNo.1~No.29の分光反射率の設計値を薄膜計算ソフトTF-CALC(Sotfware Spectra,Inc)にて算出した。
薄膜設計は、反射率Target(400~700nm 0.5%に設定)を入力し、ニードル法に基づき膜構成と膜厚を最適化した。
その際、400~700nmにおける10nm毎の分光反射率値を抽出してグラフ化し、各光学部材の設計値と実測値の乖離幅を評価することにより各光学部材の性能を評価した。
また、同時に前述の計算方法にしたがって、平均分光反射率の設計値を算出した。 <<Spectral reflectance and spectral transmittance>>
(1) Spectral reflectance <design value>
The obtained optical member sample No. 1 to No. The design value of the spectral reflectance of No. 29 was calculated with thin film calculation software TF-CALC (Sotfware Spectra, Inc).
For the thin film design, the reflectance Target (400 to 700 nm, set to 0.5%) was input, and the film configuration and film thickness were optimized based on the needle method.
At that time, the performance of each optical member was evaluated by extracting spectral reflectance values for each 10 nm from 400 to 700 nm and graphing them, and evaluating the deviation width between the design value and the actual measurement value of each optical member.
At the same time, the design value of the average spectral reflectance was calculated according to the calculation method described above.
<実測値>
オリンパス社製顕微分光測定機USPM-RU IIIを用いて、法線方向からの光入射に対する分光反射率を測定した。
その際、400~700nmにおける10nm毎の分光反射率値を抽出してグラフ化し、各光学部材の設計値と実測値の乖離幅を評価することにより各光学部材の性能を評価した。
また、同時に前述の計算方法にしたがって、平均分光反射率の実測値を算出した。 <Measured value>
Using a microspectrophotometer USPM-RU III manufactured by Olympus Corporation, the spectral reflectance with respect to incident light from the normal direction was measured.
At that time, the performance of each optical member was evaluated by extracting spectral reflectance values for each 10 nm from 400 to 700 nm and graphing them, and evaluating the divergence width between the design value and the actual measurement value of each optical member.
At the same time, the actual measurement value of the average spectral reflectance was calculated according to the calculation method described above.
オリンパス社製顕微分光測定機USPM-RU IIIを用いて、法線方向からの光入射に対する分光反射率を測定した。
その際、400~700nmにおける10nm毎の分光反射率値を抽出してグラフ化し、各光学部材の設計値と実測値の乖離幅を評価することにより各光学部材の性能を評価した。
また、同時に前述の計算方法にしたがって、平均分光反射率の実測値を算出した。 <Measured value>
Using a microspectrophotometer USPM-RU III manufactured by Olympus Corporation, the spectral reflectance with respect to incident light from the normal direction was measured.
At that time, the performance of each optical member was evaluated by extracting spectral reflectance values for each 10 nm from 400 to 700 nm and graphing them, and evaluating the divergence width between the design value and the actual measurement value of each optical member.
At the same time, the actual measurement value of the average spectral reflectance was calculated according to the calculation method described above.
<評価方法>
上記の各光学部材の設計値と実測値との乖離幅の評価を下記基準にて評価した。
なお、下記基準において、「設計値と実測値との乖離幅が大きい」とは、例えば図10における光学部材A2及びA3のように、光波長400~700nmの範囲内において、設計値と実測値をグラフ化したときに両値が分光反射率で1%以上離れている領域がグラフ上の線の50%以上を占める場合とし、光学部材A1のように、そうではない場合を「設計値と実測値との乖離幅が小さい」と定義する。 <Evaluation method>
The deviation width between the design value and the actual measurement value of each optical member was evaluated according to the following criteria.
In the following criteria, "large divergence between design value and actual measurement value" means, for example, optical members A2 and A3 in FIG. When graphed, the area where the two values are separated by 1% or more in terms of spectral reflectance occupies 50% or more of the line on the graph. The range of deviation from the actual measurement value is small.”
上記の各光学部材の設計値と実測値との乖離幅の評価を下記基準にて評価した。
なお、下記基準において、「設計値と実測値との乖離幅が大きい」とは、例えば図10における光学部材A2及びA3のように、光波長400~700nmの範囲内において、設計値と実測値をグラフ化したときに両値が分光反射率で1%以上離れている領域がグラフ上の線の50%以上を占める場合とし、光学部材A1のように、そうではない場合を「設計値と実測値との乖離幅が小さい」と定義する。 <Evaluation method>
The deviation width between the design value and the actual measurement value of each optical member was evaluated according to the following criteria.
In the following criteria, "large divergence between design value and actual measurement value" means, for example, optical members A2 and A3 in FIG. When graphed, the area where the two values are separated by 1% or more in terms of spectral reflectance occupies 50% or more of the line on the graph. The range of deviation from the actual measurement value is small.”
(評価基準)
○:分光反射率の設計値と実測値をグラフ化したとき、両値の乖離幅が小さく、実用上問題ないレベル。
×:分光反射率の設計値と実測値をグラフ化したとき、両値の乖離幅が大きく、実用上問題が生じるレベル。 (Evaluation criteria)
○: When the design value and the measured value of the spectral reflectance are graphed, the range of divergence between the two values is small, and there is no problem in practical use.
x: When the design value and the measured value of the spectral reflectance are graphed, the range of divergence between the two values is large, and the level causes problems in practice.
○:分光反射率の設計値と実測値をグラフ化したとき、両値の乖離幅が小さく、実用上問題ないレベル。
×:分光反射率の設計値と実測値をグラフ化したとき、両値の乖離幅が大きく、実用上問題が生じるレベル。 (Evaluation criteria)
○: When the design value and the measured value of the spectral reflectance are graphed, the range of divergence between the two values is small, and there is no problem in practical use.
x: When the design value and the measured value of the spectral reflectance are graphed, the range of divergence between the two values is large, and the level causes problems in practice.
(2)分光透過率
<設計値>
得られた光学部材サンプルNo.1~No.29の分光反射率の設計値を薄膜計算ソフトTF-CALC(Sotfware Spectra,Inc)にて算出した。
その際、400~700nmにおける10nm毎の分光透過率値を抽出してグラフ化し、各光学部材の設計値と実測値の乖離幅を評価することにより各光学部材の性能を評価した。
また、同時に前述の計算方法にしたがって、平均分光透過率の設計値を算出した。
各光学部材の分光透過率値の設計値をグラフ化した。 (2) Spectral transmittance <design value>
The obtained optical member sample No. 1 to No. The design value of the spectral reflectance of No. 29 was calculated with thin film calculation software TF-CALC (Sotfware Spectra, Inc).
At that time, spectral transmittance values were extracted for each 10 nm from 400 to 700 nm and graphed, and the performance of each optical member was evaluated by evaluating the deviation width between the design value and the actual measurement value of each optical member.
At the same time, the design value of the average spectral transmittance was calculated according to the calculation method described above.
Design values for the spectral transmittance of each optical member are graphed.
<設計値>
得られた光学部材サンプルNo.1~No.29の分光反射率の設計値を薄膜計算ソフトTF-CALC(Sotfware Spectra,Inc)にて算出した。
その際、400~700nmにおける10nm毎の分光透過率値を抽出してグラフ化し、各光学部材の設計値と実測値の乖離幅を評価することにより各光学部材の性能を評価した。
また、同時に前述の計算方法にしたがって、平均分光透過率の設計値を算出した。
各光学部材の分光透過率値の設計値をグラフ化した。 (2) Spectral transmittance <design value>
The obtained optical member sample No. 1 to No. The design value of the spectral reflectance of No. 29 was calculated with thin film calculation software TF-CALC (Sotfware Spectra, Inc).
At that time, spectral transmittance values were extracted for each 10 nm from 400 to 700 nm and graphed, and the performance of each optical member was evaluated by evaluating the deviation width between the design value and the actual measurement value of each optical member.
At the same time, the design value of the average spectral transmittance was calculated according to the calculation method described above.
Design values for the spectral transmittance of each optical member are graphed.
<実測値>
分光光度計U4100(日立ハイテクノロジーズ社製)を用いて、分光透過率を測定した。
その際、400~700nmにおける10nm毎の分光透過率値を抽出してグラフ化し、各光学部材の設計値と実測値の乖離幅を評価することにより各光学部材の性能を評価した。
また、同時に前述の計算方法にしたがって、平均分光透過率の設計値を算出した。 <Measured value>
The spectral transmittance was measured using a spectrophotometer U4100 (manufactured by Hitachi High-Technologies Corporation).
At that time, spectral transmittance values were extracted for each 10 nm from 400 to 700 nm and graphed, and the performance of each optical member was evaluated by evaluating the deviation width between the design value and the actual measurement value of each optical member.
At the same time, the design value of the average spectral transmittance was calculated according to the calculation method described above.
分光光度計U4100(日立ハイテクノロジーズ社製)を用いて、分光透過率を測定した。
その際、400~700nmにおける10nm毎の分光透過率値を抽出してグラフ化し、各光学部材の設計値と実測値の乖離幅を評価することにより各光学部材の性能を評価した。
また、同時に前述の計算方法にしたがって、平均分光透過率の設計値を算出した。 <Measured value>
The spectral transmittance was measured using a spectrophotometer U4100 (manufactured by Hitachi High-Technologies Corporation).
At that time, spectral transmittance values were extracted for each 10 nm from 400 to 700 nm and graphed, and the performance of each optical member was evaluated by evaluating the deviation width between the design value and the actual measurement value of each optical member.
At the same time, the design value of the average spectral transmittance was calculated according to the calculation method described above.
<評価方法>
上記の各光学部材の設計値と実測値との乖離幅の評価を下記基準にて評価した。
なお、下記基準において、「設計値と実測値との乖離幅が大きい」とは、光波長400~700nmの範囲内において、設計値と実測値をグラフ化したときに両値が分光透過率で1%以上離れている領域がグラフ上の線の50%以上を占める場合とし、そうではない場合を「設計値と実測値との乖離幅が小さい」と定義する。 <Evaluation method>
The deviation width between the design value and the actual measurement value of each optical member was evaluated according to the following criteria.
In the following criteria, "the range of divergence between the design value and the measured value is large" means that when the design value and the measured value are graphed within the light wavelength range of 400 to 700 nm, both values are spectral transmittance. The case where the area separated by 1% or more occupies 50% or more of the line on the graph is defined as "the divergence width between the design value and the actual measurement value is small" when this is not the case.
上記の各光学部材の設計値と実測値との乖離幅の評価を下記基準にて評価した。
なお、下記基準において、「設計値と実測値との乖離幅が大きい」とは、光波長400~700nmの範囲内において、設計値と実測値をグラフ化したときに両値が分光透過率で1%以上離れている領域がグラフ上の線の50%以上を占める場合とし、そうではない場合を「設計値と実測値との乖離幅が小さい」と定義する。 <Evaluation method>
The deviation width between the design value and the actual measurement value of each optical member was evaluated according to the following criteria.
In the following criteria, "the range of divergence between the design value and the measured value is large" means that when the design value and the measured value are graphed within the light wavelength range of 400 to 700 nm, both values are spectral transmittance. The case where the area separated by 1% or more occupies 50% or more of the line on the graph is defined as "the divergence width between the design value and the actual measurement value is small" when this is not the case.
(評価基準)
○:分光透過率の設計値と実測値をグラフ化したとき、両値の乖離幅が小さく、実用上問題ないレベル。
×:分光透過率の設計値と実測値をグラフ化したとき、両値の乖離幅が大きく、実用上問題がでるレベル。 (Evaluation criteria)
◯: When the design value and the measured value of the spectral transmittance are graphed, the range of divergence between the two values is small, and there is no problem in practical use.
x: When the design value and the measured value of the spectral transmittance are graphed, the range of divergence between the two values is large, and the level is problematic in practice.
○:分光透過率の設計値と実測値をグラフ化したとき、両値の乖離幅が小さく、実用上問題ないレベル。
×:分光透過率の設計値と実測値をグラフ化したとき、両値の乖離幅が大きく、実用上問題がでるレベル。 (Evaluation criteria)
◯: When the design value and the measured value of the spectral transmittance are graphed, the range of divergence between the two values is small, and there is no problem in practical use.
x: When the design value and the measured value of the spectral transmittance are graphed, the range of divergence between the two values is large, and the level is problematic in practice.
(3)各光学部材の評価
実施例及び比較例にて作製した各光学部材について、上記の評価基準にて評価した。
評価結果は表II~表VIIIのとおりである。 (3) Evaluation of each optical member Each optical member produced in Examples and Comparative Examples was evaluated according to the above evaluation criteria.
Evaluation results are shown in Tables II to VIII.
実施例及び比較例にて作製した各光学部材について、上記の評価基準にて評価した。
評価結果は表II~表VIIIのとおりである。 (3) Evaluation of each optical member Each optical member produced in Examples and Comparative Examples was evaluated according to the above evaluation criteria.
Evaluation results are shown in Tables II to VIII.
(4)まとめ
以上のことから実施例の各光学部材においては、比較例の各光学部材とは異なり、分光反射率及び分光透過率において、あらかじめ設定しておいた設計値との乖離幅が小さく、遮光性及び光反射防止性並びに化学的安定性に優れた遮光膜及び多層反射防止膜が得られることがわかった。 (4) Conclusion From the above, unlike the optical members of the comparative examples, the optical members of the examples have a small divergence from the preset design values in terms of spectral reflectance and spectral transmittance. It was found that a light-shielding film and a multilayer anti-reflection film having excellent light-shielding properties, light anti-reflection properties, and chemical stability can be obtained.
以上のことから実施例の各光学部材においては、比較例の各光学部材とは異なり、分光反射率及び分光透過率において、あらかじめ設定しておいた設計値との乖離幅が小さく、遮光性及び光反射防止性並びに化学的安定性に優れた遮光膜及び多層反射防止膜が得られることがわかった。 (4) Conclusion From the above, unlike the optical members of the comparative examples, the optical members of the examples have a small divergence from the preset design values in terms of spectral reflectance and spectral transmittance. It was found that a light-shielding film and a multilayer anti-reflection film having excellent light-shielding properties, light anti-reflection properties, and chemical stability can be obtained.
遮光性及び光反射防止性並びに化学的安定性に優れた遮光膜及び多層反射防止膜、それらの設計値と実測値との乖離が少ない製造方法及び光学部材を提供することができる。
It is possible to provide a light-shielding film and a multilayer anti-reflection film that are excellent in light-shielding properties, anti-reflection properties, and chemical stability, and a manufacturing method and an optical member that have little deviation between their design values and actual measurement values.
1 真空蒸着装置
2 チャンバー
3 ドーム
4 基板
5 蒸着源
6 蒸着物質
7 IADイオンソース
8 イオンビーム
L(1) 遮光層
L(2) 遮光層に接する層
LR 光干渉層
La 分光特性の調製層
Rref 従来の遮光膜に必要とされる分光反射率の値
Dref 分光反射率の実測値
Rtra 従来の遮光膜に必要とされる分光透過率の値
Dtra 分光透過率の実測値 REFERENCE SIGNSLIST 1 vacuum deposition apparatus 2 chamber 3 dome 4 substrate 5 deposition source 6 deposition material 7 IAD ion source 8 ion beam L (1) light shielding layer L (2) layer in contact with light shielding layer L R light interference layer L a spectral characteristic adjustment layer R ref Value of spectral reflectance required for conventional light-shielding film D ref Measured value of spectral reflectance R tra Value of spectral transmittance required for conventional light-shielding film D tra Measured spectral transmittance
2 チャンバー
3 ドーム
4 基板
5 蒸着源
6 蒸着物質
7 IADイオンソース
8 イオンビーム
L(1) 遮光層
L(2) 遮光層に接する層
LR 光干渉層
La 分光特性の調製層
Rref 従来の遮光膜に必要とされる分光反射率の値
Dref 分光反射率の実測値
Rtra 従来の遮光膜に必要とされる分光透過率の値
Dtra 分光透過率の実測値 REFERENCE SIGNS
Claims (14)
- 少なくとも、遮光層と前記遮光層に接する層とを有する遮光膜であって、
前記遮光層が、クロム及び二酸化ケイ素を含有し、
前記遮光層に接する層の少なくとも一つが、酸化物以外の化合物を含有する
ことを特徴とする遮光膜。 A light-shielding film having at least a light-shielding layer and a layer in contact with the light-shielding layer,
The light shielding layer contains chromium and silicon dioxide,
A light-shielding film, wherein at least one of the layers in contact with the light-shielding layer contains a compound other than an oxide. - 前記遮光層に接する層の少なくとも一つが、MgF2、AlF2、NdF3、LaF3、YF3、GdF3、YbF3、PbF2、Na3AlF6、Na5Al3F14及びCeF3から選ばれるいずれかのフッ化物を含有する
ことを特徴とする請求項1に記載の遮光膜。 at least one of the layers in contact with the light shielding layer is composed of MgF2 , AlF2 , NdF3 , LaF3 , YF3 , GdF3 , YbF3 , PbF2 , Na3AlF6 , Na5Al3F14 and CeF3 2. The light-shielding film according to claim 1, containing any selected fluoride. - 前記遮光層に接する層の少なくとも一つが、硫化物を含有する
ことを特徴とする請求項1又は請求項2に記載の遮光膜。 3. The light-shielding film according to claim 1, wherein at least one of the layers in contact with the light-shielding layer contains sulfide. - 前記硫化物が、ZnSである
ことを特徴とする請求項3に記載の遮光膜。 4. The light shielding film according to claim 3, wherein said sulfide is ZnS. - 400~700nmの波長領域内における平均分光透過率が、2%以下である
ことを特徴とする請求項1から請求項4までのいずれか一項に記載の遮光膜。 5. The light shielding film according to any one of claims 1 to 4, wherein the average spectral transmittance in the wavelength region of 400 to 700 nm is 2% or less. - 遮光膜を備えた多層反射防止膜であって、
前記遮光膜として、請求項1から請求項5までのいずれか一項に記載の遮光膜を備え、かつ、少なくとも一つの前記遮光層に接する層上に少なくとも光干渉層を有する
ことを特徴とする多層反射防止膜。 A multilayer antireflection film comprising a light shielding film,
The light shielding film according to any one of claims 1 to 5 is provided as the light shielding film, and at least a light interference layer is provided on a layer in contact with at least one of the light shielding layers. Multilayer anti-reflection coating. - 前記遮光層に接する層と前記光干渉層の間に分光特性の調整層を有する
ことを特徴とする請求項6に記載の多層反射防止膜。 7. The multi-layer antireflection film according to claim 6, further comprising a layer for adjusting spectral characteristics between the layer in contact with the light shielding layer and the light interference layer. - 400~700nmの波長領域内における平均分光反射率が、2%以下である
ことを特徴とする請求項6又は請求項7に記載の多層反射防止膜。 8. The multilayer antireflection film according to claim 6, wherein the average spectral reflectance in the wavelength region of 400 to 700 nm is 2% or less. - 請求項1から請求項5までのいずれか一項に記載の遮光膜を製造する遮光膜の製造方法であって、
前記遮光層を、アルゴンガス雰囲気下にて、クロム及び二酸化ケイ素の混合物を製膜して形成する
ことを特徴とする遮光膜の製造方法。 A light-shielding film manufacturing method for manufacturing the light-shielding film according to any one of claims 1 to 5,
A method for producing a light-shielding film, wherein the light-shielding layer is formed by depositing a mixture of chromium and silicon dioxide in an argon gas atmosphere. - 請求項1から請求項5までのいずれか一項に記載の遮光膜を製造する遮光膜の製造方法であって、
前記遮光層を、窒素ガス雰囲気下にて、クロム及び二酸化ケイ素の混合物を製膜して形成する
ことを特徴とする遮光膜の製造方法。 A light-shielding film manufacturing method for manufacturing the light-shielding film according to any one of claims 1 to 5,
A method for producing a light-shielding film, wherein the light-shielding layer is formed by forming a film of a mixture of chromium and silicon dioxide in a nitrogen gas atmosphere. - 請求項6から請求項8までのいずれか一項に記載の多層反射防止膜を製造する多層反射防止膜の製造方法であって、
前記遮光膜を形成する工程と、前記遮光膜上に少なくとも光干渉層を積層する工程を有する
ことを特徴とする多層反射防止膜の製造方法。 A method for manufacturing a multilayer antireflection film according to any one of claims 6 to 8, comprising:
A method for manufacturing a multi-layer antireflection film, comprising the steps of: forming the light shielding film; and laminating at least a light interference layer on the light shielding film. - 基材上に、少なくとも遮光膜を備えた光学部材であって、
前記遮光膜として、請求項1から請求項5までのいずれか一項に記載の遮光膜を備えている
ことを特徴とする光学部材。 An optical member comprising at least a light shielding film on a substrate,
An optical member comprising the light shielding film according to any one of claims 1 to 5 as the light shielding film. - 前記遮光膜上に、光干渉層が形成されている
ことを特徴とする請求項12に記載の光学部材。 13. The optical member according to claim 12, further comprising a light interference layer formed on the light shielding film. - 前記基材と前記遮光膜との間に、光干渉層が形成されている
ことを特徴とする請求項12又は請求項13に記載の光学部材。 14. The optical member according to claim 12, wherein a light interference layer is formed between the base material and the light shielding film.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021149619 | 2021-09-14 | ||
JP2021-149619 | 2021-09-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023042438A1 true WO2023042438A1 (en) | 2023-03-23 |
Family
ID=85602655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/011218 WO2023042438A1 (en) | 2021-09-14 | 2022-03-14 | Light blocking film, multilayer antireflection film, method for producing said light blocking film, method for producing said multilayer antireflection film, and optical member |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023042438A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01252926A (en) * | 1988-03-31 | 1989-10-09 | Hoya Corp | Colored plastic lens |
JPH03182752A (en) * | 1989-12-13 | 1991-08-08 | Fujitsu Ltd | Formation of mask for exposing |
JPH07301907A (en) * | 1994-05-09 | 1995-11-14 | Fujitsu Ltd | Photomask and its production |
JP2002156743A (en) * | 2000-11-20 | 2002-05-31 | Shin Etsu Chem Co Ltd | Photomask blank and method for manufacturing the same |
JP3211797U (en) * | 2017-05-25 | 2017-08-03 | ワンレンソリューション オプティカル テクノロジー エスディーエヌ ビーエイチディーOnelensolution optical technology Sdn Bhd | Optical lens |
JP2017167557A (en) * | 2017-05-22 | 2017-09-21 | 旭硝子株式会社 | Light absorber and image capturing device using the same |
WO2020104392A2 (en) * | 2018-11-19 | 2020-05-28 | Essilor International | Optical lens having a filtering interferential coating and a multilayer system for improving abrasion-resistance |
-
2022
- 2022-03-14 WO PCT/JP2022/011218 patent/WO2023042438A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01252926A (en) * | 1988-03-31 | 1989-10-09 | Hoya Corp | Colored plastic lens |
JPH03182752A (en) * | 1989-12-13 | 1991-08-08 | Fujitsu Ltd | Formation of mask for exposing |
JPH07301907A (en) * | 1994-05-09 | 1995-11-14 | Fujitsu Ltd | Photomask and its production |
JP2002156743A (en) * | 2000-11-20 | 2002-05-31 | Shin Etsu Chem Co Ltd | Photomask blank and method for manufacturing the same |
JP2017167557A (en) * | 2017-05-22 | 2017-09-21 | 旭硝子株式会社 | Light absorber and image capturing device using the same |
JP3211797U (en) * | 2017-05-25 | 2017-08-03 | ワンレンソリューション オプティカル テクノロジー エスディーエヌ ビーエイチディーOnelensolution optical technology Sdn Bhd | Optical lens |
WO2020104392A2 (en) * | 2018-11-19 | 2020-05-28 | Essilor International | Optical lens having a filtering interferential coating and a multilayer system for improving abrasion-resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5728456A (en) | Methods and apparatus for providing an absorbing, broad band, low brightness, antireflection coating | |
EP1008868B1 (en) | Optical-thin-film material, process for its production, and optical device making use of the optical-thin-film material | |
GB2372044A (en) | Functional film with concentration gradient | |
Cevro | Ion-beam sputtering of (Ta2O5) x−(SiO2) 1− x composite thin films | |
US9963773B2 (en) | Durable MgO—MgF2 composite film for infrared anti-reflection coatings | |
EP2776602A1 (en) | Ion beam deposition of fluorine-based optical films | |
US20230384491A1 (en) | Optical product and optical product manufacturing method | |
US7575798B2 (en) | Optical element with an opaque chrome coating having an aperture and method of making same | |
AU1337799A (en) | Multilayer electrically conductive anti-reflective coating | |
WO2021111813A1 (en) | Optical member and production method therefor | |
JP2006317603A (en) | Front surface mirror | |
WO2023042438A1 (en) | Light blocking film, multilayer antireflection film, method for producing said light blocking film, method for producing said multilayer antireflection film, and optical member | |
JPH11171596A (en) | Reflection preventing film | |
TW201400850A (en) | Optical element | |
JP2007310335A (en) | Front surface mirror | |
EP3660548A1 (en) | Optical member and producing method of optical member | |
KR20050102661A (en) | Vaporizing material for producing highly refractive optical layers | |
JP2010072636A (en) | Optical article and method for manufacturing the same | |
WO1997008357A1 (en) | Anti-reflective coating | |
WO2018216540A1 (en) | Lens having hydrophilic anti-reflection film and production method therefor | |
CA2059525A1 (en) | Method of depositing optical oxide coatings at enhanced rates | |
JP2010072635A (en) | Optical article and method for manufacturing the same | |
KR970000382B1 (en) | Low-reflection coating glass and its process | |
JPH10268107A (en) | Synthetic resin lens with antireflection film | |
JP3028576B2 (en) | Heat shielding glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22869590 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22869590 Country of ref document: EP Kind code of ref document: A1 |