WO2018216540A1 - Lens having hydrophilic anti-reflection film and production method therefor - Google Patents

Lens having hydrophilic anti-reflection film and production method therefor Download PDF

Info

Publication number
WO2018216540A1
WO2018216540A1 PCT/JP2018/018653 JP2018018653W WO2018216540A1 WO 2018216540 A1 WO2018216540 A1 WO 2018216540A1 JP 2018018653 W JP2018018653 W JP 2018018653W WO 2018216540 A1 WO2018216540 A1 WO 2018216540A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
hydrophilic
lens
antireflective
tio
Prior art date
Application number
PCT/JP2018/018653
Other languages
French (fr)
Japanese (ja)
Inventor
秀一朗 川岸
白石 幸一郎
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201880033482.7A priority Critical patent/CN110709364A/en
Publication of WO2018216540A1 publication Critical patent/WO2018216540A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present invention relates to a lens with a hydrophilic antireflective film and a method of manufacturing the same.
  • an antifogging coat for preventing lens fogging.
  • the antifogging coat for example, it is known to provide a hydrophilic film on the outermost layer.
  • conventional hydrophilic membranes also adsorb oil components as well as moisture in the air. As a result, the hydrophilicity is reduced, and good antifogging properties can not be obtained.
  • the hydrophilic coat which used the photocatalyst material is developed as a hydrophilic membrane.
  • an antifogging antireflective film is formed on a transparent substrate.
  • the antifogging antireflective film has a configuration in which a high refractive index film and a low refractive index film are alternately stacked.
  • the high refractive index film is a titanium oxide film exhibiting photocatalytic reaction.
  • the outermost layer of the antifogging antireflective film is a low refractive index film made of an inorganic chemical exhibiting hydrophilicity. Therefore, the titanium oxide film in Patent Document 1 is covered with a low refractive index film.
  • an optical multilayer film composed of a plurality of thin films and having a low reflectance is formed on an optical substrate.
  • An antifogging thin film containing photocatalyst particles and exhibiting hydrophilicity is used as the outermost layer of the optical multilayer film.
  • the film thickness of the antifogging thin film is calculated based on the refractive index and the wavelength, it is found that the film thickness is very thick.
  • the antifogging thin film has a refractive index higher than that of glass.
  • the antireflective effect is reduced by the fact that the antifogging thin film having a high refractive index and a thick film is positioned at the outermost layer.
  • the present invention was made based on the above-mentioned problem awareness, and an object of the present invention is to provide a lens with a hydrophilic antireflective film having antifogging properties without impairing the antireflective effect, and a method of manufacturing the same.
  • the lens with a hydrophilic antireflective film of the present invention has a hydrophilic antireflective film in which at least a base film and a hydrophilic film are sequentially laminated on the surface of a glass lens, and the base film is ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , and Y 2 O 3 , or a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , Y 2 O 3 , TiO 2 , and It is formed of a mixed layer containing 50% or more of one or more materials selected from Ti 3 O 5 and has a film thickness of 1 nm or more and 30 nm or less, and the hydrophilic film comprises TiO 2 and A single layer of titanium oxide made of at least one of Ti 3 O 5 or titanium nitride made of TiN, or a mixed layer containing 50% or more of at least one of the titanium oxide and the titanium nitride, and the film
  • the porosity of the hydrophilic film is preferably 20% or less.
  • the hydrophilic antireflective film is laminated on the surface of the glass lens in the order of an antireflective film, the underlayer and the hydrophilic film, and the antireflective film is SiO 2 , MgF 2 , It has one or more single layers or mixed layers containing two or more materials selected from ZrO 2 , Al 2 O 3 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 , and Nb 2 O 5 Preferably, it is formed.
  • the method for producing a lens with a hydrophilic antireflective film according to the present invention comprises a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 and Y 2 O 3 on the surface of a glass lens, or , ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , Y 2 O 3 , TiO 2 , and Ti 3 O 5 in a mixed layer containing 50% or more of one or more materials selected from A step of forming a base film having a thickness of 1 nm to 30 nm, and a single layer of titanium oxide made of at least one of TiO 2 and Ti 3 O 5 or titanium nitride made of TiN on the surface of the base film Forming a hydrophilic film having a thickness of 1 nm or more and 30 nm or less in a mixed layer containing 50% or more of at least one of the titanium oxide and the titanium nitride.
  • the underlayer film and the hydrophilic film it is preferable to form the underlayer film and the hydrophilic film by vapor deposition or sputtering.
  • the substrate heating temperature at the time of forming the base film and the hydrophilic film by the vapor deposition method is preferably 250 ° C. or more.
  • an ion beam assisted deposition method or an electron beam method as the deposition method.
  • the lens with a hydrophilic anti-reflective film provided with anti-fogging property, and its manufacturing method can be provided, without impairing an anti-reflective effect.
  • the inventors of the present invention conducted intensive studies on a hydrophilic film and a base film using a photocatalytic material as the outermost layer. As a result, a sufficient hydrophilic effect is obtained without impairing the antireflective effect, and the antifogging property is obtained. It came to improve. That is, the lens with a hydrophilic anti-reflection film of the present embodiment is provided with the following characteristic portions (1) to (3).
  • the surface of the glass lens has at least a hydrophilic antireflective film laminated in the order of a base film and a hydrophilic film.
  • the underlayer is a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , and Y 2 O 3 , or ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 It is formed of a mixed layer containing 50% or more of one or more materials selected from O 5 , Y 2 O 3 , TiO 2 , and Ti 3 O 5 .
  • the film thickness of the underlayer is 1 nm or more and 30 nm or less.
  • the hydrophilic film is a single layer of titanium oxide made of at least one of TiO 2 and Ti 3 O 5 , titanium nitride made of TiN, or at least one of titanium oxide and titanium nitride on the surface of the base film. Is formed of a mixed layer containing at least 50%.
  • the film thickness of the hydrophilic film is 1 nm or more and 30 nm or less.
  • FIG. 1 is a schematic view of a lens with a hydrophilic antireflective film of the present embodiment.
  • the lens 1 with a hydrophilic antireflective film shown in FIG. 1 is configured to have a glass lens 2 as a substrate and a hydrophilic antireflective film 3 formed on the surface of the glass lens 2 on the light incident side. .
  • the glass lens 2 is not particularly limited, it is, for example, a glass lens for a surveillance camera or an on-vehicle camera.
  • the surface of the glass lens 2 on which the hydrophilic antireflective film 3 is formed is, for example, an aspheric surface.
  • the glass lens 2 of FIG. 1 is, for example, a meniscus lens having negative power, but may be a meniscus lens having positive power, or may be a biconvex lens or a biconcave lens. However, the surface of the glass lens 2 may be other than an aspheric surface.
  • the hydrophilic antireflective film 3 includes at least a base film and a hydrophilic film, as described in (1) above.
  • the undercoat film is provided with the characteristic portion of (2)
  • the hydrophilic film is provided with the characteristic portion of (3). Optically, the whole of the hydrophilic antireflective film 3 exerts an antireflective effect.
  • the hydrophilic antireflective film 3 will be described in more detail below.
  • the hydrophilic antireflection film 3 of the first embodiment is laminated in the order of the antireflection film 4, the base film 5, and the hydrophilic film 6 from the surface of the glass lens 2.
  • the antireflective film 4 is selected from SiO 2 , MgF 2 , ZrO 2 , Al 2 O 3 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 , and Nb 2 O 5 on the surface of the glass lens 2. It is configured to have one or more single layers or a mixed layer containing two or more kinds of materials. All of these inorganic compounds constituting the antireflective film 4 are transparent oxides.
  • the antireflection film 4 is adjusted to have a lower reflectance than in the case of the glass lens 2 alone.
  • the refractive index and the film thickness of each layer are determined so that the entire lens provided with the antireflective film 4, the base film 5, and the hydrophilic film 6 has a desired spectral reflectance. Therefore, as long as the film is lower than the refractive index of the glass lens 2, the antireflection film 4 may have one layer.
  • the high refractive index layer may be higher than the refractive index of the glass lens 2.
  • the low refractive index layer is preferably located at the outermost layer of the antireflective film 4.
  • the antireflective film 4 is, for example, laminated by about 1 to about 15 layers, and preferably laminated by 1 to 10 layers.
  • the number of laminated layers, the material, and the film thickness of the antireflective film 4 can be variously selected based on the wavelength region in which the reflectance is suppressed.
  • the film thickness of the antireflective film 4 is not limited, the film thickness (total thickness) of the antireflective film 4 is about 50 nm to 500 nm.
  • Underlayer 5 formed on the surface of antireflection film 4 shown in FIG. 2 functions as an underlayer that promotes crystal grain growth of hydrophilic film 6.
  • the underlayer 5 is a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , and Y 2 O 3 , or ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , Y 2 O 3 , TiO 2 , and Ti 3 O 5 in a mixed layer containing 50% or more of one or more materials.
  • the outermost layer (preferably a low refractive index film) of the antireflective film 4 is formed by using a material selectable as the underlayer 5, the material of which the underlayer 5 and the outermost layer of the antireflective film 4 are different.
  • the outermost layer of the antireflective film 4 can also be used as the base film 5.
  • the film thickness of the base film 5 is adjusted in the range of 1 nm or more and 30 nm or less from the viewpoint of crystal grain growth and antireflection effect of the hydrophilic film 6. In addition, even if measurement errors or deviations occur due to measurement conditions of the film thickness of the base film 5, etc., for example, it is presumed that the configuration of the present embodiment is included by satisfying the desired contact angle while maintaining the transparency. It is possible.
  • the film thickness of the base film 5 is preferably 5 nm or more and 15 nm or less.
  • the hydrophilic film 6 formed on the surface of the base film 5 is a single layer of titanium oxide made of at least one of TiO 2 and Ti 3 O 5 or titanium nitride made of TiN, or at least at least titanium oxide and titanium nitride. It is formed of a mixed layer containing 50% or more of one.
  • the hydrophilic film 6 is a mixed layer containing titanium oxide and / or titanium nitride at 50% or more and less than 100%, the hydrophilic film 6 is a single layer of titanium oxide or titanium nitride at 100%. It is also good.
  • the mixed layer titanium oxide and metal oxides other than titanium nitride can be mixed, or in addition to titanium oxide and titanium nitride, at least one of a semiconductor substance, a conductive substance, and an insulating substance can be mixed. .
  • the material other than titanium oxide and titanium nitride contained in the hydrophilic film 6 is a material capable of maintaining the photocatalytic effect of titanium oxide and titanium nitride while maintaining transparency in the mixed layer of titanium oxide and titanium nitride. It is necessary to be there. For example, it can be exemplified SiO 2, Ta 2 O 5, Nb 2 O 5, ZrO 2, Al 2 O 3, MgF 2 as a material other than titanium oxide and titanium nitride.
  • titanium oxide and / or titanium nitride be contained 80% or more.
  • Ti 3 O 5 can be used as a starting material for depositing TiO 2, and all Ti 3 O 5 may be deposited in a state of being replaced with TiO 2 (phase Transition), a part of Ti 3 O 5 may be left in the film.
  • the compositional analysis of titanium oxide and titanium nitride can use an existing method, and for example, can be measured by a spectrophotometer.
  • the titanium oxide constituting the hydrophilic layer 6, TiO 2 single phase, and, in addition to the mixed phase of TiO 2 and Ti 3 O 5, may be constituted by a single phase of Ti 3 O 5.
  • the hydrophilic film 6 may be a titanium nitride single layer, but it is sufficient to have a titanium oxide single layer or a film structure including at least titanium oxide (photocatalytic excitation). It is preferable to obtain
  • the film thickness of the hydrophilic film 6 is formed to be 1 nm or more and 30 nm or less from the viewpoint of transparency and crystal grain growth of the hydrophilic film 6.
  • the hydrophilic film 6 is a thin film and is formed on the surface of the base film 5.
  • the film thickness of the hydrophilic film 6 is preferably 5 nm or more and 15 nm or less.
  • the porosity of the hydrophilic film 6 is preferably 20% or less. Even if the porosity is 0%, that is, the hydrophilic film 6 has no pores, it is included in the present embodiment. However, in order to enhance the photocatalytic effect, it is preferable to have pores and increase the effective surface area. Therefore, in the present embodiment, the hydrophilic film 6 preferably has a porosity of more than 0% and 20% or less.
  • the lower limit value of the porosity of the hydrophilic film 6 is more preferably 2% or more, and still more preferably 5% or more. Even when a measurement error or deviation occurs due to a measurement condition of porosity, etc., it is assumed that the configuration of the present embodiment is included by satisfying a desired contact angle while maintaining transparency, for example. It is possible.
  • the hydrophilic antireflection film 3 of the second embodiment is laminated on the surface of the glass lens 2 in the order of the base film 5 and the hydrophilic film 6.
  • the second embodiment has a configuration in which the antireflective film 4 shown in the first embodiment is removed.
  • the underlayer 5 is preferably formed of a material having a refractive index lower than that of the glass lens 2.
  • MgF 2 can be selected as the underlayer 5.
  • An optional pretreatment coat (not shown) is provided between the surface of the glass lens 2 and the anti-reflection film 4 in FIG. 2 or between the surface of the glass lens 2 and the base film 5 in FIG. May be applied.
  • titanium oxide used as the hydrophilic film 6 of the present embodiment has a high refractive index. For this reason, conventionally, a titanium oxide film has not been used as the outermost layer of a multilayer film having an antireflection effect, which is formed on the lens surface.
  • the hydrophilic film 6 is formed on the surface of the base film 5 made of a predetermined material and a thin film. Thereby, it is considered that even if the film thickness of the hydrophilic film 6 is thin, crystal grains of titanium oxide or titanium nitride photocatalytic material can be grown large. As described above, by growing the crystal grains of the hydrophilic film 6, the hydrophilic effect (photocatalyst excitation) can be sufficiently obtained even if the film thickness is thin.
  • the film thickness of the hydrophilic film 6 is thin, even when the hydrophilic film 6 is provided as the outermost layer, the antireflection effect is not impaired.
  • the present embodiment it is possible to obtain excellent hydrophilicity without impairing the antireflection effect.
  • excellent hydrophilicity can be maintained for a long time by the photocatalytic action. Therefore, when the user uses the lens with a hydrophilic anti-reflection film of the present embodiment for a surveillance camera, an on-vehicle camera, etc., which usually does not presuppose that the lens surface is wiped, the anti-fogging effect is excellent It is possible to hold for a long time.
  • the antireflective film 4 is formed on the surface of the glass lens 2.
  • a single layer or two or more materials selected from SiO 2 , MgF 2 , ZrO 2 , Al 2 O 3 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 , and Nb 2 O 5
  • the antireflective film 4 is formed by depositing one or more mixed layers containing
  • the base film 5 is formed on the surface of the antireflective film 4.
  • the underlayer 5 is a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , and Y 2 O 3 , or ZrO 2 , MgF 2 , Ta 2 O 5.
  • the film thickness of the underlayer 5 is adjusted in the range of 1 nm to 30 nm.
  • the hydrophilic film 6 is formed on the surface of the base film 5.
  • the hydrophilic film 6 is a single layer of titanium oxide made of at least one of TiO 2 and Ti 3 O 5 or titanium nitride made of TiN, or a mixed layer containing 50% or more of at least one of titanium oxide and titanium nitride. Form a film.
  • the film thickness of the hydrophilic film is adjusted in the range of 1 nm to 30 nm.
  • the film formation method of the antireflective film 4, the base film 5 and the hydrophilic film 6 is not limited, but the antireflective film 4, the base film 5 and the hydrophilic film 6 may be formed by vapor deposition or sputtering. It is preferable to form a film by
  • the vapor deposition method it is preferable to use an ion beam assisted deposition (IAD) method or an electron beam (EB) method.
  • IAD ion beam assisted deposition
  • EB electron beam
  • the ion beam assisted deposition method gas ions are irradiated to the surface of a glass lens as a substrate by an ion gun during vacuum deposition.
  • the electron beam method the evaporation material is placed in a crucible in a high vacuum atmosphere, and the crucible is irradiated with an electron beam to heat and evaporate the evaporation material in the crucible.
  • the hydrophilic film 6 when forming the hydrophilic film 6 by vapor deposition, Ti 3 O 5 is heated and evaporated under reduced pressure in a film formation chamber using Ti 3 O 5 as a vapor deposition material. The evaporated Ti 3 O 5 is directed to the surface of the glass lens 2 as a substrate. At this time, it combines with O 2 and Ti 3 O 5 becomes TiO 2 and deposits on the surface of the glass lens 2. Therefore, when the hydrophilic film 6 is formed by vapor deposition, the hydrophilic film 6 is likely to be a TiO 2 single phase or a mixed phase of TiO 2 and Ti 3 O 5 .
  • the substrate heating temperature in the film forming chamber is preferably 250 ° C. or higher.
  • the upper limit value of the substrate heating temperature is not limited, for example, it is preferable to adjust it to 400 ° C. or less.
  • oxygen gas at the time of forming the hydrophilic film 6 with titanium oxide at a gas pressure of 5.0 ⁇ 10 ⁇ 3 Pa or more. Further, it is more preferable to adjust the gas pressure of oxygen gas at about 1.0 ⁇ 10 ⁇ 2 Pa to 3.0 ⁇ 10 ⁇ 2 Pa.
  • the base film 5 and the hydrophilic film 6 are formed by the same film forming method.
  • the film forming method may be different between the base film 5 and the hydrophilic film 6 and the antireflective film 4.
  • the base film 5 and the hydrophilic film 6 are formed by ion beam assisted deposition, and the antireflective film 4 is formed by electron beam method.
  • the base film 5 and the hydrophilic film 6 are formed by the electron beam method, and the antireflective film 4 is formed by the ion beam assisted deposition method.
  • the hydrophilic film 6 having titanium oxide or titanium nitride is formed on the surface of the base film 5.
  • the undercoat film 5 in the present embodiment has an effect of promoting the crystal grain growth of the hydrophilic film 6. For this reason, even when the hydrophilic film 6 is formed as a thin film of about 1 nm to 30 nm (preferably, about 5 nm to 15 nm), crystal grain growth of the hydrophilic film 6 is promoted, and the hydrophilic effect (photocatalytic excitation) is obtained. You can get enough.
  • both of the hydrophilic film 6 and the base film 5 have a thin film thickness of about 1 nm to 30 nm (preferably, about 5 nm to 15 nm), and the antireflection effect is not impaired.
  • both of the hydrophilic film 6 and the base film 5 can be formed with a thin film thickness, the same manufacturing efficiency as that of the conventional one can be obtained.
  • the lens 1 with a hydrophilic antireflective film of the present embodiment As described above, according to the method of manufacturing the lens 1 with a hydrophilic antireflective film of the present embodiment, the lens 1 with a hydrophilic antireflective film having an excellent hydrophilic property without losing the antireflective effect is simple and easy. It can be manufactured appropriately.
  • Example 1 In Example 1, using the materials shown in Table 1 below, an antireflection film, a base film, and a hydrophilic film having the film thickness and refractive index shown in Table 1 were formed at the substrate heating temperature shown in Table 1 , The lens with a hydrophilic anti-reflective film was obtained.
  • the film was formed using a deposition machine (SGC-22SA) manufactured by Showa Vacuum Co., Ltd.
  • the refractive index nd reffractive index at d-line (588 nm)
  • the refractive index nd of the glass lens is the same in Examples 2 to 5 and Comparative Examples 1 to 3.
  • the refractive index of each layer was calculated from the reflectance of the film (corresponding to the refractive index of the film in the atmosphere). Specifically, the reflectance of the substrate taken out to the atmosphere was measured by a microscope type spectrophotometer (USPM-RU3) manufactured by Olympus Corporation, and the reflectance was determined in terms of refractive index. The refractive index is at a wavelength of 550 nm. The film thickness can be measured, for example, using a cross-sectional TEM photograph. The above-described measurement of the refractive index and the film thickness is the same as in Examples 2 to 5 and Comparative Examples 1 to 3.
  • Example 1 the substrate heating temperature was 350 ° C., and SiO 2 and Ta 2 O 5 were alternately stacked up to seven layers by ion beam assisted deposition to obtain an antireflective film.
  • a base film made of ZrO 2 and a hydrophilic film made of TiO 2 (Ti 3 O 5 ) were continuously formed by an electron beam method at a substrate heating temperature of 350 ° C.
  • the hydrophilic film is deposited using Ti 3 O 5 as a starting material, and at this time, all or part of Ti 3 O 5 is easily replaced with TiO 2 to form a film.
  • the membrane structure of the hydrophilic membrane can be measured by a spectrophotometer.
  • the hydrophilic film may have a film structure of TiO 2 single phase, Ti 3 O 5 single phase, or mixed phase of TiO 2 and Ti 3 O 5 .
  • Example 1 the porosity of the hydrophilic film was 5%.
  • the porosity can be calculated as follows.
  • n the known refractive index of the material used for the hydrophilic film
  • n (V) the refractive index in vacuum of the hydrophilic film formed in this experiment.
  • the refractive index in vacuum was determined by measuring the reflectance during film formation using an optical film thickness meter in a film formation chamber held in vacuum, and converting it to a refractive index.
  • the packing ratio of the hydrophilic membrane can be expressed as follows.
  • Example 2 In Example 2, using the materials shown in Table 2 below, an antireflection film, a base film, and a hydrophilic film having the film thickness and refractive index shown in Table 2 are formed at the substrate heating temperature shown in Table 2 , The lens with a hydrophilic anti-reflective film was obtained.
  • the substrate heating temperature is 250 ° C.
  • SiO 2 , MgF 2, or Al 2 O 3 / Al 2 O 3 / ZrO 2 / SiO 2 or MgF 2 are laminated in order from the bottom by electron beam method.
  • the antireflective film was deposited.
  • a base film made of ZrO 2 and a hydrophilic film made of TiO 2 (Ti 3 O 5 ) were continuously formed by ion beam assisted deposition.
  • Example 3 In Example 3, using the materials shown in Table 3 below, an antireflection film, a base film and a hydrophilic film having the film thickness and refractive index shown in Table 3 are formed at the substrate heating temperature shown in Table 3 , The lens with a hydrophilic anti-reflective film was obtained.
  • Example 3 the substrate heating temperature was 25 ° C. (no heating), and the anti-reflection film was alternately stacked up to nine layers of SiO 2 and Nb 2 O 5 by sputtering.
  • a base film consisting of Y 2 O 3 and a hydrophilic film consisting of TiO 2 (Ti 3 O 5 ) are continuously formed by sputtering while keeping the substrate heating temperature at 25 ° C. (without heating). did.
  • Example 4 In Example 4, using the materials shown in Table 4 below, an antireflection film, a base film, and a hydrophilic film having the film thickness and refractive index shown in Table 4 are formed at the substrate heating temperature shown in Table 4 , The lens with a hydrophilic anti-reflective film was obtained.
  • Example 4 the substrate heating temperature was 350 ° C., and the antireflection film was formed of a single layer of SiO 2 by an electron beam method. Continuously, the base film consisting of MgF 2 and the hydrophilic film consisting of TiO 2 (Ti 3 O 5 ) were formed by electron beam method while keeping the substrate heating temperature at 350 ° C.
  • Example 5 In Example 5, using the materials shown in Table 5 below, an antireflection film, a base film, and a hydrophilic film having the film thickness and refractive index shown in Table 5 are formed at the substrate heating temperature shown in Table 5 , The lens with a hydrophilic anti-reflective film was obtained.
  • Example 5 the substrate heating temperature was 350 ° C., and SiO 2 and Ta 2 O 5 were alternately stacked up to seven layers by ion beam assisted deposition to obtain an antireflective film.
  • a base film made of ZrO 2 and a hydrophilic film made of TiO 2 (Ti 3 O 5 ) were continuously formed by an electron beam method at a substrate heating temperature of 350 ° C.
  • Example 5 the porosity of the hydrophilic membrane was 0%.
  • Comparative Example 1 In Comparative Example 1, an antireflective film having the film thickness and refractive index shown in Table 6 and a hydrophilic film are formed at the substrate heating temperature shown in Table 6 using the materials shown in Table 6 below, and hydrophilic A lens with an antireflective coating is obtained.
  • the substrate heating temperature was 350 ° C.
  • SiO 2 and Ta 2 O 5 were alternately stacked up to seven layers by ion beam assisted deposition to obtain an antireflective film.
  • a hydrophilic film made of TiO 2 (Ti 3 O 5 ) was formed by an electron beam method.
  • Comparative Example 2 In Comparative Example 2, using the materials shown in Table 7 below, an antireflection film, a base film, and a hydrophilic film having the film thickness and refractive index shown in Table 7 are formed at the substrate heating temperature shown in Table 7 , The lens with a hydrophilic anti-reflective film was obtained.
  • the substrate heating temperature was 350 ° C.
  • the anti-reflection film was alternately stacked up to seven layers of SiO 2 and Ta 2 O 5 by ion beam assisted deposition.
  • a base film made of Al 2 O 3 and a hydrophilic film made of TiO 2 (Ti 3 O 5 ) were continuously formed by an electron beam method at a substrate heating temperature of 350 ° C.
  • Comparative Example 3 In Comparative Example 3, using the materials shown in Table 8 below, an antireflection film and a hydrophilic film having the film thickness and the refractive index shown in Table 8 are formed at the substrate heating temperature shown in Table 8 A lens with an antireflective film was obtained.
  • the substrate heating temperature was 350 ° C.
  • the anti-reflection film was alternately laminated up to seven layers of SiO 2 and Ta 2 O 5 by ion beam assisted deposition.
  • a hydrophilic film made of TiO 2 (Ti 3 O 5 ) was formed by an electron beam method while keeping the substrate heating temperature at 350 ° C.
  • Comparative Example 3 unlike in the above-described Examples, the underlayer film was not formed.
  • the film thickness of the hydrophilic film is 50 nm, which is thicker than each example.
  • Example 1 [Test Results of Contact Angles of Example 1 and Comparative Examples 1 and 2] As shown in FIG. 4, in Example 1, it was found that the contact angle is sharply reduced in a short time by performing the UV irradiation. On the other hand, in Comparative Example 1 in which there is no undercoat film and in Comparative Example 2 in which the material of the undercoat film is different from this example, the contact angle was substantially constant even after UV irradiation.
  • the undercoat film made of a predetermined material is considered to promote crystal grain growth of the hydrophilic film. As a result, even if the film thickness of the hydrophilic film is thin, it is considered that a sufficient hydrophilic effect (photocatalyst excitation) can be obtained.
  • the film thickness of the underlayer is about 5 nm to 30 nm in the example, the film thickness of the underlayer was set to 1 nm or more and 30 nm or less.
  • the film thickness of the hydrophilic film was set to 1 nm or more and 30 nm or less based on each example. Since the hydrophilic film has a refractive index higher than that of glass, when the hydrophilic film is formed too thick, the antireflective effect is reduced.
  • the hydrophilic film is overlaid on the underlying film made of an appropriate material, and the hydrophilic film is excellently hydrophilic without reducing the thickness of the hydrophilic film and impairing the anti-reflection effect. I was able to get it.
  • Example 5 [Test Results of Contact Angle between Example 1 and Example 5] As shown in FIG. 5, in both Example 1 and Example 5, the contact angle was reduced by UV irradiation. Thereby, not only Example 1 but Example 5 had a photocatalytic effect, and it was possible to obtain hydrophilicity.
  • the decrease in the contact angle with respect to the time lapse of the UV irradiation is slower than in the first embodiment. This is considered to be due to the fact that the pores of the hydrophilic film in Example 5 are smaller than those in Example 1.
  • the hydrophilic film be provided with pores to some extent.
  • the porosity is set to 20% or less.
  • Example 1 As shown in FIG. 6, the reflectances of Example 1 and Comparative Example 3 were relatively evaluated with reference to the reflectance of the reference example.
  • Example 1 the reflectance was lower in the visible light range than in the reference example. Thus, in Example 1, it turned out that the antireflection effect is not impaired.
  • the lens with a hydrophilic antireflective film of the present invention is excellent in the antireflective effect and the photocatalytic effect. Therefore, the lens surface has excellent hydrophilicity and can improve antifogging properties.
  • a lens with a hydrophilic anti-reflection film is preferably applied to a glass lens for a surveillance camera, an on-vehicle camera, etc., which is not premised that the user usually wipes unlike the side mirror or window glass of a vehicle. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide a lens that has a hydrophilic anti-reflection film and that exhibits anti-fogging properties without compromising the anti-reflection effect, and a production method for the lens. This lens having a hydrophilic anti-reflection film is characterized by having, on a surface of a glass lens, the hydrophilic anti-reflection film obtained by sequentially laminating at least an underlying film and a hydrophilic film, wherein: the underlying film is formed as a single layer or the like selected from ZrO2, MgF2, Ta2O5, Nb2O5, and Y2O3, and has a thickness of 1-30 nm; and the hydrophilic film has a thickness of 1-30 nm and is formed, on a surface of the underlying film, as a single layer of a titanium oxide including at least one of TiO2 and Ti3O5, a single layer of a titanium nitride including TiN, or a mixed layer containing 50% or more of at least one of a titanium oxide and a titanium nitride.

Description

親水性反射防止膜付きレンズ及びその製造方法Lens with hydrophilic antireflective film and method for manufacturing the same
 本発明は、親水性反射防止膜付きレンズ及びその製造方法に関する。 The present invention relates to a lens with a hydrophilic antireflective film and a method of manufacturing the same.
 例えば、監視カメラや車載カメラにおいて、レンズの曇りを防ぐ為の防曇コートの要求がある。防曇コートとしては、例えば、最外層に親水性膜を設けることが知られている。しかしながら、従来の親水性膜は、空気中の水分のみならず油成分も吸着する。この結果、親水性が低下し、良好な防曇性を得ることができない。そこで、下記特許文献に示すように、親水性膜として、光触媒材料を用いた親水性コートが開発されている。 For example, in surveillance cameras and in-vehicle cameras, there is a demand for an antifogging coat for preventing lens fogging. As the antifogging coat, for example, it is known to provide a hydrophilic film on the outermost layer. However, conventional hydrophilic membranes also adsorb oil components as well as moisture in the air. As a result, the hydrophilicity is reduced, and good antifogging properties can not be obtained. Then, as shown to the following patent documents, the hydrophilic coat which used the photocatalyst material is developed as a hydrophilic membrane.
 特許文献1に記載の発明では、透明基材上に、防曇性反射防止膜が成膜されている。防曇性反射防止膜は、高屈折率膜と低屈折率膜とを交互に積層した構成である。高屈折率膜は、光触媒反応を呈する酸化チタン膜である。防曇性反射防止膜の最外層は、親水性を呈する無機化学物からなる低屈折率膜である。よって、特許文献1における酸化チタン膜は、低屈折率膜で覆われている。 In the invention described in Patent Document 1, an antifogging antireflective film is formed on a transparent substrate. The antifogging antireflective film has a configuration in which a high refractive index film and a low refractive index film are alternately stacked. The high refractive index film is a titanium oxide film exhibiting photocatalytic reaction. The outermost layer of the antifogging antireflective film is a low refractive index film made of an inorganic chemical exhibiting hydrophilicity. Therefore, the titanium oxide film in Patent Document 1 is covered with a low refractive index film.
 また、特許文献2に記載の発明では、光学基材上に複数の薄膜で構成された、反射率を低く抑えた光学多層膜が成膜されている。光触媒粒子を含み親水性を呈する防曇性薄膜が、光学多層膜の最外層として用いられている。 Further, in the invention described in Patent Document 2, an optical multilayer film composed of a plurality of thin films and having a low reflectance is formed on an optical substrate. An antifogging thin film containing photocatalyst particles and exhibiting hydrophilicity is used as the outermost layer of the optical multilayer film.
特開2016-224113号公報JP, 2016-224113, A 特開平11-271505号公報Japanese Patent Application Laid-Open No. 11-271505
 しかしながら、特許文献1に記載の発明では、最外層の低屈折率膜が邪魔をして、酸化チタン膜が適切に励起せず、光触媒として効果的に機能しないと考えられる。 However, in the invention described in Patent Document 1, it is considered that the low refractive index film of the outermost layer interferes, and the titanium oxide film is not appropriately excited and does not function effectively as a photocatalyst.
 また、特許文献2に記載の発明では、屈折率及び波長に基づいて、防曇性薄膜の膜厚を算出すると、膜厚が非常に厚いことがわかった。また、防曇性薄膜は、ガラスよりも高い屈折率を有している。このように、高屈折率且つ厚膜の防曇性薄膜が最外層に位置することで、反射防止効果は低下する。 In the invention described in Patent Document 2, when the film thickness of the antifogging thin film is calculated based on the refractive index and the wavelength, it is found that the film thickness is very thick. In addition, the antifogging thin film has a refractive index higher than that of glass. Thus, the antireflective effect is reduced by the fact that the antifogging thin film having a high refractive index and a thick film is positioned at the outermost layer.
 本発明は、以上の問題意識に基づいてなされたものであり、反射防止効果を損なうことなく防曇性を備えた親水性反射防止膜付きレンズ及びその製造方法を提供することを目的とする。 The present invention was made based on the above-mentioned problem awareness, and an object of the present invention is to provide a lens with a hydrophilic antireflective film having antifogging properties without impairing the antireflective effect, and a method of manufacturing the same.
 本発明の親水性反射防止膜付きレンズは、ガラスレンズの表面に、少なくとも、下地膜及び親水性膜の順に積層された親水性反射防止膜を有し、前記下地膜は、ZrO、MgF、Ta、Nb、及びYから選択される単層、又は、ZrO、MgF、Ta、Nb、Y、TiO、及びTiから選択される1種以上の材料を50%以上含む混合層で形成され、膜厚が1nm以上30nm以下であり、前記親水性膜は、前記下地膜の表面に、TiO及びTiの少なくとも一方からなる酸化チタン、又は、TiNからなる窒化チタンの単層、或いは、前記酸化チタン及び前記窒化チタンの少なくとも一方を50%以上含む混合層で形成され、膜厚が1nm以上30nm以下である、ことを特徴とする。 The lens with a hydrophilic antireflective film of the present invention has a hydrophilic antireflective film in which at least a base film and a hydrophilic film are sequentially laminated on the surface of a glass lens, and the base film is ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , and Y 2 O 3 , or a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , Y 2 O 3 , TiO 2 , and It is formed of a mixed layer containing 50% or more of one or more materials selected from Ti 3 O 5 and has a film thickness of 1 nm or more and 30 nm or less, and the hydrophilic film comprises TiO 2 and A single layer of titanium oxide made of at least one of Ti 3 O 5 or titanium nitride made of TiN, or a mixed layer containing 50% or more of at least one of the titanium oxide and the titanium nitride, and the film thickness is 1 nm that's all It is characterized by being 30 nm or less.
 本発明では、前記親水性膜の空孔率は、20%以下であることが好ましい。 In the present invention, the porosity of the hydrophilic film is preferably 20% or less.
 本発明では、前記親水性反射防止膜は、前記ガラスレンズの表面に、反射防止膜、前記下地膜及び前記親水性膜の順に積層されており、前記反射防止膜は、SiO、MgF、ZrO、Al、TiO、Ti、Ta、及び、Nbから選択される単層又は2種以上の材料を含む混合層を、1層以上有して形成されていることが好ましい。 In the present invention, the hydrophilic antireflective film is laminated on the surface of the glass lens in the order of an antireflective film, the underlayer and the hydrophilic film, and the antireflective film is SiO 2 , MgF 2 , It has one or more single layers or mixed layers containing two or more materials selected from ZrO 2 , Al 2 O 3 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 , and Nb 2 O 5 Preferably, it is formed.
 本発明の親水性反射防止膜付きレンズの製造方法は、ガラスレンズの表面に、ZrO、MgF、Ta、Nb、及びYから選択される単層、又は、ZrO、MgF、Ta、Nb、Y、TiO、及びTiから選択される1種以上の材料を50%以上含む混合層にて、膜厚が1nm以上30nm以下の下地膜を形成する工程と、前記下地膜の表面に、TiO及びTiの少なくとも一方からなる酸化チタン、又は、TiNからなる窒化チタンの単層、或いは、前記酸化チタン及び前記窒化チタンの少なくとも一方を50%以上含む混合層にて、膜厚が1nm以上30nm以下の親水性膜を形成する工程と、を有することを特徴とする。 The method for producing a lens with a hydrophilic antireflective film according to the present invention comprises a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 and Y 2 O 3 on the surface of a glass lens, or , ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , Y 2 O 3 , TiO 2 , and Ti 3 O 5 in a mixed layer containing 50% or more of one or more materials selected from A step of forming a base film having a thickness of 1 nm to 30 nm, and a single layer of titanium oxide made of at least one of TiO 2 and Ti 3 O 5 or titanium nitride made of TiN on the surface of the base film Forming a hydrophilic film having a thickness of 1 nm or more and 30 nm or less in a mixed layer containing 50% or more of at least one of the titanium oxide and the titanium nitride.
 本発明では、前記下地膜及び前記親水性膜を、蒸着法、又は、スパッタ法により成膜することが好ましい。 In the present invention, it is preferable to form the underlayer film and the hydrophilic film by vapor deposition or sputtering.
 本発明では、前記下地膜及び前記親水性膜を蒸着法で成膜する際の基板加熱温度を、250℃以上とすることが好ましい。 In the present invention, the substrate heating temperature at the time of forming the base film and the hydrophilic film by the vapor deposition method is preferably 250 ° C. or more.
 本発明では、前記蒸着法として、イオンビームアシスト蒸着法、又は、電子ビーム法を用いることが好ましい。 In the present invention, it is preferable to use an ion beam assisted deposition method or an electron beam method as the deposition method.
 本発明によれば、反射防止効果を損なうことなく防曇性を備えた親水性反射防止膜付きレンズ及びその製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the lens with a hydrophilic anti-reflective film provided with anti-fogging property, and its manufacturing method can be provided, without impairing an anti-reflective effect.
本実施形態の親水性反射防止膜付きレンズの模式図である。It is a schematic diagram of the lens with a hydrophilic anti-reflective film of this embodiment. 第1実施形態の親水性反射防止膜付きレンズの部分拡大模式図である。It is a partial expansion schematic diagram of the lens with a hydrophilic anti-reflective film of 1st Embodiment. 第2実施形態の親水性反射防止膜付きレンズの部分拡大模式図である。It is a partial expansion schematic diagram of the lens with a hydrophilic anti-reflective film of 2nd Embodiment. 実施例1、比較例1及び比較例2のUV照射時間と接触角度との関係を示すグラフである。It is a graph which shows the relationship between UV irradiation time of Example 1, the comparative example 1, and the comparative example 2, and a contact angle. 実施例1及び実施例5のUV照射時間と接触角度との関係を示すグラフである。It is a graph which shows the relationship of the UV irradiation time of Example 1 and Example 5, and a contact angle. 実施例1、比較例3及び参照例(未コート)の波長と反射率との関係を示すグラフである。It is a graph which shows the relationship of the wavelength of Example 1, the comparative example 3, and the reference example (uncoated), and a reflectance.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。 Hereinafter, modes for carrying out the present invention (hereinafter, simply referred to as "the present embodiment") will be described in detail.
 本発明者らは、最外層として、光触媒材料を用いた親水性膜、及び下地膜を、鋭意研究した結果、反射防止効果を損なうことなく、十分な親水性効果が得られ、防曇性を向上させるに至った。すなわち、本実施形態の親水性反射防止膜付きレンズは、以下の特徴的部分(1)~(3)を備えている。 The inventors of the present invention conducted intensive studies on a hydrophilic film and a base film using a photocatalytic material as the outermost layer. As a result, a sufficient hydrophilic effect is obtained without impairing the antireflective effect, and the antifogging property is obtained. It came to improve. That is, the lens with a hydrophilic anti-reflection film of the present embodiment is provided with the following characteristic portions (1) to (3).
(1)ガラスレンズの表面に、少なくとも、下地膜及び親水性膜の順に積層された親水性反射防止膜を有する。
(2)下地膜は、ZrO、MgF、Ta、Nb、及びYから選択される単層、又は、ZrO、MgF、Ta、Nb、Y、TiO、及びTiから選択される1種以上の材料を50%以上含む混合層で形成される。下地膜の膜厚は、1nm以上30nm以下である。
(3)親水性膜は、下地膜の表面に、TiO及びTiの少なくとも一方からなる酸化チタン、又は、TiNからなる窒化チタンの単層、或いは、酸化チタン及び窒化チタンの少なくとも一方を50%以上含む混合層で形成される。親水性膜の膜厚は、1nm以上30nm以下である。
(1) The surface of the glass lens has at least a hydrophilic antireflective film laminated in the order of a base film and a hydrophilic film.
(2) The underlayer is a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , and Y 2 O 3 , or ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 It is formed of a mixed layer containing 50% or more of one or more materials selected from O 5 , Y 2 O 3 , TiO 2 , and Ti 3 O 5 . The film thickness of the underlayer is 1 nm or more and 30 nm or less.
(3) The hydrophilic film is a single layer of titanium oxide made of at least one of TiO 2 and Ti 3 O 5 , titanium nitride made of TiN, or at least one of titanium oxide and titanium nitride on the surface of the base film. Is formed of a mixed layer containing at least 50%. The film thickness of the hydrophilic film is 1 nm or more and 30 nm or less.
 なお、上記(2)及び(3)において、含有量である「%」は、「質量%」である。 In addition, in said (2) and (3), "%" which is content is "mass%."
 図1は、本実施形態の親水性反射防止膜付きレンズの模式図である。図1に示す親水性反射防止膜付きレンズ1は、基板としてのガラスレンズ2と、ガラスレンズ2の光入射側の表面に形成された親水性反射防止膜3と、を有して構成される。 FIG. 1 is a schematic view of a lens with a hydrophilic antireflective film of the present embodiment. The lens 1 with a hydrophilic antireflective film shown in FIG. 1 is configured to have a glass lens 2 as a substrate and a hydrophilic antireflective film 3 formed on the surface of the glass lens 2 on the light incident side. .
 ガラスレンズ2は、特に限定されるものでないが、例えば、監視カメラや車載カメラ用のガラスレンズである。また、親水性反射防止膜3が成膜されるガラスレンズ2の表面は、例えば、非球面である。図1のガラスレンズ2は、例えば、負のパワーを有するメニスカスレンズであるが、正のパワーを有するメニスカスレンズであってもよいし、両凸レンズあるいは両凹レンズ等でもよい。ただし、ガラスレンズ2の表面は、非球面以外であってもよい。 Although the glass lens 2 is not particularly limited, it is, for example, a glass lens for a surveillance camera or an on-vehicle camera. The surface of the glass lens 2 on which the hydrophilic antireflective film 3 is formed is, for example, an aspheric surface. The glass lens 2 of FIG. 1 is, for example, a meniscus lens having negative power, but may be a meniscus lens having positive power, or may be a biconvex lens or a biconcave lens. However, the surface of the glass lens 2 may be other than an aspheric surface.
 親水性反射防止膜3は、上記(1)で示したように、少なくとも、下地膜及び親水性膜を備える。また、下地膜は、上記(2)の特徴的部分を、親水性膜は、上記(3)の特徴的部分を、夫々、備えている。なお、光学的には、親水性反射防止膜3全体で反射防止効果を発揮する。 The hydrophilic antireflective film 3 includes at least a base film and a hydrophilic film, as described in (1) above. In addition, the undercoat film is provided with the characteristic portion of (2), and the hydrophilic film is provided with the characteristic portion of (3). Optically, the whole of the hydrophilic antireflective film 3 exerts an antireflective effect.
 以下、親水性反射防止膜3について、更に詳しく説明する。 The hydrophilic antireflective film 3 will be described in more detail below.
<第1実施形態>
 図2に示すように、第1実施形態の親水性反射防止膜3は、ガラスレンズ2の表面から、反射防止膜4、下地膜5、及び、親水性膜6の順に積層されている。
First Embodiment
As shown in FIG. 2, the hydrophilic antireflection film 3 of the first embodiment is laminated in the order of the antireflection film 4, the base film 5, and the hydrophilic film 6 from the surface of the glass lens 2.
 反射防止膜4は、ガラスレンズ2の表面に、SiO、MgF、ZrO、Al、TiO、Ti、Ta、及び、Nbから選択される単層又は2種以上の材料を含む混合層を、1層以上有して構成される。反射防止膜4を構成するこれらの無機化合物は、いずれも透明酸化物である。 The antireflective film 4 is selected from SiO 2 , MgF 2 , ZrO 2 , Al 2 O 3 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 , and Nb 2 O 5 on the surface of the glass lens 2. It is configured to have one or more single layers or a mixed layer containing two or more kinds of materials. All of these inorganic compounds constituting the antireflective film 4 are transparent oxides.
 反射防止膜4は、ガラスレンズ2単体の場合よりも反射率が低くなるように調整される。具体的には、反射防止膜4、下地膜5、及び親水性膜6を設けたレンズ全体が、所望の分光反射率を持つように各層の屈折率及び膜厚を決定する。よって、ガラスレンズ2の屈折率よりも低い膜であれば反射防止膜4は、1層でもよい。また、多層膜の場合、低屈折率層と高屈折率層とを交互に積層した構成とすることができる。このとき、高屈折率層は、ガラスレンズ2の屈折率より高くてもよい。また、多層膜では、低屈折率層が反射防止膜4の最外層に位置することが好ましい。反射防止膜4は、例えば、1層から15層程度、積層され、好ましくは、1層から10層積層されて構成される。反射防止膜4の積層数、材質及び膜厚は、反射率を抑制する波長領域に基づいて種々選択できる。 The antireflection film 4 is adjusted to have a lower reflectance than in the case of the glass lens 2 alone. Specifically, the refractive index and the film thickness of each layer are determined so that the entire lens provided with the antireflective film 4, the base film 5, and the hydrophilic film 6 has a desired spectral reflectance. Therefore, as long as the film is lower than the refractive index of the glass lens 2, the antireflection film 4 may have one layer. Moreover, in the case of a multilayer film, it can be set as the structure which laminated | stacked the low-refractive-index layer and the high refractive index layer alternately. At this time, the high refractive index layer may be higher than the refractive index of the glass lens 2. In the multilayer film, the low refractive index layer is preferably located at the outermost layer of the antireflective film 4. The antireflective film 4 is, for example, laminated by about 1 to about 15 layers, and preferably laminated by 1 to 10 layers. The number of laminated layers, the material, and the film thickness of the antireflective film 4 can be variously selected based on the wavelength region in which the reflectance is suppressed.
 なお、反射防止膜4の膜厚を限定するものでないが、反射防止膜4の膜厚(トータル厚)は、50nm~500nm程度である。 Although the film thickness of the antireflective film 4 is not limited, the film thickness (total thickness) of the antireflective film 4 is about 50 nm to 500 nm.
 図2に示す反射防止膜4の表面に形成される下地膜5は、親水性膜6の結晶粒成長を促進する下地として機能する。下地膜5は、ZrO、MgF、Ta、Nb、及びYから選択される単層、又は、ZrO、MgF、Ta、Nb、Y、TiO、及びTiから選択される1種以上の材料を50%以上含む混合層で形成される。 Underlayer 5 formed on the surface of antireflection film 4 shown in FIG. 2 functions as an underlayer that promotes crystal grain growth of hydrophilic film 6. The underlayer 5 is a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , and Y 2 O 3 , or ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , Y 2 O 3 , TiO 2 , and Ti 3 O 5 in a mixed layer containing 50% or more of one or more materials.
 下地膜5として選択可能な材質を用いて、反射防止膜4の最外層(低屈折率膜が好ましい)が形成されているとき、下地膜5と、反射防止膜4の最外層とを異なる材質で形成してもよいし、反射防止膜4の最外層を下地膜5と兼用させることもできる。 When the outermost layer (preferably a low refractive index film) of the antireflective film 4 is formed by using a material selectable as the underlayer 5, the material of which the underlayer 5 and the outermost layer of the antireflective film 4 are different The outermost layer of the antireflective film 4 can also be used as the base film 5.
 下地膜5の膜厚は、親水性膜6の結晶粒成長及び反射防止効果の観点から、1nm以上30nm以下の範囲にて調節される。なお、下地膜5の膜厚の測定条件等により測定誤差やずれが生じた場合でも、例えば、透明性を保ちつつ、所望の接触角度を満たすことで、本実施形態の構成を含むものと推測することが可能である。下地膜5の膜厚は、5nm以上15nm以下であることが好適である。 The film thickness of the base film 5 is adjusted in the range of 1 nm or more and 30 nm or less from the viewpoint of crystal grain growth and antireflection effect of the hydrophilic film 6. In addition, even if measurement errors or deviations occur due to measurement conditions of the film thickness of the base film 5, etc., for example, it is presumed that the configuration of the present embodiment is included by satisfying the desired contact angle while maintaining the transparency. It is possible. The film thickness of the base film 5 is preferably 5 nm or more and 15 nm or less.
 下地膜5の表面に形成される親水性膜6は、TiO及びTiの少なくとも一方からなる酸化チタン、又は、TiNからなる窒化チタンの単層、或いは、酸化チタン及び窒化チタンの少なくとも一方を50%以上含む混合層で形成される。 The hydrophilic film 6 formed on the surface of the base film 5 is a single layer of titanium oxide made of at least one of TiO 2 and Ti 3 O 5 or titanium nitride made of TiN, or at least at least titanium oxide and titanium nitride. It is formed of a mixed layer containing 50% or more of one.
 このように、親水性膜6は、酸化チタン、及び/又は、窒化チタンが50%以上100%未満含される混合層であっても、酸化チタン或いは窒化チタンが100%の単層であってもよい。混合層としては、酸化チタン及び窒化チタン以外の金属酸化物を混ぜたり、或いは、酸化チタン及び窒化チタン以外に、半導体物質、導電性物質、及び絶縁性物質の少なくともいずれかを混合させることができる。なお、親水性膜6に含まれる酸化チタン及び窒化チタン以外の材質は、酸化チタン及び窒化チタンとの混合層において、透明性を保ちつつ、酸化チタン及び窒化チタンによる光触媒効果を保持可能な材質であることが必要である。例えば、酸化チタン及び窒化チタン以外の材質としてSiO、Ta、Nb、ZrO、Al、MgFを例示できる。 Thus, even if the hydrophilic film 6 is a mixed layer containing titanium oxide and / or titanium nitride at 50% or more and less than 100%, the hydrophilic film 6 is a single layer of titanium oxide or titanium nitride at 100%. It is also good. As the mixed layer, titanium oxide and metal oxides other than titanium nitride can be mixed, or in addition to titanium oxide and titanium nitride, at least one of a semiconductor substance, a conductive substance, and an insulating substance can be mixed. . The material other than titanium oxide and titanium nitride contained in the hydrophilic film 6 is a material capable of maintaining the photocatalytic effect of titanium oxide and titanium nitride while maintaining transparency in the mixed layer of titanium oxide and titanium nitride. It is necessary to be there. For example, it can be exemplified SiO 2, Ta 2 O 5, Nb 2 O 5, ZrO 2, Al 2 O 3, MgF 2 as a material other than titanium oxide and titanium nitride.
 親水性膜6が混合層で形成される場合、酸化チタン、及び/又は、窒化チタンは、80%以上含まれていることが好ましい。 When the hydrophilic film 6 is formed of a mixed layer, it is preferable that titanium oxide and / or titanium nitride be contained 80% or more.
 酸化チタンのうち、Tiは、TiOを成膜する際の出発材料として用いることができ、Ti全てが、TiOに入れ替わった状態で成膜されてもよいし(相転移)、膜中にTiの一部が残されていてもよい。酸化チタン及び窒化チタンの組成分析は、既存の方法を用いることができ、例えば、分光光度計により測定することが可能である。なお、親水性膜6を構成する酸化チタンは、TiO単相、及び、TiOとTiとの混相のほか、Tiの単相で構成されていてもよい。 Among titanium oxides, Ti 3 O 5 can be used as a starting material for depositing TiO 2, and all Ti 3 O 5 may be deposited in a state of being replaced with TiO 2 (phase Transition), a part of Ti 3 O 5 may be left in the film. The compositional analysis of titanium oxide and titanium nitride can use an existing method, and for example, can be measured by a spectrophotometer. Incidentally, the titanium oxide constituting the hydrophilic layer 6, TiO 2 single phase, and, in addition to the mixed phase of TiO 2 and Ti 3 O 5, may be constituted by a single phase of Ti 3 O 5.
 本実施形態では、親水性膜6は、窒化チタン単層とすることもできるが、酸化チタン単層、或いは、少なくとも酸化チタンを含む膜構造とすることが、十分な親水性効果(光触媒励起)を得る上で好ましい。 In the present embodiment, the hydrophilic film 6 may be a titanium nitride single layer, but it is sufficient to have a titanium oxide single layer or a film structure including at least titanium oxide (photocatalytic excitation). It is preferable to obtain
 親水性膜6の膜厚は、透明性、及び親水性膜6の結晶粒成長の観点から、1nm以上30nm以下で形成される。このように、親水性膜6は、薄膜で、下地膜5の表面に成膜される。なお、親水性膜6の膜厚は、5nm以上15nm以下であることが好ましい。 The film thickness of the hydrophilic film 6 is formed to be 1 nm or more and 30 nm or less from the viewpoint of transparency and crystal grain growth of the hydrophilic film 6. Thus, the hydrophilic film 6 is a thin film and is formed on the surface of the base film 5. The film thickness of the hydrophilic film 6 is preferably 5 nm or more and 15 nm or less.
 また、本実施形態では、親水性膜6の空孔率は、20%以下であることが好ましい。空孔率が0%、すなわち、親水性膜6に空孔が無い状態であっても本実施形態に含まれる。ただし、光触媒効果を高めるには、空孔を有し、実効表面積を大きくすることが好ましい。したがって、本実施形態では、親水性膜6は、0%より大きく20%以下の空孔率を有することが好ましい。また、親水性膜6の空孔率の下限値は、2%以上であることがより好ましく、5%以上であることが更に好ましい。なお、空孔率の測定条件等により測定誤差やずれが生じた場合でも、例えば、透明性を保ちつつ、所望の接触角度を満たすことで、本実施形態の構成を含むものと推測することが可能である。 Further, in the present embodiment, the porosity of the hydrophilic film 6 is preferably 20% or less. Even if the porosity is 0%, that is, the hydrophilic film 6 has no pores, it is included in the present embodiment. However, in order to enhance the photocatalytic effect, it is preferable to have pores and increase the effective surface area. Therefore, in the present embodiment, the hydrophilic film 6 preferably has a porosity of more than 0% and 20% or less. The lower limit value of the porosity of the hydrophilic film 6 is more preferably 2% or more, and still more preferably 5% or more. Even when a measurement error or deviation occurs due to a measurement condition of porosity, etc., it is assumed that the configuration of the present embodiment is included by satisfying a desired contact angle while maintaining transparency, for example. It is possible.
<第2実施形態>
 図3に示すように、第2実施形態の親水性反射防止膜3は、ガラスレンズ2の表面に、下地膜5、及び、親水性膜6の順に積層されている。第2実施形態は、第1実施形態に示した反射防止膜4を除去した構成である。
Second Embodiment
As shown in FIG. 3, the hydrophilic antireflection film 3 of the second embodiment is laminated on the surface of the glass lens 2 in the order of the base film 5 and the hydrophilic film 6. The second embodiment has a configuration in which the antireflective film 4 shown in the first embodiment is removed.
 下地膜5、及び親水性膜6の膜構成については、上記の第1実施形態の説明を参照されたい。 For the film configuration of the undercoat film 5 and the hydrophilic film 6, refer to the description of the first embodiment above.
 図3に示す第2実施形態では、下地膜5は、ガラスレンズ2の屈折率よりも低い屈折率の材質で形成されることが好ましい。例えば、下地膜5には、MgFを選択することができる。 In the second embodiment shown in FIG. 3, the underlayer 5 is preferably formed of a material having a refractive index lower than that of the glass lens 2. For example, MgF 2 can be selected as the underlayer 5.
 なお、図2において、ガラスレンズ2の表面と反射防止膜4との間、或いは、図3において、ガラスレンズ2の表面と下地膜5との間に、任意の前処理コート(図示せず)が施されていてもよい。 An optional pretreatment coat (not shown) is provided between the surface of the glass lens 2 and the anti-reflection film 4 in FIG. 2 or between the surface of the glass lens 2 and the base film 5 in FIG. May be applied.
 ところで、本実施形態の親水性膜6として用いられる酸化チタンは、屈折率が高い。このため、従来では、酸化チタン膜を、レンズ表面に形成される、反射防止効果を備えた多層膜の最外層に用いることはなかった。 By the way, titanium oxide used as the hydrophilic film 6 of the present embodiment has a high refractive index. For this reason, conventionally, a titanium oxide film has not been used as the outermost layer of a multilayer film having an antireflection effect, which is formed on the lens surface.
 本実施形態では、親水性膜6を、所定の材質且つ薄膜からなる下地膜5の表面に成膜した。これにより、親水性膜6の膜厚が薄くても、酸化チタンや窒化チタンの光触媒性材料の結晶粒を大きく成長させることができると考えられる。このように、親水性膜6の結晶粒を成長させることで、膜厚が薄くても親水性効果(光触媒励起)を十分に得ることができる。 In the present embodiment, the hydrophilic film 6 is formed on the surface of the base film 5 made of a predetermined material and a thin film. Thereby, it is considered that even if the film thickness of the hydrophilic film 6 is thin, crystal grains of titanium oxide or titanium nitride photocatalytic material can be grown large. As described above, by growing the crystal grains of the hydrophilic film 6, the hydrophilic effect (photocatalyst excitation) can be sufficiently obtained even if the film thickness is thin.
 また、親水性膜6の膜厚が薄いため、親水性膜6を最外層に設けても、反射防止効果を損なうことがない。 Further, since the film thickness of the hydrophilic film 6 is thin, even when the hydrophilic film 6 is provided as the outermost layer, the antireflection effect is not impaired.
 以上により、本実施形態によれば、反射防止効果を損なうことがなく、優れた親水性を得ることが可能である。本実施形態では、光触媒作用により長期間、優れた親水性を保持することができる。したがって、使用者が、普段、レンズ表面を拭くことを前提としていない監視カメラや車載カメラ等に本実施形態の親水性反射防止膜付きレンズを用いることで、反射防止効果とともに優れた防曇性を長期間、保持することが可能である。 As described above, according to the present embodiment, it is possible to obtain excellent hydrophilicity without impairing the antireflection effect. In the present embodiment, excellent hydrophilicity can be maintained for a long time by the photocatalytic action. Therefore, when the user uses the lens with a hydrophilic anti-reflection film of the present embodiment for a surveillance camera, an on-vehicle camera, etc., which usually does not presuppose that the lens surface is wiped, the anti-fogging effect is excellent It is possible to hold for a long time.
<親水性反射防止膜付きレンズの製造方法>
 図2に示す第1実施形態の親水性反射防止膜付きレンズの製造方法について説明する。
<Method of manufacturing lens with hydrophilic antireflective film>
A method of manufacturing the lens with a hydrophilic anti-reflection film of the first embodiment shown in FIG. 2 will be described.
 まず、ガラスレンズ2の表面に、反射防止膜4を成膜する。本実施形態では、SiO、MgF、ZrO、Al、TiO、Ti、Ta、及び、Nbから選択される単層又は2種以上の材料を含む混合層を、1層以上成膜して反射防止膜4を形成する。 First, the antireflective film 4 is formed on the surface of the glass lens 2. In this embodiment, a single layer or two or more materials selected from SiO 2 , MgF 2 , ZrO 2 , Al 2 O 3 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 , and Nb 2 O 5 The antireflective film 4 is formed by depositing one or more mixed layers containing
 反射防止膜4を成膜した後、反射防止膜4の表面に下地膜5を成膜する。本実施形態では、下地膜5を、ZrO、MgF、Ta、Nb、及びYから選択される単層、又は、ZrO、MgF、Ta、Nb、Y、TiO、及びTiから選択される1種以上の材料を50%以上含む混合層で形成する。また、下地膜5の膜厚を、1nm以上30nm以下の範囲にて調節する。 After forming the antireflective film 4, the base film 5 is formed on the surface of the antireflective film 4. In this embodiment, the underlayer 5 is a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , and Y 2 O 3 , or ZrO 2 , MgF 2 , Ta 2 O 5. And Nb 2 O 5 , Y 2 O 3 , TiO 2 , and Ti 3 O 5 in a mixed layer containing 50% or more of one or more materials. In addition, the film thickness of the underlayer 5 is adjusted in the range of 1 nm to 30 nm.
 続いて、下地膜5の表面に、親水性膜6を成膜する。親水性膜6を、TiO及びTiの少なくとも一方からなる酸化チタン、又は、TiNからなる窒化チタンの単層、或いは、酸化チタン及び窒化チタンの少なくとも一方を50%以上含む混合層で成膜する。また、親水性膜の膜厚を、1nm以上30nm以下の範囲にて調節する。 Subsequently, the hydrophilic film 6 is formed on the surface of the base film 5. The hydrophilic film 6 is a single layer of titanium oxide made of at least one of TiO 2 and Ti 3 O 5 or titanium nitride made of TiN, or a mixed layer containing 50% or more of at least one of titanium oxide and titanium nitride. Form a film. In addition, the film thickness of the hydrophilic film is adjusted in the range of 1 nm to 30 nm.
 本実施形態において、反射防止膜4、下地膜5及び親水性膜6の成膜方法を限定するものではないが、反射防止膜4、下地膜5及び親水性膜6を、蒸着法或いはスパッタ法にて成膜することが好ましい。 In the present embodiment, the film formation method of the antireflective film 4, the base film 5 and the hydrophilic film 6 is not limited, but the antireflective film 4, the base film 5 and the hydrophilic film 6 may be formed by vapor deposition or sputtering. It is preferable to form a film by
 蒸着法としては、イオンビームアシスト蒸着(Ion-beam Assisted Deposition:IAD)法、或いは、電子ビーム(Electron Beam:EB)法を用いることが好ましい。イオンビームアシスト蒸着法では、真空蒸着中に、イオン銃で、ガスイオンを基板であるガラスレンズの表面に照射する。また、電子ビーム法では、高真空雰囲気の中で、蒸発材料をるつぼに入れ、電子ビームをるつぼに照射し、るつぼ中の蒸発材料を加熱蒸発させる。 As the vapor deposition method, it is preferable to use an ion beam assisted deposition (IAD) method or an electron beam (EB) method. In the ion beam assisted deposition method, gas ions are irradiated to the surface of a glass lens as a substrate by an ion gun during vacuum deposition. In the electron beam method, the evaporation material is placed in a crucible in a high vacuum atmosphere, and the crucible is irradiated with an electron beam to heat and evaporate the evaporation material in the crucible.
 例えば、本実施形態では、親水性膜6を蒸着法にて成膜する際、蒸着材料としてTiを用い、成膜チャンバ内にて減圧下で、Tiを加熱蒸発させる。蒸発したTiは、基板としてのガラスレンズ2の表面に向かう。このとき、O2と結合し、Tiは、TiOとなってガラスレンズ2の表面に堆積する。したがって、蒸着法を用いて親水性膜6を成膜する場合、親水性膜6は、TiO単相か、或いは、TiOとTiとの混相となりやすい。 For example, in the present embodiment, when forming the hydrophilic film 6 by vapor deposition, Ti 3 O 5 is heated and evaporated under reduced pressure in a film formation chamber using Ti 3 O 5 as a vapor deposition material. The evaporated Ti 3 O 5 is directed to the surface of the glass lens 2 as a substrate. At this time, it combines with O 2 and Ti 3 O 5 becomes TiO 2 and deposits on the surface of the glass lens 2. Therefore, when the hydrophilic film 6 is formed by vapor deposition, the hydrophilic film 6 is likely to be a TiO 2 single phase or a mixed phase of TiO 2 and Ti 3 O 5 .
 また、本実施形態では、親水性膜6を蒸着法で成膜する際、成膜チャンバ内での基板加熱温度を、250℃以上とすることが好ましい。また、基板加熱温度の上限値を限定するものでないが、例えば、400℃以下に調節することが好ましい。 Further, in the present embodiment, when the hydrophilic film 6 is formed by vapor deposition, the substrate heating temperature in the film forming chamber is preferably 250 ° C. or higher. Further, although the upper limit value of the substrate heating temperature is not limited, for example, it is preferable to adjust it to 400 ° C. or less.
 また、親水性膜6を酸化チタンで成膜する際の酸素ガスを、5.0×10-3Pa以上のガス圧にて導入することが好ましい。また、酸素ガスのガス圧を、1.0×10-2Pa~3.0×10-2Pa程度にて調節することがより好ましい。 In addition, it is preferable to introduce oxygen gas at the time of forming the hydrophilic film 6 with titanium oxide at a gas pressure of 5.0 × 10 −3 Pa or more. Further, it is more preferable to adjust the gas pressure of oxygen gas at about 1.0 × 10 −2 Pa to 3.0 × 10 −2 Pa.
 このように、基板加熱温度及び酸素ガスのガス圧を調節することで、下地膜5の下地効果と合わせて、親水性膜6の結晶粒成長を促進することができる。 As described above, by adjusting the substrate heating temperature and the gas pressure of the oxygen gas, it is possible to promote crystal grain growth of the hydrophilic film 6 together with the underlying effect of the underlying film 5.
 本実施形態では、下地膜5及び親水性膜6を連続して成膜することが好ましい。したがって、下地膜5と親水性膜6を同じ成膜方法にて成膜する。このとき、下地膜5及び親水性膜6と、反射防止膜4との間で、成膜方法が異なっていてもよい。例えば、後述する実験では、下地膜5及び親水性膜6を、イオンビームアシスト蒸着法で成膜し、反射防止膜4を、電子ビーム法で成膜している実施例がある。また、下地膜5及び親水性膜6を、電子ビーム法で成膜し、反射防止膜4を、イオンビームアシスト蒸着法で成膜している実施例がある。 In the present embodiment, it is preferable to form the base film 5 and the hydrophilic film 6 continuously. Therefore, the base film 5 and the hydrophilic film 6 are formed by the same film forming method. At this time, the film forming method may be different between the base film 5 and the hydrophilic film 6 and the antireflective film 4. For example, in the experiment described later, there is an example in which the base film 5 and the hydrophilic film 6 are formed by ion beam assisted deposition, and the antireflective film 4 is formed by electron beam method. Further, there is an embodiment in which the base film 5 and the hydrophilic film 6 are formed by the electron beam method, and the antireflective film 4 is formed by the ion beam assisted deposition method.
 また、図3に示す第2実施形態では、上記の下地膜5及び親水性膜6の成膜のみを行なえばよい。 Further, in the second embodiment shown in FIG. 3, only the film formation of the base film 5 and the hydrophilic film 6 may be performed.
 本実施形態では、下地膜5の表面に、酸化チタンや窒化チタンを具備する親水性膜6を成膜する。本実施形態における下地膜5は、親水性膜6の結晶粒成長を促進させる作用を有している。このため、親水性膜6を、1nm~30nm程度(好ましくは、5nm~15nm程度)の薄膜で形成しても、親水性膜6の結晶粒成長が促進され、親水性効果(光触媒励起)を十分に得ることができる。 In the present embodiment, the hydrophilic film 6 having titanium oxide or titanium nitride is formed on the surface of the base film 5. The undercoat film 5 in the present embodiment has an effect of promoting the crystal grain growth of the hydrophilic film 6. For this reason, even when the hydrophilic film 6 is formed as a thin film of about 1 nm to 30 nm (preferably, about 5 nm to 15 nm), crystal grain growth of the hydrophilic film 6 is promoted, and the hydrophilic effect (photocatalytic excitation) is obtained. You can get enough.
 また、本実施形態では、親水性膜6及び下地膜5の双方が、1nm~30nm程度(好ましくは、5nm~15nm程度)の薄い膜厚であり、反射防止効果を損なうことがない。 Further, in the present embodiment, both of the hydrophilic film 6 and the base film 5 have a thin film thickness of about 1 nm to 30 nm (preferably, about 5 nm to 15 nm), and the antireflection effect is not impaired.
 また、本実施形態では、親水性膜6及び下地膜5の双方を、薄い膜厚にて成膜することができるため、従来と同様の製造効率を得ることができる。 Further, in the present embodiment, since both of the hydrophilic film 6 and the base film 5 can be formed with a thin film thickness, the same manufacturing efficiency as that of the conventional one can be obtained.
 このように、本実施形態の親水性反射防止膜付きレンズ1の製造方法によれば、反射防止効果を損なわず、優れた親水性効果を備えた親水性反射防止膜付きレンズ1を、簡単且つ適切に製造することができる。 As described above, according to the method of manufacturing the lens 1 with a hydrophilic antireflective film of the present embodiment, the lens 1 with a hydrophilic antireflective film having an excellent hydrophilic property without losing the antireflective effect is simple and easy. It can be manufactured appropriately.
 以下、本実施形態を実施例及び比較例を用いてより具体的に説明する。実験では、以下に示す実施例1から実施例5及び比較例1から比較例3を製造した。 Hereinafter, the present embodiment will be more specifically described using examples and comparative examples. In the experiments, Examples 1 to 5 and Comparative Examples 1 to 3 shown below were manufactured.
[実施例1]
 実施例1では、以下の表1に示す材料を用い、表1に示す基板加熱温度にて、表1に示す膜厚及び屈折率を有する反射防止膜、下地膜及び親水性膜を成膜し、親水性反射防止膜付きレンズを得た。実験では、(株)昭和真空製の蒸着機(SGC-22SA)を使用して成膜した。なお、ガラスレンズの屈折率nd(d線(588nm)での屈折率)は、1.85135であった。ガラスレンズの屈折率ndは、実施例2から実施例5及び比較例1から比較例3においても同様である。ここで、各層の屈折率は、膜の反射率から換算して求めた(大気中の膜の屈折率に該当)。具体的には、大気中に取り出した基板を、オリンパス(株)製の顕微鏡型分光測定機(USPM―RU3)にて反射率を測定し、屈折率に換算して求めた。なお、屈折率は、波長550nmにおけるものである。また、膜厚は、例えば、断面TEM写真を用いて測定することができる。上記の屈折率、及び膜厚の測定は、実施例2から実施例5及び比較例1から比較例3においても同様である。
Example 1
In Example 1, using the materials shown in Table 1 below, an antireflection film, a base film, and a hydrophilic film having the film thickness and refractive index shown in Table 1 were formed at the substrate heating temperature shown in Table 1 , The lens with a hydrophilic anti-reflective film was obtained. In the experiment, the film was formed using a deposition machine (SGC-22SA) manufactured by Showa Vacuum Co., Ltd. The refractive index nd (refractive index at d-line (588 nm)) of the glass lens was 1.85135. The refractive index nd of the glass lens is the same in Examples 2 to 5 and Comparative Examples 1 to 3. Here, the refractive index of each layer was calculated from the reflectance of the film (corresponding to the refractive index of the film in the atmosphere). Specifically, the reflectance of the substrate taken out to the atmosphere was measured by a microscope type spectrophotometer (USPM-RU3) manufactured by Olympus Corporation, and the reflectance was determined in terms of refractive index. The refractive index is at a wavelength of 550 nm. The film thickness can be measured, for example, using a cross-sectional TEM photograph. The above-described measurement of the refractive index and the film thickness is the same as in Examples 2 to 5 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1では、基板加熱温度を350℃とし、イオンビームアシスト蒸着法により、SiOとTaとを交互に7層まで積層して反射防止膜を得た。次に、基板加熱温度を350℃のまま、電子ビーム法にて、ZrOからなる下地膜、及びTiO(Ti)からなる親水性膜を連続して成膜した。 In Example 1, the substrate heating temperature was 350 ° C., and SiO 2 and Ta 2 O 5 were alternately stacked up to seven layers by ion beam assisted deposition to obtain an antireflective film. Next, a base film made of ZrO 2 and a hydrophilic film made of TiO 2 (Ti 3 O 5 ) were continuously formed by an electron beam method at a substrate heating temperature of 350 ° C.
 親水性膜は、Tiを出発原料として蒸着され、このとき、Tiの全部又は一部が、TiOに入れ替わって成膜されやすい。親水性膜の膜構造は、分光光度計により測定することができる。本実施例では、親水性膜は、TiO単相、Ti単相、或いは、TiO及びTiの混相のいずれかの膜構造であればよい。 The hydrophilic film is deposited using Ti 3 O 5 as a starting material, and at this time, all or part of Ti 3 O 5 is easily replaced with TiO 2 to form a film. The membrane structure of the hydrophilic membrane can be measured by a spectrophotometer. In the present embodiment, the hydrophilic film may have a film structure of TiO 2 single phase, Ti 3 O 5 single phase, or mixed phase of TiO 2 and Ti 3 O 5 .
 なお、実施例1では、親水性膜の空孔率は、5%であった。空孔率は、次のように算出することができる。 In Example 1, the porosity of the hydrophilic film was 5%. The porosity can be calculated as follows.
 まず、親水性膜に使用される材質の既知の屈折率をnとし、本実験にて成膜された親水性膜の真空中の屈折率をn(V)とする。真空中の屈折率は、真空保持された成膜チャンバ内にて光学膜厚計を使用して、成膜中の反射率を測定し、屈折率に換算して求めた。親水性膜の充填率は、以下のように表すことができる。 First, let n be the known refractive index of the material used for the hydrophilic film, and let n (V) be the refractive index in vacuum of the hydrophilic film formed in this experiment. The refractive index in vacuum was determined by measuring the reflectance during film formation using an optical film thickness meter in a film formation chamber held in vacuum, and converting it to a refractive index. The packing ratio of the hydrophilic membrane can be expressed as follows.
 充填率(%)=[真空中の屈折率(%)/既知の屈折率(%)]×100(%)
 したがって、空孔率は、
 空孔率(%)=100(%)-充填率(%)
 となる。
Packing ratio (%) = [refractive index in vacuum (%) / known refractive index (%)] × 100 (%)
Therefore, the porosity is
Porosity (%) = 100 (%)-filling rate (%)
It becomes.
[実施例2]
 実施例2では、以下の表2に示す材料を用い、表2に示す基板加熱温度にて、表2に示す膜厚及び屈折率を有する反射防止膜、下地膜及び親水性膜を成膜し、親水性反射防止膜付きレンズを得た。
Example 2
In Example 2, using the materials shown in Table 2 below, an antireflection film, a base film, and a hydrophilic film having the film thickness and refractive index shown in Table 2 are formed at the substrate heating temperature shown in Table 2 , The lens with a hydrophilic anti-reflective film was obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例2では、基板加熱温度を250℃とし、電子ビーム法にて、下から、SiO、MgF又は、Al/Al/ZrO/SiO又はMgFの順に積層された反射防止膜を成膜した。次に、基板加熱温度を250℃のまま、イオンビームアシスト蒸着法にて、ZrOからなる下地膜、及びTiO(Ti)からなる親水性膜を連続して成膜した。 In Example 2, the substrate heating temperature is 250 ° C., and SiO 2 , MgF 2, or Al 2 O 3 / Al 2 O 3 / ZrO 2 / SiO 2 or MgF 2 are laminated in order from the bottom by electron beam method. The antireflective film was deposited. Next, with the substrate heating temperature kept at 250 ° C., a base film made of ZrO 2 and a hydrophilic film made of TiO 2 (Ti 3 O 5 ) were continuously formed by ion beam assisted deposition.
[実施例3]
 実施例3では、以下の表3に示す材料を用い、表3に示す基板加熱温度にて、表3に示す膜厚及び屈折率を有する反射防止膜、下地膜及び親水性膜を成膜し、親水性反射防止膜付きレンズを得た。
[Example 3]
In Example 3, using the materials shown in Table 3 below, an antireflection film, a base film and a hydrophilic film having the film thickness and refractive index shown in Table 3 are formed at the substrate heating temperature shown in Table 3 , The lens with a hydrophilic anti-reflective film was obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例3では、基板加熱温度を25℃(無加熱)とし、反射防止膜を、スパッタ法にて、SiOと、Nbとを交互に9層まで積層した。次に、基板加熱温度を25℃(無加熱)のまま、スパッタ法にて、Yからなる下地膜、及びTiO(Ti)からなる親水性膜を連続して成膜した。 In Example 3, the substrate heating temperature was 25 ° C. (no heating), and the anti-reflection film was alternately stacked up to nine layers of SiO 2 and Nb 2 O 5 by sputtering. Next, a base film consisting of Y 2 O 3 and a hydrophilic film consisting of TiO 2 (Ti 3 O 5 ) are continuously formed by sputtering while keeping the substrate heating temperature at 25 ° C. (without heating). did.
[実施例4]
 実施例4では、以下の表4に示す材料を用い、表4に示す基板加熱温度にて、表4に示す膜厚及び屈折率を有する反射防止膜、下地膜及び親水性膜を成膜し、親水性反射防止膜付きレンズを得た。
Example 4
In Example 4, using the materials shown in Table 4 below, an antireflection film, a base film, and a hydrophilic film having the film thickness and refractive index shown in Table 4 are formed at the substrate heating temperature shown in Table 4 , The lens with a hydrophilic anti-reflective film was obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例4では、基板加熱温度を350℃とし、反射防止膜を、電子ビーム法にて、SiOの単層で形成した。連続して、基板加熱温度を350℃のまま、電子ビーム法にて、MgFからなる下地膜、及びTiO(Ti)からなる親水性膜を成膜した。 In Example 4, the substrate heating temperature was 350 ° C., and the antireflection film was formed of a single layer of SiO 2 by an electron beam method. Continuously, the base film consisting of MgF 2 and the hydrophilic film consisting of TiO 2 (Ti 3 O 5 ) were formed by electron beam method while keeping the substrate heating temperature at 350 ° C.
[実施例5]
 実施例5では、以下の表5に示す材料を用い、表5に示す基板加熱温度にて、表5に示す膜厚及び屈折率を有する反射防止膜、下地膜及び親水性膜を成膜し、親水性反射防止膜付きレンズを得た。
[Example 5]
In Example 5, using the materials shown in Table 5 below, an antireflection film, a base film, and a hydrophilic film having the film thickness and refractive index shown in Table 5 are formed at the substrate heating temperature shown in Table 5 , The lens with a hydrophilic anti-reflective film was obtained.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例5では、基板加熱温度を350℃とし、イオンビームアシスト蒸着法にて、SiOとTaとを交互に7層まで積層して反射防止膜を得た。次に、基板加熱温度を350℃のまま、電子ビーム法にて、ZrOからなる下地膜、及びTiO(Ti)からなる親水性膜を連続して成膜した。 In Example 5, the substrate heating temperature was 350 ° C., and SiO 2 and Ta 2 O 5 were alternately stacked up to seven layers by ion beam assisted deposition to obtain an antireflective film. Next, a base film made of ZrO 2 and a hydrophilic film made of TiO 2 (Ti 3 O 5 ) were continuously formed by an electron beam method at a substrate heating temperature of 350 ° C.
 実施例5では、親水性膜の空孔率は0%であった。 In Example 5, the porosity of the hydrophilic membrane was 0%.
[比較例1]
 比較例1では、以下の表6に示す材料を用い、表6に示す基板加熱温度にて、表6に示す膜厚及び屈折率を有する反射防止膜、及び親水性膜を成膜し、親水性反射防止膜付きレンズを得た。
Comparative Example 1
In Comparative Example 1, an antireflective film having the film thickness and refractive index shown in Table 6 and a hydrophilic film are formed at the substrate heating temperature shown in Table 6 using the materials shown in Table 6 below, and hydrophilic A lens with an antireflective coating is obtained.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 比較例1では、基板加熱温度を350℃とし、イオンビームアシスト蒸着法にて、SiOとTaとを交互に7層まで積層して反射防止膜を得た。次に、電子ビーム法にて、TiO(Ti)からなる親水性膜を成膜した。 In Comparative Example 1, the substrate heating temperature was 350 ° C., and SiO 2 and Ta 2 O 5 were alternately stacked up to seven layers by ion beam assisted deposition to obtain an antireflective film. Next, a hydrophilic film made of TiO 2 (Ti 3 O 5 ) was formed by an electron beam method.
 比較例1では、上記の各実施例と異なって、親水性膜に対する下地膜を成膜しなかった。 In Comparative Example 1, unlike in each of the above-described Examples, the base film for the hydrophilic film was not formed.
[比較例2]
 比較例2では、以下の表7に示す材料を用い、表7に示す基板加熱温度にて、表7に示す膜厚及び屈折率を有する反射防止膜、下地膜及び親水性膜を成膜し、親水性反射防止膜付きレンズを得た。
Comparative Example 2
In Comparative Example 2, using the materials shown in Table 7 below, an antireflection film, a base film, and a hydrophilic film having the film thickness and refractive index shown in Table 7 are formed at the substrate heating temperature shown in Table 7 , The lens with a hydrophilic anti-reflective film was obtained.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 比較例2では、基板加熱温度を350℃とし、反射防止膜を、イオンビームアシスト蒸着法にて、SiOとTaとを交互に7層まで積層した。次に、基板加熱温度を350℃のまま、電子ビーム法にて、Alからなる下地膜、及びTiO(Ti)からなる親水性膜を連続して成膜した。 In Comparative Example 2, the substrate heating temperature was 350 ° C., and the anti-reflection film was alternately stacked up to seven layers of SiO 2 and Ta 2 O 5 by ion beam assisted deposition. Next, a base film made of Al 2 O 3 and a hydrophilic film made of TiO 2 (Ti 3 O 5 ) were continuously formed by an electron beam method at a substrate heating temperature of 350 ° C.
 比較例2では、下地膜に本実施例では使用しないAlを用いた。 In Comparative Example 2, Al 2 O 3 was used not used in this embodiment in the base film.
[比較例3]
 比較例3では、以下の表8に示す材料を用い、表8に示す基板加熱温度にて、表8に示す膜厚及び屈折率を有する反射防止膜及び親水性膜を成膜し、親水性反射防止膜付きレンズを得た。
Comparative Example 3
In Comparative Example 3, using the materials shown in Table 8 below, an antireflection film and a hydrophilic film having the film thickness and the refractive index shown in Table 8 are formed at the substrate heating temperature shown in Table 8 A lens with an antireflective film was obtained.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 比較例3では、基板加熱温度を350℃とし、反射防止膜を、イオンビームアシスト蒸着法にて、SiOとTaとを交互に7層まで積層した。次に、基板加熱温度を350℃のまま、電子ビーム法にて、TiO(Ti)からなる親水性膜を成膜した。 In Comparative Example 3, the substrate heating temperature was 350 ° C., and the anti-reflection film was alternately laminated up to seven layers of SiO 2 and Ta 2 O 5 by ion beam assisted deposition. Next, a hydrophilic film made of TiO 2 (Ti 3 O 5 ) was formed by an electron beam method while keeping the substrate heating temperature at 350 ° C.
 比較例3では、上記の各実施例と異なって、下地膜を成膜しなかった。また、親水性膜の膜厚を、各実施例よりも厚い50nmとした。 In Comparative Example 3, unlike in the above-described Examples, the underlayer film was not formed. In addition, the film thickness of the hydrophilic film is 50 nm, which is thicker than each example.
[接触角の測定]
 実験では、レンズ表面に、UV照射し、UV照射時間と接触角度との関係について測定した。接触角の測定は、サンプル表面に純水を0.8μl液下し、その接触角θを求めた。なお、実験では、各擦り試験を、3回ずつ行って接触角θの平均値を求めた。図4及び図5に示す接触角度は、いずれも平均値である。また、実験でのUV波長は、約365nmであった。なお、UV波長は、280~400nm程度であればよい。
[Measurement of contact angle]
In the experiment, the lens surface was irradiated with UV, and the relationship between the UV irradiation time and the contact angle was measured. In the measurement of the contact angle, 0.8 μl of pure water was poured on the sample surface, and the contact angle θ was determined. In the experiment, each rubbing test was performed three times each to determine the average value of the contact angles θ. The contact angles shown in FIGS. 4 and 5 are all average values. Also, the UV wavelength in the experiment was about 365 nm. The UV wavelength may be about 280 to 400 nm.
[実施例1と、比較例1及び比較例2との接触角度の試験結果]
 図4に示すように、実施例1では、UV照射を行うことで、接触角度が、短時間で急激に小さくなることがわかった。一方、下地膜がない比較例1及び、下地膜の材質が本実施例と異なる比較例2では、UV照射後も接触角度は、ほぼ一定であった。
[Test Results of Contact Angles of Example 1 and Comparative Examples 1 and 2]
As shown in FIG. 4, in Example 1, it was found that the contact angle is sharply reduced in a short time by performing the UV irradiation. On the other hand, in Comparative Example 1 in which there is no undercoat film and in Comparative Example 2 in which the material of the undercoat film is different from this example, the contact angle was substantially constant even after UV irradiation.
 これにより、実施例では、UV照射により光触媒効果が作用し、十分な親水性が得られた結果、接触角度が小さくなったことがわかった。 Thereby, in the Example, as a result of the photocatalytic effect acting by UV irradiation and sufficient hydrophilic property being obtained, it turned out that a contact angle became small.
 この実験結果から、親水性膜に対し下地膜が必要であり、このとき、下地膜の材質として適切なものを選択することが重要であるとわかった。所定の材質からなる下地膜は、親水性膜の結晶粒成長を促進するものと考えられる。この結果、親水性膜の膜厚が薄くても、十分な親水性効果(光触媒励起)を得ることができると考えられる。 From these experimental results, it was found that a base film is required for the hydrophilic film, and at this time, it is important to select an appropriate material for the base film. The undercoat film made of a predetermined material is considered to promote crystal grain growth of the hydrophilic film. As a result, even if the film thickness of the hydrophilic film is thin, it is considered that a sufficient hydrophilic effect (photocatalyst excitation) can be obtained.
 本実施例では、下地膜として、ZrO、MgF、Ta、Nb、及びYから選択される単層、又は、ZrO、MgF、Ta、Nb、Y、TiO、及びTiから選択される1種以上の材料を50%以上含む混合層を、下地膜として用いることとした。 In this example, a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , and Y 2 O 3 , or ZrO 2 , MgF 2 , Ta 2 O 5 , is used as the underlayer. A mixed layer containing 50% or more of one or more materials selected from Nb 2 O 5 , Y 2 O 3 , TiO 2 , and Ti 3 O 5 was used as the underlayer.
 下地膜の膜厚は、実施例では、5nm~30nm程度であるため、下地膜の膜厚を1nm以上30nm以下に設定した。 Since the film thickness of the underlayer is about 5 nm to 30 nm in the example, the film thickness of the underlayer was set to 1 nm or more and 30 nm or less.
 また、親水性膜の膜厚を、各実施例に基づいて、1nm以上30nm以下に設定した。親水性膜は、屈折率がガラスより高いため、親水性膜を、あまり厚く形成すると、反射防止効果が低下する。 In addition, the film thickness of the hydrophilic film was set to 1 nm or more and 30 nm or less based on each example. Since the hydrophilic film has a refractive index higher than that of glass, when the hydrophilic film is formed too thick, the antireflective effect is reduced.
 そこで、本実施例では、適切な材質からなる下地膜に、親水性膜を重ねて積層することで、親水性膜の膜厚を薄くして反射防止効果を損なうことなく、優れた親水性を得ることができた。 Therefore, in the present embodiment, the hydrophilic film is overlaid on the underlying film made of an appropriate material, and the hydrophilic film is excellently hydrophilic without reducing the thickness of the hydrophilic film and impairing the anti-reflection effect. I was able to get it.
[実施例1と実施例5との接触角度の試験結果]
 図5に示すように、実施例1及び実施例5共に、UV照射により、接触角度は小さくなった。これにより、実施例1のみならず、実施例5も光触媒効果が作用し、親水性を得ることができた。
[Test Results of Contact Angle between Example 1 and Example 5]
As shown in FIG. 5, in both Example 1 and Example 5, the contact angle was reduced by UV irradiation. Thereby, not only Example 1 but Example 5 had a photocatalytic effect, and it was possible to obtain hydrophilicity.
 ただし、図5に示すように、実施例5は実施例1に比べて、UV照射の時間経過に対する接触角度の低下は緩やかである。これは、実施例5では、実施例1に比べて、親水性膜の空孔が小さいためと考えられる。 However, as shown in FIG. 5, in the fifth embodiment, the decrease in the contact angle with respect to the time lapse of the UV irradiation is slower than in the first embodiment. This is considered to be due to the fact that the pores of the hydrophilic film in Example 5 are smaller than those in Example 1.
 したがって、親水性膜はある程度、空孔を備えていたほうが好ましいことがわかった。ただし、あまり空孔率が大きすぎても、十分な光触媒効果が得られないものと考えられるため、空孔率を20%以下に設定することとした。 Therefore, it was found that it is preferable that the hydrophilic film be provided with pores to some extent. However, since it is considered that even if the porosity is too large, a sufficient photocatalytic effect can not be obtained, the porosity is set to 20% or less.
[波長と反射率との関係]
 実験では、実施例1、比較例3及び反射防止膜を形成しない参照例(未コート)を用いて、波長と反射率との関係を調べた。反射率は、上記したオリンパス(株)製の顕微鏡型分光測定機(USPM―RU3)により測定した。
[Relationship between wavelength and reflectance]
In the experiment, the relationship between the wavelength and the reflectance was investigated using Example 1 and Comparative Example 3 and a reference example (uncoated) in which the antireflective film is not formed. The reflectance was measured by the microscope type spectrophotometer (USPM-RU3) manufactured by Olympus Co., Ltd. described above.
 図6に示すように、参照例の反射率を基準として、実施例1及び比較例3の反射率を相対評価した。 As shown in FIG. 6, the reflectances of Example 1 and Comparative Example 3 were relatively evaluated with reference to the reflectance of the reference example.
 図6に示すように、親水性膜の膜厚が厚い比較例3では、可視光域にて、反射率が参照例よりも高くなった。 As shown in FIG. 6, in Comparative Example 3 in which the film thickness of the hydrophilic film is thick, the reflectance was higher in the visible light range than in the reference example.
 一方、実施例1では、可視光域にて、反射率が参照例よりも低くなった。このように、実施例1では、反射防止効果が損なわれていないことがわかった。 On the other hand, in Example 1, the reflectance was lower in the visible light range than in the reference example. Thus, in Example 1, it turned out that the antireflection effect is not impaired.
 本発明の親水性反射防止膜付きレンズは、反射防止効果及び光触媒効果に優れる。したがって、レンズ表面は優れた親水性を有し、防曇性を高めることができる。本発明では、親水性反射防止膜付きレンズを、車両のサイドミラーや窓ガラス等と異なって、使用者が普段拭くことを前提としない、監視カメラや車載カメラ等用のガラスレンズに好ましく適用することができる。 The lens with a hydrophilic antireflective film of the present invention is excellent in the antireflective effect and the photocatalytic effect. Therefore, the lens surface has excellent hydrophilicity and can improve antifogging properties. In the present invention, a lens with a hydrophilic anti-reflection film is preferably applied to a glass lens for a surveillance camera, an on-vehicle camera, etc., which is not premised that the user usually wipes unlike the side mirror or window glass of a vehicle. be able to.
 本出願は、2017年5月23日出願の特願2017-101663に基づく。この内容は、全てここに含めておく。 The present application is based on Japanese Patent Application No. 2017-101663 filed May 23, 2017. All this content is included here.

Claims (7)

  1.  ガラスレンズの表面に、少なくとも、下地膜及び親水性膜の順に積層された親水性反射防止膜を有し、
     前記下地膜は、ZrO、MgF、Ta、Nb、及びYから選択される単層、又は、ZrO、MgF、Ta、Nb、Y、TiO、及びTiから選択される1種以上の材料を50%以上含む混合層で形成され、膜厚が1nm以上30nm以下であり、
     前記親水性膜は、前記下地膜の表面に、TiO及びTiの少なくとも一方からなる酸化チタン、又は、TiNからなる窒化チタンの単層、或いは、前記酸化チタン及び前記窒化チタンの少なくとも一方を50%以上含む混合層で形成され、膜厚が1nm以上30nm以下である、ことを特徴とする親水性反射防止膜付きレンズ。
    The surface of the glass lens has at least a hydrophilic antireflective film laminated in the order of a base film and a hydrophilic film,
    The underlayer is a single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , and Y 2 O 3 , or ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 And Y 2 O 3 , TiO 2 , and Ti 3 O 5 in a mixed layer containing 50% or more of one or more materials, and the film thickness is 1 nm or more and 30 nm or less,
    The hydrophilic film is a single layer of titanium oxide made of at least one of TiO 2 and Ti 3 O 5 or titanium nitride made of TiN on the surface of the base film, or at least at least the titanium oxide and the titanium nitride. A lens with a hydrophilic antireflective film, characterized in that it is formed of a mixed layer containing 50% or more of one, and the film thickness is 1 nm or more and 30 nm or less.
  2.  前記親水性膜の空孔率は、20%以下であることを特徴とする請求項1に記載の親水性反射防止膜付きレンズ。 2. The lens with a hydrophilic anti-reflection film according to claim 1, wherein the porosity of the hydrophilic film is 20% or less.
  3.  前記親水性反射防止膜は、前記ガラスレンズの表面に、反射防止膜、前記下地膜及び前記親水性膜の順に積層されており、
     前記反射防止膜は、SiO、MgF、ZrO、Al、TiO、Ti、Ta、及び、Nbから選択される単層又は2種以上の材料を含む混合層を、1層以上有して形成されていることを特徴とする請求項1又は請求項2に記載の親水性反射防止膜付きレンズ。
    The hydrophilic antireflective film is laminated on the surface of the glass lens in the order of an antireflective film, the base film, and the hydrophilic film,
    The antireflective film is a single layer or two or more selected from SiO 2 , MgF 2 , ZrO 2 , Al 2 O 3 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 , and Nb 2 O 5 The lens with a hydrophilic anti-reflection film according to claim 1 or 2, which is formed to have one or more mixed layers containing a material.
  4.  ガラスレンズの表面に、ZrO、MgF、Ta、Nb、及びYから選択される単層、又は、ZrO、MgF、Ta、Nb、Y、TiO、及びTiから選択される1種以上の材料を50%以上含む混合層にて、膜厚が1nm以上30nm以下の下地膜を形成する工程と、
     前記下地膜の表面に、TiO及びTiの少なくとも一方からなる酸化チタン、又は、TiNからなる窒化チタンの単層、或いは、前記酸化チタン及び前記窒化チタンの少なくとも一方を50%以上含む混合層にて、膜厚が1nm以上30nm以下の親水性膜を形成する工程と、
     を有することを特徴とする親水性反射防止膜付きレンズの製造方法。
    A single layer selected from ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5 , and Y 2 O 3 on the surface of a glass lens, or ZrO 2 , MgF 2 , Ta 2 O 5 , Nb 2 O 5) forming an underlayer having a thickness of 1 nm to 30 nm in a mixed layer containing 50% or more of one or more materials selected from Y 2 O 3 , TiO 2 , and Ti 3 O 5 ;
    A single layer of titanium oxide comprising at least one of TiO 2 and Ti 3 O 5 or titanium nitride comprising TiN, or at least 50% of at least one of the titanium oxide and the titanium nitride is provided on the surface of the underlayer. Forming a hydrophilic film having a thickness of 1 nm or more and 30 nm or less in the mixed layer;
    A method of producing a lens with a hydrophilic antireflective film, comprising:
  5.  前記下地膜及び前記親水性膜を、蒸着法、又は、スパッタ法により成膜することを特徴とする請求項4に記載の親水性反射防止膜付きレンズの製造方法。 The method for producing a lens with a hydrophilic antireflective film according to claim 4, wherein the underlayer film and the hydrophilic film are formed by vapor deposition or sputtering.
  6.  前記下地膜及び前記親水性膜を蒸着法で成膜する際の基板加熱温度を、250℃以上とすることを特徴とする請求項5に記載の親水性反射防止膜付きレンズの製造方法。 The method for producing a lens with a hydrophilic antireflective film according to claim 5, wherein the substrate heating temperature at the time of forming the underlayer film and the hydrophilic film by evaporation method is 250 ° C or more.
  7.  前記蒸着法として、イオンビームアシスト蒸着法、又は、電子ビーム法を用いることを特徴とする請求項5又は請求項6に記載の親水性反射防止膜付きレンズの製造方法。 7. The method according to claim 5, wherein an ion beam assisted deposition method or an electron beam method is used as the deposition method.
PCT/JP2018/018653 2017-05-23 2018-05-15 Lens having hydrophilic anti-reflection film and production method therefor WO2018216540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880033482.7A CN110709364A (en) 2017-05-23 2018-05-15 Lens with hydrophilic anti-reflection film and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017101663A JP6989289B2 (en) 2017-05-23 2017-05-23 Lens with hydrophilic antireflection film and its manufacturing method
JP2017-101663 2017-05-23

Publications (1)

Publication Number Publication Date
WO2018216540A1 true WO2018216540A1 (en) 2018-11-29

Family

ID=64396713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018653 WO2018216540A1 (en) 2017-05-23 2018-05-15 Lens having hydrophilic anti-reflection film and production method therefor

Country Status (3)

Country Link
JP (1) JP6989289B2 (en)
CN (1) CN110709364A (en)
WO (1) WO2018216540A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3875997A4 (en) * 2018-12-21 2022-03-02 Konica Minolta, Inc. Dielectric film, method for producing same and optical member using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052101A (en) * 1991-06-26 1993-01-08 Konica Corp Optical component
JPH07291670A (en) * 1994-04-27 1995-11-07 Central Glass Co Ltd Visual light low reflection type heat ray-shielding glass
JPH11271505A (en) * 1998-03-25 1999-10-08 Olympus Optical Co Ltd Optical multilayered film
JP2002372602A (en) * 2001-04-10 2002-12-26 Matsushita Electric Ind Co Ltd Antireflection coating and optical element using the same
JP2014071292A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Anti-reflection article
JP2015022187A (en) * 2013-07-19 2015-02-02 リコーイメージング株式会社 Antireflection film, optical member using the same, and optical equipment
WO2017056598A1 (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Hydrophilic multilayer film and method for manufacturing same, and imaging system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052101A (en) * 1991-06-26 1993-01-08 Konica Corp Optical component
JPH07291670A (en) * 1994-04-27 1995-11-07 Central Glass Co Ltd Visual light low reflection type heat ray-shielding glass
JPH11271505A (en) * 1998-03-25 1999-10-08 Olympus Optical Co Ltd Optical multilayered film
JP2002372602A (en) * 2001-04-10 2002-12-26 Matsushita Electric Ind Co Ltd Antireflection coating and optical element using the same
JP2014071292A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Anti-reflection article
JP2015022187A (en) * 2013-07-19 2015-02-02 リコーイメージング株式会社 Antireflection film, optical member using the same, and optical equipment
WO2017056598A1 (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Hydrophilic multilayer film and method for manufacturing same, and imaging system

Also Published As

Publication number Publication date
JP2018197171A (en) 2018-12-13
CN110709364A (en) 2020-01-17
JP6989289B2 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6918208B2 (en) Anti-reflective coating and optics
WO2018174049A1 (en) Lens with water repellent anti-reflection film and method for producing same
WO2022168457A1 (en) Optical product and method for manufacturing optical product
JP2017151409A (en) Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device
JP2006317603A (en) Front surface mirror
JP6513486B2 (en) Antifogging antireflective film, cover substrate with antifogging antireflective film, and method for producing antifogging antireflective film
WO2021024834A1 (en) Antireflection film-equipped optical member and production method therefor
JP2007310335A (en) Front surface mirror
WO2018216540A1 (en) Lens having hydrophilic anti-reflection film and production method therefor
WO2021111813A1 (en) Optical member and production method therefor
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
KR20050102661A (en) Vaporizing material for producing highly refractive optical layers
JP7476564B2 (en) Superhydrophilic film, its manufacturing method, and optical member
WO2021261225A1 (en) Hydrophilic film manufacturing method, hydrophilic film, and optical member
JP2015025207A (en) Hafnium oxide-coating or zirconium oxide-coating
JP7415949B2 (en) Dielectric film, its manufacturing method, and optical components using the same
WO2017119335A1 (en) Method for manufacturing reflective film
WO2024053125A1 (en) Multilayer film, optical member including multilayer film, and method for producing multilayer film
CN110691995B (en) Optical element and optical film
JP7455270B1 (en) Multilayer film, optical member, and method for manufacturing multilayer film
WO2024053124A1 (en) Multilayer film, optical component, spectacles and method for producing multilayer film
CN110869818B (en) Dustproof lens and method for manufacturing the same
JP7468624B2 (en) Optical Components
WO2024203250A1 (en) Optical member and method for manufacturing optical member
JP2023015187A (en) Optical product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806278

Country of ref document: EP

Kind code of ref document: A1