WO2024053124A1 - Multilayer film, optical component, spectacles and method for producing multilayer film - Google Patents

Multilayer film, optical component, spectacles and method for producing multilayer film Download PDF

Info

Publication number
WO2024053124A1
WO2024053124A1 PCT/JP2022/046336 JP2022046336W WO2024053124A1 WO 2024053124 A1 WO2024053124 A1 WO 2024053124A1 JP 2022046336 W JP2022046336 W JP 2022046336W WO 2024053124 A1 WO2024053124 A1 WO 2024053124A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
multilayer film
less
layer containing
cerium oxide
Prior art date
Application number
PCT/JP2022/046336
Other languages
French (fr)
Japanese (ja)
Inventor
学 小長井
哲也 村田
盛忠 戸松
Original Assignee
キヤノンオプトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンオプトロン株式会社 filed Critical キヤノンオプトロン株式会社
Publication of WO2024053124A1 publication Critical patent/WO2024053124A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts

Definitions

  • the present disclosure relates to a multilayer film with excellent antifogging properties and antifogging maintenance performance, an optical member having the multilayer film, eyeglasses having the optical member, and a method for manufacturing the multilayer film.
  • Optical members such as optical lenses, mirrors, and optical filters have films formed of inorganic materials in order to increase or decrease light transmittance or reflectance.
  • moisture such as steam or exhaled air adheres to the surface of the optical member, it becomes minute droplets and covers the surface, causing a problem that the optical member becomes cloudy.
  • a hydrophilic substance such as a silanol group (Si-OH) to spread water droplets uniformly to prevent fogging.
  • Patent Document 2 a hydrophilic film in which a silicon dioxide thin film is formed on a crystalline titanium dioxide thin film is used (Patent Document 2, Patent Document 3, Non-Patent Document 1).
  • Patent Document 3 a hydrophilic film in which a silicon dioxide thin film is formed on a crystalline titanium dioxide thin film is used (Patent Document 2, Patent Document 3, Non-Patent Document 1).
  • active oxygen is generated by the photocatalytic function, and the generated active oxygen decomposes organic matter on the surface of the hydrophilic film.
  • the hydrophilic properties of the hydrophilic membrane are restored, dirt is washed away by rainfall, and the membrane is self-purified.
  • Patent No. 3435136 Japanese Patent Application Publication No. 09-057912 Japanese Patent Application Publication No. 2000-053449
  • the thickness of the low refractive index layer such as silicon dioxide on the surface is 50 nm or more, although it is suitable in terms of reducing reflectance, the hydrophilicity recovery function due to the photocatalytic function is insufficient, and it is difficult to prevent. There was a problem that fogging performance could not be maintained.
  • silicon dioxide thin films have insufficient antifogging performance, and a thin film with even better antifogging performance has been desired.
  • the object of the present disclosure is to provide a multilayer film with excellent antifogging properties and excellent antifogging maintenance performance by forming a low refractive index layer having a specific thickness on top of a layer having a photocatalytic function.
  • the multilayer film of the present disclosure can be applied to the surface of the base material directly or through another layer.
  • a layer containing cerium oxide having a thickness of 70 nm or more and 300 nm or less and having a cubic polycrystalline structure
  • a layer containing porous silica having a thickness of 2 nm or more and 10 nm or less and a refractive index of 1.33 or more and 1.45 or less at a wavelength of 500 nm is provided on the upper layer side of the layer containing silicon oxide.
  • the method for producing a multilayer film of the present disclosure includes applying the method to the surface of the base material directly or through another layer. forming a layer containing cerium oxide having a thickness of 70 nm or more and 300 nm or less and having a cubic polycrystalline structure; forming a layer containing silicon oxide with a thickness of 50 nm or more and 240 nm or less and a refractive index of 1.46 or more and 1.65 or less at a wavelength of 500 nm on the upper layer side of the layer containing cerium oxide; A layer of alkoxysilane is formed on the upper layer side of the layer containing silicon oxide, and is hydrolyzed to form a porous film having a thickness of 2 nm or more and 10 nm or less, and a refractive index of 1.33 or more and 1.45 or less at a wavelength of 500 nm. forming a layer containing silica. Moreover, according to another aspect of the present disclosure, an optical member having the above multilayer film is provided.
  • An optical member having the above and a method for manufacturing the multilayer film described above can be obtained.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of a first embodiment of a multilayer film according to the present disclosure.
  • FIG. 1 is a schematic diagram showing an embodiment (glasses) of an optical member according to the present disclosure.
  • a multilayer film refers to a structure including two or more layers formed on a surface of a base material.
  • the multilayer film does not include a base material.
  • the base material is a solid article.
  • the optical member is an optical member including a base material having the multilayer film described above.
  • the optical components include optical filters, optical lenses, daylighting lenses, optical films, optical prisms, eyeglass lenses, photographic lenses, surveillance camera covers, vehicle camera covers, vehicle sensor covers, vehicle door mirrors, plate glass, and condensing light. Examples include lenses, display cover glasses, touch panels, and various films.
  • the multilayer film of the present disclosure has a cerium oxide-containing layer having a thickness of 70 nm or more and 300 nm or less and having a cubic polycrystalline structure directly or through another layer on the surface of a base material.
  • a layer containing silicon oxide has a film thickness of 50 nm or more and 240 nm or less and a refractive index of 1.46 or more and 1.65 or less at a wavelength of 500 nm on the upper layer side of the layer containing silicon oxide, and the upper layer of the layer containing silicon oxide. It is characterized by having a layer containing porous silica having a thickness of 2 nm or more and 10 nm or less and a refractive index of 1.33 or more and 1.45 or less at a wavelength of 500 nm.
  • the present disclosure is not limited by the following hypothesis in any way.
  • the present inventor has discovered that when a layer containing silicon oxide with a specific thickness and a layer containing porous silica on the upper layer side are arranged on the surface, the lower layer side in contact with the layer has a cubic polycrystalline structure. It has been found that by arranging a layer containing cerium oxide, self-cleaning properties and anti-fogging maintenance performance by photocatalyst are exhibited. Regarding the above mechanism, the following contents can be considered.
  • the present inventors discovered that in a case where a layer containing silicon oxide and a layer containing porous silica are disposed above the layer, the layer containing silicon oxide has a cubic polycrystalline structure on the lower layer side. It has been found that anti-fogging performance can be dramatically improved by arranging a layer containing cerium oxide. Regarding the above mechanism, the following contents can be considered.
  • the layer containing porous silica of the present disclosure has a large surface area due to its porosity, and has more silanol groups (Si-OH), which is a hydrophilic substance, than non-porous silicon oxide, so it has excellent antifogging performance. may be superior to
  • Si-OH silanol groups
  • a layer containing cubic polycrystalline cerium oxide is exposed to ultraviolet light or higher energy rays, electrical, chemical, and other energy is stored within the cerium oxide and at its interface. It is thought that the layer containing cerium oxide of the present disclosure supplies the stored energy to the surface side of the multilayer film, thereby maintaining the surface energy of the multilayer film in a high state and improving the antifogging maintenance performance.
  • the layer containing cerium oxide of the present disclosure formed by vacuum evaporation trivalent and tetravalent cerium tend to coexist, so it may be in a state where energy is easily stored.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of the multilayer film of the present disclosure provided on a base material, in which another layer 12 is formed on the base material 11, and A configuration example is shown in which a layer 13 containing cerium oxide is formed, a layer 14 containing silicon oxide of the present disclosure is additionally formed, and a layer 15 containing porous silica of the present disclosure is further formed.
  • FIG. 1 schematically represents the configuration of a multilayer film in the present disclosure. Therefore, the area and film thickness of each layer are not expressed in accurate ratios. Further, the other layer 12 may or may not be present.
  • the base material 11 will be explained.
  • the base material 11 may be any material as long as it is capable of laminating the other layer 12 or the layer 13 containing cerium oxide according to the present disclosure, and may be made of glass, ceramics, resin, or metal.
  • the shape of the base material is not limited and may be flat, curved, concave, convex, or film-like. Moreover, it may have a hard coat layer or a barrier layer.
  • the size and thickness are not particularly limited, and can be set as appropriate depending on the intended use.
  • the layer 13 containing cerium oxide according to the present disclosure will be explained.
  • the multilayer film of the present disclosure has a layer 13 containing cerium oxide on the upper layer side of the base material 11.
  • the cerium oxide-containing layer 13 of the present disclosure is a cerium oxide-containing layer having a cubic polycrystalline structure. In a layer made of cerium oxide with a polycrystalline structure, cracks are less likely to occur in the multilayer film. Further, when the layer containing cerium oxide has a cubic polycrystalline structure, the self-purification function by photocatalyst and the anti-fog maintenance performance are high.
  • the definition of polycrystalline structure in the present disclosure includes the appearance of a peak unique to cerium oxide in X-ray diffraction (XRD) measurement of a thin film after film formation.
  • XRD X-ray diffraction
  • the layer 13 containing cerium oxide of the present disclosure has a thickness of 70 nm or more and 300 nm or less.
  • the film thickness is 70 nm or more, the photocatalytic self-purification function and anti-fog maintenance performance are high.
  • the film thickness is 300 nm or less, cracks do not occur, and non-uniformity and surface roughness do not become too large, which can have a positive effect on optical properties.
  • the composition of cerium oxide in the cerium oxide-containing layer 13 of the present disclosure is CeO x , and x is preferably 1.5 or more and 2.0 or less. Within the above range, a more transparent thin film can be obtained in the wavelength range from visible light to near infrared rays.
  • the content ratio of cerium oxide in the total amount of substances constituting the layer 13 containing cerium oxide of the present disclosure is preferably 85% by mass or more. If the content ratio of cerium oxide is 85% by mass or more, the anti-fog maintenance performance will be further improved.
  • the layer 13 containing cerium oxide of the present disclosure may be placed directly on the base material 11 or may be placed via another layer 12.
  • the other layers 12 include aluminum (Al), chromium (Cr), gold (Au), silver (Ag), copper (Cu), silicon (Si), germanium (Ge), and titanium (Ti). ), metal layers containing elements such as nickel (Ni), layers containing fluorides such as magnesium fluoride (MgF 2 ) and calcium fluoride (CaF 2 ), silicon oxide (SiO x ), and aluminum oxide.
  • Al 2 O x yttrium oxide (Y 2 O x ), zirconium oxide (ZrO x ), hafnium oxide (HfO x ), zinc oxide (ZnO x ), tantalum oxide (Ta 2 O x ), niobium oxide (Nb 2Ox ) , indium oxide ( In2Ox ), tin oxide ( SnOx ), tungsten oxide ( WOx ), cerium oxide ( CeOx ), titanium oxide ( TiOx ) , lanthanum titanate ( LaxTiy ) O z ), aluminum titanate (La x Al y O z ), layers containing oxides such as alumina-doped silicon dioxide (SiO 2 +Al 2 O 3 ), nitrides such as silicon nitride (Si 3 N 4 ) A layer containing carbide such as tungsten carbide (WC), etc.
  • WC tungsten carbide
  • the other layer 12 may be one layer, or when it is a multilayer of two or more layers, the other layer 12 may be configured by combining a plurality of types of layers among the layers exemplified above. Further, the other layer 12 may be a layer containing a mixture of two or more of the compounds contained in the layers exemplified above.
  • the method of forming the other layer 12 is not particularly limited.
  • Other methods for forming the layer 12 include, for example, dry film forming methods such as sputtering, vacuum evaporation, and ion plating, dipping, coating, spraying, spin coating, bar coating, etc. It is possible to apply a wet film forming method such as a printing method or a flow coating method.
  • a wet film forming method such as a printing method or a flow coating method.
  • the layer 14 containing silicon oxide according to the present disclosure will be explained.
  • the multilayer film of the present disclosure has a layer 14 containing silicon oxide on the upper layer side of a layer 13 containing cerium oxide.
  • the thickness of the layer 14 containing silicon oxide is 50 nm or more and 240 nm or less. When the thickness is 50 nm or more, the reflectance of the multilayer film does not become too high. On the other hand, when the thickness is 240 nm or less, the self-purifying function of the photocatalyst is exhibited on the surface of the multilayer film.
  • the refractive index of the layer 14 containing silicon oxide is 1.46 or more and 1.65 or less at a light wavelength of 500 nm.
  • the content of silicon oxide in the layer 14 containing silicon oxide is preferably 65% by mass or more based on the entire layer 14 containing silicon oxide. If the content rate of silicon oxide in the layer 14 containing silicon oxide is within the above range, the anti-fog maintenance performance will be further enhanced.
  • the composition of silicon oxide is SiO x , and x is preferably 1.5 or more and 2.0 or less. If the value of x in the silicon oxide composition SiO x is within the above range, the refractive index of the layer 14 containing silicon oxide can be 1.65 or less. Further, a more transparent film can be obtained in the wavelength range from visible light to near infrared rays.
  • the layer 15 containing porous silica according to the present disclosure will be explained.
  • the multilayer film of the present disclosure has a layer 15 containing porous silica on the upper layer side of a layer 14 containing silicon oxide.
  • the thickness of the layer 15 containing porous silica is 2 nm or more and 10 nm or less. When the film thickness is 2 nm or more and 10 nm or less, the antifogging performance of the multilayer film can be improved.
  • the layer 15 containing porous silica has a refractive index of 1.33 or more and 1.45 or less at a light wavelength of 500 nm. When the refractive index is 1.33 or more and 1.45 or less, the antifogging performance of the multilayer film can be improved.
  • the layer containing porous silica is preferably formed by a hydrolysis reaction of alkoxysilane.
  • Alkoxysilane is represented by the general formula H 2n+1 C n O(Si(OC n H 2n+1 ) 2 O) m C n H 2n+1 .
  • n is preferably 1 or more and 4 or less
  • m is preferably 1 or more and 100 or less.
  • m is more preferably 4 or more and 50 or less, further preferably 6 or more and 10 or less.
  • Specific examples include methyl polysilicate (Methyl Silicate 53A manufactured by Colcoat), ethyl polysilicate (Ethyl Silicate 48 manufactured by Colcoat), propyl polysilicate, and butyl polysilicate.
  • FIG. 2 is a schematic diagram showing a configuration in an embodiment using the optical member of the present disclosure.
  • FIG. 2 shows eyeglasses, which are composed of eyeglass lenses 21 and eyeglass frames 22, which are optical members according to the present disclosure.
  • a multilayer film according to the present disclosure is formed on both sides of the spectacle lens 21.
  • the multilayer film of the present disclosure can be used for optical thin films such as antireflection films, various optical filter multilayer films, and optical mirror multilayer films. Further, it can be used for optical members such as optical lenses, daylight lenses, optical films, optical prisms, camera sensors and infrared sensors, and covers for protecting the optical members.
  • the back side of the base material 11 by coating the back side of the base material 11 with a composition, refractive index, film thickness, number of layers, etc. according to the purpose and function, it is possible to create a mirror layer, half mirror layer, light absorption layer, transparent heater layer, reflective layer, etc. It can be an optical member with a specific function added, such as a prevention layer.
  • the method for manufacturing a multilayer film of the present disclosure is characterized in that it is formed by a method including at least the following steps (A), (B), and (C).
  • B A step of forming a layer 14 containing silicon oxide on the layer 13 containing cerium oxide of the present disclosure described above by a vacuum evaporation method.
  • C A step of forming an alkoxysilane layer on the upper layer side of the layer 14 containing silicon oxide by a vacuum evaporation method and hydrolyzing it to form a layer 15 containing porous silica.
  • the layer 13 containing cerium oxide formed in the above step (A) contains cerium oxide having a cubic polycrystalline structure, and the layer 13 containing cerium oxide formed in the above step (A)
  • the thickness is 70 nm or more and 300 nm or less.
  • the film thickness of the layer 14 containing silicon oxide formed in the above step (B) is 50 nm or more and 240 nm or less, and the refraction of the layer 14 containing silicon oxide formed in the above step (B) at a wavelength of light of 500 nm.
  • the ratio is 1.46 or more and 1.65 or less.
  • the thickness of the layer 15 containing porous silica formed in the above step (C) is 2 nm or more and 10 nm or less, and the layer 15 containing porous silica formed in the above step (C) is resistant to light.
  • the refractive index at a wavelength of 500 nm is 1.33 or more and 1.45 or less. At this time, high antifogging properties and high antifogging maintenance performance are obtained.
  • the substrate temperature during vacuum deposition is preferably a temperature at which the layer containing cerium oxide crystallizes. Although it depends on the allowable temperature limit of the base material used and other film forming conditions, the temperature can usually be selected within the range of 0° C. or higher and 500° C. or lower.
  • the method of evaporating the thin film forming material in vacuum evaporation is not limited as long as the thin film forming material is evaporated.
  • an evaporation means such as an electron gun, resistance heating, or laser can be applied.
  • the evaporation means ion assist, plasma assist, etc. can be used in combination as necessary.
  • the multilayer film of the present disclosure can be suitably manufactured by the above method.
  • Base material The flat base materials listed below were used. ⁇ Made of borosilicate glass, thickness 3mm ⁇ Made of synthetic quartz, thickness 3mm ⁇ Made of polycarbonate resin, thickness 2mm ⁇ Made of polymethyl methacrylate resin, thickness 2mm
  • a vacuum evaporation apparatus (dome diameter ⁇ 900 mm, evaporation distance 890 mm) was used as a film forming apparatus.
  • the above-mentioned thin film forming material and various clean base materials were set in an apparatus, and the apparatus was evacuated to a degree of vacuum (7.0 ⁇ 10 ⁇ 4 Pa) at which film formation was started.
  • the substrate temperature during film formation is -10°C or more and 60°C or less.
  • a multilayer film was formed on the set base material by a vacuum evaporation method using a thin film forming material as listed in Table 1 to obtain a test piece.
  • each layer was deposited at a deposition rate of about 0.5 nm/sec.
  • Thin films made of two components, such as CeO 2 + Al 2 O 3 and SiO 2 + Al 2 O 3 can be produced using a binary method, which is a method in which two types of thin film forming materials are placed in each of two heating sources and evaporated simultaneously.
  • the film was formed by a vapor deposition method.
  • the film-formed base material was immersed in 50 ml of hydrochloric acid with a concentration of 0.01 mol/l for 16 hours to promote the hydrolysis reaction of the alkoxysilane, and a layer containing porous silica was formed from the alkoxysilane layer.
  • Example 1 A CeO 2 thin film (a layer containing cerium oxide) was formed on various base materials using a CeO 2 sintered body as a thin film forming material. Subsequently, a SiO 2 thin film (a layer containing silicon oxide) was formed thereon using a SiO 2 melt as a thin film forming material. Subsequently, a layer containing porous silica was formed thereon using methyl silicate 53A as a thin film forming material to produce a multilayer film. Other film forming conditions are as described in (Preparation of multilayer film).
  • CeO 1.8 thin films were formed on various substrates using a CeO 2 sintered body and metal cerium as thin film forming materials. Subsequently, a SiO 2 thin film was formed thereon using a SiO 2 melt as a thin film forming material. Subsequently, a layer containing porous silica was formed thereon using methyl silicate 53A as a thin film forming material to produce a multilayer film. Other film forming conditions are as described in (Preparation of multilayer film).
  • CeO 1.8 (85%) + Al 2 O 3 (15%) thin films were formed on various substrates using two of CeO 2 sintered body and Al 2 O 3 melt as thin film forming materials. Subsequently, a SiO 2 thin film was formed thereon using a SiO 2 melt as a thin film forming material. Subsequently, a layer containing porous silica was formed thereon using methyl silicate 53A as a thin film forming material to produce a multilayer film. Other film forming conditions are as described in (Preparation of multilayer film).
  • CeO 1.8 (85%) + Sm 2 O 3 (15%) thin films were formed on various substrates using two sintered bodies, CeO 2 sintered body and Sm 2 O 3 sintered body, as thin film forming materials. . Subsequently, a SiO 2 thin film was formed thereon using a SiO 2 melt as a thin film forming material. Subsequently, a layer containing porous silica was formed thereon using methyl silicate 53A as a thin film forming material to produce a multilayer film. Other film forming conditions are as described in (Preparation of multilayer film).
  • Example 7 CeO 2 polycrystalline thin films were formed on various substrates using a CeO 2 sintered body as a thin film forming material. Subsequently, a SiO 2 (65%)+CeO 2 (35%) thin film was formed thereon using two materials, a SiO 2 melt and a CeO 2 sintered body, as thin film forming materials. Subsequently, a layer containing porous silica was formed thereon using methyl silicate 53A as a thin film forming material to produce a multilayer film. Other film forming conditions are as described in (Preparation of multilayer film).
  • Example 3 The CeO 2 layer and the SiO 2 layer were formed to have a thinner film thickness than in Example 1. A multilayer film was produced in the same manner as in Example 1 except for this.
  • composition of the layer consisting of two components such as SiO 2 +CeO 2 and SiO 2 +Al 2 O 3 in the multilayer films of Examples and Comparative Examples was measured using a wavelength dispersive X-ray fluorescence spectrometer (ZSX Primus II manufactured by Rigaku Corporation). I asked.
  • the haze difference was measured according to the following method. Then, the produced multilayer film was placed in an airtight container with the film surface facing up, and the lid was closed. The airtight container was left in the laboratory with the lid closed. After 180 days had passed, the lid was opened, the multilayer film was taken out, and the haze difference was measured according to the method below.
  • a CM-5 spectrophotometer manufactured by Konica Minolta, Inc. was used as a haze difference measuring device. Steam at about 100° C. was sprayed onto the multilayer film using a humidifier, and the haze difference was measured after 3 seconds.
  • the antifogging performance was evaluated in four stages based on the measured haze difference.
  • the haze difference is defined as (the haze value 3 seconds after spraying steam at about 100°C onto the multilayer film using a humidifier) to (when using a humidifier for a base material without a multilayer film). This is the value obtained by subtracting the haze value when no steam is sprayed.
  • B Haze difference 1 or more and less than 15
  • C Haze difference 15 or more and less than 35
  • Table 1 The results are shown in Table 1 below.
  • the base material used is a resin substrate (Mitsui Chemicals MR-8) on which a silicone hard coat is formed, and the first layer is an Al 2 O 3 film (film thickness 82 nm) using an Al 2 O 3 melt. was formed.
  • a CeO 2 film (thickness: 119 nm) was formed as the second layer using a CeO 2 sintered body.
  • a SiO 2 (95%)+CeO 2 (5%) film (film thickness: 79 nm) was formed as the third layer using a SiO 2 melt and a CeO 2 sintered body.
  • an alkoxysilane layer is formed using ethyl silicate 48, and a hydrolysis reaction is promoted to form a porous silica-containing layer (5 nm thick) from the alkoxysilane layer.
  • a multilayer film was prepared. Note that during film formation, the temperature of the base material was heated to 60° C., and a multilayer film was produced at a deposition rate of 0.5 nm/sec. The obtained base material with the multilayer film was processed and attached to a frame for glasses to produce glasses. The produced glasses were stored in a dark place in a glasses case for 3 months. After that, when water droplets were attached to the lens, the water droplets wetted and spread on the lens, maintaining good visibility. The contact angle of water at that time was 5°. Furthermore, even after the water had dried, no water marks remained and good visibility was maintained.
  • the multilayer film of the present disclosure can be used for optical filters, optical lenses, daylighting lenses, optical films, optical prisms, eyeglass lenses, photographic lenses, vehicle door mirrors, plate glass, condensing lenses, display cover glasses, touch panels, and various films. It can be used for covers that protect optical components, such as surveillance camera covers, in-vehicle camera covers, and in-vehicle sensor covers. Further, the optical member of the present disclosure is applicable to digital cameras, digital video cameras, action cameras, endoscopes, lens barrels, glasses, sensors, binoculars, telescopes, surveillance cameras, in-vehicle cameras, smartphones, tablet PCs, weather cameras, live cameras, etc. It can be used as optical equipment such as cameras, protective goggles, underwater glasses, head-mounted displays, sunglasses, smart glasses, face shields, helmet shields, vehicle mirrors, bathroom mirrors, and covers to protect them.
  • the present disclosure includes the following embodiments. (1) directly on the surface of the base material or through another layer, a layer containing cerium oxide having a thickness of 70 nm or more and 300 nm or less and having a cubic polycrystalline structure; A layer containing silicon oxide with a thickness of 50 nm or more and 240 nm or less and a refractive index of 1.46 or more and 1.65 or less at a wavelength of 500 nm on the upper layer side of the layer containing cerium oxide; A layer containing porous silica having a thickness of 2 nm or more and 10 nm or less and a refractive index of 1.33 or more and 1.45 or less at a wavelength of 500 nm is provided on the upper layer side of the layer containing silicon oxide.
  • An optical member comprising the multilayer film according to any one of (1) to (6).
  • Eyeglasses comprising the optical member according to (7).
  • Base material 12 Other layers 13 Layer containing cerium oxide 14 Layer containing silicon oxide 15 Layer containing porous silica 21 Eyeglass lens having the multilayer film of the present disclosure 22 Eyeglass frame having the optical member of the present disclosure

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention addresses the problem of providing a multilayer film having excellent antifogging properties and excellent antifogging retention properties by forming a low refractive index layer having a certain film thickness above a layer having a photocatalytic function. In order to solve this problem, the following multilayer film is provided. Namely, the multilayer film is characterized in that the multilayer film has, directly on the surface of or via another layer on a substrate, a layer having a film thickness of 70-300 nm inclusive and containing cerium oxide having a cubic polycrystalline structure, has, above the layer containing cerium oxide, a layer having a film thickness of 50-240 nm inclusive and a refractive index at a wavelength of 500 nm of 1.46-1.65 inclusive and containing silicon oxide, and has, above the layer containing silicon oxide, a layer having a film thickness of 2-10 nm inclusive and a refractive index at a wavelength of 500 nm of 1.33-1.45 inclusive and containing porous silica.

Description

多層膜、光学部材、眼鏡および多層膜の製造方法Multilayer film, optical member, glasses, and method for producing multilayer film
 本開示は、防曇性、防曇維持性能に優れた多層膜、多層膜を有する光学部材、光学部材を有する眼鏡および多層膜の製造方法に関する。 The present disclosure relates to a multilayer film with excellent antifogging properties and antifogging maintenance performance, an optical member having the multilayer film, eyeglasses having the optical member, and a method for manufacturing the multilayer film.
 光学レンズ、ミラー、光学フィルターのような光学部材は、光の透過率や反射率を増加または低減させるために、無機材料により膜が形成されている。しかし、光学部材の表面に湯気や呼気のような水分が付着すると、微小な液滴となって表面を覆うことで、光学部材に曇りが生じる課題があった。
 曇り防止技術はいくつか提案されているが、光学部材の表面をシラノール基(Si-OH)などの親水性物質で被覆し、水滴を均一に濡れ広げることで曇りを防止する技術が知られている(特許文献1)。しかし、この様な親水性表面は防曇性能の点では良いものの、環境由来の汚れの付着により、比較的短時間で表面自由エネルギーが低下する。そのため、親水性能が低下し、防曇性能を維持できない課題があった。
Optical members such as optical lenses, mirrors, and optical filters have films formed of inorganic materials in order to increase or decrease light transmittance or reflectance. However, when moisture such as steam or exhaled air adheres to the surface of the optical member, it becomes minute droplets and covers the surface, causing a problem that the optical member becomes cloudy.
Several anti-fogging technologies have been proposed, but one known technology is to coat the surface of an optical member with a hydrophilic substance such as a silanol group (Si-OH) to spread water droplets uniformly to prevent fogging. (Patent Document 1). However, although such a hydrophilic surface has good antifogging performance, the surface free energy decreases in a relatively short period of time due to the adhesion of environmentally derived dirt. Therefore, there was a problem that the hydrophilic performance deteriorated and the antifogging performance could not be maintained.
 前述の課題を解決する手段として、結晶性の二酸化チタン薄膜上に二酸化ケイ素薄膜を形成した親水膜が利用される(特許文献2、特許文献3、非特許文献1)。結晶性二酸化チタンの表面に近紫外光を照射すると、光触媒機能による活性酸素が生成し、生成した活性酸素が親水膜の表面の有機物を分解する。結果として、親水膜の親水性が回復し、降雨により汚れが洗い流され、自己浄化される。 As a means to solve the above-mentioned problems, a hydrophilic film in which a silicon dioxide thin film is formed on a crystalline titanium dioxide thin film is used (Patent Document 2, Patent Document 3, Non-Patent Document 1). When the surface of crystalline titanium dioxide is irradiated with near-ultraviolet light, active oxygen is generated by the photocatalytic function, and the generated active oxygen decomposes organic matter on the surface of the hydrophilic film. As a result, the hydrophilic properties of the hydrophilic membrane are restored, dirt is washed away by rainfall, and the membrane is self-purified.
特許第3435136号Patent No. 3435136 特開平09-057912号公報Japanese Patent Application Publication No. 09-057912 特開2000-053449号公報Japanese Patent Application Publication No. 2000-053449
 しかしながら、二酸化チタン薄膜上に二酸化ケイ素薄膜を形成した場合、二酸化チタンの屈折率が大きいため、表面の二酸化ケイ素のような低屈折率層の厚さが50nmに満たない場合、反射率が増大し、透過率が低下するという課題があった。そのため反射率が大きくなっても支障のない車載用ドアミラーなどには適用できても、反射防止膜を備えたレンズのような光学部材には適さないという課題があった。 However, when a silicon dioxide thin film is formed on a titanium dioxide thin film, since the refractive index of titanium dioxide is large, the reflectance increases if the thickness of the low refractive index layer such as silicon dioxide on the surface is less than 50 nm. However, there was a problem that the transmittance decreased. Therefore, although it can be applied to car-mounted door mirrors where there is no problem even if the reflectance increases, there is a problem that it is not suitable for optical members such as lenses equipped with an anti-reflection film.
 一方で、表面の二酸化ケイ素のような低屈折率層の厚さが50nm以上の場合、反射率の低下という点では適しているものの、光触媒機能による親水性の回復機能が不十分であり、防曇性能を維持できないという課題があった。加えて、二酸化ケイ素薄膜では防曇性能が不十分であり、さらに優れた防曇性能を有する薄膜が望まれていた。 On the other hand, when the thickness of the low refractive index layer such as silicon dioxide on the surface is 50 nm or more, although it is suitable in terms of reducing reflectance, the hydrophilicity recovery function due to the photocatalytic function is insufficient, and it is difficult to prevent. There was a problem that fogging performance could not be maintained. In addition, silicon dioxide thin films have insufficient antifogging performance, and a thin film with even better antifogging performance has been desired.
 本開示は、光触媒機能を有する層の上層に特定の膜厚を有する低屈折率層を形成することで、防曇性に優れ、防曇維持性能に優れた多層膜を提供することである。 The object of the present disclosure is to provide a multilayer film with excellent antifogging properties and excellent antifogging maintenance performance by forming a low refractive index layer having a specific thickness on top of a layer having a photocatalytic function.
 本開示の多層膜は、基材の表面に直接あるいは他の層を介して、
 膜厚が70nm以上300nm以下かつ立方晶系多結晶構造からなる酸化セリウムを含有する層と、
 前記酸化セリウムを含有する層の上層側に、膜厚が50nm以上240nm以下、かつ波長500nmにおける屈折率が1.46以上1.65以下の酸化ケイ素を含有する層と、
 前記酸化ケイ素を含有する層の上層側に、膜厚が2nm以上10nm以下、かつ波長500nmにおける屈折率が1.33以上1.45以下の多孔性シリカを含有する層とを有することを特徴とする。
 本開示の多層膜の製造方法は、基材の表面に直接あるいは他の層を介して、
 膜厚が70nm以上300nm以下かつ立方晶系多結晶構造からなる酸化セリウムを含有する層を成膜する工程と、
 前記酸化セリウムを含有する層の上層側に、膜厚が50nm以上240nm以下、かつ波長500nmにおける屈折率が1.46以上1.65以下の酸化ケイ素を含有する層を成膜する工程と、
 前記酸化ケイ素を含有する層の上層側に、アルコキシシランの層を成膜し、加水分解し、膜厚が2nm以上10nm以下、かつ波長500nmにおける屈折率が1.33以上1.45以下の多孔性シリカを含有する層を形成する工程とを含むことを特徴とする。
 また、本開示の別の態様によれば、上記多層膜を有する、光学部材が提供される。
 さらに、本開示の別の態様によれば、上記光学部材を有する、眼鏡が提供される。
The multilayer film of the present disclosure can be applied to the surface of the base material directly or through another layer.
a layer containing cerium oxide having a thickness of 70 nm or more and 300 nm or less and having a cubic polycrystalline structure;
A layer containing silicon oxide with a thickness of 50 nm or more and 240 nm or less and a refractive index of 1.46 or more and 1.65 or less at a wavelength of 500 nm on the upper layer side of the layer containing cerium oxide;
A layer containing porous silica having a thickness of 2 nm or more and 10 nm or less and a refractive index of 1.33 or more and 1.45 or less at a wavelength of 500 nm is provided on the upper layer side of the layer containing silicon oxide. do.
The method for producing a multilayer film of the present disclosure includes applying the method to the surface of the base material directly or through another layer.
forming a layer containing cerium oxide having a thickness of 70 nm or more and 300 nm or less and having a cubic polycrystalline structure;
forming a layer containing silicon oxide with a thickness of 50 nm or more and 240 nm or less and a refractive index of 1.46 or more and 1.65 or less at a wavelength of 500 nm on the upper layer side of the layer containing cerium oxide;
A layer of alkoxysilane is formed on the upper layer side of the layer containing silicon oxide, and is hydrolyzed to form a porous film having a thickness of 2 nm or more and 10 nm or less, and a refractive index of 1.33 or more and 1.45 or less at a wavelength of 500 nm. forming a layer containing silica.
Moreover, according to another aspect of the present disclosure, an optical member having the above multilayer film is provided.
Furthermore, according to another aspect of the present disclosure, there is provided eyeglasses having the optical member described above.
 本開示の一態様よれば、光触媒機能を有する層の上層に特定の膜厚を有する低屈折率層を形成した場合において、防曇性と防曇維持性能に優れた多層膜、および上記多層膜を有する光学部材、および上記多層膜の製造方法を得ることができる。 According to one aspect of the present disclosure, there is provided a multilayer film with excellent antifogging properties and antifogging maintenance performance when a low refractive index layer having a specific thickness is formed above a layer having a photocatalytic function, and the above multilayer film. An optical member having the above and a method for manufacturing the multilayer film described above can be obtained.
本開示に係る多層膜の第1の実施形態における構成を示す概略断面図である。1 is a schematic cross-sectional view showing the configuration of a first embodiment of a multilayer film according to the present disclosure. 本開示に係る光学部材の実施形態(眼鏡)を示す概略図である。FIG. 1 is a schematic diagram showing an embodiment (glasses) of an optical member according to the present disclosure.
 以下、好適な実施形態を挙げて、本開示に係る多層膜、該多層膜を有する光学部材、該多層膜の成膜方法の実施形態を説明する。
 また、本開示は下記実施形態に限定されるわけではない。
 また、本開示において、数値範囲を表す[XX以上YY以下]や[XX~YY]の記載は、特に断りのない限り、端点である下限および上限を含む数値範囲を意味する。さらに、数値範囲が段階的に記載されている場合、各数値範囲の上限および下限は任意に組み合わせることができる。
Hereinafter, embodiments of a multilayer film, an optical member having the multilayer film, and a method for forming the multilayer film according to the present disclosure will be described by citing preferred embodiments.
Further, the present disclosure is not limited to the embodiments below.
In addition, in the present disclosure, the descriptions of [XX to YY] and [XX to YY] representing a numerical range mean a numerical range including the lower limit and upper limit, which are the end points, unless otherwise specified. Furthermore, when numerical ranges are described in stages, the upper and lower limits of each numerical range can be combined arbitrarily.
 本開示において、多層膜とは、基材の面上に形成した2つ以上の層を含む構成を指す。多層膜には基材が含まれない。
 本開示において、基材とは、物品としては固形物である。
 本開示において、光学部材とは、上記多層膜を有する基材を備える光学部材である。該光学部材としては光学フィルター、光学レンズ、採光レンズ、光学フィルム、光学プリズム、眼鏡レンズ、写真用レンズ、監視カメラのカバー、車載カメラのカバー、車載センサーのカバー、車両用ドアミラー、板ガラス、集光レンズ、ディスプレイ用カバーガラス、タッチパネルおよび各種フィルムなどが挙げられる。
In the present disclosure, a multilayer film refers to a structure including two or more layers formed on a surface of a base material. The multilayer film does not include a base material.
In the present disclosure, the base material is a solid article.
In the present disclosure, the optical member is an optical member including a base material having the multilayer film described above. The optical components include optical filters, optical lenses, daylighting lenses, optical films, optical prisms, eyeglass lenses, photographic lenses, surveillance camera covers, vehicle camera covers, vehicle sensor covers, vehicle door mirrors, plate glass, and condensing light. Examples include lenses, display cover glasses, touch panels, and various films.
 本開示の多層膜は、基材の表面に直接あるいは他の層を介して、膜厚が70nm以上300nm以下かつ立方晶系多結晶構造からなる酸化セリウムを含有する層を有し、酸化セリウムを含有する層の上層側に、膜厚が50nm以上240nm以下、かつ波長500nmにおける屈折率が1.46以上1.65以下の酸化ケイ素を含有する層を有し、酸化ケイ素を含有する層の上層側に、膜厚が2nm以上10nm以下、かつ波長500nmにおける屈折率が1.33以上1.45以下の多孔性シリカを含有する層を有していることを特徴とする。 The multilayer film of the present disclosure has a cerium oxide-containing layer having a thickness of 70 nm or more and 300 nm or less and having a cubic polycrystalline structure directly or through another layer on the surface of a base material. A layer containing silicon oxide has a film thickness of 50 nm or more and 240 nm or less and a refractive index of 1.46 or more and 1.65 or less at a wavelength of 500 nm on the upper layer side of the layer containing silicon oxide, and the upper layer of the layer containing silicon oxide. It is characterized by having a layer containing porous silica having a thickness of 2 nm or more and 10 nm or less and a refractive index of 1.33 or more and 1.45 or less at a wavelength of 500 nm.
 本開示に係る多層膜について具体的に説明をするに先立ち、本開示の理解のため、まず、その効果を奏するメカニズムの推定について以下に述べる。ただし、以下の説明はあくまで仮説にすぎず、本開示は何ら以下の仮説によって限定されるものではない。
 本発明者は、特定の膜厚の酸化ケイ素を含有する層とその上層側に多孔性シリカを含有する層が表面に配置されている場合において、接する下層側に立方晶系多結晶構造からなる酸化セリウムを含有する層を配置することで、光触媒による自己浄化性、防曇維持性能が発現することを見出した。前記のメカニズムについて、以下の内容が考えられる。
Before specifically explaining the multilayer film according to the present disclosure, in order to understand the present disclosure, first, the estimation of the mechanism that produces the effect will be described below. However, the following explanation is merely a hypothesis, and the present disclosure is not limited by the following hypothesis in any way.
The present inventor has discovered that when a layer containing silicon oxide with a specific thickness and a layer containing porous silica on the upper layer side are arranged on the surface, the lower layer side in contact with the layer has a cubic polycrystalline structure. It has been found that by arranging a layer containing cerium oxide, self-cleaning properties and anti-fogging maintenance performance by photocatalyst are exhibited. Regarding the above mechanism, the following contents can be considered.
 近紫外線に応答する光触媒の膜に近紫外光を照射したとき、光励起により正孔と電子が生成する。生成した正孔や電子が、膜の表面に到達できた場合、化学反応が起こり、自己浄化性、親水性の回復機能が発現する。しかしながら、結晶型二酸化チタンの上層に50nm以上の特定の膜厚からなる低屈折率層を形成した場合は、光励起により生成した正孔や電子が、その厚さに阻まれ、多層膜表面まで到達できない。それゆえ、正孔と電子が再結合して失活し、自己浄化性、防曇維持性能が発現しない。一方、本開示の酸化セリウムを含有する層の上層に50nm以上の膜厚からなる低屈折率層を形成した場合、多層膜表面まで到達する正孔や電子の割合が増え、化学反応が起こり、自己浄化性、防曇維持性能が発現する。本開示の酸化セリウムを含有する層と接する上層の界面では、それぞれの層の化合物や混合物が相互拡散された領域が存在する。該領域において3価および4価のセリウムが混在しやすくなり、光励起で生成した電子を保持しやすくなるため、正孔と電子が再結合し難くなった可能性がある。また立方晶系の多結晶構造であることから、導電性が高く、界面が多数存在するため、正孔や電子が移動しやすくなり、再結合し難くなった可能性がある。
 また、本発明者らは、酸化ケイ素を含有する層とその上層側に多孔性シリカを含有する層が配置されている場合において、酸化ケイ素を含有する層の下層側に立方晶系多結晶構造からなる酸化セリウムを含有する層を配置することで、防曇性能が飛躍的に向上することを見出した。前記のメカニズムについて、以下の内容が考えられる。
When a photocatalytic film that responds to near-ultraviolet light is irradiated with near-ultraviolet light, holes and electrons are generated due to photoexcitation. When the generated holes and electrons can reach the surface of the membrane, a chemical reaction occurs, and self-purification and hydrophilicity recovery functions are developed. However, when a low refractive index layer with a specific thickness of 50 nm or more is formed on the top layer of crystalline titanium dioxide, holes and electrons generated by photoexcitation are blocked by the thickness and reach the multilayer film surface. Can not. Therefore, the holes and electrons are recombined and deactivated, and self-cleaning properties and anti-fog maintenance performance are not exhibited. On the other hand, when a low refractive index layer with a thickness of 50 nm or more is formed on the layer containing cerium oxide of the present disclosure, the proportion of holes and electrons that reach the multilayer film surface increases, causing a chemical reaction. Demonstrates self-purification and anti-fog maintenance performance. At the interface of the upper layer in contact with the cerium oxide-containing layer of the present disclosure, there is a region where the compounds and mixtures of the respective layers are interdiffused. Trivalent and tetravalent cerium tend to coexist in this region, making it easier to hold electrons generated by photoexcitation, which may make it difficult for holes and electrons to recombine. Furthermore, since it has a cubic polycrystalline structure, it has high conductivity and has many interfaces, which may make it easier for holes and electrons to move, making it difficult for them to recombine.
In addition, the present inventors discovered that in a case where a layer containing silicon oxide and a layer containing porous silica are disposed above the layer, the layer containing silicon oxide has a cubic polycrystalline structure on the lower layer side. It has been found that anti-fogging performance can be dramatically improved by arranging a layer containing cerium oxide. Regarding the above mechanism, the following contents can be considered.
 本開示の多孔性シリカを含有する層は、その多孔性から表面積が大きく、親水性物質であるシラノール基(Si-OH)が多孔性でない酸化ケイ素よりも多く存在するため、防曇性能が非常に優れている可能性がある。加えて、立方晶系多結晶構造の酸化セリウムを含有する層が、紫外線やそれより高いエネルギーの光線に曝されたとき、電気的、化学的などのエネルギーが酸化セリウム内部や界面に貯蔵する。本開示の酸化セリウムを含有する層が、貯蔵したエネルギーを、多層膜表面側へ供給することにより、多層膜の表面エネルギーを高い状態に維持し、防曇維持性能が向上すると考えられる。特に真空蒸着により成膜した本開示の酸化セリウムを含有する層については、3価および4価のセリウムが混在しやすいため、エネルギーを貯蔵しやすい状態となった可能性がある。 The layer containing porous silica of the present disclosure has a large surface area due to its porosity, and has more silanol groups (Si-OH), which is a hydrophilic substance, than non-porous silicon oxide, so it has excellent antifogging performance. may be superior to In addition, when a layer containing cubic polycrystalline cerium oxide is exposed to ultraviolet light or higher energy rays, electrical, chemical, and other energy is stored within the cerium oxide and at its interface. It is thought that the layer containing cerium oxide of the present disclosure supplies the stored energy to the surface side of the multilayer film, thereby maintaining the surface energy of the multilayer film in a high state and improving the antifogging maintenance performance. In particular, in the layer containing cerium oxide of the present disclosure formed by vacuum evaporation, trivalent and tetravalent cerium tend to coexist, so it may be in a state where energy is easily stored.
≪第1の実施形態≫
 図1は、基材の上に設けられた本開示の多層膜における、第1の実施形態を示す概略断面図であって、基材11上に他の層12が形成され、さらに本開示の酸化セリウムを含有する層13が形成され、加えて本開示の酸化ケイ素を含有する層14が形成され、さらに本開示の多孔性シリカを含有する層15が形成された構成例を示している。なお、図1は、本開示における多層膜の構成を模式的に表したものである。そのため、各層の面積や膜厚などを正確な比率で表したものではない。また、他の層12はあってもなくてもよい。
<<First embodiment>>
FIG. 1 is a schematic cross-sectional view showing a first embodiment of the multilayer film of the present disclosure provided on a base material, in which another layer 12 is formed on the base material 11, and A configuration example is shown in which a layer 13 containing cerium oxide is formed, a layer 14 containing silicon oxide of the present disclosure is additionally formed, and a layer 15 containing porous silica of the present disclosure is further formed. Note that FIG. 1 schematically represents the configuration of a multilayer film in the present disclosure. Therefore, the area and film thickness of each layer are not expressed in accurate ratios. Further, the other layer 12 may or may not be present.
 基材11について説明する。
 基材11は、他の層12や本開示の酸化セリウムを含有する層13を積層形成可能なものであればよく、ガラス、セラミックス、樹脂、金属を用いることが可能である。基材の形状は限定されることはなく、平面、曲面、凹面、凸面、フィルム状であってもよい。また、ハードコート層やバリア層を有していてもよい。加えて、大きさや厚さについても特に限定されることはなく、用途などに応じて適宜設定することが可能である。
The base material 11 will be explained.
The base material 11 may be any material as long as it is capable of laminating the other layer 12 or the layer 13 containing cerium oxide according to the present disclosure, and may be made of glass, ceramics, resin, or metal. The shape of the base material is not limited and may be flat, curved, concave, convex, or film-like. Moreover, it may have a hard coat layer or a barrier layer. In addition, the size and thickness are not particularly limited, and can be set as appropriate depending on the intended use.
 本開示に係る酸化セリウムを含有する層13について説明する。本開示の多層膜は、基材11の上層側に、酸化セリウムを含有する層13を有している。本開示の酸化セリウムを含有する層13は、立方晶系多結晶構造からなる酸化セリウムを含有する層である。多結晶構造の酸化セリウムよりなる層では、多層膜にクラックが発生しにくい。また、酸化セリウムを含有する層が、立方晶系の多結晶構造を有していると、光触媒による自己浄化機能および防曇維持性能が高い。
 なお、本開示における、多結晶構造の定義としては、成膜後の薄膜のX線回折(XRD)測定により、酸化セリウム特有のピークが出現することがあげられる。
The layer 13 containing cerium oxide according to the present disclosure will be explained. The multilayer film of the present disclosure has a layer 13 containing cerium oxide on the upper layer side of the base material 11. The cerium oxide-containing layer 13 of the present disclosure is a cerium oxide-containing layer having a cubic polycrystalline structure. In a layer made of cerium oxide with a polycrystalline structure, cracks are less likely to occur in the multilayer film. Further, when the layer containing cerium oxide has a cubic polycrystalline structure, the self-purification function by photocatalyst and the anti-fog maintenance performance are high.
Note that the definition of polycrystalline structure in the present disclosure includes the appearance of a peak unique to cerium oxide in X-ray diffraction (XRD) measurement of a thin film after film formation.
 本開示の酸化セリウムを含有する層13は膜厚が70nm以上300nm以下である。膜厚が70nm以上であると、光触媒による自己浄化機能および防曇維持性能が高い。膜厚が300nm以下であると、クラックが発生せず、また不均質や表面粗さが大きくなりすぎず、光学特性に良い影響を及ぼすことができる。
 本開示の酸化セリウムを含有する層13の酸化セリウムの組成はCeOであって、xは1.5以上2.0以下であることが好ましい。上記の範囲内であれば、可視光線から近赤外線の波長範囲において、より透明な薄膜を得ることができる。
 本開示の酸化セリウムを含有する層13を構成する物質の総量における酸化セリウムの含有比は、85質量%以上であることが好ましい。酸化セリウムの含有比が85質量%以上であれば、防曇維持性能がより高まる。
 本開示の酸化セリウムを含有する層13は、基材11上に直接配置されてもよいし、他の層12を介して配置されていてもよい。
The layer 13 containing cerium oxide of the present disclosure has a thickness of 70 nm or more and 300 nm or less. When the film thickness is 70 nm or more, the photocatalytic self-purification function and anti-fog maintenance performance are high. When the film thickness is 300 nm or less, cracks do not occur, and non-uniformity and surface roughness do not become too large, which can have a positive effect on optical properties.
The composition of cerium oxide in the cerium oxide-containing layer 13 of the present disclosure is CeO x , and x is preferably 1.5 or more and 2.0 or less. Within the above range, a more transparent thin film can be obtained in the wavelength range from visible light to near infrared rays.
The content ratio of cerium oxide in the total amount of substances constituting the layer 13 containing cerium oxide of the present disclosure is preferably 85% by mass or more. If the content ratio of cerium oxide is 85% by mass or more, the anti-fog maintenance performance will be further improved.
The layer 13 containing cerium oxide of the present disclosure may be placed directly on the base material 11 or may be placed via another layer 12.
 他の層12としては、金属やフッ化物、酸化物、炭化物および窒化物を含有する層を配置することができる。他の層12としては、具体的には、アルミニウム(Al)、クロム(Cr)、金(Au)、銀(Ag)、銅(Cu)、シリコン(Si)、ゲルマニウム(Ge)、チタン(Ti)、ニッケル(Ni)のような元素を含む金属層や、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)のようなフッ化物を含有する層、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化イットリウム(Y)、酸化ジルコニウム(ZrO)、酸化ハフニウム(HfO)、酸化亜鉛(ZnO)、酸化タンタル(Ta)、酸化ニオブ(Nb)、酸化インジウム(In)、酸化スズ(SnO)、酸化タングステン(WO)、酸化セリウム(CeO)、酸化チタン(TiO)、チタン酸ランタン(LaTi)、チタン酸アルミニウム(LaAl)、アルミナ添加二酸化ケイ素(SiO+Al)のような酸化物を含有する層、窒化ケイ素(Si)のような窒化物を含有する層、炭化タングステン(WC)のような炭化物を含有する層などを用いることができる。他の層12は1層であってもよいし、2層以上の多層であるとき、上記で例示した層のうち、複数種類の層を組み合わせて他の層12を構成してもよい。また、他の層12は、上記で例示した層が含有する化合物のうちの2種類以上からなる混合物を含有する層でもあってもよい。 As other layers 12, layers containing metals, fluorides, oxides, carbides, and nitrides can be arranged. Specifically, the other layers 12 include aluminum (Al), chromium (Cr), gold (Au), silver (Ag), copper (Cu), silicon (Si), germanium (Ge), and titanium (Ti). ), metal layers containing elements such as nickel (Ni), layers containing fluorides such as magnesium fluoride (MgF 2 ) and calcium fluoride (CaF 2 ), silicon oxide (SiO x ), and aluminum oxide. (Al 2 O x ), yttrium oxide (Y 2 O x ), zirconium oxide (ZrO x ), hafnium oxide (HfO x ), zinc oxide (ZnO x ), tantalum oxide (Ta 2 O x ), niobium oxide (Nb 2Ox ) , indium oxide ( In2Ox ), tin oxide ( SnOx ), tungsten oxide ( WOx ), cerium oxide ( CeOx ), titanium oxide ( TiOx ) , lanthanum titanate ( LaxTiy ) O z ), aluminum titanate (La x Al y O z ), layers containing oxides such as alumina-doped silicon dioxide (SiO 2 +Al 2 O 3 ), nitrides such as silicon nitride (Si 3 N 4 ) A layer containing carbide such as tungsten carbide (WC), etc. can be used. The other layer 12 may be one layer, or when it is a multilayer of two or more layers, the other layer 12 may be configured by combining a plurality of types of layers among the layers exemplified above. Further, the other layer 12 may be a layer containing a mixture of two or more of the compounds contained in the layers exemplified above.
 他の層12の形成方法は特に制限されない。他の層12の形成方法には、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法のような乾式による成膜法や、ディッピング法、塗布法、スプレー法、スピンコート法、バーコート法、印刷法、フローコート法のような湿式による成膜法を適用することが可能である。
 他の層12を目的や機能に応じた組成、屈折率、膜厚、層数などにすることで、反射防止層、ハーフミラー層、光吸収層、アルカリ拡散防止層、密着層、帯電防止層、ヒーター層など特定の機能を付加した多層膜にすることができる。
The method of forming the other layer 12 is not particularly limited. Other methods for forming the layer 12 include, for example, dry film forming methods such as sputtering, vacuum evaporation, and ion plating, dipping, coating, spraying, spin coating, bar coating, etc. It is possible to apply a wet film forming method such as a printing method or a flow coating method.
By adjusting the composition, refractive index, film thickness, number of layers, etc. of the other layers 12 according to the purpose and function, antireflection layer, half mirror layer, light absorption layer, alkali diffusion prevention layer, adhesion layer, antistatic layer, etc. It can be made into a multilayer film with specific functions added, such as a heater layer.
 本開示にかかわる酸化ケイ素を含有する層14について説明する。本開示の多層膜は、酸化セリウムを含有する層13の上層側に、酸化ケイ素を含有する層14を有する。酸化ケイ素を含有する層14の膜厚は50nm以上240nm以下である。50nm以上であると多層膜の反射率が高くなりすぎない。一方、240nm以下であると、多層膜表面において光触媒による自己浄化機能が発揮される。
 酸化ケイ素を含有する層14の屈折率は、光の波長500nmにおいて1.46以上1.65以下である。1.65を超えると多層膜の反射率が高くなりすぎる場合がある。一方、1.46を下回ると防曇維持性能が低下する。
 酸化ケイ素を含有する層14における酸化ケイ素の含有割合は、酸化ケイ素を含有する層14全体に対して65質量%以上であることが好ましい。酸化ケイ素を含有する層14における酸化ケイ素の含有割合が上記の範囲内であれば、防曇維持性能がより高まる。
The layer 14 containing silicon oxide according to the present disclosure will be explained. The multilayer film of the present disclosure has a layer 14 containing silicon oxide on the upper layer side of a layer 13 containing cerium oxide. The thickness of the layer 14 containing silicon oxide is 50 nm or more and 240 nm or less. When the thickness is 50 nm or more, the reflectance of the multilayer film does not become too high. On the other hand, when the thickness is 240 nm or less, the self-purifying function of the photocatalyst is exhibited on the surface of the multilayer film.
The refractive index of the layer 14 containing silicon oxide is 1.46 or more and 1.65 or less at a light wavelength of 500 nm. If it exceeds 1.65, the reflectance of the multilayer film may become too high. On the other hand, when it is less than 1.46, the anti-fog maintenance performance decreases.
The content of silicon oxide in the layer 14 containing silicon oxide is preferably 65% by mass or more based on the entire layer 14 containing silicon oxide. If the content rate of silicon oxide in the layer 14 containing silicon oxide is within the above range, the anti-fog maintenance performance will be further enhanced.
 酸化ケイ素を含有する層14は、酸化ケイ素の組成はSiOであって、xは1.5以上2.0以下であることが好ましい。酸化ケイ素の組成SiOにおけるxの値が上記の範囲内であれば、酸化ケイ素を含有する層14の屈折率を1.65以下にすることができる。また可視光線から近赤外線の波長範囲において、より透明な膜を得ることができる。 In the layer 14 containing silicon oxide, the composition of silicon oxide is SiO x , and x is preferably 1.5 or more and 2.0 or less. If the value of x in the silicon oxide composition SiO x is within the above range, the refractive index of the layer 14 containing silicon oxide can be 1.65 or less. Further, a more transparent film can be obtained in the wavelength range from visible light to near infrared rays.
 本開示にかかわる多孔性シリカを含有する層15について説明する。本開示の多層膜は、酸化ケイ素を含有する層14の上層側に、多孔性シリカを含有する層15を有している。多孔性シリカを含有する層15の膜厚は2nm以上10nm以下である。膜厚が2nm以上10nm以下であることにより、多層膜の防曇性能を高めることができる。多孔性シリカを含有する層15は光の波長500nmにおける屈折率が1.33以上1.45以下である。屈折率が1.33以上1.45以下であることにより、多層膜の防曇性能を高めることができる。屈折率が1.45を超えると、細孔が減少し、防曇性能が低下する。一方で、屈折率が1.33を下回ると、細孔が増加し、多孔性シリカを含有する層の強度が低下する。
 多孔性シリカを含有する層は、アルコキシシランの加水分解反応により形成されることが好ましい。アルコキシシランは一般式H2n+1O(Si(OC2n+1O)2n+1で表される。nは1以上4以下、mは1以上から100以下が好ましい。mは4以上50以下がより好ましく、さらに6以上10以下がさらに好ましい。具体的には、メチルポリシリケート(コルコート製メチルシリケート53A)、エチルポリシリケート(コルコート製エチルシリケート48)、プロピルポリシリケート、ブチルポリシリケートが挙げられる。
The layer 15 containing porous silica according to the present disclosure will be explained. The multilayer film of the present disclosure has a layer 15 containing porous silica on the upper layer side of a layer 14 containing silicon oxide. The thickness of the layer 15 containing porous silica is 2 nm or more and 10 nm or less. When the film thickness is 2 nm or more and 10 nm or less, the antifogging performance of the multilayer film can be improved. The layer 15 containing porous silica has a refractive index of 1.33 or more and 1.45 or less at a light wavelength of 500 nm. When the refractive index is 1.33 or more and 1.45 or less, the antifogging performance of the multilayer film can be improved. When the refractive index exceeds 1.45, pores decrease and antifogging performance deteriorates. On the other hand, when the refractive index is less than 1.33, the number of pores increases and the strength of the layer containing porous silica decreases.
The layer containing porous silica is preferably formed by a hydrolysis reaction of alkoxysilane. Alkoxysilane is represented by the general formula H 2n+1 C n O(Si(OC n H 2n+1 ) 2 O) m C n H 2n+1 . n is preferably 1 or more and 4 or less, and m is preferably 1 or more and 100 or less. m is more preferably 4 or more and 50 or less, further preferably 6 or more and 10 or less. Specific examples include methyl polysilicate (Methyl Silicate 53A manufactured by Colcoat), ethyl polysilicate (Ethyl Silicate 48 manufactured by Colcoat), propyl polysilicate, and butyl polysilicate.
≪光学部材≫
 図2は、本開示の光学部材を使用した一実施形態における構成を示す概略図である。図2は眼鏡であり、本開示の光学部材である眼鏡レンズ21と、メガネフレーム22から構成されている。眼鏡レンズ21の両面には、本開示の多層膜が形成されている。
 本開示の多層膜は、反射防止膜や各種光学フィルター多層膜、光学ミラー多層膜などの光学薄膜に用いることができる。また、光学レンズ、採光レンズ、光学フィルム、光学プリズム、カメラセンサーや赤外線センサーなどの光学部材や該光学部材を保護するカバーなどに用いることができる。また、基材11の裏面側に、目的や機能に応じた組成、屈折率、膜厚、層数などのコーティングをすることで、ミラー層、ハーフミラー層、光吸収層、透明ヒーター層、反射防止層など、特定の機能を付加した光学部材にすることができる。
≪Optical members≫
FIG. 2 is a schematic diagram showing a configuration in an embodiment using the optical member of the present disclosure. FIG. 2 shows eyeglasses, which are composed of eyeglass lenses 21 and eyeglass frames 22, which are optical members according to the present disclosure. A multilayer film according to the present disclosure is formed on both sides of the spectacle lens 21.
The multilayer film of the present disclosure can be used for optical thin films such as antireflection films, various optical filter multilayer films, and optical mirror multilayer films. Further, it can be used for optical members such as optical lenses, daylight lenses, optical films, optical prisms, camera sensors and infrared sensors, and covers for protecting the optical members. In addition, by coating the back side of the base material 11 with a composition, refractive index, film thickness, number of layers, etc. according to the purpose and function, it is possible to create a mirror layer, half mirror layer, light absorption layer, transparent heater layer, reflective layer, etc. It can be an optical member with a specific function added, such as a prevention layer.
≪多層膜の製造方法≫
 また、本開示の多層膜の製造方法は、少なくとも下記の工程(A)および(B)および(C)を含む方法によって形成されることを特徴とする。
 (A)基材の表面に直接あるいは他の層を介して、酸化セリウムを含有する層13を真空蒸着法によって形成する工程。
 (B)前記した本開示の酸化セリウムを含有する層13の上に、酸化ケイ素を含有する層14を真空蒸着法によって形成する工程。
 (C)酸化ケイ素を含有する層14の上層側に、アルコキシシランの層を真空蒸着法によって成膜し、加水分解し、多孔性シリカを含有する層15を形成する工程。
≪Multilayer film manufacturing method≫
Further, the method for manufacturing a multilayer film of the present disclosure is characterized in that it is formed by a method including at least the following steps (A), (B), and (C).
(A) A step of forming a layer 13 containing cerium oxide on the surface of the base material directly or via another layer by vacuum evaporation.
(B) A step of forming a layer 14 containing silicon oxide on the layer 13 containing cerium oxide of the present disclosure described above by a vacuum evaporation method.
(C) A step of forming an alkoxysilane layer on the upper layer side of the layer 14 containing silicon oxide by a vacuum evaporation method and hydrolyzing it to form a layer 15 containing porous silica.
 上記工程(A)で形成する酸化セリウムを含有する層13は、立方晶系多結晶構造からなる酸化セリウムを含有し、また、上記工程(A)で形成する酸化セリウムを含有する層13の膜厚は、70nm以上300nm以下である。上記工程(B)で形成する酸化ケイ素を含有する層14の膜厚は、50nm以上240nm以下であり、上記工程(B)で形成する酸化ケイ素を含有する層14の、光の波長500nmにおける屈折率は、1.46以上1.65以下である。また、上記工程(C)で形成する多孔性シリカを含有する層15の膜厚は、2nm以上10nm以下であり、上記工程(C)で形成する多孔性シリカを含有する層15の、光の波長500nmにおける屈折率は、1.33以上1.45以下である。このとき、高い防曇性と高い防曇維持性能が得られる。 The layer 13 containing cerium oxide formed in the above step (A) contains cerium oxide having a cubic polycrystalline structure, and the layer 13 containing cerium oxide formed in the above step (A) The thickness is 70 nm or more and 300 nm or less. The film thickness of the layer 14 containing silicon oxide formed in the above step (B) is 50 nm or more and 240 nm or less, and the refraction of the layer 14 containing silicon oxide formed in the above step (B) at a wavelength of light of 500 nm. The ratio is 1.46 or more and 1.65 or less. Further, the thickness of the layer 15 containing porous silica formed in the above step (C) is 2 nm or more and 10 nm or less, and the layer 15 containing porous silica formed in the above step (C) is resistant to light. The refractive index at a wavelength of 500 nm is 1.33 or more and 1.45 or less. At this time, high antifogging properties and high antifogging maintenance performance are obtained.
 真空蒸着するときの基材温度は、酸化セリウムを含有する層が結晶化する温度が好ましい。使用する基材の耐熱温度や他の成膜条件にもよるが、通常0℃以上、500℃以下の範囲で温度を選択することができる。
 真空蒸着における薄膜形成材料の蒸発方法は、薄膜形成材料が蒸発すれば限定されない。例えば、蒸発方法には、電子銃や抵抗加熱、レーザーのような蒸発手段を適用することができる。また、上記蒸発手段には、必要に応じてイオンアシスト、プラズマアシストなどを併用することができる。
The substrate temperature during vacuum deposition is preferably a temperature at which the layer containing cerium oxide crystallizes. Although it depends on the allowable temperature limit of the base material used and other film forming conditions, the temperature can usually be selected within the range of 0° C. or higher and 500° C. or lower.
The method of evaporating the thin film forming material in vacuum evaporation is not limited as long as the thin film forming material is evaporated. For example, as the evaporation method, an evaporation means such as an electron gun, resistance heating, or laser can be applied. Further, as the evaporation means, ion assist, plasma assist, etc. can be used in combination as necessary.
 上記の方法により、本開示の多層膜を好適に製造することができる。 The multilayer film of the present disclosure can be suitably manufactured by the above method.
 以下、本開示を実施例に挙げてさらに詳細に説明するが、本開示は、以下の実施例によって何ら限定されるものではない。 Hereinafter, the present disclosure will be described in further detail using examples, but the present disclosure is not limited to the following examples in any way.
(基材)
 以下に挙げる平板の基材を使用した。
・硼珪酸ガラス製           厚さ3mm
・合成石英製             厚さ3mm
・ポリカーボネート樹脂製       厚さ2mm
・ポリメタクリル酸メチル樹脂製    厚さ2mm
(Base material)
The flat base materials listed below were used.
・Made of borosilicate glass, thickness 3mm
・Made of synthetic quartz, thickness 3mm
・Made of polycarbonate resin, thickness 2mm
・Made of polymethyl methacrylate resin, thickness 2mm
(薄膜形成材料)
 以下に挙げる材料を使用した。
・CeO     円柱状 純度99.9%
・Sm    粒状  純度99.9%
・SiO     粒状  純度99.9%
・Al    粒状  純度99.9%
・Ti    粒状  純度99.9%
・O  ガス純度99.999%
・メチルシリケート53A 液状  純度97.0%
・エチルシリケート48  液状  純度94.0%
 なお、メチルシリケート53Aとエチルシリケート48は、コルコート株式会社の製品名である。
(Thin film forming material)
The materials listed below were used.
・CeO 2 cylindrical purity 99.9%
・Sm 2 O 3 granules Purity 99.9%
・SiO 2 grains purity 99.9%
Al2O 3 grains purity 99.9%
・Ti 3 O 5 granules Purity 99.9%
O2 gas purity 99.999%
・Methyl silicate 53A liquid purity 97.0%
・Ethyl silicate 48 liquid purity 94.0%
Note that methyl silicate 53A and ethyl silicate 48 are product names of Colcoat Co., Ltd.
(多層膜の作製)
 多層膜の作製における、実施例および比較例の共通の成膜方法および成膜条件を説明する。成膜装置として真空蒸着装置(ドーム径Φ900mm、蒸着距離890mm)を用いた。前記の薄膜形成材料と清浄な基材各種とを装置内にセッティングし、成膜を開始する真空度(7.0×10-4Pa)まで排気した。成膜時の基材温度は、-10℃以上60℃以下である。その後、セッティングした基材上に薄膜形成材料を真空蒸着法によって、表1に挙げる通りに多層膜を形成して、試験片を得た。その際、各層は約0.5nm/秒の蒸着速度で蒸着した。CeO+AlやSiO+Alなどの2成分からなる薄膜は、2種類の薄膜形成材料を、2箇所の加熱源のそれぞれに設置して、同時に蒸発させる方法である二元蒸着法により成膜した。
 成膜した基材を濃度0.01mol/lの塩酸50mlに16時間浸漬することで、アルコキシシランの加水分解反応を促進させ、アルコキシシランの層から多孔性シリカを含有する層を形成した。
 なお、各実施例1~7および比較例1~4において、基材の種類を変えて得られた多層膜同士は、基材の種類以外は実質的に違いがなかったため、表1には1例のみ記載した。また、表1中の「多結晶」は立方晶系多結晶構造を意味する。
(Preparation of multilayer film)
Common film forming methods and film forming conditions for Examples and Comparative Examples in producing a multilayer film will be explained. A vacuum evaporation apparatus (dome diameter Φ900 mm, evaporation distance 890 mm) was used as a film forming apparatus. The above-mentioned thin film forming material and various clean base materials were set in an apparatus, and the apparatus was evacuated to a degree of vacuum (7.0×10 −4 Pa) at which film formation was started. The substrate temperature during film formation is -10°C or more and 60°C or less. Thereafter, a multilayer film was formed on the set base material by a vacuum evaporation method using a thin film forming material as listed in Table 1 to obtain a test piece. At that time, each layer was deposited at a deposition rate of about 0.5 nm/sec. Thin films made of two components, such as CeO 2 + Al 2 O 3 and SiO 2 + Al 2 O 3 , can be produced using a binary method, which is a method in which two types of thin film forming materials are placed in each of two heating sources and evaporated simultaneously. The film was formed by a vapor deposition method.
The film-formed base material was immersed in 50 ml of hydrochloric acid with a concentration of 0.01 mol/l for 16 hours to promote the hydrolysis reaction of the alkoxysilane, and a layer containing porous silica was formed from the alkoxysilane layer.
In addition, in each of Examples 1 to 7 and Comparative Examples 1 to 4, the multilayer films obtained by changing the type of base material were not substantially different from each other except for the type of base material. Only examples are listed. Moreover, "polycrystal" in Table 1 means a cubic polycrystalline structure.
 以下、多層膜作製における各実施例および比較例の個別条件について説明する。
[実施例1~3]
 各種基材上に、薄膜形成材料としてCeO焼結体を用いて、CeO薄膜(酸化セリウムを含有する層)を形成した。続いてその上に、薄膜形成材料としてSiO溶融体を用いて、SiO薄膜(酸化ケイ素を含有する層)を形成した。続いてその上に、薄膜形成材料としてメチルシリケート53Aを用いて、多孔性シリカを含有する層を形成し、多層膜を作製した。その他の成膜条件は、(多層膜の作製)に記載した通りである。
Hereinafter, individual conditions for each example and comparative example in multilayer film production will be described.
[Examples 1 to 3]
A CeO 2 thin film (a layer containing cerium oxide) was formed on various base materials using a CeO 2 sintered body as a thin film forming material. Subsequently, a SiO 2 thin film (a layer containing silicon oxide) was formed thereon using a SiO 2 melt as a thin film forming material. Subsequently, a layer containing porous silica was formed thereon using methyl silicate 53A as a thin film forming material to produce a multilayer film. Other film forming conditions are as described in (Preparation of multilayer film).
[実施例4]
 各種基材上に、薄膜形成材料としてCeO焼結体および金属セリウムを用いて、CeO1.8薄膜を形成した。続いてその上に、薄膜形成材料としてSiO溶融体を用いて、SiO薄膜を形成した。続いてその上に、薄膜形成材料としてメチルシリケート53Aを用いて、多孔性シリカを含有する層を形成し、多層膜を作製した。その他の成膜条件は、(多層膜の作製)に記載した通りである。
[Example 4]
CeO 1.8 thin films were formed on various substrates using a CeO 2 sintered body and metal cerium as thin film forming materials. Subsequently, a SiO 2 thin film was formed thereon using a SiO 2 melt as a thin film forming material. Subsequently, a layer containing porous silica was formed thereon using methyl silicate 53A as a thin film forming material to produce a multilayer film. Other film forming conditions are as described in (Preparation of multilayer film).
[実施例5]
 各種基材上に、薄膜形成材料としてCeO焼結体およびAl溶融体の2つを用いて、CeO1.8(85%)+Al(15%)薄膜を形成した。続いてその上に、薄膜形成材料としてSiO溶融体を用いて、SiO薄膜を形成した。続いてその上に、薄膜形成材料としてメチルシリケート53Aを用いて、多孔性シリカを含有する層を形成し、多層膜を作製した。その他の成膜条件は、(多層膜の作製)に記載した通りである。
[Example 5]
CeO 1.8 (85%) + Al 2 O 3 (15%) thin films were formed on various substrates using two of CeO 2 sintered body and Al 2 O 3 melt as thin film forming materials. Subsequently, a SiO 2 thin film was formed thereon using a SiO 2 melt as a thin film forming material. Subsequently, a layer containing porous silica was formed thereon using methyl silicate 53A as a thin film forming material to produce a multilayer film. Other film forming conditions are as described in (Preparation of multilayer film).
[実施例6]
 各種基材上に、薄膜形成材料としてCeO焼結体およびSm焼結体の2つを用いて、CeO1.8(85%)+Sm(15%)薄膜を形成した。続いてその上に、薄膜形成材料としてSiO溶融体を用いて、SiO薄膜を形成した。続いてその上に、薄膜形成材料としてメチルシリケート53Aを用いて、多孔性シリカを含有する層を形成し、多層膜を作製した。その他の成膜条件は、(多層膜の作製)に記載した通りである。
[Example 6]
CeO 1.8 (85%) + Sm 2 O 3 (15%) thin films were formed on various substrates using two sintered bodies, CeO 2 sintered body and Sm 2 O 3 sintered body, as thin film forming materials. . Subsequently, a SiO 2 thin film was formed thereon using a SiO 2 melt as a thin film forming material. Subsequently, a layer containing porous silica was formed thereon using methyl silicate 53A as a thin film forming material to produce a multilayer film. Other film forming conditions are as described in (Preparation of multilayer film).
[実施例7]
 各種基材上に、薄膜形成材料としてCeO焼結体を用いて、CeO多結晶薄膜を形成した。続いてその上に、薄膜形成材料としてSiO溶融体およびCeO焼結体の2つを用いて、SiO(65%)+CeO(35%)薄膜を形成した。続いてその上に、薄膜形成材料としてメチルシリケート53Aを用いて、多孔性シリカを含有する層を形成し、多層膜を作製した。その他の成膜条件は、(多層膜の作製)に記載した通りである。
[Example 7]
CeO 2 polycrystalline thin films were formed on various substrates using a CeO 2 sintered body as a thin film forming material. Subsequently, a SiO 2 (65%)+CeO 2 (35%) thin film was formed thereon using two materials, a SiO 2 melt and a CeO 2 sintered body, as thin film forming materials. Subsequently, a layer containing porous silica was formed thereon using methyl silicate 53A as a thin film forming material to produce a multilayer film. Other film forming conditions are as described in (Preparation of multilayer film).
[比較例1]
 実施例2の立方晶系多結晶のCeO層の代わりに、アナターゼ型TiO層が得られるように、薄膜形成材料をTi材料に変更し、Oガスを導入しながら成膜した。それ以外は実施例2と同様の方法で多層膜を作製した。
[Comparative example 1]
In order to obtain an anatase type TiO 2 layer instead of the cubic polycrystalline CeO 2 layer in Example 2, the thin film forming material was changed to a Ti 3 O 5 material, and the film was formed while introducing O 2 gas. did. A multilayer film was produced in the same manner as in Example 2 except for this.
[比較例2]
 実施例2の立方晶系多結晶のCeO層の代わりに、非晶質のCeO層が得られるように、基材温度を-10℃に変更して成膜した。それ以外は実施例2と同様の方法で多層膜を作製した。
[Comparative example 2]
In order to obtain an amorphous CeO 2 layer instead of the cubic polycrystalline CeO 2 layer of Example 2, the substrate temperature was changed to -10° C. to form a film. A multilayer film was produced in the same manner as in Example 2 except for this.
[比較例3]
 CeO層およびSiO層について、実施例1より膜厚が薄くなるよう形成した。それ以外は実施例1と同様の方法で多層膜を作製した。
[Comparative example 3]
The CeO 2 layer and the SiO 2 layer were formed to have a thinner film thickness than in Example 1. A multilayer film was produced in the same manner as in Example 1 except for this.
[比較例4]
 CeO層およびSiO層について、実施例3より膜厚が厚くなるよう形成した。それ以外は実施例3と同様の方法で多層膜を作製した。
[Comparative example 4]
The CeO 2 layer and the SiO 2 layer were formed to be thicker than in Example 3. A multilayer film was produced in the same manner as in Example 3 except for this.
(厚さの測定)
 実施例および比較例の多層膜の各層の厚さは分光エリプソメトリー(JA WOOLLAM社製 ESM300)を用いて測定した。層数と膜厚が複雑で、解析が困難な場合は、同一バッチの成膜で別途得られた単層膜の屈折率などを利用して解析を行った。
(Measurement of thickness)
The thickness of each layer of the multilayer films of Examples and Comparative Examples was measured using spectroscopic ellipsometry (ESM300, manufactured by JA WOOLLAM). If the number of layers and film thickness were complicated and analysis was difficult, analysis was performed using the refractive index of a single-layer film separately obtained from the same batch of film formation.
(組成の測定)
 実施例および比較例の多層膜におけるSiO+CeOやSiO+Alなどの2成分からなる層の組成を、波長分散型蛍光エックス線分光分析装置((株)リガク製 ZSX PrimusII)により測定して求めた。
(Measurement of composition)
The composition of the layer consisting of two components such as SiO 2 +CeO 2 and SiO 2 +Al 2 O 3 in the multilayer films of Examples and Comparative Examples was measured using a wavelength dispersive X-ray fluorescence spectrometer (ZSX Primus II manufactured by Rigaku Corporation). I asked.
(結晶性の測定)
 実施例および比較例の多層膜をXRD回折装置((株)リガク製 Smart Lab)にて2θ=20°~100°の範囲で測定し、回折線強度などにより層の同定および結晶性の確認を行った。
(Measurement of crystallinity)
The multilayer films of Examples and Comparative Examples were measured in the range of 2θ = 20° to 100° using an XRD diffractometer (Smart Lab, manufactured by Rigaku Co., Ltd.), and layer identification and crystallinity were confirmed by diffraction line intensity, etc. went.
(防曇性と防曇維持性能の評価)
 多層膜の作製当日に下記の方法に従いヘイズ差を測定した。そして、作製した多層膜の膜面を表にした状態で、密閉容器に入れて蓋を閉じた。密閉容器は蓋を閉じた状態で実験室内に静置した。180日間経過後に蓋を開けて多層膜を取り出し、下記の方法に従いヘイズ差を測定した。
 ヘイズ差の測定装置として、コニカミノルタ株式会社製CM-5型分光測色計を使用した。加湿器を使用して約100℃の蒸気を多層膜に噴霧し、3秒後にヘイズ差を測定した。測定したヘイズ差から、防曇性能を4段階で評価した。ここで、ヘイズ差とは、(加湿器を使用して約100℃の蒸気を多層膜に噴霧してから3秒後のヘイズ値)から(多層膜がない基材の場合について加湿器を使用せず蒸気を噴霧しないときのヘイズ値)を差し引いた値である。
A:ヘイズ差1未満
B:ヘイズ差1以上15未満
C:ヘイズ差15以上35未満
D:ヘイズ差35以上
 以下に、実施した結果を表1に示す。
(Evaluation of anti-fog properties and anti-fog maintenance performance)
On the day the multilayer film was produced, the haze difference was measured according to the following method. Then, the produced multilayer film was placed in an airtight container with the film surface facing up, and the lid was closed. The airtight container was left in the laboratory with the lid closed. After 180 days had passed, the lid was opened, the multilayer film was taken out, and the haze difference was measured according to the method below.
A CM-5 spectrophotometer manufactured by Konica Minolta, Inc. was used as a haze difference measuring device. Steam at about 100° C. was sprayed onto the multilayer film using a humidifier, and the haze difference was measured after 3 seconds. The antifogging performance was evaluated in four stages based on the measured haze difference. Here, the haze difference is defined as (the haze value 3 seconds after spraying steam at about 100°C onto the multilayer film using a humidifier) to (when using a humidifier for a base material without a multilayer film). This is the value obtained by subtracting the haze value when no steam is sprayed.
A: Haze difference less than 1 B: Haze difference 1 or more and less than 15 C: Haze difference 15 or more and less than 35 D: Haze difference 35 or more The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例8]
 使用する基材を、シリコン系ハードコートが形成された樹脂基板(三井化学製MR-8)とし、Al溶融体を使用してAl膜(膜厚82nm)を1層目に形成した。2層目に、CeO焼結体を用いて、CeO膜(膜厚119nm)を形成した。3層目にSiO溶融体およびCeO焼結体を用いて、SiO(95%)+CeO(5%)膜(膜厚79nm)を形成した。最後の4層目に、エチルシリケート48を用いて、アルコキシシランの層を形成し、加水分解反応を促進させて、アルコキシシランの層から多孔性シリカを含有する層(膜厚5nm)を形成し、多層膜を作製した。なお成膜中は、基材の温度を60℃に加熱して、0.5nm/秒の蒸着速度によって多層膜を作製した。得られた多層膜付きの基材を加工して、眼鏡用のフレームに装着して、眼鏡を作製した。作製した眼鏡を、暗所である眼鏡ケースの中に3か月間保管した。その後、レンズに水飛沫を付着させた場合、水滴がレンズ上に濡れ広がり、良好な視認性を維持した。その際の水の接触角は5°であった。また水分が乾燥した後も水跡は残らず、良好な視認性を維持した。
[Example 8]
The base material used is a resin substrate (Mitsui Chemicals MR-8) on which a silicone hard coat is formed, and the first layer is an Al 2 O 3 film (film thickness 82 nm) using an Al 2 O 3 melt. was formed. A CeO 2 film (thickness: 119 nm) was formed as the second layer using a CeO 2 sintered body. A SiO 2 (95%)+CeO 2 (5%) film (film thickness: 79 nm) was formed as the third layer using a SiO 2 melt and a CeO 2 sintered body. In the fourth and final layer, an alkoxysilane layer is formed using ethyl silicate 48, and a hydrolysis reaction is promoted to form a porous silica-containing layer (5 nm thick) from the alkoxysilane layer. , a multilayer film was prepared. Note that during film formation, the temperature of the base material was heated to 60° C., and a multilayer film was produced at a deposition rate of 0.5 nm/sec. The obtained base material with the multilayer film was processed and attached to a frame for glasses to produce glasses. The produced glasses were stored in a dark place in a glasses case for 3 months. After that, when water droplets were attached to the lens, the water droplets wetted and spread on the lens, maintaining good visibility. The contact angle of water at that time was 5°. Furthermore, even after the water had dried, no water marks remained and good visibility was maintained.
 本開示の多層膜は、光学フィルター、光学レンズ、採光レンズ、光学フィルム、光学プリズム、眼鏡レンズ、写真用レンズ、車両用ドアミラー、板ガラス、集光レンズ、ディスプレイ用カバーガラス、タッチパネルおよび各種フィルムなどの光学部材や、監視カメラのカバー、車載カメラのカバー、車載センサーのカバーなどの光学部材を保護するカバーなどに利用することができる。
 また、本開示の光学部材は、デジタルカメラ、デジタルビデオカメラ、アクションカメラ、内視鏡、レンズ鏡筒、眼鏡、センサー、双眼鏡、望遠鏡、監視カメラ、車載カメラ、スマートフォン、タブレットPC、お天気カメラ、ライヴカメラ、保護ゴーグル、水中眼鏡、ヘッドマウントディスプレイ、サングラス、スマートグラス、フェイスシールド、ヘルメット用シールド、車両用ミラー、浴室用ミラーなどの光学機器などやそれらを保護するカバーなどとして利用することが出来る。
The multilayer film of the present disclosure can be used for optical filters, optical lenses, daylighting lenses, optical films, optical prisms, eyeglass lenses, photographic lenses, vehicle door mirrors, plate glass, condensing lenses, display cover glasses, touch panels, and various films. It can be used for covers that protect optical components, such as surveillance camera covers, in-vehicle camera covers, and in-vehicle sensor covers.
Further, the optical member of the present disclosure is applicable to digital cameras, digital video cameras, action cameras, endoscopes, lens barrels, glasses, sensors, binoculars, telescopes, surveillance cameras, in-vehicle cameras, smartphones, tablet PCs, weather cameras, live cameras, etc. It can be used as optical equipment such as cameras, protective goggles, underwater glasses, head-mounted displays, sunglasses, smart glasses, face shields, helmet shields, vehicle mirrors, bathroom mirrors, and covers to protect them.
 本開示は以下の実施形態を含む。
(1)
 基材の表面に直接あるいは他の層を介して、
 膜厚が70nm以上300nm以下かつ立方晶系多結晶構造からなる酸化セリウムを含有する層と、
 前記酸化セリウムを含有する層の上層側に、膜厚が50nm以上240nm以下、かつ波長500nmにおける屈折率が1.46以上1.65以下の酸化ケイ素を含有する層と、
 前記酸化ケイ素を含有する層の上層側に、膜厚が2nm以上10nm以下、かつ波長500nmにおける屈折率が1.33以上1.45以下の多孔性シリカを含有する層とを有することを特徴とする多層膜。
(2)
 前記酸化セリウムを含有する層の酸化セリウムの組成が、CeO(xは1.5以上2.0以下)であることを特徴とする(1)に記載の多層膜。
(3)
 前記酸化セリウムを含有する層を構成する物質の総量における酸化セリウムの含有比が、85質量%以上であること特徴とする(1)または(2)に記載の多層膜。
(4)
 前記酸化ケイ素を含有する層を構成する物質の総量における酸化ケイ素の含有比が、65質量%以上であること特徴とする(1)~(3)のいずれか1つに記載の多層膜。
(5)
 前記多孔性シリカが、アルコキシシランの加水分解反応により形成されることを特徴とする(1)~(4)のいずれか1つに記載の多層膜。
(6)
 前記アルコキシシランが、メチルポリシリケート、エチルポリシリケート、プロピルポリシリケート、ブチルポリシリケートであることを特徴とする(5)に記載の多層膜。
(7)
 (1)~(6)のいずれか1つに記載の多層膜を有する、光学部材。
(8)
 (7)に記載の光学部材を有する、眼鏡。
(9)
 基材の表面に直接あるいは他の層を介して、膜厚が70nm以上300nm以下かつ立方晶系多結晶構造からなる酸化セリウムを含有する層を成膜する工程と、
 前記酸化セリウムを含有する層の上層側に、膜厚が50nm以上240nm以下、かつ波長500nmにおける屈折率が1.46以上1.65以下の酸化ケイ素を含有する層を成膜する工程と、
 前記酸化ケイ素を含有する層の上層側に、アルコキシシランの層を成膜し、加水分解し、膜厚が2nm以上10nm以下、かつ波長500nmにおける屈折率が1.33以上1.45以下の多孔性シリカを含有する層を形成する工程とを含む多層膜の製造方法。
The present disclosure includes the following embodiments.
(1)
directly on the surface of the base material or through another layer,
a layer containing cerium oxide having a thickness of 70 nm or more and 300 nm or less and having a cubic polycrystalline structure;
A layer containing silicon oxide with a thickness of 50 nm or more and 240 nm or less and a refractive index of 1.46 or more and 1.65 or less at a wavelength of 500 nm on the upper layer side of the layer containing cerium oxide;
A layer containing porous silica having a thickness of 2 nm or more and 10 nm or less and a refractive index of 1.33 or more and 1.45 or less at a wavelength of 500 nm is provided on the upper layer side of the layer containing silicon oxide. multilayer film.
(2)
The multilayer film according to (1), wherein the cerium oxide in the layer containing cerium oxide has a composition of CeO x (x is 1.5 or more and 2.0 or less).
(3)
The multilayer film according to (1) or (2), wherein the content ratio of cerium oxide in the total amount of substances constituting the layer containing cerium oxide is 85% by mass or more.
(4)
The multilayer film according to any one of (1) to (3), wherein the content ratio of silicon oxide in the total amount of substances constituting the layer containing silicon oxide is 65% by mass or more.
(5)
The multilayer film according to any one of (1) to (4), wherein the porous silica is formed by a hydrolysis reaction of alkoxysilane.
(6)
The multilayer film according to (5), wherein the alkoxysilane is methyl polysilicate, ethyl polysilicate, propyl polysilicate, or butyl polysilicate.
(7)
An optical member comprising the multilayer film according to any one of (1) to (6).
(8)
Eyeglasses comprising the optical member according to (7).
(9)
A step of forming a layer containing cerium oxide having a thickness of 70 nm or more and 300 nm or less and having a cubic polycrystalline structure directly or through another layer on the surface of the base material;
forming a layer containing silicon oxide with a thickness of 50 nm or more and 240 nm or less and a refractive index of 1.46 or more and 1.65 or less at a wavelength of 500 nm on the upper layer side of the layer containing cerium oxide;
A layer of alkoxysilane is formed on the upper layer side of the layer containing silicon oxide, and is hydrolyzed to form a porous film having a thickness of 2 nm or more and 10 nm or less, and a refractive index of 1.33 or more and 1.45 or less at a wavelength of 500 nm. and forming a layer containing silica.
 本願は、2022年9月9日提出の日本国特許出願である特願2022-144032を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 This application claims priority based on Japanese Patent Application No. 2022-144032, which is a Japanese patent application filed on September 9, 2022, and the entire contents thereof are incorporated herein by reference.
 11 基材
 12 他の層
 13 酸化セリウムを含有する層
 14 酸化ケイ素を含有する層
 15 多孔性シリカを含有する層
 21 本開示の多層膜を有する眼鏡レンズ
 22 本開示の光学部材を有する眼鏡フレーム
11 Base material 12 Other layers 13 Layer containing cerium oxide 14 Layer containing silicon oxide 15 Layer containing porous silica 21 Eyeglass lens having the multilayer film of the present disclosure 22 Eyeglass frame having the optical member of the present disclosure

Claims (9)

  1.  基材の表面に直接あるいは他の層を介して、
     膜厚が70nm以上300nm以下かつ立方晶系多結晶構造からなる酸化セリウムを含有する層と、
     前記酸化セリウムを含有する層の上層側に、膜厚が50nm以上240nm以下、かつ波長500nmにおける屈折率が1.46以上1.65以下の酸化ケイ素を含有する層と、
     前記酸化ケイ素を含有する層の上層側に、膜厚が2nm以上10nm以下、かつ波長500nmにおける屈折率が1.33以上1.45以下の多孔性シリカを含有する層とを有することを特徴とする多層膜。
    directly on the surface of the base material or through another layer,
    a layer containing cerium oxide having a thickness of 70 nm or more and 300 nm or less and having a cubic polycrystalline structure;
    A layer containing silicon oxide with a thickness of 50 nm or more and 240 nm or less and a refractive index of 1.46 or more and 1.65 or less at a wavelength of 500 nm on the upper layer side of the layer containing cerium oxide;
    A layer containing porous silica having a thickness of 2 nm or more and 10 nm or less and a refractive index of 1.33 or more and 1.45 or less at a wavelength of 500 nm is provided on the upper layer side of the layer containing silicon oxide. multilayer film.
  2.  前記酸化セリウムを含有する層の酸化セリウムの組成が、CeO(xは1.5以上2.0以下)であることを特徴とする請求項1に記載の多層膜。 The multilayer film according to claim 1, wherein the composition of cerium oxide in the layer containing cerium oxide is CeO x (x is 1.5 or more and 2.0 or less).
  3.  前記酸化セリウムを含有する層を構成する物質の総量における酸化セリウムの含有比が、85質量%以上であること特徴とする請求項1に記載の多層膜。 The multilayer film according to claim 1, wherein the content ratio of cerium oxide in the total amount of substances constituting the layer containing cerium oxide is 85% by mass or more.
  4.  前記酸化ケイ素を含有する層を構成する物質の総量における酸化ケイ素の含有比が、65質量%以上であること特徴とする請求項1に記載の多層膜。 The multilayer film according to claim 1, wherein the content ratio of silicon oxide in the total amount of substances constituting the layer containing silicon oxide is 65% by mass or more.
  5.  前記多孔性シリカが、アルコキシシランの加水分解反応により形成されることを特徴とする請求項1に記載の多層膜。 The multilayer film according to claim 1, wherein the porous silica is formed by a hydrolysis reaction of alkoxysilane.
  6.  前記アルコキシシランが、メチルポリシリケート、エチルポリシリケート、プロピルポリシリケート、ブチルポリシリケートであることを特徴とする請求項5に記載の多層膜。 The multilayer film according to claim 5, wherein the alkoxysilane is methyl polysilicate, ethyl polysilicate, propyl polysilicate, or butyl polysilicate.
  7.  請求項1~6のいずれか1項に記載の多層膜を有する、光学部材。 An optical member comprising the multilayer film according to any one of claims 1 to 6.
  8.  請求項7に記載の光学部材を有する、眼鏡。 Eyeglasses comprising the optical member according to claim 7.
  9.  基材の表面に直接あるいは他の層を介して、膜厚が70nm以上300nm以下かつ立方晶系多結晶構造からなる酸化セリウムを含有する層を成膜する工程と、
     前記酸化セリウムを含有する層の上層側に、膜厚が50nm以上240nm以下、かつ波長500nmにおける屈折率が1.46以上1.65以下の酸化ケイ素を含有する層を成膜する工程と、
     前記酸化ケイ素を含有する層の上層側に、アルコキシシランの層を成膜し、加水分解し、膜厚が2nm以上10nm以下、かつ波長500nmにおける屈折率が1.33以上1.45以下の多孔性シリカを含有する層を形成する工程とを含む多層膜の製造方法。
    A step of forming a layer containing cerium oxide having a thickness of 70 nm or more and 300 nm or less and having a cubic polycrystalline structure directly or through another layer on the surface of the base material;
    forming a layer containing silicon oxide with a thickness of 50 nm or more and 240 nm or less and a refractive index of 1.46 or more and 1.65 or less at a wavelength of 500 nm on the upper layer side of the layer containing cerium oxide;
    A layer of alkoxysilane is formed on the upper layer side of the layer containing silicon oxide, and is hydrolyzed to form a porous film having a thickness of 2 nm or more and 10 nm or less, and a refractive index of 1.33 or more and 1.45 or less at a wavelength of 500 nm. and forming a layer containing silica.
PCT/JP2022/046336 2022-09-09 2022-12-16 Multilayer film, optical component, spectacles and method for producing multilayer film WO2024053124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144032 2022-09-09
JP2022144032 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053124A1 true WO2024053124A1 (en) 2024-03-14

Family

ID=90192250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046336 WO2024053124A1 (en) 2022-09-09 2022-12-16 Multilayer film, optical component, spectacles and method for producing multilayer film

Country Status (1)

Country Link
WO (1) WO2024053124A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273001A (en) * 1988-04-25 1989-10-31 Olympus Optical Co Ltd Antireflection film of optical parts made of synthetic resin
JPH04116501A (en) * 1990-09-06 1992-04-17 Konica Corp Optical parts having conductive antireflection coat
JPH04116502A (en) * 1990-09-06 1992-04-17 Konica Corp Conductive antireflection coat
JPH0553001A (en) * 1991-08-23 1993-03-05 Olympus Optical Co Ltd Multilayered antireflection film of optical parts made of synthetic resin
JPH06312467A (en) * 1993-03-31 1994-11-08 Nippon Zeon Co Ltd Optical member and optical component
JPH0836101A (en) * 1994-07-22 1996-02-06 Victor Co Of Japan Ltd Antireflection film of optical parts made of synthetic resin
US5897925A (en) * 1996-03-28 1999-04-27 Industrial Technology Research Institute Fog-resistant microporous SiOH films and the method of manufacturing the same
JP2007204780A (en) * 2006-01-31 2007-08-16 Nippon Zeon Co Ltd Optical component and its production method
JP2010500277A (en) * 2006-08-09 2010-01-07 マサチューセッツ・インスティテュート・オブ・テクノロジー Super hydrophilic coating
JP2013254023A (en) * 2012-06-05 2013-12-19 Hamamatsu Photonics Kk Reflection control element
JP2018097372A (en) * 2011-07-22 2018-06-21 サティスロウ アーゲーSatisloh AG Optical article comprising surfactant-based temporary anti-fog coating with improved durability
WO2019221255A1 (en) * 2018-05-18 2019-11-21 ジオマテック株式会社 Method of forming surface microstructure, and article provided with surface microstructure

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273001A (en) * 1988-04-25 1989-10-31 Olympus Optical Co Ltd Antireflection film of optical parts made of synthetic resin
JPH04116501A (en) * 1990-09-06 1992-04-17 Konica Corp Optical parts having conductive antireflection coat
JPH04116502A (en) * 1990-09-06 1992-04-17 Konica Corp Conductive antireflection coat
JPH0553001A (en) * 1991-08-23 1993-03-05 Olympus Optical Co Ltd Multilayered antireflection film of optical parts made of synthetic resin
JPH06312467A (en) * 1993-03-31 1994-11-08 Nippon Zeon Co Ltd Optical member and optical component
JPH0836101A (en) * 1994-07-22 1996-02-06 Victor Co Of Japan Ltd Antireflection film of optical parts made of synthetic resin
US5897925A (en) * 1996-03-28 1999-04-27 Industrial Technology Research Institute Fog-resistant microporous SiOH films and the method of manufacturing the same
JP2007204780A (en) * 2006-01-31 2007-08-16 Nippon Zeon Co Ltd Optical component and its production method
JP2010500277A (en) * 2006-08-09 2010-01-07 マサチューセッツ・インスティテュート・オブ・テクノロジー Super hydrophilic coating
JP2018097372A (en) * 2011-07-22 2018-06-21 サティスロウ アーゲーSatisloh AG Optical article comprising surfactant-based temporary anti-fog coating with improved durability
JP2013254023A (en) * 2012-06-05 2013-12-19 Hamamatsu Photonics Kk Reflection control element
WO2019221255A1 (en) * 2018-05-18 2019-11-21 ジオマテック株式会社 Method of forming surface microstructure, and article provided with surface microstructure

Similar Documents

Publication Publication Date Title
CA2324203C (en) Colored anti-fog mirror
US20190302313A1 (en) Article coated with an interference coating having properties that are stable over time
EP2804026B1 (en) Optical product and method for manufacturing same
KR101939871B1 (en) Cover glass for photoelectric conversion device
EP2687875A1 (en) Optical member and method for producing same
JP2015200888A (en) Hard reflection preventive film, manufacturing of hard reflection preventive film and use thereof
RU2356075C2 (en) Hydrophilic reflecting appliance
JP2009122416A (en) Optical thin film
EP1040963B1 (en) Hydrophilic mirror and method of producing the same
JP2009083183A (en) Optical membrane laminate
US20080241520A1 (en) Hydrophilic elements
JP3592596B2 (en) Hydrophilic mirror and method for producing the same
WO2018110017A1 (en) Optical product
WO2024053124A1 (en) Multilayer film, optical component, spectacles and method for producing multilayer film
WO2001071394A1 (en) Antireflection product and production method therefor
JP2007310335A (en) Front surface mirror
WO2024053125A1 (en) Multilayer film, optical member including multilayer film, and method for producing multilayer film
JP7476564B2 (en) Superhydrophilic film, its manufacturing method, and optical member
WO2018216540A1 (en) Lens having hydrophilic anti-reflection film and production method therefor
JP7455270B1 (en) Multilayer film, optical member, and method for manufacturing multilayer film
WO2019221255A1 (en) Method of forming surface microstructure, and article provided with surface microstructure
JP7468624B2 (en) Optical Components
JPH03218821A (en) Heat ray reflective glass
US20190064398A1 (en) Durable silver-based mirror coating employing nickel oxide
JP2002082208A (en) Antireflection film and optical component with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958202

Country of ref document: EP

Kind code of ref document: A1