JPH0836101A - Antireflection film of optical parts made of synthetic resin - Google Patents

Antireflection film of optical parts made of synthetic resin

Info

Publication number
JPH0836101A
JPH0836101A JP6192062A JP19206294A JPH0836101A JP H0836101 A JPH0836101 A JP H0836101A JP 6192062 A JP6192062 A JP 6192062A JP 19206294 A JP19206294 A JP 19206294A JP H0836101 A JPH0836101 A JP H0836101A
Authority
JP
Japan
Prior art keywords
layer
antireflection film
optical
synthetic resin
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6192062A
Other languages
Japanese (ja)
Inventor
Shinichiro Gosho
真一郎 御所
Koichiro Yamazaki
皓一郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP6192062A priority Critical patent/JPH0836101A/en
Publication of JPH0836101A publication Critical patent/JPH0836101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To provide an antireflection film which is formed of a three-layered structure on the surface of optical parts made of a synthetic resin and with which as-designed optical characteristics are obtainable by simple optical designing and environmental resistance is excellent. CONSTITUTION:This antireflection film is formed by depositing a chromium layer 2 having a film thickness <=15nm (ideally <=5nm) as a first layer, a cerium dioxide layer 3 as a second layer and a silicon dioxide layer 4 as a third layer on the surface of an acrylic substrate (optical parts) 1. Although the antireflection film is physically formed of the three-layered structure, the chromium layer 2 is extremely thinly formed and, therefore, the execution of the optical designing by taking only the refractive indices and layer thicknesses of the cerium dioxide layer 3 and the silicon dioxide layer 4 suffices. The as- designed stable optical characteristics (spectral reflectivity) is thus obtd. and the environmental resistance performance is improved by the excellent affinity and adhesion property of the chromium layer 2 to the acrylic resin substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は合成樹脂製光学部品の反
射防止膜に係り、CDプレーヤ等の光ピックアップに使
用される合成樹脂製対物レンズや、ビデオカメラやスチ
ルカメラ等の各種合成樹脂製光学部品に適用され、それ
ら部品の表面保護膜を兼ねた反射防止膜の構成に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antireflection film for synthetic resin optical parts, which is made of synthetic resin objective lenses used in optical pickups for CD players and various synthetic resin such as video cameras and still cameras. The present invention relates to a structure of an antireflection film which is applied to optical parts and also serves as a surface protective film for those parts.

【0002】[0002]

【従来の技術】従来からレンズ等の光学部品には無機ガ
ラスが使用されてきたが、最近では加工が容易であると
共に軽量且つ安価である等の理由から、アクリル等の合
成樹脂が光学部品素材として適用されることが多くなっ
ている。その場合、合成樹脂製の光学部品は無機ガラス
の場合と同様に光の反射率が大きく、またその硬度が小
さいために傷付き易いことから、保護膜を兼ねた反射防
止膜が施される。
2. Description of the Related Art Inorganic glass has been used for optical components such as lenses, but recently synthetic resins such as acrylic are used as optical component materials because they are easy to process, lightweight and inexpensive. Is often applied as. In this case, the optical component made of synthetic resin has a high light reflectance as in the case of the inorganic glass and is easily scratched due to its low hardness, so that an antireflection film that also serves as a protective film is applied.

【0003】そして、単層反射防止膜としてはフッ化マ
グネシウム(MgF2)によるものが一般的であるが、分
光反射特性を改善するために3層構造の反射防止膜とし
たものが各種提案されている。例えば、アクリル樹脂製
の光学部品の表面に、その表面側から順に二酸化珪素
(SiO2)層と二酸化ジルコニウム(ZrO2)層と二酸化珪
素(SiO2)層を成膜したものや、二酸化珪素(SiO2)層
と三酸化アルミニウム(Al23)層と二酸化珪素(Si
2)層を成膜したもの(以上は特開昭59-204801号)や、
二酸化珪素(SiO2)層とフッ化マグネシウム(MgF2)層
と二酸化珪素(SiO2)層を成膜したもの(特開昭60-1297
01号)や、二酸化珪素(SiO2)層と二酸化セリウム(Ce
2)層と二酸化珪素(SiO2)層を成膜したもの等が提案
されている。
Although a single layer antireflection film is generally made of magnesium fluoride (MgF 2 ), various antireflection films having a three-layer structure have been proposed in order to improve spectral reflection characteristics. ing. For example, on the surface of an optical component made of acrylic resin, silicon dioxide is sequentially formed from the surface side.
(SiO 2 ) layer, zirconium dioxide (ZrO 2 ) layer and silicon dioxide (SiO 2 ) layer formed, or silicon dioxide (SiO 2 ) layer, aluminum trioxide (Al 2 O 3 ) layer and silicon dioxide ( Si
O 2 ) layer formed (the above is JP-A-59-204801),
Silicon dioxide (SiO 2) layer and magnesium fluoride (MgF 2) layer and the silicon dioxide that was deposited (SiO 2) layer (JP 60-1297
01), silicon dioxide (SiO 2 ) layer and cerium dioxide (Ce)
There has been proposed one in which an O 2 ) layer and a silicon dioxide (SiO 2 ) layer are formed.

【0004】また、前記の各反射防止膜による分光反射
率が波長域740〜840nmの入射光について2.8
〜4.7%とされているのに対し、特開昭63-121801号で
は、図3に示すように、アクリル樹脂基板1の表面に対
して一酸化珪素(SiO)層12と二酸化セリウム(CeO2)
層13と二酸化珪素(SiO2)層14を成膜した反射防止膜を
提案しており、その提案内容によれば、前記と同様の波
長域の入射光について分光反射率を0.5%以下にする
ことが可能とされている。
Further, the spectral reflectance of each of the above antireflection films is 2.8 for incident light having a wavelength range of 740 to 840 nm.
However, in Japanese Patent Laid-Open No. 63-121801, as shown in FIG. 3, a silicon monoxide (SiO) layer 12 and a cerium dioxide (SiO 2) layer are formed on the surface of the acrylic resin substrate 1. CeO 2 )
We have proposed an antireflection film in which the layer 13 and the silicon dioxide (SiO 2 ) layer 14 are formed. According to the proposal, the spectral reflectance of incident light in the same wavelength range as described above is 0.5% or less. It is possible to

【0005】尚、一般に反射防止膜の形成方法としては
真空蒸着法が採用されており、無機ガラスの場合には2
00〜400℃で基板を加熱して強固な蒸着膜を得るよ
うにしているが、合成樹脂の場合には加熱によって劣化
や分解を生じるため、60℃以下の温度に保った状態で
真空蒸着を行うようにしている。
Generally, a vacuum deposition method is adopted as a method of forming an antireflection film, and in the case of inorganic glass, it is 2
The substrate is heated at 00 to 400 ° C. to obtain a strong vapor-deposited film. However, in the case of synthetic resin, deterioration and decomposition occur due to heating. Therefore, vacuum vapor deposition should be performed at a temperature of 60 ° C. or lower. I am trying to do it.

【0006】[0006]

【発明が解決しようとする課題】ところで、特開昭63-1
21801号の反射防止膜では極めて優れた分光反射率が得
られているようであるが、分光反射特性を設計する際に
アクリル樹脂基板1の表面に第1層として形成する一酸
化珪素(SiO)層12の屈折率が厳密に考慮されなければ
ならない。実際に、特開昭63-121801号の実施例とほぼ
同様の仕様(次の表1の仕様)に基づいて設計した3層構
造の反射防止膜を作成してみたが、屈折率や膜厚に係る
僅かな設計・製作誤差が生じると前記の分光反射特性が
得られず、また耐候試験(60℃,90%,168h)や冷
熱衝撃試験(70℃〜−30℃,1h,200サイクル)
を行ったところ、反射防止膜に多数のクラックが発生
し、実用上満足できるものが得られなかった。
By the way, Japanese Patent Laid-Open No. 63-1
The antireflection film of No. 21801 seems to have obtained an extremely excellent spectral reflectance, but when designing the spectral reflection characteristics, silicon monoxide (SiO) formed as the first layer on the surface of the acrylic resin substrate 1 The refractive index of the layer 12 must be taken into account strictly. Actually, an antireflection film having a three-layer structure designed based on almost the same specifications (specifications of the following Table 1) as in the example of JP-A-63-121801 was prepared, but the refractive index and the film thickness were If a slight design / manufacturing error occurs, the above spectral reflection characteristics cannot be obtained, and the weather resistance test (60 ° C, 90%, 168h) and thermal shock test (70 ° C to -30 ° C, 1h, 200 cycles)
As a result, many cracks were generated in the antireflection film, and a practically satisfactory product was not obtained.

【0007】[0007]

【表1】 (註) PMMA:ポリメタクリル酸メチル[Table 1] (Note) PMMA: Polymethylmethacrylate

【0008】特に、一酸化珪素(SiO)は準安定酸化物
であるため、珪素原子に酸素原子が1:1で結合した純
粋な化合物として構成されていることは稀であり、実際
には大気中雰囲気に曝されたときに酸素原子のモル数が
小さくなる傾向で変動しており、その変動に伴って一酸
化珪素(SiO)の層の屈折率が変化して、結果的に反射
防止膜の分光反射率が不安定化する傾向がみられた。
In particular, since silicon monoxide (SiO) is a metastable oxide, it is rare that it is formed as a pure compound in which oxygen atoms are bonded to silicon atoms in a ratio of 1: 1. When exposed to a medium atmosphere, the number of moles of oxygen atoms tends to decrease, and the variation causes the refractive index of the layer of silicon monoxide (SiO) to change, resulting in an antireflection film. There was a tendency that the spectral reflectance of was unstable.

【0009】一方、光ピックアップの対物レンズや、ビ
デオカメラやスチルカメラ等の各種光学部品では、分光
反射率が小さいことが望ましいことは当然であるが、波
長域が700〜840nmの入射光について平均的に5
〜6%以下であれば十分であり、むしろ光学薄膜の設計
が簡単で、その設計に基づいて安定した光学的特性の反
射防止膜が形成できることの方が重要である。そこで、
本発明は、クロム(Cr)が安定した物質としてアクリル
樹脂製の光学部品の表面に構成される第1層の成膜材質
として最適であることに着目し、従来技術の問題点を解
消した反射防止膜を提供することを目的として創作され
た。
On the other hand, it is natural that the objective lens of an optical pickup and various optical parts such as a video camera and a still camera should have a small spectral reflectance, but the average of incident light in the wavelength range of 700 to 840 nm is desirable. To 5
It is sufficient that the content is ˜6% or less, rather it is more important that the design of the optical thin film is simple and that the antireflection film having stable optical characteristics can be formed based on the design. Therefore,
The present invention focuses on the fact that chromium (Cr) is a stable material and is optimal as a film forming material for the first layer formed on the surface of an optical component made of acrylic resin, and has solved the problems of the prior art. It was created with the aim of providing a barrier.

【0010】[0010]

【課題を解決するための手段】本発明は、合成樹脂製光
学部品の表面に、その表面側から順に第1層と第2層と
第3層を積層させた3層構造で形成した合成樹脂製光学
部品の反射防止膜において、前記第1層は膜厚が15n
m以下で構成されたクロム層からなり、前記第2層は二
酸化セリウム層からなり、前記第3層は二酸化珪素層か
らなることを特徴とする合成樹脂製光学部品の反射防止
膜に係る。
The present invention provides a synthetic resin having a three-layer structure in which a first layer, a second layer and a third layer are laminated on a surface of a synthetic resin optical component in order from the surface side. In the antireflection film of the optical component, the first layer has a thickness of 15 n.
The present invention relates to an antireflection film for a synthetic resin optical component, characterized in that the second layer is a cerium dioxide layer and the third layer is a silicon dioxide layer.

【0011】[0011]

【作用】第1層のクロム層は合成樹脂との密着性や親和
性が極めて良好であり、基層としてクラック(膜割れ)の
防止に寄与し、膜応力による3層全体の膜破壊に関して
は、第1層のクロム層の圧縮応力、第2層の二酸化セリ
ウム層の引張応力、及び第3層の二酸化珪素層の圧縮応
力がバランスをとり、全体として安定した状態で膜破壊
の防止が図られる。そして、二酸化セリウム層と二酸化
珪素層は使用波長における反射防止機能を有し、最表面
側となる二酸化珪素層は耐環境性を有した保護膜として
の役割を果たす。
The first chrome layer has extremely good adhesion and affinity with the synthetic resin, contributes to the prevention of cracks (film cracks) as the base layer, and the film damage of all three layers due to film stress is The compressive stress of the first chrome layer, the tensile stress of the second cerium dioxide layer, and the compressive stress of the third silicon dioxide layer are balanced to prevent film breakage in a stable state as a whole. . The cerium dioxide layer and the silicon dioxide layer have an antireflection function at the used wavelength, and the silicon dioxide layer on the outermost surface side functions as a protective film having environmental resistance.

【0012】特に、本発明の場合、第1層のクロム層を
十数nm以下にして、光学特性において無視できる程度
の薄膜として安定的に構成することができ、物理的には
3層構造であるが、第2層の二酸化セリウム層と第3層
の二酸化珪素層に係る屈折率と層厚のみを考慮して光学
的設計を行うことができ、設計の容易化が図れると共に
設計通りの安定した光学的特性を得られる。
In particular, in the case of the present invention, it is possible to stably form the first chromium layer as a thin film having a thickness of tens of nanometers or less and to have a negligible optical characteristic, and to physically form a three-layer structure. However, the optical design can be performed by considering only the refractive index and the layer thickness of the second cerium dioxide layer and the third silicon dioxide layer, which simplifies the design and stabilizes the design. The obtained optical characteristics can be obtained.

【0013】[0013]

【実施例】以下、本発明の「合成樹脂製光学部品の反射
防止膜」に係る実施例を図1及び図2を用いて詳細に説
明する。この実施例の反射防止膜は図1に示されるよう
な3層構造を有し、レンズ等の光学部品に相当するアク
リル樹脂基板1の表面側から順に、クロム(Cr)層2と、
二酸化セリウム(CeO2)層3と、二酸化珪素(SiO2)層4
が形成されている。
EXAMPLES Examples of the "antireflection film for synthetic resin optical components" of the present invention will be described in detail below with reference to FIGS. The antireflection film of this example has a three-layer structure as shown in FIG. 1, and comprises a chromium (Cr) layer 2 and a chromium (Cr) layer 2 in order from the surface side of an acrylic resin substrate 1 corresponding to an optical component such as a lens.
Cerium dioxide (CeO 2 ) layer 3 and silicon dioxide (SiO 2 ) layer 4
Are formed.

【0014】そして、その製造に際しては、各層を高真
空(1/105Torr以下)・常温(23〜25℃)雰囲気中
で、電子銃蒸着法によってアクリル樹脂基板1の表面に
対して第1層としてクロム層2を蒸着し、そのクロム層2
の上に第2層として二酸化セリウム層3を蒸着し、更に
その二酸化セリウム層3の上に第3層として二酸化珪素
層4を蒸着させることによって3層構造を形成する。そ
の場合、第1層のクロム層2については、15nm以下
に、望ましくは5nm以下の膜厚となるように蒸着制御
を行う。また、第2層の二酸化セリウム層3と第3層の
二酸化珪素層4の膜厚は、入射光の波長をλ(=700〜
840nm)として、その光学的膜厚(=屈折率×膜厚)
が約(λ/4)となるように蒸着制御を行う。
In the production thereof, each layer is first applied to the surface of the acrylic resin substrate 1 by an electron gun vapor deposition method in a high vacuum (1/10 5 Torr or less) / normal temperature (23 to 25 ° C.) atmosphere. Chromium layer 2 is vapor-deposited as a layer and the chromium layer 2
A cerium dioxide layer 3 is vapor-deposited as a second layer thereon, and a silicon dioxide layer 4 is vapor-deposited as a third layer on the cerium dioxide layer 3 to form a three-layer structure. In that case, the vapor deposition control is performed so that the first chromium layer 2 has a thickness of 15 nm or less, preferably 5 nm or less. The thickness of the second layer cerium dioxide layer 3 and the third layer silicon dioxide layer 4 is λ (= 700-
840 nm) and its optical film thickness (= refractive index × film thickness)
Is controlled to be about (λ / 4).

【0015】この実施例におけるアクリル樹脂基板1の
屈折率やクロム層2の膜厚、及び二酸化セリウム層3と二
酸化珪素層4の屈折率と膜厚は、次の表2に示す通りと
した。
The refractive index of the acrylic resin substrate 1 and the film thickness of the chromium layer 2 and the refractive index and film thickness of the cerium dioxide layer 3 and the silicon dioxide layer 4 in this example are as shown in Table 2 below.

【表2】 [Table 2]

【0016】本実施例の特徴は、前記ようにクロム層2
が極めて薄く形成されており、十分な透過率を得ながら
光学的屈折率の影響を無視できるようにしている点にあ
る。即ち、クロム層2は15nm以下の範囲で可能な限
り薄く形成することによりそのような条件を実現でき、
且つクロム(Cr)自体はアクリル樹脂(PMMA)及び二
酸化セリウム(CeO2)との親和性が良好であり、アクリ
ル樹脂基板1と二酸化セリウム層3の間で優れた密着性を
発揮する。
The feature of this embodiment is that the chromium layer 2 is used as described above.
Is extremely thin, and the effect of the optical refractive index can be ignored while obtaining a sufficient transmittance. That is, such a condition can be realized by forming the chrome layer 2 as thin as possible within the range of 15 nm or less,
Moreover, chromium (Cr) itself has a good affinity with the acrylic resin (PMMA) and cerium dioxide (CeO 2 ), and exhibits excellent adhesion between the acrylic resin substrate 1 and the cerium dioxide layer 3.

【0017】また、二酸化セリウム層3と二酸化珪素層4
は使用入射光の波長域で反射防止機能を有し、二酸化珪
素層4は耐環境性のための保護膜となる。本実施例の反
射防止膜では前記のようにクロム層2が光学的特性に殆
ど影響を与えるものでなく、特にクロム層2の膜厚を5
nm以下にすると、物理的には3層構造になっている
が、反射防止には二酸化セリウム層3と二酸化珪素層4の
みが機能し、光学的には2層構造とみなせる。従って、
反射防止膜の設計においては、クロム層2を前記のよう
に極めて薄く形成することを条件に、二酸化セリウム層
3と二酸化珪素層4の屈折率と膜厚だけを考慮れば足り
る。
Further, the cerium dioxide layer 3 and the silicon dioxide layer 4
Has an antireflection function in the wavelength range of incident light used, and the silicon dioxide layer 4 serves as a protective film for environmental resistance. In the antireflection film of this embodiment, the chromium layer 2 has almost no influence on the optical characteristics as described above.
If the thickness is less than or equal to nm, the layer has a physically three-layer structure, but only the cerium dioxide layer 3 and the silicon dioxide layer 4 function for antireflection, and it can be optically regarded as a two-layer structure. Therefore,
In designing the antireflection film, the cerium dioxide layer is provided on condition that the chromium layer 2 is formed extremely thin as described above.
It suffices to consider only the refractive index and the film thickness of 3 and the silicon dioxide layer 4.

【0018】そして、前記の表2の設計仕様に基づいて
製作した本実施例の反射防止膜と上記の表1の設計仕様
に基づいて製作した特開昭63-121801号の反射防止膜に
ついて、それぞれ入射光の波長λを400〜1000n
mに変化させて透過率を計測してみた。その結果は図2
に示され、本実施例の反射防止膜は、光ピックアップの
対物レンズやビデオカメラ等の各種光学部品で対象とさ
れる波長域(λ=700〜840nm)においてほぼ94
%以上の透過率(分光反射率では6%以下に相当)を示し
ている。また、本実施例の反射防止膜について、耐候試
験(60℃,90%,168h)と(70℃,90%,504
h)、及び冷熱衝撃試験(70℃〜−30℃,1h,20
0サイクル)を行ってみたが、各試験において蒸着膜の
クラック発生率は極めて低かった。
The antireflection film of this embodiment manufactured based on the design specifications of Table 2 and the antireflection film of JP-A-63-121801 manufactured based on the design specifications of Table 1 are as follows: The wavelength λ of the incident light is 400 to 1000 n, respectively.
It was changed to m and the transmittance was measured. The result is shown in Figure 2.
The antireflection film of the present embodiment is almost 94 in the wavelength range (λ = 700 to 840 nm) targeted for various optical parts such as an objective lens of an optical pickup and a video camera.
It shows a transmittance of not less than% (corresponding to 6% or less in the spectral reflectance). Further, regarding the antireflection film of this example, a weather resistance test (60 ° C., 90%, 168 h) and (70 ° C., 90%, 504 h) were performed.
h), and thermal shock test (70 ° C to -30 ° C, 1h, 20
(0 cycle), the rate of occurrence of cracks in the deposited film was extremely low in each test.

【0019】一方、特開昭63-121801号の反射防止膜で
は、その開示内容に示されている結果(λ=780〜8
20nmで分光反射率が0.5%以下)が得られず、図2
に示されるように、むしろ前記の波長域では本実施例の
反射防止膜の方が平均的に優れた分光反射率が得られて
いる。尚、特開昭63-121801号の反射防止膜についての
耐候試験や冷熱衝撃試験の結果については、上記したよ
うにクラックの発生率が高くなっていた。
On the other hand, in the case of the antireflection film of JP-A-63-121801, the results (λ = 780-8
The spectral reflectance at 20 nm is less than 0.5%).
As shown in FIG. 7, the antireflection film of this example has a more excellent average spectral reflectance in the above wavelength range. Incidentally, in the results of the weather resistance test and the thermal shock test for the antireflection film of JP-A-63-121801, the crack occurrence rate was high as described above.

【0020】また、特開昭63-121801号の反射防止膜で
は、第1層の一酸化珪素(SiO)層の屈折率の変化によ
ると思われる分光反射率の不安定化傾向がみられたが、
本実施例の反射防止膜では設計通りの極めて安定した分
光反射率が得られ、製造した数個の反射防止膜について
前記と同条件で透過率の計測を行ってみたが、各反射防
止膜の特性は殆ど同等になり、バラツキは発生しなかっ
た。
Further, in the antireflection film of JP-A-63-121801, there is a tendency for the spectral reflectance to become unstable, which is considered to be due to the change in the refractive index of the first silicon monoxide (SiO) layer. But,
With the antireflection film of this example, an extremely stable spectral reflectance as designed was obtained, and the transmittance of several manufactured antireflection films was measured under the same conditions as described above. The characteristics were almost the same, and no variation occurred.

【0021】[0021]

【発明の効果】本発明の「合成樹脂製光学部品の反射防
止膜」は、以上の構成を有していることにより、次のよ
うな効果を奏する。請求項1の発明によれば、第1層を
膜厚が15nm以下で構成されたクロム層としたことに
より、物理的には3層構造であるが、第2層の二酸化セ
リウム層と第3層の二酸化珪素層に係る屈折率と層厚の
みを考慮して実用上影響のない範囲で簡単に光学的な設
計が行え、設計通りの安定した光学的特性を有すると共
に、耐環境性能にも優れた反射防止膜が得られる。請求
項2の発明によれば、第1層のクロム層が合成樹脂製光
学部品と反射防止膜(第2層の二酸化セリウム層と第3
層の二酸化珪素層)との密着性を確保するだけで、光学
的に殆ど影響を及ぼさない反射防止膜が実現できる。
EFFECTS OF THE INVENTION The "antireflection film of synthetic resin optical component" of the present invention has the above-mentioned constitutions, so that the following effects can be obtained. According to the invention of claim 1, since the first layer is a chromium layer having a film thickness of 15 nm or less, it has a physically three-layer structure, but has a second cerium dioxide layer and a third layer. Considering only the refractive index and layer thickness related to the silicon dioxide layer of the layer, optical design can be easily performed within the range that has no practical effect, and it has stable optical characteristics as designed and also has environmental resistance performance. An excellent antireflection film can be obtained. According to the invention of claim 2, the first chromium layer is the synthetic resin optical component and the antireflection film (the second cerium dioxide layer and the third chromium layer).
The antireflection film which has almost no optical influence can be realized only by ensuring the adhesion to the silicon dioxide layer).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る合成樹脂製光学部品の反
射防止膜の断面図である。
FIG. 1 is a cross-sectional view of an antireflection film of a synthetic resin optical component according to an embodiment of the present invention.

【図2】横軸に入射光の波長λを、縦軸に透過率をとっ
て、本発明の実施例に係る反射防止膜と従来技術に係る
反射防止膜の各透過率特性を示したグラフである。
FIG. 2 is a graph showing the transmittance characteristics of the antireflection film according to the example of the present invention and the antireflection film of the related art, with the wavelength λ of the incident light on the horizontal axis and the transmittance on the vertical axis. Is.

【図3】従来技術に係る反射防止膜の断面図である。FIG. 3 is a cross-sectional view of a conventional antireflection film.

【符号の説明】[Explanation of symbols]

1…アクリル樹脂基板(合成樹脂製光学部品)、2…クロム
層(第1層)、3,13…二酸化セリウム層(第2層)、4,14…
二酸化珪素層(第3層)、12…一酸化珪素層(第1層)。
1 ... Acrylic resin substrate (synthetic resin optical component), 2 ... Chrome layer (first layer), 3,13 ... Cerium dioxide layer (second layer), 4, 14 ...
Silicon dioxide layer (third layer), 12 ... Silicon monoxide layer (first layer).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂製光学部品の表面に、その表面
側から順に第1層と第2層と第3層を積層させた3層構
造で形成した合成樹脂製光学部品の反射防止膜におい
て、前記第1層は膜厚が15nm以下で構成されたクロ
ム層からなり、前記第2層は二酸化セリウム層からな
り、前記第3層は二酸化珪素層からなることを特徴とす
る合成樹脂製光学部品の反射防止膜。
1. An antireflection film for a synthetic resin optical component, which has a three-layer structure in which a first layer, a second layer, and a third layer are laminated on the surface of the synthetic resin optical component in order from the surface side. The first layer is a chrome layer having a thickness of 15 nm or less, the second layer is a cerium dioxide layer, and the third layer is a silicon dioxide layer. Anti-reflection film for parts.
【請求項2】 第1層であるクロム層の膜厚を5nm以
下とした請求項1の合成樹脂製光学部品の反射防止膜。
2. The antireflection film for a synthetic resin optical component according to claim 1, wherein the thickness of the chromium layer as the first layer is 5 nm or less.
JP6192062A 1994-07-22 1994-07-22 Antireflection film of optical parts made of synthetic resin Pending JPH0836101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6192062A JPH0836101A (en) 1994-07-22 1994-07-22 Antireflection film of optical parts made of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6192062A JPH0836101A (en) 1994-07-22 1994-07-22 Antireflection film of optical parts made of synthetic resin

Publications (1)

Publication Number Publication Date
JPH0836101A true JPH0836101A (en) 1996-02-06

Family

ID=16284995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6192062A Pending JPH0836101A (en) 1994-07-22 1994-07-22 Antireflection film of optical parts made of synthetic resin

Country Status (1)

Country Link
JP (1) JPH0836101A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11553120B2 (en) 2017-10-12 2023-01-10 Canon Kabushiki Kaisha Optical element, optical system, and image pickup apparatus
WO2024053125A1 (en) * 2022-09-09 2024-03-14 キヤノンオプトロン株式会社 Multilayer film, optical member including multilayer film, and method for producing multilayer film
WO2024053124A1 (en) * 2022-09-09 2024-03-14 キヤノンオプトロン株式会社 Multilayer film, optical component, spectacles and method for producing multilayer film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121801A (en) * 1986-11-11 1988-05-25 Olympus Optical Co Ltd Antireflection film for optical parts made of synthetic resin
JPS6470701A (en) * 1987-09-10 1989-03-16 Nippon Sheet Glass Co Ltd Transparent plate having conductive antireflection film
JPH04352102A (en) * 1991-05-30 1992-12-07 Mitsubishi Electric Corp Antireflection film for plastic optical member and formation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121801A (en) * 1986-11-11 1988-05-25 Olympus Optical Co Ltd Antireflection film for optical parts made of synthetic resin
JPS6470701A (en) * 1987-09-10 1989-03-16 Nippon Sheet Glass Co Ltd Transparent plate having conductive antireflection film
JPH04352102A (en) * 1991-05-30 1992-12-07 Mitsubishi Electric Corp Antireflection film for plastic optical member and formation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11553120B2 (en) 2017-10-12 2023-01-10 Canon Kabushiki Kaisha Optical element, optical system, and image pickup apparatus
WO2024053125A1 (en) * 2022-09-09 2024-03-14 キヤノンオプトロン株式会社 Multilayer film, optical member including multilayer film, and method for producing multilayer film
WO2024053124A1 (en) * 2022-09-09 2024-03-14 キヤノンオプトロン株式会社 Multilayer film, optical component, spectacles and method for producing multilayer film

Similar Documents

Publication Publication Date Title
US4979802A (en) Synthetic resin half-mirror
US4944581A (en) Rear face reflection mirror of multilayer film for synthetic resin optical parts
JPH07111484B2 (en) Antireflection film for plastic optical parts and method for forming the same
US4988164A (en) Anti-reflection film for synthetic resin optical elements
JPS5860701A (en) Reflection preventing film
JPH0836101A (en) Antireflection film of optical parts made of synthetic resin
JPH0968602A (en) Optical product having antireflection layer
JP3221764B2 (en) Anti-reflection coating for optical parts made of synthetic resin
JPH0462363B2 (en)
CN1749782A (en) The coated glass eyeglass
JP2566634B2 (en) Multi-layer antireflection film
JPH08327809A (en) Plastic reflecting mirror
JPS60130704A (en) Antireflection film for plastic substrate
JPH10123303A (en) Antireflection optical parts
JP2777937B2 (en) Resin optical element and method of manufacturing the same
JP3113371B2 (en) Multi-layer anti-reflective coating
JP2693500B2 (en) Anti-reflective coating
JPS60130703A (en) Antireflection film for plastic substrate
JP2000275402A (en) Optical element with antireflection film
JPS6326603A (en) Reflection mirror consisting of synthetic resin member
JP2979327B2 (en) Anti-reflective coating deposited on low melting point substrate
JPH0926501A (en) Synthetic resin optical parts having antireflection film
JPH04156501A (en) Reflection preventing film for optical part made of synthetic resin
JPH06208002A (en) Antireflection film of plastic optical parts and its formation
JPH07234302A (en) Moisture resistant antireflection film