WO2018110017A1 - Optical product - Google Patents

Optical product Download PDF

Info

Publication number
WO2018110017A1
WO2018110017A1 PCT/JP2017/033841 JP2017033841W WO2018110017A1 WO 2018110017 A1 WO2018110017 A1 WO 2018110017A1 JP 2017033841 W JP2017033841 W JP 2017033841W WO 2018110017 A1 WO2018110017 A1 WO 2018110017A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical product
layer
refractive index
product according
film
Prior art date
Application number
PCT/JP2017/033841
Other languages
French (fr)
Japanese (ja)
Inventor
松坂慶二
能勢正章
中村勝也
青木洋輔
今関秀和
水町靖
野村康之
濱敬二
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2018110017A1 publication Critical patent/WO2018110017A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical product having a multilayer film formed thereon.
  • titanium oxide is known to have a high photocatalytic effect. More specifically, when the titanium oxide is irradiated with UV light, the oxidation-reduction reaction is strongly promoted, and the surface of the titanium oxide exhibits hydrophilicity that is easily wetted with water. Therefore, the titanium oxide is washed with water droplets such as rain. It is known to have a so-called self-cleaning action.
  • Patent Document 1 a low-refractive index layer and a high-refractive index layer are alternately stacked, and a multilayer antireflection film in which the uppermost layer is a low-refractive index layer is provided, and at least a high-refractive index layer immediately below the uppermost layer is provided.
  • An article is disclosed that is a layer of metal oxide such as titanium oxide having photocatalytic activity or a composite film containing titanium oxide.
  • Such articles can be used, for example, as lenses for glasses, cameras, binoculars, microscopes, and the like, and are said to exhibit functions such as antifouling and antifogging.
  • optical products such as in-vehicle cameras and glass building materials that are easily contaminated and difficult for users to clean.
  • the thickness of the TiO 2 that exhibits a photocatalytic function has become a 200nm or less, it may not be able to achieve sufficient photocatalytic effect on optical products placed dirt easily environment is there.
  • the film thickness of TiO 2 is increased, the photocatalytic function can be exhibited to some extent, but there is also a problem that desired optical characteristics cannot be obtained.
  • An object of the present invention is to provide an optical product capable of obtaining a desired spectral characteristic while exhibiting a photocatalytic effect.
  • an optical product reflecting one aspect of the present invention is an optical product having a glass substrate on which a multilayer film of three or more layers is formed.
  • the high refractive index layer adjacent to the uppermost layer is a functional layer mainly composed of a metal oxide having a photocatalytic function, and satisfies the following conditional expression. 60 nm ⁇ TL ⁇ 350 nm (1) 220 nm ⁇ Tcat ⁇ 700 nm (2) here, TL: film thickness of the uppermost layer
  • Tcat film thickness of the functional layer
  • 1A and 1B are diagrams schematically showing a cross section of an optical product according to the present embodiment. It is a figure which shows the spectral characteristics of the multilayer film of the test number 1-1 which is an Example. It is a figure which shows the spectral characteristic of the multilayer film of the test number 1-2 which is an Example. It is a figure which shows the spectral characteristic of the multilayer film of the test numbers 1-3 which is an Example. It is a figure which shows the spectral characteristics of the multilayer film of the test numbers 1-4 which are comparative examples. It is a figure which shows the spectral characteristics of the multilayer film of the test numbers 1-5 which are comparative examples.
  • FIG. 1 is a diagram schematically showing a cross section of an optical product according to the present embodiment.
  • An optical product 100 shown in FIG. 1A has a multilayer film MC having a structure in which low refractive index layers L and high refractive index layers H are alternately laminated on a glass substrate (glass substrate) GL.
  • the high refractive index layer H may be in contact with the glass substrate GL.
  • Such an optical product 100 has a light transmission function and a reflection function, and can be used as, for example, an in-vehicle lens, a communication lens, or a building material.
  • the layer located between the glass substrate GL and the functional layer 20 may be replaced with an equivalent film of an intermediate refractive index layer instead of a high refractive index layer or a low refractive index layer.
  • the optical product 100 shown in FIG. 1B has a multilayer structure in which a metal film M is formed on a glass substrate GL, and a high refractive index layer H and a low refractive index layer L are alternately stacked thereon. It has a film MC. However, the high refractive index layer H may be in contact with the metal film M.
  • Such an optical product 100 has a light reflecting function, and can be used as, for example, a reflecting mirror, a building material, or an in-vehicle mirror.
  • the uppermost layer 10 farthest from the glass substrate GL is a low refractive index layer L
  • the high refractive index layer H adjacent to the uppermost layer 10 is a functional layer 20 of a metal oxide having a photocatalytic function.
  • the functional layer 20 exhibits a photocatalytic function using active oxygen excited by UV light through or through the uppermost layer 10
  • the functional layer 20 is preferably placed as close as possible to the uppermost layer 10.
  • the functional layer 20 has a thickness of 100 nm or more adjacent to the uppermost layer 10. Furthermore, it is preferable to use a metal oxide having a photocatalytic effect and a photoactive effect as the functional layer 20 because the surface organic substances can be removed and the hydrophilicity of the uppermost layer 10 can be maintained.
  • the functional layer 20 using TiO 2 is preferably formed using IAD (Ion Assisted Deposition (hereinafter referred to as IAD)) because the photocatalytic effect is enhanced.
  • IAD Ion Assisted Deposition
  • Photocatalytic function refers to the strong oxidizing power generated by the incidence of sunlight or artificial light, which effectively removes toxic substances such as organic compounds and bacteria that come in contact, It refers to a self-cleaning function such as preventing the oil from staying on the surface and washing with water or the like without fixing oily stains, such as titanium dioxide.
  • adjacent to the uppermost layer means that the function is not hindered between the uppermost layer 10 and the functional layer 20 in addition to the case where the uppermost layer 10 and the functional layer 20 are in close contact with each other. This includes the case where a layer (for example, a layer of 20 nm or less) is provided.
  • the optical product 100 of the present embodiment satisfies the following conditional expression. 60 nm ⁇ TL ⁇ 350 nm (1) 220 nm ⁇ Tcat ⁇ 700 nm (2) here, TL: film thickness of uppermost layer 10 Tcat: film thickness of high refractive index layer H or functional layer 20 adjacent to uppermost layer 10
  • the value of the formula (1) is not more than the upper limit, the photocatalytic effect can be exhibited by exchanging active oxygen excited by UV light through the uppermost layer 10.
  • the value of the formula (1) is equal to or higher than the lower limit, a strong uppermost film can be formed, so that sufficient scratch resistance can be secured.
  • it is satisfy
  • the film thickness of the functional layer 20 can be ensured that the value of the formula (2) is equal to or greater than the lower limit, a sufficient photocatalytic effect can be expected.
  • the value of the expression (2) is set to the upper limit or less. It is desirable.
  • it is satisfy
  • the high refractive index layer H or the functional layer 20 adjacent to the uppermost layer 10 is preferably formed from an oxide (for example, TiO 2 ) containing Ti as a main component. This is because Ti oxides such as TiO 2 have a very high photocatalytic effect.
  • the top layer 10 is formed of SiO 2.
  • SiO 2 At night or outdoors hardly incident UV light, in the oxide composed mainly of Ti hydrophilic effect is reduced, can exhibit a hydrophilic effect uppermost 10 even such a case by forming a SiO 2, also, Scratch resistance is also improved.
  • SiO 2 is used for the uppermost layer 10, scratch resistance is improved by performing a heat treatment at 500 ° C. for 2 hours after film formation.
  • the uppermost layer 10 is preferably formed from a mixture of SiO 2 and Al 2 O 3 (provided that the composition ratio of SiO 2 is 90% by weight or more). Thereby, a hydrophilic effect can be exhibited even at night or outdoors, and scratch resistance is further enhanced by using a mixture of SiO 2 and Al 2 O 3 .
  • scratch resistance is improved by performing a heat treatment at 500 ° C. for 2 hours after film formation. Note that it is preferable to use IAD when a part or all of the uppermost layer 10 is formed. Thereby, scratch resistance can be improved.
  • Each layer of the multilayer film MC is formed by a vapor deposition method, and any one of the layers is preferably formed by IAD. Shift in spectral characteristics can be suppressed by film formation by IAD.
  • the multilayer film MC shown in FIG. 1A preferably has antireflection characteristics in the visible range.
  • the “visible region” means a wavelength range of 420 nm to 680 nm.
  • the “antireflection characteristic” here means that the reflectance of light in the visible range is 2% or less, desirably 1% or less, and more desirably 0.5% or less. As a result, an antireflection effect in the visible region can be obtained, and it is preferable to use it for an imaging lens or the like.
  • the multilayer film MC shown in FIG. 1A or 1B preferably has a transflective or highly reflective characteristic in the visible range.
  • the “semi-transmission characteristic” means that the light transmittance in the visible range is 30% or more and 70% or less
  • the “high reflection characteristic” means that the light reflectance in the visible range is 90% or more. It means that.
  • a transflective mirror or a total reflection mirror in the visible range can be obtained.
  • the multilayer film MC shown in FIG. 1A or 1B preferably has antireflection properties in the near infrared region.
  • the “near infrared region” refers to a wavelength range of 700 nm to 2000 nm.
  • the “antireflection characteristic” here means that the reflectance of light in the near infrared region is 2% or less, desirably 1% or less, and more desirably 0.5% or less. Thereby, the antireflection effect in the near infrared region can be obtained.
  • the multilayer film MC shown in FIG. 1A or 1B preferably has a characteristic of reflecting near-infrared light by 70% or more. Thereby, a reflection mirror in the near infrared region and an IR cut filter can be obtained.
  • the multilayer film MC shown in FIG. 1A or 1B preferably has a characteristic of reflecting 70% or more of light in the ultraviolet region.
  • the “ultraviolet region” refers to a wavelength range of 350 nm to 400 nm.
  • the reflectance of light in the ultraviolet region is desirably 90% or more, and more desirably 95% or more. Thereby, a reflection mirror in the ultraviolet region and an ultraviolet cut filter are obtained.
  • the multilayer film MC may have a metal film or a dielectric multilayer film that reflects at least one of visible light and near-infrared light.
  • “reflection characteristics” means that the reflectance of light in the visible region or near infrared region is 70% or more, and desirably 85% or more.
  • any one of Ag, Au, Cr, Al, Cu, and Ni is a main component.
  • the usable area and the reflectance can be arbitrarily adjusted.
  • “Main component” means that the content of the element is 51% by weight or more, preferably 70% by weight or more, more preferably 90% by weight, and still more preferably 100% by weight.
  • the value of the expression (7) When the value of the expression (7) is below the upper limit, the ion assist power does not become too weak, the value D (iad) is stabilized, and the photocatalytic effect can be stabilized. On the other hand, if the value of the expression (7) is equal to or higher than the lower limit, the value D (iad) does not become too small even if the ion assist power is increased, and a high-density film is not formed and the photocatalytic effect is maintained. Can do.
  • the filling rate indicates the proportion of atoms in the volume of the film.
  • the calculation formula when the filling rate is F is shown below.
  • a value F (noiad) described later is calculated in the same manner.
  • F (nf1-nf2 + 0.33) /0.33 here, nf1: Refractive index of the uppermost layer film after standing for 24 hours in an environment at a temperature of 25 ° C. and a humidity of 50% RH nf2: Refractive index of the uppermost layer film in a vacuum (during film formation)
  • the value of the formula (8) When the value of the formula (8) is equal to or higher than the lower limit, the ion assist power does not become too weak, the value F (iad) is stabilized, and the photocatalytic effect can be stabilized. On the other hand, if the value of the formula (8) is below the upper limit, the value F (iad) does not become too large even if the ion assist power is increased, and a high-density film is not formed and the photocatalytic effect is maintained. Can do.
  • the uppermost layer 10 is formed without using the IAD method, it is preferable that the following conditional expression is satisfied. 25 nm ⁇ D (noad) ⁇ 50 nm (9) here, D (noiad): nano-indentation depth of the uppermost layer 10 formed without using the IAD method
  • the value of formula (9) is equal to or greater than the lower limit, even if the amount of oxygen introduced during film formation is reduced, the value D (noad) does not become too small and a high-density film is not formed, and the photocatalytic effect is maintained. be able to.
  • the value of equation (9) is less than or equal to the upper limit, even if the amount of oxygen introduced is increased, the value (noad) does not become too large, and a film having a density that can withstand optical applications can be formed.
  • the value of equation (10) is less than or equal to the upper limit, even if the amount of oxygen introduced during film formation is reduced, the value F (noad) does not become too large, and a high-density film is not formed and the photocatalytic effect is maintained. be able to.
  • the value of the expression (10) is equal to or higher than the lower limit, even if the amount of oxygen introduced is increased, the value F (noiad) does not become too small, and a film having a density that can withstand optical use can be formed.
  • the optical product 100 satisfies the following conditional expression. 1.3 ⁇ NL ⁇ 1.5 (3) 1.9 ⁇ NH ⁇ 2.45 (4) here, NL: Refractive index at the d-line of the material of the low refractive index layer L NH: Refractive index at the d-line of the material of the high refractive index layer H
  • the optical product 100 having desired optical characteristics can be obtained.
  • the d line means light having a wavelength of 587.56 nm.
  • SiO 2 having a refractive index of 1.48 at d-line or MgF 2 having a refractive index of 1.385 at d-line can be used.
  • Ta, Hf, Zr, and Nb oxides can be suitably used as the specific material that satisfies the formula (4).
  • Ns Refractive index at d line of glass substrate GL
  • the optical performance of the optical product 100 can be enhanced with a compact configuration by satisfying the formula (5) as the refractive index at the d-line of the glass substrate GL in terms of optical design.
  • the multilayer film of the present invention By forming the multilayer film of the present invention on the glass substrate GL satisfying the formula (5), it can be used particularly for lenses exposed to the outside world, and achieves both excellent environmental resistance and optical performance. be able to.
  • Ns Refractive index at d line of glass substrate GL
  • the optical product 100 when applied as a building material such as a window glass, it is desirable to use a glass substrate GL having a refractive index of about 1.52, which is relatively inexpensive but has high strength.
  • the film thickness, density, film formation recipe of the multilayer film uppermost layer SiO 2 and the TiO 2 film thickness of the functional layer 20 adjacent to the uppermost layer 10 are optimized to maximize the photocatalytic effect.
  • the spectral characteristic adjusting layer it is possible to provide a photocatalytic optical multilayer film having an arbitrary spectral characteristic in a wavelength band ranging from the visible region to the near infrared region.
  • the optical product 100 having the multilayer film can obtain a desired spectral characteristic while exhibiting a photocatalytic effect, and is suitably used for an in-vehicle lens, a communication lens, or a building material.
  • Example 2 an example suitable for the above-described embodiment will be evaluated in comparison with a comparative example.
  • a film deposition apparatus BES-1300 manufactured by SYNCHRON Co., Ltd. was used, and NIS-175 was used as an ion source for IAD.
  • the inventors of the present invention formed a nine-layer multilayer film by vapor deposition on a glass substrate having an optical power (refractive index of 1.804) while changing the film thickness (d (nm)) of the functional layer. And used for the test. More specifically, as shown in Table 1, on a glass substrate TAF3 (manufactured by HOYA Co., Ltd .: refractive index 1.804), a low refractive index layer using SiO 2 , OA600 (manufactured by Canon Optron Co., Ltd.). A high refractive index layer using a material and a functional layer using TiO 2 were stacked in the order shown in Table 1 to form a film.
  • Table 1 shows the film formation recipe and film configuration of each layer (the first layer is the layer in contact with the glass substrate (glass substrate), the same applies hereinafter).
  • Layer indicates a layer number
  • Air indicates a layer material
  • d indicates a layer thickness (the same applies to the following tables).
  • OA600 in the table is a mixture of Ta 2 O 5 , TiO and Ti 2 O 5 , and the specific composition thereof is mainly composed of tantalum oxide as shown in Table 2.
  • n ( ⁇ ) in Table 1 and the table described later was obtained by the following formula.
  • the refractive index is measured by d-line (wavelength: 587.56 nm).
  • n ( ⁇ ) A 0 + A 1 / ( ⁇ A 2 )
  • is the wavelength of the d-line
  • a 0 , A 1 , and A 2 of the materials used in the examples and comparative examples are the following values, respectively.
  • the film formation prescription is as shown in Table 1, but regarding the film formation of each layer, the film formation rate RATE ( ⁇ / SEC), the presence / absence of oxygen gas introduction, and the introduction amount are changed by changing the introduction amount.
  • Two examples (test numbers 1-1 to 1-3) and two comparative examples (test numbers 1-4 and 1-5) were prepared and used for the following tests. Further, the film thickness TL of the uppermost layer was fixed at around 85 nm. IAD was not used for film formation.
  • the heating temperature was 340 ° C., and the starting vacuum was 3.00E-03 Pa (3.00 ⁇ 10 ⁇ 3 Pa).
  • 2 to 6 are diagrams showing the spectral characteristics of the multilayer films of test numbers 1-1 to 1-5. In the figure, the vertical axis represents reflectance (unit:%) and the horizontal axis represents wavelength (unit: nm) (the same applies to the following figures).
  • photocatalytic effect measurement is performed by irradiating a test sample with a black light (model number BL20) manufactured by YAZAWA at a distance of 30 mm from the test sample and irradiating with UV light for 5 minutes.
  • a sample having a minimal color change has no photocatalytic effect (evaluation x)
  • a sample having a large color change has a photocatalytic effect (evaluation o) (see Table 8).
  • nanoindentation indentation depth is a single layer film formed on a glass plate with a thickness of 200 nm
  • a miniature indentation hardness tester manufactured by Elionix A ridge interval 115 ° triangular pyramid diamond indenter was attached to ENT-2100, and this was pressed against the membrane for measurement.
  • the indenter gives a load at a load speed of 0.2 mgf / sec, holds the maximum load of 0.98 mN for 1 second, then unloads at the same load speed, and determines the indenter indentation depth obtained from a series of operations. The indentation depth when the maximum load was reached was obtained from the load curve.
  • each multilayer film has a reflectance of 1.5% or less mainly in the visible region (with an allowable value of 2%), realizing good spectral characteristics as a visible region antireflection film. is doing.
  • the multilayer film with the test numbers 1 to 4 achieves a good spectral characteristic with a reflectance of 1% or less mainly in the visible region as shown in FIG. 5, but the film thickness Tcat of the functional film. was 85 nm, evaluation of photocatalytic effect measurement was x. This can be attributed to the fact that the film thickness of the functional film was too thin to sufficiently exhibit the photocatalytic function.
  • the film thickness of the functional film is preferably at least 220 nm or more and 700 nm or less in order to ensure a good balance between the photocatalytic effect that tends to be a trade-off relationship and the spectral characteristics.
  • the present inventors formed a 15-layer or 7-layer multilayer film on a glass substrate having optical power by a vapor deposition method while changing the spectral characteristics, and used for the test. More specifically, as shown in Table 3, on a glass substrate TAF3 (manufactured by HOYA: refractive index 1.804) or M-BACD12 (manufactured by HOYA: refractive index 1.580), SiO 2 A low refractive index layer using 2 , a high refractive index layer using OA600 (material manufactured by Canon Optron Co., Ltd.), and a functional layer using TiO 2 were laminated in the order shown in Table 3. As the uppermost layer, SiO 2 was used. Table 3 shows the film formation recipe and film configuration of each layer.
  • the film formation recipe is as shown in Table 3.
  • four examples (test numbers 2-1) were prepared by changing the film formation rate RATE ( ⁇ / SEC) and the amount of oxygen gas introduced. 2-4) were prepared, and the photocatalytic effect and the spectral characteristics were evaluated. IAD was not used for film formation.
  • the film thickness TL of the uppermost layer was set to 97 nm to 228 nm.
  • the heating temperature was 340 ° C. and the starting vacuum was 3.00E-03 Pa, respectively.
  • 7 to 10 are diagrams showing the spectral characteristics of the multilayer films of test numbers 2-1 to 2-4.
  • the multilayer film of test number 2-1 has a reflectance of 1% or less mainly in the near infrared region (wavelength 700 nm to 1050 nm), and has good spectral characteristics as a near infrared region antireflection film. Realized. As shown in FIG.
  • the multilayer film of test number 2-2 has a reflectance of 1% or less mainly in the near infrared region (wavelength 1200 nm to 1800 nm), and realizes a good spectral characteristic as a near infrared region antireflection film.
  • the multilayer film of Test No. 2-3 has a reflectance of 2% or less mainly in the visible region (450 nm to 850 nm) and realizes good spectral characteristics as a visible region antireflection film.
  • the multilayer film of Test No. 2-4 has a reflectance of 1.5% or less mainly in the near infrared region (wavelength 1200 nm to 1800 nm), and has good spectral characteristics as a near infrared region antireflection film. Realized.
  • the present inventors formed a multilayer film of 8, 10, or 12 layers by a vapor deposition method on a glass substrate having no optical power and changing the spectral characteristics, and used for the test. More specifically, as shown in Table 4, on a glass substrate B270 (manufactured by SCHOTT: refractive index 1.522, also referred to as a white plate), a metal film, a low refractive index layer using SiO 2 , OA600 ( A high refractive index layer using a material manufactured by Canon Optron Co., Ltd. and a functional layer using TiO 2 having a refractive index of 2.032 were stacked in the order shown in Table 4 to form a film. As the uppermost layer, SiO 2 was used. Table 4 shows the film formation recipe and film configuration of each layer.
  • the film formation prescription is as shown in Table 4.
  • four examples were prepared by changing the film formation rate RATE ( ⁇ / SEC), the amount of oxygen gas introduced, and the material of the metal film.
  • Test numbers 3-1 to 3-4) were prepared, and the photocatalytic effect and the spectral characteristics were evaluated, respectively.
  • the metal film of test number 3-1 is Al
  • the metal film of test number 3-2 is Cr
  • the metal film of test number 3-3 is Cu
  • the film was Ni. IAD was not used for film formation.
  • the film thickness TL of the uppermost layer was 77 nm to 89 nm.
  • the heating temperature was 340 ° C. and the starting vacuum was 3.00E-03 Pa, respectively.
  • 11 to 14 are diagrams showing the spectral characteristics of the multilayer films of test numbers 3-1 to 3-4.
  • the multilayer film of test number 3-1 has a reflectance of 75% or more mainly from the visible region to the near infrared region (wavelength of 400 nm to 1950 nm), and has good spectral characteristics as a broadband reflection mirror. Realized.
  • the multilayer film of test number 3-2 mainly has a reflectance of 70% or more in the visible region (wavelength 400 nm to 650 nm), and realizes good spectral characteristics as a visible region reflecting mirror.
  • the multilayer film of test number 3-3 has a reflectance of 85% or more mainly from the visible region to the near-infrared region, and realizes good spectral characteristics as a broadband reflecting mirror.
  • the multilayer film of the test number 3-4 mainly has a reflectance of 75% or more in the visible region (wavelength 400 nm to 650 nm), and realizes good spectral characteristics as a visible region reflecting mirror.
  • the present inventors formed a multilayer film of 26 to 199 layers on a glass substrate having no optical power by a vapor deposition method while changing the spectral characteristics, and used for the test. More specifically, as shown in Tables 5 to 7, on a glass substrate B270 (white plate) (manufactured by SCHOTT: refractive index 1.522), a low refractive index layer using SiO 2 , H4 (MERCK) Ltd.: lanthanum titanate (LaTiOx), TiO 2 having a refractive index 2.401, TiO 2 having a refractive index 2.431, or OA600 high refractive index layer using the (Canon Optron Ltd. material), the refractive index 2. 132 functional layers using TiO 2 were stacked in the order shown in Table 5. SiO 2 was used as the uppermost layer, and the film formation recipe and film configuration of each layer are shown in Tables 5-7.
  • the film formation prescriptions are as shown in Tables 5 to 7. However, regarding the film formation of each layer, the film formation rate RATE ( ⁇ / SEC), the amount of oxygen gas introduced, and when using IAD, the prescription is set, Four examples (test numbers 4-1 to 4-4) were prepared, and the photocatalytic effect and the spectral characteristics were evaluated. Further, the film thickness TL of the uppermost layer was set to 86 nm to 250 nm. The heating temperature was 340 ° C. and the starting vacuum was 3.00E-03 Pa, respectively. 15 to 18 are diagrams showing the spectral characteristics of the multilayer films of test numbers 4-1 to 4-4. In Test No. 4-2, a dielectric multilayer film is used as a film that reflects light.
  • API means that the partial pressure is adjusted by the abbreviation of “Auto Pressure Control”
  • SCCM is the abbreviation of “standard cc / min”, which is 1 atm (atmospheric pressure 1013 hPa) at 0 ° C. for 1 minute. It is a unit indicating how many cc flowed around.
  • the multilayer film of test number 4-1 mainly has a reflectance of around 50% in the visible region (wavelength 360 nm to 700 nm), and realizes good spectral characteristics as a visible region semi-transmissive film. ing.
  • the multilayer film of Test No. 4-2 has a reflectance of 95% or more mainly in the visible region (wavelength 400 nm to 750 nm), and realizes good spectral characteristics as a visible region reflecting mirror.
  • the multilayer film of test number 4-3 mainly has a reflectance of 85% or more in the ultraviolet region (400 nm or less) and a reflectance of 2% or less in the visible region (wavelength 420 nm to 700 nm).
  • a good spectral characteristic is realized as a UV-IR cut filter having a wavelength selectivity with a reflectance of 95% or more in the near infrared region (800 nm to 1150 nm).
  • the multilayer film of test number 4-4 mainly has a reflectance of 95% or more in the ultraviolet region (400 nm or less) and a reflectance of 5% or less in the visible region (wavelength 400 nm to 750 nm).
  • excellent spectral characteristics are realized as a UV-IR cut filter having a wavelength selectivity with a reflectance of 88% or more in the near infrared region (800 nm to 1950 nm).
  • Tcat film thickness (nm) of the high refractive index layer or functional layer adjacent to the uppermost layer
  • TL film thickness of the top layer (nm)
  • NL Refractive index at the d-line of the material of the low refractive index layer
  • NH Refractive index at the d-line of the material of the high refractive index layer
  • Ns Refractive index at the d-line of the glass substrate.
  • indentation depth range indicates conditional expression (7) or (9)
  • filling ratio range indicates conditional expression (8) or (10).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Surface Treatment Of Glass (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

An optical product is provided which can achieve desired spectral characteristics while exhibiting a catalytic effect. This optical product has a glass substrate on which a multilayer film of three or more layers is formed, and by using a combination of at least one low refractive index layer and at least one high refractive index layer, the multilayer substrate can adjust the spectral characteristics of the optical product. The top layer furthest from the glass substrate is a low refractive index layer, and a high refractive index layer adjacent to the top layer is a functional layer having a metal oxide with a photocatalytic function as the main component, and satisfies the conditional expressions below. 60nm ≤ TL ≤ 350nm (1) 220nm ≤ Tcat ≤ 700nm (2) Here, TL is the film thickness of the top layer, and Tcat is the film thickness of the functional layer.

Description

光学製品Optical products
 本発明は、多層膜を成膜した光学製品に関する。 The present invention relates to an optical product having a multilayer film formed thereon.
 例えば酸化チタンは、高い光触媒効果を有することが知られている。より具体的には、酸化チタンにUV光が照射されると、酸化還元反応が強く促進されると共に、酸化チタンの表面が、水に濡れ易い親水性を呈するため、雨等の水滴で洗浄される、いわゆるセルフクリーニング作用を有することが知られている。 For example, titanium oxide is known to have a high photocatalytic effect. More specifically, when the titanium oxide is irradiated with UV light, the oxidation-reduction reaction is strongly promoted, and the surface of the titanium oxide exhibits hydrophilicity that is easily wetted with water. Therefore, the titanium oxide is washed with water droplets such as rain. It is known to have a so-called self-cleaning action.
 例えば特許文献1には、低屈折率層及び高屈折率層を交互に積層し、最上層が低屈折率層である多層反射防止膜を有し、少なくとも最上層の直下の高屈折率層が光触媒活性を有する酸化チタン又は酸化チタンを含有する複合膜のような金属酸化物の層である物品が開示されている。かかる物品は、例えば眼鏡、カメラ、双眼鏡、顕微鏡等のレンズとして用いることができ、防汚、防曇等の機能を発揮できるとされている。かかる技術を、汚れやすく且つユーザーが清掃しにくい、例えば車載用カメラやガラス建材等の光学製品に適用したいという要請がある。 For example, in Patent Document 1, a low-refractive index layer and a high-refractive index layer are alternately stacked, and a multilayer antireflection film in which the uppermost layer is a low-refractive index layer is provided, and at least a high-refractive index layer immediately below the uppermost layer is provided. An article is disclosed that is a layer of metal oxide such as titanium oxide having photocatalytic activity or a composite film containing titanium oxide. Such articles can be used, for example, as lenses for glasses, cameras, binoculars, microscopes, and the like, and are said to exhibit functions such as antifouling and antifogging. There is a demand for applying such technology to optical products such as in-vehicle cameras and glass building materials that are easily contaminated and difficult for users to clean.
 ところで、特許文献1の技術では、光触媒機能を発揮するTiOの膜厚が200nm以下となっており、汚れやすい環境に置かれた光学製品に対し十分な光触媒効果を実現することができないおそれがある。一方で、TiOの膜厚を増大させれば、ある程度光触媒機能を発揮できるようにはなるが、それにより所望の光学特性を得ることができなくなるという問題もある。 Incidentally, in the technique of Patent Document 1, the thickness of the TiO 2 that exhibits a photocatalytic function has become a 200nm or less, it may not be able to achieve sufficient photocatalytic effect on optical products placed dirt easily environment is there. On the other hand, if the film thickness of TiO 2 is increased, the photocatalytic function can be exhibited to some extent, but there is also a problem that desired optical characteristics cannot be obtained.
特開2000-329904号公報JP 2000-329904 A
 本発明は、光触媒効果を発揮しつつ、所望の分光特性を得ることができる光学製品を提供することを目的とする。 An object of the present invention is to provide an optical product capable of obtaining a desired spectral characteristic while exhibiting a photocatalytic effect.
 上述した目的のうち少なくとも1つを実現するために、本発明の一側面を反映した光学製品は、3層以上の多層膜を成膜したガラス基材を有する光学製品において、多層膜は、少なくとも1層の低屈折率層と、少なくとも1層の高屈折率層とを組み合わせて用いることで、光学製品の分光特性を調整するようになっており、ガラス基材から最も遠い最上層が低屈折率層であり、最上層に隣接した高屈折率層が光触媒機能を有する金属酸化物を主成分とする機能層であり、以下の条件式を満たす。
 60nm≦TL≦350nm      (1)
 220nm≦Tcat≦700nm   (2)
ここで、
TL:最上層の膜厚
Tcat:機能層の膜厚
In order to achieve at least one of the above-described objects, an optical product reflecting one aspect of the present invention is an optical product having a glass substrate on which a multilayer film of three or more layers is formed. By using a combination of one low refractive index layer and at least one high refractive index layer, the spectral characteristics of the optical product are adjusted, and the uppermost layer farthest from the glass substrate has a low refractive index. The high refractive index layer adjacent to the uppermost layer is a functional layer mainly composed of a metal oxide having a photocatalytic function, and satisfies the following conditional expression.
60 nm ≦ TL ≦ 350 nm (1)
220 nm ≦ Tcat ≦ 700 nm (2)
here,
TL: film thickness of the uppermost layer Tcat: film thickness of the functional layer
図1A及び1Bは、本実施形態にかかる光学製品の断面を模式的に示す図である。1A and 1B are diagrams schematically showing a cross section of an optical product according to the present embodiment. 実施例である供試番号1-1の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test number 1-1 which is an Example. 実施例である供試番号1-2の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of the test number 1-2 which is an Example. 実施例である供試番号1-3の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of the test numbers 1-3 which is an Example. 比較例である供試番号1-4の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test numbers 1-4 which are comparative examples. 比較例である供試番号1-5の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test numbers 1-5 which are comparative examples. 実施例である供試番号2-1の多層膜の分光特性を示す図であるIt is a figure which shows the spectral characteristic of the multilayer film of the test number 2-1 which is an Example 実施例である供試番号2-2の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test number 2-2 which is an Example. 実施例である供試番号2-3の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of the test number 2-3 which is an Example. 実施例である供試番号2-4の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test number 2-4 which is an Example. 実施例である供試番号3-1の多層膜の分光特性を示す図であるIt is a figure which shows the spectral characteristics of the multilayer film of the test number 3-1 which is an Example 実施例である供試番号3-2の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test number 3-2 which is an Example. 実施例である供試番号3-3の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of the test number 3-3 which is an Example. 実施例である供試番号3-4の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test number 3-4 which is an Example. 実施例である供試番号4-1の多層膜の分光特性を示す図であるIt is a figure which shows the spectral characteristics of the multilayer film of the test number 4-1 which is an Example 実施例である供試番号4-2の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test number 4-2 which is an Example. 実施例である供試番号4-3の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test number 4-3 which is an Example. 実施例である供試番号4-4の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test number 4-4 which is an Example.
 以下、本発明の実施形態を、図面を参照して説明する。図1は、本実施形態にかかる光学製品の断面を模式的に示す図である。図1Aに示す光学製品100は、ガラス基材(ガラス基板)GL上に低屈折率層Lと高屈折率層Hとが交互に積層された構造の多層膜MCを有するものである。但し、ガラス基材GLに高屈折率層Hが接していても良い。このような光学製品100は光の透過機能・反射機能を有し、例えば車載用レンズや通信用レンズ、建材として用いることができる。また、図1において、ガラス基材GLと機能層20との間に位置する層を、高屈折率層や低屈折率層の代わりに、中間屈折率層の等価膜として置換しても良い。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a cross section of an optical product according to the present embodiment. An optical product 100 shown in FIG. 1A has a multilayer film MC having a structure in which low refractive index layers L and high refractive index layers H are alternately laminated on a glass substrate (glass substrate) GL. However, the high refractive index layer H may be in contact with the glass substrate GL. Such an optical product 100 has a light transmission function and a reflection function, and can be used as, for example, an in-vehicle lens, a communication lens, or a building material. In FIG. 1, the layer located between the glass substrate GL and the functional layer 20 may be replaced with an equivalent film of an intermediate refractive index layer instead of a high refractive index layer or a low refractive index layer.
 一方、図1Bに示す光学製品100は、ガラス基材GL上に金属膜Mを成膜し、さらにその上に高屈折率層Hと低屈折率層Lとが交互に積層された構造の多層膜MCを有するものである。但し金属膜Mに高屈折率層Hが接していても良い。このような光学製品100は光の反射機能を有し、例えば反射鏡や建材、車載用ミラーとして用いることができる。 On the other hand, the optical product 100 shown in FIG. 1B has a multilayer structure in which a metal film M is formed on a glass substrate GL, and a high refractive index layer H and a low refractive index layer L are alternately stacked thereon. It has a film MC. However, the high refractive index layer H may be in contact with the metal film M. Such an optical product 100 has a light reflecting function, and can be used as, for example, a reflecting mirror, a building material, or an in-vehicle mirror.
 図1A及び1Bにおいて、ガラス基材GLから最も遠い最上層10が低屈折率層Lであり、最上層10に隣接した高屈折率層Hが光触媒機能を有する金属酸化物の機能層20である。比較的強度が高い低屈折率層Lを最上層10とすることで、耐傷性を向上できる。また、機能層20は、最上層10を通じて又は介してUV光で励起した活性酸素を用いて光触媒機能を発揮するため、最上層10にできるだけ近い位置に置くことが好ましい。最上層10に隣接して機能層20を設けることで、例えば光触媒機能を有効に発揮できる。また、機能層20として、最上層10に隣接して100nm以上の膜厚とすることが望ましい。さらに、機能層20として、光触媒効果、光活性効果を持つ金属酸化物を用いることで、表面有機物を除去し最上層10の親水性を維持できるので好ましい。TiOを用いた機能層20は、IAD(イオンアシストデポジション(Ion Assisted Deposition)(以下、IADという))を用いて成膜すると光触媒効果が高まるので好ましい。 1A and 1B, the uppermost layer 10 farthest from the glass substrate GL is a low refractive index layer L, and the high refractive index layer H adjacent to the uppermost layer 10 is a functional layer 20 of a metal oxide having a photocatalytic function. . By using the low refractive index layer L having a relatively high strength as the uppermost layer 10, scratch resistance can be improved. Moreover, since the functional layer 20 exhibits a photocatalytic function using active oxygen excited by UV light through or through the uppermost layer 10, the functional layer 20 is preferably placed as close as possible to the uppermost layer 10. By providing the functional layer 20 adjacent to the uppermost layer 10, for example, a photocatalytic function can be effectively exhibited. Further, it is desirable that the functional layer 20 has a thickness of 100 nm or more adjacent to the uppermost layer 10. Furthermore, it is preferable to use a metal oxide having a photocatalytic effect and a photoactive effect as the functional layer 20 because the surface organic substances can be removed and the hydrophilicity of the uppermost layer 10 can be maintained. The functional layer 20 using TiO 2 is preferably formed using IAD (Ion Assisted Deposition (hereinafter referred to as IAD)) because the photocatalytic effect is enhanced.
 「光触媒機能」とは、太陽光や人工光が入射することにより強力な酸化力が生じ、接触してくる有機化合物や細菌等の有害物質を有効に除去することや、親水作用により、水滴が表面にとどまることを防ぎ、また、油性等の汚れが定着せずに水等で洗浄されること等のセルフクリーニング機能をいい、例えば二酸化チタンが持つ機能である。なお、「最上層に隣接する」とは、最上層10と機能層20とが密着している場合の他、最上層10と機能層20との間に、その機能の発現を妨げないとみなせる層(例えば20nm以下の層)を設ける場合も含む。 “Photocatalytic function” refers to the strong oxidizing power generated by the incidence of sunlight or artificial light, which effectively removes toxic substances such as organic compounds and bacteria that come in contact, It refers to a self-cleaning function such as preventing the oil from staying on the surface and washing with water or the like without fixing oily stains, such as titanium dioxide. Note that “adjacent to the uppermost layer” means that the function is not hindered between the uppermost layer 10 and the functional layer 20 in addition to the case where the uppermost layer 10 and the functional layer 20 are in close contact with each other. This includes the case where a layer (for example, a layer of 20 nm or less) is provided.
 さらに、本実施形態の光学製品100は以下の条件式を満たす。
 60nm≦TL≦350nm      (1)
 220nm≦Tcat≦700nm   (2)
ここで、
TL:最上層10の膜厚
Tcat:最上層10に隣接した高屈折率層H又は機能層20の膜厚
Furthermore, the optical product 100 of the present embodiment satisfies the following conditional expression.
60 nm ≦ TL ≦ 350 nm (1)
220 nm ≦ Tcat ≦ 700 nm (2)
here,
TL: film thickness of uppermost layer 10 Tcat: film thickness of high refractive index layer H or functional layer 20 adjacent to uppermost layer 10
 (1)式の値が上限以下であると、最上層10を通じてUV光で励起した活性酸素をやり取りすることにより光触媒効果を発揮できる。一方、(1)式の値が下限以上であると、強固な最上膜を形成できるから十分な耐傷性を確保できる。なお、好ましくは、以下の式を満たすことである。
 60nm≦TL≦250nm      (1')
When the value of the formula (1) is not more than the upper limit, the photocatalytic effect can be exhibited by exchanging active oxygen excited by UV light through the uppermost layer 10. On the other hand, when the value of the formula (1) is equal to or higher than the lower limit, a strong uppermost film can be formed, so that sufficient scratch resistance can be secured. In addition, Preferably, it is satisfy | filling the following formula | equation.
60 nm ≦ TL ≦ 250 nm (1 ′)
 (2)式の値が下限以上であると、機能層20の膜厚を確保できるから、十分な光触媒効果を期待できる。一方、機能層20の厚さが増大すればするほど光触媒効果を期待できるが、その代わり多層膜に要求される所望の分光特性を得にくくなるので、(2)式の値は上限以下とすることが望ましい。なお、好ましくは、以下の式を満たすことである。
 220nm≦Tcat≦600nm      (2')
さらに好ましくは、以下の式を満たすことである。
 250nm≦Tcat≦600nm   (2'')
Since the film thickness of the functional layer 20 can be ensured that the value of the formula (2) is equal to or greater than the lower limit, a sufficient photocatalytic effect can be expected. On the other hand, as the thickness of the functional layer 20 increases, the photocatalytic effect can be expected. However, since it becomes difficult to obtain desired spectral characteristics required for the multilayer film, the value of the expression (2) is set to the upper limit or less. It is desirable. In addition, Preferably, it is satisfy | filling the following formula | equation.
220 nm ≦ Tcat ≦ 600 nm (2 ′)
More preferably, it is satisfy | filling the following formula | equation.
250 nm ≦ Tcat ≦ 600 nm (2 ″)
 最上層10に隣接した高屈折率層H又は機能層20が、Tiを主成分とする酸化物(例えばTiO)から形成されていると好ましい。TiO等のTi酸化物は光触媒効果が非常に高いからである。 The high refractive index layer H or the functional layer 20 adjacent to the uppermost layer 10 is preferably formed from an oxide (for example, TiO 2 ) containing Ti as a main component. This is because Ti oxides such as TiO 2 have a very high photocatalytic effect.
 最上層10がSiOから形成されていると好ましい。夜間や屋外等ではUV光が入射しにくく、Tiを主成分とする酸化物では親水効果が低下するが、かかる場合でも最上層10をSiOから形成することで親水効果を発揮でき、また、耐傷性もより高められる。最上層10にSiOを用いる場合、成膜後に500℃で2時間の加熱処理を施すことで、耐傷性が向上する。 Preferably the top layer 10 is formed of SiO 2. At night or outdoors hardly incident UV light, in the oxide composed mainly of Ti hydrophilic effect is reduced, can exhibit a hydrophilic effect uppermost 10 even such a case by forming a SiO 2, also, Scratch resistance is also improved. When SiO 2 is used for the uppermost layer 10, scratch resistance is improved by performing a heat treatment at 500 ° C. for 2 hours after film formation.
 最上層10がSiOとAlとの混合物(但し、SiOの組成比が90重量%以上)から形成されていると好ましい。これにより夜間や屋外等でも親水効果を発揮でき、また、SiOとAlとの混合物とすることで耐傷性もより高められる。最上層10にSiOとAlとの混合物を用いる場合、成膜後に500℃で2時間の加熱処理を施すことで、耐傷性が向上する。なお、最上層10の一部又は全部を成膜する際にIADを用いると好ましい。これにより耐傷性を向上することができる。 The uppermost layer 10 is preferably formed from a mixture of SiO 2 and Al 2 O 3 (provided that the composition ratio of SiO 2 is 90% by weight or more). Thereby, a hydrophilic effect can be exhibited even at night or outdoors, and scratch resistance is further enhanced by using a mixture of SiO 2 and Al 2 O 3 . When a mixture of SiO 2 and Al 2 O 3 is used for the uppermost layer 10, scratch resistance is improved by performing a heat treatment at 500 ° C. for 2 hours after film formation. Note that it is preferable to use IAD when a part or all of the uppermost layer 10 is formed. Thereby, scratch resistance can be improved.
 多層膜MCの各層は蒸着法で成膜されており、各層のうちいずれかの層はIADで成膜されていると好ましい。IADによる成膜で分光特性のシフトズレを抑制できる。 Each layer of the multilayer film MC is formed by a vapor deposition method, and any one of the layers is preferably formed by IAD. Shift in spectral characteristics can be suppressed by film formation by IAD.
 図1Aに示す多層膜MCは、可視域において反射防止特性を有すると好ましい。ここで「可視域」とは波長420nm~680nmの範囲をいう。また、ここでの「反射防止特性」とは、可視域において光の反射率が2%以下であり、望ましくは1%以下、より望ましくは0.5%以下であることをいう。これにより可視域での反射防止効果を得られ、撮像レンズ等に用いると好適である。 The multilayer film MC shown in FIG. 1A preferably has antireflection characteristics in the visible range. Here, the “visible region” means a wavelength range of 420 nm to 680 nm. In addition, the “antireflection characteristic” here means that the reflectance of light in the visible range is 2% or less, desirably 1% or less, and more desirably 0.5% or less. As a result, an antireflection effect in the visible region can be obtained, and it is preferable to use it for an imaging lens or the like.
 図1A又は1Bに示す多層膜MCは、可視域において半透過又は高反射特性を有すると好ましい。ここでの「半透過特性」とは、可視域における光の透過率が30%以上、70%以下の場合をいい、「高反射特性」とは、可視域において光の反射率が90%以上であることをいう。これにより可視域での半透過ミラーや全反射ミラーが得られる。 The multilayer film MC shown in FIG. 1A or 1B preferably has a transflective or highly reflective characteristic in the visible range. Here, the “semi-transmission characteristic” means that the light transmittance in the visible range is 30% or more and 70% or less, and the “high reflection characteristic” means that the light reflectance in the visible range is 90% or more. It means that. As a result, a transflective mirror or a total reflection mirror in the visible range can be obtained.
 図1A又は1Bに示す多層膜MCは、近赤外域において反射防止特性を有すると好ましい。ここで「近赤外域」とは波長700nm~2000nmの範囲をいう。また、ここでの「反射防止特性」とは、近赤外域において光の反射率が2%以下であり、望ましくは1%以下、より望ましくは0.5%以下であることをいう。これにより近赤外域での反射防止効果が得られる。 The multilayer film MC shown in FIG. 1A or 1B preferably has antireflection properties in the near infrared region. Here, the “near infrared region” refers to a wavelength range of 700 nm to 2000 nm. Further, the “antireflection characteristic” here means that the reflectance of light in the near infrared region is 2% or less, desirably 1% or less, and more desirably 0.5% or less. Thereby, the antireflection effect in the near infrared region can be obtained.
 図1A又は1Bに示す多層膜MCは、近赤外域の光を70%以上反射する特性を有すると好ましい。これにより近赤外域での反射ミラーや、IRカットフィルターが得られる。 The multilayer film MC shown in FIG. 1A or 1B preferably has a characteristic of reflecting near-infrared light by 70% or more. Thereby, a reflection mirror in the near infrared region and an IR cut filter can be obtained.
 図1A又は1Bに示す多層膜MCは、紫外域の光を70%以上反射する特性を有すると好ましい。ここで「紫外域」とは波長350nm~400nmの範囲をいう。なお、紫外域における光の反射率が90%以上であることが望ましく、さらにより望ましくは95%以上であることをいう。これにより紫外域での反射ミラーや、紫外線カットフィルターが得られる。 The multilayer film MC shown in FIG. 1A or 1B preferably has a characteristic of reflecting 70% or more of light in the ultraviolet region. Here, the “ultraviolet region” refers to a wavelength range of 350 nm to 400 nm. Note that the reflectance of light in the ultraviolet region is desirably 90% or more, and more desirably 95% or more. Thereby, a reflection mirror in the ultraviolet region and an ultraviolet cut filter are obtained.
 多層膜MCは、可視域の光、近赤外域の光のいずれか一つ以上を反射する金属膜又は誘電体多層膜を有しても構わない。ここでの「反射特性」とは、可視域又は近赤外域において光の反射率が70%以上であり、望ましくは85%以上であることをいう。 The multilayer film MC may have a metal film or a dielectric multilayer film that reflects at least one of visible light and near-infrared light. Here, “reflection characteristics” means that the reflectance of light in the visible region or near infrared region is 70% or more, and desirably 85% or more.
 金属膜Mを用いる場合、Ag、Au、Cr、Al、Cu、Niのいずれかを主成分とすると好ましい。これらを適宜用いることで、使用可能域や反射率を任意に調整できる。「主成分とする」とは、当該元素の含有量が51重量%以上、好ましくは70重量%以上、より好ましくは90重量%、さらに好ましくは100重量%であることを意味する。 When the metal film M is used, it is preferable that any one of Ag, Au, Cr, Al, Cu, and Ni is a main component. By using these appropriately, the usable area and the reflectance can be arbitrarily adjusted. “Main component” means that the content of the element is 51% by weight or more, preferably 70% by weight or more, more preferably 90% by weight, and still more preferably 100% by weight.
 最上層10は、IAD法で成膜される場合、以下の条件式を満たすことが好ましい。
 12nm≦D(iad)≦30nm   (7)
ここで、
D(iad):IAD法で成膜された最上層10のナノインデテーション押し込み深さ
When the uppermost layer 10 is formed by the IAD method, it is preferable that the following conditional expression is satisfied.
12 nm ≦ D (iad) ≦ 30 nm (7)
here,
D (iad): Nano-indentation depth of the uppermost layer 10 formed by the IAD method
 (7)式の値が上限以下であると、イオンアシストのパワーが弱くなりすぎず、値D(iad)を安定させ、光触媒効果を安定させることができる。一方、(7)式の値が下限以上であると、イオンアシストのパワーを強くしても値D(iad)が小さくなりすぎず、高密度の膜が成膜されず光触媒効果を維持することができる。 When the value of the expression (7) is below the upper limit, the ion assist power does not become too weak, the value D (iad) is stabilized, and the photocatalytic effect can be stabilized. On the other hand, if the value of the expression (7) is equal to or higher than the lower limit, the value D (iad) does not become too small even if the ion assist power is increased, and a high-density film is not formed and the photocatalytic effect is maintained. Can do.
 最上層10は、IAD法で成膜される場合、以下の条件式を満たすことが好ましい。
 0.8nm≦F(iad)≦0.97nm  (8)
ここで、
F(iad):IAD法で成膜された最上層10の充填率
When the uppermost layer 10 is formed by the IAD method, it is preferable that the following conditional expression is satisfied.
0.8 nm ≦ F (iad) ≦ 0.97 nm (8)
here,
F (iad): Filling rate of the uppermost layer 10 formed by the IAD method
 ここで、充填率は、膜の体積のうちの原子の割合を示す。充填率をFとしたときの計算式を以下に示す。後述する値F(noiad)も同様に計算する。
 F=(nf1-nf2+0.33)/0.33
ここで、
nf1:温度25℃湿度50%RHの環境中に、24時間放置した後の最上層膜の屈折率
nf2:真空中(成膜中)の最上層膜の屈折率
Here, the filling rate indicates the proportion of atoms in the volume of the film. The calculation formula when the filling rate is F is shown below. A value F (noiad) described later is calculated in the same manner.
F = (nf1-nf2 + 0.33) /0.33
here,
nf1: Refractive index of the uppermost layer film after standing for 24 hours in an environment at a temperature of 25 ° C. and a humidity of 50% RH nf2: Refractive index of the uppermost layer film in a vacuum (during film formation)
 (8)式の値が下限以上であると、イオンアシストのパワーが弱くなりすぎず、値F(iad)を安定させ、光触媒効果を安定させることができる。一方、(8)式の値が上限以下であると、イオンアシストのパワーを強くしても値F(iad)が大きくなりすぎず、高密度の膜が成膜されず光触媒効果を維持することができる。 When the value of the formula (8) is equal to or higher than the lower limit, the ion assist power does not become too weak, the value F (iad) is stabilized, and the photocatalytic effect can be stabilized. On the other hand, if the value of the formula (8) is below the upper limit, the value F (iad) does not become too large even if the ion assist power is increased, and a high-density film is not formed and the photocatalytic effect is maintained. Can do.
 なお、最上層10が、IAD法を用いずに成膜される場合、以下の条件式を満たすことが好ましい。
 25nm≦D(noiad)≦50nm   (9)
ここで、
D(noiad):IAD法を用いずに成膜された最上層10のナノインデテーション押し込み深さ
In addition, when the uppermost layer 10 is formed without using the IAD method, it is preferable that the following conditional expression is satisfied.
25 nm ≦ D (noad) ≦ 50 nm (9)
here,
D (noiad): nano-indentation depth of the uppermost layer 10 formed without using the IAD method
 (9)式の値が下限以上であると、成膜時の酸素導入量を減らしても、値D(noiad)が小さくなりすぎず、高密度の膜が成膜されず光触媒効果を維持することができる。一方、(9)式の値が上限以下であると、酸素導入量を増やしても、値(noiad)が大きくなりすぎず、光学用途に耐えうる密度の膜を成膜することができる。 If the value of formula (9) is equal to or greater than the lower limit, even if the amount of oxygen introduced during film formation is reduced, the value D (noad) does not become too small and a high-density film is not formed, and the photocatalytic effect is maintained. be able to. On the other hand, if the value of equation (9) is less than or equal to the upper limit, even if the amount of oxygen introduced is increased, the value (noad) does not become too large, and a film having a density that can withstand optical applications can be formed.
 また、最上層10が、IAD法を用いずに成膜される場合、以下の条件式を満たすことが好ましい。
 0.7≦F(noiad)≦0.87   (10)
ここで、
F(noiad):IAD法を用いずに成膜された最上層10の充填率
When the uppermost layer 10 is formed without using the IAD method, it is preferable that the following conditional expression is satisfied.
0.7 ≦ F (noad) ≦ 0.87 (10)
here,
F (noad): Filling rate of the uppermost layer 10 formed without using the IAD method
 (10)式の値が上限以下であると、成膜時の酸素導入量を減らしても、値F(noiad)が大きくなりすぎず、高密度の膜が成膜されず光触媒効果を維持することができる。一方、(10)式の値が下限以上であると、酸素導入量を増やしても、値F(noiad)が小さくなりすぎず、光学用途に耐えうる密度の膜を成膜することができる。 If the value of equation (10) is less than or equal to the upper limit, even if the amount of oxygen introduced during film formation is reduced, the value F (noad) does not become too large, and a high-density film is not formed and the photocatalytic effect is maintained. be able to. On the other hand, when the value of the expression (10) is equal to or higher than the lower limit, even if the amount of oxygen introduced is increased, the value F (noiad) does not become too small, and a film having a density that can withstand optical use can be formed.
 光学製品100が以下の条件式を満たすと好ましい。
 1.3≦NL≦1.5         (3)
 1.9≦NH≦2.45        (4)
ここで、
NL:低屈折率層Lの材料のd線での屈折率
NH:高屈折率層Hの材料のd線での屈折率
It is preferable that the optical product 100 satisfies the following conditional expression.
1.3 ≦ NL ≦ 1.5 (3)
1.9 ≦ NH ≦ 2.45 (4)
here,
NL: Refractive index at the d-line of the material of the low refractive index layer L NH: Refractive index at the d-line of the material of the high refractive index layer H
 (3)、(4)式を満たすことで、所望の光学特性を有する光学製品100を得ることができる。ここで、d線とは波長587.56nmの波長の光をいう。低屈折率層Lの素材として、d線での屈折率が1.48であるSiOや、d線での屈折率が1.385であるMgFを用いることができる。また、(4)式を満たす特定材料として、Ta、Hf、Zr、Nbの酸化物を好適に用いることができる。 By satisfying the expressions (3) and (4), the optical product 100 having desired optical characteristics can be obtained. Here, the d line means light having a wavelength of 587.56 nm. As a material for the low refractive index layer L, SiO 2 having a refractive index of 1.48 at d-line or MgF 2 having a refractive index of 1.385 at d-line can be used. Further, Ta, Hf, Zr, and Nb oxides can be suitably used as the specific material that satisfies the formula (4).
 ガラス基材GLが光学パワーを有する場合、以下の条件式を満たすことが好ましい。
 1.7≦Ns≦2.2         (5)
ここで、
Ns:ガラス基材GLのd線での屈折率
When the glass substrate GL has optical power, it is preferable to satisfy the following conditional expression.
1.7 ≦ Ns ≦ 2.2 (5)
here,
Ns: Refractive index at d line of glass substrate GL
 光学設計上、ガラス基材GLのd線での屈折率として(5)式を満たすことで、コンパクトな構成とした上で光学製品100の光学性能を高められる。(5)式を満たすガラス基材GLに本発明の多層膜を成膜することで、特に外界に対して露出するレンズ等に用いることができ、優れた耐環境性能と光学性能とを両立することができる。 The optical performance of the optical product 100 can be enhanced with a compact configuration by satisfying the formula (5) as the refractive index at the d-line of the glass substrate GL in terms of optical design. By forming the multilayer film of the present invention on the glass substrate GL satisfying the formula (5), it can be used particularly for lenses exposed to the outside world, and achieves both excellent environmental resistance and optical performance. be able to.
 一方、ガラス基材GLが光学パワーを有さない場合、以下の条件式を満たすことが好ましい。
 1.45≦Ns≦1.65       (6)
ここで、
Ns:ガラス基材GLのd線での屈折率
On the other hand, when the glass substrate GL does not have optical power, it is preferable to satisfy the following conditional expression.
1.45 ≦ Ns ≦ 1.65 (6)
here,
Ns: Refractive index at d line of glass substrate GL
 窓ガラス等の建材として光学製品100を適用する場合、比較的安価でありながら高い強度を有する屈折率1.52程度のガラス基材GLを用いることが望ましいからである。 This is because, when the optical product 100 is applied as a building material such as a window glass, it is desirable to use a glass substrate GL having a refractive index of about 1.52, which is relatively inexpensive but has high strength.
 本実施形態によれば、多層膜最上層SiOの膜厚、密度、成膜処方及び最上層10に隣接した機能層20のTiO膜厚を最適化し光触媒効果の最大化を図り、合わせて分光特性調整層を設けることにより可視域、近赤外域に至る波長帯における任意の分光特性を持ち合わせた光触媒光学多層膜を提供することができる。 According to this embodiment, the film thickness, density, film formation recipe of the multilayer film uppermost layer SiO 2 and the TiO 2 film thickness of the functional layer 20 adjacent to the uppermost layer 10 are optimized to maximize the photocatalytic effect. By providing the spectral characteristic adjusting layer, it is possible to provide a photocatalytic optical multilayer film having an arbitrary spectral characteristic in a wavelength band ranging from the visible region to the near infrared region.
 上記多層膜を有する光学製品100は、光触媒効果を発揮しつつ、所望の分光特性を得ることができ、車載用レンズや通信用レンズ、或いは建材に好適に用いられる。 The optical product 100 having the multilayer film can obtain a desired spectral characteristic while exhibiting a photocatalytic effect, and is suitably used for an in-vehicle lens, a communication lens, or a building material.
(実施例)
 以下、上述した実施形態に好適な実施例を、比較例と比較して評価する。以下の実施例、比較例の多層膜を形成する上で、株式会社シンクロン製の成膜装置BES-1300を用い、IADのイオン源としてNIS-175を用いた。
(Example)
Hereinafter, an example suitable for the above-described embodiment will be evaluated in comparison with a comparative example. In forming the multilayer films of the following examples and comparative examples, a film deposition apparatus BES-1300 manufactured by SYNCHRON Co., Ltd. was used, and NIS-175 was used as an ion source for IAD.
(機能層の膜厚に関する評価)
 本発明者らは、光学パワーを持つガラス基材(屈折率1.804)上に、機能層の膜厚(d(nm))を変化させつつ蒸着法にて9層の多層膜を形成して試験に供した。より具体的には、表1に示すように、ガラス基材TAF3(HOYA株式会社製:屈折率1.804)上に、SiOを用いた低屈折率層、OA600(キヤノンオプトロン株式会社製の素材)を用いた高屈折率層、TiOを用いた機能層を表1に示す順序で積層して成膜した。最上層としてはSiOを用いた。各層の成膜処方及び膜構成(ガラス基材(ガラス基板)に接する層を1層目とする、以下同じ)を表1に示す。なお、表1において、「Layer」は層の番号を示し、「Air」は層の材料を示し、「d」は層の厚さを示す(以下の表についても同様)。
(Evaluation of functional layer thickness)
The inventors of the present invention formed a nine-layer multilayer film by vapor deposition on a glass substrate having an optical power (refractive index of 1.804) while changing the film thickness (d (nm)) of the functional layer. And used for the test. More specifically, as shown in Table 1, on a glass substrate TAF3 (manufactured by HOYA Co., Ltd .: refractive index 1.804), a low refractive index layer using SiO 2 , OA600 (manufactured by Canon Optron Co., Ltd.). A high refractive index layer using a material and a functional layer using TiO 2 were stacked in the order shown in Table 1 to form a film. As the uppermost layer, SiO 2 was used. Table 1 shows the film formation recipe and film configuration of each layer (the first layer is the layer in contact with the glass substrate (glass substrate), the same applies hereinafter). In Table 1, “Layer” indicates a layer number, “Air” indicates a layer material, and “d” indicates a layer thickness (the same applies to the following tables).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表中のOA600は、Ta、TiO、Tiの混合物であり、その具体的な組成は表2に示す通り、酸化タンタルを主成分とする。 OA600 in the table is a mixture of Ta 2 O 5 , TiO and Ti 2 O 5 , and the specific composition thereof is mainly composed of tantalum oxide as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び後述する表中の屈折率n(λ)は、以下の式で求めた。なお、本明細書中、屈折率はd線(波長587.56nm)で測定するものとする。
 n(λ)=A+A/(λ-A
ここで、λはd線の波長であり、実施例及び比較例で用いる素材のA、A、Aは、それぞれ以下の値である。
TAF3:A=1.768、A=14.724(nm)、A=181.535(nm)
B270(白板):A0=1.504、A1=6.912(nm)、A2=193.866(nm)
M-BACD12:A0=1.561、A1=9.387(nm)、A2=160.63(nm)
OA600:A=2.014、A=31.680(nm)、A=233.891(nm)
SiO:A=1.460、A=0(nm)、A=0(nm)
H4:A=2.100、A=0(nm)、A=0(nm)
TiO(機能層):A=2.013、A=36.149(nm)、A=284.651(nm)
TiO:(高屈折率層1)A=2.200、A=71.220(nm)、A=234.000(nm)
TiO:(高屈折率層2)A=2.230、A=71.220(nm)、A=234.000(nm)
The refractive index n (λ) in Table 1 and the table described later was obtained by the following formula. In this specification, the refractive index is measured by d-line (wavelength: 587.56 nm).
n (λ) = A 0 + A 1 / (λ−A 2 )
Here, λ is the wavelength of the d-line, and A 0 , A 1 , and A 2 of the materials used in the examples and comparative examples are the following values, respectively.
TAF3: A 0 = 1.768, A 1 = 14.724 (nm), A 2 = 181.535 (nm)
B270 (white plate): A0 = 1.504, A1 = 6.912 (nm), A2 = 193.866 (nm)
M-BACD12: A0 = 1.561, A1 = 9.387 (nm), A2 = 1600.63 (nm)
OA600: A 0 = 2.014, A 1 = 31.680 (nm), A 2 = 233.891 (nm)
SiO 2 : A 0 = 1.460, A 1 = 0 (nm), A 2 = 0 (nm)
H4: A 0 = 2.100, A 1 = 0 (nm), A 2 = 0 (nm)
TiO 2 (functional layer): A 0 = 2.013, A 1 = 36.149 (nm), A 2 = 284.651 (nm)
TiO 2 :( high refractive index layer 1) A 0 = 2.200, A 1 = 71.220 (nm), A 2 = 234.000 (nm)
TiO 2 :( high refractive index layer 2) A 0 = 2.230, A 1 = 71.220 (nm), A 2 = 234.000 (nm)
 成膜処方は表1に示す通りであるが、各層の成膜に関して、成膜速度RATE(Å/SEC)、酸素ガスの導入の有無及び導入する場合にはその導入量を変更して、3つの実施例(供試番号1-1~1-3)と、2つの比較例(供試番号1-4、1-5)とを作製し、以下の試験に供した。また、最上層の膜厚TLは85nm前後に固定した。成膜に際してIADは用いなかった。それぞれ加熱温度は340℃、開始真空度は3.00E-03Pa(3.00×10-3Pa)とした。図2~6は、供試番号1-1~1-5の多層膜の分光特性を示す図である。図中において、縦軸に反射率(単位:%)をとり、横軸に波長(単位:nm)をとって示している(以降の図も同様)。 The film formation prescription is as shown in Table 1, but regarding the film formation of each layer, the film formation rate RATE (Å / SEC), the presence / absence of oxygen gas introduction, and the introduction amount are changed by changing the introduction amount. Two examples (test numbers 1-1 to 1-3) and two comparative examples (test numbers 1-4 and 1-5) were prepared and used for the following tests. Further, the film thickness TL of the uppermost layer was fixed at around 85 nm. IAD was not used for film formation. The heating temperature was 340 ° C., and the starting vacuum was 3.00E-03 Pa (3.00 × 10 −3 Pa). 2 to 6 are diagrams showing the spectral characteristics of the multilayer films of test numbers 1-1 to 1-5. In the figure, the vertical axis represents reflectance (unit:%) and the horizontal axis represents wavelength (unit: nm) (the same applies to the following figures).
 評価項目として、「光触媒効果測定」は、供試品にYAZAWA社のブラックライト(型番BL20)を供試品から距離30mm離してUV光を5分間照射し、その後、inkintelligent社の「visualiser Pen」を用いて色変化を段階的に評価した。ここで、色変化度が極小のものは光触媒効果がなし(評価×)、色変化度が大のものは光触媒効果がある(評価○)とした(表8参照)。 As an evaluation item, “photocatalytic effect measurement” is performed by irradiating a test sample with a black light (model number BL20) manufactured by YAZAWA at a distance of 30 mm from the test sample and irradiating with UV light for 5 minutes. Was used to evaluate the color change step by step. Here, a sample having a minimal color change has no photocatalytic effect (evaluation x), and a sample having a large color change has a photocatalytic effect (evaluation o) (see Table 8).
 また、評価項目として、「ナノインデンテーション押し込み深さ」は、ガラス板に単層膜を200nmの厚さで成膜し、ナノインデンテーション測定装置として、格式会社エリオニクス製の極小押し込み固さ試験機ENT-2100に、稜間隔115°三角錐ダイヤモンド圧子を取り付け、これを膜に押し付けて測定を行った。測定は、圧子が0.2mgf/secの荷重速度で負荷を与え、最大荷重0.98mNを1秒間保持した後、同様の荷重速度で除荷を行い、一連の動作から得られる圧子押し込み深さと荷重曲線とから、最大荷重に到達したときの押し込み深さを求めた。 Moreover, as an evaluation item, “nanoindentation indentation depth” is a single layer film formed on a glass plate with a thickness of 200 nm, and as a nanoindentation measuring device, a miniature indentation hardness tester manufactured by Elionix A ridge interval 115 ° triangular pyramid diamond indenter was attached to ENT-2100, and this was pressed against the membrane for measurement. In the measurement, the indenter gives a load at a load speed of 0.2 mgf / sec, holds the maximum load of 0.98 mN for 1 second, then unloads at the same load speed, and determines the indenter indentation depth obtained from a series of operations. The indentation depth when the maximum load was reached was obtained from the load curve.
(評価結果の考察)
 供試番号1-1~1-3の多層膜については、機能膜の膜厚Tcatが300nm~582nmであるところ、光触媒効果測定の評価が○となった(後述する表8参照)。また、各多層膜は、図2~4に示すように主として可視域で反射率が1.5%以下(許容値を2%とする)と、可視域反射防止膜として良好な分光特性を実現している。
(Consideration of evaluation results)
For the multilayer films of test numbers 1-1 to 1-3, the evaluation of the photocatalytic effect measurement was ○ when the film thickness Tcat of the functional film was 300 nm to 582 nm (see Table 8 described later). In addition, as shown in FIGS. 2 to 4, each multilayer film has a reflectance of 1.5% or less mainly in the visible region (with an allowable value of 2%), realizing good spectral characteristics as a visible region antireflection film. is doing.
 これに対し、供試番号1-4の多層膜については、図5に示すように主として可視域で反射率が1%以下と良好な分光特性を実現しているが、機能膜の膜厚Tcatが85nmであるところ、光触媒効果測定の評価が×であった。これは、機能膜の膜厚が薄すぎて光触媒機能を十分発揮できなかったことによるものといえる。 On the other hand, the multilayer film with the test numbers 1 to 4 achieves a good spectral characteristic with a reflectance of 1% or less mainly in the visible region as shown in FIG. 5, but the film thickness Tcat of the functional film. Was 85 nm, evaluation of photocatalytic effect measurement was x. This can be attributed to the fact that the film thickness of the functional film was too thin to sufficiently exhibit the photocatalytic function.
 一方、供試番号1-5の多層膜については、機能膜の膜厚Tcatが814nmであるところ、光触媒効果測定の評価が○であったが、図6に示すように可視域で反射率が許容値2%を超えてしまい、十分な反射防止効果が得られていないことがわかる。すなわち、機能膜の膜厚Tcatが厚すぎると、分光特性が悪化することが分かる。 On the other hand, for the multilayer film of test number 1-5, when the film thickness Tcat of the functional film was 814 nm, the evaluation of the photocatalytic effect measurement was ○, but the reflectance was visible in the visible region as shown in FIG. It can be seen that the allowable value exceeds 2% and a sufficient antireflection effect is not obtained. That is, it can be seen that the spectral characteristics deteriorate when the thickness Tcat of the functional film is too thick.
 以上の結果より、トレードオフの関係となりがちな光触媒効果と分光特性とをバランス良く確保するには、機能膜の膜厚を少なくとも220nm以上、700nm以下とすることが好ましいといえる。 From the above results, it can be said that the film thickness of the functional film is preferably at least 220 nm or more and 700 nm or less in order to ensure a good balance between the photocatalytic effect that tends to be a trade-off relationship and the spectral characteristics.
(2) 本発明者らは、光学パワーを持つガラス基材上に、分光特性を変化させつつ蒸着法にて15層又は7層の多層膜を形成して試験に供した。より具体的には、表3に示すように、ガラス基材TAF3(HOYA株式会社製:屈折率1.804)、又はM-BACD12(HOYA株式会社製:屈折率1.580)上に、SiOを用いた低屈折率層、OA600(キヤノンオプトロン株式会社製の素材)を用いた高屈折率層、TiOを用いた機能層を表3に示す順序で積層して成膜した。最上層としてはSiOを用いた。各層の成膜処方及び膜構成を表3に示す。 (2) The present inventors formed a 15-layer or 7-layer multilayer film on a glass substrate having optical power by a vapor deposition method while changing the spectral characteristics, and used for the test. More specifically, as shown in Table 3, on a glass substrate TAF3 (manufactured by HOYA: refractive index 1.804) or M-BACD12 (manufactured by HOYA: refractive index 1.580), SiO 2 A low refractive index layer using 2 , a high refractive index layer using OA600 (material manufactured by Canon Optron Co., Ltd.), and a functional layer using TiO 2 were laminated in the order shown in Table 3. As the uppermost layer, SiO 2 was used. Table 3 shows the film formation recipe and film configuration of each layer.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 成膜処方は表3に示す通りであるが、各層の成膜に関して、成膜速度RATE(Å/SEC)、酸素ガスの導入量を変更して、4つの実施例(供試番号2-1~2-4)を作製し、光触媒効果と分光特性とをそれぞれ評価した。成膜に際してIADは用いなかった。また、最上層の膜厚TLは97nm~228nmとした。それぞれ加熱温度は340℃、開始真空度は3.00E-03Paとした。図7~10は、供試番号2-1~2-4の多層膜の分光特性を示す図である。 The film formation recipe is as shown in Table 3. Regarding the film formation of each layer, four examples (test numbers 2-1) were prepared by changing the film formation rate RATE (Å / SEC) and the amount of oxygen gas introduced. 2-4) were prepared, and the photocatalytic effect and the spectral characteristics were evaluated. IAD was not used for film formation. Further, the film thickness TL of the uppermost layer was set to 97 nm to 228 nm. The heating temperature was 340 ° C. and the starting vacuum was 3.00E-03 Pa, respectively. 7 to 10 are diagrams showing the spectral characteristics of the multilayer films of test numbers 2-1 to 2-4.
 供試番号2-1~2-4の多層膜については、機能膜の膜厚Tcatが244nm~427nmであるところ、光触媒効果測定の評価が○となった(後述する表8参照)。また、供試番号2-1の多層膜は、図7に示すように主として近赤外域(波長700nm~1050nm)で反射率が1%以下と、近赤外域反射防止膜として良好な分光特性を実現している。供試番号2-2の多層膜は、図8に示すように主として近赤外域(波長1200nm~1800nm)で反射率が1%以下と、近赤外域反射防止膜として良好な分光特性を実現している。供試番号2-3の多層膜は、図9に示すように主として可視域(450nm~850nm)で反射率が2%以下と、可視域反射防止膜として良好な分光特性を実現している。供試番号2-4の多層膜は、図10に示すように主として近赤外域(波長1200nm~1800nm)で反射率が1.5%以下と、近赤外域反射防止膜として良好な分光特性を実現している。 Regarding the multilayer films of test numbers 2-1 to 2-4, when the film thickness Tcat of the functional film was 244 nm to 427 nm, the evaluation of the photocatalytic effect measurement was ○ (see Table 8 described later). In addition, as shown in FIG. 7, the multilayer film of test number 2-1 has a reflectance of 1% or less mainly in the near infrared region (wavelength 700 nm to 1050 nm), and has good spectral characteristics as a near infrared region antireflection film. Realized. As shown in FIG. 8, the multilayer film of test number 2-2 has a reflectance of 1% or less mainly in the near infrared region (wavelength 1200 nm to 1800 nm), and realizes a good spectral characteristic as a near infrared region antireflection film. ing. As shown in FIG. 9, the multilayer film of Test No. 2-3 has a reflectance of 2% or less mainly in the visible region (450 nm to 850 nm) and realizes good spectral characteristics as a visible region antireflection film. As shown in FIG. 10, the multilayer film of Test No. 2-4 has a reflectance of 1.5% or less mainly in the near infrared region (wavelength 1200 nm to 1800 nm), and has good spectral characteristics as a near infrared region antireflection film. Realized.
(3) 本発明者らは、光学パワーを持たないガラス基材上に、分光特性を変化させつつ蒸着法にて8層、10層又は12層の多層膜を形成して試験に供した。より具体的には、表4に示すように、ガラス基材B270(SCHOTT社製:屈折率1.522、白板ともいう)上に、金属膜、SiOを用いた低屈折率層、OA600(キヤノンオプトロン株式会社製の素材)を用いた高屈折率層、屈折率2.032のTiOを用いた機能層を表4に示す順序で積層して成膜した。最上層としてはSiOを用いた。各層の成膜処方及び膜構成を表4に示す。 (3) The present inventors formed a multilayer film of 8, 10, or 12 layers by a vapor deposition method on a glass substrate having no optical power and changing the spectral characteristics, and used for the test. More specifically, as shown in Table 4, on a glass substrate B270 (manufactured by SCHOTT: refractive index 1.522, also referred to as a white plate), a metal film, a low refractive index layer using SiO 2 , OA600 ( A high refractive index layer using a material manufactured by Canon Optron Co., Ltd. and a functional layer using TiO 2 having a refractive index of 2.032 were stacked in the order shown in Table 4 to form a film. As the uppermost layer, SiO 2 was used. Table 4 shows the film formation recipe and film configuration of each layer.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 成膜処方は表4に示す通りであるが、各層の成膜に関して、成膜速度RATE(Å/SEC)、酸素ガスの導入量、金属膜の素材を変更して、4つの実施例(供試番号3-1~3-4)を作製し、光触媒効果と分光特性とをそれぞれ評価した。供試番号3-1の金属膜はAlであり、供試番号3-2の金属膜はCrであり、供試番号3-3の金属膜はCuであり、供試番号3-4の金属膜はNiとした。成膜に際してIADは用いなかった。また、最上層の膜厚TLは77nm~89nmとした。それぞれ加熱温度は340℃、開始真空度は3.00E-03Paとした。図11~14は、供試番号3-1~3-4の多層膜の分光特性を示す図である。 The film formation prescription is as shown in Table 4. Regarding the film formation of each layer, four examples (provided) were prepared by changing the film formation rate RATE (Å / SEC), the amount of oxygen gas introduced, and the material of the metal film. Test numbers 3-1 to 3-4) were prepared, and the photocatalytic effect and the spectral characteristics were evaluated, respectively. The metal film of test number 3-1 is Al, the metal film of test number 3-2 is Cr, the metal film of test number 3-3 is Cu, and the metal of test number 3-4 The film was Ni. IAD was not used for film formation. The film thickness TL of the uppermost layer was 77 nm to 89 nm. The heating temperature was 340 ° C. and the starting vacuum was 3.00E-03 Pa, respectively. 11 to 14 are diagrams showing the spectral characteristics of the multilayer films of test numbers 3-1 to 3-4.
 供試番号3-1~3-4の多層膜については、機能膜の膜厚Tcatが300nm~351nmであるところ、光触媒効果測定の評価が○となった(後述する表8参照)。また、供試番号3-1の多層膜は、図11に示すように主として可視域から近赤外域(波長400nm~1950nm)で反射率が75%以上と、広帯域反射ミラーとして良好な分光特性を実現している。供試番号3-2の多層膜は、図12に示すように主として可視域(波長400nm~650nm)で反射率が70%以上と、可視域反射ミラーとして良好な分光特性を実現している。供試番号3-3の多層膜は、図13に示すように主として可視域から近赤外域で反射率が85%以上と、広帯域反射ミラーとして良好な分光特性を実現している。供試番号3-4の多層膜は、図14に示すように主として可視域(波長400nm~650nm)で反射率が75%以上と、可視域反射ミラーとして良好な分光特性を実現している。 Regarding the multilayer films of test numbers 3-1 to 3-4, when the film thickness Tcat of the functional film was 300 nm to 351 nm, the photocatalytic effect measurement was evaluated as “good” (see Table 8 described later). Further, as shown in FIG. 11, the multilayer film of test number 3-1 has a reflectance of 75% or more mainly from the visible region to the near infrared region (wavelength of 400 nm to 1950 nm), and has good spectral characteristics as a broadband reflection mirror. Realized. As shown in FIG. 12, the multilayer film of test number 3-2 mainly has a reflectance of 70% or more in the visible region (wavelength 400 nm to 650 nm), and realizes good spectral characteristics as a visible region reflecting mirror. As shown in FIG. 13, the multilayer film of test number 3-3 has a reflectance of 85% or more mainly from the visible region to the near-infrared region, and realizes good spectral characteristics as a broadband reflecting mirror. As shown in FIG. 14, the multilayer film of the test number 3-4 mainly has a reflectance of 75% or more in the visible region (wavelength 400 nm to 650 nm), and realizes good spectral characteristics as a visible region reflecting mirror.
(4) 本発明者らは、光学パワーを持たないガラス基材上に、分光特性を変化させつつ蒸着法にて26層~199層の多層膜を形成して試験に供した。より具体的には、表5~7に示すように、ガラス基材B270(白板)(SCHOTT社製:屈折率1.522)上に、SiOを用いた低屈折率層、H4(MERCK社製:チタン酸ランタン(LaTiOx)、屈折率2.401のTiO、屈折率2.431のTiO、又はOA600(キヤノンオプトロン株式会社製の素材)を用いた高屈折率層、屈折率2.132のTiOを用いた機能層を表5に示す順序で積層して成膜した。最上層としてはSiOを用いた。各層の成膜処方及び膜構成を表5~7に示す。 (4) The present inventors formed a multilayer film of 26 to 199 layers on a glass substrate having no optical power by a vapor deposition method while changing the spectral characteristics, and used for the test. More specifically, as shown in Tables 5 to 7, on a glass substrate B270 (white plate) (manufactured by SCHOTT: refractive index 1.522), a low refractive index layer using SiO 2 , H4 (MERCK) Ltd.: lanthanum titanate (LaTiOx), TiO 2 having a refractive index 2.401, TiO 2 having a refractive index 2.431, or OA600 high refractive index layer using the (Canon Optron Ltd. material), the refractive index 2. 132 functional layers using TiO 2 were stacked in the order shown in Table 5. SiO 2 was used as the uppermost layer, and the film formation recipe and film configuration of each layer are shown in Tables 5-7.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 成膜処方は表5~7に示す通りであるが、各層の成膜に関して、成膜速度RATE(Å/SEC)、酸素ガスの導入量、IADを用いる場合にはその処方を設定して、4つの実施例(供試番号4-1~4-4)を作製し、光触媒効果と分光特性とをそれぞれ評価した。また、最上層の膜厚TLは86nm~250nmとした。それぞれ加熱温度は340℃、開始真空度は3.00E-03Paとした。図15~18は、供試番号4-1~4-4の多層膜の分光特性を示す図である。なお、供試番号4-2では、光を反射させる膜として誘電体多層膜を用いている。 The film formation prescriptions are as shown in Tables 5 to 7. However, regarding the film formation of each layer, the film formation rate RATE (Å / SEC), the amount of oxygen gas introduced, and when using IAD, the prescription is set, Four examples (test numbers 4-1 to 4-4) were prepared, and the photocatalytic effect and the spectral characteristics were evaluated. Further, the film thickness TL of the uppermost layer was set to 86 nm to 250 nm. The heating temperature was 340 ° C. and the starting vacuum was 3.00E-03 Pa, respectively. 15 to 18 are diagrams showing the spectral characteristics of the multilayer films of test numbers 4-1 to 4-4. In Test No. 4-2, a dielectric multilayer film is used as a film that reflects light.
 なお、「APC」は、Auto Pressure Controlの略で分圧を調整したことを意味し、「SCCM」は、standard cc/minの略であり、1気圧(大気圧1013hPa)、0℃で1分間あたりに何cc流れたかを示す単位である。 “APC” means that the partial pressure is adjusted by the abbreviation of “Auto Pressure Control”, and “SCCM” is the abbreviation of “standard cc / min”, which is 1 atm (atmospheric pressure 1013 hPa) at 0 ° C. for 1 minute. It is a unit indicating how many cc flowed around.
 供試番号4-1~4-4の多層膜については、機能膜の膜厚Tcatが392nm~472nmであるところ、光触媒効果測定の評価が○となった(後述する表8参照)。また、供試番号4-1の多層膜は、図15に示すように主として可視域(波長360nm~700nm)で反射率が50%前後と、可視域半透過膜として良好な分光特性を実現している。供試番号4-2の多層膜は、図16に示すように主として可視域(波長400nm~750nm)で反射率が95%以上と、可視域反射ミラーとして良好な分光特性を実現している。供試番号4-3の多層膜は、図17に示すように主として、紫外域(400nm以下)で反射率が85%以上で、可視域(波長420nm~700nm)で反射率が2%以下で、且つ近赤外領域(800nm~1150nm)で反射率が95%以上の波長選択性を有するUV-IRカットフィルターとして良好な分光特性を実現している。供試番号4-4の多層膜は、図18に示すように主として、紫外域(400nm以下)で反射率が95%以上で、可視域(波長400nm~750nm)で反射率が5%以下で、且つ近赤外領域(800nm~1950nm)で反射率が88%以上の波長選択性を有するUV-IRカットフィルターとして良好な分光特性を実現している。 Regarding the multilayer films of the test numbers 4-1 to 4-4, when the film thickness Tcat of the functional film was 392 nm to 472 nm, the photocatalytic effect measurement was evaluated as “good” (see Table 8 described later). Further, as shown in FIG. 15, the multilayer film of test number 4-1 mainly has a reflectance of around 50% in the visible region (wavelength 360 nm to 700 nm), and realizes good spectral characteristics as a visible region semi-transmissive film. ing. As shown in FIG. 16, the multilayer film of Test No. 4-2 has a reflectance of 95% or more mainly in the visible region (wavelength 400 nm to 750 nm), and realizes good spectral characteristics as a visible region reflecting mirror. As shown in FIG. 17, the multilayer film of test number 4-3 mainly has a reflectance of 85% or more in the ultraviolet region (400 nm or less) and a reflectance of 2% or less in the visible region (wavelength 420 nm to 700 nm). In addition, a good spectral characteristic is realized as a UV-IR cut filter having a wavelength selectivity with a reflectance of 95% or more in the near infrared region (800 nm to 1150 nm). As shown in FIG. 18, the multilayer film of test number 4-4 mainly has a reflectance of 95% or more in the ultraviolet region (400 nm or less) and a reflectance of 5% or less in the visible region (wavelength 400 nm to 750 nm). In addition, excellent spectral characteristics are realized as a UV-IR cut filter having a wavelength selectivity with a reflectance of 88% or more in the near infrared region (800 nm to 1950 nm).
(5)まとめ
 以上の検討結果を、実施例と比較例とに分けて表8にまとめて示す。ここで、
Tcat:最上層に隣接した高屈折率層又は機能層の膜厚(nm)
TL:最上層の膜厚(nm)
NL:低屈折率層の材料のd線での屈折率
NH:高屈折率層の材料のd線での屈折率
Ns:ガラス基材のd線での屈折率
である。
(5) Summary The results of the above studies are shown in Table 8 separately for Examples and Comparative Examples. here,
Tcat: film thickness (nm) of the high refractive index layer or functional layer adjacent to the uppermost layer
TL: film thickness of the top layer (nm)
NL: Refractive index at the d-line of the material of the low refractive index layer NH: Refractive index at the d-line of the material of the high refractive index layer Ns: Refractive index at the d-line of the glass substrate.
 なお、表8において、「押し込み深さ範囲」は条件式(7)又は(9)を示し、「充填率範囲」は条件式(8)又は(10)を示す。 In Table 8, “indentation depth range” indicates conditional expression (7) or (9), and “filling ratio range” indicates conditional expression (8) or (10).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Claims (19)

  1.  3層以上の多層膜を成膜したガラス基材を有する光学製品において、
     前記多層膜は、少なくとも1層の低屈折率層と、少なくとも1層の高屈折率層とを組み合わせて用いることで、前記光学製品の分光特性を調整するようになっており、
     前記ガラス基材から最も遠い最上層が前記低屈折率層であり、
     前記最上層に隣接した前記高屈折率層が光触媒機能を有する金属酸化物を主成分とする機能層であり、
     以下の条件式を満たす光学製品。
     60nm≦TL≦350nm      (1)
     220nm≦Tcat≦700nm   (2)
    ここで、
    TL:前記最上層の膜厚
    Tcat:前記機能層の膜厚
    In an optical product having a glass substrate on which a multilayer film of three or more layers is formed,
    The multilayer film is configured to adjust the spectral characteristics of the optical product by using a combination of at least one low refractive index layer and at least one high refractive index layer.
    The uppermost layer farthest from the glass substrate is the low refractive index layer,
    The high refractive index layer adjacent to the uppermost layer is a functional layer mainly composed of a metal oxide having a photocatalytic function,
    Optical product that satisfies the following conditional expression.
    60 nm ≦ TL ≦ 350 nm (1)
    220 nm ≦ Tcat ≦ 700 nm (2)
    here,
    TL: film thickness of the uppermost layer Tcat: film thickness of the functional layer
  2.  前記機能層が、Tiを主成分とする酸化物から形成されている請求項1に記載の光学製品。 The optical product according to claim 1, wherein the functional layer is formed of an oxide containing Ti as a main component.
  3.  前記最上層がSiOから形成されている請求項1又は2に記載の光学製品。 The optical product according to claim 1, wherein the uppermost layer is made of SiO 2 .
  4.  前記最上層がSiOとAlとの混合物から形成されている請求項1又は2に記載の光学製品。 The optical product according to claim 1, wherein the uppermost layer is formed of a mixture of SiO 2 and Al 2 O 3 .
  5.  前記多層膜の各層は蒸着法で成膜されており、前記各層のうちいずれかの層はイオンアシストデポジションで成膜されている請求項1~4のいずれかに記載の光学製品。 5. The optical product according to claim 1, wherein each layer of the multilayer film is formed by a vapor deposition method, and any one of the layers is formed by ion-assisted deposition.
  6.  前記最上層は、イオンアシストデポジションで成膜され、以下の条件式を満たす請求項1~5のいずれかに記載の光学製品。
     12nm≦D(iad)≦30nm   (7)
    ここで、
    D(iad):前記イオンアシストデポジションで成膜された前記最上層のナノインデテーション押し込み深さ
    The optical product according to any one of claims 1 to 5, wherein the uppermost layer is formed by ion-assisted deposition and satisfies the following conditional expression.
    12 nm ≦ D (iad) ≦ 30 nm (7)
    here,
    D (iad): Nano-indentation depth of the uppermost layer formed by ion-assisted deposition
  7.  前記最上層は、イオンアシストデポジションで成膜され、以下の条件式を満たす請求項1~6のいずれかに記載の光学製品。
     0.8nm≦F(iad)≦0.97nm  (8)
    ここで、
    F(iad):前記イオンアシストデポジションで成膜された前記最上層の充填率
    The optical product according to any one of claims 1 to 6, wherein the uppermost layer is formed by ion-assisted deposition and satisfies the following conditional expression.
    0.8 nm ≦ F (iad) ≦ 0.97 nm (8)
    here,
    F (iad): Filling rate of the uppermost layer formed by the ion-assisted deposition
  8.  前記最上層は、イオンアシストデポジションを用いずに成膜され、以下の条件式を満たす請求項1~5のいずれかに記載の光学製品。
     25nm≦D(noiad)≦50nm   (9)
    ここで、
    D(noiad):前記イオンアシストデポジションを用いずに成膜された前記最上層のナノインデテーション押し込み深さ
    The optical product according to any one of claims 1 to 5, wherein the uppermost layer is formed without using ion-assisted deposition and satisfies the following conditional expression.
    25 nm ≦ D (noad) ≦ 50 nm (9)
    here,
    D (noad): Nano-indentation depth of the uppermost layer formed without using the ion-assisted deposition
  9.  前記最上層は、イオンアシストデポジションを用いずに成膜され、以下の条件式を満たす請求項1~5及び8のいずれかに記載の光学製品。
     0.7≦F(noiad)≦0.87   (10)
    ここで、
    F(noiad):前記イオンアシストデポジションを用いずに成膜された前記最上層の充填率
    The optical product according to claim 1, wherein the uppermost layer is formed without using ion-assisted deposition and satisfies the following conditional expression.
    0.7 ≦ F (noad) ≦ 0.87 (10)
    here,
    F (noad): Filling rate of the uppermost layer formed without using the ion assist deposition
  10.  前記多層膜は可視域において反射防止特性を有する請求項1~9のいずれかに記載の光学製品。 The optical product according to any one of claims 1 to 9, wherein the multilayer film has antireflection characteristics in a visible range.
  11.  前記多層膜は可視域において半透過又は高反射特性を有する請求項1~9のいずれかに記載の光学製品。 The optical product according to any one of claims 1 to 9, wherein the multilayer film has a semi-transmissive or highly reflective characteristic in a visible range.
  12.  前記多層膜は近赤外域において反射防止特性を有する請求項1~11のいずれかに記載の光学製品。 The optical product according to any one of claims 1 to 11, wherein the multilayer film has an antireflection characteristic in a near infrared region.
  13.  前記多層膜は近赤外域の光を70%以上反射する特性を有する請求項1~11のいずれかに記載の光学製品。 The optical product according to any one of claims 1 to 11, wherein the multilayer film has a characteristic of reflecting near-infrared light by 70% or more.
  14.  前記多層膜は紫外域の光を70%以上反射する特性を有する請求項1~13のいずれかに記載の光学製品。 The optical product according to any one of claims 1 to 13, wherein the multilayer film has a characteristic of reflecting 70% or more of ultraviolet light.
  15.  前記多層膜は、可視域の光及び近赤外域の光のいずれか一つ以上を反射する金属膜を有する請求項1~14のいずれかに記載の光学製品。 The optical product according to any one of claims 1 to 14, wherein the multilayer film has a metal film that reflects at least one of visible light and near-infrared light.
  16.  前記金属膜はAg、Au、Cr、Al、Cu、Niのいずれかを主成分とする請求項15に記載の光学製品。 The optical product according to claim 15, wherein the metal film is mainly composed of Ag, Au, Cr, Al, Cu, or Ni.
  17.  以下の条件式を満たす請求項1~16のいずれかに記載の光学製品。
     1.3≦NL≦1.5         (3)
     1.9≦NH≦2.45        (4)
    ここで、
    NL:前記低屈折率層の材料のd線での屈折率
    NH:前記高屈折率層の材料のd線での屈折率
    The optical product according to any one of claims 1 to 16, which satisfies the following conditional expression.
    1.3 ≦ NL ≦ 1.5 (3)
    1.9 ≦ NH ≦ 2.45 (4)
    here,
    NL: Refractive index at the d-line of the material of the low refractive index layer NH: Refractive index at the d-line of the material of the high refractive index layer
  18.  前記ガラス基材が光学パワーを有し、以下の条件式を満たす請求項1~17のいずれかに記載の光学製品。
     1.7≦Ns≦2.2         (5)
    ここで、
    Ns:前記ガラス基材のd線での屈折率
    The optical product according to any one of claims 1 to 17, wherein the glass substrate has optical power and satisfies the following conditional expression.
    1.7 ≦ Ns ≦ 2.2 (5)
    here,
    Ns: Refractive index at d-line of the glass substrate
  19.  前記ガラス基材が光学パワーを有さず、以下の条件式を満たす請求項1~18のいずれかに記載の光学製品。
     1.45≦Ns≦1.65       (6)
    ここで、
    Ns:前記ガラス基材のd線での屈折率
    The optical product according to any one of claims 1 to 18, wherein the glass substrate does not have optical power and satisfies the following conditional expression.
    1.45 ≦ Ns ≦ 1.65 (6)
    here,
    Ns: Refractive index at d-line of the glass substrate
PCT/JP2017/033841 2016-12-14 2017-09-20 Optical product WO2018110017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016242185A JP2020024237A (en) 2016-12-14 2016-12-14 Optical product
JP2016-242185 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018110017A1 true WO2018110017A1 (en) 2018-06-21

Family

ID=62558373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033841 WO2018110017A1 (en) 2016-12-14 2017-09-20 Optical product

Country Status (2)

Country Link
JP (1) JP2020024237A (en)
WO (1) WO2018110017A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199466A1 (en) * 2020-03-31 2021-10-07 日本電産株式会社 Optical member
TWI828475B (en) * 2022-12-14 2024-01-01 富元精密科技股份有限公司 Anti-reflection coating for blocking infrared radiation and display device including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7331274B2 (en) * 2020-12-28 2023-08-22 富士フイルム株式会社 Light guide and image display device
CN115373054A (en) 2021-05-21 2022-11-22 手持产品公司 Method, apparatus and system for providing optical components with optical coatings

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131513A (en) * 1998-10-28 2000-05-12 Toyota Motor Corp Surface mirror
JP2000326440A (en) * 1999-05-19 2000-11-28 Hoya Corp Object having multilayer optical thin film including photocatalytic function and its manufacture
JP2000329904A (en) * 1999-05-18 2000-11-30 Hoya Corp Article for having antireflection film having photocatalyst function and production therefor
JP2001152418A (en) * 1999-11-30 2001-06-05 Sekisui Jushi Co Ltd Cloudiness preventive reflecting mirror and its manufacturing method
JP2005003614A (en) * 2003-06-13 2005-01-06 National Institute Of Advanced Industrial & Technology Heat mirror and performance evaluation test therefor
JP2006106242A (en) * 2004-10-04 2006-04-20 Seiko Epson Corp Antireflection film and optical article having same
JP2008107425A (en) * 2006-10-23 2008-05-08 Ichikoh Ind Ltd Mirror and hydrophilic composite film having photocatalytic activity
JP2011039218A (en) * 2009-08-10 2011-02-24 Seiko Epson Corp Method for producing optical article
JP2011242697A (en) * 2010-05-20 2011-12-01 Tokai Kogaku Kk Plastic optical product and plastic lens for spectacles
JP2013545145A (en) * 2010-12-10 2013-12-19 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Optical component with antireflective coating with low reflectivity in both ultraviolet and visible regions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131513A (en) * 1998-10-28 2000-05-12 Toyota Motor Corp Surface mirror
JP2000329904A (en) * 1999-05-18 2000-11-30 Hoya Corp Article for having antireflection film having photocatalyst function and production therefor
JP2000326440A (en) * 1999-05-19 2000-11-28 Hoya Corp Object having multilayer optical thin film including photocatalytic function and its manufacture
JP2001152418A (en) * 1999-11-30 2001-06-05 Sekisui Jushi Co Ltd Cloudiness preventive reflecting mirror and its manufacturing method
JP2005003614A (en) * 2003-06-13 2005-01-06 National Institute Of Advanced Industrial & Technology Heat mirror and performance evaluation test therefor
JP2006106242A (en) * 2004-10-04 2006-04-20 Seiko Epson Corp Antireflection film and optical article having same
JP2008107425A (en) * 2006-10-23 2008-05-08 Ichikoh Ind Ltd Mirror and hydrophilic composite film having photocatalytic activity
JP2011039218A (en) * 2009-08-10 2011-02-24 Seiko Epson Corp Method for producing optical article
JP2011242697A (en) * 2010-05-20 2011-12-01 Tokai Kogaku Kk Plastic optical product and plastic lens for spectacles
JP2013545145A (en) * 2010-12-10 2013-12-19 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Optical component with antireflective coating with low reflectivity in both ultraviolet and visible regions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199466A1 (en) * 2020-03-31 2021-10-07 日本電産株式会社 Optical member
TWI828475B (en) * 2022-12-14 2024-01-01 富元精密科技股份有限公司 Anti-reflection coating for blocking infrared radiation and display device including the same

Also Published As

Publication number Publication date
JP2020024237A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP5881096B2 (en) Antireflection film and optical element
JP6451057B2 (en) Visible reflection preventing near-infrared transmission suppressing optical product, spectacle lens and spectacles
US6863397B2 (en) Optical element and eyeglass lens
WO2018110017A1 (en) Optical product
US20190383972A1 (en) Layer system and optical element comprising a layer system
US9069125B2 (en) Optical product and method for manufacturing same
WO2012169393A1 (en) Antireflection film, optical system and optical device
JP4190773B2 (en) Antireflection film, optical lens and optical lens unit
JP6622381B2 (en) Optical film, optical element and optical system
WO2018110018A1 (en) Optical element
JP2010032867A (en) Infrared ray cutoff filter
JP4171362B2 (en) Transparent substrate with antireflection film
JP5976363B2 (en) Optical member
JP2004334012A (en) Antireflection film and optical filter
JP5292318B2 (en) Antireflection film and optical member having the same
US20130258278A1 (en) Lens comprising a polymeric substrate, a hardening layer and a metallic layer
JP2002277606A (en) Antireflection film and optical element
JP7468624B2 (en) Optical Components
JP7491052B2 (en) Near infrared cut filter
JP7405405B2 (en) Anti-reflection film, optical element having same, and method for producing anti-reflection film
JP2016186661A (en) Optical member
US20210278577A1 (en) Optical coating for organic surface treatments
JP7385894B2 (en) Plastic-based ND filter and plastic-based ND filter for eyeglasses
WO2013024531A1 (en) Thin film light-absorbing film
CN117806049A (en) Partial beam splitter, method for manufacturing same, and laminate comprising two or more such partial beam splitters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP