JP2004334012A - Antireflection film and optical filter - Google Patents

Antireflection film and optical filter Download PDF

Info

Publication number
JP2004334012A
JP2004334012A JP2003131688A JP2003131688A JP2004334012A JP 2004334012 A JP2004334012 A JP 2004334012A JP 2003131688 A JP2003131688 A JP 2003131688A JP 2003131688 A JP2003131688 A JP 2003131688A JP 2004334012 A JP2004334012 A JP 2004334012A
Authority
JP
Japan
Prior art keywords
film
refractive index
refractive
thickness
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003131688A
Other languages
Japanese (ja)
Inventor
Nobumasa Nanbu
信政 南部
Tsugio Tsuji
二夫 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003131688A priority Critical patent/JP2004334012A/en
Publication of JP2004334012A publication Critical patent/JP2004334012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an innovative technical means of drastically reducing the film thickness of an antireflection film disposed on the surface of a transparent base material, such as glass or transparent plastic, and the film thickness of a film in an optical color separation filter. <P>SOLUTION: The optical antireflection film deposited on the surface of the transparent base material is constituted by depositing three films consisting of a middle refractive index film, high refractive index film and low refractive index film in this order on the surface of the base material. The high refractive index film is a metallic film of 50 to 500 Å in the physical film thickness (d) consisting of silver, aluminum or tin as material. The middle refractive index film is formed of equivalent multilayered films of the low refractive index film consisting of silicon dioxide as material and the high refractive index film composed of a metallic film consisting of silicon nitride (Si<SB>2</SB>N<SB>3</SB>) or silver, aluminum or tin as material. By changing the film thicknesses of the above films, the film provided with the optimum refractive index can be thereby obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、ガラス、透明プラスチックレンズなどの透明基材表面に設けられる反射防止膜及び光学的色分解フィルターに関するものである。
【0002】
【従来の技術】
レンズや窓ガラスのように、光を透過させる目的で用いる透明基材は、表面での反射を最小にするために、基材表面に反射防止膜が設けられる。またこれらの透明基材を通過する光の波長範囲を制限するために、基材表面に膜構造の紫外線フィルターや赤外線フィルターなどを設けることも広く行われている。これらの膜は、一般に、所望の機能を実現するために多層の膜構造を備えている。
【0003】
従来のこの種の光学的反射防止膜や光学フィルターは、波としての光はその波長λの1/4を基準にエネルギーの強弱を生ずることから、各層の基本膜厚を設計中心波長(λ)の1/4を基本として構成されている。そして位相差エネルギーの干渉で目的の光学特性をえられないときには、基本の膜厚に適宜量(±α)で補正した膜厚さとして、光学膜が当初の狙いの光学分光特性を示すように設計されている。
【0004】
その結果、反射防止膜においては、基材表面に設ける小屈折率膜、中屈折率膜及び高屈折率膜の光学膜厚は、設計中心波長(例えばλ=550nm)のλ/4、λ/2、λ/4が基本の膜厚となる。その結果反射防止膜の光学的なトータル膜厚=1λとなり、物理的な膜厚は各膜の光学的膜厚をそれぞれの屈折率で割算することで得られ、それらの関係の一例を下記に示す。(λ=550nm)
【0005】

Figure 2004334012
上記例の膜材料は、1層目がAl、2層目がTiO(あるいはNb等)、3層目がSiO(又はMgF)である。
【0006】
【発明が解決しようとする課題】
反射防止膜や光学的フィルター膜のような薄膜の成膜には、各種の物理的又は化学的成膜法が用いられるが、これらによる成膜には、膜材料分子が基材上に堆積するときに大きな温度変化を伴い、そのために堆積した薄膜内に大きな熱歪みが残り、従って膜内に大きな内部応力が残留することとなる。この内部応力は、歪みに起因するものであるから、膜厚に略比例した剪断力が膜と基材の間及び膜相互の間に作用することとなる。そのため、膜厚が大きいと、成膜に時間がかかって生産性が低くなるばかりでなく、膜に亀裂や剥離が生じやすくなり、特に基材がプラスチックの場合には、膜の基材の熱変形や吸湿による経年変化のために、膜の亀裂や剥離が顕在化しやすく、膜の耐久性が損なわれる問題がある。
【0007】
この発明は、ガラスや透明プラスチックなどの透明基材表面に設けられる反射防止膜や色分解フィルターの膜厚さを大幅に低減させる画期的な技術手段を提供することを課題としている。
【0008】
【課題を解決するための手段】
上記課題を解決した本願請求項1の発明に係る光学的反射防止膜は、透明基材表面に形成した光学的な反射防止膜であって、前記基材表面に中屈折率膜、高屈折率膜及び低屈折率膜の3層の膜がこの順序で形成されており、前記高屈折率膜は、銀、アルミニウム又はスズを材料とする物理的膜厚(d)が50〜500Åの金属膜であることを特徴とするものである。
【0009】
これらの金属膜の屈折率(n)は、通常、2.0〜2.6で、従来の反射防止膜においては、屈折率に物理的膜厚を乗じた光学的膜厚(nd)が0.5λ(λは光の波長)程度となる。設計基準波長をλ=550nmとすると、d=2115Åとなる。上記本願請求項1の発明によれば、膜厚が従来の1/3〜1/4以下になる。レンズなどの透明基材と膜の間の歪力は膜厚の3乗に比例して大きくなることが知られており、本願の反射防止膜によれば、基材との間の歪力が従来の1/27〜1/64という画期的な値にまで低減できる。
【0010】
本願請求項2の発明は、上記請求項1記載の反射防止膜において、透明基材に接する中屈折率膜として低屈折率膜と高屈折率膜、又は低屈折率膜と項屈折率膜と低屈折率膜の等価多層膜構成を用い、そのトータルの光学的膜厚(nd)を0.16λ>nd>0.08λ(λは設計中心波長)としたことを特徴とするものである。低屈折率膜は、二酸化珪素の薄膜で形成され、高屈折率膜は、窒化珪素(Si)又は銀、アルミニウム若しくはスズを材料とする薄膜である。
【0011】
中屈折率膜の屈折率の範囲は、1.6〜2.0の範囲で、最適値は理論計算で求められ、最適値を採用しないと反射率が最適化できないが、その値は下地の透明基材の屈折率により大きく変わるから、透明基材の種類に応じて個々に求める必要がある。この中屈折率膜を、二酸化珪素を材料とする低屈折率膜と窒化珪素(Si)又は銀、アルミニウム若しくはスズを材料とする金属膜からなる高屈折率膜との等価多層膜で形成すれば、それらの膜厚さの変化により、トータルとしての最適な屈折率の膜を得ることができる。
【0012】
すなわち、請求項1記載の反射防止膜の膜における中屈折率膜を、窒化珪素膜とする構成、窒化珪素と二酸化珪素の等価多層膜とする構成、更に、銀、アルミニウム若しくはスズを材料とする金属膜と窒化珪素膜及び/又は二酸化珪素膜を組み合わせた等価多層膜とする構成を適宜採用することができる。
【0013】
本願請求項3の発明は、中屈折率膜として窒化珪素と二酸化珪素の等価多層膜を採用したものである。また、請求項4の発明は、酸化珪素膜と銀、アルミニウム又はスズを材料とする金属膜とからなる多層膜構成において、金属膜の上にその酸化物化を防止する窒化物を成膜して、金属膜の上に金属窒化膜を形成したものである。
【0014】
これらの膜構成においては、請求項5に記載のように、銀などの金属膜の上に窒化珪素膜などの窒化膜を単層又は数層で300Å以下の光学的膜厚で設けることができ、これにより銀膜などの金属膜の酸化を防止することができる。
【0015】
本願請求項6に係る発明は、光学的色分解フィルターについてのもので、高屈折率膜として銀、アルミニウム又はスズを材料とする膜厚100Å以下の金属膜を用い、低屈折率膜として二酸化珪素膜を用いた光学的色分解フィルターにおいて、金属膜の次に膜厚100Å以下の窒化珪素(Si)の成膜を行い、下層の金属膜の酸化物化を防止したことを特徴とするものである。
【0016】
この発明の反射防止膜及び光学的色分解フィルターなどの光学膜の成膜には、スパッタリング法を用いるのが有効で、スパッタリング成膜におけるカソードターゲットを2種類の材料で形成し、低屈折率を酸化物膜とし、高屈折率を金属膜とした基本膜構成とする。この場合において、金属膜の酸化物化を防止する目的で、金属膜表面を膜厚200Å以下の窒化膜で覆うように、当該金属膜の上に窒化膜をスパッタリング法により成膜する。
【0017】
【発明の実施の形態】
本発明の反射防止膜の構成関係を以下に示す。
Figure 2004334012
成膜材料は、1層目がSi、2層目がSiO、3層目がAg、4層目がSiOである。
【0018】
Figure 2004334012
成膜材料は、1層目がSi、2層目がAg、3層目がSiOである。
【0019】
Figure 2004334012
成膜材料は、1層目がSi、2層目がAg、3層目がSi、4層目がSiOである。
【0020】
上記本発明の実施例1、2共に分光反射領域:400nm〜750nmの範囲で最大反射率0.4%以下で平均分光反射率0.25%程度となる。本発明での光学的なトータル膜厚は約0.3〜0.35λで、その物理的膜厚のトータルは100nm〜120nm程度となり、従来の反射防止膜に比べ膜厚が大幅に薄くなっていて、成膜時間の短縮が可能であると共に、膜の保有する内部応力が小さいため、膜の亀裂や剥離の発生を防止できる点で、画期的な効果が得られる。
【0021】
すなわち、従来の反射防止膜は、その構成膜のトータルの光学的膜厚は略1λとなる。その分光反射率は3層膜では可視光領域(400nm〜700nm)で一般的には平均で0.4%程度となる。
【0022】
これに対して本発明によれば、分光反射特性が従来膜より優れ、反射防止膜のトータル膜厚さが従来膜厚さの約33%程度の厚さに低減される。特に実用性において、膜厚が約1/3に圧縮されたことで、応力の理論から内部応力値は概略1/27程度まで減少させることができ、近年のプラスチック光学材料表面の反射防止膜の耐久性、及び成膜コストの大幅な改善効果が得られる。
【0023】
プラスチック光学材料の応用分野は近年益々増大し、デジタルカメラ・カメラ付き携帯電話のレンズ及びディスプレープレート、LCD・PDP・ELディスプレープレート、CD・DVDプレーヤーの光学系レンズ及びディスク、眼鏡レンズその他の各種光学レンズ・フィルター等々の反射防止表面処理(反射防止膜成膜)において、従来の成膜膜厚を33%の厚さに減少させることで、成膜処理時間が大幅に低減されると共に、形成された反射防止膜は下地プラスチック特有の温度変化及び吸湿による表面収縮の追従適合性に優れている。
【0024】
この発明の反射防止膜の成膜を真空蒸着法で行った場合、その膜構成はミクロ的にポーラスとなり多層膜は吸湿性が大きく、時間経過に伴う吸湿膨張で経年変化を生ずる。これに対し、スパッタ法で成膜された多層膜は、その高圧放電をベースとした成膜プロセスにより、緻密性が高く耐吸湿性に富み経年変化は生じ難い。従って、今後の急拡大が期待されるプラスチック製光学部品に対する反射防止膜として、成膜時間の短縮によるコスト低下、亀裂や剥離性の改善、経年変化の防止などの面で画期的な貢献が可能である。
【0025】
金属と金属酸化物を組み合わせた光学フィルターを上記と同様に設計製作した。その結果は以下に示す。
Figure 2004334012
【0026】
従来の方法で700nm〜1200nm迄の赤外線カットフィルターを1200nmで透過率0.5%以下にするように設計製作する場合、その膜構成は約32層から42層となるが、本発明のものでは金属膜を保護する窒化膜を入れても9層の構成で、層数で約1/4になり、物理的膜厚で1/10以下になり、画期的な赤外線カットフィルターが得られる。
【0027】
物理的膜厚が薄くなったことで、プラスチック製光学部品表面に従来技術では成膜が不可能だった高性能の光学的フィルターの成膜が、膜構成から生ずる歪みが1/1000になったことで、実用的に可能となったと言える。特に赤外線カットフィルターの用途は、各種TVカメラ(含む:デジタルビデオカメラ)、デジタルカメラ等では必需部品で、画像センサーと組み合わせて視感度に画像色温度を合わせる部品として使用されている。
【0028】
【発明の効果】
以上説明した本願発明によれば、レンズ、窓カラスなどの透明基材表面に形成する反射防止膜、特定波長範囲の光を遮断する光フィルター膜などの膜厚を従来技術による膜厚に比べて大幅に低減することができ、これらの膜の成膜に要する時間を大幅に低減できて生産性の向上を図れるばかりでなく、膜の内部歪みに起因する応力を劇的に低減できるので、これらの膜の亀裂や剥離が防止され、特に熱や吸湿による変形の大きいプラスチックレンズやプラスチック板などに設ける光学膜として用いたとき、これらの膜の耐久性を大幅に改善できる効果がある。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an antireflection film and an optical color separation filter provided on the surface of a transparent substrate such as glass and a transparent plastic lens.
[0002]
[Prior art]
A transparent base material used for transmitting light, such as a lens or a window glass, is provided with an antireflection film on the base material surface in order to minimize reflection on the surface. Further, in order to limit the wavelength range of light passing through these transparent substrates, it is widely practiced to provide an ultraviolet filter or an infrared filter having a film structure on the surface of the substrate. These films generally have a multi-layer film structure to achieve a desired function.
[0003]
In this type of conventional optical antireflection film or optical filter, since the light as a wave generates energy intensity based on 1/4 of the wavelength λ, the basic film thickness of each layer is determined by the design center wavelength (λ). Is configured on the basis of 1/4. When the target optical characteristics cannot be obtained due to the interference of the phase difference energy, the film thickness is corrected to the basic film thickness by an appropriate amount (± α) so that the optical film exhibits the original target optical spectral characteristics. Designed.
[0004]
As a result, in the antireflection film, the optical thicknesses of the small refractive index film, the medium refractive index film, and the high refractive index film provided on the substrate surface are λ / 4, λ / λ of the design center wavelength (for example, λ = 550 nm). 2, λ / 4 is the basic film thickness. As a result, the optical total film thickness of the antireflection film is 1λ, and the physical film thickness is obtained by dividing the optical film thickness of each film by the respective refractive indexes. Shown in (Λ = 550 nm)
[0005]
Figure 2004334012
In the film material of the above example, the first layer is Al 2 O 3 , the second layer is TiO 2 (or Nb 2 O 5 or the like), and the third layer is SiO 2 (or MgF 2 ).
[0006]
[Problems to be solved by the invention]
Various physical or chemical film forming methods are used for forming a thin film such as an anti-reflection film or an optical filter film. In these film forming, film material molecules are deposited on a substrate. Occasionally, a large change in temperature accompanies a large thermal strain in the deposited thin film, and thus a large internal stress remains in the film. Since the internal stress is caused by the strain, a shear force substantially proportional to the film thickness acts between the film and the base material and between the films. Therefore, when the film thickness is large, not only does the film formation take time and the productivity is lowered, but also the film is easily cracked or peeled off. Due to aging due to deformation and moisture absorption, cracks and peeling of the film are apt to become apparent, and there is a problem that the durability of the film is impaired.
[0007]
It is an object of the present invention to provide an epoch-making technical means for greatly reducing the thickness of an antireflection film or a color separation filter provided on the surface of a transparent substrate such as glass or transparent plastic.
[0008]
[Means for Solving the Problems]
The optical antireflection film according to the invention of claim 1 which has solved the above-mentioned problem is an optical antireflection film formed on the surface of a transparent substrate, and has a medium refractive index film and a high refractive index film on the surface of the substrate. A film and a low-refractive-index film are formed in this order, and the high-refractive-index film is a metal film made of silver, aluminum or tin and having a physical thickness (d) of 50 to 500 °. It is characterized by being.
[0009]
The refractive index (n) of these metal films is usually 2.0 to 2.6. In a conventional antireflection film, the optical film thickness (nd) obtained by multiplying the refractive index by the physical film thickness is 0. 0.5λ (λ is the wavelength of light). If the design reference wavelength is λ = 550 nm, d = 2115 °. According to the first aspect of the present invention, the film thickness is 1/3 to 1/4 or less of the conventional thickness. It is known that the strain force between a film and a transparent base material such as a lens increases in proportion to the cube of the film thickness. According to the antireflection film of the present invention, the strain force between the base material and the film increases. It can be reduced to the epoch-making value of 1/27 to 1/64 of the related art.
[0010]
The invention according to claim 2 of the present application is the antireflection film according to claim 1, wherein a low-refractive-index film and a high-refractive-index film or a low-refractive-index film and a claim-refractive-index film are used as a medium-refractive-index film in contact with a transparent substrate. It is characterized in that an equivalent multilayer structure of a low refractive index film is used, and the total optical film thickness (nd) is 0.16λ>nd> 0.08λ (λ is a design center wavelength). The low-refractive-index film is formed of a thin film of silicon dioxide, and the high-refractive-index film is a thin film of silicon nitride (Si 2 N 3 ) or silver, aluminum, or tin.
[0011]
The range of the refractive index of the medium refractive index film is in the range of 1.6 to 2.0, and the optimum value is obtained by theoretical calculation, and the reflectance cannot be optimized unless the optimum value is adopted. Since it greatly changes depending on the refractive index of the transparent substrate, it is necessary to individually determine the type according to the type of the transparent substrate. The medium refractive index film is an equivalent multilayer film composed of a low refractive index film made of silicon dioxide and a high refractive index film made of silicon nitride (Si 2 N 3 ) or a metal film made of silver, aluminum or tin. If they are formed, a film having an optimum refractive index as a whole can be obtained due to the change in the film thickness.
[0012]
That is, the medium refractive index film in the film of the antireflection film according to claim 1 is configured as a silicon nitride film, configured as an equivalent multilayer film of silicon nitride and silicon dioxide, and further made of silver, aluminum or tin. A configuration in which an equivalent multilayer film is formed by combining a metal film, a silicon nitride film, and / or a silicon dioxide film can be appropriately adopted.
[0013]
The invention of claim 3 of the present application employs an equivalent multilayer film of silicon nitride and silicon dioxide as the medium refractive index film. According to a fourth aspect of the present invention, there is provided a multilayer structure including a silicon oxide film and a metal film made of silver, aluminum or tin, wherein a nitride for preventing oxidization thereof is formed on the metal film. And a metal nitride film formed on a metal film.
[0014]
In these film configurations, a nitride film such as a silicon nitride film can be provided on a metal film such as silver in a single layer or several layers with an optical thickness of 300 ° or less, as described in claim 5. Thus, oxidation of a metal film such as a silver film can be prevented.
[0015]
The invention according to claim 6 of the present application relates to an optical color separation filter, wherein a metal film having a thickness of 100 ° or less made of silver, aluminum or tin is used as a high refractive index film, and silicon dioxide is used as a low refractive index film. In an optical color separation filter using a film, a film of silicon nitride (Si 2 N 3 ) having a thickness of 100 ° or less is formed next to a metal film to prevent the lower metal film from being oxidized. Things.
[0016]
It is effective to use a sputtering method for forming an optical film such as an anti-reflection film and an optical color separation filter of the present invention. An oxide film is used, and a basic film configuration is used in which a metal film has a high refractive index. In this case, for the purpose of preventing the metal film from being oxidized, a nitride film is formed over the metal film by a sputtering method so that the surface of the metal film is covered with a nitride film having a thickness of 200 ° or less.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The structural relationship of the antireflection film of the present invention is shown below.
Figure 2004334012
The first layer is made of Si 2 N 3 , the second layer is made of SiO 2 , the third layer is made of Ag, and the fourth layer is made of SiO 2 .
[0018]
Figure 2004334012
The first layer is made of Si 2 N 3 , the second layer is made of Ag, and the third layer is made of SiO 2 .
[0019]
Figure 2004334012
The first layer is made of Si 2 N 3 , the second layer is made of Ag, the third layer is made of Si 2 N 3 , and the fourth layer is made of SiO 2 .
[0020]
In both the first and second embodiments of the present invention, the average spectral reflectance is about 0.25% and the maximum reflectance is 0.4% or less in the spectral reflection range of 400 nm to 750 nm. The total optical thickness in the present invention is about 0.3 to 0.35λ, and the total physical thickness is about 100 to 120 nm, which is much smaller than the conventional antireflection film. In addition, the film forming time can be shortened, and since the internal stress of the film is small, cracks and peeling of the film can be prevented.
[0021]
That is, in the conventional antireflection film, the total optical thickness of the constituent films is approximately 1λ. The spectral reflectance of the three-layer film is generally about 0.4% on average in the visible light region (400 nm to 700 nm).
[0022]
In contrast, according to the present invention, the spectral reflection characteristics are superior to the conventional film, and the total thickness of the antireflection film is reduced to about 33% of the conventional film thickness. Particularly in practical use, the film thickness is reduced to about 1/3, and the internal stress value can be reduced to about 1/27 from the theory of stress. A significant improvement in durability and film formation cost can be obtained.
[0023]
The application fields of plastic optical materials have been increasing more and more in recent years. Lenses and display plates for digital cameras and mobile phones with cameras, LCD / PDP / EL display plates, optical lenses and discs for CD / DVD players, spectacle lenses and other various optics. In the anti-reflection surface treatment (anti-reflection film formation) of lenses, filters, etc., by reducing the conventional film thickness to 33%, the film formation processing time is greatly reduced and the film is formed. The anti-reflection film is excellent in following suitability for surface change due to temperature change and moisture absorption peculiar to the base plastic.
[0024]
When the antireflection film of the present invention is formed by a vacuum deposition method, the film configuration becomes microscopically porous, and the multilayer film has a large hygroscopic property, and changes over time due to hygroscopic expansion with time. On the other hand, a multilayer film formed by a sputtering method has a high density, a high moisture absorption resistance, and is unlikely to change over time due to a film forming process based on the high-pressure discharge. Therefore, as an anti-reflection film for plastic optical components, which is expected to expand rapidly in the future, it will make epoch-making contributions in terms of cost reduction by shortening the film formation time, improvement of cracking and peeling properties, and prevention of aging. It is possible.
[0025]
An optical filter combining a metal and a metal oxide was designed and manufactured in the same manner as described above. The results are shown below.
Figure 2004334012
[0026]
When an infrared cut filter from 700 nm to 1200 nm is designed and manufactured so as to have a transmittance of 0.5% or less at 1200 nm by a conventional method, the film configuration is from about 32 layers to 42 layers. Even if a nitride film for protecting the metal film is included, the structure is composed of nine layers, the number of layers is reduced to about 1/4, and the physical thickness is reduced to 1/10 or less, so that an epoch-making infrared cut filter can be obtained.
[0027]
Due to the reduced physical film thickness, the film formation of a high-performance optical filter that could not be formed by the conventional technology on the surface of a plastic optical component has been reduced by a factor of 1/1000 due to the film configuration. Thus, it can be said that it became practically possible. In particular, the use of the infrared cut filter is a necessary component for various TV cameras (including digital video cameras), digital cameras, and the like, and is used as a component for adjusting the image color temperature to luminosity in combination with an image sensor.
[0028]
【The invention's effect】
According to the present invention described above, the film thickness of an antireflection film formed on the surface of a transparent substrate such as a lens and a window crow, and an optical filter film that blocks light in a specific wavelength range are compared with those of the related art. Not only can this significantly reduce the time required for forming these films, thereby improving productivity, but also dramatically reducing the stress caused by internal strain in the films. In particular, when the film is used as an optical film provided on a plastic lens or a plastic plate which is greatly deformed by heat or moisture absorption, the durability of these films can be greatly improved.

Claims (8)

透明基材表面に形成した光学的な反射防止膜であって、前記基材表面に中屈折率膜、高屈折率膜及び低屈折率膜がこの順序で形成されており、前記高屈折率膜は、銀、アルミニウム又はスズを材料とする物理的膜厚(d)が50〜500Åの金属膜であることを特徴とする、反射防止膜。An optical antireflection film formed on a transparent substrate surface, wherein a medium-refractive-index film, a high-refractive-index film, and a low-refractive-index film are formed in this order on the substrate surface, and the high-refractive-index film is formed. Is a metal film having a physical thickness (d) of 50 to 500 ° made of silver, aluminum or tin. 前記中屈折率膜が、二酸化珪素を材料とする低屈折率膜と高屈折率膜とで形成した等価多層膜構成を備え、この多層膜の合計の光学的膜厚(nd)が光学的設計中心波長をλとして、0.16λ>nd>0.08λであることを特徴とする、請求項1記載の反射防止膜。The medium refractive index film has an equivalent multilayer structure composed of a low refractive index film made of silicon dioxide and a high refractive index film, and the total optical thickness (nd) of the multilayer film is optically designed. 2. The antireflection film according to claim 1, wherein 0.16.lamda.> Nd> 0.08.lamda. 前記等価多層膜中の高屈折率膜が、窒化珪素膜であることを特徴とする、請求項2記載の反射防止膜。The antireflection film according to claim 2, wherein the high refractive index film in the equivalent multilayer film is a silicon nitride film. 二酸化珪素膜の上に銀、アルミニウム又はスズを材料とする金属膜を成膜した膜構造を備えた請求項1、2又は3記載の反射防止膜において、前記金属膜の上に当該金属膜の酸化を防止する窒化膜が設けられている、反射防止膜。4. The antireflection film according to claim 1, comprising a film structure in which a metal film made of silver, aluminum or tin is formed on the silicon dioxide film, wherein the metal film is formed on the metal film. An anti-reflection film provided with a nitride film for preventing oxidation. 銀、アルミニウム又はスズを材料とする金属膜の上に膜厚300Å以下の窒化珪素膜が単層又は数層で設けられている、請求項1、2、3又は4記載の反射防止膜。5. The antireflection film according to claim 1, wherein a silicon nitride film having a thickness of 300 ° or less is provided as a single layer or several layers on a metal film made of silver, aluminum or tin. 銀、アルミニウム又はスズを材料とする物理的膜厚さが100Å以下の高屈折率金属膜と、酸化珪素を材料とする低屈折率膜とを備えた光学的色分解フィルターにおいて、前記金属膜の上に膜厚100Å以下の窒化珪素膜を設けて、当該金属膜の酸化を防止したことを特徴とする、光学的色分解フィルター。A high-refractive-index metal film having a physical thickness of 100 ° or less using silver, aluminum or tin as a material, and an optical color separation filter including a low-refractive-index film using silicon oxide as a material; An optical color separation filter, wherein a silicon nitride film having a thickness of 100 ° or less is provided thereon to prevent oxidation of the metal film. 反射防止膜を構成する各膜がスパッタリング法により成膜されている、請求項1ないし5のいずれか1記載の反射防止膜。6. The anti-reflection film according to claim 1, wherein each film constituting the anti-reflection film is formed by a sputtering method. 光学的色分解フィルターを構成する各膜がスパッタリング法により成膜されている、請求項6記載の光学的色分解フィルター。7. The optical color separation filter according to claim 6, wherein each of the films constituting the optical color separation filter is formed by a sputtering method.
JP2003131688A 2003-05-09 2003-05-09 Antireflection film and optical filter Pending JP2004334012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131688A JP2004334012A (en) 2003-05-09 2003-05-09 Antireflection film and optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131688A JP2004334012A (en) 2003-05-09 2003-05-09 Antireflection film and optical filter

Publications (1)

Publication Number Publication Date
JP2004334012A true JP2004334012A (en) 2004-11-25

Family

ID=33506800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131688A Pending JP2004334012A (en) 2003-05-09 2003-05-09 Antireflection film and optical filter

Country Status (1)

Country Link
JP (1) JP2004334012A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148201A (en) * 2005-11-30 2007-06-14 Asahi Glass Co Ltd Method for manufacturing antireflection film and display apparatus
JP2012504104A (en) * 2008-09-30 2012-02-16 サン−ゴバン グラス フランス Method for producing a substrate provided with a laminate having thermal properties, in particular for producing heated glazing
JP2015145956A (en) * 2014-02-03 2015-08-13 京セラクリスタルデバイス株式会社 Optical filter and manufacturing method thereof
JP2016193817A (en) * 2016-04-01 2016-11-17 セイコーエプソン株式会社 Cover member and mobile phone
CN106435475A (en) * 2016-09-08 2017-02-22 江苏双星彩塑新材料股份有限公司 Blue-green three-silver low-radiation energy-saving window film and preparing method thereof
EP3203274A1 (en) 2016-02-04 2017-08-09 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Ophthalmic lens comprising a thin antireflective coating with a very low reflection in the visible
JP2017145191A (en) * 2017-05-08 2017-08-24 セイコーエプソン株式会社 Cover member and portable information device
WO2018043516A1 (en) * 2016-08-31 2018-03-08 富士フイルム株式会社 Antireflective film, optical element, and optical system
JP2019128478A (en) * 2018-01-25 2019-08-01 株式会社乾レンズ Spectacle lens and spectacles
US11194078B2 (en) 2016-09-12 2021-12-07 Fujifilm Corporation Antireflection film having silver-containing layer and fluorocarbon layer, method for producing antireflection film, optical element, and optical system
US11422290B2 (en) 2017-09-21 2022-08-23 Fujifilm Corporation Antireflection film, optical element, and optical system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148201A (en) * 2005-11-30 2007-06-14 Asahi Glass Co Ltd Method for manufacturing antireflection film and display apparatus
JP2012504104A (en) * 2008-09-30 2012-02-16 サン−ゴバン グラス フランス Method for producing a substrate provided with a laminate having thermal properties, in particular for producing heated glazing
JP2015145956A (en) * 2014-02-03 2015-08-13 京セラクリスタルデバイス株式会社 Optical filter and manufacturing method thereof
EP3203274A1 (en) 2016-02-04 2017-08-09 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Ophthalmic lens comprising a thin antireflective coating with a very low reflection in the visible
JP2016193817A (en) * 2016-04-01 2016-11-17 セイコーエプソン株式会社 Cover member and mobile phone
US11029449B2 (en) 2016-08-31 2021-06-08 Fujifilm Corporation Antireflection film, optical element, optical system, method of producing antireflection film
WO2018043516A1 (en) * 2016-08-31 2018-03-08 富士フイルム株式会社 Antireflective film, optical element, and optical system
JPWO2018043516A1 (en) * 2016-08-31 2019-06-24 富士フイルム株式会社 Antireflective film, optical element and optical system, and method of manufacturing antireflective film
CN106435475A (en) * 2016-09-08 2017-02-22 江苏双星彩塑新材料股份有限公司 Blue-green three-silver low-radiation energy-saving window film and preparing method thereof
US11194078B2 (en) 2016-09-12 2021-12-07 Fujifilm Corporation Antireflection film having silver-containing layer and fluorocarbon layer, method for producing antireflection film, optical element, and optical system
JP2017145191A (en) * 2017-05-08 2017-08-24 セイコーエプソン株式会社 Cover member and portable information device
US11422290B2 (en) 2017-09-21 2022-08-23 Fujifilm Corporation Antireflection film, optical element, and optical system
JP2019128478A (en) * 2018-01-25 2019-08-01 株式会社乾レンズ Spectacle lens and spectacles
JP7129781B2 (en) 2018-01-25 2022-09-02 株式会社乾レンズ spectacle lenses and spectacles

Similar Documents

Publication Publication Date Title
JP4768722B2 (en) Hybrid coated laminate
KR102392445B1 (en) Scratch-resistant chemically tempered glass substrate and use thereof
LU87645A1 (en) SUBSTRATE HAVING A MULTI-LAYER COATING AND METHOD FOR DEPOSITING SUCH A COATING
JP2002055213A (en) High reflectance mirror
WO2008008190A1 (en) Coated article with oxides and/or oxynitrides of antimony and/or zinc dielectric layer(s) and corresponding method
KR20160058113A (en) Dielectric mirror
JP2004334012A (en) Antireflection film and optical filter
JPH0282201A (en) Rear reflecting mirror of multilayered film for optical parts made of synthetic resin
KR20180094151A (en) Spectacle lens
WO2018110017A1 (en) Optical product
JP2005274527A (en) Cover glass for clock
JP4171362B2 (en) Transparent substrate with antireflection film
JP2002107506A (en) Antireflection coating and optical component using the same
JP2007310335A (en) Front surface mirror
CN116819661A (en) Optical film with variable spectral characteristics and method for adjusting spectral characteristics of optical film
JP2002014203A (en) Antireflection film and optical member using the same
JP5292318B2 (en) Antireflection film and optical member having the same
JP2003131011A (en) Multilayer film and substrate with multilayer film using the multilayer film
JPH052101A (en) Optical component
JP2017032852A (en) Anti-reflection film and optical component
JPH07209516A (en) Optical multilayer film filter
JP2566634B2 (en) Multi-layer antireflection film
JP2006215081A (en) Optical article and manufacturing method
JP2001074903A (en) Antireflection film and optical device
JP2746602B2 (en) Spectral filter