JP2746602B2 - Spectral filter - Google Patents

Spectral filter

Info

Publication number
JP2746602B2
JP2746602B2 JP63142263A JP14226388A JP2746602B2 JP 2746602 B2 JP2746602 B2 JP 2746602B2 JP 63142263 A JP63142263 A JP 63142263A JP 14226388 A JP14226388 A JP 14226388A JP 2746602 B2 JP2746602 B2 JP 2746602B2
Authority
JP
Japan
Prior art keywords
transmittance
thin film
reflectance
spectral filter
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63142263A
Other languages
Japanese (ja)
Other versions
JPH01310302A (en
Inventor
昭造 河添
正英 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP63142263A priority Critical patent/JP2746602B2/en
Publication of JPH01310302A publication Critical patent/JPH01310302A/en
Application granted granted Critical
Publication of JP2746602B2 publication Critical patent/JP2746602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はカメラ、顕微鏡、光学測定機器などに用い
られる波長400〜800nmの可視域の入射光を透過光と反射
光とに分離するための分光フイルターに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is for separating incident light in the visible region having a wavelength of 400 to 800 nm used in cameras, microscopes, optical measuring instruments and the like into transmitted light and reflected light. It relates to a spectral filter.

〔従来の技術〕[Conventional technology]

この種の分光フイルターは一般にハーフミラーとも言
われ、従来では、ガラスまたはプラスチツクからなる透
明基体の片面に金、銀、アルミニウム、銅などの金属薄
膜を積層したものや、上記同様の透明基体の片面にTi
O2、ZnS、ZrO2などの高屈折率の誘電体とMgF2、Na3Al
F6、SiO2などの低屈折率の誘電体とからなる複合誘電体
薄膜を数段積層したものなどが知られている。
This kind of spectral filter is generally called a half mirror, and conventionally, a transparent substrate made of glass or plastic is laminated with a metal thin film such as gold, silver, aluminum, or copper on one surface, or a transparent substrate similar to the above is laminated on one surface. To Ti
High refractive index dielectrics such as O 2 , ZnS, ZrO 2 and MgF 2 , Na 3 Al
It is known that a composite dielectric thin film composed of a dielectric having a low refractive index such as F 6 and SiO 2 is laminated in several stages.

これら分光フイルターにおいて、入射光に対する透過
光および反射光の比率、つまり可視光線透過率および可
視光線反射率は、各波長によつて相違し、400〜800nmの
可視域全域においてばらつき(分布)を有している。こ
のため、上記透過率および反射率は通常可視域全域での
平均値にて表わされるが、この平均値はまた金属薄膜ま
たは複合誘電体薄膜の種類や厚みによつて変化し、これ
ら要因が特定されたときに一定の値をとることになる。
In these spectral filters, the ratio of the transmitted light and the reflected light to the incident light, that is, the visible light transmittance and the visible light reflectance, differs depending on each wavelength, and has a variation (distribution) in the entire visible region of 400 to 800 nm. doing. For this reason, the above-mentioned transmittance and reflectance are usually represented by an average value over the entire visible range, but this average value also varies depending on the type and thickness of the metal thin film or the composite dielectric thin film, and these factors are specified. When it is done, it will take a certain value.

もちろん、上記の平均値は分光フイルターが前記いず
れのタイプであるかによつて限られた範囲内に規制され
る。すなわち、金属薄膜を積層したタイプのものでは、
上記平均値が可視光線透過率10〜40%の範囲、可視光線
反射率で60〜90%の範囲となり、また複合誘電体薄膜を
積層したタイプのものでは、上記平均値が可視光線透過
率で30〜80%の範囲、可視光線反射率で20〜70%の範囲
となる。このため、従来では、上記の分光特性を目安と
して、その用途範囲がある程度決められていたのであ
る。
Of course, the above average value is restricted within a limited range depending on which type of the spectral filter is used. In other words, in the type in which metal thin films are laminated,
The average value is in the range of visible light transmittance of 10 to 40% and the visible light reflectance is in the range of 60 to 90%. In the case of the type in which the composite dielectric thin film is laminated, the average value is in the range of visible light transmittance. The range is 30 to 80%, and the range of visible light reflectance is 20 to 70%. Therefore, conventionally, the range of use has been determined to some extent using the above-mentioned spectral characteristics as a guide.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかるに、上述の従来の分光フイルターは、いずれも
可視光線透過率および可視光線反射率の可視域全域での
ばらつきが非常に大きすぎるという難点があつた。すな
わち、可視光線透過率では可視域(400〜800nm)全域で
の中心値〔(最大透過率+最小透過率)×1/2〕に対
し、また可視光線反射率では可視域全域での中心値
〔(最大反射率+最小反射率)×1/2〕に対し、金属薄
膜を積層したタイプのものでそれぞれ±15%を超えるば
らつき、複合誘電体薄膜を積層したタイプのものでそれ
ぞれ±20%以上のばらつきを有していた。
However, each of the above-mentioned conventional spectral filters has a disadvantage that the dispersion of the visible light transmittance and the visible light reflectance in the entire visible region is too large. That is, the visible light transmittance has a central value in the entire visible range (400 to 800 nm) [(maximum transmittance + minimum transmittance) × 1/2], and the visible light reflectance has a central value in the entire visible range. For [(maximum reflectance + minimum reflectance) x 1/2], the variation exceeds ± 15% for each type with a laminated metal thin film, and ± 20% for each type with a composite dielectric thin film It had the above variations.

このようなばらつきは、入射光と透過光および反射光
との間に大きな色相差を生じさせることになり、これが
原因で入射光(光学像)とほぼ同一の色相を有する透過
光および反射光が得られず、分光フイルターとしてはそ
の用途上大幅な規制を受けることになる。
Such a variation causes a large hue difference between the incident light and the transmitted light and the reflected light. As a result, the transmitted light and the reflected light having substantially the same hue as the incident light (optical image) are generated. It cannot be obtained, and the spectral filter is greatly restricted in its use.

したがつて、この発明は、上記のばらつきが小さくて
入射光とほぼ同一の色相を有する透過光および反射光を
得ることができ、しかも光の吸収損失の少ない、つまり
入射光をほぼ透過光と反射光とに2分しうる光学特性に
すぐれた分光フイルターを提供することを目的としてい
る。
Therefore, according to the present invention, it is possible to obtain transmitted light and reflected light having substantially the same hue as the incident light with the above-mentioned small variation, and furthermore, to reduce the light absorption loss, that is, to make the incident light substantially the transmitted light. It is an object of the present invention to provide a spectral filter having excellent optical characteristics that can be divided into two parts with reflected light.

〔課題を解決するための手段〕[Means for solving the problem]

この発明者らは、上記の目的を達成するために鋭意検
討した結果、透明基体上に特定膜厚の金属薄膜をふたつ
の誘電体薄膜で挟み込んだサンドイツチ構造の積層膜を
形成した分光フイルターによれば、可視光線透過率およ
び可視光線反射率の前記ばらつきが小さくなつて入射光
とほぼ同一の色相を有する透過光および反射光を得るこ
とができるうえに、光の吸収損失の少ない、すぐれた光
学特性を発揮させうるものであることを知り、この発明
を完成するに至つた。
The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have found a spectral filter in which a laminated film having a San Germanti structure in which a metal thin film having a specific thickness is sandwiched between two dielectric thin films on a transparent substrate. For example, it is possible to obtain the transmitted light and the reflected light having substantially the same hue as the incident light by reducing the dispersion of the visible light transmittance and the visible light reflectance, and to obtain excellent optics with small light absorption loss. He knew that it could exert its characteristics, and completed this invention.

すなわち、この発明は、透明基体の片面に第1層とし
ての誘電体薄膜と第2層としての膜厚50〜250Åの金属
薄膜と第3層としての上記第1層と同種の材料からなる
膜厚500〜1,000Åの誘電体薄膜とがこの順に積層されて
なり、かつ上記第1層および第3層の誘電体薄膜はMg
F2、SiOx、SnOx(いずれも0<x≦2)、ZnSの中から
選ばれる誘電体材料からなり、可視光線透過率の可視域
(400〜800nm)全域のばらつきが中心値〔(最大透過率
+最小透過率)×1/2〕に対し±12%以下、可視光線反
射率の同ばらつきが中心値〔(最大反射率+最小反射
率)×1/2〕に対し±12%以下であることを特徴とする
入射光を透過光と反射光とに分離するための分光フイル
ターに係るものである。
That is, the present invention relates to a film comprising a dielectric thin film as a first layer, a metal thin film having a thickness of 50 to 250 ° as a second layer, and a film made of the same material as the first layer as a third layer on one surface of a transparent substrate. A dielectric thin film having a thickness of 500 to 1,000 mm is laminated in this order, and the first and third dielectric thin films are made of Mg.
It is made of a dielectric material selected from F 2 , SiO x , SnO x (all 0 <x ≦ 2), and ZnS, and the dispersion of the visible light transmittance over the entire visible region (400 to 800 nm) is the central value [( ± 12% or less with respect to [maximum transmittance + minimum transmittance) × 1/2], and the same variation in visible light reflectance is ± 12% with respect to the central value [(maximum reflectance + minimum reflectance) × 1/2] The present invention relates to a spectral filter for separating incident light into transmitted light and reflected light, which is characterized by the following.

この分光フイルターは、金属薄膜やふたつの誘電体薄
膜の種類と上記特定範囲内での膜厚の選択により、可視
域全域での可視光線透過率および可視光線反射率の平均
値を種々の値、一般には可視光線透過率の上記平均値が
30〜70%の範囲、可視光線反射率の上記平均値が30〜70
%の範囲に設定でき、上記平均値の幅が比較的広いため
に、用途範囲の広い分光フイルターを提供できるもので
ある。
This spectroscopic filter, by selecting the type of metal thin film and two dielectric thin films and the thickness within the above specific range, the average value of visible light transmittance and visible light reflectance over the entire visible range, various values, Generally, the above average value of visible light transmittance is
30-70% range, the above average of visible light reflectance is 30-70
%, And the average value is relatively wide, so that a spectral filter having a wide range of application can be provided.

なお、以下の説明では、可視光線透過率を透過率
(T)、その可視域(400〜800nm)全域での平均値を平
均透過率(Ta)、同中心値〔(最大透過率+最小透過
率)×1/2〕に対するばらつきを透過率分布(Tσ)と
略称し、また可視光線反射率を反射率(R)、その可視
域(400〜800nm)全域での平均値を平均反射率(Ra)、
同中心値〔(最大反射率+最小反射率)×1/2〕に対す
るばらつきを反射率分布(Rσ)と略称することにす
る。
In the following description, the visible light transmittance is the transmittance (T), the average value over the entire visible region (400 to 800 nm) is the average transmittance (Ta), and the center value [(maximum transmittance + minimum transmittance) Ratio) × 1/2] is abbreviated as transmittance distribution (Tσ), the visible light reflectance is the reflectance (R), and the average value over the entire visible range (400 to 800 nm) is the average reflectance ( Ra),
The variation with respect to the same central value [(maximum reflectance + minimum reflectance) × 1/2] is abbreviated as a reflectance distribution (Rσ).

〔発明の構成・作用〕[Structure and operation of the invention]

この発明における透明基体としては、ガラスや、ポリ
エステル、ポリカーボネート、ポリアミド、ポリイミ
ド、ポリエチレン、ポリ塩化ビニル、ポリアクリル樹
脂、ポリテトラフルオロエチレン、トリアセテートなど
のプラスチツクからなるシート、フイルム、その他の成
形品が用いられ、透明性を保持しうる限りその厚みは特
に限定されず、用途目的に応じて適宜選択される。
As the transparent substrate in the present invention, glass, polyester, polycarbonate, polyamide, polyimide, polyethylene, polyvinyl chloride, polyacrylic resin, polytetrafluoroethylene, sheets made of plastics such as triacetate, films, and other molded articles are used. The thickness is not particularly limited as long as transparency can be maintained, and is appropriately selected depending on the purpose of use.

この透明基体はその表面にあらかじめスパツタリン
グ、コロナ放電、火炎、紫外線照射、電子線照射、化
成、酸化などのエツチング処理や下塗り処理を施して、
この上に設けられる誘電体薄膜や金属薄膜の上記基体に
対する密着性を向上させるようにしてもよい。また、誘
電体薄膜や金属薄膜を設ける前に、必要に応じて溶剤洗
浄や超音波洗浄などによつて除塵,清浄化してもよい。
This transparent substrate is subjected to an etching treatment or undercoat treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, etc. on its surface in advance,
The adhesion of the dielectric thin film or metal thin film provided thereon to the base may be improved. Before providing the dielectric thin film or the metal thin film, dust removal and cleaning may be performed by solvent cleaning or ultrasonic cleaning as necessary.

この発明においては、上記の透明基体の片面に、第1
層として誘電体薄膜を、第2層として金属薄膜を、さら
に第3層として上記の第1層と同様の誘電体薄膜を、順
次成形した、つまり金属薄膜をその上下ふたつの誘電体
薄膜で挟み込んだサンドイツチ構造の積層膜を形成した
ことを特徴とするものである。
In the present invention, the first substrate is provided on one side with the first substrate.
A dielectric thin film was formed as a layer, a metal thin film was formed as a second layer, and a dielectric thin film similar to the above-mentioned first layer was formed as a third layer. That is, the metal thin film was sandwiched between two upper and lower dielectric thin films. It is characterized by forming a laminated film having a San de Germanite structure.

ここで、第1,3層を構成させる誘電体薄膜の材料とし
ては、誘電体としての機能を有する公知の金属酸化物、
金属硫化物、金属弗化物などが挙げられ、このうち可視
光に対して1.3〜2.3の屈折率を有し、かつこれ自体の透
過率(T)が50%以上、特に70%以上となるものが好ま
しく用いられる。
Here, as a material of the dielectric thin film constituting the first and third layers, a known metal oxide having a function as a dielectric,
Metal sulfides, metal fluorides, etc., of which those having a refractive index of 1.3 to 2.3 with respect to visible light and having a transmittance (T) of 50% or more, particularly 70% or more, per se Is preferably used.

代表的な誘電体材料としては、MaF2、SiOx、SnOx(い
ずれも0<x≦2)、ZnSの中から選ばれる誘電体材料
が用いられる。これら材料は一種であつても二種以上を
併用してもよい。
As a typical dielectric material, a dielectric material selected from MaF 2 , SiO x , SnO x (all 0 <x ≦ 2), and ZnS is used. These materials may be used alone or in combination of two or more.

この誘電体薄膜の形成方法としては、たとえば真空蒸
着法、スパツタリング法、イオンプレーテイング法、塗
工法などがあり、上記材料の種類および必要とする膜厚
に応じて適宜の方法を採用することができる。
As a method for forming the dielectric thin film, for example, there are a vacuum deposition method, a sputtering method, an ion plating method, a coating method, and the like, and an appropriate method may be employed depending on the type of the material and the required film thickness. it can.

誘電体薄膜の膜厚は、第1層では特に限定されず、種
々の膜厚をとりうるが、好ましくは300〜1,500Åの範囲
に設定するのがよい。薄すぎては連続被膜となりにく
く、逆に厚すぎるとクラツクが生じるなどのおそれがあ
り、好ましくない。一方、第3層では500〜1,000Åの範
囲に設定するのがよい。薄すぎると、連続被膜となりに
くいため、また厚すぎると、各波長に対する干渉効果が
増大するため、いずれもこの発明の目的とする透過率分
布(Tσ)および反射率分布(Rσ)の小さい分光フイ
ルターが得られない。
The thickness of the dielectric thin film is not particularly limited in the first layer, and may have various thicknesses, but is preferably set in the range of 300 to 1,500 °. If it is too thin, it is difficult to form a continuous film. On the other hand, if it is too thick, cracks may occur, which is not preferable. On the other hand, in the third layer, it is preferable to set the range of 500 to 1,000 mm. If it is too thin, it is difficult to form a continuous film, and if it is too thick, the interference effect for each wavelength increases. Therefore, a spectral filter having a small transmittance distribution (Tσ) and a small reflectance distribution (Rσ) which are the objects of the present invention. Can not be obtained.

なお、第1層の誘電体薄膜は、これを設けることによ
り、第2層の金属薄膜の透明基体に対する密着強度の向
上に大きく寄与するが、この第1層の誘電体薄膜と第3
層の誘電体薄膜とは、その膜厚が同一であつても、異な
つていてもよい。分光フイルターの用途目的に応じて適
宜選択できるものである。
The provision of the first layer dielectric thin film greatly contributes to the improvement of the adhesion strength of the second layer metal thin film to the transparent substrate.
The thickness of the dielectric thin film of the layer may be the same or different. It can be appropriately selected according to the purpose of use of the spectral filter.

また、第2層を構成させる金属薄膜の材料としては、
金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、
ニツケル(Ni)、チタン(Ti)、パラジウム(Pd)、ス
ズ(Sn)などの各種の金属ないし合金からなるものがい
ずれも使用できる。これらの中でも可視域の光の吸収損
失の少ない金属ないし合金が好ましく、特に金、銀、
銅、パラジウムなどからなるものが好適である。
Further, as a material of the metal thin film constituting the second layer,
Gold (Au), silver (Ag), copper (Cu), aluminum (Al),
Any of various metals or alloys such as nickel (Ni), titanium (Ti), palladium (Pd) and tin (Sn) can be used. Among these, metals or alloys with low absorption loss of visible light are preferable, and particularly gold, silver,
Those made of copper, palladium or the like are preferable.

この金属薄膜の形成方法としては、たとえば真空蒸着
法、スパツタリング法、イオンプレーテイング法、気相
メツキ法、化学メツキ法、電気メツキ法、化学コーテイ
ング法およびこれらの組み合わせ法などがある。膜の均
一性,形成速度および作業性の面では真空蒸着法が最も
好ましい。
Examples of the method for forming the metal thin film include a vacuum deposition method, a sputtering method, an ion plating method, a gas-phase plating method, a chemical plating method, an electric plating method, a chemical coating method, and a combination method thereof. The vacuum deposition method is most preferable in terms of film uniformity, formation speed, and workability.

金属薄膜の膜厚は、50〜250Åの範囲に設定すること
が必要で、特に好適には80〜200Åの範囲に設定するの
がよい。50Åより薄くなると、透過率(T)は高くなる
が、そのぶん反射率(R)が低くなりすぎ、また光の吸
収損失も高くなるといつた欠点のほか、酸化安定性など
が損なわれ、安定した光学特性が得られなくなる。ま
た、250Åを超えると、透過率(T)が著しく低くなる
ため、分光フイルターとしての用途に適さなくなる。
It is necessary to set the thickness of the metal thin film in the range of 50 to 250 °, and particularly preferably in the range of 80 to 200 °. If the thickness is less than 50 °, the transmittance (T) becomes high, but the reflectance (R) becomes too low, and if the absorption loss of light becomes high, other defects such as oxidation stability and the like are impaired. Optical characteristics cannot be obtained. On the other hand, if it exceeds 250 °, the transmittance (T) becomes extremely low, so that it is not suitable for use as a spectral filter.

このように、この発明においては、透明基体の片面に
第1層として誘電体薄膜を、第2層として特定膜厚の金
属薄膜を、さらに第3層として特定膜厚の誘電体薄膜
を、順次積層するようにしたものであるが、かかる積層
膜とすると金属薄膜単独の場合と較べて光の散乱、干
渉、透過、吸収などの挙動に変化が生じ、この変化が透
過率(T)および反射率(R)の波長依存性を小さくす
るべく作用して、透過率分布(Tσ)および反射率分布
(Rσ)が著しく小さくなるという格別の作用効果が達
成されるものである。
Thus, in the present invention, a dielectric thin film as a first layer, a metal thin film of a specific thickness as a second layer, and a dielectric thin film of a specific thickness as a third layer are sequentially formed on one surface of a transparent substrate. Although such a laminated film is formed, a change in behavior such as light scattering, interference, transmission, and absorption occurs when compared to the case of using a metal thin film alone, and this change is caused by the transmittance (T) and the reflection. By acting to reduce the wavelength dependence of the rate (R), a special action and effect that the transmittance distribution (Tσ) and the reflectance distribution (Rσ) are significantly reduced is achieved.

すなわち、上記膜構成とすることにより、透過率分布
(Tσ)および反射率分布(Rσ)共に±12%以下、特
に好適には±10%以下となり、この場合透過光および反
射光は入射光とほぼ同一の色相を呈するようになる。し
かも、上記構成によると、光の吸収損失が小さくなり、
入射光をほぼ透過光と反射光とに2分でき、分離光の利
用効率の面でも望ましい結果が得られるものである。
That is, with the above film configuration, both the transmittance distribution (Tσ) and the reflectance distribution (Rσ) are ± 12% or less, particularly preferably ± 10% or less. In this case, the transmitted light and the reflected light are less than the incident light. It has almost the same hue. Moreover, according to the above configuration, light absorption loss is reduced,
The incident light can be roughly divided into transmitted light and reflected light, and a desirable result can be obtained in terms of the efficiency of using the separated light.

さらに、上記の構成においては、上下層の誘電体薄
膜、特に上層の誘電体薄膜が中間層としての金属薄膜の
保護膜としても機能し、その結果従来の金属薄膜単独の
場合の耐摩耗性、耐溶剤性、耐薬品性、耐熱性などが改
善され、耐久性に非常にすぐれた分光フイルターとして
安定した分光特性を発揮させうるという利点もある。
Furthermore, in the above configuration, the upper and lower dielectric thin films, particularly the upper dielectric thin film, also function as a protective film for the metal thin film as the intermediate layer, and as a result, the wear resistance of the conventional metal thin film alone, Solvent resistance, chemical resistance, heat resistance, and the like are improved, and there is also an advantage that a spectral filter having extremely excellent durability can exhibit stable spectral characteristics.

この分光フイルターの平均透過率(Ta)および平均反
射率(Ra)は、既述のとおり、金属薄膜や誘電体薄膜の
種類および膜厚によつて変化するが、一般には平均透過
率(Ta)が30〜70%の範囲、特に好適には40〜60%の範
囲、平均反射率(Ra)が30〜70%、特に好適には40〜60
%の範囲に設定でき、この範囲内で具体的な用途目的に
応じて任意に選択することが可能である。
As described above, the average transmittance (Ta) and average reflectance (Ra) of this spectral filter vary depending on the type and thickness of the metal thin film or the dielectric thin film, but generally, the average transmittance (Ta) Is in the range of 30 to 70%, particularly preferably in the range of 40 to 60%, and the average reflectance (Ra) is in the range of 30 to 70%, particularly preferably 40 to 60%.
%, And can be arbitrarily selected within this range according to the specific purpose of use.

なお、この発明の分光フイルターにおいて、膜の耐擦
傷性を向上させる目的で、第3層の誘電体薄膜上にさら
に有機物や無機物からなる透明なハードコート層を必要
に応じて設けるようにしてもよい。
In the spectral filter of the present invention, a transparent hard coat layer made of an organic substance or an inorganic substance may be further provided as necessary on the third dielectric thin film in order to improve the scratch resistance of the film. Good.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、透過率分布(T
σ)および反射率分布(Rσ)がいずれも小さくて入射
光とほぼ同一の色相を有する透過光および反射光を得る
ことができるうえに、光の吸収損失が少なく、しかも耐
久性にすぐれた分光フイルターを提供することができ
る。
As described above, according to the present invention, the transmittance distribution (T
σ) and the reflectance distribution (Rσ) are both small, so that transmitted light and reflected light having substantially the same hue as the incident light can be obtained, and further, light absorption loss is small, and spectral durability is excellent. A filter can be provided.

また、この分光フイルターは平均透過率(Ta)および
平均反射率(Ra)を比較的広い範囲内で任意に設定でき
るし、金属薄膜とその上下層の誘電体薄膜とを順次積層
するだけの操作で上述の如き光学特性にすぐれたものと
することができるために、前記複合誘電体薄膜を設ける
従来のものに比し生産性やコスト面でも有利となる。
In addition, this spectral filter can set the average transmittance (Ta) and average reflectance (Ra) arbitrarily within a relatively wide range, and requires only the sequential lamination of a metal thin film and a dielectric thin film above and below it. Therefore, since the optical characteristics can be improved as described above, it is advantageous in terms of productivity and cost as compared with the conventional one in which the composite dielectric thin film is provided.

このため、この発明の分光フイルターは、カメラ、顕
微鏡、光学測定機器などの光学機器のほか、光の入射角
を90度以下(通常約45度)とすることにより入射光のp
−成分とs−成分とをほとんど損失なく90度に分離する
偏光ビームスパツタ(偏光分離器)としても使用でき、
光によるビデオデイスク、光メモリー、光通信などへの
他方面への応用が可能となる。
For this reason, the spectral filter of the present invention can reduce the incident light p by setting the incident angle of light to 90 degrees or less (usually about 45 degrees) in addition to optical instruments such as a camera, a microscope, and an optical measuring instrument.
-Component and s- component can be used as a polarization beam sputter (polarization separator) that separates the component at 90 degrees with almost no loss.
Application to the other side of video disks, optical memories, optical communications, and the like using light becomes possible.

〔実施例〕〔Example〕

以下に、この発明の実施例を記載してより具体的に説
明する。なお、以下に示す透過率(T)および反射率
(R)の測定は、島津製作所製の分光分析装置UV−240
を用いて行つたものである。
Hereinafter, embodiments of the present invention will be described in more detail. The measurement of the transmittance (T) and the reflectance (R) shown below was performed using a spectrophotometer UV-240 manufactured by Shimadzu Corporation.
This is done using.

実施例1 ベルジヤ内を1〜2×10-4Torrに排気したのち、タン
グステンボードに装入したZnSを抵抗加熱法により、蒸
発源から約20cmの距離にセツトされた厚さ100μmのポ
リエステルフイルムの片面に、数Å/秒の蒸着速度で真
空蒸着して、膜厚600ÅのZnS薄膜からなる第1層を形成
した。
Example 1 After evacuating the inside of a bell jar to 1-2 × 10 -4 Torr, a 100 μm-thick polyester film set on a tungsten board at a distance of about 20 cm from an evaporation source by ZnS charged by a resistance heating method. Vacuum deposition was performed on one surface at a deposition rate of several Å / sec to form a first layer of a ZnS thin film having a thickness of 600 Å.

つぎに、この第1層上に、Agを抵抗加熱法により、真
空度1〜2×10-4Torr、蒸着速度数十Å/秒の条件下で
真空蒸着して、膜厚120ÅのAg薄膜からなる第2層を形
成した。さらに、この第2層上に、再びZnSを前記と同
様の操作で真空蒸着して、膜厚600ÅのZnS薄膜からなる
第3層を形成して、第1図に示す構造のフイルム上の分
光フイルターを得た。
Next, on this first layer, Ag was vacuum-deposited by a resistance heating method under the conditions of a degree of vacuum of 1 to 2 × 10 −4 Torr and a deposition rate of several tens of degrees / second to form an Ag thin film having a thickness of 120 °. Was formed. Further, on this second layer, ZnS is again vacuum-deposited by the same operation as above to form a third layer of a ZnS thin film having a thickness of 600 °, and a spectral layer on the film having the structure shown in FIG. 1 is formed. I got a filter.

なお、第1図中、1はポリエステルフイルムからなる
透明基体、2,4はZnSからなる誘電体薄膜、3はAgからな
る金属薄膜である。
In FIG. 1, 1 is a transparent substrate made of a polyester film, 2, 4 are dielectric thin films made of ZnS, and 3 are metal thin films made of Ag.

この分光フイルターの光学特性を調べるために、可視
域(400〜800nm)全域の透過率(T)と同反射率(R)
を測定した。この結果を、第2図に示す。図中、実線−
a1は透過率(T)、点線−b1は反射率(R)である。
In order to investigate the optical characteristics of this spectral filter, the transmittance (T) and the same reflectance (R) in the entire visible range (400 to 800 nm) are used.
Was measured. The result is shown in FIG. In the figure, the solid line −
a 1 is the transmittance (T), the dotted line -b 1 is a reflectance (R).

この第2図から、透過率(T)は可視域全域で40〜48
%の範囲にあり、その中心値〔(40+48)×1/2〕に対
するばらつき、つまり透過率分布(Tσ)が±4%と小
さく、また反射率(R)は可視域全域で52〜60%の範囲
にあり、その中心値〔(52+60)×1/2〕に対するばら
つき、つまり反射率分布(Rσ)が±4%と小さいもの
であることが判る。また、この第2図から、入射光はほ
ぼ透過光と反射光とに2分されており、光の吸収損失の
少ないものであることも明らかである。なお、この分光
フイルターの平均透過率(Ta)は44%、平均反射率(R
a)は55%であつた。
From FIG. 2, it can be seen that the transmittance (T) is 40 to 48 over the entire visible range.
%, The variation with respect to the central value [(40 + 48) × 1/2], that is, the transmittance distribution (Tσ) is as small as ± 4%, and the reflectance (R) is 52 to 60% in the entire visible region. It can be seen that the variation with respect to the central value [(52 + 60) × 1/2], that is, the reflectance distribution (Rσ) is as small as ± 4%. Further, from FIG. 2, it is clear that the incident light is substantially divided into the transmitted light and the reflected light, and the light absorption loss is small. The spectral filter has an average transmittance (Ta) of 44% and an average reflectance (R
a) was 55%.

つぎに、上記の実施例1において、第2層のAg薄膜の
膜厚を種々変化させて平均透過率(Ta)および平均反射
率(Ra)の異なる複数個の分光フイルターを作製したと
ころ、上記膜厚が50〜250Åの範囲のものでは透過率分
布(Tσ)および反射率分布(Rσ)共に±10%以下の
範囲にあり、かつ光の吸収損失も少なく、また酸化安定
性などの耐久性にもすぐれていることが確認された。
Next, in Example 1 described above, a plurality of spectral filters having different average transmittances (Ta) and average reflectances (Ra) were prepared by changing the thickness of the Ag thin film of the second layer in various ways. When the film thickness is in the range of 50 to 250 °, both the transmittance distribution (Tσ) and the reflectance distribution (Rσ) are within ± 10%, the light absorption loss is small, and the durability such as oxidation stability is high. It was confirmed that it was excellent.

一方、上記膜厚が50Åより薄くなると、平均反射率
(Ra)が低くなりすぎるとともに光の吸収損失も高くな
り、さらに酸化安定性などの耐久性にも劣り、また上記
膜厚が250Åを超えると平均透過率(Ta)が低くなりす
ぎるといつた問題が生じはじめ、これらの問題を回避し
て分光フイルターとして適した特性を付与するために
は、前記50〜250Åの範囲に設定すべきであることが確
認された。
On the other hand, when the film thickness is less than 50 mm, the average reflectance (Ra) becomes too low, the light absorption loss increases, the durability such as oxidation stability is poor, and the film thickness exceeds 250 mm. When the average transmittance (Ta) becomes too low, problems begin to occur. In order to avoid these problems and to provide characteristics suitable as a spectral filter, the average transmittance (Ta) should be set in the range of 50 to 250 °. It was confirmed that there was.

比較例1 実施例1において第1,3層のZnSからなる誘電体薄膜を
いずれも形成せず、膜厚120ÅのAg薄膜のみを設けたも
のを比較用の分光フイルターとした。この分光フイルタ
ーの光学特性を実施例1と同様にして調べた。この結果
を第3図に示す。図中、実線−a2は透過率(T)、点線
−b2は反射率(R)である。
Comparative Example 1 A comparative spectral filter was prepared in the same manner as in Example 1 except that the first and third dielectric thin films made of ZnS were not formed, and only the Ag thin film having a thickness of 120 ° was provided. The optical characteristics of this spectral filter were examined in the same manner as in Example 1. The result is shown in FIG. In the figure, a solid line -a 2 transmittance (T), the dotted line -b 2 denotes a reflectance (R).

この第3図から、透過率(T)は可視域全域で22〜57
%の範囲にあり、その中心値〔(2257)×1/2〕に対す
るばらつき、つまり透過率分布(Tσ)が±18%と大き
く、また反射率(R)は可視域全域で40〜78%の範囲に
あり、その中心値〔(40+78)×1/2〕に対するばらつ
き、つまり反射率分布(Rσ)が±19%と大きいもので
あることが判る。
From FIG. 3, the transmittance (T) is 22 to 57 over the entire visible range.
%, The variation with respect to the central value [(2257) × 1/2], that is, the transmittance distribution (Tσ) is as large as ± 18%, and the reflectance (R) is 40 to 78% in the entire visible region. It can be seen that the variation with respect to the central value [(40 + 78) × 1/2], that is, the reflectance distribution (Rσ) is as large as ± 19%.

また、この分光フイルターは、誘電体薄膜を有しない
ものであるため耐久性に劣り、安定した分光特性を発揮
させにくいという難点があることも判明した。なお、こ
の分光フイルターの平均透過率(Ta)は37.5%、平均反
射率(Ra)は62.5%であつた。
In addition, it has been found that this spectral filter does not have a dielectric thin film, and thus has poor durability and has difficulty in exhibiting stable spectral characteristics. The average transmittance (Ta) and average reflectance (Ra) of the spectral filter were 37.5% and 62.5%, respectively.

実施例2 第1層のZnSからなる誘電体薄膜の膜厚を500Åに変更
した以外は、実施例1と同様にして分光フイルターを作
製した。この分光フイルターにつき、実施例1と同様に
して光学特性を調べたところ、透過率(T)の範囲は35
〜53%で、透過率分布(Tσ)は±9%であり、反射率
(R)の範囲は47〜65%で、反射率分布(Rσ)は±9
%であつた。また、この分光フイルターの平均透過率
(Ta)は47%、平均反射率(Ra)は53%であつた。
Example 2 A spectral filter was manufactured in the same manner as in Example 1 except that the thickness of the first layer of a dielectric thin film made of ZnS was changed to 500 °. When the optical characteristics of this spectral filter were examined in the same manner as in Example 1, the range of the transmittance (T) was 35
5353%, the transmittance distribution (Tσ) is ± 9%, the reflectance (R) range is 47-65%, and the reflectance distribution (Rσ) is ± 9%.
%. The spectral filter had an average transmittance (Ta) of 47% and an average reflectance (Ra) of 53%.

実施例3,4 第3層のZnSからなる誘電体薄膜の膜厚を、500Å(実
施例3)および1,000Å(実施例4)に変更した以外
は、実施例1と同様にして2種の分光フイルターを作製
した。各分光フイルターにつき、実施例1と同様にして
光学特性を調べた。この結果をつぎの第1表に示す。
Examples 3 and 4 The same procedure as in Example 1 was repeated except that the thickness of the third dielectric thin film made of ZnS was changed to 500 ° (Example 3) and 1,000 ° (Example 4). A spectral filter was prepared. The optical characteristics of each spectral filter were examined in the same manner as in Example 1. The results are shown in Table 1 below.

比較例2〜5 第3層のZnSからなる誘電体薄膜の膜厚を、200Å(比
較例2)、300Å(比較例3)、1,500Å(比較例4)お
よび2,000Å(比較例5)に変更した以外は、実施例1
と同様にして4種の分光フイルターを作製した。各分光
フイルターにつき、実施例1と同様にして光学特性を調
べた。この結果をつぎの第1表に示す。
Comparative Examples 2 to 5 The thickness of the third layer of the dielectric thin film made of ZnS was changed to 200 ° (Comparative Example 2), 300 ° (Comparative Example 3), 1,500 ° (Comparative Example 4), and 2,000 ° (Comparative Example 5). Example 1 except for the change
In the same manner as described above, four types of spectral filters were produced. The optical characteristics of each spectral filter were examined in the same manner as in Example 1. The results are shown in Table 1 below.

上記第1表の結果から明らかなように、ZnSからなる
第3層の誘電体薄膜の膜厚を、いずれもこの発明の範囲
内である500〜1,000Åに設定した実施例3,4の分光フイ
ルターは、透過率分布(Tσ)および反射率分布(R
σ)がそれぞれ±12%以下に抑えられているのに対し、
上記範囲外の膜厚とした比較例2〜5の分光フイルター
は上記両分布の一方または両方が±12%を超える値とな
つており、この発明の目的とするような入射光とほぼ同
一色相の透過光および反射光を得にくいものであること
が判る。
As is clear from the results in Table 1 above, the spectroscopy of Examples 3 and 4 in which the thickness of the third dielectric thin film made of ZnS was set to 500 to 1,000 °, which is within the range of the present invention. The filter has a transmittance distribution (Tσ) and a reflectance distribution (R
σ) is suppressed to ± 12% or less,
In the spectral filters of Comparative Examples 2 to 5 in which the film thickness was outside the above range, one or both of the above distributions had a value exceeding ± 12%, and the hue was almost the same as that of the incident light as the object of the present invention. It can be seen that transmitted light and reflected light are difficult to obtain.

実施例5 第1,3層の誘電体薄膜をそれぞれ膜厚650ÅのSiOx(0
<x<2)からなるものに変更した以外は、実施例1と
同様にして分光フイルターを作製した。この分光フイル
ターにつき、実施例1と同様にして光学特性を調べたと
ころ、透過率(T)の範囲は35〜43%で、透過率分布
(Tσ)は±4%であり、反射率(R)の範囲は57〜65
%で、反射率分布(Rσ)は±4%であつた。また、こ
の分光フイルターの平均透過率(Ta)は40%、平均反射
率(Ra)は59%であつた。
Example 5 First and third dielectric thin films were each formed of SiO x (0
A spectral filter was produced in the same manner as in Example 1 except that the spectral filter was changed to that of <x <2). When the optical characteristics of this spectral filter were examined in the same manner as in Example 1, the range of the transmittance (T) was 35 to 43%, the transmittance distribution (Tσ) was ± 4%, and the reflectance (R ) Ranges from 57 to 65
%, The reflectance distribution (Rσ) was ± 4%. The spectral filter had an average transmittance (Ta) of 40% and an average reflectance (Ra) of 59%.

実施例6 第2層の金属薄膜を膜厚130ÅのAlからなるものに変
更した以外は、実施例1と同様にして分光フイルターを
作製した。この分光フイルターにつき、実施例1と同様
にして光学特性を調べたところ、透過率(T)の範囲は
35〜39%で、透過率分布(Tσ)は±2%であり、反射
率(R)の範囲は53〜61%で、反射率分布(Rσ)は±
4%であつた。また、この分光フイルターの平均透過率
(Ta)は37%、平均反射率(Ra)は56%であつた。
Example 6 A spectral filter was produced in the same manner as in Example 1 except that the second metal thin film was changed to a layer made of Al having a thickness of 130 °. When the optical characteristics of this spectral filter were examined in the same manner as in Example 1, the transmittance (T) range was
35 to 39%, the transmittance distribution (Tσ) is ± 2%, the reflectance (R) range is 53 to 61%, and the reflectance distribution (Rσ) is ± 2%.
It was 4%. The average transmittance (Ta) of this spectral filter was 37%, and the average reflectance (Ra) was 56%.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の分光フイルターの一例を示す断面
図、第2図は実施例1の分光フイルターの光学特性を示
す特性図、第3図は比較例1の分光フイルターの光学特
性を示す特性図である。 1……透明基体、2,4……誘電体薄膜、3……金属薄膜
FIG. 1 is a cross-sectional view showing an example of the spectral filter of the present invention, FIG. 2 is a characteristic view showing optical characteristics of the spectral filter of Example 1, and FIG. 3 is a characteristic showing optical characteristics of the spectral filter of Comparative Example 1. FIG. 1 ... Transparent substrate, 2,4 ... Dielectric thin film, 3 ... Metal thin film

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】透明基体の片面に第1層としての誘電体薄
膜と第2層としての膜厚50〜250Åの金属薄膜と第3層
としての上記第1層と同種の材料からなる膜厚500〜1,0
00Åの誘電体薄膜とがこの順に積層されてなり、かつ上
記第1層および第3層の誘電体薄膜はMgF2、SiOx、SnOx
(いずれも0<x≦2)、ZnSの中から選ばれる誘電体
材料からなり、可視光線透過率の可視域(400〜800nm)
全域のばらつきが中心値〔(最大透過率+最小透過率)
×1/2〕に対し±12%以下、可視光線反射率の同ばらつ
きが中心値〔(最大反射率+最小反射率)×1/2〕に対
し±12%以下であることを特徴とする入射光を透過光と
反射光とに分離するための分光フイルター。
1. A transparent base material having a dielectric thin film as a first layer, a metal thin film having a thickness of 50 to 250 ° as a second layer, and a film made of the same material as the first layer as a third layer on one surface of a transparent substrate. 500-1,0
And a first and third dielectric thin films formed of MgF 2 , SiO x , and SnO x.
(Both 0 <x ≦ 2), made of a dielectric material selected from ZnS, in the visible region of visible light transmittance (400 to 800 nm)
The variation in the whole area is the central value [(maximum transmittance + minimum transmittance)
× 1/2] or less and ± 12% or less with respect to the central value [(maximum reflectance + minimum reflectance) × 1/2]. A spectral filter for separating incident light into transmitted light and reflected light.
【請求項2】可視光線透過率の可視域(400〜800nm)全
域での平均値が30〜70%の範囲、可視光線反射率の同平
均値が30〜70%の範囲にある請求項(1)に記載の分光
フイルター。
2. The method according to claim 1, wherein the average value of the visible light transmittance in the entire visible region (400 to 800 nm) is in the range of 30 to 70%, and the average value of the visible light reflectance is in the range of 30 to 70%. The spectral filter according to 1).
JP63142263A 1988-06-09 1988-06-09 Spectral filter Expired - Fee Related JP2746602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63142263A JP2746602B2 (en) 1988-06-09 1988-06-09 Spectral filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63142263A JP2746602B2 (en) 1988-06-09 1988-06-09 Spectral filter

Publications (2)

Publication Number Publication Date
JPH01310302A JPH01310302A (en) 1989-12-14
JP2746602B2 true JP2746602B2 (en) 1998-05-06

Family

ID=15311276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63142263A Expired - Fee Related JP2746602B2 (en) 1988-06-09 1988-06-09 Spectral filter

Country Status (1)

Country Link
JP (1) JP2746602B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4171970B2 (en) * 2002-09-04 2008-10-29 ソニー株式会社 Projection screen and method of manufacturing the same
TWI237128B (en) 2003-05-15 2005-08-01 Mitsui Chemicals Inc Reflector, usage of relfector, and manufacture method of reflector
JP4552733B2 (en) * 2005-03-31 2010-09-29 ソニー株式会社 Screen and manufacturing method thereof
JP5686344B2 (en) * 2011-03-25 2015-03-18 独立行政法人産業技術総合研究所 Wavelength filter, wavelength filtering device, and wavelength filtering method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028602A (en) * 1983-07-26 1985-02-13 Minolta Camera Co Ltd Half mirror
JPS6036840A (en) * 1983-08-05 1985-02-26 Kazuhiko Sakamoto Heat exchanging process with shower chimney type
JPS61124902A (en) * 1984-11-22 1986-06-12 Asahi Glass Co Ltd Formation of heat ray reflecting film
JPS63205609A (en) * 1987-02-20 1988-08-25 Unitika Ltd Heat ray reflection film
JPS6430743A (en) * 1987-07-27 1989-02-01 Asahi Chemical Ind Selective light transmitting film

Also Published As

Publication number Publication date
JPH01310302A (en) 1989-12-14

Similar Documents

Publication Publication Date Title
JP3446833B2 (en) Conductive light attenuating anti-reflection coating and article provided with the same
US5728456A (en) Methods and apparatus for providing an absorbing, broad band, low brightness, antireflection coating
JP3444880B2 (en) Conductive light attenuation type anti-reflective coating
AU758933B2 (en) Partial reflector
US3829197A (en) Antireflective multilayer coating on a highly refractive substrate
JPH0854507A (en) Conductive contrast-improved filter which can select contrast
EP0509050B1 (en) Magnesium film reflectors
JPH10268130A (en) Light absorbing filter
JP2746602B2 (en) Spectral filter
JP2566634B2 (en) Multi-layer antireflection film
JPS63134232A (en) Infrared reflecting article having high transmittance
JP4063062B2 (en) Reflector
JPH0251102A (en) Spectral filter
JP6727454B2 (en) Antireflection film, optical element and optical system
JP3550894B2 (en) Anti-reflective coating
JPH01222204A (en) Spectral filter
JP3502150B2 (en) Anti-reflective coating
AU636009C (en) Magnesium film reflectors
JP2003121623A (en) High reflective mirror and high reflective mirror optical system
JPH0720301A (en) Anti-reflection film
JP2754516B2 (en) Silicon dioxide thin film
JPH06138311A (en) Phaseless reflection mirror
JPH02250001A (en) Antireflection film
JPS58150901A (en) Spectacle lens
KR20020022338A (en) Light absorbing multi-layered coating films for transparent substrates

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees