JPS63205609A - Heat ray reflection film - Google Patents

Heat ray reflection film

Info

Publication number
JPS63205609A
JPS63205609A JP3884187A JP3884187A JPS63205609A JP S63205609 A JPS63205609 A JP S63205609A JP 3884187 A JP3884187 A JP 3884187A JP 3884187 A JP3884187 A JP 3884187A JP S63205609 A JPS63205609 A JP S63205609A
Authority
JP
Japan
Prior art keywords
film
layer
heat ray
alnx
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3884187A
Other languages
Japanese (ja)
Inventor
Kazuhide Okuda
奥田 和秀
Michihiro Yamashita
山下 満弘
Yasumitsu Watanabe
渡辺 康光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP3884187A priority Critical patent/JPS63205609A/en
Publication of JPS63205609A publication Critical patent/JPS63205609A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the transmittance of visible rays and durability by providing an AlNx film as a 1st layer, Ag film as a 2nd layer and AlNx film as a 3rd layer successively from a transparent substrate side on the transparent substrate. CONSTITUTION:The AlNx film is formed as the 1st layer counted from the transparent substrate surface, the Ag film as the 2nd layer and the AlNx film as the 3rd layer on the transparent substrate. X of the AlNx film is specified to >=0.4 and <=1 and the thicknesses of the AlNx films of the 1st layer and 3rd layer are specified to 100-5,000Angstrom . The thickness of the Ag film of the 2nd layer is specified to 30-300Angstrom . The transparent substrate is exemplified by a glass plate, plastic plate, plastic film, etc. The transmittance of the visible rays and the durability are thereby improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、太陽光線中に含まれる熱線を効率よく反射し
、かつ可視光線の透過率が良好で、しかも耐久性に優れ
た熱線反射膜に関するものであり。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a heat ray reflective film that efficiently reflects heat rays contained in sunlight, has good visible light transmittance, and has excellent durability. It is related to.

さらに1面発熱体としても応用可能である。Furthermore, it can be applied as a one-sided heating element.

(従来の技術) 熱線反射膜は、建物、自動車窓等の熱線の透過による内
部温度の上昇を防止し、空調の効率を上げる目的で、ガ
ラスまたはフィルム上に形成され。
(Prior Art) A heat ray reflective film is formed on glass or film for the purpose of preventing an increase in internal temperature due to the transmission of heat rays through buildings, automobile windows, etc., and increasing the efficiency of air conditioning.

使用されている。It is used.

従来の熱線反射膜は、第1層および第3層としてTiO
2,ITO,ZnS膜等の酸化物、硫化物が提案されて
いる(特開昭51−66841号)。
Conventional heat ray reflective films use TiO as the first and third layers.
2. Oxides and sulfides such as ITO and ZnS films have been proposed (Japanese Patent Laid-Open No. 66841/1984).

しかしながら、第1層および第3層がT i Ozまた
はITO膜等の酸化物では、光、酸素等の励起により第
2層のAg原子が酸化、もしくは第1層および第3層の
Ti0z膜またはITO膜ヘマイグレーションが起こり
、可視光線の透過率が低下する。
However, when the first and third layers are oxides such as TiOz or ITO films, the Ag atoms in the second layer are oxidized by excitation of light, oxygen, etc., or the TiOz films or ITO films of the first and third layers are ITO film hemigration occurs and visible light transmittance decreases.

また、このような問題は、ZnS膜においては熱線の反
射効果が失われる等、実用上問題となっている。
Moreover, such a problem poses a practical problem in that the ZnS film loses its heat ray reflection effect.

したがって2本発明の目的は、太陽光線中に含まれる熱
線を効率よく反射し、かつ可視光線の透過率が良好で、
しかも耐久性に優れた熱線反射膜を提供することにある
Therefore, two objects of the present invention are to efficiently reflect heat rays contained in sunlight, and have good visible light transmittance;
Moreover, it is an object of the present invention to provide a heat ray reflective film with excellent durability.

(問題点を解決するための手段) 本発明者らは、上記のごとき問題を解決し、太陽光線中
に含まれる熱線を効率よく反射し、かつ可視光線の透過
率が良好で、しかも耐久性に優れた熱線反射膜について
鋭意研究の結果、第1層および第3NとしてAji!N
xの窒化膜を設けることにより本発明の目的が達成しう
ろことを見出し。
(Means for Solving the Problems) The present inventors have solved the above-mentioned problems, and have achieved a structure that efficiently reflects heat rays contained in sunlight, has good visible light transmittance, and is durable. As a result of intensive research on heat ray reflective films with excellent properties, Aji! N
It was discovered that the object of the present invention could be achieved by providing a nitride film of x.

本発明に到達した。We have arrived at the present invention.

すなわち1本発明は、透明基体上に、該透明基体面から
数えて第1層としてA/!Nx膜を、第2層としてAg
膜を、第3層としてAj!Nx膜を有する多層膜であり
、AlNx膜のXが0.4以上。
That is, one aspect of the present invention is to form A/! on a transparent substrate as the first layer counted from the surface of the transparent substrate. Nx film as the second layer
Aj! film as the third layer! It is a multilayer film having an Nx film, and the X of the AlNx film is 0.4 or more.

1以下、第1層および第3層のAffNx膜の厚さが1
00Å〜5000人であり、第2層のAg膜の厚さが3
0Å〜300人であることを特徴とする熱線反射膜を要
旨とするものである。
1 or less, the thickness of the first and third layer AffNx films is 1
00 Å to 5000 Å, and the thickness of the second layer Ag film is 3
The gist of the present invention is a heat ray reflective film characterized by a thickness of 0 Å to 300 Å.

本発明の透明基体としては、ガラス板、プラスチック板
、プラスチックフィルム等の透明基体があげられる。
Examples of the transparent substrate of the present invention include transparent substrates such as glass plates, plastic plates, and plastic films.

本発明の熱線反射膜は、このような透明基体に第1Nお
よび第3層として厚さ100Å〜5000人のAlNx
膜、第2層として厚さ30Å〜300人のAg膜を順次
成膜してなる多層膜を設けることにより得られる。
The heat ray reflective film of the present invention has a thickness of 100 Å to 5,000 AlNx as the first and third layers on such a transparent substrate
This can be obtained by providing a multilayer film formed by sequentially forming Ag films of 30 Å to 300 thicknesses as the second layer.

第1層および第3層のAj2Nx膜は、イオンブレーテ
ィング法、スパッタリング法等の真空薄膜形成法により
形成することができるが、薄膜の付着強度、成膜速度等
の点から、高周波による。またはホローカソードガンを
用いたイオンブレーティング法や、プラズマ発生装置を
用いたイオンビームミキシング法、シートプラズマ法等
が望ましい。Aj2Nx膜の膜厚は、100Å〜500
0人。
The Aj2Nx films of the first layer and the third layer can be formed by a vacuum thin film forming method such as an ion blasting method or a sputtering method, but from the viewpoint of thin film adhesion strength, film forming speed, etc., high frequency is used. Alternatively, an ion brating method using a hollow cathode gun, an ion beam mixing method using a plasma generator, a sheet plasma method, etc. are preferable. The thickness of the Aj2Nx film is 100 Å to 500 Å.
0 people.

好ましくは200Å〜1000人である。膜厚が100
人未満では透過率が十分でなく、5000人を超える場
合は経済性の面で実用的でない。また、Xは真空薄膜形
成法および薄膜形成条件により変化するものであるが、
X<0.4では十分な可視光の透過性が得られず、好ま
しくない。
Preferably it is 200 Å to 1000 people. Film thickness is 100
If the number of people is less than 5,000, the transmittance is insufficient, and if the number of people is more than 5,000, it is not practical from an economic standpoint. In addition, although X varies depending on the vacuum thin film forming method and thin film forming conditions,
When X<0.4, sufficient visible light transmittance cannot be obtained, which is not preferable.

第2層のAg膜は、真空蒸着法、イオンブレーティング
法、スパッタリング法等のような通常の真空薄膜形成法
により形成することができるが。
The second layer Ag film can be formed by a normal vacuum thin film forming method such as a vacuum evaporation method, an ion blating method, a sputtering method, or the like.

薄膜の付着強度等の点から、アルゴンプラズマ中でAg
を蒸発させてAg膜を堆積させるイオンブレーティング
法が望ましい。Ag膜の膜厚は30Å〜300人である
。膜厚が30人未満では熱線の反射効果が十分でなく、
300人を超える場合は十分な可視光の透過性が得られ
ない。
From the point of view of thin film adhesion strength, etc., Ag in argon plasma is
It is desirable to use an ion blating method in which the Ag film is deposited by evaporating the Ag film. The thickness of the Ag film is 30 Å to 300 Å. If the film thickness is less than 30, the heat ray reflection effect will not be sufficient,
If there are more than 300 people, sufficient visible light transparency cannot be obtained.

また、付着力向上のために、アンカー処理剤の塗布、フ
ィルム表面の放電処理または化学処理等も同時に行うこ
とが可能である。また、必要に応じて、この膜上に保護
コーティングを施すこともできる。
Furthermore, in order to improve adhesion, it is possible to simultaneously apply an anchor treatment agent and perform discharge treatment or chemical treatment on the film surface. A protective coating can also be applied on this membrane, if desired.

(実施例) 次に、実施例をあげて本発明をさらに具体的に説明する
(Example) Next, the present invention will be described in more detail with reference to Examples.

実施例1 ポリエチレンテレフタレートフィルムとAlおよびAg
ペレットを各所定の位置にセットした真空装置内を、 
 I X 10−’Torrまで排気した後、窒素ガス
をI X 10−’Torr導入し、高周波プラズマ(
13,56MHz、  300 W)を発生させ、電子
銃によりAfペレットを加熱蒸発させてAIを窒素プラ
ズマ下で反応させ、3人/Sの成膜速度で第1層のA/
Nx膜を膜厚300人で作成した。
Example 1 Polyethylene terephthalate film and Al and Ag
Inside the vacuum device with pellets set in each predetermined position,
After exhausting to I x 10-' Torr, nitrogen gas was introduced to I x 10-' Torr, and high-frequency plasma (
13.56 MHz, 300 W), the Af pellets were heated and evaporated using an electron gun, and the AI was reacted under nitrogen plasma.
An Nx film was created with a thickness of 300.

室温まで冷却の後、Arガスを2 X 10−’Tor
r導入し、高周波プラズマ(13,56Mllz、  
50 W)を発生させ、電子銃によりAgペレットを加
熱仄発させて、5人/Sの成膜速度で第2層のAg膜を
膜厚150人で形成した。
After cooling to room temperature, Ar gas was heated to 2 × 10-'Tor.
high frequency plasma (13,56 Mllz,
50 W) and heated and ignited the Ag pellets with an electron gun to form a second layer of Ag film with a film thickness of 150 mm at a film formation rate of 5 mm/S.

次に、第1NのA6Nx膜形成方法と同様な方法で第3
NのAj2Nx膜を膜厚300人で形成し。
Next, a third film is formed using the same method as the first N film forming method.
An Aj2Nx film of N was formed with a thickness of 300 nm.

熱線反射膜をポリエチレンテレフタレートフィルム上に
形成した。AlNx1llのXは、X線光電子分光装置
の測定により0.5であった。
A heat ray reflective film was formed on a polyethylene terephthalate film. X of 111 AlN was 0.5 as measured by an X-ray photoelectron spectrometer.

このようにして得られた本発明の熱線反射膜を形成した
ポリエチレンテレフタレートフィルムを。
The thus obtained polyethylene terephthalate film on which the heat ray reflective film of the present invention was formed.

分光光度計(U−3400,日立製)により、可視光の
透過率(550nm)および熱線の反射率(1500n
m)を測定した。また、耐久性を評価するために、JI
S−L−0824規格の耐光試験機を用いて1000時
間露光後の可視光の透過率(550nm)および熱線の
反射率(1500nm)を分光光度計(U−3400,
日立製)により測定した。
Visible light transmittance (550 nm) and heat ray reflectance (1500 nm) were measured using a spectrophotometer (U-3400, manufactured by Hitachi).
m) was measured. In addition, in order to evaluate durability, JI
After 1000 hours of exposure, visible light transmittance (550 nm) and heat ray reflectance (1500 nm) were measured using a spectrophotometer (U-3400,
(manufactured by Hitachi).

得られた結果を第1表に示す。The results obtained are shown in Table 1.

比較例1 ポリエチレンテレフタレートフィルムとAlおよびAg
ベレットを各所定の位置にセットした真空装置内を、 
 I X 10−’Torrまで排気した後、窒素ガス
をI X 10−’Torr導入し、高周波プラズマ(
13,56MHz、50W)を発生させ、電子銃により
Alベレットを加熱蒸発させて/lを窒素プラズマ下で
反応させ、10人/Sの成膜速度で第1層のAlNx膜
を膜厚300人で作成した。
Comparative Example 1 Polyethylene terephthalate film and Al and Ag
Inside the vacuum device with the pellets set at each predetermined position,
After exhausting to I x 10-' Torr, nitrogen gas was introduced to I x 10-' Torr, and high-frequency plasma (
13.56 MHz, 50 W), heated and evaporated the Al pellet with an electron gun, and reacted /l under nitrogen plasma to form the first layer of AlNx film at a film-forming rate of 10 people/S to a thickness of 300 people. Created with.

室温まで冷却の後、Arガスを2 X 10−’Tor
r導入し、高周波プラズマ(13,56MHz、  3
00 W)を発生させ、電子銃によりAgベレットを加
熱蒸発させて、5人/Sの成膜速度で第2層のAg膜を
膜厚150人で形成した。
After cooling to room temperature, Ar gas was heated to 2 × 10-'Tor.
high frequency plasma (13,56MHz, 3
00 W) and heated and evaporated the Ag pellet with an electron gun to form a second layer of Ag film with a thickness of 150 mm at a film formation rate of 5 mm/S.

第1NのA#Nx膜形成方法と同様な方法で第3NのA
j2Nx膜を膜厚300人で形成し、熱線反射膜をポリ
エチレンテレフタレートフィルム上に形成した。Aj2
Nx膜のXは、X線光電子分光装置の測定により0.3
であった。
A of the 3N is formed using the same method as the 1N A#Nx film formation method.
A j2Nx film was formed to a thickness of 300 mm, and a heat ray reflective film was formed on a polyethylene terephthalate film. Aj2
The X of the Nx film is 0.3 as measured by an X-ray photoelectron spectrometer.
Met.

このようにして得られた本発明の熱線反射膜を形成した
ポリエチレンテレフタレートフィルムを。
The thus obtained polyethylene terephthalate film on which the heat ray reflective film of the present invention was formed.

実施例1と同様な方法で可視光の透過率、熱線の反射率
を評価した。
Visible light transmittance and heat ray reflectance were evaluated in the same manner as in Example 1.

比較例2 ポリエチレンテレフタレートフィルムとTiおよびAg
ペレットを各所定の位置にセットした真空装置内を、 
 I X 10−’Torrまで排気した後、酸素ガス
を4 X 10−’Torri人し、高周波プラズマ(
13,56MHz、50W)を発生させ、電子銃により
Tiベレットを加熱蒸発させてTiを酸素プラズマ下で
反応させ、3人/Sの成膜速度で第1層のTi0z膜を
膜厚300人で作成した。
Comparative Example 2 Polyethylene terephthalate film and Ti and Ag
Inside the vacuum device with pellets set in each predetermined position,
After evacuating to I X 10-' Torr, oxygen gas was pumped up to 4 X 10-' Torr, and high-frequency plasma (
13.56MHz, 50W), heated and evaporated the Ti pellet with an electron gun, reacted Ti under oxygen plasma, and formed the first Ti0z film with a film thickness of 300 people at a deposition rate of 3 people/S. Created.

室温まで冷却の後、Arガスを2 X 10−’Tor
r導入し、高周波プラズマ(13,56MHz、  5
0 W)を発生させ、電子銃によりAgベレットを加熱
1発させて、5人/Sの成膜速度で第2層のAg膜を膜
厚150人で形成した。
After cooling to room temperature, Ar gas was heated to 2 × 10-'Tor.
high frequency plasma (13,56MHz, 5
0 W) and heated the Ag pellet once with an electron gun to form a second layer of Ag film with a thickness of 150 mm at a film formation rate of 5 mm/S.

次に、第1層のTi0z膜形成方法と同様な方法で第3
1のT i Oz膜を膜厚300人で形成し、熱線反射
膜をポリエチレンテレフタレートフィルム上に形成した
Next, a third Ti0z film was formed using the same method as the first layer TiOz film formation method.
A TiOz film of No. 1 was formed to a thickness of 300 mm, and a heat ray reflective film was formed on a polyethylene terephthalate film.

このようにして得られた本発明の熱線反射膜を形成した
ポリエチレンテレフタレートフィルムを。
The thus obtained polyethylene terephthalate film on which the heat ray reflective film of the present invention was formed.

実施例1と同様な方法で可視光の透過率、熱線の反射率
および耐久性を評価した。
Visible light transmittance, heat ray reflectance, and durability were evaluated in the same manner as in Example 1.

比較例3 ポリエチレンテレフタレートフィルムとZnSおよびA
gペレットを各所定の位置にセットした真空装置内を、
  I X 10−sTorrまで排気した後。
Comparative Example 3 Polyethylene terephthalate film and ZnS and A
Inside the vacuum device with g pellets set at each predetermined position,
After pumping down to I x 10-sTorr.

ArガスをI X 10−’Torr導入し、高周波プ
ラズマ(13,56MHz、  50W)を発生させ、
電子銃によりZnSベレットを加熱蒸発させてZnSを
Arプラズマ下で反応させ、3人/Sの成膜速度で第1
NのZnS膜を膜厚300人で作成した。
Introducing Ar gas at I x 10-' Torr and generating high-frequency plasma (13.56 MHz, 50 W).
The ZnS pellet was heated and evaporated using an electron gun, and the ZnS was reacted under Ar plasma, and the first film was formed at a deposition rate of 3 persons/s.
A ZnS film of N was created with a thickness of 300.

室温まで冷却の後、Arガスを2 X 10−’Tor
r導入し、高周波プラズマ(13,56MHz、  5
0 W)を発生させ、電子銃によりAgベレットを加熱
蒸発させて、5人/Sの成膜速度で第2層のAg膜を膜
厚150人で形成した。
After cooling to room temperature, Ar gas was heated to 2 × 10-'Tor.
high frequency plasma (13,56MHz, 5
0 W) was generated, and the Ag pellet was heated and evaporated with an electron gun to form a second layer of Ag film with a thickness of 150 mm at a film formation rate of 5 mm/S.

次に、第1HのZnS膜形成方法と同様な方法で第3層
のZnS膜を膜厚300人で形成し、熱線反射膜をポリ
エチレンテレフタレートフィルム上に形成した。
Next, a third layer of ZnS film was formed to a thickness of 300 mm using the same method as the ZnS film forming method of 1H, and a heat ray reflective film was formed on the polyethylene terephthalate film.

このようにして得られた本発明の熱線反射膜を形成した
ポリエチレンテレフタレートフィルムを。
The thus obtained polyethylene terephthalate film on which the heat ray reflective film of the present invention was formed.

実施例1と同様な方法で可視光の透過率、熱線の反射率
および耐久性を評価した。
Visible light transmittance, heat ray reflectance, and durability were evaluated in the same manner as in Example 1.

(発明の効果) 本発明の熱線反射膜は、太陽光線に含まれる熱線を効率
よく反射し、かつ可視光線の透過率が良好で、しかも耐
久性が優れたものである。したがって、建物、自動車窓
用等の材料として広く用いることができる。
(Effects of the Invention) The heat ray reflective film of the present invention efficiently reflects heat rays contained in sunlight, has good visible light transmittance, and has excellent durability. Therefore, it can be widely used as a material for buildings, automobile windows, etc.

Claims (3)

【特許請求の範囲】[Claims] (1)透明基体上に、該透明基体面から数えて第1層と
してAlNx膜を、第2層としてAg膜を、第3層とし
てAlNx膜を有する多層膜であることを特徴とする熱
線反射膜。
(1) Heat ray reflection characterized by being a multilayer film having an AlNx film as a first layer, an Ag film as a second layer, and an AlNx film as a third layer counted from the surface of the transparent substrate on a transparent substrate. film.
(2)AlNx膜のXが0.4以上、1以下であること
を特徴とする特許請求の範囲第1項記載の熱線反射膜。
(2) The heat ray reflective film according to claim 1, wherein X of the AlNx film is 0.4 or more and 1 or less.
(3)第1層および第3層のAlNx膜の厚さが100
Å〜5000Åであり、第2層のAg膜の厚さが30Å
〜300Åであることを特徴とする特許請求の範囲第1
項記載の熱線反射膜。
(3) The thickness of the first and third layer AlNx films is 100
The thickness of the second layer Ag film is 30 Å.
Claim 1 characterized in that it is ~300 Å
The heat ray reflective film described in Section 1.
JP3884187A 1987-02-20 1987-02-20 Heat ray reflection film Pending JPS63205609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3884187A JPS63205609A (en) 1987-02-20 1987-02-20 Heat ray reflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3884187A JPS63205609A (en) 1987-02-20 1987-02-20 Heat ray reflection film

Publications (1)

Publication Number Publication Date
JPS63205609A true JPS63205609A (en) 1988-08-25

Family

ID=12536426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3884187A Pending JPS63205609A (en) 1987-02-20 1987-02-20 Heat ray reflection film

Country Status (1)

Country Link
JP (1) JPS63205609A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141901U (en) * 1987-03-09 1988-09-19
JPH01310302A (en) * 1988-06-09 1989-12-14 Nitto Denko Corp Spectral filter
JP2001523358A (en) * 1998-03-03 2001-11-20 サン−ゴバン ビトラージュ Transparent substrate provided with laminate reflecting heat radiation
WO2014021325A1 (en) * 2012-07-31 2014-02-06 株式会社京都薄膜応用技術研究所 Transparent conductive film and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141901U (en) * 1987-03-09 1988-09-19
JPH01310302A (en) * 1988-06-09 1989-12-14 Nitto Denko Corp Spectral filter
JP2001523358A (en) * 1998-03-03 2001-11-20 サン−ゴバン ビトラージュ Transparent substrate provided with laminate reflecting heat radiation
WO2014021325A1 (en) * 2012-07-31 2014-02-06 株式会社京都薄膜応用技術研究所 Transparent conductive film and method for producing same
JP2014028986A (en) * 2012-07-31 2014-02-13 Soichi Ogawa Transparent conductive film, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4861669A (en) Sputtered titanium oxynitride films
US5563734A (en) Durable low-emissivity solar control thin film coating
US6333084B1 (en) Double-sided reflector films
US4900633A (en) High performance multilayer coatings
EP0456487A2 (en) Interference filters
JPH02160641A (en) Heat ray reflecting glass
EP1380553A1 (en) Glazing panel
JP2007533856A5 (en)
JPH01273001A (en) Antireflection film of optical parts made of synthetic resin
JPS63205609A (en) Heat ray reflection film
JPS63238260A (en) Formation of heat ray reflecting film
CN1117175C (en) Process for coating on glass to simulate low-radiation film and able to be thermally treated
JPH01279202A (en) Reflecting body
JP2811885B2 (en) Heat shielding glass
JPH01279201A (en) Reflecting body
JPH02102036A (en) Article covered with optical film
JPH01299028A (en) Heat ray reflecting film
JPH0764598B2 (en) Infrared blocking glass
JPS61124902A (en) Formation of heat ray reflecting film
JP3266625B2 (en) Manufacturing method of ultraviolet shielding film
Ohsaki et al. Bendable and temperable solar control glass
JPH04243935A (en) Low electric wave-reflecting and thermal ray-reflecting glass and production thereof
JP3438555B2 (en) Highly transparent silicon oxide deposited film
EP4350027A1 (en) Composite film manufacturing method and organic/inorganic hybrid film manufacturing method
JPH02113201A (en) Article coated with optical multilayered film