JP2020024237A - Optical product - Google Patents

Optical product Download PDF

Info

Publication number
JP2020024237A
JP2020024237A JP2016242185A JP2016242185A JP2020024237A JP 2020024237 A JP2020024237 A JP 2020024237A JP 2016242185 A JP2016242185 A JP 2016242185A JP 2016242185 A JP2016242185 A JP 2016242185A JP 2020024237 A JP2020024237 A JP 2020024237A
Authority
JP
Japan
Prior art keywords
optical product
layer
refractive index
multilayer film
product according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016242185A
Other languages
Japanese (ja)
Inventor
慶二 松坂
Keiji Matsuzaka
慶二 松坂
正章 能勢
Masaaki Nose
正章 能勢
中村 勝也
Katsuya Nakamura
勝也 中村
洋輔 青木
Yosuke Aoki
洋輔 青木
秀和 今関
Hidekazu Imazeki
秀和 今関
靖 水町
Yasushi Mizumachi
靖 水町
康之 野村
Yasuyuki Nomura
康之 野村
敬二 濱
Keiji Hama
敬二 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2016242185A priority Critical patent/JP2020024237A/en
Priority to PCT/JP2017/033841 priority patent/WO2018110017A1/en
Publication of JP2020024237A publication Critical patent/JP2020024237A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Surface Treatment Of Glass (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

To provide an optical product which can provide desired spectral characteristic while exhibiting a catalytic effect.SOLUTION: The optical product is provided that includes a glass substrate having a multilayer film of three or more layers formed thereon, the multilayer film is configured to adjust spectral characteristic of the optical product by combining at least one low refractive index layer with at least one high refractive index layer. The uppermost layer furthest from the glass substrate is a low refractive index layer, and a high refractive index layer next to the uppermost layer is a functional layer principally made of a photocatalytic metal oxide. The optical product satisfies the following conditional expressions: 60nm≤TL≤350nm ...(1), 220nm≤Tcat≤700nm ...(2), where TL represents a thickness of the uppermost layer, and Tcat represents a thickness of the functional layer.SELECTED DRAWING: Figure 1

Description

本発明は、多層膜を成膜した光学製品に関する。   The present invention relates to an optical product having a multilayer film formed thereon.

例えば酸化チタンは、高い光触媒効果を有することが知られている。より具体的には、酸化チタンにUV光が照射されると、酸化還元反応が強く促進されると共に、酸化チタンの表面が、水に濡れ易い親水性を呈するため、雨等の水滴で洗浄される、いわゆるセルフクリーニング作用を有することが知られている。   For example, titanium oxide is known to have a high photocatalytic effect. More specifically, when the titanium oxide is irradiated with UV light, the oxidation-reduction reaction is strongly promoted, and the surface of the titanium oxide exhibits a hydrophilic property that is easily wetted by water, and thus is washed with water drops such as rain. Is known to have a so-called self-cleaning action.

例えば特許文献1には、低屈折率層及び高屈折率層を交互に積層し、最上層が低屈折率層である多層反射防止膜を有し、少なくとも最上層の直下の高屈折率層が光触媒活性を有する酸化チタン又は酸化チタンを含有する複合膜のような金属酸化物の層である物品が開示されている。かかる物品は、例えば眼鏡、カメラ、双眼鏡、顕微鏡などのレンズとして用いることができ、防汚、防曇などの機能を発揮できるとされている。かかる技術を、汚れやすく且つユーザーが清掃しにくい,例えば車載用カメラやガラス建材などの光学製品に適用したいという要請がある。   For example, in Patent Document 1, a low-refractive-index layer and a high-refractive-index layer are alternately laminated, and the uppermost layer has a multilayer antireflection film that is a low-refractive-index layer. Articles are disclosed that are layers of metal oxides, such as titanium oxide or composite films containing titanium oxide having photocatalytic activity. Such articles can be used, for example, as lenses for glasses, cameras, binoculars, microscopes, and the like, and are said to be able to exhibit functions such as antifouling and antifogging. There is a demand that such a technology be applied to optical products such as a vehicle-mounted camera and a glass building material that are easily soiled and difficult for the user to clean.

特開2000−329904号公報JP 2000-329904 A

ところで、特許文献1の技術では、光触媒機能を発揮するTiO2の膜厚が200nm以下となっており、汚れやすい環境に置かれた光学製品に対し十分な光触媒効果を実現することができない恐れがある。一方で、TiO2の膜厚を増大させれば、ある程度光触媒機能を発揮できるようにはなるが、それにより所望の光学特性を得ることができなくなるという問題もある。 By the way, in the technique of Patent Document 1, the film thickness of TiO 2 that exerts a photocatalytic function is 200 nm or less, and there is a possibility that a sufficient photocatalytic effect cannot be realized for an optical product placed in an environment that is easily contaminated. is there. On the other hand, if the film thickness of TiO 2 is increased, the photocatalytic function can be exhibited to some extent, but there is also a problem that desired optical characteristics cannot be obtained.

本発明の目的の1つは、光触媒効果を発揮しつつ、所望の分光特性を得ることができる光学製品を提供することにある。   An object of the present invention is to provide an optical product that can obtain desired spectral characteristics while exhibiting a photocatalytic effect.

本発明の光学製品は、3層以上の多層膜を成膜したガラス基材を有する光学製品において、
前記多層膜は、少なくとも1層の低屈折率層と、少なくとも1層の高屈折率層とを組み合わせて用いることで、前記光学製品の分光特性を調整するようになっており、
前記ガラス基材から最も遠い最上層が前記低屈折率層であり、
前記最上層に隣接した前記高屈折率層が光触媒機能を有する金属酸化物を主成分とする機能層であり、
以下の条件式を満たす。
60nm≦TL≦350nm (1)
220nm≦Tcat≦700nm (2)
ここで、
TL:前記最上層の膜厚
Tcat:前記機能層の膜厚
The optical product of the present invention is an optical product having a glass substrate on which three or more multilayer films are formed,
The multilayer film adjusts the spectral characteristics of the optical product by using at least one low-refractive-index layer and at least one high-refractive-index layer in combination.
The uppermost layer farthest from the glass substrate is the low refractive index layer,
The high refractive index layer adjacent to the uppermost layer is a functional layer mainly composed of a metal oxide having a photocatalytic function,
The following conditional expression is satisfied.
60 nm ≦ TL ≦ 350 nm (1)
220 nm ≦ Tcat ≦ 700 nm (2)
here,
TL: film thickness of the uppermost layer Tcat: film thickness of the functional layer

本発明によれば、光触媒効果を発揮しつつ、所望の分光特性を得ることができる光学製品を提供することができる。   According to the present invention, it is possible to provide an optical product that can obtain desired spectral characteristics while exhibiting a photocatalytic effect.

本実施の形態にかかる光学製品の断面を模式的に示す図である。It is a figure which shows typically the cross section of the optical product concerning this Embodiment. 実施例である供試番号1−1の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of test number 1-1 which is an Example. 実施例である供試番号1−2の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of test number 1-2 which is an Example. 実施例である供試番号1−3の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of test number 1-3 which is an Example. 比較例である供試番号1−4の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of test number 1-4 which is a comparative example. 比較例である供試番号1−5の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of test number 1-5 which is a comparative example. 実施例である供試番号2−1の多層膜の分光特性を示す図であるIt is a figure which shows the spectral characteristic of the multilayer film of test number 2-1 which is an Example. 実施例である供試番号2−2の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of test number 2-2 which is an Example. 実施例である供試番号2−3の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of test number 2-3 which is an Example. 実施例である供試番号2−4の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of test number 2-4 which is an Example. 実施例である供試番号3−1の多層膜の分光特性を示す図であるIt is a figure which shows the spectral characteristic of the multilayer film of sample number 3-1 which is an Example. 実施例である供試番号3−2の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of test number 3-2 which is an Example. 実施例である供試番号3−3の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of sample number 3-3 which is an Example. 実施例である供試番号3−4の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of sample number 3-4 which is an Example. 実施例である供試番号4−1の多層膜の分光特性を示す図であるIt is a figure which shows the spectral characteristic of the multilayer film of sample number 4-1 which is an Example. 実施例である供試番号4−2の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of sample number 4-2 which is an Example. 実施例である供試番号4−3の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of sample number 4-3 which is an Example. 実施例である供試番号4−4の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of sample number 4-4 which is an Example.

以下、本発明の実施の形態を、図面を参照して説明する。図1は、本実施の形態にかかる光学製品の断面を模式的に示す図である。図1(a)に示す光学製品は、ガラス基板GL上に低屈折率層Lと高屈折率層Hとが交互に積層された構造の多層膜MCを有するものである。但し、ガラス基板GLに高屈折率層Hが接していても良い。このような光学製品は光の透過機能・反射機能を有し、例えば車載用レンズや通信用レンズ、建材として用いることができる。また図1において、ガラス基材と機能層の間に位置する層を、高屈折率層や低屈折率層の代わりに、中間屈折率層の等価膜として置換しても良い。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically illustrating a cross section of the optical product according to the present embodiment. The optical product shown in FIG. 1A has a multilayer film MC having a structure in which low refractive index layers L and high refractive index layers H are alternately laminated on a glass substrate GL. However, the high refractive index layer H may be in contact with the glass substrate GL. Such an optical product has a light transmission function and a reflection function, and can be used, for example, as a vehicle-mounted lens, a communication lens, and a building material. In FIG. 1, a layer located between the glass substrate and the functional layer may be replaced with an equivalent film of an intermediate refractive index layer instead of the high refractive index layer or the low refractive index layer.

一方、図1(b)に示す光学製品は、ガラス基板GL上に金属膜Mを成膜し、更にその上に高屈折率層Hと低屈折率層Lとが交互に積層された構造の多層膜MCを有するものである。但し金属膜Mに高屈折率層Hが接していても良い。このような光学製品は光の反射機能を有し、例えば反射鏡や建材、車載用ミラーとして用いることができる。   On the other hand, the optical product shown in FIG. 1B has a structure in which a metal film M is formed on a glass substrate GL, and a high refractive index layer H and a low refractive index layer L are alternately laminated thereon. It has a multilayer film MC. However, the high refractive index layer H may be in contact with the metal film M. Such an optical product has a light reflecting function and can be used as, for example, a reflector, a building material, or a vehicle-mounted mirror.

図1において、ガラス基材GLから最も遠い最上層が低屈折率層Lであり、最上層に隣接した高屈折率層Hが光触媒機能を有する金属酸化物の機能層である。比較的強度が高い低屈折層Lを最上層とすることで、耐傷性を向上できる。又、機能層は、最上層を通じてUV光で励起した活性酸素を用いて光触媒機能を発揮するため、最上層にできるだけ近い位置に置くことが好ましい。最上層に隣接して機能層を設けることで、例えば光触媒機能を有効に発揮できる。又、機能層として、最上層に隣接して100nm以上の膜厚とすることが望ましく、更に光触媒効果、光活性効果を持つ金属酸化物を用いることで、表面有機物を除去し最上層の親水性を維持できるので好ましい。TiO2を用いた機能層は、IADを用いて成膜すると光触媒効果が高まるので好ましい。 In FIG. 1, the uppermost layer farthest from the glass substrate GL is the low refractive index layer L, and the high refractive index layer H adjacent to the uppermost layer is a metal oxide functional layer having a photocatalytic function. By using the low refractive layer L having relatively high strength as the uppermost layer, scratch resistance can be improved. In addition, since the functional layer exerts a photocatalytic function using active oxygen excited by UV light through the uppermost layer, it is preferable to place the functional layer as close as possible to the uppermost layer. By providing a functional layer adjacent to the uppermost layer, for example, a photocatalytic function can be effectively exerted. It is desirable that the functional layer has a thickness of 100 nm or more adjacent to the uppermost layer. Further, by using a metal oxide having a photocatalytic effect and a photoactive effect, organic substances on the surface are removed and the hydrophilicity of the uppermost layer is improved. Is preferable because it can be maintained. The functional layer using TiO 2 is preferably formed by using IAD because the photocatalytic effect is enhanced.

「光触媒機能」とは、太陽光や人工光が入射することにより強力な酸化力が生じ、接触してくる有機化合物や細菌などの有害物質を有効に除去することができたり、親水作用により、水滴が表面にとどまる事を防ぎ、また油性等の汚れが定着せずに水などで洗浄されるなどのセルフクリーニング機能をいい、例えば二酸化チタンが持つ機能である。尚、「最上層に隣接する」とは、最上層と機能層が密着している場合の他、最上層と機能層との間に、その機能の発現を妨げないとみなせる層(例えば20nm以下の層)を設ける場合も含む。   The "photocatalytic function" means that strong oxidizing power is generated when sunlight or artificial light enters, and it is possible to effectively remove harmful substances such as organic compounds and bacteria that come in contact with it. A self-cleaning function that prevents water droplets from remaining on the surface and is washed with water or the like without fixing oily stains, etc., and is a function of, for example, titanium dioxide. In addition, “adjacent to the uppermost layer” means not only a case where the uppermost layer and the functional layer are in close contact with each other, but also a layer between the uppermost layer and the functional layer that can be regarded as not hindering the expression of the function (for example, 20 nm or less) Is included.

更に、本実施の形態の光学製品は以下の条件式を満たす。
60nm≦TL≦350nm (1)
220nm≦Tcat≦700nm (2)
ここで、
TL:最上層の膜厚
Tcat:最上層に隣接した高屈折率層(機能層)Hの膜厚
Further, the optical product of the present embodiment satisfies the following conditional expressions.
60 nm ≦ TL ≦ 350 nm (1)
220 nm ≦ Tcat ≦ 700 nm (2)
here,
TL: film thickness of the uppermost layer Tcat: film thickness of the high refractive index layer (functional layer) H adjacent to the uppermost layer

(1)式の値が上限以下であると、最上層を通じてUV光で励起した活性酸素をやり取りすることにより光触媒効果を発揮できる。一方、(1)式の値が下限以上であると、強固な最上膜を形成できるから十分な耐傷性を確保できる。尚、好ましくは,以下の式を満たすことである。
220nm≦Tcat≦600nm (2’)
更に好ましくは、以下の式を満たすことである。
60nm≦TL≦250nm (1’)
When the value of the expression (1) is equal to or less than the upper limit, a photocatalytic effect can be exhibited by exchanging active oxygen excited by UV light through the uppermost layer. On the other hand, when the value of the expression (1) is equal to or more than the lower limit, a strong top film can be formed, so that sufficient scratch resistance can be secured. Preferably, the following expression is satisfied.
220 nm ≦ Tcat ≦ 600 nm (2 ′)
More preferably, the following expression is satisfied.
60 nm ≦ TL ≦ 250 nm (1 ′)

(2)式の値が下限以上であると、機能層の膜厚を確保できるから、十分な光触媒効果を期待できる。一方、機能層の厚さが増大すればするほど光触媒効果を期待できるが、その代わり多層膜に要求される所望の分光特性を得にくくなるので、(2)式の値は上限以下とすることが望ましい。尚、好ましくは,以下の式を満たすことである。
250nm≦Tcat≦600nm (2’’)
When the value of the expression (2) is at least the lower limit, a sufficient photocatalytic effect can be expected because the thickness of the functional layer can be ensured. On the other hand, as the thickness of the functional layer increases, the photocatalytic effect can be expected. However, it is difficult to obtain a desired spectral characteristic required for the multilayer film. Is desirable. Preferably, the following expression is satisfied.
250 nm ≦ Tcat ≦ 600 nm (2 ″)

最上層に隣接した高屈折率層(機能層)Hが、Tiを主成分とする酸化物(例えばTiO2)から形成されていると好ましい。TiO2等のTi酸化物は光触媒効果が非常に高いからである。 It is preferable that the high refractive index layer (functional layer) H adjacent to the uppermost layer is formed of an oxide containing Ti as a main component (for example, TiO 2 ). This is because Ti oxide such as TiO 2 has a very high photocatalytic effect.

最上層がSiO2から形成されていると好ましい。夜間や屋外などではUV光が入射しにくく、Tiを主成分とする酸化物では親水効果が低下するが、かかる場合でも最上層をSiO2から形成することで親水効果を発揮でき、また耐傷性もより高められる。最上層にSiO2を用いる場合、成膜後に500℃で2時間の加熱処理を施すことで、耐傷性が向上する。 Preferably the uppermost layer is formed of SiO 2. UV light is hardly incident at night or outdoors, and the hydrophilic effect of an oxide containing Ti as a main component is reduced. However, even in such a case, the hydrophilic effect can be exhibited by forming the uppermost layer from SiO 2 , and the scratch resistance is improved. Can be further enhanced. When SiO 2 is used for the uppermost layer, the scratch resistance is improved by performing a heat treatment at 500 ° C. for 2 hours after the film formation.

最上層がSiO2とAl23の混合物(但し、SiO2の組成比が90重量%以上)から形成されていると好ましい。これにより夜間や屋外などでも親水効果を発揮でき、またSiO2とAl23の混合物とすることで耐傷性もより高められる。最上層にSiO2とAl23の混合物を用いる場合、成膜後に500℃で2時間の加熱処理を施すことで、耐傷性が向上する。尚、最上層の一部又は全部を成膜する際にイオンアシストデポジション(以下、IADという)を用いると好ましい。これにより耐傷性を向上することができる。 It is preferable that the uppermost layer is formed of a mixture of SiO 2 and Al 2 O 3 (provided that the composition ratio of SiO 2 is 90% by weight or more). Thereby, a hydrophilic effect can be exerted even at night or outdoors, and the scratch resistance can be further enhanced by using a mixture of SiO 2 and Al 2 O 3 . When a mixture of SiO 2 and Al 2 O 3 is used for the uppermost layer, the heat resistance is improved by performing a heat treatment at 500 ° C. for 2 hours after the film formation. Note that it is preferable to use ion-assisted deposition (IAD) when forming part or all of the uppermost layer. Thereby, the scratch resistance can be improved.

多層膜MCは蒸着法で成膜されており、いずれかの層はIADで成膜されていると好ましい。IADによる成膜で分光特性のシフトズレを抑制できる。   The multilayer film MC is formed by a vapor deposition method, and any one of the layers is preferably formed by IAD. Shifting of spectral characteristics can be suppressed by film formation by IAD.

図1(a)に示す多層膜MCは、可視域において反射防止特性を有すると好ましい。ここで「可視域」とは波長420nm〜680nmの範囲をいう。又、ここでの「反射防止特性」とは、可視域において光の反射率が2%以下であり、望ましくは1%以下,より望ましくは0.5%以下であることをいう。これにより可視域での反射防止効果を得られ、撮像レンズなどに用いると好適である。   The multilayer film MC shown in FIG. 1A preferably has antireflection characteristics in the visible region. Here, the “visible range” refers to a wavelength range of 420 nm to 680 nm. The “anti-reflection property” here means that the light reflectance in the visible region is 2% or less, preferably 1% or less, more preferably 0.5% or less. As a result, an antireflection effect in the visible region can be obtained, and it is suitable for use in an imaging lens or the like.

図1(a)又は(b)に示す多層膜MCは、可視域において半透過または高反射特性を有すると好ましい。ここでの「半透過特性」とは、可視域における光の透過率が30%以上、70%以下の場合をいい、「高反射特性」とは、可視域において光の反射率が90%以上であることをいう。これにより可視域での半透過ミラーや全反射ミラーが得られる。   The multilayer film MC shown in FIG. 1A or 1B preferably has a semi-transmissive or high-reflection characteristic in a visible light region. Here, the “semi-transmission characteristic” refers to a case where the light transmittance in the visible region is 30% or more and 70% or less, and the “high reflection characteristic” refers to a case where the light reflectance in the visible region is 90% or more. It means that. Thereby, a semi-transmissive mirror or a total reflection mirror in the visible region can be obtained.

図1(a)又は(b)に示す多層膜MCは、近赤外域において反射防止特性を有すると好ましい。ここで「近赤外域」とは波長700nm〜2000nmの範囲をいう。又、ここでの「反射防止特性」とは、近赤外域において光の反射率が2%以下であり、望ましくは1%以下,より望ましくは0.5%以下であることをいう。これにより近赤外域での反射防止効果が得られる。   The multilayer film MC shown in FIG. 1A or 1B preferably has antireflection characteristics in the near infrared region. Here, the “near infrared region” refers to a wavelength range of 700 nm to 2000 nm. The “anti-reflection property” here means that the light reflectance in the near infrared region is 2% or less, preferably 1% or less, more preferably 0.5% or less. Thereby, an antireflection effect in the near infrared region can be obtained.

図1(a)又は(b)に示す多層膜MCは、近赤外域の光を70%以上反射する特性を有すると好ましい。これにより近赤外域での反射ミラーや、IRカットフィルタが得られる。   The multilayer film MC shown in FIG. 1A or 1B preferably has a characteristic of reflecting 70% or more of near infrared light. Thereby, a reflection mirror in the near infrared region and an IR cut filter can be obtained.

図1(a)又は(b)に示す多層膜MCは、紫外域の光を70%以上反射する特性を有すると好ましい。ここで「紫外域」とは波長350nm〜400nmの範囲をいう。なお紫外域における光の反射率が90%以上であることが望ましく、さらにより望ましくは95%以上であることをいう。これにより紫外域での反射ミラーや、紫外線カットフィルタが得られる。   It is preferable that the multilayer film MC shown in FIG. 1A or 1B has a characteristic of reflecting 70% or more of ultraviolet light. Here, the "ultraviolet region" refers to a wavelength range of 350 nm to 400 nm. Note that the light reflectance in the ultraviolet region is desirably 90% or more, and more desirably 95% or more. Thereby, a reflection mirror in the ultraviolet region and an ultraviolet cut filter can be obtained.

多層膜MCは、可視域の光、近赤外域の光のいずれか一つ以上を反射する金属膜又は誘電体多層膜を有しても構わない。ここでの「反射特性」とは、可視域又は近赤外域において光の反射率が70%以上であり、望ましくは85%以上であることをいう。   The multilayer film MC may include a metal film or a dielectric multilayer film that reflects at least one of visible light and near infrared light. Here, the “reflection characteristic” means that the light reflectance is 70% or more, preferably 85% or more in a visible region or a near-infrared region.

金属膜Mを用いる場合、Ag、Au、Cr、Al、Cu、Niのいずれかを主成分とすると好ましい。これらを適宜用いることで、使用可能域や反射率を任意に調整できる。「主成分とする」とは、当該元素の含有量が51重量%以上、好ましくは70重量%以上、より好ましくは90重量%、さらに好ましくは100重量%であることを意味する。   When the metal film M is used, it is preferable that any one of Ag, Au, Cr, Al, Cu, and Ni be the main component. By appropriately using these, the usable range and the reflectance can be arbitrarily adjusted. The term "main component" means that the content of the element is 51% by weight or more, preferably 70% by weight or more, more preferably 90% by weight, and further preferably 100% by weight.

光学製品が以下の条件式を満たすと好ましい。
1.3≦NL≦1.5 (3)
1.9≦NH≦2.45 (4)
ここで、
NL:低屈折率層の材料のd線での屈折率
NH:高屈折率層の材料のd線での屈折率
It is preferable that the optical product satisfies the following conditional expression.
1.3 ≦ NL ≦ 1.5 (3)
1.9 ≦ NH ≦ 2.45 (4)
here,
NL: refractive index at d-line of material of low refractive index layer NH: refractive index at d-line of material of high refractive index layer

(3)、(4)式を満たすことで、所望の光学特性を有する光学製品を得ることができる。ここで、d線とは波長587.56nmの波長の光をいう。低屈折率層の素材として、d線での屈折率が1.48であるSiO2や、d線での屈折率が1.385であるMgF2を用いることができる。又、(4)式を満たす特定材料として、Ta、Hf、Zr、Nbの酸化物を好適に用いることができる。 By satisfying the expressions (3) and (4), an optical product having desired optical characteristics can be obtained. Here, the d-line refers to light having a wavelength of 587.56 nm. As a material of the low refractive index layer, SiO 2 having a refractive index of 1.48 at d-line or MgF 2 having a refractive index of 1.385 at d-line can be used. Further, as a specific material satisfying the expression (4), oxides of Ta, Hf, Zr, and Nb can be suitably used.

ガラス基材GLが光学パワーを有する場合、以下の条件式を満たすことが好ましい。
1.7≦Ns≦2.2 (5)
ここで、
Ns:ガラス基材GLのd線での屈折率
When the glass substrate GL has an optical power, it is preferable to satisfy the following conditional expression.
1.7 ≦ Ns ≦ 2.2 (5)
here,
Ns: refractive index of glass substrate GL at d-line

光学設計上、ガラス基材のd線での屈折率として(5)式を満たすことで,コンパクトな構成とした上で光学製品の光学性能を高められる。(5)式を満たすガラス基材に本発明の多層膜を成膜することで、特に外界に対して露出するレンズ等に用いることができ、優れた耐環境性能と光学性能を両立することができる。   By satisfying the expression (5) as the refractive index at the d-line of the glass substrate in the optical design, the optical performance of the optical product can be enhanced while having a compact configuration. By forming the multilayer film of the present invention on a glass substrate satisfying the expression (5), the multilayer film can be used particularly for a lens or the like exposed to the outside, thereby achieving both excellent environmental resistance performance and optical performance. it can.

一方、ガラス基材GLが光学パワーを有さない場合、以下の条件式を満たすことが好ましい。
1.45≦Ns≦1.65 (6)
ここで、
Ns:ガラス基材GLのd線での屈折率
On the other hand, when the glass substrate GL has no optical power, it is preferable that the following conditional expression is satisfied.
1.45 ≦ Ns ≦ 1.65 (6)
here,
Ns: refractive index of glass substrate GL at d-line

窓ガラス等の建材として光学製品を適用する場合、比較的安価でありながら高い強度を有する屈折率1.52程度のガラス基材を用いることが望ましいからである。   This is because, when an optical product is applied as a building material such as a window glass, it is desirable to use a glass substrate having a refractive index of about 1.52, which is relatively inexpensive and has high strength.

本実施の形態によれば、多層膜最上層SiO2の膜厚、密度、成膜処方および最上層に隣接した機能層のTiO2膜厚を最適化し光触媒効果の最大化を図り、合わせて分光特性調整層を設けることにより可視域、近赤外域に至る波長帯における任意の分光特性を持ち合わせた光触媒光学多層膜を提供することができる。 According to this embodiment, the multilayer film uppermost SiO 2 film thickness, density, and maximize the TiO 2 film thickness optimized photocatalytic effect of the film forming formulations and the top layer to the adjacent functional layers, combined spectral By providing the characteristic adjustment layer, it is possible to provide a photocatalytic optical multilayer film having arbitrary spectral characteristics in a wavelength band ranging from a visible region to a near infrared region.

(実施例)
以下、上述した実施の形態に好適な実施例を、比較例と比較して評価する。以下の実施例、比較例の多層膜を形成する上で、株式会社シンクロン製の成膜装置BES−1300を用い、IADのイオン源としてNIS−175を用いた。
(Example)
Hereinafter, Examples suitable for the above-described embodiments will be evaluated in comparison with Comparative Examples. In forming the multilayer films of the following examples and comparative examples, a film forming apparatus BES-1300 manufactured by SYNCHRON CORPORATION was used, and NIS-175 was used as an ion source of IAD.

(機能層の膜厚に関する評価)
本発明者らは、光学パワーを持つガラス基材(屈折率1.804)上に、機能層の膜厚(d(nm))を変化させつつ蒸着法にて9層の多層膜を形成して試験に供した。より具体的には、表1に示すように、ガラス基材TAF3(HOYA株式会社製:屈折率1.804)上に、SiO2を用いた低屈折率層、OA600(キヤノンオプトロン株式会社製の素材)を用いた高屈折率層,TiO2を用いた機能層を表1に示す順序で積層して成膜した。最上層としてはSiO2を用いた。各層の成膜処方及び膜構成(ガラス基板に接する層を1層目とする、以下同じ)を表1に示す。
(Evaluation on the thickness of the functional layer)
The present inventors formed a nine-layered multilayer film on a glass substrate (refractive index: 1.804) having optical power by a vapor deposition method while changing the thickness (d (nm)) of the functional layer. For the test. More specifically, as shown in Table 1, a low refractive index layer using SiO 2 and OA600 (manufactured by Canon Optron Co., Ltd.) were formed on a glass substrate TAF3 (manufactured by HOYA Corporation: refractive index 1.804). A high-refractive-index layer using a material (material) and a functional layer using TiO 2 were stacked in the order shown in Table 1 to form a film. SiO 2 was used as the uppermost layer. Table 1 shows the film forming recipe and the film configuration of each layer (the layer in contact with the glass substrate is referred to as a first layer, the same applies hereinafter).

OA600は、Ta25、TiO、Ti25の混合物であり、その具体的な組成は表2に示す通り、酸化タンタルを主成分とする。 OA600 is a mixture of Ta 2 O 5 , TiO, and Ti 2 O 5 , and its specific composition is mainly tantalum oxide as shown in Table 2.

表1及び後述する表中の屈折率n(λ)は、以下の式で求めた。尚、本明細書中、屈折率はd線(波長587.56nm)で測定するものとする。
n(λ)=A0+A1/(λ−A2
ここで、λはd線の波長であり、実施例及び比較例で用いる素材のA0、A1、A2は、それぞれ以下の値である。
TAF3:A0=1.768、A1=14.724(nm)、A2=181.535(nm)
B270(白板):A0=1.504、A1=6.912(nm)、A2=193.866(nm)
M−BACD12:A0=1.561、A1=9.387(nm)、A2=160.63(nm)
OA600:A0=2.014、A1=31.680(nm)、A2=233.891(nm)
SiO2:A0=1.460、A1=0(nm)、A2=0(nm)
H4:A0=2.100、A1=0(nm)、A2=0(nm)
TiO2(機能層):A0=2.013、A1=36.149(nm)、A2=284.651(nm)
TiO2:(高屈折層1)A0=2.200、A1=71.220(nm)、A2=234.000(nm)
TiO2:(高屈折層2)A0=2.230、A1=71.220(nm)、A2=234.000(nm)
The refractive index n (λ) in Table 1 and the table described later was determined by the following equation. In this specification, the refractive index is measured at d-line (wavelength: 587.56 nm).
n (λ) = A 0 + A 1 / (λ−A 2 )
Here, λ is the wavelength of the d-line, and A 0 , A 1 , and A 2 of the materials used in Examples and Comparative Examples are the following values, respectively.
TAF3: A 0 = 1.768, A 1 = 14.724 (nm), A 2 = 181.535 (nm)
B270 (white plate): A0 = 1.504, A1 = 6.912 (nm), A2 = 193.866 (nm)
M-BACD12: A0 = 1.561, A1 = 9.387 (nm), A2 = 160.63 (nm)
OA600: A 0 = 2.014, A 1 = 31.680 (nm), A 2 = 233.891 (nm)
SiO 2 : A 0 = 1.460, A 1 = 0 (nm), A 2 = 0 (nm)
H4: A 0 = 2.100, A 1 = 0 (nm), A 2 = 0 (nm)
TiO 2 (functional layer): A 0 = 2.013, A 1 = 36.149 (nm), A 2 = 284.651 (nm)
TiO 2 : (high refractive layer 1) A 0 = 2.200, A 1 = 71.220 (nm), A 2 = 234.000 (nm)
TiO 2 : (high refractive layer 2) A 0 = 2.230, A 1 = 71.220 (nm), A 2 = 234.000 (nm)

成膜処方は表1に示す通りであるが、各層の成膜に関して、成膜速度RATE(Å/SEC)、酸素ガスの導入の有無及び導入する場合にはその導入量を変更して,3つの実施例(供試番号1−1〜1−3)と、2つの比較例(供試番号1−4、1−5)を作製し、以下の試験に供した。又、最上層の膜厚TLは85nm前後に固定した。成膜に際してIADは用いなかった。それぞれ加熱温度は340℃、開始真空度は3.00E−03Paとした。図2〜6は、供試番号1−1〜1−5の多層膜の分光特性を示す図である。   The film-forming recipe is as shown in Table 1. Regarding the film formation of each layer, the film-forming rate RATE (Å / SEC), the presence / absence of the introduction of oxygen gas, and the introduction amount of oxygen gas were changed. Two examples (test numbers 1-1 to 1-3) and two comparative examples (test numbers 1-4 and 1-5) were prepared and subjected to the following tests. The thickness TL of the uppermost layer was fixed at about 85 nm. IAD was not used for film formation. The heating temperature was 340 ° C., and the starting vacuum degree was 3.00E-03 Pa, respectively. 2 to 6 are diagrams illustrating the spectral characteristics of the multilayer films of the test numbers 1-1 to 1-5.

評価項目として、「光触媒効果測定」は、供試品にYAZAWA社のブラックライト(型番BL20)を供試品から距離30mm離してUV光を5分間照射し、その後、inkintelligent社の「visualiser Pen」を用いて色変化を段階的に評価した。ここで、色変化度が極小のものは光触媒効果がなし(評価×)、色変化度が大のものは光触媒効果がある(評価○)とした。   As an evaluation item, the “photocatalytic effect measurement” was performed by irradiating the test sample with UV light for 5 minutes at a distance of 30 mm from YAZAWA's black light (model number BL20), and then “visualizer Pen” from inkintelligent. Was used to evaluate the color change stepwise. Here, a sample having a very small color change has no photocatalytic effect (evaluation ×), and a sample having a large color change has a photocatalytic effect (evaluation ○).

(評価結果の考察)
供試番号1−1〜1−3の多層膜については、機能膜の膜厚Tcatが300〜582nmであるところ、光触媒効果測定の評価が○となった(後述する表8参照)。又、各多層膜は、図2〜4に示すように主として可視域で反射率が1.5%以下(許容値を2%とする)と、可視域反射防止膜として良好な分光特性を実現している。
(Consideration of evaluation results)
With respect to the multilayer films of Test Nos. 1-1 to 1-3, when the thickness Tcat of the functional film was 300 to 582 nm, the evaluation of the photocatalytic effect measurement was ○ (see Table 8 described later). Also, as shown in FIGS. 2 to 4, each multilayer film realizes a good spectral characteristic as a visible region anti-reflection film when the reflectance is 1.5% or less mainly in the visible region (the allowable value is 2%). are doing.

これに対し、供試番号1−4の多層膜については、図5に示すように主として可視域で反射率が1%以下と良好な分光特性を実現しているが、機能膜の膜厚Tcatが85nmであるところ、光触媒効果測定の評価が×であった。これは、機能膜の膜厚が薄すぎて光触媒機能を十分発揮できなかったことによるものといえる。   On the other hand, as shown in FIG. 5, the multilayer film of Test Nos. 1-4 achieves excellent spectral characteristics with a reflectance of 1% or less mainly in the visible region, but has a thickness Tcat of the functional film. Was 85 nm, the evaluation of the photocatalytic effect measurement was x. This can be attributed to the fact that the thickness of the functional film was too small to sufficiently exhibit the photocatalytic function.

一方、供試番号1−5の多層膜については、機能膜の膜厚Tcatが814nmであるところ、光触媒効果測定の評価が○であったが、図6に示すように可視域で反射率が許容値2%を超えてしまい、十分な反射防止効果が得られていないことがわかる。すなわち、機能膜の膜厚Tcatが厚すぎると、分光特性が悪化することが分かる。   On the other hand, for the multilayer film of Test No. 1-5, when the film thickness Tcat of the functional film was 814 nm, the evaluation of the photocatalytic effect measurement was ○. However, as shown in FIG. It can be seen that the allowable value exceeded 2%, and a sufficient antireflection effect was not obtained. That is, it is understood that if the thickness Tcat of the functional film is too large, the spectral characteristics deteriorate.

以上の結果より、トレードオフの関係となりがちな光触媒効果と分光特性とをバランス良く確保するには、機能膜の膜厚を少なくとも220nm以上、700nm以下とすることが好ましいといえる。   From the above results, it can be said that the functional film preferably has a thickness of at least 220 nm and not more than 700 nm in order to ensure a good balance between the photocatalytic effect and the spectral characteristics that tend to have a trade-off relationship.

(2) 本発明者らは、光学パワーを持つガラス基材上に、分光特性を変化させつつ蒸着法にて15層又は7層の多層膜を形成して試験に供した。より具体的には、表3に示すように、ガラス基材TAF3(HOYA株式会社製:屈折率1.804)、又はM−BACD12(HOYA株式会社製:屈折率1.580)上に、SiO2を用いた低屈折率層、OA600(キヤノンオプトロン株式会社製の素材)を用いた高屈折率層,TiO2を用いた機能層を表3に示す順序で積層して成膜した。最上層としてはSiO2を用いた。各層の成膜処方及び膜構成を表3に示す。 (2) The present inventors formed a 15-layer or 7-layer multilayer film on a glass substrate having an optical power by a vapor deposition method while changing spectral characteristics, and submitted the test. More specifically, as shown in Table 3, a glass substrate TAF3 (manufactured by HOYA Co., Ltd .: refractive index 1.804) or M-BACD12 (manufactured by HOYA Co., Ltd .: refractive index 1.580) is coated with SiO 2 2 , a low refractive index layer using OA600, a high refractive index layer using OA600 (a material manufactured by Canon Optron Co., Ltd.), and a functional layer using TiO 2 were laminated in the order shown in Table 3 to form a film. SiO 2 was used as the uppermost layer. Table 3 shows the film forming recipe and film configuration of each layer.

成膜処方は表3に示す通りであるが、各層の成膜に関して、成膜速度RATE(Å/SEC)、酸素ガスの導入量を変更して,4つの実施例(供試番号2−1〜2−4)を作製し、光触媒効果と分光特性をそれぞれ評価した。成膜に際してIADは用いなかった。又、最上層の膜厚TLは97〜228nmとした。それぞれ加熱温度は340℃、開始真空度は3.00E−03Paとした。図7〜10は、供試番号2−1〜2−4の多層膜の分光特性を示す図である。   The film-forming recipe is as shown in Table 3. For the film-forming of each layer, the film-forming rate RATE (Å / SEC) and the amount of introduced oxygen gas were changed to obtain four examples (test number 2-1). To 2-4), and the photocatalytic effect and the spectral characteristics were evaluated. IAD was not used for film formation. Further, the thickness TL of the uppermost layer was 97 to 228 nm. The heating temperature was 340 ° C., and the starting vacuum degree was 3.00E-03 Pa, respectively. 7 to 10 are diagrams illustrating spectral characteristics of the multilayer films of the test numbers 2-1 to 2-4.

供試番号2−1〜2−4の多層膜については、機能膜の膜厚Tcatが244〜427nmであるところ、光触媒効果測定の評価が○となった(後述する表8参照)。又、供試番号2−1の多層膜は、図7に示すように主として近赤外域(波長700nm〜1050nm)で反射率が1%以下と、近赤外域反射防止膜として良好な分光特性を実現している。供試番号2−2の多層膜は、図8に示すように主として近赤外域(波長1200nm〜1800nm)で反射率が1%以下と、近赤外域反射防止膜として良好な分光特性を実現している。供試番号2−3の多層膜は、図9に示すように主として可視域(450nm〜850nm)で反射率が2%以下と、可視域反射防止膜として良好な分光特性を実現している。供試番号2−4の多層膜は、図10に示すように主として近赤外域(波長1200nm〜1800nm)で反射率が1.5%以下と、近赤外域反射防止膜として良好な分光特性を実現している。   Regarding the multilayer films of Test Nos. 2-1 to 2-4, when the thickness Tcat of the functional film was 244 to 427 nm, the evaluation of the photocatalytic effect measurement was ○ (see Table 8 described later). Further, as shown in FIG. 7, the multilayer film of Test No. 2-1 has a reflectance of 1% or less mainly in the near-infrared region (wavelength 700 nm to 1,050 nm), and exhibits good spectral characteristics as a near-infrared region antireflection film. Has been realized. As shown in FIG. 8, the multilayer film of Test No. 2-2 mainly has a reflectance of 1% or less in the near-infrared region (wavelength 1200 nm to 1800 nm) and realizes a good spectral characteristic as a near-infrared region antireflection film. ing. As shown in FIG. 9, the multilayer film of Test No. 2-3 mainly has a reflectance of 2% or less in the visible region (450 nm to 850 nm), and realizes a good spectral characteristic as a visible region antireflection film. The multilayer film of Test No. 2-4 has a reflectance of 1.5% or less mainly in the near-infrared region (wavelength 1200 nm to 1800 nm) as shown in FIG. Has been realized.

(3) 本発明者らは、光学パワーを持たないガラス基材上に、分光特性を変化させつつ蒸着法にて8層,10層又は12層の多層膜を形成して試験に供した。より具体的には、表4に示すように、ガラス基材B270(SCHOTT社製:屈折率1.52、白板ともいう)上に、金属膜、SiO2を用いた低屈折率層、OA600(キヤノンオプトロン株式会社製の素材)を用いた高屈折率層,屈折率2.032のTiO2を用いた機能層を表4に示す順序で積層して成膜した。最上層としてはSiO2を用いた。各層の成膜処方及び膜構成を表4に示す。 (3) The present inventors formed an eight-layered, ten-layered or 12-layered multilayer film on a glass base material having no optical power by a vapor deposition method while changing spectral characteristics, and submitted the test. More specifically, as shown in Table 4, on a glass substrate B270 (manufactured by SCHOTT: a refractive index of 1.52, also referred to as a white plate), a metal film, a low refractive index layer using SiO 2 , OA600 ( A high refractive index layer using a material manufactured by Canon Optron Co., Ltd.) and a functional layer using TiO 2 having a refractive index of 2.032 were stacked in the order shown in Table 4 to form a film. SiO 2 was used as the uppermost layer. Table 4 shows the film forming recipe and film configuration of each layer.

成膜処方は表4に示す通りであるが、各層の成膜に関して、成膜速度RATE(Å/SEC)、酸素ガスの導入量、金属膜の素材を変更して,4つの実施例(供試番号3−1〜3−4)を作製し、光触媒効果と分光特性をそれぞれ評価した。供試番号3−1の金属膜はAlであり、供試番号3−2の金属膜はCrであり、供試番号3−3の金属膜はCuであり、供試番号3−4の金属膜はNiとした。成膜に際してIADは用いなかった。又、最上層の膜厚TLは77〜89nmとした。それぞれ加熱温度は340℃、開始真空度は3.00E−03Paとした。図11〜14は、供試番号3−1〜3−4の多層膜の分光特性を示す図である。   The film forming recipe is as shown in Table 4. Regarding the film forming of each layer, the film forming rate RATE (Å / SEC), the introduced amount of oxygen gas, and the material of the metal film were changed, and four examples (provided) were prepared. Test numbers 3-1 to 3-4) were prepared, and the photocatalytic effect and the spectral characteristics were respectively evaluated. The metal film of test number 3-1 is Al, the metal film of test number 3-2 is Cr, the metal film of test number 3-3 is Cu, and the metal film of test number 3-4 is Al. The film was Ni. IAD was not used for film formation. Further, the thickness TL of the uppermost layer was 77 to 89 nm. The heating temperature was 340 ° C., and the starting vacuum degree was 3.00E-03 Pa, respectively. 11 to 14 are diagrams illustrating the spectral characteristics of the multilayer films of the test numbers 3-1 to 3-4.

供試番号3−1〜3−4の多層膜については、機能膜の膜厚Tcatが300〜351nmであるところ、光触媒効果測定の評価が○となった(後述する表8参照)。又、供試番号3−1の多層膜は、図11に示すように主として可視域から近赤外域(波長400nm〜1950nm)で反射率が75%以上と、広帯域反射ミラーとして良好な分光特性を実現している。供試番号3−2の多層膜は、図12に示すように主として可視域(波長400nm〜650nm)で反射率が70%以上と、可視域反射ミラーとして良好な分光特性を実現している。供試番号3−3の多層膜は、図13に示すように主として可視域から近赤外域で反射率が85%以上と、広帯域反射ミラーとして良好な分光特性を実現している。供試番号3−4の多層膜は、図14に示すように主として可視域(波長400nm〜650nm)で反射率が75%以上と、可視域反射ミラーとして良好な分光特性を実現している。   Regarding the multilayer films of Test Nos. 3-1 to 3-4, when the thickness Tcat of the functional film was 300 to 351 nm, the evaluation of the photocatalytic effect measurement was ○ (see Table 8 described later). As shown in FIG. 11, the multilayer film of Test No. 3-1 has a reflectance of 75% or more mainly in the visible region to the near-infrared region (wavelength 400 nm to 1950 nm), and exhibits good spectral characteristics as a broadband reflection mirror. Has been realized. As shown in FIG. 12, the multilayer film of Test No. 3-2 mainly has a reflectance of 70% or more in the visible region (wavelength: 400 nm to 650 nm) and realizes a good spectral characteristic as a visible region reflection mirror. As shown in FIG. 13, the multilayer film of Test No. 3-3 has a reflectance of 85% or more mainly in the visible region to the near-infrared region, and realizes good spectral characteristics as a broadband reflection mirror. As shown in FIG. 14, the multilayer film of Test No. 3-4 has a reflectance of 75% or more mainly in the visible region (wavelength: 400 nm to 650 nm), and realizes good spectral characteristics as a visible region reflection mirror.

(4) 本発明者らは、光学パワーを持たないガラス基材上に、分光特性を変化させつつ蒸着法にて26層〜199層の多層膜を形成して試験に供した。より具体的には、表5〜7に示すように、ガラス基材B270(SCHOTT社製:屈折率1.52)上に、SiO2を用いた低屈折率層、H4(MERCK社製:チタン酸ランタン(LaTiOx)、屈折率2.401のTiO2、屈折率2.431のTiO2、又はOA600(キヤノンオプトロン株式会社製の素材)を用いた高屈折率層,屈折率2.132のTiO2を用いた機能層を表5に示す順序で積層して成膜した。最上層としてはSiO2を用いた。各層の成膜処方及び膜構成を表5〜7に示す。 (4) The present inventors formed a 26- to 199-layered multilayer film on a glass substrate having no optical power by a vapor deposition method while changing spectral characteristics, and submitted the test. More specifically, as shown in Tables 5 to 7, a low-refractive-index layer using SiO 2 on a glass substrate B270 (manufactured by SCHOTT: 1.52), and H4 (manufactured by MERCK: titanium) lanthanum (LaTiOx), TiO 2 having a refractive index 2.401, TiO 2 having a refractive index 2.431, or OA600 high refractive index layer using the (Canon Optron Ltd. materials), TiO refractive index 2.132 The functional layers using No. 2 were laminated and formed in the order shown in Table 5. SiO 2 was used as the uppermost layer, and the film forming recipe and film configuration of each layer are shown in Tables 5 to 7.

成膜処方は表5〜7に示す通りであるが、各層の成膜に関して、成膜速度RATE(Å/SEC)、酸素ガスの導入量、IADを用いる場合にはその処方を設定して,4つの実施例(供試番号4−1〜4−4)を作製し、光触媒効果と分光特性をそれぞれ評価した。又、最上層の膜厚TLは86〜250nmとした。それぞれ加熱温度は340℃、開始真空度は3.00E−03Paとした。図15〜18は、供試番号4−1〜4−4の多層膜の分光特性を示す図である。尚、供試番号4−2では、光を反射させる膜として誘電体多層膜を用いている。   The deposition formulas are as shown in Tables 5 to 7. For the deposition of each layer, the deposition rate is set when the deposition rate RATE (Å / SEC), the introduced amount of oxygen gas, and the IAD are used. Four examples (test numbers 4-1 to 4-4) were prepared, and the photocatalytic effect and the spectral characteristics were evaluated. The thickness TL of the uppermost layer was set to 86 to 250 nm. The heating temperature was 340 ° C., and the starting vacuum degree was 3.00E-03 Pa, respectively. FIGS. 15 to 18 are diagrams showing the spectral characteristics of the multilayer films of the test numbers 4-1 to 4-4. In the test number 4-2, a dielectric multilayer film is used as a film for reflecting light.

尚、「APC」は、Auto Pressure Controlの略で分圧を調整したことを意味し、「SCCM」は、standard cc/minの略であり、1気圧(大気圧1013hPa)、0℃で1分間あたりに何cc流れたかを示す単位である。   Note that “APC” stands for Auto Pressure Control and means that the partial pressure has been adjusted, and “SCCM” stands for standard cc / min, and is 1 atmosphere (atmospheric pressure 1013 hPa) and 0 ° C. for 1 minute. It is a unit that indicates how many cc flow around.

供試番号4−1〜4−4の多層膜については、機能膜の膜厚Tcatが392〜472nmであるところ、光触媒効果測定の評価が○となった(後述する表8参照)。又、供試番号4−1の多層膜は、図15に示すように主として可視域(波長360nm〜700nm)で反射率が50%前後と、可視域半透過膜として良好な分光特性を実現している。供試番号4−2の多層膜は、図16に示すように主として可視域(波長400nm〜750nm)で反射率が95%以上と、可視域反射ミラーとして良好な分光特性を実現している。供試番号4−3の多層膜は、図17に示すように主として、紫外域(400nm以下)で反射率が85%以上で、可視域(波長420nm〜700nm)で反射率が2%以下で、且つ近赤外領域(800nm〜1150nm)で反射率が95%以上の波長選択性を有するUV−IRカットフィルタとして良好な分光特性を実現している。供試番号4−4の多層膜は、図18に示すように主として、紫外域(400nm以下)で反射率が95%以上で、可視域(波長400nm〜750nm)で反射率が5%以下で、且つ近赤外領域(800nm〜1950nm)で反射率が88%以上の波長選択性を有するUV−IRカットフィルタとして良好な分光特性を実現している。   Regarding the multilayer films of Test Nos. 4-1 to 4-4, when the film thickness Tcat of the functional film was 392 to 472 nm, the evaluation of the photocatalytic effect measurement was ○ (see Table 8 described later). As shown in FIG. 15, the multilayer film of Test No. 4-1 has a reflectance of around 50% mainly in the visible region (wavelength 360 nm to 700 nm), and realizes a good spectral characteristic as a visible region semi-transmissive film. ing. As shown in FIG. 16, the multilayer film of Test No. 4-2 mainly has a reflectance of 95% or more in the visible region (wavelength: 400 nm to 750 nm) and realizes a good spectral characteristic as a visible region reflection mirror. As shown in FIG. 17, the multilayer film of Test No. 4-3 mainly has a reflectance of 85% or more in an ultraviolet region (400 nm or less) and a reflectance of 2% or less in a visible region (wavelength 420 nm to 700 nm). In addition, excellent spectral characteristics are realized as a UV-IR cut filter having a wavelength selectivity of 95% or more in the near infrared region (800 nm to 1150 nm). As shown in FIG. 18, the multilayer film of Test No. 4-4 mainly has a reflectance of 95% or more in an ultraviolet region (400 nm or less) and a reflectance of 5% or less in a visible region (wavelength 400 nm to 750 nm). In addition, excellent spectral characteristics are realized as a UV-IR cut filter having a wavelength selectivity of 88% or more in the near infrared region (800 nm to 1950 nm).

(5)まとめ
以上の検討結果を、実施例と比較例とに分けて表8にまとめて示す。ここで、
Tcat:最上層に隣接した機能層の膜厚(nm)
TL:最上層の膜厚(nm)
NL:低屈折率層の材料のd線での屈折率
NH:高屈折率層の材料のd線での屈折率
Ns:ガラス基材のd線での屈折率
である。
(5) Summary The above study results are shown in Table 8 separately for Examples and Comparative Examples. here,
Tcat: film thickness (nm) of the functional layer adjacent to the uppermost layer
TL: film thickness of uppermost layer (nm)
NL: refractive index at d-line of material of low refractive index layer NH: refractive index at d-line of material of high refractive index layer Ns: refractive index at d-line of glass substrate.

本発明により、光触媒効果を発揮しつつ、所望の分光特性を得ることができる光学製品を提供することができるから、車載用レンズや通信用レンズ,或いは建材に好適に用いられる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an optical product that can obtain desired spectral characteristics while exhibiting a photocatalytic effect.

L 低屈折率層
H 高屈折率層
M 金属層
GL ガラス基材
MC 多層膜
L Low refractive index layer H High refractive index layer M Metal layer GL Glass substrate MC Multilayer film

Claims (15)

3層以上の多層膜を成膜したガラス基材を有する光学製品において、
前記多層膜は、少なくとも1層の低屈折率層と、少なくとも1層の高屈折率層とを組み合わせて用いることで、前記光学製品の分光特性を調整するようになっており、
前記ガラス基材から最も遠い最上層が前記低屈折率層であり、
前記最上層に隣接した前記高屈折率層が光触媒機能を有する金属酸化物を主成分とする機能層であり、
以下の条件式を満たす光学製品。
60nm≦TL≦350nm (1)
220nm≦Tcat≦700nm (2)
ここで、
TL:前記最上層の膜厚
Tcat:前記機能層の膜厚
In an optical product having a glass substrate on which three or more multilayer films are formed,
The multilayer film adjusts the spectral characteristics of the optical product by using at least one low-refractive-index layer and at least one high-refractive-index layer in combination.
The uppermost layer farthest from the glass substrate is the low refractive index layer,
The high refractive index layer adjacent to the uppermost layer is a functional layer mainly composed of a metal oxide having a photocatalytic function,
An optical product that satisfies the following condition:
60 nm ≦ TL ≦ 350 nm (1)
220 nm ≦ Tcat ≦ 700 nm (2)
here,
TL: film thickness of the uppermost layer Tcat: film thickness of the functional layer
前記機能層が、Tiを主成分とする酸化物から形成されている請求項1に記載の光学製品。   The optical product according to claim 1, wherein the functional layer is formed from an oxide containing Ti as a main component. 前記最上層がSiO2から形成されている請求項1又は2に記載の光学製品。 The optical product according to claim 1, wherein the uppermost layer is formed of SiO 2 . 前記最上層がSiO2とAl23の混合物から形成されている請求項1又は2に記載の光学製品。 The optical product according to claim 1, wherein the uppermost layer is formed from a mixture of SiO 2 and Al 2 O 3 . 前記多層膜の各層は蒸着法で成膜されており、いずれかの層はイオンアシストデポジションで成膜されている請求項1〜4のいずれかに記載の光学製品。   The optical product according to claim 1, wherein each layer of the multilayer film is formed by an evaporation method, and any one of the layers is formed by ion-assisted deposition. 前記多層膜は可視域において反射防止特性を有する請求項1〜5のいずれかに記載の光学製品。   The optical product according to claim 1, wherein the multilayer film has an antireflection property in a visible region. 前記多層膜は可視域において半透過または高反射特性を有する請求項1〜5のいずれかに記載の光学製品。   The optical product according to claim 1, wherein the multilayer film has a semi-transmissive or high-reflective property in a visible region. 前記多層膜は近赤外域において反射防止特性を有する請求項1〜7のいずれかに記載の光学製品。   The optical product according to claim 1, wherein the multilayer film has an antireflection property in a near infrared region. 前記多層膜は近赤外域の光を70%以上反射する特性を有する請求項1〜7のいずれかに記載の光学製品。   The optical product according to claim 1, wherein the multilayer film has a property of reflecting 70% or more of light in a near-infrared region. 前記多層膜は紫外域の光を70%以上反射する特性を有する請求項1〜9のいずれかに記載の光学製品。   The optical product according to any one of claims 1 to 9, wherein the multilayer film has a characteristic of reflecting 70% or more of ultraviolet light. 前記多層膜は、可視域の光及び近赤外域の光のいずれか一つ以上を反射する金属膜を有する請求項1〜10のいずれかに記載の光学製品。   The optical product according to claim 1, wherein the multilayer film includes a metal film that reflects at least one of visible light and near-infrared light. 前記金属膜はAg、Au、Cr、Al、Cu、Niのいずれかを主成分とする請求項11に記載の光学製品。   The optical product according to claim 11, wherein the metal film mainly includes one of Ag, Au, Cr, Al, Cu, and Ni. 以下の条件式を満たす請求項1〜12のいずれかに記載の光学製品。
1.3≦NL≦1.5 (3)
1.9≦NH≦2.45 (4)
ここで、
NL:前記低屈折率層の材料のd線での屈折率
NH:前記高屈折率層の材料のd線での屈折率
The optical product according to claim 1, wherein the following conditional expression is satisfied.
1.3 ≦ NL ≦ 1.5 (3)
1.9 ≦ NH ≦ 2.45 (4)
here,
NL: refractive index of the material of the low refractive index layer at d line NH: refractive index of the material of the high refractive index layer at d line
前記ガラス基材が光学パワーを有し、以下の条件式を満たす請求項1〜13のいずれかに記載の光学製品。
1.7≦Ns≦2.2 (5)
ここで、
Ns:前記ガラス基材のd線での屈折率
The optical product according to any one of claims 1 to 13, wherein the glass substrate has an optical power and satisfies the following conditional expression.
1.7 ≦ Ns ≦ 2.2 (5)
here,
Ns: refractive index of the glass substrate at d-line
前記ガラス基材が光学パワーを有さず、以下の条件式を満たす請求項1〜13のいずれかに記載の光学製品。
1.45≦Ns≦1.65 (6)
ここで、
Ns:前記ガラス基材のd線での屈折率
The optical product according to any one of claims 1 to 13, wherein the glass substrate has no optical power and satisfies the following conditional expression.
1.45 ≦ Ns ≦ 1.65 (6)
here,
Ns: refractive index of the glass substrate at d-line
JP2016242185A 2016-12-14 2016-12-14 Optical product Pending JP2020024237A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016242185A JP2020024237A (en) 2016-12-14 2016-12-14 Optical product
PCT/JP2017/033841 WO2018110017A1 (en) 2016-12-14 2017-09-20 Optical product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016242185A JP2020024237A (en) 2016-12-14 2016-12-14 Optical product

Publications (1)

Publication Number Publication Date
JP2020024237A true JP2020024237A (en) 2020-02-13

Family

ID=62558373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016242185A Pending JP2020024237A (en) 2016-12-14 2016-12-14 Optical product

Country Status (2)

Country Link
JP (1) JP2020024237A (en)
WO (1) WO2018110017A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145208A1 (en) * 2020-12-28 2022-07-07 富士フイルム株式会社 Light guide and image display device
JP2022179405A (en) * 2021-05-21 2022-12-02 ハンド ヘルド プロダクツ インコーポレーティッド Methods, apparatuses and systems for providing optical coatings for optical components

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7468624B2 (en) * 2020-03-31 2024-04-16 ニデック株式会社 Optical Components
TWI828475B (en) * 2022-12-14 2024-01-01 富元精密科技股份有限公司 Anti-reflection coating for blocking infrared radiation and display device including the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131513A (en) * 1998-10-28 2000-05-12 Toyota Motor Corp Surface mirror
JP2000329904A (en) * 1999-05-18 2000-11-30 Hoya Corp Article for having antireflection film having photocatalyst function and production therefor
JP2000326440A (en) * 1999-05-19 2000-11-28 Hoya Corp Object having multilayer optical thin film including photocatalytic function and its manufacture
JP3818420B2 (en) * 1999-11-30 2006-09-06 積水樹脂株式会社 Anti-fogging reflector and method for producing the same
JP4126373B2 (en) * 2003-06-13 2008-07-30 独立行政法人産業技術総合研究所 Heat mirror and its performance evaluation method
JP2006106242A (en) * 2004-10-04 2006-04-20 Seiko Epson Corp Antireflection film and optical article having same
JP2008107425A (en) * 2006-10-23 2008-05-08 Ichikoh Ind Ltd Mirror and hydrophilic composite film having photocatalytic activity
JP5588135B2 (en) * 2009-08-10 2014-09-10 ホーヤ レンズ マニュファクチャリング フィリピン インク Method for manufacturing optical article
JP5413978B2 (en) * 2010-05-20 2014-02-12 東海光学株式会社 Plastic optical products and eyeglass plastic lenses
FR2968774B1 (en) * 2010-12-10 2013-02-08 Essilor Int OPTICAL ARTICLE COMPRISING A LOW REFLECTIVE ANTIREFLECTION COATING IN THE ULTRAVIOLET DOMAIN AND THE VISIBLE DOMAIN

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145208A1 (en) * 2020-12-28 2022-07-07 富士フイルム株式会社 Light guide and image display device
JPWO2022145208A1 (en) * 2020-12-28 2022-07-07
JP7331274B2 (en) 2020-12-28 2023-08-22 富士フイルム株式会社 Light guide and image display device
JP7499921B2 (en) 2020-12-28 2024-06-14 富士フイルム株式会社 Light guide and image display device
JP2022179405A (en) * 2021-05-21 2022-12-02 ハンド ヘルド プロダクツ インコーポレーティッド Methods, apparatuses and systems for providing optical coatings for optical components
JP7498221B2 (en) 2021-05-21 2024-06-11 ハンド ヘルド プロダクツ インコーポレーティッド Method, apparatus and system for providing optical coatings for optical components

Also Published As

Publication number Publication date
WO2018110017A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5881096B2 (en) Antireflection film and optical element
JP7021156B2 (en) Optical elements with layered systems and layered systems
TWI509292B (en) Lens and lens module having lens
JP6449999B2 (en) Antireflection film, optical element and optical system
US9069125B2 (en) Optical product and method for manufacturing same
WO2018110017A1 (en) Optical product
JP6882498B2 (en) Anti-reflective coating, optics and optical system
JP2015004919A (en) Anti-reflection film and optical element having the same
JP4190773B2 (en) Antireflection film, optical lens and optical lens unit
JP5885649B2 (en) Optical element having antireflection film, optical system and optical apparatus
JP6622381B2 (en) Optical film, optical element and optical system
KR20150126885A (en) Anti-reflective coating
TWI557439B (en) Infrared filter and lens module
JP2010032867A (en) Infrared ray cutoff filter
WO2018110018A1 (en) Optical element
JP5072395B2 (en) Antireflection film and optical component having the same
JP5976363B2 (en) Optical member
JP4171362B2 (en) Transparent substrate with antireflection film
JP2006119525A (en) Antireflection film
WO2018179825A1 (en) Optical thin film, optical element, optical system and method for producing optical thin film
JP5292318B2 (en) Antireflection film and optical member having the same
JPH0875902A (en) Multilayer reflection preventing film
JP6236776B2 (en) Antireflection film, optical member using the same, and optical instrument
JP2002277606A (en) Antireflection film and optical element
JP7468624B2 (en) Optical Components