JP2015004919A - Anti-reflection film and optical element having the same - Google Patents

Anti-reflection film and optical element having the same Download PDF

Info

Publication number
JP2015004919A
JP2015004919A JP2013131512A JP2013131512A JP2015004919A JP 2015004919 A JP2015004919 A JP 2015004919A JP 2013131512 A JP2013131512 A JP 2013131512A JP 2013131512 A JP2013131512 A JP 2013131512A JP 2015004919 A JP2015004919 A JP 2015004919A
Authority
JP
Japan
Prior art keywords
layer
refractive index
antireflection film
optical
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013131512A
Other languages
Japanese (ja)
Inventor
理絵 石松
Rie Ishimatsu
理絵 石松
奥野 丈晴
Takeharu Okuno
丈晴 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013131512A priority Critical patent/JP2015004919A/en
Publication of JP2015004919A publication Critical patent/JP2015004919A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an anti-reflection film having a superior anti-reflection property over a wide wavelength range, and to provide optical elements having the same.SOLUTION: An anti-reflection film 100 is formed on a light transmission surface of a transparent substrate and comprises, in order from a substrate 1 side to an air layer side, an intermediate layer 2 comprising a plurality of laminated layers and a micro concavo-convex structure 3 having a plurality of micro structure sections with a pitch of no more than 400 nm formed thereon. The micro concavo-concave structure 3 has a thickness of no less than 200 nm and no more than 350 nm and has a region where a refractive index continuously increases from 1.0 in a direction from the air layer side toward the substrate 1. The plurality of layers of the intermediate layer 2 are a first layer 21 through a fifth layer 25 in order from the substrate side to the air layer side. Refractive indexes of the plurality of layers are values at a wavelength of 550 nm, and an optical film thickness is defined as (refractive index at a wavelength of 550 nm)×(thickness).

Description

本発明は、透明な基板の光入出射面に設けられる反射防止膜及びそれを有する光学素子に関し、特に深さ方向(膜厚方向)に屈折率が連続的に変化する構造を有し、広い波長域で良好なる反射防止機能を有し、各種の光学機器の光学系に好適なものである。   The present invention relates to an antireflection film provided on a light incident / exit surface of a transparent substrate and an optical element having the same, and in particular, has a structure in which a refractive index continuously changes in a depth direction (film thickness direction) and is wide. It has an antireflection function that is favorable in the wavelength range, and is suitable for optical systems of various optical devices.

従来、レンズ、フィルター等の光学素子の表面(光透過面)には、入射光の光量損失を低減させるために、反射防止対策が施されている。例えば、可視光用の反射防止としてマルチコートと呼ばれる誘電体多層膜が広く用いられており、近年は、微細凹凸構造体を利用した反射防止膜も知られている(特許文献1、2)。   Conventionally, anti-reflection measures have been taken on the surface (light transmission surface) of optical elements such as lenses and filters in order to reduce the light loss of incident light. For example, a dielectric multilayer film called a multi-coat is widely used as an antireflection for visible light, and in recent years, an antireflection film using a fine concavo-convex structure is also known (Patent Documents 1 and 2).

特許文献1には、実質的な屈折率が光入射側から基板側に向かって連続的に変化する、酸化アルミニウムを主成分とする板状結晶を用いた反射防止膜が開示されている。特許文献2には透明な基板上に基板側から空気層側へ順に薄膜よりなる複数の均一層と、微細凹凸構造体を積層した反射防止膜が開示されている。   Patent Document 1 discloses an antireflection film using a plate-like crystal containing aluminum oxide as a main component, whose substantial refractive index continuously changes from the light incident side toward the substrate side. Patent Document 2 discloses an antireflection film in which a plurality of uniform layers made of thin films and a fine concavo-convex structure are laminated on a transparent substrate in order from the substrate side to the air layer side.

一方、近年、蛍光顕微鏡や監視カメラ、車載カメラ等の可視光から近赤外の広い波長帯域を使用する光学機器においては、高画質な画像取得のため、光量損失やゴーストおよびフレアを、より低減することが求められている。広い波長域において反射防止を効果的に行うために、多層構造の反射防止膜が知られている(特許文献3)。特許文献3には最上層(最も空気層側)に低屈折率層を用いた、誘電体多層膜からなる9層構成の反射防止膜が開示されている。特許文献3には、波長400〜波長900nmの波長範囲で入射角度5における反射率が0.1%以下の反射防止膜が開示されている。   On the other hand, in recent years, in optical instruments that use a wide wavelength band from visible light to near infrared, such as fluorescent microscopes, surveillance cameras, and on-vehicle cameras, light loss, ghosting, and flare are further reduced to obtain high-quality images. It is requested to do. In order to effectively prevent reflection in a wide wavelength range, a multilayer antireflection film is known (Patent Document 3). Patent Document 3 discloses a nine-layer antireflection film composed of a dielectric multilayer film using a low refractive index layer as the uppermost layer (most air layer side). Patent Document 3 discloses an antireflection film having a reflectance of 0.1% or less at an incident angle 5 in a wavelength range of 400 to 900 nm.

特開2008−233880号公報JP 2008-233880 A 特開2010−78803号公報JP 2010-78803 A 特開2008−225210号公報JP 2008-225210 A

デジタルカメラや監視用カメラ等の光学機器に用いられる光学系には広い波長域の光束が入射する。このため反射防止機能としては広い波長域で反射率が低いことが求められている。特に光学機器に用いられる多くの撮像素子は近赤外域で感度を有するため、近赤外域においても反射率が低いことが求められている。可視域から近赤外域にわたり高い反射防止効果のある光学素子を得るには、基板に形成する反射防止膜の構成を適切に設定することが重要になってくる。   A light beam having a wide wavelength range is incident on an optical system used in an optical apparatus such as a digital camera or a surveillance camera. For this reason, the antireflection function is required to have a low reflectance over a wide wavelength range. In particular, since many image sensors used in optical devices have sensitivity in the near infrared region, it is required that the reflectance be low in the near infrared region. In order to obtain an optical element having a high antireflection effect from the visible region to the near infrared region, it is important to appropriately set the configuration of the antireflection film formed on the substrate.

反射防止膜の構成が不適切であると広い波長域において、特に波長700nm以上の近赤外領域において高い反射防止性能を有し、例えば波長450nm〜波長1200nmの範囲において、良好なる反射率特性が困難になる。   If the structure of the antireflection film is inappropriate, it has high antireflection performance in a wide wavelength range, particularly in the near infrared range of 700 nm or more. For example, in the wavelength range of 450 nm to 1200 nm, good reflectance characteristics are obtained. It becomes difficult.

本発明は、広い波長域において優れた反射防止特性を有する反射防止膜及びそれを有する光学素子の提供を目的とする。   An object of the present invention is to provide an antireflection film having excellent antireflection characteristics in a wide wavelength range and an optical element having the antireflection film.

本発明の反射防止膜は、透明な基板の光透過面に設けられる反射防止膜であって、前記反射防止膜は前記基板側から空気層側へ順に、複数の層を積層した中間層、400nm以下のピッチの微細構造部を複数形成した微細凹凸構造体を有し、該微細凹凸構造体は、膜厚が200nm以上350nm以下で、屈折率が空気層側から前記基板に向かう方向に1.0から連続的に増加する領域を有し、前記中間層の複数の層は、前記基板側から空気層側へ順に、第1層、第2層、第3層、第4層、第5層を有し、前記複数の層の屈折率を波長550nmでの値、光学膜厚を(波長550nmでの屈折率)×(厚さ)とするとき、前記第1層の屈折率が1.61〜1.71、光学膜厚が10〜220nm、前記第2層の屈折率が1.98〜2.40、光学膜厚が15〜65nm、前記第3層の屈折率が1.61〜1.71、光学膜厚が60〜140nm、前記第4層の屈折率が1.98〜2.40、光学膜厚が15〜65nm、前記第5層の屈折率が1.42〜1.54、光学膜厚が10〜140nmであることを特徴としている。   The antireflection film of the present invention is an antireflection film provided on a light transmission surface of a transparent substrate, and the antireflection film is an intermediate layer having a plurality of layers laminated in order from the substrate side to the air layer side, 400 nm. It has a fine concavo-convex structure in which a plurality of fine structure portions having the following pitches are formed. The fine concavo-convex structure has a film thickness of 200 nm or more and 350 nm or less and a refractive index in the direction from the air layer side toward the substrate. The plurality of layers of the intermediate layer have a first layer, a second layer, a third layer, a fourth layer, and a fifth layer in order from the substrate side to the air layer side. When the refractive index of the plurality of layers is a value at a wavelength of 550 nm and the optical film thickness is (refractive index at a wavelength of 550 nm) × (thickness), the refractive index of the first layer is 1.61. -1.71, optical film thickness is 10-220 nm, refractive index of the second layer is 1.98-2.40, The film thickness is 15 to 65 nm, the refractive index of the third layer is 1.61 to 1.71, the optical film thickness is 60 to 140 nm, the refractive index of the fourth layer is 1.98 to 2.40, the optical film The thickness is 15 to 65 nm, the refractive index of the fifth layer is 1.42 to 1.54, and the optical film thickness is 10 to 140 nm.

本発明によれば、広い波長域において優れた反射防止特性を有する反射防止膜及びそれを有する光学素子が得られる。   According to the present invention, an antireflection film having excellent antireflection characteristics in a wide wavelength region and an optical element having the antireflection film can be obtained.

本発明の反射防止膜の概略図Schematic of the antireflection film of the present invention (A),(B) 実施例1−1の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Refractive index relationship with respect to substrate thickness of antireflection film of Example 1-1 and reflectance characteristics of antireflection film (A),(B) 実施例1−2の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Refractive index relationship with respect to substrate thickness of antireflection film of Example 1-2 and reflectance characteristics of antireflection film (A),(B) 実施例2−1の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Refractive index relationship with respect to substrate thickness of antireflection film of Example 2-1 and reflectance characteristics of antireflection film (A),(B) 実施例2−2の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Refractive index relationship with respect to substrate thickness of antireflection film of Example 2-2 and reflectance characteristics of antireflection film (A),(B) 実施例3の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Relationship of refractive index with respect to substrate thickness of antireflection film of Example 3 and reflectance characteristics of antireflection film (A),(B) 実施例4の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Relationship of refractive index to substrate thickness of antireflection film of Example 4 and reflectance characteristics of antireflection film (A),(B) 実施例5の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Relationship of refractive index with respect to substrate thickness of antireflection film of Example 5 and reflectance characteristics of antireflection film (A),(B) 実施例6の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Relationship of refractive index with respect to substrate thickness of antireflection film of Example 6 and reflectance characteristics of antireflection film (A),(B) 実施例7の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Refractive index relationship with respect to substrate thickness of antireflection film of Example 7 and reflectance characteristics of antireflection film (A),(B) 実施例8−1の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Relationship of refractive index with respect to substrate thickness of antireflection film of Example 8-1 and reflectance characteristics of antireflection film (A),(B) 実施例8−2の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Relationship of refractive index with respect to substrate thickness of antireflection film of Example 8-2, and reflectance characteristics of antireflection film (A),(B) 実施例9の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Relationship of refractive index with respect to substrate thickness of antireflection film of Example 9 and reflectance characteristics of antireflection film 本発明の光学機器の概略図Schematic diagram of the optical instrument of the present invention (A),(B) 比較例1の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Relation of refractive index with respect to substrate thickness of antireflection film of Comparative Example 1 and reflectance characteristics of antireflection film 比較例2の反射防止膜の反射率特性図Reflectance characteristic diagram of antireflection film of Comparative Example 2 (A),(B) 比較例3の反射防止膜の基板厚さに対する屈折率の関係と反射防止膜の反射率特性(A), (B) Relation of refractive index with respect to substrate thickness of antireflection film of Comparative Example 3 and reflectance characteristics of antireflection film

以下に、本発明の実施の形態を、添付の図面に基づいて詳細に説明する。なお、説明中の屈折率の値はすべて波長550nmでの値である。本発明の反射防止膜は、透明な基板の光透過面に設けられる。反射防止膜は基板側から空気層側へ順に、複数の層を積層した中間層、400nm以下のピッチの微細構造部を平面や曲面上に複数形成した微細凹凸構造体を有している。微細凹凸構造体は、膜厚が200nm以上350nm以下で、屈折率が空気層側から基板に向かう方向に1.0から連続的に増加する領域を有している。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. The refractive index values in the description are all values at a wavelength of 550 nm. The antireflection film of the present invention is provided on the light transmission surface of a transparent substrate. The antireflection film has, in order from the substrate side to the air layer side, an intermediate layer in which a plurality of layers are laminated, and a fine concavo-convex structure body in which a plurality of fine structure portions having a pitch of 400 nm or less are formed on a plane or a curved surface. The fine concavo-convex structure has a film thickness of 200 nm or more and 350 nm or less and a region in which the refractive index continuously increases from 1.0 in the direction from the air layer side to the substrate.

図1は、本発明の反射防止膜を有する光学素子の概略図(断面図)である。図1において200は光学素子である。1は透明な光学基板である。光学基板1の表面付近を拡大して示している。光学基板1は屈折率が1.40〜2.30の光学ガラスもしくは光学プラスチック等からなり、その光入射面又は光出射面等の光透過面の少なくとも一方の面に本発明の反射防止膜100が形成されている。反射防止膜100は、空気層側に微細凹凸構造体3と、光学基板1と微細凹凸構造体3との間に設けられ、屈折率の異なる多層膜(複数の層)からなる中間層2と、を有する。   FIG. 1 is a schematic view (cross-sectional view) of an optical element having an antireflection film of the present invention. In FIG. 1, reference numeral 200 denotes an optical element. Reference numeral 1 denotes a transparent optical substrate. The vicinity of the surface of the optical substrate 1 is shown enlarged. The optical substrate 1 is made of optical glass or optical plastic having a refractive index of 1.40 to 2.30, and the antireflection film 100 of the present invention is formed on at least one of light transmitting surfaces such as a light incident surface and a light emitting surface. Is formed. The antireflection film 100 is provided on the air layer side between the fine concavo-convex structure 3, the optical substrate 1 and the fine concavo-convex structure 3, and an intermediate layer 2 composed of multilayer films (plural layers) having different refractive indexes. Have.

微細凹凸構造体3は、400nmより小さいピッチの微細構造部3aを複数、平面上に有しており、光入射側(空気層側)から光学基板1側に向かって空間充填率ffが連続的に高くなる領域を有する。そのため、この領域の有効屈折率neffは、光入射側から光学基板1に向かって連続的に増加する。波長が400nm以上波長1300nm以下の入射光に対して、入射角度が増加しても回折が起こらないようにするためには、微細構造部3aのピッチは200nm以下であることが好ましく、ピッチが120nm以下であることがさらに好ましい。   The fine concavo-convex structure 3 has a plurality of fine structures 3a having a pitch smaller than 400 nm on a plane, and the space filling rate ff is continuous from the light incident side (air layer side) to the optical substrate 1 side. It has a region that becomes higher. Therefore, the effective refractive index neff in this region continuously increases from the light incident side toward the optical substrate 1. In order to prevent diffraction from occurring even if the incident angle is increased with respect to incident light having a wavelength of 400 nm or more and 1300 nm or less, the pitch of the fine structure portions 3a is preferably 200 nm or less, and the pitch is 120 nm. More preferably, it is as follows.

また、微細凹凸構造体3は、空間充填率が一定(つまり屈折率が一定)の領域(以下、均質領域)を有していてもよい。さらに、微細凹凸構造3は、規則的な構造でもよいし、不規則(ランダム)な構造でもよい。規則的な構造に比べて、ランダムな構造を持つ場合には、特定方向に回折光が発生するのを抑制することができるため、ランダムな構成をもつことがより好ましい。   The fine concavo-convex structure 3 may have a region (hereinafter referred to as a homogeneous region) having a constant space filling rate (that is, a constant refractive index). Further, the fine uneven structure 3 may be a regular structure or an irregular (random) structure. Compared to a regular structure, when a random structure is used, the generation of diffracted light in a specific direction can be suppressed, and thus a random structure is more preferable.

高い反射防止効果を得るためには、微細凹凸構造体3の膜厚(高さの平均値)は、200nm以上350nm以下であることが好ましい。膜厚が200nm未満になると、高い反射防止効果が得られる波長帯域が狭くなる。一方膜厚が350nm以上になると、微細凹凸構造体3の縦横比が増大して製造が困難になるとともに、微細構造体3aの構成やランダム性に起因した散乱により透過率が低下する。   In order to obtain a high antireflection effect, the film thickness (average value of the height) of the fine uneven structure 3 is preferably 200 nm or more and 350 nm or less. When the film thickness is less than 200 nm, the wavelength band where a high antireflection effect is obtained becomes narrow. On the other hand, when the film thickness is 350 nm or more, the aspect ratio of the fine concavo-convex structure 3 is increased, making it difficult to manufacture, and the transmittance is reduced due to scattering due to the structure and randomness of the fine structure 3a.

本実施例において、微細凹凸構造体3の製造方法は、特に限定されない。例えば、真空成膜法や液相法(ゾルゲル法)により成膜した酸化アルミニウム(アルミナ)を含有する膜を水蒸気処理あるいは温水処理することで表層をベーマイト化(板状結晶化)して微細凹凸構造体3を形成することができる。   In the present embodiment, the manufacturing method of the fine concavo-convex structure 3 is not particularly limited. For example, a film containing aluminum oxide (alumina) formed by a vacuum film formation method or a liquid phase method (sol-gel method) is treated with water vapor or hot water to make the surface layer boehmite (plate-like crystallization), resulting in fine irregularities The structure 3 can be formed.

この方法で作成した場合、微細凹凸構造体3の有効屈折率は光入射側でほぼ1となり、中間層2側に向かって連続的に上昇し、屈折率の最大値は1.35〜1.58の範囲となる。また、ナノインプリントやリソグラフィーを用いて形成することもできる。ただし、大面積に作成するためには、ナノインプリントや上記のような微結晶化や自己組織化等のボトムアップ型の微細構造の形成が好ましい。さらに開角の大きなレンズ等表面が平らでない光学素子に形成する場合には、ボトムアップ型の微細構造の形成がより好ましい。   When produced by this method, the effective refractive index of the fine concavo-convex structure 3 is approximately 1 on the light incident side and continuously increases toward the intermediate layer 2 side, and the maximum value of the refractive index is 1.35 to 1. The range is 58. It can also be formed using nanoimprinting or lithography. However, in order to create a large area, it is preferable to form a bottom-up type fine structure such as nanoimprint or microcrystallization or self-organization as described above. Further, when forming on an optical element having a non-flat surface such as a lens having a large opening angle, it is more preferable to form a bottom-up type fine structure.

微細凹凸構造体3は、中間層2との隣接部分に同じ材料から形成された屈折率が膜厚方向に均一な均一層(均質領域)を有してもよい。例えば、酸化アルミニウム膜を水蒸気や温水で処理する場合には、その表層に酸化アルミニウムの板状結晶が析出して厚さ方向に空間充填率が変化する微細凹凸構造体3を形成する。そしてその下(中間層2側)に空間充填率が一定の不定形の酸化アルミニウム層(均質領域)が残存してもよい。   The fine concavo-convex structure 3 may have a uniform layer (homogeneous region) in which the refractive index formed from the same material is adjacent to the intermediate layer 2 in the film thickness direction. For example, when an aluminum oxide film is treated with water vapor or warm water, a plate-like crystal of aluminum oxide is deposited on the surface layer to form the fine concavo-convex structure 3 in which the space filling rate changes in the thickness direction. Then, an amorphous aluminum oxide layer (homogeneous region) having a constant space filling rate may remain below (on the intermediate layer 2 side).

均質領域の膜厚は、処理温度や処理時間、材料中の酸化アルミニウムの含有量や安定剤、触媒等の添加物含有量を制御することで、調整することができる。また、ナノインプリントやリソグラフィー等で形成した場合にも、均質領域を形成することができる。なお、均質領域の屈折率は微細凹凸構造体3のうち最も均質部に近い部分と一致させてもよく、異なっていてもよい。即ち、屈折率を1.35〜1.58とするのが良い。   The film thickness in the homogeneous region can be adjusted by controlling the treatment temperature and treatment time, the content of aluminum oxide in the material, and the content of additives such as stabilizers and catalysts. Moreover, even when formed by nanoimprinting or lithography, a homogeneous region can be formed. In addition, the refractive index of a homogeneous area | region may be made to correspond with the part nearest to a homogeneous part among the fine concavo-convex structures 3, and may differ. That is, the refractive index is preferably 1.35 to 1.58.

中間層2は、光学基板1上に形成され、光学基板1側から順に所定の屈折率と光学膜厚(屈折率×厚さ)を有する第1層から第5層の5つの薄膜を積層した構造を持つ。すなわち、第1層21は、屈折率が1.61〜1.71、光学膜厚が10〜220nmである。第2層22は、屈折率が1.98〜2.40、光学膜厚が15〜65nmである。第3層23は屈折率が1.61〜1.71、光学膜厚が60〜140nmである。第4層24は屈折率が1.98〜2.40、光学膜厚が15〜65nmである。第5層25は屈折率が1.42〜1.54、光学膜厚が10〜140nmである。   The intermediate layer 2 is formed on the optical substrate 1, and five thin films of a first layer to a fifth layer having a predetermined refractive index and an optical film thickness (refractive index × thickness) are stacked in order from the optical substrate 1 side. With structure. That is, the first layer 21 has a refractive index of 1.61 to 1.71 and an optical film thickness of 10 to 220 nm. The second layer 22 has a refractive index of 1.98 to 2.40 and an optical film thickness of 15 to 65 nm. The third layer 23 has a refractive index of 1.61 to 1.71 and an optical film thickness of 60 to 140 nm. The fourth layer 24 has a refractive index of 1.98 to 2.40 and an optical film thickness of 15 to 65 nm. The fifth layer 25 has a refractive index of 1.42 to 1.54 and an optical film thickness of 10 to 140 nm.

本実施例において中間層2の各層の製造方法は特に限定されず、液相法や真空蒸着法、スパッタ法などの任意のプロセスを選定することができる。ただし、より緻密な膜を形成するためには、ドライプロセスが好ましく、スパッタ法がより好ましい。また、第1層21の屈折率が光学基板1の屈折率より低い場合には、第1層21の光学膜厚は10〜35nmであることが好ましく、第1層21の屈折率のほうが高い場合には、その光学膜厚は180〜220nmであることが好ましい。   In the present embodiment, the manufacturing method of each layer of the intermediate layer 2 is not particularly limited, and any process such as a liquid phase method, a vacuum deposition method, and a sputtering method can be selected. However, in order to form a denser film, a dry process is preferable, and a sputtering method is more preferable. Further, when the refractive index of the first layer 21 is lower than the refractive index of the optical substrate 1, the optical film thickness of the first layer 21 is preferably 10 to 35 nm, and the refractive index of the first layer 21 is higher. In that case, the optical film thickness is preferably 180 to 220 nm.

これは、光学基板1と第1層21の屈折率の大小関係により、光学基板1と第1層21の界面で発生する反射波の位相が変化するためである。さらに、微細凹凸構造3と、中間層2との隣接部分に均質領域(均一層)を有している場合には、均質領域の光学膜厚と第5層25の光学膜厚の和が10nm以上140nm以下であることが好ましい。   This is because the phase of the reflected wave generated at the interface between the optical substrate 1 and the first layer 21 changes depending on the magnitude relationship between the refractive indexes of the optical substrate 1 and the first layer 21. Further, in the case where a homogeneous region (uniform layer) is provided in a portion adjacent to the fine relief structure 3 and the intermediate layer 2, the sum of the optical film thickness of the homogeneous region and the optical film thickness of the fifth layer 25 is 10 nm. It is preferable that it is 140 nm or less.

これは、均質領域と第5層25を合わせて第5層25としての役割を果たしてもよいためである。また、このように均質領域と第5層25が見かけ上、1つの層として振る舞うためには、その屈折率差は0.1以下であることが好ましく、0.05以下であることがさらに好ましい。   This is because the homogeneous region and the fifth layer 25 may be combined to serve as the fifth layer 25. In addition, in order for the homogeneous region and the fifth layer 25 to behave as one layer in appearance, the refractive index difference is preferably 0.1 or less, and more preferably 0.05 or less. .

ここで中間層2の各層の材料は、例えばSiOやMgO2、Al、MgO,SiON、ZrO、HfO,Ta、TiOなどの金属酸化物の化合物を用いることができる。更に、LaF、CeF、MgF、NdF、CaFなどの金属フッ化物の単体やそれらの化合物を用いることができる。 Here, the material of each layer of the intermediate layer 2 is, for example, a metal oxide compound such as SiO 2 , MgO 2 , Al 2 O 3 , MgO, SiON, ZrO 2 , HfO 2 , Ta 2 O 5 , or TiO 2. it can. Furthermore, a simple substance of a metal fluoride such as LaF 3 , CeF 3 , MgF 2 , NdF 3 , CaF 2 or a compound thereof can be used.

光学基板1の材質によっては、大気に晒されることで表面に成分が溶出して曇りや着色(「ヤケ」と呼ばれる)が生じる場合があるため、これを防止するために、第1層21はAlやSiONを用いることが好ましい。また第5層25は、反応性が低く大気中でも安定な膜であることが好ましく、例えばSiOを用いることが好ましい。 Depending on the material of the optical substrate 1, exposure to the atmosphere may cause components to elute on the surface and cause clouding or coloring (called “burning”). To prevent this, the first layer 21 is It is preferable to use Al 2 O 3 or SiON. The fifth layer 25 is preferably a film that has low reactivity and is stable in the air. For example, SiO 2 is preferably used.

また、微細凹凸構造体3と中間層2の界面の屈折率差(すなわち、第5層25の屈折率と微細凹凸構造3の最も光学基板1側の屈折率差)は0.1以下であることが好ましく、0.05以下であることがさらに好ましい。屈折率差を小さくすることにより、界面で発生する反射波を抑制することができ、反射防止性能が向上する。   Further, the refractive index difference at the interface between the fine uneven structure 3 and the intermediate layer 2 (that is, the refractive index difference of the fifth layer 25 and the refractive index closest to the optical substrate 1 of the fine uneven structure 3) is 0.1 or less. Preferably, it is 0.05 or less. By reducing the difference in refractive index, the reflected wave generated at the interface can be suppressed, and the antireflection performance is improved.

反射防止膜を有した光学素子を光学系中に用いたとき、良好なる反射防止作用を有し、十分な透過率およびゴースト、フレアの抑制効果を得るためには、次の如く設定するのが良い。即ち、波長450〜波長1000nmで0.2%以下、波長1000〜波長1200nmで1.0%以下に反射率を低減できることが好ましい。また、入射角45度に対して、波長450〜波長1000nmで1.0%以下に低減できることが好ましい。さらに、波長450〜波長1000nmで0.1%以下、波長1000〜波長1200nmで0.6%以下に反射率を低減できるとさらに好ましい。   When an optical element having an antireflection film is used in an optical system, it has the following antireflection effect, and in order to obtain sufficient transmittance, ghost and flare suppression effects, the following settings are made. good. That is, it is preferable that the reflectance can be reduced to 0.2% or less at a wavelength of 450 to 1000 nm and 1.0% or less at a wavelength of 1000 to 1200 nm. Moreover, it is preferable that it can be reduced to 1.0% or less at a wavelength of 450 to 1000 nm with respect to an incident angle of 45 degrees. Furthermore, it is more preferable that the reflectance can be reduced to 0.1% or less at a wavelength of 450 to 1000 nm and 0.6% or less at a wavelength of 1000 to 1200 nm.

光学基板1は、屈折率が1.40〜2.30であることが好ましく、さらに1.40以上1.60以下もしくは1.8以上2.20以下であるとより好ましい。光学基板1の屈折率が上記の範囲を満たす場合、本発明の反射防止膜を形成することで高い反射防止性能を容易に得ることができる。   The optical substrate 1 preferably has a refractive index of 1.40 to 2.30, more preferably 1.40 to 1.60 or 1.8 to 2.20. When the refractive index of the optical substrate 1 satisfies the above range, high antireflection performance can be easily obtained by forming the antireflection film of the present invention.

光入射面又は光出射面のいずれか1つの面に反射防止膜100を形成する光学素子200は、例えば、レンズ、プリズム、フライアイインテグレータ等を含む。また、この光学素子200を有する光学系は、例えば、撮像光学系、走査光学系、投射光学系を含み、カメラ、ビデオカメラ、双眼鏡、複写機、プリンター、プロジェクター、ヘッドマウントディスプレイ、天体望遠鏡、顕微鏡等の光学機器に使用することができる。   The optical element 200 that forms the antireflection film 100 on any one of the light incident surface and the light emitting surface includes, for example, a lens, a prism, a fly eye integrator, and the like. The optical system having the optical element 200 includes, for example, an imaging optical system, a scanning optical system, and a projection optical system, and includes a camera, a video camera, binoculars, a copier, a printer, a projector, a head-mounted display, an astronomical telescope, and a microscope. It can be used for optical instruments such as.

以上のように、本発明によれば、可視〜近赤外の広帯域において優れた反射防止特性を有する反射防止膜及びそれを有する光学素子が得られる。次に各実施例の反射防止膜について説明する。   As described above, according to the present invention, an antireflection film having excellent antireflection characteristics in a visible to near-infrared broadband and an optical element having the antireflection film can be obtained. Next, the antireflection film of each example will be described.

[実施例1]
表1に実施例1−1の膜構成の数値を示す。表1において物理膜厚は実際の厚さである。以下、同じである。実施例1−1の反射防止膜は、図1に示す構成よりなっている。反射防止膜100は屈折率が2.162の光学基板1上に、5層構成の中間層2を形成し、さらにその上に微細凹凸構造体3が形成されている。
[Example 1]
Table 1 shows numerical values of the film configuration of Example 1-1. In Table 1, the physical film thickness is the actual thickness. The same applies hereinafter. The antireflection film of Example 1-1 has the configuration shown in FIG. In the antireflection film 100, an intermediate layer 2 having a five-layer structure is formed on an optical substrate 1 having a refractive index of 2.162, and a fine uneven structure 3 is formed thereon.

中間層2は、屈折率が1.694、SiONを主成分(ここで主成分とは形成された層において、指定の成分が85wt%以上含まれることである。)とする第1層21、屈折率が2.323、TiOを主成分とする第2層22、屈折率が1.694、SiONを主成分とする第3層23、屈折率が2.323、TiOを主成分とする第4層24である。更に屈折率が1.458、SiOを主成分とする第5層25の構成であり、各層はそれぞれスパッタ法により形成した。各層の光学膜厚は、第1層21が24nm、第2層22が51nm、第3層23が81nm、第4層24が30nm、第5層25が55nmである。 The intermediate layer 2 has a refractive index of 1.694 and SiON as a main component (here, the main component is that the specified component contains 85 wt% or more in the formed layer), A second layer 22 having a refractive index of 2.323 and TiO 2 as a main component, a refractive index of 1.694 and a third layer 23 having a main component of SiON, a refractive index of 2.323, and TiO 2 as a main component. This is the fourth layer 24. Furthermore, the refractive index is 1.458, and the fifth layer 25 is composed mainly of SiO 2. Each layer is formed by sputtering. The optical thickness of each layer is 24 nm for the first layer 21, 51 nm for the second layer 22, 81 nm for the third layer 23, 30 nm for the fourth layer 24, and 55 nm for the fifth layer 25.

また、微細凹凸構造体3は、アルミニウムを含むゾル液を調整し、スピンコートで成膜した後、200℃のオーブンで30分間焼成し、透明なアモルファスAlを被膜し、80℃の温水中に30分間浸漬したのち、乾燥することで形成した。この方法で形成された反射防止膜100の厚さ方向に対する屈折率を図2(A)に示す。 The fine concavo-convex structure 3 is prepared by preparing a sol solution containing aluminum, forming a film by spin coating, baking it in an oven at 200 ° C. for 30 minutes, coating a transparent amorphous Al 2 O 3, and It was formed by immersing in warm water for 30 minutes and then drying. FIG. 2A shows the refractive index with respect to the thickness direction of the antireflection film 100 formed by this method.

図2(A)の横軸は光学基板(基板)1からの厚さを表し、反射防止膜が形成されている側の基板1の表面が0nm、微細凹凸構造体3の最も光入射側が474nmである。また、縦軸は反射防止膜100を構成する各部材の膜厚方向における屈折率を表す。   The horizontal axis of FIG. 2A represents the thickness from the optical substrate (substrate) 1, the surface of the substrate 1 on the side where the antireflection film is formed is 0 nm, and the light incident side of the fine concavo-convex structure 3 is 474 nm. It is. The vertical axis represents the refractive index in the film thickness direction of each member constituting the antireflection film 100.

以下、反射防止膜の厚さ方向に対する屈折率の説明図は同じである。微細凹凸構造体3は、空気層側から中間層2側に向かって屈折率が1から連続的に1.504まで増加し、その物理膜厚は242nmである。膜厚方向に対する屈折率の変化は一定ではなく、空気層側に近い領域のほうが中間層に近い領域より厚み方向に対する屈折率変化が小さい構造となる。   Hereinafter, the explanatory views of the refractive index with respect to the thickness direction of the antireflection film are the same. The fine concavo-convex structure 3 has a refractive index continuously increasing from 1 to 1.504 from the air layer side to the intermediate layer 2 side, and its physical film thickness is 242 nm. The change in the refractive index with respect to the film thickness direction is not constant, and the region closer to the air layer has a structure in which the refractive index change with respect to the thickness direction is smaller than the region closer to the intermediate layer.

このような構造は必ずしも必要ではないが、より波長帯域や入射角度特性に優れた反射防止特性を発揮できる。また、微細凹凸構造体3の下部(基板側)に屈折率1.504の均質領域(アモルファスAlの残膜)(均一層)が光学膜厚で57nm形成されている。 Such a structure is not necessarily required, but can exhibit antireflection characteristics that are more excellent in wavelength band and incident angle characteristics. In addition, a homogeneous region (residual film of amorphous Al 2 O 3 ) (uniform layer) having a refractive index of 1.504 is formed at an optical film thickness of 57 nm below the fine uneven structure 3 (substrate side).

図2(B)に、本実施例の反射防止膜100の反射率特性を示す。なお、図中の0、30、45、60は入射角度(単位:度)を表している。図2(B)より、本実施例1−1の反射防止膜100は、入射角が0度の時、波長400〜波長1000nmで0.1%以下、波長1000nm〜波長1200nmで0.5%以下の優れた反射防止性能を示す。また、入射角が45度の場合にも波長400〜波長1000nmの広い波長帯域で反射率1.0%以下の高性能な反射防止性能を実現していることが分かる。   FIG. 2B shows the reflectance characteristics of the antireflection film 100 of this example. In the figure, 0, 30, 45, and 60 represent incident angles (unit: degrees). 2B, when the incident angle is 0 degree, the antireflection film 100 of Example 1-1 is 0.1% or less at a wavelength of 400 to 1000 nm and 0.5% at a wavelength of 1000 nm to 1200 nm. The following excellent antireflection performance is shown. In addition, it can be seen that even when the incident angle is 45 degrees, high-performance antireflection performance with a reflectance of 1.0% or less is realized in a wide wavelength band of wavelength 400 to 1000 nm.

なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.03%、45度入射のとき0.26%であった。また、実施例1−1の反射防止膜100と基板1や膜構成は同様であるが、微細凹凸構造体3の膜厚がより薄い場合を実施例1−2として示す。   The average reflectance in the wavelength region of 400 to 1000 nm was 0.03% at 0 degree incidence and 0.26% at 45 degree incidence. Moreover, although the antireflection film 100 of Example 1-1 and the board | substrate 1 and film | membrane structure are the same, the case where the film thickness of the fine concavo-convex structure 3 is thinner is shown as Example 1-2.

表2に実施例1−2の膜構成の数値を示す。実施例1−2において中間層2はスパッタ法により形成し、構成する材料、屈折率は実施例1−1と同様である。なお、各層の光学膜厚は、第1層21が22nm、第2層22が58nm、第3層23が75nm、第4層24が35nm、第5層25が66nmである。また、微細凹凸構造体3は、実施例1−1と同様の方法で形成したが、スピンコート時に膜厚を制御することにより、微細凹凸構造体3の物理膜厚は実施例1−1より1割程度薄い223nmとした。   Table 2 shows the numerical values of the film configuration of Example 1-2. In Example 1-2, the intermediate layer 2 is formed by sputtering, and the constituent material and refractive index are the same as those in Example 1-1. The optical thickness of each layer is 22 nm for the first layer 21, 58 nm for the second layer 22, 75 nm for the third layer 23, 35 nm for the fourth layer 24, and 66 nm for the fifth layer 25. Moreover, although the fine concavo-convex structure 3 was formed by the same method as in Example 1-1, the physical film thickness of the fine concavo-convex structure 3 was greater than that in Example 1-1 by controlling the film thickness during spin coating. The thickness was about 223 nm, which was about 10% thinner.

また、微細凹凸構造体3の下部(基板1側)の均質領域も光学膜厚51nmと実施例1−1より薄く形成されている。この方法で作成した反射防止膜の厚さ方向に対する屈折率を図3(A)に示す。   Further, the homogeneous region at the lower part (substrate 1 side) of the fine concavo-convex structure 3 is also formed with an optical film thickness of 51 nm, which is thinner than that of Example 1-1. The refractive index with respect to the thickness direction of the antireflection film prepared by this method is shown in FIG.

図3(B)に、本実施例1−2の反射防止膜の反射率特性を示す。図3(B)より、本実施例1−2の反射防止膜100は、入射角が0度の時、波長400〜波長1000nmで0.1%以下、波長1000nm〜波長1200nmで0.7%以下の優れた反射防止性能を示す。また、入射角が45度の場合にも400〜1000nmの広い波長帯域で反射率1.0%以下の高性能な反射防止性能を実現していることが分かる。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.04%、45度入射のとき0.35%であった。   FIG. 3B shows the reflectance characteristics of the antireflection film of Example 1-2. As shown in FIG. 3B, the antireflection film 100 of Example 1-2 has a wavelength of 400 to 1000 nm and a wavelength of 0.1% or less, and a wavelength of 1000 nm to a wavelength of 1200 nm of 0.7% when the incident angle is 0 degree. The following excellent antireflection performance is shown. Further, it can be seen that even when the incident angle is 45 degrees, high-performance antireflection performance with a reflectance of 1.0% or less is realized in a wide wavelength band of 400 to 1000 nm. The average reflectance in the wavelength region of 400 to 1000 nm was 0.04% at 0 degree incidence and 0.35% at 45 degree incidence.

[比較例1]
実施例1−1、実施例1−2の反射防止膜と基板や膜構成は同様であるが、微細凹凸構造体3の膜厚がさらに薄い場合を比較例1として示す。表13に比較例1の膜構成の数値を示す。膜の作成方法は、実施例1−1、1−2と同様である。中間層2の各層の光学膜厚は、第1層21が15nm、第2層22が56nm、第3層23が69nm、第4層24が35nm、第5層25が67nmである。また、微細凹凸構造体3の物理膜厚は実施例1−2よりさらに薄い182nm、均質領域も光学膜厚47nmである。
[Comparative Example 1]
Although the antireflection film of Example 1-1 and Example 1-2 have the same substrate and film configuration, a case where the film thickness of the fine concavo-convex structure 3 is still thinner is shown as Comparative Example 1. Table 13 shows the numerical values of the film configuration of Comparative Example 1. The method for forming the film is the same as in Examples 1-1 and 1-2. The optical thickness of each layer of the intermediate layer 2 is 15 nm for the first layer 21, 56 nm for the second layer 22, 69 nm for the third layer 23, 35 nm for the fourth layer 24, and 67 nm for the fifth layer 25. Further, the physical thickness of the fine concavo-convex structure 3 is 182 nm, which is thinner than that of Example 1-2, and the homogeneous region is also an optical thickness of 47 nm.

比較例1の反射防止膜100の厚さ方向に対する屈折率を図15(A)に示す。図15(B)に比較例1の反射防止膜の反射率特性を示す。   The refractive index with respect to the thickness direction of the antireflection film 100 of Comparative Example 1 is shown in FIG. FIG. 15B shows the reflectance characteristics of the antireflection film of Comparative Example 1.

図15(B)より、本比較例1の反射防止膜は、入射角が0度の時、波長1000nmで0.5%程度、波長1200nmで1.5%程度と長波長側で反射率が上がってしまう。また、入射角が45度の場合、波長1000nmで1.5%程度と入射角度特性も低下することが分かる。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.14%、45度入射のとき0.78%と実施例1に比べて2倍以上であった。   From FIG. 15B, the antireflection film of Comparative Example 1 has a reflectance on the long wavelength side of about 0.5% at a wavelength of 1000 nm and about 1.5% at a wavelength of 1200 nm when the incident angle is 0 degree. It will go up. It can also be seen that when the incident angle is 45 degrees, the incident angle characteristic is reduced to about 1.5% at a wavelength of 1000 nm. The average reflectance in the wavelength region of 400 to 1000 nm was 0.14% at 0 degree incidence and 0.78% at 45 degree incidence, which was more than double that of Example 1.

微細凹凸構造体3の膜厚が低くなりすぎると、波長700nm以上での反射率特性と角度特性が低下してしまう。波長400〜波長1000nmの領域の平均反射率が0度入射で0.10%以下を満たすためには、微細凹凸構造体3の膜厚(均質領域を除く)は、190nm以上であることが望ましい。   When the film thickness of the fine concavo-convex structure 3 is too low, the reflectance characteristics and the angle characteristics at a wavelength of 700 nm or more are deteriorated. In order for the average reflectance in the wavelength region of 400 to 1000 nm to satisfy 0.10% or less at 0 degree incidence, the film thickness of the fine concavo-convex structure 3 (excluding the homogeneous region) is desirably 190 nm or more. .

さらに波長400〜波長1000nmでの反射率が0.1%以下になるためには、微細凹凸構造3の膜厚が200nm以上であることがより好ましい。さらに、45度入射でも波長400〜波長1000nmで1%以下の反射率特性を実現するためには、微細凹凸構造体3の膜厚(均質領域を除く)が215nm以上であることがさらに好ましい。   Furthermore, in order for the reflectance at a wavelength of 400 to 1000 nm to be 0.1% or less, the film thickness of the fine concavo-convex structure 3 is more preferably 200 nm or more. Furthermore, in order to realize a reflectance characteristic of 1% or less at a wavelength of 400 to 1000 nm even at 45 ° incidence, it is more preferable that the thickness of the fine concavo-convex structure 3 (excluding the homogeneous region) is 215 nm or more.

一方、微細凹凸構造体3の膜厚が厚くなりすぎると、構造のランダム性や構造由来の散乱が増加し、透過率が低下するため、膜厚は400nm以下であることが好ましい。また、微細凹凸構造体3の微細構造部3aのピッチに対して高さが大きくなりすぎると微細凹凸構造体3の強度が低下し、構造の形成が難しくなるため、微細凹凸構造体3の膜厚は350nm以下であることがさらに好ましい。   On the other hand, when the film thickness of the fine concavo-convex structure 3 becomes too thick, the randomness of the structure and the scattering derived from the structure increase and the transmittance decreases, so the film thickness is preferably 400 nm or less. In addition, if the height is too large with respect to the pitch of the fine structure portions 3a of the fine concavo-convex structure 3, the strength of the fine concavo-convex structure 3 is reduced and it becomes difficult to form the structure. More preferably, the thickness is 350 nm or less.

[実施例2]
実施例2−1の反射防止膜は、図1に示す構成よりなっている。表3に実施例2−1の膜構成の数値を示す。反射防止膜100は屈折率が2.011の光学基板1上に形成されている。中間層2は、屈折率が1.621、Alを主成分とする第1層21、屈折率が2.127、Taを主成分とする第2層22、屈折率が1.621、Alを主成分とする第3層23を有する。更に屈折率が2.127、Taを主成分とする第4層24、屈折率が1.458、SiOを主成分とする第5層25の構成である。
[Example 2]
The antireflection film of Example 2-1 has the configuration shown in FIG. Table 3 shows the numerical values of the film configuration of Example 2-1. The antireflection film 100 is formed on the optical substrate 1 having a refractive index of 2.011. The intermediate layer 2 includes a first layer 21 having a refractive index of 1.621 and Al 2 O 3 as a main component, a second layer 22 having a refractive index of 2.127 and Ta 2 O 5 as a main component, and a refractive index of 1.621, having a third layer 23 mainly composed of Al 2 O 3 . Further, the fourth layer 24 has a refractive index of 2.127 and Ta 2 O 5 as a main component, and the fifth layer 25 has a refractive index of 1.458 and a main component of SiO 2 .

各層は、それぞれ真空蒸着法により形成した。各層の光学膜厚は、第1層21が13nm、第2層22が62nm、第3層23が63nm、第4層24が43nm、第5層25が60nmである。微細凹凸構造体3は実施例1−1と同等の方法で作成した。実施例2−1の反射防止膜100の厚さ方向に対する屈折率を図4(A)に示す。   Each layer was formed by a vacuum deposition method. The optical thickness of each layer is 13 nm for the first layer 21, 62 nm for the second layer 22, 63 nm for the third layer 23, 43 nm for the fourth layer 24, and 60 nm for the fifth layer 25. The fine concavo-convex structure 3 was produced by the same method as in Example 1-1. The refractive index with respect to the thickness direction of the antireflection film 100 of Example 2-1 is shown in FIG.

図4(B)に、本実施例の反射防止膜100の反射率特性を示す。図4(B)より、本実施例2−1の反射防止膜は、入射角が0度の時、波長400〜波長1000nmで0.1%以下、波長1000nm〜波長1200nmで0.6%以下の優れた反射防止性能を示す。また、入射角が45度の場合にも波長400〜波長1000nmの広い波長帯域で反射率1.0%以下の高性能な反射防止性能を実現していることが分かる。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.04%、45度入射のとき0.29%であった。   FIG. 4B shows the reflectance characteristics of the antireflection film 100 of this example. From FIG. 4B, the antireflection film of Example 2-1 has a wavelength of 400 to 1000 nm and a wavelength of 0.1% or less, and a wavelength of 1000 nm to a wavelength of 1200 nm and a wavelength of 0.6% or less when the incident angle is 0 degree. Excellent anti-reflection performance. In addition, it can be seen that even when the incident angle is 45 degrees, high-performance antireflection performance with a reflectance of 1.0% or less is realized in a wide wavelength band of wavelength 400 to 1000 nm. The average reflectance in the wavelength region of 400 to 1000 nm was 0.04% at 0 degree incidence and 0.29% at 45 degree incidence.

また、実施例2−1の反射防止膜100と基板1や膜構成は同様であるが、微細凹凸構造体3の下部の均質領域がない場合を実施例2−2として示す。表4に実施例2−2の膜構成の数値を示す。   Moreover, although the antireflection film 100 of Example 2-1 and the board | substrate 1 and film | membrane structure are the same, the case where there is no homogeneous area | region of the lower part of the fine concavo-convex structure 3 is shown as Example 2-2. Table 4 shows the numerical values of the film configuration of Example 2-2.

中間層2は実施例2−1と同様、真空蒸着法により形成し、構成する材料、屈折率も同様である。なお、各層の光学膜厚は、第1層21が19nm、第2層22が53nm、第3層23が71nm、第4層24が32nm、第5層25が109nmである。微細凹凸構造体3は、実施例2−1と同様の方法で形成したが、スピンコート時の成膜条件や温水浸漬処理時の条件を調整することにより、微細凹凸構造体3の下部に均質領域がない構成となっている。実施例2−2の反射防止膜の厚さ方向に対する屈折率を図5(A)に示す。   The intermediate layer 2 is formed by a vacuum vapor deposition method as in Example 2-1, and the constituent material and refractive index are also the same. The optical thickness of each layer is 19 nm for the first layer 21, 53 nm for the second layer 22, 71 nm for the third layer 23, 32 nm for the fourth layer 24, and 109 nm for the fifth layer 25. The fine concavo-convex structure 3 was formed by the same method as in Example 2-1, but it was homogeneous in the lower part of the fine concavo-convex structure 3 by adjusting the film forming conditions during spin coating and the conditions during hot water immersion treatment. The structure has no area. The refractive index with respect to the thickness direction of the antireflection film of Example 2-2 is shown in FIG.

図5(B)に、本実施例2−2の反射防止膜の反射率特性を示す。図5(B)より、本実施例2−2の反射防止膜100は、入射角が0度の時、波長400〜波長1000nmで0.1%以下、波長1000nm〜波長1200nmで0.5%以下の優れた反射防止性能を示す。また、入射角が45度の場合にも波長400〜波長1000nmの広い波長帯域で反射率0.8%以下の高性能な反射防止性能を実現していることが分かる。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.03%、45度入射のとき0.26%であった。   FIG. 5B shows the reflectance characteristics of the antireflection film of Example 2-2. As shown in FIG. 5B, when the incident angle is 0 degree, the antireflection film 100 of Example 2-2 is 0.1% or less at a wavelength of 400 to 1000 nm and 0.5% at a wavelength of 1000 nm to 1200 nm. The following excellent antireflection performance is shown. In addition, it can be seen that even when the incident angle is 45 degrees, high-performance antireflection performance with a reflectance of 0.8% or less is realized in a wide wavelength band of wavelength 400 to 1000 nm. The average reflectance in the wavelength region of 400 to 1000 nm was 0.03% at 0 degree incidence and 0.26% at 45 degree incidence.

均質領域と中間層2の第5層25を合わせた層が実質的に1層として振る舞うため、実施例2−2のように均質領域がない場合には、第5層25の膜厚を調整することで反射率特性を発揮することができる。ただし、均質領域が存在するほうが、製造は容易であり、さらに均質領域の膜厚と第5層25の膜厚をそれぞれ制御することができるため、反射防止性能上有利になる場合がある。   Since the layer including the homogeneous region and the fifth layer 25 of the intermediate layer 2 behaves substantially as one layer, the thickness of the fifth layer 25 is adjusted when there is no homogeneous region as in Example 2-2. By doing so, the reflectance characteristics can be exhibited. However, the presence of the homogeneous region is easier to manufacture, and the thickness of the homogeneous region and the thickness of the fifth layer 25 can be controlled, which may be advantageous in terms of antireflection performance.

[比較例2]
比較例2として特許文献3に記載の反射防止膜(表1−7)を示す。計算に使用した光学基板の屈折率は実施例2−1および実施例2−2とほぼ同等の2.00である。また、表14に第1層〜第9層の屈折率および膜厚を示す。
[Comparative Example 2]
As Comparative Example 2, an antireflection film (Table 1-7) described in Patent Document 3 is shown. The refractive index of the optical substrate used for the calculation is 2.00, which is almost the same as in Example 2-1 and Example 2-2. Table 14 shows the refractive indexes and film thicknesses of the first to ninth layers.

図16に、本比較例2の反射防止膜の反射率特性(計算値)を示す。図16と特許文献3の図2−7との比較よりほぼ同等の計算値が得られていることが分かる。本比較例2の反射防止膜は、入射角が5度の時、波長400〜波長1000nmで0.1%以下、波長1000nm〜波長900nmでは反射率0.1%以下の優れた反射率特性を示す。しかしながら、波長950nm程度から反射率が急激に上昇し波長1200nmでは1.8%程度反射してしまう。また、45度入射の場合には、波長850nm以上で反射率特性が低下し始め波長1000nmでは1.6%程度の反射してしまう。   FIG. 16 shows the reflectance characteristics (calculated values) of the antireflection film of Comparative Example 2. From the comparison between FIG. 16 and FIG. 2-7 of Patent Document 3, it can be seen that almost the same calculated value is obtained. The antireflection film of Comparative Example 2 has excellent reflectance characteristics such that when the incident angle is 5 degrees, the reflectance is 0.1% or less at a wavelength of 400 to 1000 nm, and the reflectance is 0.1% or less at a wavelength of 1000 nm to 900 nm. Show. However, the reflectivity suddenly increases from a wavelength of about 950 nm and is reflected by about 1.8% at a wavelength of 1200 nm. In addition, in the case of 45 degree incidence, the reflectance characteristic starts to deteriorate at a wavelength of 850 nm or more, and the reflection is about 1.6% at a wavelength of 1000 nm.

よって、比較例2のように、最上層に低屈折率膜を用いた構成では、本発明の反射防止膜のように可視域から近赤外までの広い波長帯域(波長450〜波長1200nm)で良好な反射率特性を得ることは困難である。   Therefore, in the configuration using the low refractive index film as the uppermost layer as in Comparative Example 2, in a wide wavelength band (wavelength 450 to 1200 nm) from the visible region to the near infrared region as in the antireflection film of the present invention. It is difficult to obtain good reflectance characteristics.

[実施例3]
実施例3の反射防止膜について説明する。実施例3は中間層2が5層よりなっている。表5に実施例3の膜構成の数値を示す。実施例3の反射防止膜100は、屈折率が1.808の光学基板1上に形成されている。
[Example 3]
The antireflection film of Example 3 will be described. In Example 3, the intermediate layer 2 is composed of five layers. Table 5 shows the numerical values of the film configuration of Example 3. The antireflection film 100 of Example 3 is formed on the optical substrate 1 having a refractive index of 1.808.

中間層2は、屈折率が1.621、Alを主成分とする第1層21、屈折率が2.038、ZrOを主成分とする第2層22、屈折率が1.621、Alを主成分とする第3層23を有する。更に屈折率が2.038、ZrOを主成分とする第4層24、屈折率が1.458、SiOを主成分とする第5層25の構成であり、それぞれ真空蒸着法により形成した。 The intermediate layer 2 has a refractive index of 1.621, a first layer 21 having Al 2 O 3 as a main component, a refractive index of 2.038, a second layer 22 having ZrO 2 as a main component, and a refractive index of 1.2. 621 and a third layer 23 mainly composed of Al 2 O 3 . The fourth layer 24 has a refractive index of 2.038 and ZrO 2 as a main component, and the fifth layer 25 has a refractive index of 1.458 and a main component of SiO 2 , each formed by a vacuum deposition method. .

微細凹凸構造体3は実施例1−1と同等の方法で作成した。ただし、スピンコート時の成膜条件やゾル液の物性を調整することにより、実施例1−1よりさらに微細凹凸構造体3の膜厚が大きくなっている。実施例3の反射防止膜100の厚さ方向に対する屈折率を図6(A)に示す。   The fine concavo-convex structure 3 was produced by the same method as in Example 1-1. However, the film thickness of the fine concavo-convex structure 3 is larger than that of Example 1-1 by adjusting the film forming conditions during spin coating and the physical properties of the sol solution. The refractive index with respect to the thickness direction of the antireflection film 100 of Example 3 is shown in FIG.

図6(B)に、本実施例の反射防止膜100の反射率特性を示す。図6(B)より、本実施例3の反射防止膜100は、入射角が0度の時、波長450〜波長950nmで0.1%以下、波長1000nm〜波長1200nmで0.6%以下の優れた反射防止性能を示す。また、入射角が45度の場合にも波長400〜波長1000nmの広い波長帯域で反射率1.0%以下の高性能な反射防止性能を実現していることが分かる。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.06%、45度入射のとき0.29%であった。   FIG. 6B shows the reflectance characteristics of the antireflection film 100 of this example. 6B, when the incident angle is 0 degree, the antireflection film 100 of Example 3 has a wavelength of 450 to 950 nm of 0.1% or less and a wavelength of 1000 nm to 1200 nm of 0.6% or less. Excellent antireflection performance. In addition, it can be seen that even when the incident angle is 45 degrees, high-performance antireflection performance with a reflectance of 1.0% or less is realized in a wide wavelength band of wavelength 400 to 1000 nm. The average reflectance in the wavelength range of 400 to 1000 nm was 0.06% at 0 degree incidence and 0.29% at 45 degree incidence.

[比較例3]
比較例3として、特許文献1に記載の条件(基板の屈折率≧中間層の屈折率≧微細凹凸構造の根本(中間層側)の屈折率)を満たす単層よりなる中間層を用いた反射防止膜を示す。表15に比較例3の膜構成の数値を示す。基板1および微細凹凸構造体3は実施例3と同等である。また、中間層2は特許文献1に記載を基にポリイミドを主成分とする膜で、屈折率1.647の膜を光学膜厚で72nm形成した。この時の反射防止膜100の厚さ方向に対する屈折率を図17(A)に示す。
[Comparative Example 3]
As Comparative Example 3, reflection using an intermediate layer composed of a single layer that satisfies the conditions described in Patent Document 1 (refractive index of substrate ≧ refractive index of intermediate layer ≧ refractive index of the fine uneven structure (the intermediate layer side)) The prevention film is shown. Table 15 shows the numerical values of the film configuration of Comparative Example 3. The substrate 1 and the fine concavo-convex structure 3 are the same as those in Example 3. The intermediate layer 2 is a film mainly composed of polyimide based on the description in Patent Document 1, and a film having a refractive index of 1.647 is formed with an optical film thickness of 72 nm. The refractive index with respect to the thickness direction of the antireflection film 100 at this time is shown in FIG.

図17(B)に、本実施例の反射防止膜の反射率特性を示す。図17(B)より、本比較例3の反射防止膜は、入射角が0度の時、波長400〜波長700nmで0.1%以下、入射角が45度の場合にも波長400〜波長700nm0.2%以下と可視波長域では良好な特性を示すことが分かる。しかし、0度入射の場合、波長1000nmで0.6%程度、波長1200nmでは波長1400nmと近赤外領域では反射率が高くなってしまう。   FIG. 17B shows the reflectance characteristics of the antireflection film of this example. From FIG. 17B, the antireflection film of Comparative Example 3 has a wavelength of 400 to a wavelength even when the incident angle is 0 degree and the wavelength 400 to a wavelength of 700 nm is 0.1% or less and the incident angle is 45 degrees. It can be seen that good characteristics are exhibited in the visible wavelength region of 700 nm 0.2% or less. However, in the case of 0-degree incidence, the reflectance is high in the near infrared region of about 0.6% at a wavelength of 1000 nm and at a wavelength of 1,400 nm at a wavelength of 1200 nm.

また、45度入射の場合にも、波長1000nmで1.8%程度と反射率は高くなる。これより、微細凹凸構造体3に単層の中間層を組み合わせることで、本発明のように広い波長帯域で高性能な反射防止性能を得ることは困難であることが分かる。   Also, in the case of 45 degree incidence, the reflectance is as high as about 1.8% at a wavelength of 1000 nm. From this, it can be seen that it is difficult to obtain a high-performance antireflection performance in a wide wavelength band as in the present invention by combining the fine concavo-convex structure 3 with a single intermediate layer.

[実施例4]
実施例4の反射防止膜について説明する。実施例4は中間層2が5層よりなっている。表6に実施例4の膜構成の数値を示す。実施例4の反射防止膜は、屈折率が1.743の光学基板上形成されている。実施例4の反射防止膜100の厚さ方向に対する屈折率を図7(A)に示す。また、図7(B)に、本実施例の反射防止膜の反射率特性を示す。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.07%、45度入射のとき0.25%であった。
[Example 4]
The antireflection film of Example 4 will be described. In Example 4, the intermediate layer 2 is composed of five layers. Table 6 shows the numerical values of the film configuration of Example 4. The antireflection film of Example 4 is formed on an optical substrate having a refractive index of 1.743. The refractive index with respect to the thickness direction of the antireflection film 100 of Example 4 is shown in FIG. FIG. 7B shows the reflectance characteristics of the antireflection film of this example. The average reflectance in the wavelength region of 400 to 1000 nm was 0.07% at 0 ° incidence and 0.25% at 45 ° incidence.

[実施例5]
実施例5の反射防止膜について説明する。実施例5は中間層2が5層よりなっている。表7に実施例5の膜構成の数値を示す。実施例5の反射防止膜は、屈折率が1.658の光学基板1上に形成されている。実施例5の反射防止膜の厚さ方向に対する屈折率を図8(A)に示す。
[Example 5]
The antireflection film of Example 5 will be described. In Example 5, the intermediate layer 2 is composed of five layers. Table 7 shows the numerical values of the film configuration of Example 5. The antireflection film of Example 5 is formed on the optical substrate 1 having a refractive index of 1.658. The refractive index with respect to the thickness direction of the antireflection film of Example 5 is shown in FIG.

また、図8(B)に、本実施例の反射防止膜の反射率特性を示す。実施例1〜実施例4までは、基板1の材料の屈折率より中間層2の第1層21の屈折率が小さい膜構成であったが、実施例5では図8(A)に示すように第1層21の屈折率のほうが大きい構成になっている。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.07%、45度入射のとき0.16%であった。   FIG. 8B shows the reflectance characteristics of the antireflection film of this example. In Examples 1 to 4, the film configuration is such that the refractive index of the first layer 21 of the intermediate layer 2 is smaller than the refractive index of the material of the substrate 1, but in Example 5, as shown in FIG. In addition, the refractive index of the first layer 21 is larger. The average reflectance in the wavelength region of 400 to 1000 nm was 0.07% at 0 ° incidence and 0.16% at 45 ° incidence.

[実施例6]
実施例6の反射防止膜について説明する。実施例6は中間層2が5層よりなっている。表8に実施例6の膜構成の数値を示す。実施例6の反射防止膜は、屈折率が1.585の光学基板1上に形成されている。実施例6の反射防止膜100の厚さ方向に対する屈折率を図9(A)に示す。また、図9(B)に、本実施例の反射防止膜の反射率特性を示す。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.04%、45度入射のとき0.22%であった。
[Example 6]
The antireflection film of Example 6 will be described. In Example 6, the intermediate layer 2 is composed of five layers. Table 8 shows the numerical values of the film configuration of Example 6. The antireflection film of Example 6 is formed on the optical substrate 1 having a refractive index of 1.585. The refractive index with respect to the thickness direction of the antireflection film 100 of Example 6 is shown in FIG. FIG. 9B shows the reflectance characteristics of the antireflection film of this example. The average reflectance in the wavelength region of 400 to 1000 nm was 0.04% at 0 degree incidence and 0.22% at 45 degree incidence.

[実施例7]
実施例7の反射防止膜について説明する。実施例7は中間層2が5層よりなっている。表9に実施例7の膜構成の数値を示す。実施例7の反射防止膜は、屈折率が1.518の光学基板1上に形成されている。実施例7の反射防止膜100の厚さ方向に対する屈折率を図10(A)に示す。
[Example 7]
The antireflection film of Example 7 will be described. In Example 7, the intermediate layer 2 is composed of five layers. Table 9 shows the numerical values of the film configuration of Example 7. The antireflection film of Example 7 is formed on the optical substrate 1 having a refractive index of 1.518. The refractive index with respect to the thickness direction of the antireflection film 100 of Example 7 is shown in FIG.

また、図10(B)に、本実施例の反射防止膜の反射率特性を示す。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.04%、45度入射のとき0.11%であった。   FIG. 10B shows reflectance characteristics of the antireflection film of this example. The average reflectance in the wavelength region of 400 to 1000 nm was 0.04% at 0 degree incidence and 0.11% at 45 degree incidence.

[実施例8]
実施例8−1の反射防止膜について説明する。実施例8−1は中間層2が5層よりなっている。表10に実施例8−1の膜構成の数値を示す。
[Example 8]
The antireflection film of Example 8-1 will be described. In Example 8-1, the intermediate layer 2 is composed of five layers. Table 10 shows the numerical values of the film configuration of Example 8-1.

実施例8−1の反射防止膜は、屈折率が1.498の光学基板1上に形成されている。実施例8−1の反射防止膜100の厚さ方向に対する屈折率を図11(A)に示す。また、図11(B)に、本実施例の反射防止膜の反射率特性を示す。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.05%、45度入射のとき0.28%であった。   The antireflection film of Example 8-1 is formed on the optical substrate 1 having a refractive index of 1.498. The refractive index with respect to the thickness direction of the antireflection film 100 of Example 8-1 is shown in FIG. FIG. 11B shows reflectance characteristics of the antireflection film of this example. The average reflectance in the wavelength region of 400 to 1000 nm was 0.05% at 0 degree incidence and 0.28% at 45 degree incidence.

実施例8−2の反射防止膜について説明する。実施例8−2は中間層2が5層よりなっている。表11に実施例8−2の膜構成の数値を示す。実施例8−2において、光学基板1は実施例8−1と同等であるが、微細凹凸構造体3の屈折率が異なっている。これは、ゾル液に添加する溶媒や安定化剤の種類や濃度、温水処理の条件やスピンコート時の条件により調整することができる。実施例8−2の反射防止膜の厚さ方向に対する屈折率を図12(A)に示す。   The antireflection film of Example 8-2 will be described. In Example 8-2, the intermediate layer 2 is composed of five layers. Table 11 shows the numerical values of the film configuration of Example 8-2. In Example 8-2, the optical substrate 1 is the same as that in Example 8-1, but the refractive index of the fine concavo-convex structure 3 is different. This can be adjusted according to the type and concentration of the solvent and stabilizer added to the sol, the conditions of the hot water treatment, and the conditions during spin coating. The refractive index with respect to the thickness direction of the antireflection film of Example 8-2 is shown in FIG.

また、図12(B)に、本実施例の反射防止膜の反射率特性を示す。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.06%、45度入射のとき0.14%であった。   FIG. 12B shows the reflectance characteristics of the antireflection film of this example. The average reflectance in the wavelength region of 400 to 1000 nm was 0.06% at 0 degree incidence and 0.14% at 45 degree incidence.

[実施例9]
実施例9の反射防止膜について説明する。実施例9は中間層2が5層よりなっている。表12に実施例9の膜構成の数値を示す。
[Example 9]
The antireflection film of Example 9 will be described. In Example 9, the intermediate layer 2 is composed of five layers. Table 12 shows the numerical values of the film configuration of Example 9.

実施例7の反射防止膜は、屈折率が1.440の光学基板1上に形成されている。実施例9の反射防止膜の厚さ方向に対する屈折率を図13(A)に示す。   The antireflection film of Example 7 is formed on the optical substrate 1 having a refractive index of 1.440. The refractive index with respect to the thickness direction of the antireflection film of Example 9 is shown in FIG.

また、図13(B)に、本実施例の反射防止膜の反射率特性を示す。なお、波長400〜波長1000nmの領域の平均反射率は、0度入射のとき0.05%、45度入射のとき0.31%であった。   FIG. 13B shows the reflectance characteristics of the antireflection film of this example. The average reflectance in the wavelength region of 400 to 1000 nm was 0.05% at 0 ° incidence and 0.31% at 45 ° incidence.


図14は本発明の反射防止膜を備えた光学素子を用いた撮像装置の要部概略図である。図14において、101は撮像装置としてのデジタルカメラ、102は本発明の反射防止膜が光透過面に形成された光学素子(レンズ)を用いて構成された撮像光学系である。撮像光学系102は、複数の光学素子から構成されており、これらの光学素子のレンズ面のうち少なくとも1面に本発明の反射防止膜が形成されている。そのため、本実施例のデジタルカメラは、フレアやゴーストなどの有害光の発生が抑制された画像が得られ、高品位な光学機器が実現できる。

FIG. 14 is a schematic diagram of a main part of an imaging apparatus using an optical element provided with the antireflection film of the present invention. In FIG. 14, reference numeral 101 denotes a digital camera as an image pickup apparatus, and reference numeral 102 denotes an image pickup optical system configured using an optical element (lens) having an antireflection film of the present invention formed on a light transmission surface. The imaging optical system 102 is composed of a plurality of optical elements, and the antireflection film of the present invention is formed on at least one of the lens surfaces of these optical elements. Therefore, the digital camera of the present embodiment can obtain an image in which generation of harmful light such as flare and ghost is suppressed, and can realize a high-quality optical device.

本実施例では、光学機器の1例としてデジタルカメラを取り上げたが、本発明に係る光学素子はこれに限定されるものではなく、双眼鏡や画像投射装置、蛍光顕微鏡等その他の光学機器に用いられる。   In this embodiment, a digital camera is taken as an example of an optical device, but the optical element according to the present invention is not limited to this, and is used for other optical devices such as binoculars, an image projection apparatus, and a fluorescence microscope. .

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

1:光学基板 2:中間層 3:微細凹凸構造体 21:中間層の第1層
22:中間層の第2層 23:中間層の第3層 24:中間層の第4層
25:中間層の第5層 100:本発明の反射防止膜
101:本発明の光学機器 102:本発明の光学系 200:光学素子
1: Optical substrate 2: Intermediate layer 3: Fine uneven structure 21: First layer of intermediate layer 22: Second layer of intermediate layer 23: Third layer of intermediate layer 24: Fourth layer of intermediate layer 25: Intermediate layer 100: Antireflection film 101 of the present invention: Optical apparatus of the present invention 102: Optical system of the present invention 200: Optical element

Claims (9)

透明な基板の光透過面に設けられる反射防止膜であって、前記反射防止膜は前記基板側から空気層側へ順に、複数の層を積層した中間層、400nm以下のピッチの微細構造部を複数形成した微細凹凸構造体を有し、
該微細凹凸構造体は、膜厚が200nm以上350nm以下で、屈折率が空気層側から前記基板に向かう方向に1.0から連続的に増加する領域を有し、
前記中間層の複数の層は、前記基板側から空気層側へ順に、第1層、第2層、第3層、第4層、第5層を有し、前記複数の層の屈折率を波長550nmでの値、光学膜厚を(波長550nmでの屈折率)×(厚さ)とするとき、
前記第1層の屈折率が1.61〜1.71、光学膜厚が10〜220nm、
前記第2層の屈折率が1.98〜2.40、光学膜厚が15〜65nm、
前記第3層の屈折率が1.61〜1.71、光学膜厚が60〜140nm、
前記第4層の屈折率が1.98〜2.40、光学膜厚が15〜65nm、
前記第5層の屈折率が1.42〜1.54、光学膜厚が10〜140nm
であることを特徴とする反射防止膜。
An antireflection film provided on a light transmission surface of a transparent substrate, wherein the antireflection film comprises an intermediate layer in which a plurality of layers are laminated in order from the substrate side to the air layer side, and a fine structure portion having a pitch of 400 nm or less. It has a plurality of fine concavo-convex structures formed,
The fine concavo-convex structure has a region where the film thickness is 200 nm or more and 350 nm or less and the refractive index continuously increases from 1.0 in the direction from the air layer side toward the substrate,
The plurality of layers of the intermediate layer include a first layer, a second layer, a third layer, a fourth layer, and a fifth layer in order from the substrate side to the air layer side, and the refractive index of the plurality of layers is When the value at a wavelength of 550 nm and the optical film thickness are (refractive index at a wavelength of 550 nm) × (thickness),
The refractive index of the first layer is 1.61-1.71, the optical film thickness is 10-220 nm,
The refractive index of the second layer is 1.98 to 2.40, the optical film thickness is 15 to 65 nm,
The refractive index of the third layer is 1.61-1.71, the optical film thickness is 60-140 nm,
The refractive index of the fourth layer is 1.98 to 2.40, the optical film thickness is 15 to 65 nm,
The fifth layer has a refractive index of 1.42 to 1.54 and an optical thickness of 10 to 140 nm.
An antireflective film characterized by being.
前記微細凹凸構造体と前記中間層との間に、屈折率が膜厚方向に均一な均一層を有し、該均一層の屈折率は1.35〜1.58、該均一層の光学膜厚と前記第5層の光学膜厚の和は10nm〜140nmであることを特徴とする請求項1に記載の反射防止膜。   Between the fine concavo-convex structure and the intermediate layer, there is a uniform layer having a uniform refractive index in the film thickness direction, and the refractive index of the uniform layer is 1.35 to 1.58. The antireflection film according to claim 1, wherein the sum of the thickness and the optical film thickness of the fifth layer is 10 nm to 140 nm. 前記第1層の屈折率が前記基板の屈折率より低いとき、前記第1層の光学膜厚は10nm〜35nmであり、前記第1層の屈折率が前記基板の屈折率より高いとき、前記第1層の光学膜厚は180nm〜220nmであることを特徴とする請求項1又は2に記載の反射防止膜。   When the refractive index of the first layer is lower than the refractive index of the substrate, the optical film thickness of the first layer is 10 nm to 35 nm, and when the refractive index of the first layer is higher than the refractive index of the substrate, 3. The antireflection film according to claim 1, wherein the optical thickness of the first layer is 180 nm to 220 nm. 前記第1層は、AlまたはSiONを主成分とすることを特徴とする請求項1乃至3のいずれか1項に記載の反射防止膜。 4. The antireflection film according to claim 1, wherein the first layer contains Al 2 O 3 or SiON as a main component. 5. 前記第5層は、SiOを主成分とすることを特徴とする請求項1乃至4のいずれか1項に記載の反射防止膜。 The antireflection film according to claim 1, wherein the fifth layer contains SiO 2 as a main component. 前記微細構造部はアルミナを主成分とする板状結晶から形成された層であることを特徴とする請求項1乃至5のいずれか1項に記載の反射防止膜。   The antireflection film according to claim 1, wherein the fine structure portion is a layer formed of a plate crystal mainly composed of alumina. 請求項1乃至6のいずれか1項に記載の反射防止膜を基板の光透過面に形成したことを特徴とする光学素子。   An optical element, wherein the antireflection film according to claim 1 is formed on a light transmission surface of a substrate. 請求項7に記載の光学素子を1つ以上、有することを特徴とする光学系。   An optical system comprising one or more optical elements according to claim 7. 請求項8に記載の光学系を有することを特徴とする光学機器。   An optical apparatus comprising the optical system according to claim 8.
JP2013131512A 2013-06-24 2013-06-24 Anti-reflection film and optical element having the same Pending JP2015004919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013131512A JP2015004919A (en) 2013-06-24 2013-06-24 Anti-reflection film and optical element having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013131512A JP2015004919A (en) 2013-06-24 2013-06-24 Anti-reflection film and optical element having the same

Publications (1)

Publication Number Publication Date
JP2015004919A true JP2015004919A (en) 2015-01-08

Family

ID=52300842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013131512A Pending JP2015004919A (en) 2013-06-24 2013-06-24 Anti-reflection film and optical element having the same

Country Status (1)

Country Link
JP (1) JP2015004919A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136261A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Anti-reflection film and optical member
WO2016136262A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Anti-reflection film, production method therefor, and optical member
WO2016170727A1 (en) * 2015-04-20 2016-10-27 富士フイルム株式会社 Manufacturing method for structure
JP2018124279A (en) * 2017-02-02 2018-08-09 三菱ケミカル株式会社 Infrared sensor cover, infrared sensor module, and camera
CN110333561A (en) * 2019-07-30 2019-10-15 威海世高光电子有限公司 Antireflective coating and preparation method thereof, micro projection system
US10520648B2 (en) 2015-03-31 2019-12-31 Fujifilm Corporation Antireflection film and method of producing the same
JP2020038311A (en) * 2018-09-05 2020-03-12 ミツミ電機株式会社 Water-repellent antireflection structure
US10641927B2 (en) 2017-03-27 2020-05-05 Fujifilm Corporation Optical thin film, optical element, optical system, and method for producing optical thin film
DE102019215315A1 (en) * 2019-10-07 2021-04-08 Flabeg Deutschland Gmbh Glass provided with an optical layer system
CN113009601A (en) * 2021-03-10 2021-06-22 浙江舜宇光学有限公司 Antireflection film system, optical element, and method for producing film system
CN113031124A (en) * 2021-03-22 2021-06-25 浙江舜宇光学有限公司 Microstructure film system, optical imaging lens and method for preparing film system
WO2021200175A1 (en) * 2020-03-31 2021-10-07 デクセリアルズ株式会社 Optical body, method of producing optical body, and optical device
CN114609702A (en) * 2022-03-21 2022-06-10 李昊宇 Short-wave near-infrared broadband antireflection film and preparation method thereof
DE112018006975B4 (en) 2018-01-30 2022-06-23 Fujifilm Corporation Optical thin film, optical element and optical system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10518501B2 (en) 2015-02-27 2019-12-31 Fujifilm Corporation Antireflection film and optical member
WO2016136262A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Anti-reflection film, production method therefor, and optical member
WO2016136261A1 (en) * 2015-02-27 2016-09-01 富士フイルム株式会社 Anti-reflection film and optical member
JPWO2016136262A1 (en) * 2015-02-27 2017-11-30 富士フイルム株式会社 Antireflection film, method for producing the same, and optical member
JPWO2016136261A1 (en) * 2015-02-27 2017-12-14 富士フイルム株式会社 Antireflection film and optical member
US10564323B2 (en) 2015-02-27 2020-02-18 Fujifilm Corporation Antireflection film and method of producing the same, and optical member
US10520648B2 (en) 2015-03-31 2019-12-31 Fujifilm Corporation Antireflection film and method of producing the same
DE112016001087B4 (en) 2015-03-31 2023-01-12 Fujifilm Corporation Antireflection film and method of making same
US10025006B2 (en) 2015-04-20 2018-07-17 Fujifilm Corporation Method of manufacturing structure
JPWO2016170727A1 (en) * 2015-04-20 2018-02-01 富士フイルム株式会社 Manufacturing method of structure
WO2016170727A1 (en) * 2015-04-20 2016-10-27 富士フイルム株式会社 Manufacturing method for structure
JP2018124279A (en) * 2017-02-02 2018-08-09 三菱ケミカル株式会社 Infrared sensor cover, infrared sensor module, and camera
US10641927B2 (en) 2017-03-27 2020-05-05 Fujifilm Corporation Optical thin film, optical element, optical system, and method for producing optical thin film
US11747520B2 (en) 2018-01-30 2023-09-05 Fujifilm Corporation Optical thin film having metal layer containing silver and high standard electrode potential metal
DE112018006975B4 (en) 2018-01-30 2022-06-23 Fujifilm Corporation Optical thin film, optical element and optical system
JP2020038311A (en) * 2018-09-05 2020-03-12 ミツミ電機株式会社 Water-repellent antireflection structure
CN110333561A (en) * 2019-07-30 2019-10-15 威海世高光电子有限公司 Antireflective coating and preparation method thereof, micro projection system
CN110333561B (en) * 2019-07-30 2024-02-20 威海世高光电子有限公司 Antireflection film, preparation method thereof and miniature projection system
DE102019215315A1 (en) * 2019-10-07 2021-04-08 Flabeg Deutschland Gmbh Glass provided with an optical layer system
WO2021200175A1 (en) * 2020-03-31 2021-10-07 デクセリアルズ株式会社 Optical body, method of producing optical body, and optical device
JP2021162728A (en) * 2020-03-31 2021-10-11 デクセリアルズ株式会社 Optical body, method of manufacturing optical body, and optical device
CN113009601A (en) * 2021-03-10 2021-06-22 浙江舜宇光学有限公司 Antireflection film system, optical element, and method for producing film system
CN113009601B (en) * 2021-03-10 2023-02-24 浙江舜宇光学有限公司 Antireflection film system, optical element, and method for producing film system
CN113031124A (en) * 2021-03-22 2021-06-25 浙江舜宇光学有限公司 Microstructure film system, optical imaging lens and method for preparing film system
CN114609702A (en) * 2022-03-21 2022-06-10 李昊宇 Short-wave near-infrared broadband antireflection film and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2015004919A (en) Anti-reflection film and optical element having the same
TWI432770B (en) Optical system
JP5773576B2 (en) Anti-reflection structure and optical equipment
JP5881096B2 (en) Antireflection film and optical element
JP5885649B2 (en) Optical element having antireflection film, optical system and optical apparatus
US9715044B2 (en) Antireflection film, and optical element and optical system that include the same
JP5936444B2 (en) Optical element, optical system and optical apparatus using the same
TWI509292B (en) Lens and lens module having lens
JP2010078803A (en) Optical element and optical system having it
WO2016031133A1 (en) Optical member having anti-reflection film and method for manufacturing same
JP2015094878A (en) Anti-reflection film, optical element, optical system, and optical device
US9405044B2 (en) Antireflection coating film, and optical element, optical system, and optical apparatus having the same
JP2010271534A (en) Optical element and optical apparatus having the same
JP2010066704A (en) Optical element, optical system, and optical apparatus
JP5213424B2 (en) Optical system and optical apparatus having the same
JP6505736B2 (en) Optical element and method of manufacturing optical element
JPWO2016136262A1 (en) Antireflection film, method for producing the same, and optical member
JP2015084024A (en) Antireflection film, optical element, and optical equipment
JP2019039961A (en) Optical system including anti-reflection film and optical device
JP2017097137A (en) Anti-reflection film, optical element having the same, optical system, and optical device
JP2010271455A (en) Optical element
JP2018185394A (en) Anti-reflection film and optical element having the same, optical system, and optical device
JP2018005139A (en) Antireflection film and optical element, optical system and optical instrument having the same
JP2010066681A (en) Optical element and optical system having the same
JP2020056902A (en) Optical element and optical system having the same