JP2018124279A - Infrared sensor cover, infrared sensor module, and camera - Google Patents

Infrared sensor cover, infrared sensor module, and camera Download PDF

Info

Publication number
JP2018124279A
JP2018124279A JP2018013599A JP2018013599A JP2018124279A JP 2018124279 A JP2018124279 A JP 2018124279A JP 2018013599 A JP2018013599 A JP 2018013599A JP 2018013599 A JP2018013599 A JP 2018013599A JP 2018124279 A JP2018124279 A JP 2018124279A
Authority
JP
Japan
Prior art keywords
infrared sensor
sensor cover
substrate
antireflection layer
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018013599A
Other languages
Japanese (ja)
Inventor
祐介 中井
Yusuke Nakai
祐介 中井
雅行 内田
Masayuki Uchida
雅行 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Group Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Holdings Corp filed Critical Mitsubishi Chemical Corp
Publication of JP2018124279A publication Critical patent/JP2018124279A/en
Priority to JP2022127366A priority Critical patent/JP7484979B2/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an infrared sensor cover having high infrared transmissivity, especially a high transmissivity of near infrared radiation, and to provide an infrared sensor module using the infrared sensor cover, and a camera using the infrared sensor cover.SOLUTION: An infrared sensor cover includes a substrate, and an antireflection layer disposed on at least one surface of the substrate. Preferably, one surface of the substrate includes an antireflection layer including a multilayer structure, and the other surface of the substrate includes an antireflection layer including a moth-eye structure. An infrared sensor module includes the infrared sensor cover and an infrared sensor body. A camera includes the infrared sensor cover and the infrared sensor body.SELECTED DRAWING: Figure 1

Description

本発明は、赤外線センサカバー、赤外線センサモジュール及びカメラに関する。   The present invention relates to an infrared sensor cover, an infrared sensor module, and a camera.

赤外線センサは、赤外領域の光を受光し電気信号に変換して必要な情報を取り出して応用する技術やその技術を利用した機器のことで、人間の視覚を刺激しないで物を見ることができる、対象物の温度を遠くから非接触で瞬時に測定することができる等の特徴を有する。その特徴から、例えば、カメラ等の映像装置、非接触の温度計測装置等の用途で用いられている。   An infrared sensor is a technology that receives light in the infrared region, converts it into an electrical signal, extracts necessary information, and applies it, or a device that uses that technology. It can see things without stimulating human vision. The temperature of the object can be measured instantaneously without contact from a distance. Due to its characteristics, it is used in applications such as video devices such as cameras and non-contact temperature measuring devices.

一般に、赤外線センサは、赤外線センサの本体を保護する目的として、本体の周囲にカバーが設けられている。例えば、特許文献1には、赤外線センサの本体をポリエチレン樹脂製のカバーで覆った赤外線センサが開示されている。   In general, an infrared sensor is provided with a cover around the body for the purpose of protecting the body of the infrared sensor. For example, Patent Document 1 discloses an infrared sensor in which a main body of an infrared sensor is covered with a polyethylene resin cover.

特開2013−088248号公報JP2013-088248A

しかしながら、特許文献1に開示されている赤外線センサは、カバーの材料が単純なポリエチレン樹脂であるため、赤外線の透過率が十分でなく、赤外線センサの性能が劣る。
赤外線センサのカバーとして、ガラスや樹脂が用いられることが多いが、単純にガラスや樹脂を用いただけでは、赤外線の透過率が十分でなく、赤外線センサの性能が劣る要因となり得る。特に、高度な赤外線センサの性能が求められる用途においては、より高い赤外線の透過率が求められる。
However, since the infrared sensor disclosed in Patent Document 1 is made of a simple polyethylene resin, the infrared transmittance is not sufficient and the performance of the infrared sensor is inferior.
Glass or resin is often used as the cover of the infrared sensor. However, simply using glass or resin may not provide sufficient infrared transmittance and may cause inferior performance of the infrared sensor. In particular, in applications that require advanced infrared sensor performance, higher infrared transmittance is required.

そこで、本発明は、これらの課題を解決し、赤外線の透過率、特に、近赤外線の透過率に優れた赤外線センサカバーを提供することにある。また、本発明は、前記赤外線センサカバーを用いた赤外線センサモジュール、前記赤外線センサカバーを用いたカメラを提供することにある。   Therefore, the present invention is to solve these problems and to provide an infrared sensor cover excellent in infrared transmittance, in particular, near infrared transmittance. The present invention also provides an infrared sensor module using the infrared sensor cover and a camera using the infrared sensor cover.

本発明は、以下の態様を有する。
[1]基板と、基板の少なくとも一方の面に設けられた反射防止層と、を有する、赤外線センサカバー。
[2]反射防止層が、多層構造を含む反射防止層又はモスアイ構造を含む反射防止層である、[1]に記載の赤外線センサカバー。
[3]多層構造が、屈折率の異なる複数の層を含む、[2]に記載の赤外線センサカバー。
[4]モスアイ構造の隣接する凸部間の平均間隔が、400nm以下である、[2]に記載の赤外線センサカバー。
[5]基板の材料が、ガラス又は樹脂である、[1]〜[4]のいずれかに記載の赤外線センサカバー。
[6]基板の材料が、ガラスである、[5]に記載の赤外線センサカバー。
[7]基板の一方の面に多層構造を含む反射防止層が設けられ、基板の他方の面にモスアイ構造を含む反射防止層が設けられた、[1]〜[6]のいずれかに記載の赤外線センサカバー。
[8]赤外線が、近赤外線である、[1]〜[7]のいずれかに記載の赤外線センサカバー。
[9]波長850nmにおける透過率が、93%以上である、[1]〜[8]のいずれかに記載の赤外線センサカバー。
[10]波長950nmにおける透過率が、93%以上である、[1]〜[9]のいずれかに記載の赤外線センサカバー。
[11][1]〜[10]のいずれかに記載の赤外線センサカバー及び赤外線センサ本体を含む、赤外線センサモジュール。
[12][1]〜[10]のいずれかに記載の赤外線センサカバー及び赤外線センサ本体を含む、カメラ。
The present invention has the following aspects.
[1] An infrared sensor cover having a substrate and an antireflection layer provided on at least one surface of the substrate.
[2] The infrared sensor cover according to [1], wherein the antireflection layer is an antireflection layer including a multilayer structure or an antireflection layer including a moth-eye structure.
[3] The infrared sensor cover according to [2], wherein the multilayer structure includes a plurality of layers having different refractive indexes.
[4] The infrared sensor cover according to [2], wherein an average interval between adjacent convex portions of the moth-eye structure is 400 nm or less.
[5] The infrared sensor cover according to any one of [1] to [4], wherein the substrate material is glass or resin.
[6] The infrared sensor cover according to [5], wherein the substrate material is glass.
[7] Any one of [1] to [6], wherein an antireflection layer including a multilayer structure is provided on one surface of the substrate, and an antireflection layer including a moth-eye structure is provided on the other surface of the substrate. Infrared sensor cover.
[8] The infrared sensor cover according to any one of [1] to [7], wherein the infrared rays are near infrared rays.
[9] The infrared sensor cover according to any one of [1] to [8], wherein the transmittance at a wavelength of 850 nm is 93% or more.
[10] The infrared sensor cover according to any one of [1] to [9], wherein the transmittance at a wavelength of 950 nm is 93% or more.
[11] An infrared sensor module including the infrared sensor cover and the infrared sensor main body according to any one of [1] to [10].
[12] A camera including the infrared sensor cover and the infrared sensor main body according to any one of [1] to [10].

本発明は、赤外線の透過率、特に、近赤外線の透過率に優れる。
また、本発明の赤外線センサモジュールは、赤外線の透過率、特に、近赤外線の透過率に優れるため、赤外線センサモジュールの性能に優れる。
更に、本発明のカメラは、赤外線の透過率、特に、近赤外線の透過率に優れるため、カメラの性能に優れる。
The present invention is excellent in infrared transmittance, particularly near infrared transmittance.
Moreover, since the infrared sensor module of the present invention is excellent in infrared transmittance, particularly near infrared transmittance, the infrared sensor module is excellent in performance.
Furthermore, the camera of the present invention is excellent in the performance of the camera because it has excellent infrared transmittance, particularly near infrared transmittance.

本発明の赤外線センサカバーの一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the infrared sensor cover of this invention.

(赤外線センサカバー)
本発明の赤外線センサカバーは、基板と、基板の少なくとも一方の面に設けられた反射防止層と、を有する。
図1に、本発明の赤外線センサカバーの一実施形態を示す。図1に示す赤外線センサカバー10は、基板20の一方の面に多層構造を含む反射防止層30、基板20の他方の面にモスアイ構造を含む反射防止層40を有するものである。多層構造を含む反射防止層30は、高屈折率層31、低屈折率層32を有する。モスアイ構造を含む反射防止層40は、基材41、モスアイ構造層42を有する。
(Infrared sensor cover)
The infrared sensor cover of the present invention includes a substrate and an antireflection layer provided on at least one surface of the substrate.
FIG. 1 shows an embodiment of the infrared sensor cover of the present invention. An infrared sensor cover 10 shown in FIG. 1 has an antireflection layer 30 including a multilayer structure on one surface of a substrate 20 and an antireflection layer 40 including a moth-eye structure on the other surface of the substrate 20. The antireflection layer 30 including a multilayer structure includes a high refractive index layer 31 and a low refractive index layer 32. The antireflection layer 40 including a moth-eye structure has a base material 41 and a moth-eye structure layer 42.

(基板)
基板の材料は、赤外線を透過する材料であれば特に限定されず、例えば、アクリル樹脂、ポリカーボネート樹脂、スチレン樹脂、セルロース樹脂、ポリエステル樹脂、ポリオレフィン樹脂等の樹脂;ガラス等が挙げられる。これらの基板の材料の中でも、赤外線の透過率に優れることから、ガラス、樹脂が好ましく、ガラスがより好ましい。
(substrate)
The material of the substrate is not particularly limited as long as it is a material that transmits infrared rays, and examples thereof include resins such as acrylic resin, polycarbonate resin, styrene resin, cellulose resin, polyester resin, and polyolefin resin; glass and the like. Among these substrate materials, glass and resin are preferable, and glass is more preferable because of excellent infrared transmittance.

基板の表面には、密着性、耐擦傷性等の特性を改良する目的として、コーティング処理、コロナ処理等が施されていてもよい。
基板の形状は、赤外線センサの用途に応じて、適宜選択することができる。
The surface of the substrate may be subjected to coating treatment, corona treatment or the like for the purpose of improving properties such as adhesion and scratch resistance.
The shape of the substrate can be appropriately selected according to the application of the infrared sensor.

(反射防止層)
反射防止層としては、例えば、反射波の干渉により反射防止性能が付与される多層構造を含む反射防止層、微小凹凸構造により反射防止性能が付与されるモスアイ構造を含む反射防止層等が挙げられる。これらの反射防止層の中でも、赤外線の透過率に優れることから、多層構造を含む反射防止層、モスアイ構造を含む反射防止層が好ましく、より赤外線の透過率に優れることから、モスアイ構造を含む反射防止層がより好ましい。
(Antireflection layer)
Examples of the antireflection layer include an antireflection layer including a multilayer structure to which antireflection performance is imparted by interference of reflected waves, and an antireflection layer including a moth-eye structure to which antireflection performance is imparted by a micro uneven structure. . Among these antireflective layers, an antireflection layer including a multilayer structure and an antireflection layer including a moth-eye structure are preferable because of excellent infrared transmittance, and a reflection including a motheye structure is preferable because of excellent infrared transmittance. A prevention layer is more preferred.

本発明の赤外線センサカバーは、基板の少なくとも一方の面に反射防止層が設けられるが、赤外線の透過率に優れることから、基板の両面に反射防止層が設けられることが好ましく、基板の一方の面に多層構造を含む反射防止層が設けられ、基板の他方の面にモスアイ構造を含む反射防止層が設けられることがより好ましい。   In the infrared sensor cover of the present invention, an antireflection layer is provided on at least one surface of the substrate, but since the infrared transmittance is excellent, it is preferable that an antireflection layer is provided on both surfaces of the substrate. More preferably, an antireflection layer including a multilayer structure is provided on the surface, and an antireflection layer including a moth-eye structure is provided on the other surface of the substrate.

(多層構造を含む反射防止層)
多層構造を含む反射防止層は、反射波の干渉により反射防止性能が付与される。多層構造を含む反射防止層は、反射波の干渉により反射防止性能が付与されるように多層構造の屈折率が調整されていれば特に限定されず、公知の多層構造を含む反射防止層を用いることができる。
(Antireflection layer including multilayer structure)
An antireflection layer including a multilayer structure is provided with antireflection performance due to interference of reflected waves. The antireflection layer including a multilayer structure is not particularly limited as long as the refractive index of the multilayer structure is adjusted so that antireflection performance is imparted by interference of reflected waves, and an antireflection layer including a known multilayer structure is used. be able to.

多層構造は、反射波の干渉により反射防止性能が付与されるために、屈折率の異なる複数の層を含むことが好ましい。   The multilayer structure preferably includes a plurality of layers having different refractive indexes in order to provide antireflection performance due to interference of reflected waves.

多層構造を含む反射防止層と基板との間には、密着性を高めるための粘着層、耐擦傷性を高めるためのハードコート層、多層構造を積層するための基材等を設けてもよい。   Between the antireflection layer containing a multilayer structure and the substrate, an adhesive layer for enhancing adhesion, a hard coat layer for enhancing scratch resistance, a base material for laminating the multilayer structure, etc. may be provided. .

(モスアイ構造を含む反射防止層)
モスアイ構造を含む反射防止層は、微小凹凸構造により反射防止性能が付与される。
微細凹凸構造は、複数の凸部及び複数の凸部間に形成される凹部とからなる。
(Antireflection layer including moth-eye structure)
The antireflection layer including the moth-eye structure is provided with antireflection performance due to the minute uneven structure.
The fine concavo-convex structure includes a plurality of convex portions and a concave portion formed between the plurality of convex portions.

微細凹凸構造の隣接する凸部間の平均間隔は、20nm〜400nmが好ましく、80nm〜300nmがより好ましい。微細凹凸構造の隣接する凸部間の平均間隔が20nm以上であると、陽極酸化ポーラスアルミナの複数の細孔を転写して凸部を形成する場合に凸部を形成しやすい。また、微細凹凸構造の隣接する凸部間の平均間隔が400nm以下であると、陽極酸化ポーラスアルミナの複数の細孔を転写して凸部を形成する場合に、細孔間隔を大きくするための電圧を抑制することができ、陽極酸化ポーラスアルミナを工業的に製造しやすい。
本明細書において、隣接する凸部間の平均間隔は、電子顕微鏡観察を用いて、隣接する凸部間の間隔(凸部の中心から隣接する凸部の中心までの距離)を無作為に10点測定し、これらの値を平均した値とする。
The average interval between adjacent convex portions of the fine concavo-convex structure is preferably 20 nm to 400 nm, and more preferably 80 nm to 300 nm. When the average interval between adjacent convex portions of the fine concavo-convex structure is 20 nm or more, the convex portions are easily formed when the plurality of pores of the anodized porous alumina are transferred to form the convex portions. In addition, when the average interval between adjacent convex portions of the fine concavo-convex structure is 400 nm or less, when the convex portions are formed by transferring a plurality of pores of anodized porous alumina, the pore interval is increased. The voltage can be suppressed, and anodized porous alumina is easily produced industrially.
In this specification, the average interval between adjacent convex portions is determined by randomly determining the interval between adjacent convex portions (the distance from the center of the convex portion to the center of the adjacent convex portion) using electron microscope observation. Point measurement is performed, and these values are averaged.

凸部の平均高さは、60nm〜400nmが好ましく、90nm〜350nmがより好ましい。凸部の平均高さが60nm以上であると、最低反射率や特定波長の反射率の上昇を抑制することができ、反射防止性能に優れる。また、凸部の平均高さが400nm以下であると、凸部を形成しやすく、凸部の耐擦傷性に優れる。
本明細書において、凸部の平均高さは、電子顕微鏡観察を用いて、凸部の最頂部と隣接する凹部の最底部との間の垂直距離を無作為に10点測定し、これらの値を平均した値とする。
The average height of the convex portions is preferably 60 nm to 400 nm, and more preferably 90 nm to 350 nm. When the average height of the convex portions is 60 nm or more, an increase in the minimum reflectance or the reflectance at a specific wavelength can be suppressed, and the antireflection performance is excellent. Further, when the average height of the convex portions is 400 nm or less, the convex portions are easily formed and the convex portions are excellent in scratch resistance.
In this specification, the average height of the convex portion is obtained by randomly measuring the vertical distance between the topmost portion of the convex portion and the bottommost portion of the adjacent concave portion using electron microscope observation. Is the average value.

凸部のアスペクト比(凸部の平均高さ/隣接する凸部間の平均間隔)は、0.8〜5.0が好ましく、1.2〜4.0がより好ましく、1.5〜3.0が更に好ましい。凸部のアスペクト比が0.8以上であると、反射防止性能に優れる。また、凸部のアスペクト比が5.0以下であると、凸部を形成しやすく、凸部の耐擦傷性に優れる。   The aspect ratio of the protrusions (average height of protrusions / average interval between adjacent protrusions) is preferably 0.8 to 5.0, more preferably 1.2 to 4.0, and 1.5 to 3 0.0 is more preferable. When the aspect ratio of the convex portion is 0.8 or more, the antireflection performance is excellent. Further, when the aspect ratio of the convex portion is 5.0 or less, the convex portion is easily formed and the convex portion is excellent in scratch resistance.

凸部の形状としては、例えば、円錐形状、角錐形状、釣鐘形状、円柱形状等が挙げられる。これらの凸部の形状は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの凸部の形状の中でも、空気から微細凹凸構造を形成する材料表面まで連続的に屈折率を増大させて、低反射率と低波長依存性を両立させた反射防止性能を発現させることができることから、高さ方向と直交する方向の凸部断面積が最頂部から深さ方向に連続的に増加する形状が好ましく、円錐形状、角錐形状、釣鐘形状がより好ましい。
凸部は、微細な複数の凸部が合一して1つの凸部となったものであってもよい。
Examples of the shape of the convex portion include a cone shape, a pyramid shape, a bell shape, and a columnar shape. These convex portions may be used singly or in combination of two or more. Among these convex shapes, it is possible to continuously increase the refractive index from the air to the surface of the material that forms the fine concavo-convex structure to develop antireflection performance that achieves both low reflectance and low wavelength dependency. Since it can do, the shape which the convex part cross-sectional area of the direction orthogonal to a height direction increases continuously from a top part to a depth direction is preferable, and a cone shape, a pyramid shape, and a bell shape are more preferable.
The convex portion may be one in which a plurality of fine convex portions are combined to form one convex portion.

微細凹凸構造の製造方法としては、例えば、下記方法1、下記方法2、下記方法3等が挙げられる。
方法1:微細凹凸構造の反転構造を表面に有するモールドを用いて射出成形又はプレス成形を行い、基材の表面に直接微細凹凸構造を形成する方法
方法2:微細凹凸構造の反転構造を有するモールドと、基材との間に活性エネルギー線硬化性組成物を挟持した状態にて、活性エネルギー線硬化性組成物を硬化させて硬化樹脂層を形成した後、硬化樹脂層とモールドとを分離する方法
方法3:微細凹凸構造の反転構造を有するモールドと、基材との間に活性エネルギー線硬化性組成物を挟持し、活性エネルギー線硬化性組成物にモールドの微細凹凸構造を転写してからモールドを分離した後、活性エネルギー線硬化性組成物を硬化させて硬化樹脂層を形成する方法
これらの微細凹凸構造の製造方法の中でも、微細凹凸構造の転写性に優れ、表面組成の自由度に優れることから、方法2、方法3が好ましく、方法2がより好ましい。
As a manufacturing method of a fine concavo-convex structure, the following method 1, the following method 2, the following method 3, etc. are mentioned, for example.
Method 1: Method of forming a fine concavo-convex structure directly on the surface of a substrate by injection molding or press molding using a mold having a reverse structure of a fine concavo-convex structure on the surface Method 2: Mold having an inverted structure of a fine concavo-convex structure The active energy ray-curable composition is cured with the active energy ray-curable composition sandwiched between the substrate and the base material to form a cured resin layer, and then the cured resin layer and the mold are separated. Method Method 3: An active energy ray-curable composition is sandwiched between a mold having an inverted structure of a fine relief structure and a substrate, and the fine relief structure of the mold is transferred to the active energy ray-curable composition. After separating the mold, the active energy ray-curable composition is cured to form a cured resin layer. Among these fine concavo-convex structure manufacturing methods, the fine concavo-convex structure has excellent transferability, and Because of excellent flexibility of the composition, methods 2, preferably Method 3, Method 2 is more preferable.

モールドとしては、例えば、リソグラフィ法によって表面に微細凹凸構造の反転構造を設けたモールド、レーザー加工によって表面に微細凹凸構造の反転構造を設けたモールド、複数の細孔を有する陽極酸化ポーラスアルミナが表面に形成されたモールド、微細凹凸構造を有するマザーモールドから電鋳法等で複製されたレプリカモールド等が挙げられる。これらのモールドの中でも、反射防止性能に優れ、低コストで大面積の微細凹凸構造を形成しやすいことから、複数の細孔を有する陽極酸化ポーラスアルミナが表面に形成されたモールドが好ましい。   As the mold, for example, a mold provided with a reversal structure of fine concavo-convex structure on the surface by lithography, a mold provided with a reversal structure of fine concavo-convex structure on the surface by laser processing, an anodized porous alumina having a plurality of pores on the surface And a replica mold replicated by electroforming from a mother mold having a fine concavo-convex structure. Among these molds, a mold in which anodized porous alumina having a plurality of pores is formed on the surface is preferable because it is excellent in antireflection performance and can easily form a large-area fine concavo-convex structure at low cost.

リソグラフィ法としては、例えば、電子ビームリソグラフィ法、レーザー干渉リソグラフィ法等が挙げられる。
リソグラフィ法によって表面に微細凹凸構造の反転構造を設けたモールドの製造方法としては、例えば、基材の表面にフォトレジスト膜を塗布し、紫外線レーザー、電子線、X線等で露光し、現像することによって、レジストパターンからなる微細凹凸構造を表面に有するモールドを得る方法;前記レジストパターンを介して基材をドライエッチング等によって選択的にエッチングし、レジストパターンを除去して、微細凹凸構造が基材の表面に直接形成されたモールドを得る方法等が挙げられる。
Examples of the lithography method include an electron beam lithography method and a laser interference lithography method.
As a method for producing a mold having a surface with a reverse structure of a fine concavo-convex structure formed by lithography, for example, a photoresist film is applied to the surface of a substrate, exposed to ultraviolet laser, electron beam, X-ray or the like and developed. A method for obtaining a mold having a fine concavo-convex structure comprising a resist pattern on its surface; selectively etching the substrate by dry etching or the like through the resist pattern to remove the resist pattern, thereby Examples include a method of obtaining a mold directly formed on the surface of the material.

複数の細孔を有する陽極酸化ポーラスアルミナが表面に形成されたモールドの製造方法としては、例えば、アルミニウムをシュウ酸、硫酸、リン酸等を電解液として所定の電圧にて陽極酸化する方法等が挙げられる。   Examples of a method for producing a mold having anodized porous alumina having a plurality of pores on the surface include a method in which aluminum is anodized at a predetermined voltage using oxalic acid, sulfuric acid, phosphoric acid or the like as an electrolyte. Can be mentioned.

陽極酸化ポーラスアルミナが表面に形成されたモールドの製造方法としては、例えば、アルミニウムをシュウ酸、硫酸、リン酸等を電解液として所定の電圧にて陽極酸化する方法が挙げられる。
アルミニウムをシュウ酸、硫酸、リン酸等を電解液として所定の電圧にて陽極酸化する方法によれば、高純度アルミニウムを定電圧で長時間陽極酸化した後、酸化皮膜の全部又は一部を一旦除去し、再び陽極酸化することで、非常に高規則性の細孔が自己組織化的に形成された陽極酸化ポーラスアルミナを形成できるため、好ましい。また、2回目に陽極酸化する工程で陽極酸化処理と孔径拡大処理とを組み合わせることで、断面が矩形でなく三角形や釣鐘型である細孔も形成可能となる。更に、陽極酸化処理及び孔径拡大処理の時間、回数、条件等を適宜調節することにより、細孔最奥部の角度を鋭くすることも可能となる。
陽極酸化ポーラスアルミナが表面に形成されたモールドの製造方法の具体例は、例えば、特開2015−129706号公報に記載された方法等が挙げられる。
Examples of a method for producing a mold having an anodized porous alumina formed on the surface include a method in which aluminum is anodized at a predetermined voltage using oxalic acid, sulfuric acid, phosphoric acid or the like as an electrolyte.
According to the method of anodizing aluminum at a predetermined voltage using oxalic acid, sulfuric acid, phosphoric acid or the like as an electrolyte, high-purity aluminum is anodized at a constant voltage for a long time, and then all or part of the oxide film is temporarily By removing and anodizing again, anodized porous alumina having very highly regular pores formed in a self-organized manner can be formed, which is preferable. Further, by combining the anodizing process and the pore diameter expanding process in the second anodizing step, it is possible to form pores having a triangular or bell-shaped cross section instead of a rectangular cross section. Furthermore, the angle of the innermost part of the pore can be sharpened by appropriately adjusting the time, number of times, conditions and the like of the anodizing treatment and the pore diameter enlargement treatment.
Specific examples of the method for producing a mold having an anodized porous alumina formed on the surface include, for example, the method described in JP-A-2015-129706.

モールドの形状としては、例えば、平板状、ベルト状、ロール状等が挙げられる。これらのモールドの形状の中でも、連続的に微細凹凸構造を転写することができ、基材の生産性に優れることから、ベルト状、ロール状が好ましい。   Examples of the shape of the mold include a flat plate shape, a belt shape, and a roll shape. Among these mold shapes, a belt-like shape and a roll-like shape are preferable because the fine concavo-convex structure can be transferred continuously and the productivity of the substrate is excellent.

微細凹凸構造は、より簡便に微細凹凸構造を形成することができることから、硬化樹脂層からなることが好ましい。
硬化樹脂層は、活性エネルギー線硬化性組成物の硬化物からなる層である。
The fine concavo-convex structure is preferably composed of a cured resin layer because the fine concavo-convex structure can be more easily formed.
The cured resin layer is a layer made of a cured product of the active energy ray curable composition.

活性エネルギー線硬化性組成物は、活性エネルギー線を照射することで重合反応が進行し、硬化する組成物である。
活性エネルギー線としては、例えば、可視光線、紫外線、電子線、プラズマ、熱線(赤外線等)等が挙げられる。これらの活性エネルギー線の中でも、活性エネルギー線硬化性組成物の硬化性に優れることから、紫外線、電子線が好ましく、紫外線がより好ましい。
The active energy ray-curable composition is a composition that cures by irradiating active energy rays to advance a polymerization reaction.
Examples of the active energy rays include visible light, ultraviolet rays, electron beams, plasma, heat rays (infrared rays, etc.) and the like. Among these active energy rays, ultraviolet rays and electron beams are preferable, and ultraviolet rays are more preferable because the active energy ray-curable composition is excellent in curability.

活性エネルギー線硬化性組成物は、重合性化合物、重合開始剤、及び、必要に応じて、他の添加剤を含むことが好ましい。   The active energy ray-curable composition preferably contains a polymerizable compound, a polymerization initiator, and, if necessary, other additives.

重合性化合物としては、例えば、分子中にラジカル重合性結合及びカチオン重合性結合の少なくとも1種を含むモノマー、オリゴマー、反応性ポリマー等が挙げられる。これらの重合性化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the polymerizable compound include monomers, oligomers, reactive polymers, and the like that include at least one of a radical polymerizable bond and a cationic polymerizable bond in the molecule. These polymerizable compounds may be used alone or in combination of two or more.

ラジカル重合性結合を有するモノマーとしては、例えば、(メタ)アクリロイル基、ビニル基等を有する単官能モノマー、(メタ)アクリロイル基、ビニル基等を有する多官能モノマー等が挙げられる。これらのラジカル重合性結合を有するモノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
本明細書において、(メタ)アクリルは、アクリル、メタクリル又はその両方をいう。
Examples of the monomer having a radical polymerizable bond include a monofunctional monomer having a (meth) acryloyl group and a vinyl group, and a polyfunctional monomer having a (meth) acryloyl group and a vinyl group. These monomers having a radical polymerizable bond may be used alone or in combination of two or more.
In this specification, (meth) acryl refers to acryl, methacryl or both.

カチオン重合性結合を有するモノマーとしては、エポキシ基、オキセタニル基、オキサゾリル基、ビニルオキシ基等を有するモノマー等が挙げられる。これらのカチオン重合性結合を有するモノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the monomer having a cationic polymerizable bond include monomers having an epoxy group, an oxetanyl group, an oxazolyl group, a vinyloxy group, and the like. These monomers having a cationic polymerizable bond may be used alone or in combination of two or more.

分子中にラジカル重合性結合及びカチオン重合性結合の少なくとも1種を含むオリゴマー又は反応性ポリマーとしては、例えば、不飽和ジカルボン酸と多価アルコールとの縮合物等の不飽和ポリエステル化合物;ポリエステル(メタ)アクリレート;ポリエーテル(メタ)アクリレート;ポリオール(メタ)アクリレート;エポキシ(メタ)アクリレート;ウレタン(メタ)アクリレート;カチオン重合型エポキシ化合物;側鎖に前記ラジカル重合性結合を有するモノマーの単独又は共重合ポリマー等が挙げられる。これらの分子中にラジカル重合性結合及びカチオン重合性結合の少なくとも1種を含むオリゴマー又は反応性ポリマーは、1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the oligomer or reactive polymer containing at least one of radically polymerizable bond and cationically polymerizable bond in the molecule include unsaturated polyester compounds such as a condensate of unsaturated dicarboxylic acid and polyhydric alcohol; polyester (meta Polyether (meth) acrylate; Polyol (meth) acrylate; Epoxy (meth) acrylate; Urethane (meth) acrylate; Cationic polymerization type epoxy compound; Monomer or copolymer of the monomer having the radical polymerizable bond in the side chain Examples thereof include polymers. These oligomers or reactive polymers containing at least one of a radically polymerizable bond and a cationically polymerizable bond in these molecules may be used alone or in combination of two or more.

重合開始剤としては、例えば、公知の光重合開始剤、公知の電子線重合開始剤、公知の熱重合開始剤等が挙げられる。これらの重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the polymerization initiator include known photopolymerization initiators, known electron beam polymerization initiators, and known thermal polymerization initiators. These polymerization initiators may be used alone or in combination of two or more.

他の添加剤としては、例えば、非反応性のポリマー、酸化防止剤、離型剤、滑剤、可塑剤、帯電防止剤、光安定剤、難燃剤、難燃助剤、重合禁止剤、紫外線吸収剤、充填剤、シランカップリング剤、強化剤、無機フィラー、耐衝撃性改質剤等が挙げられる。これらの他の添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。   Other additives include, for example, non-reactive polymers, antioxidants, mold release agents, lubricants, plasticizers, antistatic agents, light stabilizers, flame retardants, flame retardant aids, polymerization inhibitors, UV absorbers Agents, fillers, silane coupling agents, reinforcing agents, inorganic fillers, impact modifiers and the like. These other additives may be used alone or in combination of two or more.

微細凹凸構造の表面に撥水性を付与する(具体的には、微細凹凸構造と水との接触角を90°以上とする)場合、疎水性の材料を形成しうる活性エネルギー線硬化性組成物として、フッ素含有化合物、シリコーン系化合物を用いることが好ましい。   An active energy ray-curable composition capable of forming a hydrophobic material when water repellency is imparted to the surface of the fine uneven structure (specifically, when the contact angle between the fine uneven structure and water is 90 ° or more). It is preferable to use a fluorine-containing compound or a silicone compound.

微細凹凸構造の表面に親水性を付与する(具体的には、微細凹凸構造と水との接触角が25°以下とする)場合、親水性の材料を形成しうる活性エネルギー線硬化性組成物として、四官能以上の多官能(メタ)アクリレートと二官能以上の親水性(メタ)アクリレートとを併用することが好ましい。   An active energy ray-curable composition capable of forming a hydrophilic material when hydrophilicity is imparted to the surface of the fine relief structure (specifically, when the contact angle between the fine relief structure and water is 25 ° or less). As above, it is preferable to use a tetrafunctional or higher polyfunctional (meth) acrylate and a bifunctional or higher hydrophilic (meth) acrylate in combination.

活性エネルギー線硬化性組成物の具体的な組成等は、例えば、特開2013−175733号公報、特開2015−129947号公報に記載された組成等が挙げられる。   Specific examples of the composition of the active energy ray-curable composition include the compositions described in JP2013-175733A and JP2015-129947A.

モールドと基材との間に活性エネルギー線硬化性組成物を挟持する方法としては、例えば、モールドと基材との間に活性エネルギー線硬化性組成物を配置した状態でモールドと基材とを押圧することによって、モールドの微細凹凸構造に活性エネルギー線硬化性組成物を注入する方法等が挙げられる。   As a method of sandwiching the active energy ray-curable composition between the mold and the base material, for example, the mold and the base material are placed in a state where the active energy ray-curable composition is disposed between the mold and the base material. Examples of the method include a method of injecting an active energy ray-curable composition into the fine uneven structure of the mold by pressing.

基材の材料としては、例えば、ポリメチルメタクリレート等のアクリル樹脂;ポリカーボネート樹脂;ポリスチレン、メチルメタクリレート−スチレン共重合体等のスチレン樹脂;セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート等のセルロース樹脂;ポリエチレンテレフタレート等のポリエステル樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルスルフォン樹脂;ポリスルフォン樹脂;ポリプロピレン、ポリメチルペンテン、脂環式ポリオレフィン等のポリオレフィン樹脂;ポリ塩化ビニル等の塩化ビニル樹脂;ポリビニルアセタール樹脂;ポリエーテルケトン樹脂;ポリウレタン樹脂;ガラス等が挙げられる。これらの基材の材料の中でも、外線の透過率に優れることから、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、セルロース樹脂が好ましく、ポリエステル樹脂、セルロース樹脂がより好ましい。   Examples of the base material include acrylic resins such as polymethyl methacrylate; polycarbonate resins; styrene resins such as polystyrene and methyl methacrylate-styrene copolymers; cellulose resins such as cellulose diacetate, cellulose triacetate, and cellulose acetate butyrate; Polyester resin such as polyethylene terephthalate; Polyamide resin; Polyimide resin; Polyether sulfone resin; Polysulfone resin; Polyolefin resin such as polypropylene, polymethylpentene, and alicyclic polyolefin; Vinyl chloride resin such as polyvinyl chloride; Polyvinyl acetal resin; Polyetherketone resin; polyurethane resin; glass and the like. Among these materials for the base material, acrylic resin, polycarbonate resin, polyester resin, and cellulose resin are preferable, and polyester resin and cellulose resin are more preferable because of excellent external line transmittance.

基材の形態としては、例えば、フィルム、シート等の公知の形態等が挙げられる。これらの基材の形態の中でも、生産性、取り扱い性に優れることから、フィルム、シートが好ましい。   Examples of the form of the substrate include known forms such as a film and a sheet. Among these substrate forms, films and sheets are preferred because of excellent productivity and handling.

基材の製造方法としては、例えば、射出成形法、押出成形法、キャスト成形法等の公知の製造方法等が挙げられる。これらの基材の製造方法の中でも、生産性に優れることから、押出成形法、キャスト成形法が好ましい。   As a manufacturing method of a base material, well-known manufacturing methods, such as an injection molding method, an extrusion molding method, a cast molding method, etc. are mentioned, for example. Among these methods for producing a substrate, an extrusion molding method and a cast molding method are preferable because of excellent productivity.

基材の表面には、密着性、帯電防止性、耐擦傷性、耐候性等の特性を改良する目的として、コーティング処理、コロナ処理等が施されていてもよい。   The surface of the base material may be subjected to coating treatment, corona treatment, etc. for the purpose of improving properties such as adhesion, antistatic properties, scratch resistance, and weather resistance.

(赤外線センサカバー用途)
本発明の赤外線センサカバーが対象とする赤外線は、より透過率に優れることから、近赤外線が好ましく、700nm〜1500nmがより好ましく、800〜1000nmが更に好ましい。
(Infrared sensor cover application)
Since the infrared rays targeted by the infrared sensor cover of the present invention are more excellent in transmittance, near infrared rays are preferred, 700 nm to 1500 nm are more preferred, and 800 to 1000 nm are even more preferred.

本発明の赤外線センサカバーの波長850nmにおける透過率は、赤外線の透過率、特に、近赤外線の透過率に優れることから、93%以上が好ましく、95%以上がより好ましく、97%以上が更に好ましい。
本発明の赤外線センサカバーの波長950nmにおける透過率は、赤外線の透過率、特に、近赤外線の透過率に優れることから、93%以上が好ましく、95%以上がより好ましく、97%以上が更に好ましい。
The transmittance at a wavelength of 850 nm of the infrared sensor cover of the present invention is preferably 93% or more, more preferably 95% or more, and still more preferably 97% or more, because of excellent infrared transmittance, particularly near infrared transmittance. .
The transmittance at a wavelength of 950 nm of the infrared sensor cover of the present invention is preferably 93% or more, more preferably 95% or more, and still more preferably 97% or more, because of excellent infrared transmittance, particularly near-infrared transmittance. .

本発明の赤外線センサカバーと赤外線センサ本体とを含むことで、赤外線センサモジュール、カメラに好適に用いることができ、赤外線センサカバーの近赤外線の透過率に特に優れることから、近赤外線カメラに特に好適に用いることができる。赤外線センサモジュール、カメラは、自動運転やモーションセンサー等に利用される距離・画像センサ、生体認証システム、生体モニタリングシステム、セキュリティシステム、等に用いることができる。   By including the infrared sensor cover and the infrared sensor main body of the present invention, it can be suitably used for an infrared sensor module and a camera, and since the infrared sensor cover is particularly excellent in the near infrared transmittance, it is particularly suitable for a near infrared camera. Can be used. The infrared sensor module and the camera can be used for a distance / image sensor, a biometric authentication system, a biometric monitoring system, a security system, and the like used for automatic driving and motion sensors.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

(透過率測定)
実施例・比較例で得られた赤外線センサカバーの透過率を、分光光度計(機種名「U−4000」、(株)日立製作所製)を用い、波長850nmおよび950nmの透過率を測定した。
(Transmittance measurement)
Using the spectrophotometer (model name “U-4000”, manufactured by Hitachi, Ltd.), the transmittances of the infrared sensor covers obtained in the examples and comparative examples were measured for transmittances at wavelengths of 850 nm and 950 nm.

[製造例1]モールドの製造
純度99.99%のアルミニウムインゴットを、外径200mm、内径155mm、長さ350mmに切断した圧延痕のない円筒状のアルミニウム基材に、羽布研磨処理を施した後、過塩素酸/エタノール混合溶液中(体積比=1/4)で電解研磨し、鏡面化した。
得られたアルミニウム基材について、0.3Mシュウ酸水溶液中で、直流40V、温度16℃の条件で10分間陽極酸化を行った。その後、アルミニウム基材を、6質量%リン酸/1.8質量%クロム酸混合水溶液に浸漬して、酸化皮膜を除去した。
得られたアルミニウム基材について、0.3Mシュウ酸水溶液中で、直流40V、温度16℃の条件で30秒間陽極酸化を行った。
得られた酸化皮膜が形成されたアルミニウム基材を、30℃の5質量%リン酸水溶液に8分間浸漬して、細孔径拡大処理を行った(孔径拡大処理工程)。その後、アルミニウム基材について、0.3Mシュウ酸水溶液中で、直流40V、温度16℃の条件で30秒間陽極酸化を行った(酸化皮膜成長工程)。この孔径拡大処理工程と酸化皮膜成長工程とを合計4回繰り返し、最後に孔径拡大処理工程を行って、設計上では平均間隔100nm、深さ200nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたロール状のモールドを得た。
[Production Example 1] Mold Production A blanket polishing treatment was performed on a cylindrical aluminum base material having an aluminum ingot having a purity of 99.99% and having an outer diameter of 200 mm, an inner diameter of 155 mm, and a length of 350 mm without any rolling marks. Thereafter, it was electropolished in a perchloric acid / ethanol mixed solution (volume ratio = 1/4) to form a mirror surface.
The obtained aluminum substrate was anodized in a 0.3 M oxalic acid aqueous solution for 10 minutes under the conditions of a direct current of 40 V and a temperature of 16 ° C. Thereafter, the aluminum substrate was immersed in a 6% by mass phosphoric acid / 1.8% by mass chromic acid mixed aqueous solution to remove the oxide film.
The obtained aluminum substrate was anodized in a 0.3 M oxalic acid aqueous solution for 30 seconds under the conditions of a direct current of 40 V and a temperature of 16 ° C.
The obtained aluminum base material on which the oxide film was formed was immersed in a 5% by mass phosphoric acid aqueous solution at 30 ° C. for 8 minutes to carry out pore size enlargement treatment (pore size enlargement treatment step). Thereafter, the aluminum substrate was anodized in a 0.3 M oxalic acid aqueous solution for 30 seconds under conditions of a direct current of 40 V and a temperature of 16 ° C. (oxide film growth step). The pore diameter expansion treatment step and the oxide film growth step are repeated a total of four times, and finally the pore diameter expansion treatment step is performed. As a result, anodized alumina having substantially conical pores with an average interval of 100 nm and a depth of 200 nm is designed. A roll-shaped mold formed on the surface was obtained.

[製造例2]活性エネルギー線硬化性組成物の調製
ジペンタエリスリトールヘキサアクリレート25質量部、ペンタエリスリトールトリアクリレート25質量部、ポリエチレングリコールジアクリレート25質量部、ジペンタエリスリトールヘキサアクリレートのエチレンオキサイド変性化合物25質量部を混合し、更に、第1の光重合開始剤(商品名「イルガキュア184」、BASF社製)1質量部、第2の光重合開始剤(商品名「イルガキュア819」、BASF社製)0.5質量部及び離型剤(商品名「TDP−2」、日光ケミカルズ(株)製)0.1質量部を加えて混合し、活性エネルギー線硬化性組成物を調製した。
[Production Example 2] Preparation of active energy ray-curable composition 25 parts by mass of dipentaerythritol hexaacrylate, 25 parts by mass of pentaerythritol triacrylate, 25 parts by mass of polyethylene glycol diacrylate, ethylene oxide-modified compound 25 of dipentaerythritol hexaacrylate 1 part by weight of a first photopolymerization initiator (trade name “Irgacure 184”, manufactured by BASF), and a second photopolymerization initiator (trade name “Irgacure 819”, manufactured by BASF) 0.5 parts by mass and 0.1 parts by mass of a release agent (trade name “TDP-2”, manufactured by Nikko Chemicals Co., Ltd.) were added and mixed to prepare an active energy ray-curable composition.

[製造例3]モスアイ構造を含む反射防止層の製造
製造例1で得られたロール状のモールドを回転させ、モールドの外周面に沿ってモールドの回転方向にポリエチレンテレフタレート基材(商品名「コスモシャインA4300」、東洋紡(株)製、厚さ75μm)を走行させながら、モールドの外周面と走行している基材との間に、製造例2で得られた活性エネルギー線硬化性組成物を供給し、紫外線を照射し活性エネルギー線硬化性組成物を硬化させた。得られた硬化物をモールドから剥離し、モスアイ構造を含む反射防止層を製造した。
[製造例4]モスアイ構造を含む反射防止層の製造
製造例1で得られたロール状のモールドを回転させ、モールドの外周面に沿ってモールドの回転方向にトリアセチルセルロース基材(商品名「TD80ULM」、富士フイルム(株)製、厚さ80μm)を走行させながら、モールドの外周面と走行している基材との間に、製造例2で得られた活性エネルギー線硬化性組成物を供給し、紫外線を照射し活性エネルギー線硬化性組成物を硬化させた。得られた硬化物をモールドから剥離し、モスアイ構造を含む反射防止層を製造した。
[Production Example 3] Production of antireflection layer containing moth-eye structure The roll-shaped mold obtained in Production Example 1 was rotated, and a polyethylene terephthalate base material (trade name “Cosmo” in the mold rotation direction along the outer peripheral surface of the mold. The active energy ray-curable composition obtained in Production Example 2 was moved between the outer peripheral surface of the mold and the running substrate while running Shine A4300 "(Toyobo Co., Ltd., thickness 75 μm). Then, the active energy ray-curable composition was cured by irradiation with ultraviolet rays. The obtained hardened | cured material was peeled from the mold and the antireflection layer containing a moth eye structure was manufactured.
[Production Example 4] Production of antireflection layer including moth-eye structure The roll-shaped mold obtained in Production Example 1 is rotated, and a triacetylcellulose base material (trade name "Product name" is formed in the mold rotation direction along the outer peripheral surface of the mold. TD80ULM ”(manufactured by Fuji Film Co., Ltd., thickness: 80 μm), and the active energy ray-curable composition obtained in Production Example 2 was placed between the outer peripheral surface of the mold and the running substrate. Then, the active energy ray-curable composition was cured by irradiation with ultraviolet rays. The obtained hardened | cured material was peeled from the mold and the antireflection layer containing a moth eye structure was manufactured.

[実施例1]
多層構造を含む反射防止層を有する反射防止フィルム(商品名「FHC−ARAF」、東山フィルム(株)製)を、ガラス基板(商品名「S9112」、松浪硝子工業(株)製)の一方の面に粘着層を介して貼りつけ、赤外線センサカバーを得た。
得られた評価結果を、表1に示す。
[Example 1]
An antireflection film (trade name “FHC-ARAF”, manufactured by Higashiyama Film Co., Ltd.) having an antireflection layer including a multilayer structure is used as one of glass substrates (trade name “S9112”, manufactured by Matsunami Glass Industry Co., Ltd.). An infrared sensor cover was obtained by sticking to the surface via an adhesive layer.
The obtained evaluation results are shown in Table 1.

[実施例2]
製造例3で得られたモスアイ構造を含む反射防止層を、ガラス基板(商品名「S9112」、松浪硝子工業(株)製)の一方の面に粘着層を介して貼りつけ、赤外線センサカバーを得た。
得られた評価結果を、表1に示す。
[Example 2]
The antireflection layer including the moth-eye structure obtained in Production Example 3 is attached to one surface of a glass substrate (trade name “S9112”, Matsunami Glass Industry Co., Ltd.) via an adhesive layer, and an infrared sensor cover is attached. Obtained.
The obtained evaluation results are shown in Table 1.

[実施例3]
多層構造を含む反射防止層を有する反射防止フィルム(商品名「FHC−ARAF」、東山フィルム(株)製)を、ガラス基板(商品名「S9112」、松浪硝子工業(株)製)の一方の面に粘着層を介して貼りつけ、製造例3で得られたモスアイ構造を含む反射防止層を、前記ガラス基板の他方の面に粘着層を介して貼りつけ、赤外線センサカバーを得た。
得られた評価結果を、表1に示す。
[実施例4]
製造例4で得られたモスアイ構造を含む反射防止層を、ガラス基板(商品名「S9112」、松浪硝子工業(株)製)の一方の面に粘着層を介して貼りつけ、赤外線センサカバーを得た。
得られた評価結果を、表1に示す。
[Example 3]
An antireflection film (trade name “FHC-ARAF”, manufactured by Higashiyama Film Co., Ltd.) having an antireflection layer including a multilayer structure is used as one of glass substrates (trade name “S9112”, manufactured by Matsunami Glass Industry Co., Ltd.). The antireflection layer containing the moth eye structure obtained in Production Example 3 was attached to the other surface of the glass substrate via the adhesive layer to obtain an infrared sensor cover.
The obtained evaluation results are shown in Table 1.
[Example 4]
The antireflection layer including the moth-eye structure obtained in Production Example 4 is attached to one surface of a glass substrate (trade name “S9112”, manufactured by Matsunami Glass Industry Co., Ltd.) via an adhesive layer, and an infrared sensor cover is attached. Obtained.
The obtained evaluation results are shown in Table 1.

[比較例1]
いずれの表面にも反射防止層を設けず、ガラス基板(商品名「S9112」、松浪硝子工業(株)製)そのものを、赤外線センサカバーとした。
得られた評価結果を、表1に示す。
[Comparative Example 1]
An antireflection layer was not provided on any surface, and a glass substrate (trade name “S9112”, manufactured by Matsunami Glass Industry Co., Ltd.) itself was used as an infrared sensor cover.
The obtained evaluation results are shown in Table 1.

表1から分かるように、実施例で得られた赤外線センサカバーは、赤外線の透過率、特に、近赤外線の透過率に優れた。
一方、比較例で得られた赤外線センサカバーは、赤外線の透過率、特に、近赤外線の透過率に劣った。
As can be seen from Table 1, the infrared sensor covers obtained in the examples were excellent in infrared transmittance, particularly near infrared transmittance.
On the other hand, the infrared sensor cover obtained in the comparative example was inferior in infrared transmittance, particularly near infrared transmittance.

10 赤外線センサカバー
20 基板
30 多層構造を含む反射防止層
31 高屈折率層
32 低屈折率層
40 モスアイ構造を含む反射防止層
41 基材
42 モスアイ構造層
DESCRIPTION OF SYMBOLS 10 Infrared sensor cover 20 Substrate 30 Antireflection layer containing multilayer structure 31 High refractive index layer 32 Low refractive index layer 40 Antireflection layer containing moth eye structure 41 Base material 42 Moss eye structure layer

Claims (12)

基板と、
基板の少なくとも一方の面に設けられた反射防止層と、
を有する、赤外線センサカバー。
A substrate,
An antireflection layer provided on at least one surface of the substrate;
Having an infrared sensor cover.
反射防止層が、多層構造を含む反射防止層又はモスアイ構造を含む反射防止層である、請求項1に記載の赤外線センサカバー。   The infrared sensor cover according to claim 1, wherein the antireflection layer is an antireflection layer including a multilayer structure or an antireflection layer including a moth-eye structure. 多層構造が、屈折率の異なる複数の層を含む、請求項2に記載の赤外線センサカバー。   The infrared sensor cover according to claim 2, wherein the multilayer structure includes a plurality of layers having different refractive indexes. モスアイ構造の隣接する凸部間の平均間隔が、400nm以下である、請求項2に記載の赤外線センサカバー。   The infrared sensor cover according to claim 2, wherein an average interval between adjacent convex portions of the moth-eye structure is 400 nm or less. 基板の材料が、ガラス又は樹脂である、請求項1〜4のいずれかに記載の赤外線センサカバー。   The infrared sensor cover according to any one of claims 1 to 4, wherein a material of the substrate is glass or resin. 基板の材料が、ガラスである、請求項5に記載の赤外線センサカバー。   The infrared sensor cover according to claim 5, wherein a material of the substrate is glass. 基板の一方の面に多層構造を含む反射防止層が設けられ、
基板の他方の面にモスアイ構造を含む反射防止層が設けられた、
請求項1〜6のいずれかに記載の赤外線センサカバー。
An antireflection layer including a multilayer structure is provided on one surface of the substrate,
An antireflection layer including a moth-eye structure was provided on the other surface of the substrate;
The infrared sensor cover according to claim 1.
赤外線が、近赤外線である、請求項1〜7のいずれかに記載の赤外線センサカバー。   The infrared sensor cover according to claim 1, wherein the infrared rays are near infrared rays. 波長850nmにおける透過率が、93%以上である、請求項1〜8のいずれかに記載の赤外線センサカバー。   The infrared sensor cover according to claim 1, wherein the transmittance at a wavelength of 850 nm is 93% or more. 波長950nmにおける透過率が、93%以上である、請求項1〜9のいずれかに記載の赤外線センサカバー。   The infrared sensor cover according to any one of claims 1 to 9, wherein a transmittance at a wavelength of 950 nm is 93% or more. 請求項1〜10のいずれかに記載の赤外線センサカバー及び赤外線センサ本体を含む、赤外線センサモジュール。   An infrared sensor module comprising the infrared sensor cover and the infrared sensor main body according to claim 1. 請求項1〜10のいずれかに記載の赤外線センサカバー及び赤外線センサ本体を含む、カメラ。   The camera containing the infrared sensor cover and infrared sensor main body in any one of Claims 1-10.
JP2018013599A 2017-02-02 2018-01-30 Infrared sensor cover, infrared sensor module, and camera Pending JP2018124279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022127366A JP7484979B2 (en) 2017-02-02 2022-08-09 Infrared sensor cover, infrared sensor module and camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017017219 2017-02-02
JP2017017219 2017-02-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022127366A Division JP7484979B2 (en) 2017-02-02 2022-08-09 Infrared sensor cover, infrared sensor module and camera

Publications (1)

Publication Number Publication Date
JP2018124279A true JP2018124279A (en) 2018-08-09

Family

ID=63110234

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018013599A Pending JP2018124279A (en) 2017-02-02 2018-01-30 Infrared sensor cover, infrared sensor module, and camera
JP2022127366A Active JP7484979B2 (en) 2017-02-02 2022-08-09 Infrared sensor cover, infrared sensor module and camera

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022127366A Active JP7484979B2 (en) 2017-02-02 2022-08-09 Infrared sensor cover, infrared sensor module and camera

Country Status (1)

Country Link
JP (2) JP2018124279A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195247A1 (en) * 2019-03-28 2020-10-01 豊田合成株式会社 Infrared sensor cover
WO2021107038A1 (en) * 2019-11-29 2021-06-03 住友ベークライト株式会社 Optical layer, cover member and moving body
JP7484163B2 (en) 2019-03-28 2024-05-16 豊田合成株式会社 Infrared sensor cover

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004442A (en) * 1999-06-25 2001-01-12 Matsushita Electric Works Ltd Infrared sensor and its manufacture
JP2009075539A (en) * 2007-08-28 2009-04-09 Nissan Motor Co Ltd Anti-reflective structure and anti-reflective molded body
JP2012198191A (en) * 2011-03-07 2012-10-18 Ricoh Co Ltd Far-infrared ray detection device
JP2015004919A (en) * 2013-06-24 2015-01-08 キヤノン株式会社 Anti-reflection film and optical element having the same
US20150048470A1 (en) * 2012-03-23 2015-02-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Electromagnetic radiation micro device, wafer element and method for manufacturing such a micro device
US20150370039A1 (en) * 2014-06-23 2015-12-24 Genius Electronic Optical Co., Ltd. Near-infrared lens for cameras in mobile devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627892B2 (en) 2000-12-29 2003-09-30 Honeywell International Inc. Infrared detector packaged with improved antireflection element
JP4790396B2 (en) 2005-12-02 2011-10-12 学校法人東京理科大学 Method for producing transparent film
EP2264765A1 (en) 2009-06-19 2010-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Housing for an infrared radiation micro device and method for fabricating such housing
JP5626667B2 (en) 2013-03-01 2014-11-19 大日本印刷株式会社 Infrared transmitting film and method for manufacturing infrared transmitting film
JP2014197299A (en) 2013-03-29 2014-10-16 能美防災株式会社 Flame detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004442A (en) * 1999-06-25 2001-01-12 Matsushita Electric Works Ltd Infrared sensor and its manufacture
JP2009075539A (en) * 2007-08-28 2009-04-09 Nissan Motor Co Ltd Anti-reflective structure and anti-reflective molded body
JP2012198191A (en) * 2011-03-07 2012-10-18 Ricoh Co Ltd Far-infrared ray detection device
US20150048470A1 (en) * 2012-03-23 2015-02-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Electromagnetic radiation micro device, wafer element and method for manufacturing such a micro device
JP2015004919A (en) * 2013-06-24 2015-01-08 キヤノン株式会社 Anti-reflection film and optical element having the same
US20150370039A1 (en) * 2014-06-23 2015-12-24 Genius Electronic Optical Co., Ltd. Near-infrared lens for cameras in mobile devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195247A1 (en) * 2019-03-28 2020-10-01 豊田合成株式会社 Infrared sensor cover
JP7484163B2 (en) 2019-03-28 2024-05-16 豊田合成株式会社 Infrared sensor cover
WO2021107038A1 (en) * 2019-11-29 2021-06-03 住友ベークライト株式会社 Optical layer, cover member and moving body
JPWO2021107038A1 (en) * 2019-11-29 2021-12-02 住友ベークライト株式会社 Optical layer, cover member and moving body

Also Published As

Publication number Publication date
JP2022174051A (en) 2022-11-22
JP7484979B2 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP7484979B2 (en) Infrared sensor cover, infrared sensor module and camera
US20230141149A1 (en) Patterned structured transfer tape
CN106661387B (en) Multilayer optical adhesive and method of making same
KR102174276B1 (en) Methods of using nanostructured transfer tape and articles made therefrom
US10252302B2 (en) Hydrophilic laminate and method for manufacturing the same, antifouling laminate, product and method for manufacturing the same, and antifouling method
CN102286765B (en) Mold, process for manufacturing mold, and process for producing sheet
JP5162344B2 (en) Anti-reflective article and automotive parts equipped with the same
JP6032196B2 (en) Stamper manufacturing method and molded body manufacturing method
US20180050513A1 (en) Anti-Fogging and Anti-Fouling Laminate and Method for Producing Same, Article and Method for Producing Same, and Anti-Fouling Method
KR101529418B1 (en) Active-energy-curable resin composition, molding, microrelief structure, water-repellent article, mold, and method for producing microrelief structure
JP3360898B2 (en) Method for producing antireflection member and polarizing plate
JP2008279597A (en) Concavo-convex pattern forming sheet and its manufacturing method, reflection preventing body, phase difference plate, process sheet original plate, and method for manufacturing optical element
WO2013099798A1 (en) Laminate structure
JP2007245702A (en) Method for manufacturing template and processed base material having transfer fine pattern
JP2007320071A (en) Manufacturing method of template and treated base material having transfer fine pattern
JP5376913B2 (en) Protective film and molded body with protective film
WO2012105357A1 (en) Laminated body and method for producing laminated body
JP7192927B2 (en) Micro uneven structure and joined body
JP2010107858A (en) Molded article with protective film
JP2010044184A (en) Transparent molded body
JPWO2013172448A1 (en) Film and manufacturing method thereof, plate-like object, image display device, solar cell
JP6361339B2 (en) Condensation suppression member
JP2013129198A (en) Formed body
JP2018157865A (en) Cleaning method of article
JP2013221992A (en) Article and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220517