JP2013221992A - Article and method for manufacturing the same - Google Patents

Article and method for manufacturing the same Download PDF

Info

Publication number
JP2013221992A
JP2013221992A JP2012092116A JP2012092116A JP2013221992A JP 2013221992 A JP2013221992 A JP 2013221992A JP 2012092116 A JP2012092116 A JP 2012092116A JP 2012092116 A JP2012092116 A JP 2012092116A JP 2013221992 A JP2013221992 A JP 2013221992A
Authority
JP
Japan
Prior art keywords
article
function
fine concavo
sensitive adhesive
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012092116A
Other languages
Japanese (ja)
Inventor
Yusuke Nakai
祐介 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012092116A priority Critical patent/JP2013221992A/en
Publication of JP2013221992A publication Critical patent/JP2013221992A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an article provided with a function of high abrasion resistance, and a method for easily manufacturing the articles provided with the function of high abrasion resistance.SOLUTION: In an article 10 having a fine asperity structure 14 on the surface, recessed portions 13 of the fine asperity structure 14 are filled with function-provided materials 16 with the thickness of 10 nm or more, and the height of protruding portions 12 protruding from the upper face of the filling surface is 100 nm or more. The article is provided by sticking a protective film having an adhesive layer consisting of an adhesive containing the function-provided materials, on the surface of the article having the fine asperity structure on the surface, in such a manner as bringing the surface of the article into contact with the adhesive layer, then peeling off the protective film, and shifting the adhesive into the recesses of the fine asperity structure so as to have the thickness of 10 nm or more.

Description

本発明は、微細凹凸構造を表面に有し、かつその表面が改質されて機能が付与された物品とその製造方法に関する。   The present invention relates to an article having a fine concavo-convex structure on the surface and having the surface modified to provide a function, and a method for producing the same.

微細な凹凸が規則的に配置された微細凹凸構造を表面に有する物品は、連続的に屈折率を変化させることで、反射防止性を発現することが知られている。物品がより良好な反射防止性を発現するためには、隣り合う凸部同士または凹部同士の間隔(周期)が可視光の波長以下である必要がある。   It is known that an article having a fine concavo-convex structure on the surface of which fine concavo-convex is regularly arranged exhibits antireflection properties by continuously changing the refractive index. In order for an article to exhibit better antireflection properties, it is necessary that the interval (period) between adjacent convex portions or concave portions be equal to or less than the wavelength of visible light.

近年、反射防止性に加え、表面を改質することで撥水性などの機能を付与した物品が提案されている。
例えば特許文献1には、表面に微細凹凸構造を有する物品の該表面をフルオロアルコキシシランなどの被覆材料で被覆することで、反射防止特性と撥水特性とを兼ね備えた撥水性反射防止構造体が開示されている。特許文献1では、被覆材料によって微細凹凸構造の凹部が埋まらないように、化学蒸着などの方法により微細凹凸構造の表面を被覆材料で被覆している。
In recent years, articles having functions such as water repellency by modifying the surface in addition to antireflection have been proposed.
For example, Patent Document 1 discloses a water-repellent antireflection structure having both antireflection characteristics and water repellency characteristics by coating the surface of an article having a fine uneven structure on the surface with a coating material such as fluoroalkoxysilane. It is disclosed. In Patent Document 1, the surface of the fine concavo-convex structure is coated with a coating material by a method such as chemical vapor deposition so that the concave portion of the fine concavo-convex structure is not filled with the coating material.

特開2009−42714号公報JP 2009-42714 A

しかしながら、特許文献1に記載のように、微細凹凸構造の表面が被覆材料で被覆された物品の場合、物品の使用過程において被覆材料からなる被覆層が磨耗して撥水性などの被覆材料の性能が十分に発揮されなくなることがあった。
また、微細凹凸構造の表面を被覆材料で被覆する方法は、手間がかかりやすかった。
However, as described in Patent Document 1, in the case of an article in which the surface of the fine concavo-convex structure is coated with a coating material, the coating layer made of the coating material is worn in the course of use of the article and the performance of the coating material such as water repellency May not be fully demonstrated.
In addition, the method of coating the surface of the fine concavo-convex structure with a coating material is tedious.

本発明は上記事情に鑑みてなされたもので、耐磨耗性よく機能が付与された物品と、耐磨耗性よく機能が付与された物品を容易に製造できる方法の提供を課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the method which can manufacture easily the article | item provided with the function with sufficient abrasion resistance, and the article | item provided with the function with high abrasion resistance.

本発明は、以下の態様を有する。
[1]微細凹凸構造を表面に有する物品であって、前記微細凹凸構造の凹部に、10nm以上の厚さで機能付与材料が充填され、かつ充填面の上面より突出している凸部の高さが100nm以上である、物品。
[2]前記微細凹凸構造の凸部間の平均間隔が可視光の波長以下の反射防止物品である、[1]に記載の物品。
[3]前記機能付与材料がシリコーン系粘着剤である、[1]または[2]に記載の物品。
[4]微細凹凸構造を表面に有する物品の該表面に、機能付与材料を含む粘着剤からなる粘着剤層を備えた保護フィルムを、物品の表面と粘着剤層とが接するように貼着した後、保護フィルムを剥がして、粘着剤を微細凹凸構造の凹部に、10nm以上の厚さとなるように移行させる、物品の製造方法。
The present invention has the following aspects.
[1] An article having a fine concavo-convex structure on its surface, the height of the convex part that is filled with a function-imparting material with a thickness of 10 nm or more in the concave part of the fine concavo-convex structure and protrudes from the upper surface of the filling surface An article having a thickness of 100 nm or more.
[2] The article according to [1], which is an antireflective article having an average interval between convex portions of the fine concavo-convex structure having a wavelength of visible light or less.
[3] The article according to [1] or [2], wherein the function-imparting material is a silicone-based pressure-sensitive adhesive.
[4] A protective film provided with a pressure-sensitive adhesive layer made of a pressure-sensitive adhesive containing a function-imparting material was attached to the surface of an article having a fine concavo-convex structure so that the surface of the article and the pressure-sensitive adhesive layer were in contact with each other. Then, the protective film is peeled off, and the pressure-sensitive adhesive is transferred to the concave portions of the fine concavo-convex structure so as to have a thickness of 10 nm or more.

本発明によれば、耐磨耗性よく機能が付与された物品と、耐磨耗性よく機能が付与された物品を容易に製造できる方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the method which can manufacture easily the article | item provided with the function with sufficient abrasion resistance and the article | item provided with the function with high abrasion resistance can be provided.

本発明の物品の一例を示す断面図である。It is sectional drawing which shows an example of the articles | goods of this invention. 本発明の物品の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the articles | goods of this invention.

以下本発明を詳細に説明する。
なお、本明細書における「活性エネルギー線」は、可視光線、紫外線、電子線、プラズマ、熱線(赤外線等)等を意味する。
図1、2においては、各層を図面上で認識可能な程度の大きさとするため、各層ごとに縮尺を異ならせてある。
また、図2において、図1と同じ構成要素には同一の符号を付して、その説明を省略する場合がある。
The present invention will be described in detail below.
In addition, “active energy rays” in the present specification means visible light, ultraviolet rays, electron beams, plasma, heat rays (infrared rays, etc.) and the like.
In FIGS. 1 and 2, the scale is different for each layer in order to make each layer recognizable on the drawings.
2, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof may be omitted.

<物品>
図1は、本発明の物品の一例を示す断面図である。
この例の物品10は、基材11と、基材11の表面に形成された後述する活性エネルギー線硬化性樹脂組成物の硬化物からなる、複数の凸部12および凹部13が並んだ微細凹凸構造14を表面に有する硬化樹脂層15とを有する。
なお、本発明において、微細凹凸構造14を表面に有する物品10の該表面を「物品の表面」という。
<Article>
FIG. 1 is a cross-sectional view showing an example of the article of the present invention.
The article 10 of this example is composed of a base material 11 and a fine unevenness in which a plurality of convex parts 12 and concave parts 13 are formed of a cured product of an active energy ray-curable resin composition described later formed on the surface of the base material 11. It has the cured resin layer 15 which has the structure 14 on the surface.
In the present invention, the surface of the article 10 having the fine concavo-convex structure 14 on the surface is referred to as “the surface of the article”.

基材11の材料としては、光を透過するものであればよく、メチルメタクリレート(共)重合体、ポリカーボネート、スチレン(共)重合体、メチルメタクリレート−スチレン共重合体、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、ポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、ガラス等が挙げられる。   The material of the substrate 11 may be any material that transmits light, such as methyl methacrylate (co) polymer, polycarbonate, styrene (co) polymer, methyl methacrylate-styrene copolymer, cellulose diacetate, cellulose triacetate, Examples thereof include cellulose acetate butyrate, polyester, polyamide, polyimide, polyether sulfone, polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polyurethane, and glass.

基材11は、射出成形法、押出成形法、キャスト成形法等の公知の成形法によって作製される。
基材11の形状は、物品10に応じて適宜選択でき、物品10が反射防止フィルム等である場合には、シート状またはフィルム状が好ましい。
The substrate 11 is produced by a known molding method such as an injection molding method, an extrusion molding method, or a cast molding method.
The shape of the base material 11 can be appropriately selected according to the article 10, and when the article 10 is an antireflection film or the like, a sheet shape or a film shape is preferable.

基材11の硬化樹脂層15が形成されない側の表面(裏面)に、粘着剤層(図示略)およびセパレートフィルム(図示略)を設けてもよい。粘着剤層を設けることによって、他のフィルム状やシート状の物品(前面板、偏光素子等)に容易に貼り付けることができる。
基材11の表面には、活性エネルギー線硬化性樹脂組成物との密着性や、帯電防止性、耐擦傷性、耐候性等の改良のために、各種コーティング処理、コロナ放電処理、粗面化処理等が施されていてもよい。
A pressure-sensitive adhesive layer (not shown) and a separate film (not shown) may be provided on the front surface (back surface) of the substrate 11 where the cured resin layer 15 is not formed. By providing the pressure-sensitive adhesive layer, it can be easily attached to other film-like or sheet-like articles (front plate, polarizing element, etc.).
The surface of the substrate 11 is subjected to various coating treatments, corona discharge treatments, and surface roughenings in order to improve adhesion to the active energy ray-curable resin composition, antistatic properties, scratch resistance, weather resistance, and the like. Processing etc. may be given.

物品10は、微細凹凸構造14の凹部13に機能付与材料16が充填されている。この機能付与材料16により物品10の表面が改質され、物品10が機能付与材料16に対応した種々の機能(例えば撥水性や親水性など)を発揮できる。また、機能付与材料16は凹部13に充填されているので、特許文献1に記載のように、微細凹凸構造の表面が被覆材料で被覆されている場合と比べて機能付与材料16が磨耗しにくい。   In the article 10, the function-imparting material 16 is filled in the recesses 13 of the fine relief structure 14. The surface of the article 10 is modified by the function-imparting material 16, and the article 10 can exhibit various functions (for example, water repellency and hydrophilicity) corresponding to the function-imparting material 16. In addition, since the function-imparting material 16 is filled in the recesses 13, the function-imparting material 16 is less likely to be worn as compared with the case where the surface of the fine concavo-convex structure is coated with a coating material as described in Patent Document 1. .

機能付与材料16の充填量は、機能付与材料16からなる充填層の厚さが10nm以上となる量であり、好ましくは15nm以上である。機能付与材料16が凹部13に10nm以上の厚さに充填されていれば、微細凹凸構造14によって発現する反射防止性を妨げることなく、機能付与材料16に対応した機能を発揮できる。詳しくは後述するが、微細凹凸構造14の凸部12間の平均間隔が可視光の波長以下であれば、より良好な反射防止性と機能付与材料16に対応した機能とを兼ね備えた物品10が得られる。
機能付与材料16に対応した機能を十分に発揮させるには、機能付与材料16は凹部13に50nm以下の厚さに充填されることが好ましい。
ここで、「凹部の深さ」とは、図1中、凹部13の底部から、この凹部13に隣接する凸部12の頭頂部までの垂直距離dのことであり、凹部の深さは凸部12の高さに等しい。
The filling amount of the function-imparting material 16 is an amount such that the thickness of the filling layer made of the function-imparting material 16 is 10 nm or more, and preferably 15 nm or more. If the function-imparting material 16 is filled in the recess 13 to a thickness of 10 nm or more, the function corresponding to the function-imparting material 16 can be exhibited without interfering with the antireflection property expressed by the fine concavo-convex structure 14. As will be described in detail later, if the average interval between the convex portions 12 of the fine concavo-convex structure 14 is equal to or smaller than the wavelength of visible light, the article 10 having both better antireflection properties and a function corresponding to the function-imparting material 16 is obtained. can get.
In order to sufficiently exhibit the function corresponding to the function-imparting material 16, the function-imparting material 16 is preferably filled in the recess 13 to a thickness of 50 nm or less.
Here, the “depth of the concave portion” is a vertical distance d 1 from the bottom of the concave portion 13 to the top of the convex portion 12 adjacent to the concave portion 13 in FIG. It is equal to the height of the convex part 12.

また、機能付与材料16の充填面の上面より突出している部分の凸部12の高さは100nm以上であり、120nm以上が好ましい。充填面の上面より突出している部分の凸部12の高さが100nm以上であれば微細凹凸構造14によって発現する反射防止性を妨げることがない。   Moreover, the height of the convex part 12 of the part which protrudes from the upper surface of the filling surface of the function provision material 16 is 100 nm or more, and 120 nm or more is preferable. If the height of the convex portion 12 protruding from the upper surface of the filling surface is 100 nm or more, the antireflection property developed by the fine concavo-convex structure 14 is not hindered.

機能付与材料16としては、所望の機能を物品10に付与できるものであれば特に制限されないが、例えば物品10に撥水性を付与する場合には疎水性材料を用いる。
疎水性材料としては、該疎水性材料からなる層の表面の水接触角が90°以上となるシリコーン系化合物、フッ素含有化合物、アルキル系化合物などが挙げられる。中でもシリコーン系化合物が好ましい。
The function-imparting material 16 is not particularly limited as long as a desired function can be imparted to the article 10. For example, a hydrophobic material is used to impart water repellency to the article 10.
Examples of the hydrophobic material include a silicone compound, a fluorine-containing compound, an alkyl compound, and the like that have a water contact angle of 90 ° or more on the surface of the layer made of the hydrophobic material. Of these, silicone compounds are preferred.

疎水性材料として用いるシリコーン系化合物としては、熱可塑性シリコーンエラストマーなどのシリコーン系粘着剤が挙げられる。
熱可塑性シリコーンエラストマーとしては、例えばポリシロキサンと極性結合を含有するブロック共重合体が挙げられる。ここで、「極性結合」とは、例えばウレア結合、ウレタン結合、アミド結合、エステル結合などである。
ポリシロキサンとしては、ポリジメチルシロキサン、ポリメチルプロピルシロキサン、ポリジプロピルシロキサン、ポリメチルオクチルシロキサン、ポリジオクチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサンなどが挙げられる。これらは、1種を単独で用いてもよく、2種類以上を併用してもよい。
Examples of the silicone compound used as the hydrophobic material include silicone adhesives such as thermoplastic silicone elastomers.
Examples of the thermoplastic silicone elastomer include a block copolymer containing polysiloxane and a polar bond. Here, the “polar bond” is, for example, a urea bond, a urethane bond, an amide bond, an ester bond, or the like.
Examples of the polysiloxane include polydimethylsiloxane, polymethylpropylsiloxane, polydipropylsiloxane, polymethyloctylsiloxane, polydioctylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane. These may be used alone or in combination of two or more.

また、物品10に親水性を付与する場合には、機能付与材料16として親水性材料を用いる。
親水性材料としては、該親水性材料からなる層の表面の水接触角が50°以下となるアクリル系化合物などが挙げられる。
When imparting hydrophilicity to the article 10, a hydrophilic material is used as the function-imparting material 16.
Examples of the hydrophilic material include acrylic compounds having a water contact angle of 50 ° or less on the surface of the layer made of the hydrophilic material.

親水性材料として用いるアクリル系化合物としては、アクリレートと、他のモノマーとを共重合したアクリル系コポリマーなどのアクリル系粘着剤が挙げられる。
アクリレートとしては、エチルアクリレート、n−ブチルアクリレート、2−エチルヘキシルアクリレート、イソオクチルアクリレート、イソノニルアクリレート、ヒドロキシルエチルアクリレート、2−ヒドロキシルプロピルアクリレート、プロピレングリコールアクリレート、ポリプロピレングリコールモノアクリレート、ポリエチレングリコールモノアクリレート、メトキシポリエチレングリコールモノアクリレート、ジメチルアクリルアミド、アクリロイルモルホリン、ヒドロキシエチルアクリルアミド、アクリルアミド、グリシジルアクリレート、シクロヘキサンジメタノールモノアクリレートなどが挙げられる。これらは、1種を単独で用いてもよく、2種類以上を併用してもよい。
一方、他のモノマーとしては、メチルアクリレート、メチルメタクリレート、スチレン、アクリロニトリル、酢酸ビニル、アクリル酸、メタクリル酸、イタコン酸、ヒドロキシルエチルメタクリレート、メタクリルアミド、グリシジルメタクリレート、ジメチルアミノエチルメタクリレート、tert−ブチルアミノエチルメタクリレート、n−エチルヘキシルメタクリレートなどが挙げられる。これらは、1種を単独で用いてもよく、2種類以上を併用してもよい。
Examples of the acrylic compound used as the hydrophilic material include acrylic pressure-sensitive adhesives such as an acrylic copolymer obtained by copolymerizing acrylate and another monomer.
As acrylates, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, isooctyl acrylate, isononyl acrylate, hydroxyl ethyl acrylate, 2-hydroxylpropyl acrylate, propylene glycol acrylate, polypropylene glycol monoacrylate, polyethylene glycol monoacrylate, methoxy Examples include polyethylene glycol monoacrylate, dimethylacrylamide, acryloylmorpholine, hydroxyethyl acrylamide, acrylamide, glycidyl acrylate, and cyclohexane dimethanol monoacrylate. These may be used alone or in combination of two or more.
On the other hand, as other monomers, methyl acrylate, methyl methacrylate, styrene, acrylonitrile, vinyl acetate, acrylic acid, methacrylic acid, itaconic acid, hydroxylethyl methacrylate, methacrylamide, glycidyl methacrylate, dimethylaminoethyl methacrylate, tert-butylaminoethyl Examples include methacrylate and n-ethylhexyl methacrylate. These may be used alone or in combination of two or more.

また、機能付与材料16が微細凹凸構造14の凹部13に充填されることで、物品10の表面の反射率が変化する傾向にある。従って、機能付与材料16は物品10の反射防止性能を調節する機能をも有する。特に、物品10の表面の反射率を低下させるには、機能付与材料16として低屈折率材料を用いればよい。
低屈折率材料としては、該低屈折率材料からなる層の表面の屈折率が1.45以下となるフッ素系化合物やシリコーン系化合物などが挙げられる。
低屈折率材料として用いるフッ素系化合物としては、含フッ素モノマー、含フッ素シラン化合物、含フッ素界面活性剤、含フッ素ポリマーなどが挙げられる。一方、シリコーン系化合物としては、シリコーンモノマー、シリコーン樹脂、シリコーン系界面活性剤などが挙げられる。
In addition, the function-imparting material 16 is filled in the concave portions 13 of the fine concavo-convex structure 14, whereby the reflectance of the surface of the article 10 tends to change. Therefore, the function-imparting material 16 also has a function of adjusting the antireflection performance of the article 10. In particular, in order to reduce the reflectance of the surface of the article 10, a low refractive index material may be used as the function-imparting material 16.
Examples of the low refractive index material include fluorine compounds and silicone compounds in which the refractive index of the surface of the layer made of the low refractive index material is 1.45 or less.
Examples of the fluorine-based compound used as the low refractive index material include a fluorine-containing monomer, a fluorine-containing silane compound, a fluorine-containing surfactant, and a fluorine-containing polymer. On the other hand, examples of the silicone compound include a silicone monomer, a silicone resin, and a silicone surfactant.

物品10は、全ての凹部13に同じ種類の機能付与材料16が充填されていてもよいし、場所によって異なる種類の機能付与材料16が充填されていてもよい。例えば凹部13に、疎水性材料が充填されている領域と親水性材料が充填されている領域があれば、同一表面に撥水性を有する撥水部と親水性を有する親水部とを備えた物品10が得られる。   In the article 10, all of the concave portions 13 may be filled with the same type of function-imparting material 16, or different types of function-imparting material 16 may be filled depending on the location. For example, if the recess 13 has a region filled with a hydrophobic material and a region filled with a hydrophilic material, an article having a water-repellent part having water repellency and a hydrophilic part having hydrophilicity on the same surface 10 is obtained.

凸部12間の平均間隔は可視光の波長以下であることが好ましい。凸部12間の平均間隔が可視光の波長以下であれば、良好な反射防止性を発現でき、本発明の物品10を反射防止物品などの光学用途に好適に使用できる。
ここで、「可視光」とは波長が380〜780nmの光を指す。凸部12間の平均間隔は400nm以下が好ましく、300nm以下がより好ましく、250nm以下が特に好ましい。
The average interval between the convex portions 12 is preferably equal to or less than the wavelength of visible light. If the average interval between the convex portions 12 is equal to or less than the wavelength of visible light, good antireflection properties can be exhibited, and the article 10 of the present invention can be suitably used for optical applications such as antireflection articles.
Here, “visible light” refers to light having a wavelength of 380 to 780 nm. The average distance between the convex portions 12 is preferably 400 nm or less, more preferably 300 nm or less, and particularly preferably 250 nm or less.

凸部12間の平均間隔は、凸部12の形成のしやすさの点から、25nm以上が好ましく、80nm以上がより好ましい。
凸部12間の平均間隔は、電子顕微鏡観察によって隣接する凸部12間の間隔(図1中、凸部12の中心から隣接する凸部12の中心までの距離W)を10点測定し、これらの値を平均したものである。
The average interval between the convex portions 12 is preferably 25 nm or more, and more preferably 80 nm or more, from the viewpoint of easy formation of the convex portions 12.
The average interval between the convex portions 12 is measured by measuring the interval between adjacent convex portions 12 (distance W 1 from the center of the convex portion 12 to the center of the adjacent convex portion 12 in FIG. 1) by electron microscope observation. These values are averaged.

凸部12の高さ(すなわち、凹部13の深さ)は、110〜400nmが好ましく、150〜300nmがより好ましい。凸部12の高さが110nm以上であれば、反射率が十分に低くなり、かつ反射率の波長依存性が少なくなる。凸部12の高さが400nm以下であれば、凸部12の耐擦傷性が良好となる。
凸部12の高さ(凹部13の深さ)は、電子顕微鏡観察によって10個の凸部12の高さ(図1中、凹部13の底部から、この凹部13に隣接する凸部12の頭頂部までの垂直距離d)を測定し、これらの値を平均したものである。
110-400 nm is preferable and, as for the height of the convex part 12 (namely, depth of the recessed part 13), 150-300 nm is more preferable. If the height of the convex portion 12 is 110 nm or more, the reflectance is sufficiently low, and the wavelength dependency of the reflectance is reduced. If the height of the convex part 12 is 400 nm or less, the scratch resistance of the convex part 12 will be good.
The height of the convex portion 12 (depth of the concave portion 13) is determined by observation with an electron microscope from the height of the ten convex portions 12 (from the bottom of the concave portion 13 in FIG. 1 to the head of the convex portion 12 adjacent to the concave portion 13. The vertical distance d 1 ) to the top is measured and these values are averaged.

凸部12の形状は、高さ方向と直交する方向の凸部12の断面積が頭頂部から深さ方向に連続的に増加する形状、すなわち、凸部12の高さ方向の断面形状が、三角形、台形、釣鐘型等の形状が好ましい。   The shape of the convex portion 12 is such that the cross-sectional area of the convex portion 12 in the direction orthogonal to the height direction continuously increases from the top to the depth direction, that is, the cross-sectional shape of the convex portion 12 in the height direction is A shape such as a triangle, trapezoid, and bell shape is preferable.

<物品の製造方法>
微細凹凸構造14の凹部13に機能付与材料16が充填された物品10は、例えば以下のようにして製造できる。なお、凹部に機能付与材料が充填される前の物品を「充填前物品」という。
図2に示すように、微細凹凸構造を表面に有する物品(充填前物品10’)の該表面に、機能付与材料を含む粘着剤からなる粘着剤層22が基材フィルム21上に積層した保護フィルム20を、充填前物品10’の表面と粘着剤層22とが接するように貼着した後(図2(a))、保護フィルム20を剥がして、粘着剤層22を形成する粘着剤を微細凹凸構造の凹部13に、10nm以上の厚さとなるように移行させることで、機能付与材料16が充填された物品10が得られる(図2(b))。このとき、凹部に移行(充填)した粘着剤の充填面の上面より突出している凸部の高さが100nm以上となるように、粘着剤を凹部13に移行させる。
<Production method>
The article 10 in which the concave portion 13 of the fine concavo-convex structure 14 is filled with the function-imparting material 16 can be manufactured as follows, for example. The article before the concave portion is filled with the function-imparting material is referred to as “article before filling”.
As shown in FIG. 2, a protection in which an adhesive layer 22 made of an adhesive containing a function-imparting material is laminated on a base film 21 on the surface of an article having a fine concavo-convex structure (article 10 ′ before filling). After sticking the film 20 so that the surface of the article 10 ′ before filling and the pressure-sensitive adhesive layer 22 are in contact with each other (FIG. 2A), the protective film 20 is peeled off to form a pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer 22. The article 10 filled with the function-imparting material 16 is obtained by shifting the recesses 13 having a fine concavo-convex structure so as to have a thickness of 10 nm or more (FIG. 2B). At this time, the pressure sensitive adhesive is transferred to the concave portion 13 so that the height of the convex portion protruding from the upper surface of the pressure-sensitive adhesive filling surface transferred (filled) to the concave portion is 100 nm or more.

基材フィルム21の材料としては、例えばポリオレフィン、ポリシクロオレフィン、ポリエステル、ポリアミド、ポリビニルアルコール、エチレン−ポリビニルアルコールなどが挙げられる。コストや成形性の点でポリオレフィンが好ましい。   Examples of the material for the base film 21 include polyolefin, polycycloolefin, polyester, polyamide, polyvinyl alcohol, and ethylene-polyvinyl alcohol. Polyolefin is preferable in terms of cost and moldability.

保護フィルム20の粘着剤層22を構成する粘着剤は、機能付与材料からなることが好ましく、例えば物品10に、撥水性を付与する場合には上述した疎水性材料として用いるシリコーン系粘着剤が特に好ましく、親水性を付与する場合には上述した親水性材料として用いるアクリル系粘着剤が特に好ましい。
粘着剤層22が機能付与材料からなる粘着剤で形成されていれば、充填前物品10’に保護フィルム20を貼着し、剥がしたときに凹部13に移行する粘着剤の全てが機能付与材料となるため、粘着剤の移行量が10nmの厚さとなる量であっても物品10に所望の機能を十分に付与できる。また、粘着剤に機能付与材料を添加する手間も省ける。
The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 22 of the protective film 20 is preferably made of a function-imparting material. For example, in the case of imparting water repellency to the article 10, the silicone-based pressure-sensitive adhesive used as the above-described hydrophobic material is particularly preferable. In the case of imparting hydrophilicity, the acrylic pressure-sensitive adhesive used as the hydrophilic material described above is particularly preferable.
If the pressure-sensitive adhesive layer 22 is formed of a pressure-sensitive adhesive made of a function-imparting material, all of the pressure-sensitive adhesive that moves to the recess 13 when the protective film 20 is attached to the article 10 ′ before filling and peeled off is the function-imparting material. Therefore, the desired function can be sufficiently imparted to the article 10 even if the amount of transfer of the adhesive is 10 nm. Moreover, the trouble of adding a function-imparting material to the pressure-sensitive adhesive can be saved.

粘着剤の凹部13への移行は、保護フィルム20の充填前物品10’への貼着時間にも影響を受けるが、主に粘着剤の種類や粘着剤層22の厚さに左右される。すなわち、粘着剤が糊残りしやすいほど移行量は増える。よって、移行量が10nm以上の厚さとなるような、適度に糊残りする粘着剤を用いることが重要となる。   The transfer of the adhesive to the concave portion 13 is influenced by the sticking time of the protective film 20 to the article 10 ′ before filling, but mainly depends on the type of the adhesive and the thickness of the adhesive layer 22. That is, the amount of transfer increases as the adhesive easily remains. Therefore, it is important to use a pressure-sensitive adhesive that leaves a moderate amount of adhesive so that the transfer amount is 10 nm or more.

粘着剤の糊残りは、例えば粘着剤の分子量、粘着剤の架橋剤量、粘着剤層22の厚さを調整することで制御できる。
具体的には、粘着剤の分子量が小さくなるほど密着性が高まるため、凹部13へ移行しやすくなる傾向にある。また、架橋剤量を少なくなるほど密着性が高まるため、糊残りしやすくなる傾向にある。また、粘着剤層22の厚さが厚くなるほど密着性が高まるため、糊残りしやすくなる傾向にある。
The adhesive residue of the adhesive can be controlled by adjusting the molecular weight of the adhesive, the amount of the crosslinking agent of the adhesive, and the thickness of the adhesive layer 22, for example.
Specifically, since the adhesiveness increases as the molecular weight of the pressure-sensitive adhesive decreases, it tends to easily shift to the recess 13. Further, since the adhesiveness increases as the amount of the crosslinking agent decreases, the adhesive residue tends to remain. Moreover, since adhesiveness increases as the thickness of the pressure-sensitive adhesive layer 22 increases, the adhesive residue tends to remain easily.

本発明では、保護フィルムとして市販品を用いてもよい。機能付与材料からなり、かつ凹部への移行量が10nm以上の厚さとなるような、適度に糊残りする粘着剤からなる粘着剤層を備えた市販品の保護フィルムとしては、以下に示すものが挙げられる。
物品に撥水性を付与する場合には、例えばパナック株式会社製の「PX50T01」;日立化成工業株式会社製の「DP−1020」などが好適である。
物品の表面の反射率を高くする場合には、例えばパナック株式会社製の「PX50T01」;株式会社サンエー化研製の「SAT HC2025P」などが好適である。
In the present invention, a commercial product may be used as the protective film. As a commercially available protective film having a pressure-sensitive adhesive layer made of a pressure-sensitive adhesive that is made of a function-imparting material and has a thickness of 10 nm or more, the amount of transfer to the recesses is moderately unadhesive. Can be mentioned.
In the case of imparting water repellency to the article, for example, “PX50T01” manufactured by Panac Co., Ltd .; “DP-1020” manufactured by Hitachi Chemical Co., Ltd., and the like are suitable.
In order to increase the reflectance of the surface of the article, for example, “PX50T01” manufactured by Panac Corporation; “SAT HC2025P” manufactured by Sanei Kaken Co., Ltd. is suitable.

なお、物品の表面に微細凹凸構造を形成する方法は特に制限されず、例えば微細凹凸構造の反転構造を表面に有するモールドを用いて射出成形やプレス成形を行う方法(方法1)、ロール状のモールドを用い、該モールドと基材との間に活性エネルギー線硬化性樹脂組成物を配し、活性エネルギー線の照射により活性エネルギー線硬化性樹脂組成物を硬化して、モールドの微細凹凸構造を転写し、その後モールドを剥離する方法(方法2)、活性エネルギー線硬化性樹脂組成物にモールドの微細凹凸構造を転写してからモールドを剥離し、その後で活性エネルギー線を照射して活性エネルギー線硬化性樹脂組成物を硬化させる方法(方法3)などが挙げられる。これらの中でも、微細凹凸構造の転写性、表面組成の自由度の点から、方法2、3が好ましく、方法2が特に好ましい。   The method for forming the fine concavo-convex structure on the surface of the article is not particularly limited. For example, a method of performing injection molding or press molding using a mold having a reverse structure of the fine concavo-convex structure on the surface (Method 1), a roll-like structure Using a mold, the active energy ray-curable resin composition is disposed between the mold and the base material, and the active energy ray-curable resin composition is cured by irradiation with the active energy ray to form a fine uneven structure of the mold. The method of transferring and then peeling the mold (Method 2), transferring the fine concavo-convex structure of the mold to the active energy ray-curable resin composition, peeling the mold, and then irradiating the active energy ray to activate the energy ray Examples thereof include a method (method 3) of curing the curable resin composition. Among these, the methods 2 and 3 are preferable and the method 2 is particularly preferable from the viewpoint of the transferability of the fine concavo-convex structure and the degree of freedom of the surface composition.

モールドに微細凹凸構造の反転構造を形成する方法としては、電子ビームリソグラフィー法、レーザ光干渉法等が挙げられる。例えば、適当な支持基板の表面に適当なフォトレジスト膜を塗布し、紫外線レーザ、電子線、X線等の光で露光し、現像することによって微細凹凸構造を形成したモールドを得ることができる。また、フォトレジスト層を介して支持基板をドライエッチングによって選択的にエッチングし、レジスト層を除去して、支持基板そのものに微細凹凸構造を直接形成することも可能である。   Examples of the method for forming the inverted structure of the fine concavo-convex structure on the mold include an electron beam lithography method and a laser beam interference method. For example, a mold having a fine concavo-convex structure can be obtained by applying an appropriate photoresist film on the surface of an appropriate support substrate, exposing to light such as ultraviolet laser, electron beam, and X-ray, and developing. In addition, the support substrate can be selectively etched by dry etching through the photoresist layer, and the resist layer can be removed to directly form a fine concavo-convex structure on the support substrate itself.

また、陽極酸化ポーラスアルミナをモールドとして利用することも可能である。例えば、アルミニウムをシュウ酸、硫酸、リン酸等を電解液として所定の電圧にて陽極酸化することにより形成される20〜200nmの細孔構造をモールドとして利用してもよい。この方法によれば、高純度アルミニウムを定電圧で長時間陽極酸化した後、一旦酸化皮膜を除去し、再び陽極酸化することで非常に高規則性の細孔が自己組織化的に形成できる。さらに、二回目に陽極酸化する工程で陽極酸化処理と孔径拡大処理を組み合わせることによって、断面が矩形でなく三角形や釣鐘型である細孔も形成可能となる。また、陽極酸化処理と孔径拡大処理の時間や条件を適宜調節することによって、細孔最奥部の角度を鋭くすることも可能である。
さらに、微細凹凸構造を有するマザーモールドから電鋳法等で複製モールドを作製してよい。
It is also possible to use anodized porous alumina as a mold. For example, a pore structure of 20 to 200 nm formed by anodizing aluminum with oxalic acid, sulfuric acid, phosphoric acid or the like as an electrolyte at a predetermined voltage may be used as a mold. According to this method, after anodizing high-purity aluminum for a long time at a constant voltage, the oxide film is once removed and then anodized again, whereby extremely highly regular pores can be formed in a self-organized manner. Further, by combining the anodizing treatment and the pore diameter expanding treatment in the second anodizing step, it is possible to form pores having a triangular or bell-shaped cross section instead of a rectangular cross section. Further, the angle of the innermost portion of the pore can be sharpened by appropriately adjusting the time and conditions of the anodizing treatment and the pore diameter expanding treatment.
Furthermore, you may produce a replication mold by the electroforming method etc. from the mother mold which has a fine uneven structure.

モールドそのものの形状は特に限定されず、例えば、平板状、ベルト状、ロール状のいずれでもよい。特に、ベルト状やロール状にすれば、連続的に微細凹凸構造を転写でき、生産性をより高めることができる。   The shape of the mold itself is not particularly limited, and may be, for example, a flat plate shape, a belt shape, or a roll shape. In particular, if a belt shape or a roll shape is used, the fine concavo-convex structure can be transferred continuously, and the productivity can be further increased.

モールドと基材との間に活性エネルギー線硬化性樹脂組成物を配する方法としては、モールドと基材との間に活性エネルギー線硬化性樹脂組成物を配置した状態でモールドと基材とを押圧することによって、モールドの微細凹凸構造に活性エネルギー線硬化性樹脂組成物を注入する方法等が挙げられる。   As a method of arranging the active energy ray curable resin composition between the mold and the base material, the mold and the base material are arranged with the active energy ray curable resin composition being arranged between the mold and the base material. Examples of the method include a method of injecting an active energy ray-curable resin composition into the fine uneven structure of the mold by pressing.

活性エネルギー線硬化性樹脂組成物は、活性エネルギー線を照射することで重合反応が進行し、硬化する樹脂組成物である。
この活性エネルギー線硬化性樹脂組成物は、重合反応性モノマー成分と、活性エネルギー線重合開始剤と、必要に応じてその他の成分とを含有する。
The active energy ray-curable resin composition is a resin composition that cures by irradiating active energy rays so that a polymerization reaction proceeds.
This active energy ray-curable resin composition contains a polymerization-reactive monomer component, an active energy ray polymerization initiator, and other components as necessary.

微細凹凸構造を形成するのに適した重合反応性モノマー成分や活性エネルギー線重合開始剤については、公知の成分を適用できる。例えば、重合反応性モノマー成分としては、分子中にラジカル重合性結合および/またはカチオン重合性結合を有するモノマー、オリゴマー、反応性ポリマー等が挙げられる。
ラジカル重合性結合を有するモノマーとしては、単官能モノマーや多官能モノマーが挙げられ、具体的には、各種の(メタ)アクリレート及びその誘導体などが挙げられる。
カチオン重合性結合を有するモノマーとしては、エポキシ基、オキセタニル基、オキサゾリル基、ビニルオキシ基等を有するモノマーが挙げられる。
微細凹凸構造を形成するのに適した重合反応性モノマー成分や活性エネルギー線重合開始剤としては、例えば特開2009−31764号公報に記載の各種の化合物を使用できる。
Known components can be applied to the polymerization reactive monomer component and the active energy ray polymerization initiator suitable for forming the fine uneven structure. For example, examples of the polymerization reactive monomer component include monomers, oligomers, and reactive polymers having a radical polymerizable bond and / or a cationic polymerizable bond in the molecule.
Examples of the monomer having a radical polymerizable bond include monofunctional monomers and polyfunctional monomers, and specific examples include various (meth) acrylates and derivatives thereof.
Examples of the monomer having a cationic polymerizable bond include monomers having an epoxy group, an oxetanyl group, an oxazolyl group, a vinyloxy group, and the like.
As a polymerization reactive monomer component and an active energy ray polymerization initiator suitable for forming a fine concavo-convex structure, for example, various compounds described in JP 2009-31764 A can be used.

活性エネルギー線硬化性樹脂組成物は、必要に応じて紫外線吸収剤、酸化防止剤、離型剤、滑剤、可塑剤、帯電防止剤、光安定剤、難燃剤、難燃助剤、重合禁止剤、充填剤、シランカップリング剤、着色剤、強化剤、無機フィラー、耐衝撃性改質剤等の添加剤を含有してもよい。   The active energy ray-curable resin composition is composed of an ultraviolet absorber, an antioxidant, a mold release agent, a lubricant, a plasticizer, an antistatic agent, a light stabilizer, a flame retardant, a flame retardant aid, and a polymerization inhibitor as necessary. , Fillers, silane coupling agents, colorants, reinforcing agents, inorganic fillers, impact modifiers and other additives may be included.

<作用効果>
以上説明した本発明の物品は、表面の微細凹凸構造の凹部に機能付与材料が充填されている。この機能付与材料により物品の表面が改質され、物品が機能付与材料に対応した種々の機能(例えば撥水性や親水性など)を発揮する。また、機能付与材料は凹部に充填されているので、特許文献1に記載のように、微細凹凸構造の表面が被覆材料で被覆されている場合と比べて機能付与材料が磨耗しにくい。
また、機能付与材料の充填量は、機能付与材料からなる充填層の厚さが10nm以上となる量であり、かつ充填面の上面より突出している凸部の高さが100nm以上であるため、物品の微細凹凸構造によって発現する反射防止性を妨げることなく、機能付与材料に対応した機能を発揮できる。特に、微細凹凸構造の凸部間の平均間隔が可視光の波長以下であれば、より良好な反射防止性と機能付与材料に対応した機能とを兼ね備えた物品となる。
<Effect>
In the article of the present invention described above, the concave portion of the fine concavo-convex structure on the surface is filled with the function-imparting material. The surface of the article is modified by this function-imparting material, and the article exhibits various functions (for example, water repellency and hydrophilicity) corresponding to the function-imparting material. Further, since the function-imparting material is filled in the recesses, as described in Patent Document 1, the function-imparting material is less likely to be worn compared to the case where the surface of the fine concavo-convex structure is coated with the coating material.
Further, the filling amount of the function-imparting material is such that the thickness of the filling layer made of the function-imparting material is 10 nm or more, and the height of the convex portion protruding from the upper surface of the filling surface is 100 nm or more, The function corresponding to the function-imparting material can be exerted without interfering with the antireflection property developed by the fine concavo-convex structure of the article. In particular, when the average interval between the convex portions of the fine concavo-convex structure is equal to or less than the wavelength of visible light, the article has both better antireflection properties and a function corresponding to the function-imparting material.

ところで、例えば物品に撥水性を付与する場合は、疎水性材料で微細凹凸構造そのものを形成する(すなわち、活性エネルギー線硬化性樹脂組成物として疎水性材料を用いて図1に示す硬化樹脂層15を形成する)ことも考えられるが、この場合、基材11と硬化樹脂層15との密着性が低下することがある。よって、基材11との密着性が良好になるように、疎水性材料(活性エネルギー線硬化性樹脂組成物)の配合組成などを設計する必要があった。また、付与したい機能によって、活性エネルギー線硬化性樹脂組成物をその都度、変更する必要があった。   By the way, when imparting water repellency to an article, for example, a fine uneven structure itself is formed with a hydrophobic material (that is, the cured resin layer 15 shown in FIG. 1 using a hydrophobic material as the active energy ray-curable resin composition). In this case, the adhesion between the substrate 11 and the cured resin layer 15 may be reduced. Therefore, it is necessary to design the composition of the hydrophobic material (active energy ray-curable resin composition) so that the adhesion to the substrate 11 is good. Moreover, it was necessary to change an active energy ray curable resin composition each time according to the function to give.

しかし、本発明であれば、微細凹凸構造14の凹部13に充填された機能付与材料16により撥水性などの機能を物品10に付与するので、硬化樹脂層15に疎水性材料を用いる必要がない。よって、基材11と硬化樹脂層15との密着性も良好である。また、活性エネルギー線硬化性樹脂組成物の配合組成などを設計する必要や、付与したい機能によって活性エネルギー線硬化性樹脂組成物を変更する必要もない。   However, according to the present invention, functions such as water repellency are imparted to the article 10 by the function-imparting material 16 filled in the concave portions 13 of the fine concavo-convex structure 14, so that it is not necessary to use a hydrophobic material for the cured resin layer 15. . Therefore, the adhesion between the base material 11 and the cured resin layer 15 is also good. Moreover, it is not necessary to design the composition of the active energy ray curable resin composition or to change the active energy ray curable resin composition depending on the function to be imparted.

また、上述した物品の製造方法によれば、充填前物品に保護フィルムを貼着し、剥がすという簡便な操作により、微細凹凸構造の凹部に機能付与材料を充填して表面改質できるので、容易に物品を製造できる。しかも、保護フィルムの粘着剤層を構成する粘着剤の種類を変えれば、撥水性や親水性など異なる種類の機能が付与された物品を、一つのモールドや同じ種類の活性エネルギー線硬化性樹脂組成物から製造することができる。   In addition, according to the above-described method for manufacturing an article, the surface modification can be easily performed by filling the concave portion of the fine concavo-convex structure with the function-imparting material by a simple operation of sticking and peeling the protective film on the article before filling. Articles can be manufactured. Moreover, if the type of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer of the protective film is changed, an article with different types of functions such as water repellency and hydrophilicity can be used in one mold or the same type of active energy ray-curable resin composition. It can be manufactured from things.

また、上述した物品の製造方法であれば、保護フィルムの粘着剤層の場所によって粘着剤の種類を変えれば、すなわち、例えば疎水性材料からなる粘着剤の領域と、親水性材料からなる粘着剤の領域とを有する粘着剤層を備えた保護フィルムを用いれば、同一表面に撥水性を有する撥水部と親水性を有する親水部とを備えた物品を製造することもできる。
さらに、この製造方法であれば、物品が使用されるまでの間、保護フィルムを物品の表面に貼着しておくことができるので、表面に汚れ等が付着するのを防いだり、微細凹凸構造の形状を維持(保護)したりすることもできる。よって、物品の表面保護や汚れ付着防止と、物品への機能付与とを同時に行うこともできる。
Moreover, if it is the manufacturing method of the articles | goods mentioned above, if the kind of adhesive is changed with the location of the adhesive layer of a protective film, ie, the area | region of the adhesive which consists of hydrophobic materials, for example, and the adhesive which consists of hydrophilic materials If a protective film provided with a pressure-sensitive adhesive layer having these areas is used, an article having a water-repellent part having water repellency and a hydrophilic part having hydrophilicity on the same surface can be produced.
Furthermore, with this manufacturing method, since the protective film can be stuck on the surface of the article until the article is used, it is possible to prevent dirt and the like from adhering to the surface, It is also possible to maintain (protect) the shape. Therefore, it is possible to simultaneously protect the surface of the article, prevent adhesion of dirt, and impart a function to the article.

<他の実施形態>
本発明の物品は図1、2に示す物品10に限定されない。図1、2に示す物品10は表面全体に微細凹凸構造が形成されているが、表面の一部に微細凹凸構造が形成されていてもよい。また、物品の他方の表面(裏面)にも微細凹凸構造が形成されていてもよい。
また、物品10の構成としても、基材11と硬化樹脂層15とからなるものに限定されず、基材11を備えていないものであってもよく、用途に応じて適宜設定できる。
<Other embodiments>
The article of the present invention is not limited to the article 10 shown in FIGS. The article 10 shown in FIGS. 1 and 2 has a fine concavo-convex structure formed on the entire surface, but a fine concavo-convex structure may be formed on a part of the surface. Moreover, the fine concavo-convex structure may be formed also on the other surface (back surface) of the article.
Further, the configuration of the article 10 is not limited to the one composed of the base material 11 and the cured resin layer 15, and may be one that does not include the base material 11, and can be appropriately set depending on the application.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

(陽極酸化アルミナの細孔)
陽極酸化アルミナの一部を削り、断面にプラチナを1分間蒸着し、電界放出形走査電子顕微鏡(日本電子株式会社製、「JSM‐7400F」)を用いて、加速電圧3.00kVの条件にて断面を観察し、細孔間の間隔、細孔の深さを測定した。各測定は、それぞれ10点について行い、平均値を求めた。
(Pores of anodized alumina)
A portion of the anodized alumina is shaved, platinum is deposited on the cross section for 1 minute, and a field emission scanning electron microscope (“JSM-7400F” manufactured by JEOL Ltd.) is used at an acceleration voltage of 3.00 kV. The cross section was observed, and the interval between the pores and the depth of the pores were measured. Each measurement was performed for 10 points, and an average value was obtained.

(硬化樹脂層の凸部および凹部)
硬化樹脂層の縦断面にプラチナを10分間蒸着し、陽極酸化アルミナと同様に断面を観察し、凸部間の間隔、凹部の深さ(凸部の高さ)を測定した。各測定は、それぞれ10点について行い、平均値を求めた。
(Convex and concave parts of cured resin layer)
Platinum was vapor-deposited on the longitudinal section of the cured resin layer for 10 minutes, and the section was observed in the same manner as the anodized alumina, and the interval between the convex portions and the depth of the concave portions (the height of the convex portions) were measured. Each measurement was performed for 10 points, and an average value was obtained.

(機能付与材料の厚さ、および充填面の上面より突出した凸部の高さの測定)
硬化樹脂層の縦断面にプラチナを10分間蒸着し、陽極酸化アルミナと同様に断面を観察し、凹部に充填された機能付与材料の厚さ、および機能付与材料の充填面の上面より突出した凸部の高さを測定した。測定は10点について行い、平均値を求めた。
(Measurement of the thickness of the function-imparting material and the height of the protrusion protruding from the top surface of the filling surface)
Platinum is vapor-deposited on the longitudinal section of the cured resin layer for 10 minutes, and the cross section is observed in the same manner as in the case of anodized alumina. The height of the part was measured. The measurement was performed for 10 points, and the average value was obtained.

(反射率の測定)
測定対象物の裏面(モールドの表面構造が転写されていない面)に光学粘着層を介して黒色アクリル樹脂板(三菱レイヨン株式会社製、「アクリライトEX#502」、50mm×60mm)を貼り付けた。これをサンプルとし、分光光度計(株式会社島津製作所製、「UV−2450」)を用いて、入射角:5°(5°正反射付属装置使用)、波長:380〜780nmの範囲で測定対象物の表面(モールドの表面構造が転写された転写面)の相対反射率を測定し、JIS R3106に準拠して視感度反射率を算出した。
(Measurement of reflectance)
A black acrylic resin plate (manufactured by Mitsubishi Rayon Co., Ltd., “Acrylite EX # 502”, 50 mm × 60 mm) is pasted on the back surface of the measurement object (the surface on which the mold surface structure is not transferred) via an optical adhesive layer. It was. Using this as a sample, a spectrophotometer (manufactured by Shimadzu Corporation, “UV-2450”) is used to measure in an incident angle of 5 ° (using a 5 ° regular reflection accessory device) and a wavelength of 380 to 780 nm. The relative reflectance of the surface of the object (transfer surface onto which the surface structure of the mold was transferred) was measured, and the visibility reflectance was calculated according to JIS R3106.

(水接触角の測定)
自動接触角測定器(協和界面科学株式会社製、「DM−701」)を用いて、θ/2法にて接触角を算出した。具体的には、測定対象物の表面に2μLのイオン交換水を滴下し、滴下の10秒後の接触角を測定した。さらに、水を滴下する位置を変えて同様の操作を4回行い、計5回の平均値を求めた。
(Measurement of water contact angle)
The contact angle was calculated by the θ / 2 method using an automatic contact angle measuring instrument (“DM-701” manufactured by Kyowa Interface Science Co., Ltd.). Specifically, 2 μL of ion-exchanged water was dropped on the surface of the measurement object, and the contact angle 10 seconds after dropping was measured. Furthermore, the same operation was performed 4 times by changing the position where water was dropped, and an average value of 5 times in total was obtained.

(モールドの製造)
以下のようにして、細孔の深さ180nmのモールドを製造した。
まず、純度99.99%のアルミニウム板を羽布研磨し、ついで過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し、鏡面化した。
該アルミニウム板について、0.3Mシュウ酸水溶液中で、直流40V、温度16℃の条件で30分間陽極酸化を行い、細孔を有する酸化皮膜を形成した(工程(a))。
酸化皮膜が形成されたアルミニウム板を、6質量%リン酸/1.8質量%クロム酸混合水溶液に6時間浸漬して酸化皮膜を除去し、細孔に対応する周期的な窪みを露出させた(工程(b))。
該アルミニウム板について、0.3Mシュウ酸水溶液中、直流40V、温度16℃の条件で30秒陽極酸化を行い、細孔を有する酸化皮膜を形成した(工程(c))。
酸化皮膜が形成されたアルミニウム板を、32℃の5質量%リン酸に8分間浸漬して、細孔径の拡大処理を行った(工程(d))。
該アルミニウム板について、0.3Mシュウ酸水溶液中、直流40V、温度16℃の条件で30秒陽極酸化を行い、細孔から下方に延びる小径の細孔を形成した(工程(e))。
工程(d)および工程(e)を合計で4回繰り返し、最後に工程(e)を行い、平均間隔:100nm、深さ:180nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成された板状のモールドを得た。
得られたモールドを脱イオン水で洗浄した後、表面の水分をエアーブローで除去し、表面防汚コーティング剤(ダイキン工業株式会社製、「オプツールDSX」)を固形分0.1質量%になるように希釈剤(株式会社ハーベス製、「HD−ZV」)で希釈した溶液に10分間浸漬し、溶液から引き上げて20時間風乾して離型剤で処理されたモールドを得た。
(Mold production)
A mold having a pore depth of 180 nm was produced as follows.
First, an aluminum plate having a purity of 99.99% was polished with a blanket and then electropolished in a perchloric acid / ethanol mixed solution (1/4 volume ratio) to form a mirror surface.
The aluminum plate was anodized in a 0.3 M oxalic acid aqueous solution under the conditions of a direct current of 40 V and a temperature of 16 ° C. for 30 minutes to form an oxide film having pores (step (a)).
The aluminum plate on which the oxide film was formed was immersed in a 6% by mass phosphoric acid / 1.8% by mass chromic acid mixed aqueous solution for 6 hours to remove the oxide film, exposing periodic depressions corresponding to the pores. (Step (b)).
The aluminum plate was anodized for 30 seconds in a 0.3 M oxalic acid aqueous solution under conditions of a direct current of 40 V and a temperature of 16 ° C. to form an oxide film having pores (step (c)).
The aluminum plate on which the oxide film was formed was immersed in 5% by mass phosphoric acid at 32 ° C. for 8 minutes, and the pore diameter was expanded (step (d)).
The aluminum plate was anodized in a 0.3 M oxalic acid aqueous solution at a direct current of 40 V and a temperature of 16 ° C. for 30 seconds to form small-diameter pores extending downward from the pores (step (e)).
Step (d) and step (e) are repeated four times in total, and finally step (e) is performed, and anodized alumina having substantially conical pores with an average interval of 100 nm and a depth of 180 nm is formed on the surface. A plate-shaped mold was obtained.
After the obtained mold is washed with deionized water, the surface moisture is removed by air blow, and the surface antifouling coating agent (“OPTOOL DSX”, manufactured by Daikin Industries, Ltd.) is 0.1% by mass in solid content. Thus, it was immersed in a solution diluted with a diluent (manufactured by Harves Co., Ltd., “HD-ZV”) for 10 minutes, pulled up from the solution and air-dried for 20 hours to obtain a mold treated with a release agent.

(保護フィルム)
保護フィルムとして、表1に示す保護フィルムA〜Cを用いた。
(Protective film)
As the protective film, protective films A to C shown in Table 1 were used.

Figure 2013221992
Figure 2013221992

[実施例1]
以下に示す組成の活性エネルギー線硬化性樹脂組成物Aをモールドの表面に流し込み、厚さ100μmのアクリルフィルム(三菱レイヨン株式会社製、「アクリプレン」)で押し広げながら被覆した後、フィルム側から高圧水銀灯を用いて1000mJ/cmのエネルギーで紫外線を照射して硬化させ、硬化樹脂層を形成した。
フィルムからモールドを離型して、凸部の平均間隔:100nm、凹部の深さ(凸部の高さ):170nmの微細凹凸構造を表面に有する物品(充填前物品)を得た。
得られた充填前物品について、表面の反射率および水接触角を測定した。結果を表2に示す。また、充填前物品の凹部の深さ(凸部の高さ)を表2に示す。
[Example 1]
The active energy ray-curable resin composition A having the following composition is poured onto the surface of the mold, and coated with an acrylic film having a thickness of 100 μm (Mitsubishi Rayon Co., Ltd., “Acryprene”). Using a mercury lamp, the resin was cured by irradiating with ultraviolet rays at an energy of 1000 mJ / cm 2 to form a cured resin layer.
The mold was released from the film to obtain an article (pre-filling article) having a fine concavo-convex structure on the surface with an average interval of protrusions: 100 nm and a depth of recesses (height of protrusions): 170 nm.
About the obtained article before filling, the reflectance of the surface and the water contact angle were measured. The results are shown in Table 2. In addition, Table 2 shows the depth of the concave portion (height of the convex portion) of the article before filling.

(活性エネルギー線硬化性樹脂組成物A)
無水コハク酸/トリメチロールエタン/アクリル酸の縮合エステル(モル比1:2:4):45質量部、
1,6−ヘキサンジオールジアクリレート:45質量部、
X−22−1602(信越化学工業株式会社製、ラジカル重合性シリコーンオイル):10質量部、
イルガキュア184(BASF社製):1.0質量部、
イルガキュア819(BASF社製):0.3質量部。
(Active energy ray-curable resin composition A)
Condensed ester of succinic anhydride / trimethylolethane / acrylic acid (molar ratio 1: 2: 4): 45 parts by mass
1,6-hexanediol diacrylate: 45 parts by mass,
X-22-1602 (manufactured by Shin-Etsu Chemical Co., Ltd., radical polymerizable silicone oil): 10 parts by mass,
Irgacure 184 (manufactured by BASF): 1.0 part by mass,
Irgacure 819 (manufactured by BASF): 0.3 parts by mass.

得られた充填前物品を、粘着剤を介して黒アクリル板に貼り付けた後、23℃、50%RHの環境下、2kgのゴムローラーを用いて、充填前物品の表面に保護フィルムAを粘着剤層が接するように、2m/分の速度で貼着した。これを23℃、50%RHの環境下、7日間放置した後、保護フィルムAを剥離して、微細凹凸構造の凹部に粘着剤(機能付与材料)が充填した物品(充填物品)を得た。
得られた充填物品について、凹部に充填された機能付与材料の厚さ、充填面の上面より突出した凸部の高さ、表面の反射率および水接触角を測定した。結果を表2に示す。
After the obtained pre-filling article was attached to a black acrylic plate via an adhesive, a protective film A was applied to the surface of the pre-filling article using a 2 kg rubber roller in an environment of 23 ° C. and 50% RH. It was stuck at a speed of 2 m / min so that the pressure-sensitive adhesive layer was in contact. This was allowed to stand for 7 days in an environment of 23 ° C. and 50% RH, and then the protective film A was peeled off to obtain an article (filled article) in which the concave portion of the fine concavo-convex structure was filled with an adhesive (function-imparting material). .
For the obtained filled article, the thickness of the function-imparting material filled in the concave portions, the height of the convex portions protruding from the upper surface of the filled surface, the reflectance of the surface, and the water contact angle were measured. The results are shown in Table 2.

[実施例2]
以下に示す組成の活性エネルギー線硬化性樹脂組成物Bを用いた以外は、実施例1と同様にして、凸部の平均間隔:100nm、凹部の深さ(凸部の高さ):170nmの充填前物品を得た。
得られた充填前物品と保護フィルムBを用いた以外は、実施例1と同様にして微細凹凸構造の凹部に粘着剤(機能付与材料)が充填した物品(充填物品)を製造し、各種測定を行った。結果を表2に示す。
[Example 2]
Except for using the active energy ray-curable resin composition B having the composition shown below, in the same manner as in Example 1, the average interval between the convex portions: 100 nm, the depth of the concave portions (height of the convex portions): 170 nm. An article before filling was obtained.
Except for using the obtained pre-filling article and protective film B, an article (filled article) in which a concave portion having a fine concavo-convex structure was filled with a pressure-sensitive adhesive (function-imparting material) was prepared in the same manner as in Example 1, and various measurements were performed. Went. The results are shown in Table 2.

(活性エネルギー線硬化性樹脂組成物B)
無水コハク酸/トリメチロールエタン/アクリル酸の縮合エステル(モル比1:2:4):75質量部、
アロニックスM260(東亞合成株式会社製):20質量部、
アクリル酸メチル:5質量部、
イルガキュア184(BASF社製):1.0質量部、
イルガキュア819(BASF社製):0.3質量部。
(Active energy ray-curable resin composition B)
Condensed ester of succinic anhydride / trimethylolethane / acrylic acid (molar ratio 1: 2: 4): 75 parts by mass
Aronix M260 (Toagosei Co., Ltd.): 20 parts by mass,
Methyl acrylate: 5 parts by mass
Irgacure 184 (manufactured by BASF): 1.0 part by mass,
Irgacure 819 (manufactured by BASF): 0.3 parts by mass.

[実施例3]
以下に示す組成の活性エネルギー線硬化性樹脂組成物Cを用いた以外は、実施例1と同様にして、凸部の平均間隔:100nm、凹部の深さ(凸部の高さ):170nmの充填前物品を得た。
得られた充填前物品と保護フィルムCを用い、保護フィルムの貼着時間を21日に変更した以外は、実施例1と同様にして微細凹凸構造の凹部に粘着剤(機能付与材料)が充填した物品(充填物品)を製造し、各種測定を行った。結果を表2に示す。
[Example 3]
Except for using the active energy ray-curable resin composition C having the composition shown below, in the same manner as in Example 1, the average interval between the convex portions: 100 nm, the depth of the concave portions (height of the convex portions): 170 nm. An article before filling was obtained.
Using the resulting pre-filled article and protective film C, the adhesive (function-imparting material) was filled into the concave portions of the fine concavo-convex structure in the same manner as in Example 1 except that the sticking time of the protective film was changed to 21 days. The manufactured article (filled article) was manufactured and subjected to various measurements. The results are shown in Table 2.

(活性エネルギー線硬化性樹脂組成物C)
GX−8662V(第一工業製薬株式会社製):45質量部、
DPEA−12(日本化薬株式会社製):25質量部、
アロニックスM260(東亞合成株式会社製):25質量部、
アクリル酸メチル:5質量部、
イルガキュア184(BASF社製):1.0質量部、
イルガキュア819(BASF社製):0.3質量部。
(Active energy ray-curable resin composition C)
GX-8862V (Daiichi Kogyo Seiyaku Co., Ltd.): 45 parts by mass,
DPEA-12 (manufactured by Nippon Kayaku Co., Ltd.): 25 parts by mass,
Aronix M260 (Toagosei Co., Ltd.): 25 parts by mass,
Methyl acrylate: 5 parts by mass
Irgacure 184 (manufactured by BASF): 1.0 part by mass,
Irgacure 819 (manufactured by BASF): 0.3 parts by mass.

Figure 2013221992
Figure 2013221992

表2から明らかなように、アクリル系粘着剤からなる粘着剤層を備えた保護フィルムAを用いた実施例1の場合、保護フィルムAの貼着前に比べて物品の表面の反射率が0.11%から0.27%に上昇した。
シリコーン系粘着剤からなる粘着剤層を備えた保護フィルムBを用いた実施例2の場合、保護フィルムBの貼着前に比べて物品の表面の反射率が0.05%から0.72%に上昇した。また、物品の水接触角が17°から137°に上昇し、撥水性を付与することができた。
アクリル系粘着剤からなる粘着剤層を備えた保護フィルムCを用いた実施例3の場合、保護フィルムCの貼着前に比べて物品の表面の反射率が0.11%から0.23%に上昇した。また、物品の水接触角が19°から94°に上昇し、撥水性を付与することができた。
なお、実施例1〜3における反射率の上昇は、反射防止性に影響を与えるものではない。
As is clear from Table 2, in the case of Example 1 using the protective film A provided with the pressure-sensitive adhesive layer made of an acrylic pressure-sensitive adhesive, the reflectance of the surface of the article was 0 as compared to before the protective film A was attached. Increased from 11% to 0.27%.
In the case of Example 2 using the protective film B provided with a pressure-sensitive adhesive layer made of a silicone-based pressure-sensitive adhesive, the reflectance of the surface of the article is 0.05% to 0.72% compared to before the protective film B is attached. Rose to. Further, the water contact angle of the article increased from 17 ° to 137 °, and water repellency could be imparted.
In the case of Example 3 using the protective film C provided with a pressure-sensitive adhesive layer made of an acrylic pressure-sensitive adhesive, the reflectance of the surface of the article is 0.11% to 0.23% compared to before the protective film C is attached. Rose to. Further, the water contact angle of the article increased from 19 ° to 94 °, and water repellency could be imparted.
In addition, the raise of the reflectance in Examples 1-3 does not affect antireflection property.

[実施例4]
<実施例4−1>
活性エネルギー線硬化性樹脂組成物Bを用いた以外は、実施例1と同様にして、凸部の平均間隔:100nm、凹部の深さ(凸部の高さ):170nmの充填前物品を得た。
得られた充填前物品と保護フィルムBを用い、保護フィルムの貼着時間を30分に変更した以外は、実施例1と同様にして微細凹凸構造の凹部に粘着剤(機能付与材料)が充填した物品(充填物品)を製造し、該物品の凹部に充填された機能付与材料の厚さ、充填面の上面より突出した凸部の高さ、および該物品の表面の水接触角を測定した。結果を表3に示す。
[Example 4]
<Example 4-1>
Except for using the active energy ray-curable resin composition B, an article before filling having an average interval of protrusions of 100 nm and a depth of protrusions (height of the protrusions) of 170 nm was obtained in the same manner as in Example 1. It was.
Using the obtained pre-filling article and protective film B, the adhesive (function-imparting material) is filled in the concave portions of the fine concavo-convex structure in the same manner as in Example 1 except that the sticking time of the protective film is changed to 30 minutes. Manufactured article (filled article) was measured, and the thickness of the function-imparting material filled in the concave portion of the article, the height of the convex portion protruding from the upper surface of the filling surface, and the water contact angle of the surface of the article were measured. . The results are shown in Table 3.

<実施例4−2>
活性エネルギー線硬化性樹脂組成物Bを用いた以外は、実施例1と同様にして、凸部の平均間隔:100nm、凹部の深さ(凸部の高さ):170nmの充填前物品を得た。
得られた充填前物品と保護フィルムBを用い、保護フィルムの貼着時間を1日に変更した以外は、実施例1と同様にして微細凹凸構造の凹部に粘着剤(機能付与材料)が充填した物品(充填物品)を製造し、該物品の凹部に充填された機能付与材料の厚さ、充填面の上面より突出した凸部の高さ、および該物品の表面の水接触角を測定した。結果を表3に示す。
<Example 4-2>
Except for using the active energy ray-curable resin composition B, an article before filling having an average interval of protrusions of 100 nm and a depth of protrusions (height of the protrusions) of 170 nm was obtained in the same manner as in Example 1. It was.
Using the resulting pre-filled article and protective film B, the adhesive (function-imparting material) was filled into the concave portions of the fine concavo-convex structure in the same manner as in Example 1 except that the sticking time of the protective film was changed to 1 day. Manufactured article (filled article) was measured, and the thickness of the function-imparting material filled in the concave portion of the article, the height of the convex portion protruding from the upper surface of the filling surface, and the water contact angle of the surface of the article were measured. . The results are shown in Table 3.

Figure 2013221992
Figure 2013221992

なお、表3には、実施例2の水接触角(貼着前)の結果を参考例1として、実施例2の水接触角(貼着後)の結果を実施例4−3として、それぞれ記載した。
表3から明らかなように、シリコーン系粘着剤からなる粘着剤層を備えた保護フィルムBを用いれば、保護フィルムBの貼着時間に関係なく物品に撥水性を付与できることが分かった。
In addition, in Table 3, the result of the water contact angle (before sticking) of Example 2 is set as Reference Example 1, and the result of the water contact angle of Example 2 (after sticking) is set as Example 4-3. Described.
As is clear from Table 3, it was found that if the protective film B provided with a pressure-sensitive adhesive layer made of a silicone-based pressure-sensitive adhesive was used, water repellency could be imparted to the article regardless of the sticking time of the protective film B.

10:物品、
10’:充填前物品、
11:基材、
12:凸部、
13:凹部、
14:微細凹凸構造、
15:硬化樹脂層、
16:機能付与材料、
20:保護フィルム、
21:基材フィルム、
22:粘着剤層。
10: goods
10 ': article before filling,
11: base material,
12: convex part,
13: recess,
14: Micro uneven structure,
15: cured resin layer,
16: Function-imparting material,
20: protective film,
21: base film,
22: Adhesive layer.

Claims (4)

微細凹凸構造を表面に有する物品であって、
前記微細凹凸構造の凹部に、10nm以上の厚さで機能付与材料が充填され、かつ充填面の上面より突出している凸部の高さが100nm以上である、物品。
An article having a fine concavo-convex structure on its surface,
An article in which the concave portion of the fine concavo-convex structure is filled with a function-imparting material with a thickness of 10 nm or more, and the height of the convex portion protruding from the upper surface of the filling surface is 100 nm or more.
前記微細凹凸構造の凸部間の平均間隔が可視光の波長以下の反射防止物品である、請求項1に記載の物品。   The article according to claim 1, wherein the article is an antireflection article having an average interval between convex portions of the fine concavo-convex structure having a wavelength of visible light or less. 前記機能付与材料がシリコーン系粘着剤である、請求項1または2に記載の物品。   The article according to claim 1 or 2, wherein the function-imparting material is a silicone-based pressure-sensitive adhesive. 微細凹凸構造を表面に有する物品の該表面に、機能付与材料を含む粘着剤からなる粘着剤層を備えた保護フィルムを、物品の表面と粘着剤層とが接するように貼着した後、保護フィルムを剥がして、粘着剤を微細凹凸構造の凹部に、10nm以上の厚さとなるように移行させる、物品の製造方法。   After attaching a protective film provided with a pressure-sensitive adhesive layer made of a pressure-sensitive adhesive containing a function-imparting material to the surface of the article having a fine concavo-convex structure on the surface so that the surface of the article and the pressure-sensitive adhesive layer are in contact, protection A method for producing an article, in which the film is peeled off and the pressure-sensitive adhesive is transferred to the concave portion of the fine concavo-convex structure so as to have a thickness of 10 nm or more.
JP2012092116A 2012-04-13 2012-04-13 Article and method for manufacturing the same Pending JP2013221992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092116A JP2013221992A (en) 2012-04-13 2012-04-13 Article and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092116A JP2013221992A (en) 2012-04-13 2012-04-13 Article and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013221992A true JP2013221992A (en) 2013-10-28

Family

ID=49593014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092116A Pending JP2013221992A (en) 2012-04-13 2012-04-13 Article and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013221992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173736A (en) * 2016-03-25 2017-09-28 三菱ケミカル株式会社 Fine uneven structure body including adhesive, and conjugate
WO2023188922A1 (en) * 2022-03-30 2023-10-05 キヤノン株式会社 Member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187868A (en) * 2006-01-13 2007-07-26 Nissan Motor Co Ltd Wetting control antireflection optical structure and automotive window glass
JP2008003232A (en) * 2006-06-21 2008-01-10 Fujifilm Corp Optical sheet and method for producing optical sheet, backlight and liquid crystal display
JP2008165207A (en) * 2006-12-05 2008-07-17 Semiconductor Energy Lab Co Ltd Plasma display panel and field emission display
JP2009294341A (en) * 2008-06-04 2009-12-17 Nissan Motor Co Ltd Water-repellent antireflection structure and water-repellent antireflection molding
WO2011148721A1 (en) * 2010-05-25 2011-12-01 シャープ株式会社 Layered product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187868A (en) * 2006-01-13 2007-07-26 Nissan Motor Co Ltd Wetting control antireflection optical structure and automotive window glass
JP2008003232A (en) * 2006-06-21 2008-01-10 Fujifilm Corp Optical sheet and method for producing optical sheet, backlight and liquid crystal display
JP2008165207A (en) * 2006-12-05 2008-07-17 Semiconductor Energy Lab Co Ltd Plasma display panel and field emission display
JP2009294341A (en) * 2008-06-04 2009-12-17 Nissan Motor Co Ltd Water-repellent antireflection structure and water-repellent antireflection molding
WO2011148721A1 (en) * 2010-05-25 2011-12-01 シャープ株式会社 Layered product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173736A (en) * 2016-03-25 2017-09-28 三菱ケミカル株式会社 Fine uneven structure body including adhesive, and conjugate
WO2023188922A1 (en) * 2022-03-30 2023-10-05 キヤノン株式会社 Member

Similar Documents

Publication Publication Date Title
JP5716868B2 (en) Laminated structure, method for manufacturing the same, and article
JP6052164B2 (en) Laminated structure
TWI607857B (en) Structure body and manufacturing method for the same, and article having the structure body
JP5958338B2 (en) Fine uneven structure, water-repellent article, mold, and method for producing fine uneven structure
WO2013024887A1 (en) Microscopic roughness structure with protective film and fabrication method therefor
TW201305257A (en) Article having fine concavo-convex structure on the surface thereof and video display device having the same
JP2011026449A (en) Laminate and article comprising the same
JP2010107858A (en) Molded article with protective film
JP5376913B2 (en) Protective film and molded body with protective film
JP2012143936A (en) Protective film, and molded article having the same
WO2013172448A1 (en) Film, method for producing same, plate-like product, image display device, and solar cell
JP5133190B2 (en) Molded body with protective film and method for producing the same
JP2021193447A (en) Finely rugged structure and joint body
JP6361339B2 (en) Condensation suppression member
JP2016210150A (en) Laminate, production method thereof and article
JP2018124279A (en) Infrared sensor cover, infrared sensor module, and camera
JP2013221992A (en) Article and method for manufacturing the same
JP5879939B2 (en) Fine uneven structure, display, and manufacturing method of fine uneven structure
JP2015163995A (en) Compact with protective film
JP2014126761A (en) Laminate and manufacturing method therefor
JP5838668B2 (en) Article having fine uneven structure on surface, and article with protective film
JP2011245767A (en) Laminate, and article having the same
TW201641577A (en) Active energy ray-curable resin composition and article
JP2018157865A (en) Cleaning method of article
JP6900688B2 (en) A method for manufacturing a mold with a protective film and an article having an uneven structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161115