JP2009294341A - Water-repellent antireflection structure and water-repellent antireflection molding - Google Patents

Water-repellent antireflection structure and water-repellent antireflection molding Download PDF

Info

Publication number
JP2009294341A
JP2009294341A JP2008146583A JP2008146583A JP2009294341A JP 2009294341 A JP2009294341 A JP 2009294341A JP 2008146583 A JP2008146583 A JP 2008146583A JP 2008146583 A JP2008146583 A JP 2008146583A JP 2009294341 A JP2009294341 A JP 2009294341A
Authority
JP
Japan
Prior art keywords
water
refractive index
fine convex
repellent
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008146583A
Other languages
Japanese (ja)
Inventor
Yuji Noguchi
雄司 野口
Takayuki Fukui
孝之 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008146583A priority Critical patent/JP2009294341A/en
Publication of JP2009294341A publication Critical patent/JP2009294341A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent breakage of a minute projection part top end without damaging an antireflection function of electromagnetic waves and a water-repellent function and to make the antireflection function, the water-repellent function and scratch resistance of minute structure compatible in water-repellent antireflection structure using the minute structure. <P>SOLUTION: Frustum-shaped minute projection parts 2, each of which has a bottom surface that is about circular or polygonal and has size D smaller than a wavelength λ of an incident electromagnetic wave, are arranged with a pitch P shorter than the wavelength λ. A high refractive index material layer 3 consisting of a material of higher refractive index than that of a material constituting the minute projection part 2 is provided at a top end surface of the frustum-shaped minute projection part 2. Further two reflection surfaces, that are a top end reflection surface 3t and a root reflection surface 2b, are formed respectively at a surface of the high refractive index material layer 3 and a root part of the minute projection part 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電磁波の反射防止機能、耐傷付き性に加え、撥水性にも優れた撥水性反射防止構造に関するものである。さらに、このような撥水性反射防止構造を備え、撥水性を備えた無反射パネルとして、例えば、自動車を始めとする車両や船舶、航空機などのボディや各種メーター類、ディスプレイ装置、ガラス、ミラー、ランプユニットなどに好適に使用することができる成形体に関するものである。   The present invention relates to a water-repellent antireflection structure excellent in water repellency in addition to an electromagnetic wave antireflection function and scratch resistance. Furthermore, with such a water-repellent antireflection structure, as a non-reflective panel with water repellency, for example, vehicles such as automobiles, bodies such as ships, aircraft, and various meters, display devices, glass, mirrors, The present invention relates to a molded body that can be suitably used for a lamp unit or the like.

航空機、自動車、船舶などの分野においては、レーダーに映らないステルス技術、車間計測などのIR計測カメラ、メーターカバー、液晶表示装置など、様々な場所で電磁波の反射防止が必要である。
このような光の反射を防止するための構造としては、屈折率の異なる複数の薄膜から成る多層反射防止膜が知られているが、このような多層反射防止膜よりもさらに反射率を低下できるものとして、微細構造を用いた反射防止構造が提案されている(例えば、特許文献1参照)。
特開2002−267815号公報
In the fields of aircraft, automobiles, ships, etc., it is necessary to prevent reflection of electromagnetic waves in various places such as stealth technology that does not appear in radar, IR measurement cameras such as inter-vehicle measurement, meter covers, and liquid crystal display devices.
As a structure for preventing such reflection of light, a multilayer antireflection film composed of a plurality of thin films having different refractive indexes is known. However, the reflectance can be further reduced as compared with such a multilayer antireflection film. As a thing, the antireflection structure using a fine structure is proposed (for example, refer to patent documents 1).
JP 2002-267815 A

上記特許文献1には、透明性成形品の表面に、透明性素材から成る無数の微細凹凸を光の波長以下のピッチで形成することによって、光の屈折率が厚み方向に変化するようにした反射防止構造が記載されている。   In Patent Document 1, the refractive index of light is changed in the thickness direction by forming innumerable fine irregularities made of a transparent material on the surface of the transparent molded article at a pitch equal to or less than the wavelength of light. An antireflection structure is described.

すなわち、例えば波形あるいは三角形をなす無数の微細凹凸が表面に形成されていることによって、凹凸の最表面では透明性素材の存在割合が限りなく0%に近いものとなって、実質的に空気の屈折率に等しくなる。一方、凹凸の底部では逆に空気の存在割合が限りなく0%に近いものとなって透明性素材の屈折率と等しくなり、中間部ではその断面における透明性素材の占める断面積に応じた屈折率となる。これによって、光の屈折率が当該反射防止構造の厚み方向に、空気の屈折率から透明性素材の屈折率の間で連続的に変化するようになる。   That is, for example, by forming innumerable fine irregularities having a waveform or a triangle on the surface, the proportion of the transparent material existing on the outermost surface of the irregularities is almost as close to 0%, and substantially air It becomes equal to the refractive index. On the other hand, at the bottom of the uneven surface, the air content is almost as close to 0% as the refractive index of the transparent material, and at the intermediate part, the refraction according to the cross-sectional area occupied by the transparent material in the cross section. Become a rate. As a result, the refractive index of light continuously changes between the refractive index of air and the refractive index of the transparent material in the thickness direction of the antireflection structure.

この結果、屈折率の異なる複数の薄膜から成る多層反射防止膜(この場合の屈折率は段階的に変化する)と同様の原理によって、当該反射防止膜よりも優れた反射防止性能を発揮させることができる。
なお、上記のような微細凹凸の先端部を細くすることにより、水との間に空気が保持され、水滴が付着しないようになり、撥水機能を持たせることも可能である。
As a result, antireflection performance superior to that of the antireflection film can be exhibited by the same principle as a multilayer antireflection film consisting of a plurality of thin films having different refractive indexes (in this case, the refractive index changes stepwise). Can do.
It should be noted that by making the tip of the fine irregularities as described above thin, air is retained between the water and water droplets are prevented from adhering, and a water repellent function can be provided.

しかしながら、上記特許文献1に記載の構造においては、光の反射率の低下が可能であるものの、微細凹凸の先端が破損し易く、構造体の表面に触れたり、表面を拭いたりすることによって、構造に傷が生じ、反射防止性能や撥水機能が損なわれるという問題点があった。
特に屋外で用いる場合には、水滴の付着により微細凹凸構造が埋没してしまい、反射防止効果が減少する可能性が有る。また、水滴が付着すると光が拡散して、パネル前方の視界やミラーによる反射像が見え難くなる。
However, in the structure described in Patent Document 1, although the light reflectance can be reduced, the tip of the fine unevenness is easily damaged, and by touching the surface of the structure or wiping the surface, There was a problem that the structure was damaged, and the antireflection performance and the water repellent function were impaired.
In particular, when used outdoors, the fine concavo-convex structure is buried due to adhesion of water droplets, which may reduce the antireflection effect. In addition, when water droplets adhere, the light diffuses, making it difficult to see the field of view in front of the panel and the reflected image from the mirror.

本発明は、光(入射電磁波)の波長以下のピッチ及びサイズに形成した微細凹凸構造から成る従来の反射防止構造における上記課題を解決すべくなされたものである。そして、その目的とするところは、電磁波の反射防止機能や撥水機能を損なうことなく、微細凸部先端の破壊を防止することができる撥水性反射防止構造を提供することにある。   The present invention has been made to solve the above-mentioned problems in a conventional antireflection structure comprising a fine concavo-convex structure formed at a pitch and size equal to or less than the wavelength of light (incident electromagnetic waves). An object of the invention is to provide a water-repellent antireflection structure capable of preventing the breakage of the tips of the fine convex portions without impairing the antireflection function and the water repellent function of electromagnetic waves.

本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、微細凹凸構造を構成する個々の凸部の先端部分をあえて平坦にして当該微細凸部を円錐台状あるいは角錐台状にし、隣接する微細凸部間の平面部と微細凸部の先端部とに2つの反射面を形成することによって、反射率を低減できることを見出した。さらに、微細凸部先端部分の屈折率を高くすることによって、先端部をより細くすることができるようになり、もって微細凹凸構造表面の撥水性を向上できることを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the inventors of the present invention dare to flatten the tip portions of the individual convex portions constituting the fine concavo-convex structure so that the fine convex portions have a truncated cone shape or a truncated pyramid shape. It has been found that the reflectance can be reduced by forming two reflecting surfaces on the plane portion between the adjacent fine convex portions and the tip portion of the fine convex portion. Further, it has been found that by increasing the refractive index of the tip portion of the fine convex portion, the tip portion can be made thinner, thereby improving the water repellency of the surface of the fine concavo-convex structure, thereby completing the present invention. It was.

本発明は上記知見に基づくものであって、本発明の撥水性反射防止構造は、略円形又は多角形をなし、入射する電磁波の波長よりも小さいサイズの底面を備えた円錐台状又は角錐台状をなす無数の微細凸部が入射する電磁波の波長よりも短いピッチで配列されて成る。そして、これら錐台状微細凸部の先端面に当該微細凸部を構成する材料よりも屈折率が高い材料から成る高屈折率材層を備え、当該高屈折率材層表面と微細凸部間の根元部とに反射面をそれぞれ有していることを特徴とする。   The present invention is based on the above knowledge, and the water-repellent antireflection structure of the present invention has a substantially circular or polygonal shape and has a truncated cone shape or a truncated pyramid shape having a bottom surface having a size smaller than the wavelength of incident electromagnetic waves. The innumerable fine convex portions having a shape are arranged at a pitch shorter than the wavelength of the incident electromagnetic wave. Further, a high refractive index material layer made of a material having a refractive index higher than that of the material constituting the fine convex portion is provided on the tip surface of the frustum-shaped fine convex portion, and the surface between the high refractive index material layer surface and the fine convex portion is provided. It has the reflective surface in the base part of each, It is characterized by the above-mentioned.

本発明によれば、反射防止構造を構成する個々の微細凸部の形状を円錐台状あるいは角錐台状のものとし、その底面形状を直径Dの円、又はこの直径Dの円に内接する多角形(但し、D<λ:入射電磁波の波長)として、ピッチP(但し、P<λ)で配列し、当該錐台状微細凹部の先端面に高屈折率材層を設けて、この高屈折率材層表面と微細凸部間の平面部が反射面となるようにした。従って、反射防止性能や撥水性能を損なうことなく、微細凸部の高さを低くすることができ、これら機能と耐傷付き性の両立が可能になる。   According to the present invention, the shape of each fine convex portion constituting the antireflection structure is a truncated cone shape or a truncated pyramid shape, and the bottom surface shape is a circle having a diameter D or a plurality of inscribed in the circle having the diameter D. The prisms (where D <λ is the wavelength of the incident electromagnetic wave) are arranged at a pitch P (where P <λ), and a high refractive index material layer is provided on the tip surface of the frustum-shaped fine concave portion. The flat part between the surface of the rate material layer and the fine convex part was made to be a reflection surface. Therefore, the height of the fine convex portion can be lowered without impairing the antireflection performance and the water repellency, and both of these functions and scratch resistance can be achieved.

以下、本発明の撥水性反射防止構造や、このような微細構造を適用した撥水性反射防止成形体について、その製造方法や実施形態などと共に、さらに詳細に説明する。   Hereinafter, the water-repellent antireflection structure of the present invention and the water-repellent antireflection molded body to which such a fine structure is applied will be described in more detail together with the production method and embodiments thereof.

本発明の反射防止構造は、上記したように、円錐台状あるいは角錐台状をなす無数の微細凸部から構成され、その先端面には高屈折率材層を備え、この高屈折率材層表面と微細凸部間の根本部とに反射面をそれぞれ備えると共に、当該微細凸部の底面サイズ及び凸部間のピッチが入射電磁波の波長よりも小さくしてある。   As described above, the antireflection structure of the present invention is composed of innumerable fine convex portions having a truncated cone shape or a truncated pyramid shape, and a high refractive index material layer is provided on a tip surface thereof. Each of the surface and the root portion between the fine convex portions is provided with a reflecting surface, and the bottom surface size of the fine convex portion and the pitch between the convex portions are made smaller than the wavelength of the incident electromagnetic wave.

図1は、本発明の撥水性反射防止構造の実施形態の一例を示すものであって、本発明の撥水性反射防止構造1は、先端部が平坦な円錐台又は角錐台形状(この例では、円錐台)をなす無数の微細凸部2が入射する電磁波の波長λよりも短いピッチPで配列された構造を備えたものである。
なお、このとき、微細凸部の底面サイズ、すなわち、円錐台の場合には底面径、角錐台の場合には底面多角形に外接する円の径についても、入射電磁波の波長λよりも小さいことになる。また、微細凸部2の表面には、微細凸部を構成する材料よりも屈折率が高い材料から成る高屈折率材層3を備えている。
FIG. 1 shows an example of an embodiment of the water-repellent antireflection structure of the present invention. The water-repellent antireflective structure 1 of the present invention has a truncated cone shape or a truncated pyramid shape (in this example) Innumerable fine convex portions 2 forming a truncated cone are arranged at a pitch P shorter than the wavelength λ of the incident electromagnetic wave.
At this time, the bottom surface size of the fine projection, that is, the bottom surface diameter in the case of the truncated cone and the diameter of the circle circumscribing the bottom polygon in the case of the truncated pyramid are also smaller than the wavelength λ of the incident electromagnetic wave. become. Moreover, the surface of the fine convex part 2 is provided with a high refractive index material layer 3 made of a material having a higher refractive index than the material constituting the fine convex part.

したがって、当該撥水性反射防止構造の厚み方向の各段面における構造素材と空気の存在比率によって定まる各断面における電磁波の屈折率が、厚み方向に向けて空気の屈折率から素材の屈折率まで連続的に変化するようになり、もって電磁波の反射防止特性が発揮される。
一方、各微細凸部2は、円錐台形状であって、その先端部が平坦化されでいるので、当該微細凸部2の間の根元平面部から反射した電磁波は、高屈折率材層3の表面で反射した電磁波と相殺され、さらなる低反射化が可能となる。このとき、撥水性に関しては、先端部が平坦であるため、撥水性が低下する傾向にあるが、先端面に高屈折率材料から成る層3を備えていることから、先端平面の面積を小さくすることができ、水との接触角が増し、撥水性を高めることができる。
Therefore, the refractive index of the electromagnetic wave in each cross section determined by the abundance ratio of the structural material and air on each step surface in the thickness direction of the water-repellent antireflection structure is continuous from the refractive index of air to the refractive index of the material in the thickness direction. Therefore, the antireflection characteristic of electromagnetic waves is exhibited.
On the other hand, each fine convex portion 2 has a truncated cone shape, and its tip portion is flattened. Therefore, the electromagnetic wave reflected from the root plane portion between the fine convex portions 2 is reflected by the high refractive index material layer 3. This cancels out the electromagnetic waves reflected on the surface of the film and enables further reduction in reflection. At this time, with respect to water repellency, since the tip portion is flat, the water repellency tends to decrease. However, since the tip surface is provided with the layer 3 made of a high refractive index material, the area of the tip plane is reduced. The contact angle with water can be increased, and the water repellency can be increased.

そして、微細凸部2の先端部が平滑であるため、他の部材と擦れ合ったり、ぶつかったりしても損傷を受け難く、反射防止性能や撥水性能に対する影響を最小限のものとして、電磁波の反射防止機能や撥水機能を耐傷付き性とを両立させることができる。   And since the tip part of the fine convex part 2 is smooth, it is hard to be damaged even if it rubs against or collides with other members, and the influence on the antireflection performance and water repellency is minimized. The antireflection function and water repellent function can be made compatible with scratch resistance.

上記微細凸部2の大きさについては、図2(a)に示すように、その形状が円錐台状の場合には、底面の径をDとするとき、D<λ(入射電磁波の波長)の範囲内とすることが必要となり、特に可視光線の反射を防止するためにはD≦380nmとする必要がある。また、回折による反射光の着色を防止する観点からは、D≦250nmとすることが望ましい。その他に、紫外線についてはD≦150nm、近赤外線についてはD≦780nmであることが好ましい。
すなわち、底面寸法Dが入射電磁波の波長λ以上となると、隣接する微細凸部2間のピッチPを当該波長λよりも短くすることができず、電磁波が回折し、反射防止とはならない。
As for the size of the fine convex portion 2, as shown in FIG. 2A, when the shape is a truncated cone, D <λ (wavelength of incident electromagnetic wave), where D is the diameter of the bottom surface In order to prevent reflection of visible light, it is necessary to satisfy D ≦ 380 nm. Further, from the viewpoint of preventing coloring of reflected light due to diffraction, it is desirable that D ≦ 250 nm. In addition, it is preferable that D ≦ 150 nm for ultraviolet rays and D ≦ 780 nm for near infrared rays.
That is, when the bottom surface dimension D is equal to or greater than the wavelength λ of the incident electromagnetic wave, the pitch P between the adjacent fine protrusions 2 cannot be made shorter than the wavelength λ, and the electromagnetic wave is diffracted and does not prevent reflection.

一方、微細凸部2の形状が図2(b)に示すように、角錐台状の場合(図においては、その典型例として四角錘台を示す)には、底面を形成する多角形に外接する円の径Dをもって底面サイズとする。   On the other hand, when the shape of the fine convex portion 2 is a truncated pyramid shape as shown in FIG. 2 (b) (in the figure, a quadrangular frustum is shown as a typical example), it circumscribes the polygon that forms the bottom surface. Let the diameter D of the circle to be the bottom size.

本発明において、錐台状微細凸部2の先端面に形成された高屈折率材層3の表面と、根元間の平面部からの反射電磁波を相殺するためには、高屈折率材層表面と、微細凸部2の間の根元部における反射面占有率Rt、Rbと、微細凸部2の高さH及び高屈折率材層3の厚さtが重要となる。
先端反射面占有率Rtと根元反射面占有率Rbとは、当該反射防止構造1の繰り返しの1単位を抜き出したときの先端部(高屈折率材層3)と微細凸部2間の根元部における反射面の占有率である。
In the present invention, the surface of the high refractive index material layer 3 formed on the front end surface of the frustum-shaped fine convex portion 2 and the surface of the high refractive index material layer can be offset to cancel the reflected electromagnetic waves from the flat portion between the roots. The reflection surface occupancy ratios Rt and Rb at the root portion between the fine convex portions 2, the height H of the fine convex portions 2, and the thickness t of the high refractive index material layer 3 are important.
The tip reflecting surface occupancy rate Rt and the base reflecting surface occupancy rate Rb are the root portion between the tip portion (high refractive index material layer 3) and the fine convex portion 2 when one repetitive unit of the antireflection structure 1 is extracted. Is the occupancy of the reflecting surface.

具体的には、図3に示すように、撥水性反射防止構造1を上方から見たときに、まず、微細凸部2の先端面に形成された高屈折率材層3の表面を先端反射面3t、微細凸部2の間の根元部分に形成される微細凸部間の平面部分を根元反射面2bとする。そして、単位面積(図においては、六角形をなす1単位の面積)に対する先端反射面(高屈折率材層3の表面)3tの面積率を先端反射面占有率Rt、同じく六角形の単位面積に対する根元反射面2bの面積率を根元反射面占有率Rbと定義する。
本発明の撥水性反射防止構造1においては、先端部分に高屈折率材層3が存在することによって、先端部と根元部の反射面占有率の比Rt/Rbが0.1〜2のときに電磁波の反射防止性が向上する。さらには、このRt/Rb比が0.2〜1.4であることが好ましい。
Specifically, as shown in FIG. 3, when the water repellent antireflection structure 1 is viewed from above, first, the surface of the high refractive index material layer 3 formed on the tip surface of the fine convex portion 2 is reflected at the tip. A plane portion between the fine projections formed at the root portion between the surface 3t and the fine projections 2 is defined as a root reflection surface 2b. The area ratio of the tip reflecting surface (the surface of the high refractive index material layer 3) 3t relative to the unit area (in the drawing, one unit area forming a hexagon) is the tip reflecting surface occupancy ratio Rt, which is also a hexagonal unit area. The area ratio of the base reflection surface 2b with respect to is defined as a root reflection surface occupation ratio Rb.
In the water-repellent antireflection structure 1 of the present invention, when the high refractive index material layer 3 is present at the tip portion, the ratio Rt / Rb of the reflection surface occupancy ratio between the tip portion and the root portion is 0.1 to 2. In addition, the antireflection property of electromagnetic waves is improved. Furthermore, it is preferable that this Rt / Rb ratio is 0.2 to 1.4.

また、高屈折率材層表面の先端反射面占有率Rtについては、0.015〜0.1の範囲であることが望ましい。
すなわち、単位面積に対する先端反射面占有率Rtが0.015に満たないと、先端面からの反射光強度が小さくなり、根元からの反射光を打ち消すことができなくなる。逆に0.1を超えると、先端面からの反射光強度が大きくなり、根元からの反射光により先端の反射光を打ち消すことができなくなる。
Further, the tip reflection surface occupation ratio Rt on the surface of the high refractive index material layer is preferably in the range of 0.015 to 0.1.
That is, if the tip reflection surface occupation ratio Rt per unit area is less than 0.015, the reflected light intensity from the tip surface becomes small, and the reflected light from the root cannot be canceled. On the other hand, if it exceeds 0.1, the intensity of the reflected light from the tip surface increases, and the reflected light from the tip cannot be canceled out by the reflected light from the root.

なお、微細凸部2の先端部の形状は、上記の占有率比を満たす範囲でさえあれば、特に限定は無く、必ずしも完全な平面でなくても良い。すなわち、高さ20nm以内の凹みや膨らみ、凹凸などは反射率に大きく影響するものではない。   The shape of the tip of the fine convex portion 2 is not particularly limited as long as it is within a range that satisfies the above occupancy ratio, and may not necessarily be a perfect plane. That is, dents, bulges, and irregularities within a height of 20 nm do not greatly affect the reflectance.

次に、微細凸部2の高さHについては、高屈折率材層3の厚さtを含めた全体の高さH+tとして、入射電磁波を相殺するために先端部(高屈折率材層表面)の反射電磁波と根元部の反射電磁波の位相をπ/2ずらしたときに最も効果が大きくなる。
具体的には、H+t=(入射波長λ/(2×平均屈折率n))×Aの式(1)で表され、Aの値は、0.6〜1.4の範囲であることが好ましく、更に好ましくは、A=0.8〜1.2の範囲である。
Next, with respect to the height H of the fine convex portion 2, the total height H + t including the thickness t of the high refractive index material layer 3 is used to cancel the incident electromagnetic wave (the surface of the high refractive index material layer surface). The effect is greatest when the phase of the reflected electromagnetic wave of) and the reflected electromagnetic wave at the base is shifted by π / 2.
Specifically, H + t = (incident wavelength λ / (2 × average refractive index n)) × A is expressed by the formula (1), and the value of A is in the range of 0.6 to 1.4. More preferably, it is the range of A = 0.8-1.2.

Aの値が0.6より小さい場合には、高屈折率材層3を含めた微細凸部全体の高さH+tが低くなり、2つの反射面からの反射電磁波が、目的とする波長範囲で低反射にできなくなる。また、Aの値が1.4を超えた場合、微細凸部全体の高さH+tが高くなり、屈折率変化が緩やかになるため、ある程度の反射防止性は確保できるものの、耐傷付性が悪化する傾向がある。   When the value of A is smaller than 0.6, the height H + t of the entire fine convex portion including the high refractive index material layer 3 is reduced, and the reflected electromagnetic waves from the two reflecting surfaces are within the target wavelength range. It becomes impossible to make low reflection. Further, when the value of A exceeds 1.4, the height H + t of the entire fine convex portion becomes high and the refractive index change becomes gradual, so that a certain degree of antireflection can be secured, but the scratch resistance is deteriorated. Tend to.

特に、可視光における反射防止を目的とする場合、人間の目に対し感度の高い540〜560nm付近が最低反射率となるように設計すればよい。
電磁波の種類による微細凸部全体の高さH+tの範囲については、上記式で導出される範囲であればよいが、特に好ましくは、紫外線領域で80〜160nm、可視光線領域で160〜350nm、さらに好ましくは160〜240nm、赤外線領域では350nm〜45μm程度である。
In particular, for the purpose of preventing reflection in visible light, it may be designed so that the minimum reflectance is in the vicinity of 540 to 560 nm, which is highly sensitive to human eyes.
The range of the height H + t of the entire fine convex portion depending on the type of electromagnetic wave may be a range derived from the above formula, but is particularly preferably 80 to 160 nm in the ultraviolet region, 160 to 350 nm in the visible light region, Preferably, it is about 160 to 240 nm, and about 350 nm to 45 μm in the infrared region.

なお、このときの平均屈折率とは、微細凸部2の高屈折率材層3を含めた先端から根元までの屈折率を平均化した数値である。平均屈折率の導出方法は、単位ユニットの微細凸部2を高さ方向と垂直な方向で100分割し、その各単位での固体と空間の比率より屈折率を導出し、平均値を算出する。なお、ここで言う平均屈折率とは、入射電磁波の波長に対する屈折率であることは言うまでもない。   The average refractive index at this time is a numerical value obtained by averaging the refractive indexes from the tip to the base including the high refractive index material layer 3 of the fine convex portion 2. The method for deriving the average refractive index is to divide the fine convex part 2 of the unit unit into 100 in the direction perpendicular to the height direction, derive the refractive index from the ratio of solid to space in each unit, and calculate the average value. . In addition, it cannot be overemphasized that the average refractive index said here is a refractive index with respect to the wavelength of incident electromagnetic waves.

本発明において、微細凸部2の先端に付与する高屈折率材層3の厚みtとしては、30nm以下であることが好ましい。すなわち、図4は、ポリメチルメタクリレート(PMMA)から成り、円錘台形(底面径D:100nm、先端面径:30nm、高さH:200nm)をなし、100nmのピッチで六方細密状態に配列された微細凸部2の先端面に形成された酸化チタン層(高屈折率材層3)の厚みと反射率との関係を示すグラフである。
図から明らかなように、高屈折率材層3の厚みが30nmを超えると反射率が増加する一方、高屈折率材層3の厚みが5〜25nmの場合に、0.2%に満たない低い反射率が得られることが判る。
In the present invention, the thickness t of the high refractive index material layer 3 applied to the tip of the fine convex portion 2 is preferably 30 nm or less. That is, FIG. 4 is made of polymethyl methacrylate (PMMA), has a frustum shape (bottom diameter D: 100 nm, tip surface diameter: 30 nm, height H: 200 nm), and is arranged in a hexagonal close-packed state at a pitch of 100 nm. 5 is a graph showing the relationship between the thickness and the reflectance of a titanium oxide layer (high refractive index material layer 3) formed on the tip surface of the fine convex portion 2;
As is apparent from the figure, the reflectance increases when the thickness of the high refractive index material layer 3 exceeds 30 nm, whereas it is less than 0.2% when the thickness of the high refractive index material layer 3 is 5 to 25 nm. It can be seen that a low reflectance can be obtained.

そして、この高屈折率材層3を構成する材料については、高屈折率であればあるほど先端の面積を小さくでき、撥水性に有利な構造となる。
このような材料として好ましくは、微細凸部2を構成する材料との屈折率差が0.2以上となるような材料が好ましい。具体的には、酸化チタン、酸化亜鉛、酸化ニオブ、酸化アルミニウムなどの無機酸化物が良く、先端付近に選択的に付与するためには、特には限定されないが、スパッタリングなどのドライプロセスで行なうと、その調整が容易なものとなる。
And about the material which comprises this high refractive index material layer 3, the area of a front-end | tip can be made small, so that it is high refractive index, and it becomes a structure advantageous to water repellency.
Such a material is preferably a material having a refractive index difference of 0.2 or more with respect to the material constituting the fine convex portion 2. Specifically, inorganic oxides such as titanium oxide, zinc oxide, niobium oxide, and aluminum oxide are good, and there is no particular limitation in order to selectively apply to the vicinity of the tip, but when performed by a dry process such as sputtering. The adjustment becomes easy.

本発明の撥水性反射防止構造を構成する微細凸部2は、上記したように『錐台状』をなすものであり、図1においては、円錐台形のものを示した。しかし、本発明における微細凸部2の形状としては、正確な円錐台(母線が直線)や角錐台(稜が直線、側面が平面)のみならず、底面から先端側に向かって断面積が順次小さくなるような形状である限り、母線が曲線である円錐台状のものや、側面が曲面をなす角錐台状のものあってもよい。
さらに、微細凸部2の底面の中心と上面の中心点を結ぶ直線は、必ずしも底面に対して垂直である必要はなく、傾いていてもよい。
The fine convex portion 2 constituting the water-repellent antireflection structure of the present invention has a “frustum shape” as described above, and FIG. 1 shows a truncated cone shape. However, as the shape of the fine convex portion 2 in the present invention, not only an accurate truncated cone (the bus line is a straight line) and a truncated pyramid (a ridge is a straight line, a side surface is a plane), but the cross-sectional area is sequentially from the bottom to the tip side As long as the shape is small, there may be a truncated cone having a curved generating line, or a truncated pyramid having a curved side surface.
Furthermore, the straight line connecting the center of the bottom surface of the fine protrusion 2 and the center point of the top surface is not necessarily perpendicular to the bottom surface and may be inclined.

このように、本発明において『錐台状』とは、正確な円錐台や角錐台のみならず、釣り鐘形や椎の実形の変形円錐や曲面から成る側面を有する変形角錐の先端部を平坦にしたものや傾斜したものをも含めた種々の形状を意味するものとする。   Thus, in the present invention, “frustum shape” means not only an accurate truncated cone and truncated pyramid, but also a flat end of a deformed pyramid having a side surface formed of a bell-shaped or vertebral deformed cone or curved surface. Various shapes including those formed and inclined are meant.

そして、上記錐体状微細凸部2の稜線形状、すなわち微細突起2の先端面の重心を通る底面に垂直な梯形断面における上底と下底を結ぶ線は、次式(2)で表されるような線形式(但し、1<m≦1.5)で表される形状となっていることが望ましい。これによって、当該撥水性反射防止構造における微細凸部表面から底面に到るまでの屈折率の変化の割合が均一なものとなって、反射防止機能をより向上させることができる。
すなわち、錐体状微細凸部2の中心を通る垂直断面における底辺をX軸上に、稜線を延長したときの交点として現れる頂点までの高さをhとし、この頂点をZ軸上にとると、稜線上のX座標値は、次式(2)に基づいて、図5に示すように表わすことができる。このとき、頂点の位置によって定数項を加えて補正することもできる。
X=(D/2)×{1−(Z/h)}・・・(2)
The ridge line shape of the cone-shaped fine convex portion 2, that is, the line connecting the upper base and the lower base in the trapezoidal cross section perpendicular to the bottom surface passing through the center of gravity of the tip surface of the fine protrusion 2 is expressed by the following equation (2). It is desirable to have a shape represented by a linear form (where 1 <m ≦ 1.5). As a result, the rate of change in the refractive index from the surface of the fine convex portion to the bottom surface in the water-repellent antireflection structure becomes uniform, and the antireflection function can be further improved.
That is, if the bottom of a vertical cross section passing through the center of the cone-shaped fine convex portion 2 is on the X axis, the height to the vertex appearing as an intersection when the ridge line is extended is h, and this vertex is taken on the Z axis. The X coordinate value on the ridge line can be expressed as shown in FIG. 5 based on the following equation (2). At this time, correction can also be made by adding a constant term depending on the position of the vertex.
X = (D / 2) × {1- (Z / h) m } (2)

また、錐体状微細凸部2の底面形状については、略円形、すなわち円形や楕円形、卵形や、多角形である三角形、四角形、五角形、六角形、さらには多角形の各辺が外側に膨らんだような形状の円形と多角形の中間のような形状のものを採用することができる。これらの中で、円形、四角形、六角形については比較的製造しやすくかつ密に配列できるので好ましい。
なお、このような微細凸部2については、底面を形成する形状に外接する円の径Dを底面サイズとする。すなわち、円形底面の場合はその径、楕円や卵形の場合はその長軸径、多角形の場合は、これに外接する円の径がDに相当する。
Further, the bottom shape of the cone-shaped fine convex portion 2 is substantially circular, that is, a circle, an ellipse, an egg, a polygon, a triangle, a quadrangle, a pentagon, a hexagon, and each side of the polygon is outside. It is possible to adopt a shape that is in the middle of a circular shape and a polygonal shape that swells like a circle. Among these, a circle, a rectangle, and a hexagon are preferable because they are relatively easy to manufacture and can be arranged densely.
In addition, about such a fine convex part 2, let the diameter D of the circle | rounding circumscribing the shape which forms a bottom face be bottom face size. That is, the diameter corresponds to D in the case of a circular bottom surface, the major axis diameter in the case of an ellipse or oval, and the diameter of a circle circumscribing the circle in the case of a polygon.

上記錐体状微細凸部2の配列については、微細凸部2の根元側に根元反射面2bを形成する観点から(図3参照)、底面が円形である場合には、細密配列することができる。
これに対して、微細凸部2の底面形状が平面上に隙間なく敷き詰めることができる正三角形、正方形、正六角形などの場合は、微細凸部2同士の間に根元反射面を確保するために、あえて隙間を空けて配列する必要がある。
Regarding the arrangement of the cone-shaped fine convex portions 2, from the viewpoint of forming the root reflection surface 2 b on the root side of the fine convex portions 2 (see FIG. 3), the arrangement may be finely arranged when the bottom surface is circular. it can.
On the other hand, in the case of regular triangles, squares, regular hexagons, etc. in which the bottom surface shape of the fine protrusions 2 can be spread on the plane without gaps, in order to secure a root reflection surface between the fine protrusions 2 It is necessary to arrange with a gap.

さらに、本発明の撥水性反射防止構造においては、図6に示すように、撥水性をより向上させる観点から、先端面に高屈折率材層3を備えた無数の錐体状微細凸部2から成る微細凹凸構造の表面に、水との接触角が90°以上の材料から成る撥水被膜4をさらに設けることが望ましい。このとき、撥水被膜4は少なくとも高屈折率材層3の表面を覆っていればよいが、図示するように高屈折率材層3を含めた微細構造の全体を均一に、単分子膜あるいは1〜20nm程度の厚さで覆っている状態に被覆することが望ましい。
これによって、微細凸部2の間に空気が保持され易くなり、耐傷付き性を重視して、微細凸部2の先端形状を太くした場合でも、水との接触面積が大きくならず、撥水性を確保することができ、撥水性と耐傷付き性とのより高度なレベルでの両立が可能となる。
Furthermore, in the water-repellent antireflection structure of the present invention, as shown in FIG. 6, from the viewpoint of further improving the water repellency, the infinite number of cone-shaped fine convex portions 2 each having the high refractive index material layer 3 on the tip surface. It is desirable to further provide a water repellent coating 4 made of a material having a contact angle with water of 90 ° or more on the surface of the fine concavo-convex structure made of At this time, the water-repellent coating 4 only needs to cover at least the surface of the high refractive index material layer 3, but as shown in the drawing, the entire fine structure including the high refractive index material layer 3 is uniformly formed as a monomolecular film or It is desirable to coat in a state of covering with a thickness of about 1 to 20 nm.
As a result, air is easily held between the fine convex portions 2, and even when the tip shape of the fine convex portion 2 is made thick with an emphasis on scratch resistance, the contact area with water does not increase and the water repellency is increased. It is possible to ensure both water repellency and scratch resistance at a higher level.

このような材料としては、水との接触角が90°以上をなすものであれば特には限定されないが、好ましくは水との接触角が100°以上、さらにが110°以上であることが望ましく、具体的には、シリコーン系化合物やフッ素系化合物などを用いることができる。特に、無機酸化物表面に固定化するためにはシラノール基などの水酸基と反応可能な官能基を持つ撥水剤が好ましい。
このような撥水被膜4の施工方法については、ディップコーティング、グラビアコーティング、スクリーンコーティングなどの一般に公知なコーティング方法または、真空蒸着、スパッタリング、気相重合などの公知なドライプロセスを用いることができる。
Such a material is not particularly limited as long as the contact angle with water is 90 ° or more, but preferably the contact angle with water is 100 ° or more, more preferably 110 ° or more. Specifically, a silicone compound or a fluorine compound can be used. In particular, a water repellent having a functional group capable of reacting with a hydroxyl group such as a silanol group is preferable for immobilization on the inorganic oxide surface.
As a method for applying such a water repellent coating 4, a generally known coating method such as dip coating, gravure coating, or screen coating, or a known dry process such as vacuum deposition, sputtering, or gas phase polymerization can be used.

本発明の上記撥水性反射防止構造を基材、可視光線の場合には、透明基材の片面、望ましくは両面に成形することによって、撥水性反射防止成形体とすることができる。このような成形体を各種ディスプレイ装置のパネルや、ショウウインドウ、展示ケースなどの透明パネルに適用することによって、外光や室内照明の反射を低減し、反射像の映り込みを効果的に防止しながら、雨滴などの付着を防止して、映像や表示、内部展示物の視認性を向上させることができる。
また、自動車を始めとする各種の部品、例えば、ウインドウやルーフのガラス、メーターフロントカバー、ヘッドランプ、リヤフィニッシャー、液晶などの表示装置の最前面に用いるフィルムなど適用することによって、同様の反射防止効果と撥水効果を得ることができる。
When the water-repellent antireflection structure of the present invention is a substrate or visible light, a water-repellent antireflection molded body can be obtained by molding on one side, preferably both sides, of a transparent substrate. By applying such molded products to transparent panels such as panels of various display devices, show windows, and display cases, reflection of external light and room lighting is reduced, and reflection of reflected images is effectively prevented. However, it is possible to prevent the attachment of raindrops and improve the visibility of images, displays, and internal exhibits.
In addition, by applying various parts such as automobiles, such as glass for windows and roofs, meter front covers, headlamps, rear finishers, and films used for the forefront of display devices such as liquid crystals, the same anti-reflection is applied. An effect and a water repellent effect can be obtained.

本発明の上記撥水性反射防止成形体を製造するに際しては、上記のような無数の微細凸部2を反転させた微細凹部を備えた成形型を用意し、この成形型と基材の一方、又は双方を加熱した状態で両者を相対的に押し当てることによって、当該基材の表面に無数の微細凸部2を成形することができる。また、上記成形型と基材の間に、活性エネルギー線硬化性樹脂を介在させた状態で活性エネルギー線を照射し、当該樹脂を硬化させることによって、当該基材の表面に上記のような微細凸部2を成形することができる。
そして、これら微細凸部2の先端面に、例えばドライプロセスによって酸化チタンや酸化亜鉛、酸化アルミニウムなどから成る高屈折率材層3を形成し、必要に応じてさらに撥水被膜4を施すことによって、上記のような撥水性反射防止構造1を備えた撥水性反射防止成形体とすることができる。
In producing the water-repellent antireflection molded article of the present invention, a mold having a fine concave portion obtained by inverting the innumerable fine convex portions 2 as described above is prepared. Or countless fine convex part 2 can be shape | molded on the surface of the said base material by pressing both relatively in the state which heated both. In addition, the active energy ray is irradiated between the mold and the base material in a state where the active energy ray curable resin is interposed, and the resin is cured, so that the surface of the base material is fine as described above. The convex part 2 can be shape | molded.
Then, a high refractive index material layer 3 made of titanium oxide, zinc oxide, aluminum oxide or the like is formed on the tip surfaces of these fine projections 2 by, for example, a dry process, and a water repellent coating 4 is further applied as necessary. The water-repellent antireflection molded body having the water repellent antireflection structure 1 as described above can be obtained.

上記基材の材料としては、代表的には透明性があるものが望ましく、例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリ塩化ビニール、ポリスチレン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ガラス強化ポリエチレンテレフタレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、液晶性ポリマー、フッ素樹脂、ポリアレート、ポリスルホン、ポリエーテルスルホン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコーン樹脂、ジアリルフタレート樹脂、ポリアミドビスマレイミド、ポリビスアミドトリアゾール等の熱硬化性樹脂、及びこれらを2種以上ブレンドした材料を用いることができる。   As the material for the substrate, typically, a transparent material is desirable. For example, polyethylene, polypropylene, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polyvinyl chloride, polystyrene, ABS resin, AS resin, acrylic resin. , Polyamide, polyacetal, polybutylene terephthalate, glass reinforced polyethylene terephthalate, polycarbonate, modified polyphenylene ether, polyphenylene sulfide, polyetheretherketone, liquid crystalline polymer, fluororesin, polyarate, polysulfone, polyethersulfone, polyamideimide, polyetherimide, Thermoplastic resins such as thermoplastic polyimide, phenolic resin, melamine resin, urea resin, epoxy resin, unsaturated polyester resin, Rukido resins, silicone resins, can be used a diallyl phthalate resin, polyamide bismaleimide, poly bisamide thermosetting resin triazole and the like, and two or more of these blended material.

また、例えば紫外線などの照射によって重合を開始し、硬化する活性エネルギー線硬化樹脂としては、例えば、紫外線硬化型アクリルウレタン計樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート樹脂、紫外線硬化型ポリオールアクリレート樹脂、紫外線硬化型エポキシ樹脂などを挙げることができ、必要に応じて活性エネルギー線を照射することによってラジカルを発生する重合開始剤を用いることもでき、より強固に固めるためイソシアネートのような硬化剤を加えることもできる。
なお、ここで用いられる活性エネルギー線としては、代表的には、紫外線やX線、その他電子線、電磁波などが挙げられるが特に限定されるものではない。
Examples of the active energy ray-curable resin that starts and cures by irradiation with, for example, ultraviolet rays include, for example, an ultraviolet curable acrylic urethane meter resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, and an ultraviolet curable resin. Type polyol acrylate resin, UV curable epoxy resin, etc., and if necessary, a polymerization initiator that generates radicals by irradiating active energy rays can be used. Various curing agents can also be added.
In addition, as an active energy ray used here, although an ultraviolet-ray, an X-ray, other electron beams, electromagnetic waves, etc. are mentioned typically, it is not specifically limited.

また、ガラス等の無機系透明材料を用いることも可能である。この場合には、電子ビーム等によってガラス表面を切削することにより上記のような撥水性反射防止構造を形成する方法や、本発明の反射防止構造を備えた型に溶融した無機系透明材料を流し込む方法によって基材表面に当該撥水性反射防止構造を形成することができる。   It is also possible to use an inorganic transparent material such as glass. In this case, a method of forming the water-repellent antireflection structure as described above by cutting the glass surface with an electron beam or the like, or pouring a molten inorganic transparent material into a mold having the antireflection structure of the present invention. The water-repellent antireflection structure can be formed on the substrate surface by a method.

以下に、実施例に基づいて、本発明をさらに具体的に説明する。なお、本発明がこれらの実施例のみに限定されないことは言うまでもない。   Below, based on an Example, this invention is demonstrated further more concretely. Needless to say, the present invention is not limited to these examples.

(実施例1)
市販の電子線描画装置で作成した金型を使用して、この金型を170℃に加熱したのち、ポリカーボネート基材(屈折率:1.59)の両面に10MPaの圧力で1時間押し当てた後、70℃以下まで冷却した。これによって、表1、2に示すように、底面の直径Dが1000nm、先端面の直径が200nm、高さHが750nmの円錘台状をなす微細凸部2が六方細密状態(ピッチ:1000nm)に配列された構造体を作製した。
このようにして得られた錐台状微細凸部2の先端面に、スパッタリングによって酸化チタン(屈折率:2.52)を10nmの厚さに被覆して高屈折率材層3とした。そして、このような微細構造の表面上に、2−パーフルオロオクチルエチルトリメトキシシランの0.1%溶液を塗布し、100℃で乾燥させることによって撥水被膜4(被膜材料自体の水との接触角:116°)を形成して、撥水性反射防止構造1を備えた本例の撥水性反射防止成形体を得た。
(Example 1)
This mold was heated to 170 ° C. using a mold created by a commercially available electron beam drawing apparatus, and then pressed against both sides of a polycarbonate substrate (refractive index: 1.59) at a pressure of 10 MPa for 1 hour. Then, it cooled to 70 degrees C or less. As a result, as shown in Tables 1 and 2, the fine convex portions 2 having a frustum shape having a bottom surface diameter D of 1000 nm, a tip surface diameter of 200 nm, and a height H of 750 nm are in a hexagonal close-packed state (pitch: 1000 nm). ) Were prepared.
The tip surface of the frustum-shaped fine convex part 2 obtained in this way was coated with titanium oxide (refractive index: 2.52) to a thickness of 10 nm by sputtering to obtain a high refractive index material layer 3. Then, a 0.1% solution of 2-perfluorooctylethyltrimethoxysilane is applied on the surface of such a fine structure, and dried at 100 ° C. to thereby form a water repellent coating 4 (with the water of the coating material itself). The water-repellent antireflection molded body of this example provided with the water-repellent antireflection structure 1 was obtained.

そして、得られた成形体に波長2000nmの赤外線を照射し、入射角度0度、測定角度0度における反射率を測定し、反射防止性能を評価した。
接触角については、接触角計(協和界面化学社製:CA−X)を用いて、シリンジによりサンプル表面上に10μLの水を静置した時のの接触角を5回計測し、その平均値をもって接触角とした。
And the infrared rays with a wavelength of 2000 nm were irradiated to the obtained molded object, the reflectance at the incident angle of 0 degree and the measurement angle of 0 degree was measured, and the antireflection performance was evaluated.
For the contact angle, a contact angle meter (manufactured by Kyowa Interface Chemical Co., Ltd .: CA-X) was used to measure the contact angle when 10 μL of water was left on the sample surface with a syringe five times, and the average value thereof. Was the contact angle.

また、当該成形体の表面を、面圧392Paで5000回往復払拭した後における傷の発生具合を目視により観察し、傷の発生が確認できたものを「×」、発生が認められなかったものを「○」として、耐傷付き性を評価した。
これらの評価結果を表3に示す。
In addition, when the surface of the molded body was wiped back and forth 5000 times at a surface pressure of 392 Pa, the occurrence of scratches was observed with the naked eye. Was evaluated as scratch resistance.
These evaluation results are shown in Table 3.

(実施例2)
同様の電子線描画装置で作成した金型を使用し、上記実施例1と同様の操作を繰り返すことによって、ポリメチルメタクリレート基材の両面に、表1、2に示すように、底面の直径Dが300nm、先端面の直径が35nm、高さHが220nmの円錘台形をなす微細凸部2が六方細密状態(ピッチ:300nm)に配列された構造体を作製した。
次いで、得られた錐台状微細凸部2の先端面に、酸化チタンを20nmの厚さに形成したこと以外は、上記実施例1と同様の操作を繰り返して、高屈折率材層4及び撥水被膜4を形成し、本例の撥水性反射防止成形体を得た。
(Example 2)
By using a mold created by the same electron beam drawing apparatus and repeating the same operation as in Example 1, the bottom surface diameter D as shown in Tables 1 and 2 on both surfaces of the polymethyl methacrylate substrate. A structure in which fine convex portions 2 having a truncated cone shape having a diameter of 300 nm, a tip surface diameter of 35 nm, and a height H of 220 nm are arranged in a hexagonal close-packed state (pitch: 300 nm) was produced.
Next, the same operation as in Example 1 was repeated except that titanium oxide was formed to a thickness of 20 nm on the tip surface of the obtained frustum-shaped fine convex portion 2, and the high refractive index material layer 4 and A water-repellent coating 4 was formed to obtain a water-repellent antireflection molded body of this example.

そして、得られた成形体に波長555nmの可視光を照射し、入射角度0度、測定角度0度における反射率を測定し、反射防止性能を評価すると共に、耐傷付き性及び接触角を上記同様の要領により評価した。この結果を表3に併せて示す。   The obtained molded body was irradiated with visible light having a wavelength of 555 nm, the reflectance at an incident angle of 0 ° and a measurement angle of 0 ° was measured, the antireflection performance was evaluated, and the scratch resistance and the contact angle were the same as described above. It was evaluated according to the procedure. The results are also shown in Table 3.

(実施例3〜5、8、9)
上記実施例2と同様の操作を繰り返すことによって、ポリメチルメタクリレート基材の両面に、それぞれ表1、2に示す寸法を備えた円錘台形をなす微細凸部2が六方細密状態に配列された構造体をそれぞれ作製した。
次に、得られた各構造体における錐台状微細凸部2の先端面に、スパッタリングによって酸化チタン又は酸化亜鉛(屈折率:2.0)を表2に示す厚さにそれぞれ被覆して高屈折率材層3としたのち、上記実施例と同様の操作によって撥水被膜4を形成し、各例の撥水性反射防止成形体を得た。
(Examples 3-5, 8, 9)
By repeating the same operation as in Example 2, the fine convex portions 2 having a trapezoidal shape having the dimensions shown in Tables 1 and 2 were arranged on both sides of the polymethylmethacrylate base material in a hexagonal close-packed state. Each structure was produced.
Next, the tip surface of the frustum-shaped fine convex portion 2 in each of the obtained structures is coated with titanium oxide or zinc oxide (refractive index: 2.0) to a thickness shown in Table 2 by sputtering. After the refractive index material layer 3 was formed, the water-repellent coating 4 was formed by the same operation as in the above-described example, and the water-repellent antireflection molded body of each example was obtained.

そして、得られた各成形体について、反射率、耐傷付き性、接触角を実施例2と同様の要領によりそれぞれ評価した。これらの結果を表3に併せて示す。   And about each obtained molded object, the reflectance, scratch resistance, and the contact angle were evaluated by the same procedure as Example 2, respectively. These results are also shown in Table 3.

(実施例6、7)
実施例2と同様の操作を繰り返すことによって、ポリメチルメタクリレート基材の両面に、それぞれ表1、2に示す寸法を備え、先端面外周部分から底面外周部分に至る稜線が、次数m=1.2及び1.5の線形式(1)で表される円錐台状の微細凸部2が六方細密状態に配列された構造体をそれぞれ作製した。
次いで、得られた各構造体の錐台状微細凸部2の先端面に、スパッタリングによって酸化チタン及び酸化ニオブ(屈折率:2.33)をそれぞれ10nmの厚さに被覆して高屈折率材層3としたのち、上記実施例と同様の操作によって撥水被膜4を形成し、各例の撥水性反射防止成形体を得た。
(Examples 6 and 7)
By repeating the same operation as in Example 2, the polymethylmethacrylate base material has the dimensions shown in Tables 1 and 2, respectively, and the ridge line extending from the outer peripheral portion of the tip surface to the outer peripheral portion of the bottom surface is of order m = 1. Structures in which the truncated cone-shaped fine protrusions 2 represented by the line formats (1) of 2 and 1.5 were arranged in a hexagonal close-packed state were produced.
Next, the tip surface of the frustum-shaped fine convex portion 2 of each structure obtained is coated with titanium oxide and niobium oxide (refractive index: 2.33) to a thickness of 10 nm by sputtering, respectively, so that a high refractive index material is obtained. After the layer 3 was formed, a water-repellent coating 4 was formed by the same operation as in the above examples, and water-repellent antireflection molded articles of respective examples were obtained.

そして、得られた各成形体について、反射率、耐傷付き性、接触角を実施例2と同様の要領によりそれぞれ評価した。これらの結果を表3に併せて示す。   And about each obtained molded object, the reflectance, scratch resistance, and the contact angle were evaluated by the same procedure as Example 2, respectively. These results are also shown in Table 3.

(比較例1)
同様の電子線描画装置で作成した金型を使用して、上記実施例2と同様の操作を繰り返し、ポリメチルメタクリレート基材の両面に、表1、2に示すように、底面の直径Dが200nm、高さHが195nmの円錘形をなす微細凸部が六方細密状態(ピッチ:200nm)に配列された構造体を作製した。
次に、得られた構造体の円錐形微細凸部の表面に、酸化ケイ素(屈折率:1.45)を5nmの厚さに均一に付着させ、その表面に実施例と同様の操作によって撥水被膜を形成し、本比較例の撥水性反射防止成形体を得た。
(Comparative Example 1)
Using a mold created with the same electron beam drawing apparatus, the same operation as in Example 2 was repeated, and the bottom surface diameter D was as shown in Tables 1 and 2 on both sides of the polymethyl methacrylate base. A structure in which fine convex portions having a conical shape with a height of 200 nm and a height H of 195 nm are arranged in a hexagonal close-packed state (pitch: 200 nm) was produced.
Next, silicon oxide (refractive index: 1.45) is uniformly deposited to a thickness of 5 nm on the surface of the conical fine convex portion of the obtained structure, and the surface is repelled by the same operation as in the example. A water film was formed to obtain a water-repellent antireflection molded article of this comparative example.

そして、得られた成形体について、反射率、耐傷付き性、接触角を実施例2と同様の要領によりそれぞれ評価した。これらの結果を表3に併せて示す。   And about the obtained molded object, the reflectance, scratch resistance, and the contact angle were evaluated by the same procedure as Example 2, respectively. These results are also shown in Table 3.

Figure 2009294341
Figure 2009294341

Figure 2009294341
Figure 2009294341

Figure 2009294341
Figure 2009294341

この結果、本発明に係わる実施例1〜9においては、いずれも入射電磁波に対する反射率が低いことが確認されると共に、水との接触角が140°以上であって、水の付着が起こり難く、耐傷付き性にも優れることが確認された。
これに対し、比較例1の撥水性反射防止成形体においては、微細凸部が円錐形をなし、その先端部に入射電磁波の反射面を有していないため、反射防止機能に劣ると共に、耐傷付き性にも劣る結果となった。
As a result, in Examples 1 to 9 according to the present invention, it is confirmed that the reflectivity with respect to the incident electromagnetic wave is low, and the contact angle with water is 140 ° or more, and water adhesion hardly occurs. It was confirmed that the film was excellent in scratch resistance.
On the other hand, in the water-repellent antireflection molded body of Comparative Example 1, the fine convex portion has a conical shape and does not have a reflection surface for incident electromagnetic waves at the tip portion, so that the antireflection function is inferior and scratch resistance The result was also inferior in adherence.

本発明の撥水性反射防止構造を示す斜視図である。It is a perspective view which shows the water-repellent antireflection structure of this invention. (a) 撥水性反射防止構造を構成する微細凸部が円錐台状をなす場合の採寸位置を示す説明図である。(b) 撥水性反射防止構造を構成する微細凸部が角錐台状をなす場合の採寸位置を示す説明図である。(A) It is explanatory drawing which shows the measurement position in case the fine convex part which comprises a water-repellent antireflection structure makes a truncated cone shape. (B) It is explanatory drawing which shows the measurement position in case the fine convex part which comprises a water-repellent antireflection structure makes a pyramid shape. 本発明における先端反射面占有率及び根元反射面占有率について説明する撥水性反射防止構造の平面図である。It is a top view of the water-repellent antireflection structure for explaining the tip reflecting surface occupancy and the root reflecting surface occupancy in the present invention. 本発明の撥水性反射防止構造における高屈折率材層の厚さと反射率の関係を示すグラフである。It is a graph which shows the relationship between the thickness of a high refractive index material layer and the reflectance in the water-repellent antireflection structure of the present invention. 本発明の撥水性反射防止構造における微細凸部の稜線形状をm次の線形式で表した説明図である。It is explanatory drawing which represented the ridgeline shape of the fine convex part in the water-repellent antireflection structure of this invention in the m-th line form. (a)及び(b)は本発明の好適形態として、錐体状微細凸部及び高屈折率材層の表面に撥水被膜を施した形態例を示す説明図である。(A) And (b) is explanatory drawing which shows the form example which gave the water-repellent film to the surface of a cone-shaped fine convex part and the high refractive index material layer as a suitable form of this invention.

符号の説明Explanation of symbols

1 撥水性反射防止構造
2 微細凸部
3 高屈折率材層
4 撥水被膜
Rt 先端反射面占有率
Rb 根元反射面占有率
DESCRIPTION OF SYMBOLS 1 Water-repellent antireflection structure 2 Fine convex part 3 High refractive index material layer 4 Water-repellent coating Rt Tip reflective surface occupation rate Rb Root reflective surface occupation rate

Claims (12)

略円形又は多角形底面を備え、該底面形状に外接する円の径がDである円錐台状又は角錐台状をなす無数の微細凸部が所定のピッチPで配列されて成ると共に、上記錐台状微細凸部の先端面に当該微細凸部を構成する材料よりも屈折率が高い材料から成る高屈折率材層を備え、上記錐台状微細凸部先端の高屈折率材層表面と微細凸部間の根元部に反射面を有し、上記底面の外接円径D及びピッチPが入射する電磁波の波長λよりも小さいことを特徴とする撥水性反射防止構造。   An innumerable fine convex portion having a substantially circular or polygonal bottom surface and having a circular truncated cone shape or a truncated pyramid shape whose diameter of a circle circumscribing the bottom surface shape is D is arranged at a predetermined pitch P. A high refractive index material layer made of a material having a higher refractive index than the material constituting the fine convex portion is provided on the tip surface of the trapezoidal fine convex portion, A water-repellent antireflection structure having a reflective surface at a base portion between fine convex portions, wherein a circumscribed circle diameter D and a pitch P of the bottom surface are smaller than a wavelength λ of an incident electromagnetic wave. 上記高屈折率材層表面の先端反射面占有率Rtと根元反射面占有率Rbの比Rt/Rbが0.1〜2であると共に、上記微細凸部の高さHと高屈折率材層の厚さtとを合計して得られる反射面間距離H+tが次式(1)により算出される値であることを特徴とする請求項1に記載の撥水性反射防止構造。
H+t=A(λ/2n) ・・・(1)
(式中のnは高屈折率材層を含む微細凸部形成部分の平均屈折率、Aは0.6〜1.4の範囲の任意の値を示す)
The ratio Rt / Rb of the tip reflecting surface occupancy ratio Rt and the base reflecting surface occupancy ratio Rb on the surface of the high refractive index material layer is 0.1 to 2, and the height H of the fine convex portion and the high refractive index material layer 2. The water-repellent antireflection structure according to claim 1, wherein a distance H + t between the reflecting surfaces obtained by summing the thicknesses t is a value calculated by the following equation (1):
H + t = A (λ / 2n) (1)
(In the formula, n is the average refractive index of the fine convex portion forming portion including the high refractive index material layer, and A is an arbitrary value in the range of 0.6 to 1.4)
上記比Rt/Rbが0.2〜1.4であることを特徴とする請求項2に記載の撥水性反射防止構造。   The water repellent antireflection structure according to claim 2, wherein the ratio Rt / Rb is 0.2 to 1.4. 上記高屈折率材層表面の先端反射面占有率Rtが0.015〜0.1であることを特徴とする請求項1〜3のいずれか1つの項に記載の撥水性反射防止構造。   The water repellent antireflection structure according to any one of claims 1 to 3, wherein a front-end reflecting surface occupation ratio Rt of the surface of the high refractive index material layer is 0.015 to 0.1. 上記高屈折率材層の厚さtが30nm以下であることを特徴とする請求項1〜4のいずれか1つの項に記載の撥水性反射防止構造。   The water repellent antireflection structure according to any one of claims 1 to 4, wherein a thickness t of the high refractive index material layer is 30 nm or less. 上記錐台状微細凸部の稜線形状が次式(2)で表わされる曲線であって、次数mが1を超え、1.5以下であることを特徴とする請求項1〜5のいずれか1つの項に記載の撥水性反射防止構造。
X=(D/2)×{1−(Z/h)}・・・(2)
(式中のhは錐台状微細凸部の稜線の延長線の交点として現れる頂点までの高さを示す)
The ridgeline shape of the frustum-shaped fine convex portion is a curve represented by the following formula (2), and the order m is more than 1 and 1.5 or less. The water-repellent antireflection structure according to one item.
X = (D / 2) × {1- (Z / h) m } (2)
(H in the formula indicates the height to the apex that appears as the intersection of the extended lines of the frustum-shaped fine convex portions)
上記錐台状微細凸部の底面の外接円径D及びピッチPが380nm以下であり、当該微細凸部の高さHが160〜350nmであることを特徴とする請求項1〜6のいずれか1つの項に記載の撥水性反射防止構造。   The circumscribed circle diameter D and the pitch P of the bottom surface of the frustum-shaped fine convex portion are 380 nm or less, and the height H of the fine convex portion is 160 to 350 nm. The water-repellent antireflection structure according to one item. 上記錐台状微細凸部の底面の外接円径D及びピッチPが250nm以下であることを特徴とする請求項7に記載の撥水性反射防止構造。   8. The water-repellent antireflection structure according to claim 7, wherein a circumscribed circle diameter D and a pitch P of the bottom surface of the frustum-shaped fine convex portion are 250 nm or less. 錐台状微細凸部先端面の高屈折率材層の表面に、水との接触角が90°以上の材料から成る撥水被膜を備えていることを特徴とする請求項1〜8のいずれか1つの項に記載の撥水性反射防止構造。   9. The water repellent film made of a material having a contact angle with water of 90 ° or more is provided on the surface of the high refractive index material layer on the tip surface of the frustum-shaped fine convex portion. The water-repellent antireflection structure according to any one item. 請求項1〜9のいずれか1つの項に記載の撥水性反射防止構造を基材の少なくとも一方の面に備えていることを特徴とする撥水性反射防止成形体。   A water repellent antireflective molded article comprising the water repellent antireflective structure according to any one of claims 1 to 9 on at least one surface of a substrate. 上記基材が透明であることを特徴とする請求項10に記載の撥水性反射防止成形体。   The water-repellent antireflection molded article according to claim 10, wherein the substrate is transparent. 請求項10又は11に記載の撥水性反射防止成形体を用いたことを特徴とする自動車部品。   An automobile part using the water-repellent antireflection molded article according to claim 10 or 11.
JP2008146583A 2008-06-04 2008-06-04 Water-repellent antireflection structure and water-repellent antireflection molding Pending JP2009294341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146583A JP2009294341A (en) 2008-06-04 2008-06-04 Water-repellent antireflection structure and water-repellent antireflection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146583A JP2009294341A (en) 2008-06-04 2008-06-04 Water-repellent antireflection structure and water-repellent antireflection molding

Publications (1)

Publication Number Publication Date
JP2009294341A true JP2009294341A (en) 2009-12-17

Family

ID=41542594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146583A Pending JP2009294341A (en) 2008-06-04 2008-06-04 Water-repellent antireflection structure and water-repellent antireflection molding

Country Status (1)

Country Link
JP (1) JP2009294341A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221273A (en) * 2010-04-09 2011-11-04 Seiko Epson Corp Antireflection member, method for manufacturing the antireflection member, electrooptic device and electric device
JP2011247918A (en) * 2010-05-24 2011-12-08 Kri Inc Low refractive index film and antireflection film
JP2013221992A (en) * 2012-04-13 2013-10-28 Mitsubishi Rayon Co Ltd Article and method for manufacturing the same
JP2014113721A (en) * 2012-12-07 2014-06-26 Denki Kagaku Kogyo Kk Laminate sheet having water repellency and film for laminate
JP2018186034A (en) * 2017-04-27 2018-11-22 トヨタ車体株式会社 Vehicular component and manufacturing method therefor
JP2019204051A (en) * 2018-05-25 2019-11-28 国立研究開発法人産業技術総合研究所 Optical connection component, and method for manufacturing optical connection component
JP2020038311A (en) * 2018-09-05 2020-03-12 ミツミ電機株式会社 Water-repellent antireflection structure
JP2021076414A (en) * 2019-11-06 2021-05-20 豊田合成株式会社 Sensor unit for vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256340A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Reflection prevention fine structure and reflection prevention structure
WO2008001662A1 (en) * 2006-06-30 2008-01-03 Panasonic Corporation Optical member and optical device comprising the same
JP2008122435A (en) * 2006-11-08 2008-05-29 Nissan Motor Co Ltd Water repellent reflection preventive structure and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256340A (en) * 2006-03-20 2007-10-04 Nissan Motor Co Ltd Reflection prevention fine structure and reflection prevention structure
WO2008001662A1 (en) * 2006-06-30 2008-01-03 Panasonic Corporation Optical member and optical device comprising the same
JP2008122435A (en) * 2006-11-08 2008-05-29 Nissan Motor Co Ltd Water repellent reflection preventive structure and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221273A (en) * 2010-04-09 2011-11-04 Seiko Epson Corp Antireflection member, method for manufacturing the antireflection member, electrooptic device and electric device
JP2011247918A (en) * 2010-05-24 2011-12-08 Kri Inc Low refractive index film and antireflection film
JP2013221992A (en) * 2012-04-13 2013-10-28 Mitsubishi Rayon Co Ltd Article and method for manufacturing the same
JP2014113721A (en) * 2012-12-07 2014-06-26 Denki Kagaku Kogyo Kk Laminate sheet having water repellency and film for laminate
JP2018186034A (en) * 2017-04-27 2018-11-22 トヨタ車体株式会社 Vehicular component and manufacturing method therefor
JP2019204051A (en) * 2018-05-25 2019-11-28 国立研究開発法人産業技術総合研究所 Optical connection component, and method for manufacturing optical connection component
JP7258327B2 (en) 2018-05-25 2023-04-17 国立研究開発法人産業技術総合研究所 Optical connection part and method for manufacturing optical connection part
JP2020038311A (en) * 2018-09-05 2020-03-12 ミツミ電機株式会社 Water-repellent antireflection structure
JP2021076414A (en) * 2019-11-06 2021-05-20 豊田合成株式会社 Sensor unit for vehicles

Similar Documents

Publication Publication Date Title
JP5170495B2 (en) Antireflection microstructure and antireflection structure
JP2009294341A (en) Water-repellent antireflection structure and water-repellent antireflection molding
JP2009075539A (en) Anti-reflective structure and anti-reflective molded body
JP2007264594A (en) Anti-reflection fine structure, anti-reflection molded body, method of producing the same
JP6228068B2 (en) Optical member, method for manufacturing the same, window material and fittings
JP2008122435A (en) Water repellent reflection preventive structure and its manufacturing method
JP2009042714A (en) Water repellent anti-reflective structure and method of manufacturing the same
JP2008158293A (en) Hydrophilic antireflection structure
JP2009198627A (en) Anti-reflective structure and anti-reflective molded body
JP2007322763A (en) Anti-reflection structure, anti-reflection structural body and its manufacturing method
JP2008090212A (en) Antireflection optical structure, antireflection optical structure body and its manufacturing method
JP2008203473A (en) Antireflection structure and structure
JP2007187868A (en) Wetting control antireflection optical structure and automotive window glass
JP2016024294A (en) Optical member
JP2009198626A (en) Anti-reflective structure and anti-reflective molded body
JP2009028994A (en) Water-repellent structure and water-repellent molding
JP2011169961A (en) Hydrophilic antireflection structure and method of manufacturing the same
JP2007322767A (en) Anti-reflection structure, anti-reflection structural body and its manufacturing method
JP6347132B2 (en) Linear fine concavo-convex structure and manufacturing method thereof
JP6349830B2 (en) Method for manufacturing antireflection article and method for manufacturing mold for manufacturing antireflection article
US20170276838A1 (en) Antireflection member
WO2018221593A1 (en) Antifogging member
JP2009198628A (en) Anti-reflective structure and anti-reflective molded body
JP6379641B2 (en) Hydrophilic member and method for producing the same
JP5699359B2 (en) Transmission anisotropic film, method for manufacturing transmission anisotropic film, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130606