JP2009198626A - Anti-reflective structure and anti-reflective molded body - Google Patents

Anti-reflective structure and anti-reflective molded body Download PDF

Info

Publication number
JP2009198626A
JP2009198626A JP2008038224A JP2008038224A JP2009198626A JP 2009198626 A JP2009198626 A JP 2009198626A JP 2008038224 A JP2008038224 A JP 2008038224A JP 2008038224 A JP2008038224 A JP 2008038224A JP 2009198626 A JP2009198626 A JP 2009198626A
Authority
JP
Japan
Prior art keywords
shape
opening
antireflection
frustum
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008038224A
Other languages
Japanese (ja)
Inventor
Yuji Noguchi
雄司 野口
Takayuki Fukui
孝之 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008038224A priority Critical patent/JP2009198626A/en
Publication of JP2009198626A publication Critical patent/JP2009198626A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anti-reflective structure in which a micro-rugged shape is optimized, thus the anti-reflective performance of electromagnetic waves is improved, and further, the destruction of the micro-shape can be prevented, and which is provided with an anti-reflective function and flaw resistance, and to provide an anti-reflective molded body which is provided with such microstructure, and can cope with a wide wavelength range, e.g., in automotive meter front covers, wind glasses and IR camera lenses. <P>SOLUTION: In the anti-reflective structure, frustum-shaped micro-recessed parts 2 having an opening size D smaller than the wavelength λ of the electromagnetic wave to enter are arranged at a pitch P shorter than the wavelength λ, and, at the bottom part and the circumferential part of the opening of each frustum-shaped micro-recessed part 2, a planar bottom reflective face 2b and a planar opening edge reflective face 2f are respectively formed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電磁波の反射防止機能と共に、耐傷付き性にも優れた反射防止構造と、このような構造を備え、光や電波の無反射パネルとして、例えば、自動車を始めとする車両や船舶、航空機などのボディや各種メーター類、ディスプレイ装置などに好適に使用することができる成形体に関するものである。   The present invention includes an antireflection structure excellent in scratch resistance as well as an antireflection function of electromagnetic waves, and such a structure, and as a non-reflective panel for light and radio waves, for example, vehicles and ships including automobiles, The present invention relates to a molded body that can be suitably used for bodies such as aircraft, various meters, display devices, and the like.

航空機、自動車、船舶などの分野においては、レーダーに映らないステルス技術、車間計測などのIR計測カメラ、メーターカバー、液晶表示装置など、様々な場所で電磁波の反射防止が必要である。
例えば、自動車の運転席には、スピードメータや燃料計などの各種計器類をまとめて収納したディスプレイ部の前面にメーターフロントカバーが嵌め込まれている。
しかし、このメーターフロントカバーに、フロントウインドウやサイドウインドウを通して車外の景色が映り込むことによって、ディスプレイ部の各種表示が見づらくなることがある。そのため、その上方にメーターフードを配置して、メーターディスプレイへの外光の入射を遮るようにしている。
In the fields of aircraft, automobiles, ships, etc., it is necessary to prevent reflection of electromagnetic waves in various places such as stealth technology that does not appear in radar, IR measurement cameras such as inter-vehicle measurement, meter covers, and liquid crystal display devices.
For example, a meter front cover is fitted on the front face of a display unit that houses various instruments such as a speedometer and a fuel gauge in a driver's seat of an automobile.
However, when a scene outside the vehicle is reflected on the meter front cover through the front window or the side window, various displays on the display unit may be difficult to see. For this reason, a meter hood is arranged above it so as to block external light from entering the meter display.

このような光の反射を防止するための構造としては、屈折率の異なる複数の薄膜から成る多層反射防止膜が知られているが、このような多層反射防止膜よりもさらに反射率を低下できるものとして、微細構造を用いた反射防止構造の提案がなされている(例えば、特許文献1参照)。
特開2002−267815号公報
As a structure for preventing such reflection of light, a multilayer antireflection film composed of a plurality of thin films having different refractive indexes is known. However, the reflectance can be further reduced as compared with such a multilayer antireflection film. As an example, an antireflection structure using a fine structure has been proposed (for example, see Patent Document 1).
JP 2002-267815 A

上記特許文献1には、透明性成形品の表面に、透明性素材から成る無数の微細凹凸を光の波長以下のピッチで形成することによって、光の屈折率が厚み方向に変化するようにした反射防止構造が記載されている。
すなわち、例えば波形あるいは三角形をなす無数の微細凹凸が表面に形成されていることによって、凹凸の最表面では透明性素材の存在割合が限りなく0%に近いものとなって、実質的に空気の屈折率に等しくなる。一方、凹凸の底部では逆に空気の存在割合が限りなく0%に近いものとなって透明性素材の屈折率と等しくなり、中間部ではその断面における透明性素材の占める断面積に応じた屈折率となる。その結果、光の屈折率が当該反射防止構造の厚み方向に、空気の屈折率から透明性素材の屈折率の間で連続的に変化するようになる。したがって、屈折率の異なる複数の薄膜から成る多層反射防止膜(この場合の屈折率は段階的に変化する)と同様の原理によって、当該反射防止膜よりも優れた反射防止性能が発揮されることになる。
In Patent Document 1, the refractive index of light is changed in the thickness direction by forming innumerable fine irregularities made of a transparent material on the surface of the transparent molded article at a pitch equal to or less than the wavelength of light. An antireflection structure is described.
That is, for example, by forming innumerable fine irregularities having a waveform or a triangle on the surface, the proportion of the transparent material existing on the outermost surface of the irregularities is almost as close to 0%, and substantially air It becomes equal to the refractive index. On the other hand, at the bottom of the uneven surface, the air content is almost as close to 0% as the refractive index of the transparent material, and at the intermediate part, the refraction according to the cross-sectional area occupied by the transparent material in the cross section. Become a rate. As a result, the refractive index of light continuously changes between the refractive index of air and the refractive index of the transparent material in the thickness direction of the antireflection structure. Therefore, antireflection performance superior to that of the antireflection film can be achieved based on the same principle as that of a multilayer antireflection film composed of a plurality of thin films having different refractive indexes (in this case, the refractive index changes stepwise). become.

しかしながら、上記特許文献1に記載の構造においては、光の反射率の低下が可能であるものの、反射防止効果向上のために微細凹凸の先端部を鋭角状にした場合には、構造体の表面に触れたり、表面を拭いたりすることによって、先端部が破損し易く反射防止性能が損なわれるという問題点があった。   However, in the structure described in Patent Document 1, although the reflectance of light can be reduced, the surface of the structure is formed when the tip of the fine unevenness is made acute to improve the antireflection effect. When touching or wiping the surface, there is a problem that the tip portion is easily damaged and the antireflection performance is impaired.

本発明は、入射電磁波の波長以下のピッチ及びサイズに形成した微細凹凸構造から成る従来の反射防止構造における上記課題を解決すべくなされたものである。
本発明の目的とするところは、微細凹凸形状を最適化し、もって電磁波の反射防止性能を向上すると共に、微細形状の破壊を防止することができ、反射防止機能と耐傷付き性を兼ね備えた反射防止構造を提供することにある。
The present invention has been made to solve the above-described problems in a conventional antireflection structure comprising a fine concavo-convex structure formed at a pitch and size equal to or smaller than the wavelength of an incident electromagnetic wave.
The object of the present invention is to optimize the fine uneven shape, thereby improving the antireflection performance of electromagnetic waves, and preventing the destruction of the fine shape, and has the antireflection function and scratch resistance. To provide a structure.

本発明者らは、反射防止性微細構造を基材表面に穿った穴状をなす無数の微細凹部から成るものとし、当該微細凹部の形状を錐台状として、凹部底面と開口部周縁とに2つの反射面を形成することによって、上記目的が達成できることを見出し、本発明を完成するに到った。   The inventors of the present invention shall be composed of innumerable fine recesses having a hole shape with an antireflective microstructure formed on the surface of the base material, and the shape of the fine recesses is a frustum shape, with the bottom surface of the recess and the periphery of the opening. It has been found that the above object can be achieved by forming two reflecting surfaces, and the present invention has been completed.

本発明は上記知見に基づくものであって、本発明の反射防止構造は、略円形又は多角形をなし、入射する電磁波の波長よりも小さいサイズの開口部を備えた円錐台状又は角錐台状をなす無数の微細凹部が入射する電磁波の波長よりも短いピッチで配列されており、これら錐台状微細凹部の底部と開口周縁部とに平面状をなす反射面をそれぞれ有していることを特徴とする。   The present invention is based on the above knowledge, and the antireflection structure of the present invention is substantially circular or polygonal, and has a truncated cone shape or a truncated pyramid shape having an opening having a size smaller than the wavelength of the incident electromagnetic wave. The innumerable fine recesses forming the pitch are arranged at a pitch shorter than the wavelength of the incident electromagnetic wave, and each of the frustum-shaped fine recesses has a planar reflecting surface at the bottom and the peripheral edge of the opening. Features.

本発明によれば、反射防止構造を無数の微細凹部から成るものとし、凹部形状を錐台状(円錐台状又は角錐台状)とし、その開口形状を直径Dの円、又はこの直径Dの円に内接する多角形(但し、D<λ:入射電磁波の波長)として、ピッチP(但し、P<λ)で配列し、当該錐台状微細凹部の底部と開口周縁部に反射面をそれぞれ形成することとしたため、反射防止機能と耐傷付き性とを両立させることができる。   According to the present invention, the antireflection structure is composed of innumerable fine recesses, the recess shape is a frustum shape (conical frustum shape or truncated pyramid shape), and the opening shape is a circle having a diameter D or a diameter D. Polygons inscribed in a circle (where D <λ: wavelength of incident electromagnetic wave) are arranged at a pitch P (where P <λ), and reflecting surfaces are provided at the bottom of the frustum-shaped fine recess and the peripheral edge of the opening, respectively. Because it is formed, it is possible to achieve both an antireflection function and scratch resistance.

以下、本発明の反射防止構造や、該微細構造を適用した反射防止成形体について、その製造方法や実施形態などと共に、さらに詳細に説明する。   Hereinafter, the antireflection structure of the present invention and the antireflection molded body to which the fine structure is applied will be described in more detail along with the production method and embodiments thereof.

本発明の反射防止構造は、上記したように、錐台状をなす無数の微細凹部から構成され、その底部と開口周縁部とに反射面をそれぞれ備えると共に、当該微細凹部の開口部サイズが入射する電磁波の波長よりも小さく、この波長よりも短いピッチで配列されているものである。   As described above, the antireflection structure of the present invention is composed of innumerable fine recesses having a frustum shape, and includes a reflection surface at the bottom and the peripheral edge of the opening, and the size of the opening of the fine recess is incident. Are arranged at a pitch smaller than the wavelength of the electromagnetic wave and shorter than this wavelength.

図1は、本発明の反射防止構造の実施形態の一例を示すものであって、本発明の反射防止構造1は、底部が平坦な円錐台又は角錐台形状(図においては、その典型例として四角錘台を示す)をなす無数の微細凹部2が入射する電磁波の波長λよりも短いピッチPで配列された構造を備えたものである。なお、このとき、微細凹部の開口サイズ、すなわち、円錐台の場合には開口部径、角錐台の場合には開口部を形成する多角形に外接する円の径D(図の例では、対角線の長さに一致)についても、後述するように、入射電磁波の波長λよりも小さいことになる。   FIG. 1 shows an example of an embodiment of an antireflection structure according to the present invention. The antireflection structure 1 according to the present invention has a truncated cone shape or a truncated pyramid shape with a flat bottom (as a typical example in the figure). An infinite number of fine recesses 2 forming a square frustum are provided with a structure arranged at a pitch P shorter than the wavelength λ of the incident electromagnetic wave. At this time, the opening size of the fine recesses, that is, the diameter of the opening in the case of a truncated cone, the diameter D of a circle circumscribing the polygon forming the opening in the case of a truncated pyramid (in the example of the figure, a diagonal line) Also coincides with the length of the incident electromagnetic wave, as will be described later.

したがって、当該反射防止構造の厚み方向の各段面における構造素材と空気の存在比率によって定まる各断面における電磁波の屈折率が、厚み方向に向けて空気の屈折率から素材の屈折率まで、連続的に変化するようになる。これによって、微細凹凸から成る構造の場合と同様に、電磁波の反射防止特性が発揮される。一方、各微細凹部2の底部が平坦化されているので、当該微細凹部2の底面から反射した電磁波は、開口部周縁の平面部で反射した電磁波と相殺され、さらなる低反射化が可能となる。
また、微細凹部2は穴状をなし、しかも開口周縁部に反射面を有し、隣接する凹部の開口部間の壁が繋がっていることから、他の部材と擦れ合ったり、ぶつかったりしても損傷を受けにくく、反射防止性能に対する影響を最小限のものとして、電磁波の反射防止機能と耐傷付き性とを両立させることができる。
Therefore, the refractive index of the electromagnetic wave in each cross section determined by the abundance ratio of the structural material and air on each step surface in the thickness direction of the antireflection structure is continuous from the refractive index of air to the refractive index of the material in the thickness direction. To change. As a result, the antireflection property of electromagnetic waves is exhibited as in the case of the structure composed of fine irregularities. On the other hand, since the bottom of each fine recess 2 is flattened, the electromagnetic wave reflected from the bottom surface of the fine recess 2 is offset with the electromagnetic wave reflected by the flat portion at the periphery of the opening, thereby enabling further reduction in reflection. .
In addition, the fine recess 2 has a hole shape, and has a reflection surface at the periphery of the opening, and the wall between the openings of the adjacent recesses is connected, so it rubs against or collides with other members. Therefore, it is possible to achieve both the antireflection function of electromagnetic waves and the scratch resistance by minimizing the influence on the antireflection performance.

上記微細凹部2の大きさについては、その形状が図1(b)に示すような角錐台状の場合には、当該微細凹部2の開口部を形成する多角形に外接する円の径をDとするとき、D<λ(入射電磁波の波長)の範囲内とすることが必要となる。特に、可視光線の反射を防止するためにはD≦380nm、さらに好ましくはD≦250nmとすることが望ましい。
この他、紫外線についてはD≦150nm、近赤外線についてはD≦780nmであることが好ましい。
With respect to the size of the fine recess 2, when the shape is a truncated pyramid shape as shown in FIG. 1B, the diameter of the circle circumscribing the polygon forming the opening of the fine recess 2 is set to D. In this case, it is necessary to set D <λ (wavelength of incident electromagnetic wave). In particular, in order to prevent reflection of visible light, it is desirable that D ≦ 380 nm, more preferably D ≦ 250 nm.
In addition, it is preferable that D ≦ 150 nm for ultraviolet rays and D ≦ 780 nm for near infrared rays.

すなわち、開口部寸法Dが入射電磁波の波長λ以上となると、隣接する微細凹部2間のピッチPを当該波長λよりも短くすることができず、電磁波が回折し、反射防止機能が低下することになる。特に、D≦250nmとすることによって、光の入射角度が変化しても回折光による着色の影響が現れないようになる。
なお、微細凹部2の形状が円錐台状の場合(円形開口部)には、開口部の径をDをもって開口サイズとする。
That is, when the opening dimension D is equal to or greater than the wavelength λ of the incident electromagnetic wave, the pitch P between the adjacent fine recesses 2 cannot be made shorter than the wavelength λ, and the electromagnetic wave is diffracted and the antireflection function is deteriorated. become. In particular, by setting D ≦ 250 nm, the influence of coloring due to diffracted light does not appear even if the incident angle of light changes.
In addition, when the shape of the fine recessed part 2 is a truncated cone shape (circular opening part), let the diameter of an opening part be opening size with D. FIG.

本発明において、微細凹部2の底面と、開口周縁の平面部からの反射電磁波が相殺されるためには、底部と開口周縁における平面部の反射面占有率Rb、Rfと、微細凹部2の深さSが重要となる。
底面反射面占有率Rbと開口縁反射面占有率Rfとは、当該反射防止構造1の繰り返しの1単位を抜き出したときの底面と、開口部周縁平面の反射面の占有率である。
In the present invention, in order to cancel the reflected electromagnetic waves from the bottom surface of the fine recess 2 and the flat portion at the periphery of the opening, the reflection surface occupancy ratios Rb and Rf of the flat portion at the bottom and the periphery of the opening, and the depth of the fine recess 2 are obtained. S is important.
The bottom surface reflecting surface occupancy ratio Rb and the opening edge reflecting surface occupancy ratio Rf are the occupancy ratios of the bottom surface and the reflecting surface of the opening peripheral plane when the repetitive unit of the antireflection structure 1 is extracted.

具体的には、図2に示すように、反射防止構造1を上方から見たときに、まず、微細凹部2の底部の平坦面を底部反射面2b、微細凹部2の開口部周縁の平面部を開口縁反射面2fとする。そして、単位面積(図においては、破線で囲まれた正方形をなす1単位の面積)に対する底部反射面2bの面積率を底部反射面占有率Rb、同じく正方形の単位面積に対する開口縁反射面2fの面積率を開口縁反射面占有率Rfと定義する。
本発明の反射防止構造1においては、底部と開口周縁部の反射面占有率の比、Rb/Rfが0.3〜2.0のときに電磁波の反射防止性が向上する。なお、このRb/Rf比については、0.8〜1.2の範囲であることがより好ましい。
Specifically, as shown in FIG. 2, when the antireflection structure 1 is viewed from above, first, the flat surface of the bottom of the fine recess 2 is the bottom reflection surface 2 b, and the flat portion at the periphery of the opening of the fine recess 2. Is the opening edge reflecting surface 2f. Then, the area ratio of the bottom reflection surface 2b with respect to the unit area (in the figure, the area of one unit forming a square surrounded by a broken line) is the bottom reflection surface occupancy ratio Rb, and the aperture edge reflection surface 2f with respect to the square unit area. The area ratio is defined as the aperture edge reflecting surface occupation ratio Rf.
In the antireflection structure 1 of the present invention, the antireflection property of electromagnetic waves is improved when the ratio of the reflection surface occupancy between the bottom and the peripheral edge of the opening, Rb / Rf is 0.3 to 2.0. The Rb / Rf ratio is more preferably in the range of 0.8 to 1.2.

なお、微細凹部2の底部反射面2b及び開口縁反射面2fは、上記の占有率比を満たす範囲でさえあれば、特に限定はなく、平面であることを基本とするが、多少の凹凸は許容される。すなわち、高さ20nm以内の凹みや膨らみ、凹凸などは反射率に大きく影響するものではない。
また、底部反射面2bと開口縁反射面2fは実質的に平行であることが望ましいが、この場合の平行度としては、両面のなす角度が5°以内であれば反射率に大きく影響することはない。
The bottom reflection surface 2b and the opening edge reflection surface 2f of the fine recess 2 are not particularly limited as long as they are in a range that satisfies the above occupancy ratio, but are basically flat, Permissible. That is, dents, bulges, and irregularities within a height of 20 nm do not greatly affect the reflectance.
In addition, it is desirable that the bottom reflection surface 2b and the opening edge reflection surface 2f are substantially parallel. However, in this case, the parallelism greatly affects the reflectivity if the angle between both surfaces is within 5 °. There is no.

次に、微細凹部2の深さSについては、入射電磁波を相殺するために開口周縁部からの反射電磁波と底面からの反射電磁波の位相をπ/2ずらしたときに最も効果が大きくなる。
具体的には、深さS=(入射波長λ/(2×平均屈折率n))×Aの式(1)で表され、Aの値は、0.6〜1.4の範囲であることが好ましく、更に好ましくは、0.8〜1.2の範囲である。なお、ここで言う平均屈折率とは、入射電磁波に対する屈折率を意味する。
Next, the depth S of the fine recess 2 is most effective when the phase of the reflected electromagnetic wave from the peripheral edge of the opening and the reflected electromagnetic wave from the bottom surface is shifted by π / 2 in order to cancel the incident electromagnetic wave.
Specifically, the depth S = (incident wavelength λ / (2 × average refractive index n)) × A is expressed by the equation (1), and the value of A is in the range of 0.6 to 1.4. Preferably, it is in the range of 0.8 to 1.2. In addition, the average refractive index said here means the refractive index with respect to incident electromagnetic waves.

図3は、上記(1)式におけるAの値と可視光の反射率の関係を図示したものである。 すなわち、ポリカーボネート基材の両面に、開口径100nm、底面径35nmの円錐台状をなし、稜線形状が後述するような2次の非線形式(2)で表され、種々の深さを有する無数の微細凹部を100nmのピッチで配列した反射防止構造を試作し、その反射率を測定した結果である。   FIG. 3 illustrates the relationship between the value of A in the above equation (1) and the reflectance of visible light. That is, on both surfaces of the polycarbonate substrate, a truncated cone shape having an opening diameter of 100 nm and a bottom surface diameter of 35 nm is formed, and the ridgeline shape is expressed by a second-order nonlinear equation (2) as described later, and has an infinite number of depths. This is a result of making a prototype of an antireflection structure in which fine recesses are arranged at a pitch of 100 nm and measuring the reflectance.

このように、Aの値が0.6より小さい場合には、微細凹部2の深さSが浅くなり、2つの反射面からの反射電磁波が、目的とする波長範囲で低反射にできなくなる。また、Aの値が1.4を超えた場合、微細凹部2の深さSが深くなり、屈折率変化が緩やかになるため、ある程度の反射防止性は確保できるものの、Aの値が増すと共に反射率が大きくなる傾向を示す。   As described above, when the value of A is smaller than 0.6, the depth S of the fine concave portion 2 becomes shallow, and the reflected electromagnetic waves from the two reflecting surfaces cannot be reduced in the target wavelength range. Further, when the value of A exceeds 1.4, the depth S of the fine concave portion 2 becomes deep and the refractive index change becomes gentle, so that a certain degree of antireflection can be secured, but the value of A increases. It shows a tendency for the reflectance to increase.

特に、可視光における反射防止を目的とする場合、人間の目に対し感度の高い540〜560nm付近の波長が最低反射率となるように設計すればよい。
電磁波の種類による微細凹部2の深さDの範囲については、上記(1)式で導出される範囲であればよいが、特に好ましくは、紫外線領域で80〜160nm、可視光線領域で160〜350nm、さらに好ましくは160〜240nm、赤外線領域では350nm〜45μm程度である。
In particular, for the purpose of preventing reflection in visible light, it may be designed so that a wavelength near 540 to 560 nm, which is highly sensitive to human eyes, has a minimum reflectance.
About the range of the depth D of the fine recessed part 2 by the kind of electromagnetic wave, what is necessary is just the range derived | led-out by said Formula (1), Especially preferably, it is 80-160 nm in an ultraviolet region, and 160-350 nm in a visible light region. More preferably, the thickness is about 160 to 240 nm, and about 350 nm to 45 μm in the infrared region.

なお、平均屈折率nとは、微細凹部2の開口部から底面までの高さ範囲における材料の屈折率を平均化した数値である。平均屈折率の導出方法は、単位ユニットの微細凹部2を高さ方向と垂直な方向で100分割し、その各単位での固体と空間の比率より屈折率を導出し、平均値を算出する。   The average refractive index n is a numerical value obtained by averaging the refractive indexes of materials in the height range from the opening to the bottom of the fine recess 2. In the method of deriving the average refractive index, the fine recesses 2 of the unit unit are divided into 100 in the direction perpendicular to the height direction, the refractive index is derived from the ratio of solid to space in each unit, and the average value is calculated.

本発明の反射防止構造を構成する微細凹部2は、上記したように『錐台状』をなすものであり、図1においては、四角錐台形のものを示した。しかし、本発明における微細凹部2の形状としては、正確な角錐台(稜が直線、側面が平面)や円錐台(母線が直線)のみならず、開口部から底面側に向かって空間の断面積が順次小さくなるような形状である限り、側面が曲面をなす角錐台状のものや、母線が曲線である円錐台状のものであってもよい。
さらに、微細凹部2の開口部の中心と底面の中心点を結ぶ直線は、必ずしも開口面(基材面)に対して垂直である必要はなく、傾いていてもよい。
The fine concave portion 2 constituting the antireflection structure of the present invention has a “frustum shape” as described above, and FIG. 1 shows a quadrangular frustum shape. However, as the shape of the fine recess 2 in the present invention, not only an accurate truncated pyramid (ridge is straight, side is flat) and a truncated cone (bus is straight), but also a sectional area of the space from the opening toward the bottom side May be a truncated pyramid having a curved side surface, or a truncated cone having a curved generating line.
Furthermore, the straight line connecting the center of the opening of the fine recess 2 and the center point of the bottom surface does not necessarily have to be perpendicular to the opening surface (base material surface), and may be inclined.

このように、本発明において『錐台状』とは、正確な円錐台や角錐台のみならず、釣り鐘形や椎の実形の変形円錐や曲面から成る側面を有する変形角錐の尖端部を平坦にしたものや傾斜したものをも含めた形状を意味するものとする。   Thus, in the present invention, “frustum shape” means not only an accurate truncated cone and truncated pyramid, but also a flat tip of a deformed pyramid having a bell-shaped or vertebral deformed cone or a curved surface. It shall mean the shape including the ones made and slanted.

そして、上記微細凹部2の稜線形状、すなわち微細凹部2の底面の重心を通る開口面に垂直な梯形断面における上底と下底を結ぶ線は、次式(2)で表されるようなm次の線形式(但し、1.5<m≦2.5)で表される形状となっていることが望ましい。これによって、反射防止構造における微細凹部の開口面から底面に到るまでの屈折率の変化の割合が均一なものとなって、反射防止機能をより向上させることができる。
すなわち、微細凹部2の中心を通る垂直断面における開口辺をX軸上に、稜線を延長したときの交点までの深さをsとし、この交点をZ軸上にとると、稜線上のX座標値は、次式(2)に基づいて、図4に示すように表わすことができる。このとき、交点の位置によって定数項を加えて補正することもできる。
X=(D/2)×{1−(Z/s)}・・・(2)
The ridgeline shape of the fine recess 2, that is, the line connecting the upper base and the lower base in the trapezoidal cross section perpendicular to the opening surface passing through the center of gravity of the bottom surface of the fine recess 2 is represented by the following equation (2). It is desirable that the shape is represented by the following linear format (where 1.5 <m ≦ 2.5). Thereby, the rate of change in the refractive index from the opening surface to the bottom surface of the fine recess in the antireflection structure becomes uniform, and the antireflection function can be further improved.
That is, the opening side in the vertical cross section passing through the center of the fine recess 2 is on the X axis, the depth to the intersection when the ridge line is extended is s, and when this intersection is on the Z axis, the X coordinate on the ridge line The value can be expressed as shown in FIG. 4 based on the following equation (2). At this time, correction can be made by adding a constant term depending on the position of the intersection.
X = (D / 2) × {1- (Z / s) m } (2)

また、微細凹部2の開口形状については、略円形、すなわち円形や楕円形、卵形や、多角形である三角形、四角形、五角形、六角形、さらには多角形の各辺が外側に膨らんだような形状の円形と多角形の中間のような形状のものを採用することができる。これらの中で、円形、四角形、六角形については比較的製造しやすくかつ密に配列できるので好ましい。
なお、このような微細凹部2については、底面を形成する形状に外接する円の径Dを底面サイズとする。すなわち、円形底面の場合はその径、楕円や卵形の場合はその長軸径、多角形の場合は、これに外接する円の径がDに相当する。
As for the opening shape of the fine concave portion 2, it seems that each side of the substantially circular shape, that is, a circular shape, an elliptical shape, an oval shape, a triangular shape, a quadrangular shape, a pentagonal shape, a hexagonal shape, or a polygonal shape swells outward. It is possible to adopt a shape between a round shape and a polygonal shape. Among these, a circle, a rectangle, and a hexagon are preferable because they are relatively easy to manufacture and can be arranged densely.
In addition, about such a fine recessed part 2, let the diameter D of the circle | rounding circumscribing the shape which forms a bottom face be a bottom face size. That is, the diameter corresponds to D in the case of a circular bottom surface, the major axis diameter in the case of an ellipse or oval, and the diameter of a circle circumscribing the circle in the case of a polygon.

上記微細凹部2の配列については、微細凹部2の周縁部に開口縁反射面2fを形成する観点から、開口部が円形である場合には、細密配列することができる。
これに対して、微細凹部2の開口形状が平面上に隙間なく敷き詰めることができる正三角形、正方形、正六角形などの場合は、微細凹部2同士の間に、隙間を空けて配列することが必要となる。
About the arrangement | sequence of the said fine recessed part 2, from a viewpoint of forming the opening edge reflective surface 2f in the peripheral part of the fine recessed part 2, when an opening part is circular, it can arrange finely.
On the other hand, in the case of a regular triangle, a square, a regular hexagon or the like that allows the opening shape of the fine recesses 2 to be spread on the plane without gaps, it is necessary to arrange them with a gap between the fine recesses 2. It becomes.

本発明の上記反射防止構造を、入射光が可視光線の場合には、透明基材の片面、望ましくは両面に成形することによって、反射防止成形体とすることができる。そして、このような成形体を各種ディスプレイ装置のパネルや、ショウウインドウ、展示ケースなどの透明パネルに適用することによって、外光や室内照明の反射を低減し、反射像の映り込みを効果的に防止して、映像や表示、内部展示物の視認性を向上させることができる。
また、自動車を始めとする各種の部品、例えば、ウインドウやルーフのガラス、メーターフロントカバー、ヘッドランプ、リヤフィニッシャー、液晶などの表示装置の最前面に用いるフィルムなど適用することによって、同様の反射防止効果を得ることができる。
When the incident light is visible light, the antireflection structure of the present invention can be formed into an antireflection molded body by molding on one side, preferably both sides, of a transparent substrate. And by applying such a molded product to transparent panels such as panels of various display devices, show windows, display cases, etc., reflection of reflected images is effectively reduced by reducing reflection of outside light and indoor lighting. It is possible to improve visibility of images, displays, and internal exhibits.
In addition, by applying various parts such as automobiles, such as glass for windows and roofs, meter front covers, headlamps, rear finishers, and films used for the forefront of display devices such as liquid crystals, the same anti-reflection is applied. An effect can be obtained.

本発明の反射防止成形体を製造するに際しては、上記のような微細凹部2を反転させた無数の微細突起を備えた成形型を用意し、この成形型と基材の一方、又は双方を加熱した状態で両者を相対的に押し当てることによって、当該基材の表面に上記のような反射防止構造1を成形することができる。
また、上記成形型と基材の間に、活性エネルギー線硬化性樹脂を介在させた状態で活性エネルギー線を照射し、当該樹脂を硬化させることによって、当該基材の表面に上記のような反射防止構造1を成形し、反射防止成形体とすることができる。
In manufacturing the antireflection molded body of the present invention, a mold having innumerable fine protrusions obtained by inverting the fine recesses 2 as described above is prepared, and one or both of the mold and the substrate are heated. The antireflection structure 1 as described above can be formed on the surface of the base material by relatively pressing the two in the state.
In addition, the active energy ray curable resin is irradiated between the mold and the base material so that the active energy ray is cured, and the resin is cured, so that the surface of the base material is reflected as described above. The prevention structure 1 can be molded into an antireflection molded body.

上記基材の材料としては、代表的には透明性があるものが望ましく、例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリ塩化ビニール、ポリスチレン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ガラス強化ポリエチレンテレフタレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、液晶性ポリマー、フッ素樹脂、ポリアレート、ポリスルホン、ポリエーテルスルホン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコーン樹脂、ジアリルフタレート樹脂、ポリアミドビスマレイミド、ポリビスアミドトリアゾール等の熱硬化性樹脂、及びこれらを2種以上ブレンドした材料を用いることができる。   As the material for the substrate, typically, a transparent material is desirable. For example, polyethylene, polypropylene, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polyvinyl chloride, polystyrene, ABS resin, AS resin, acrylic resin. , Polyamide, polyacetal, polybutylene terephthalate, glass reinforced polyethylene terephthalate, polycarbonate, modified polyphenylene ether, polyphenylene sulfide, polyetheretherketone, liquid crystalline polymer, fluororesin, polyarate, polysulfone, polyethersulfone, polyamideimide, polyetherimide, Thermoplastic resins such as thermoplastic polyimide, phenolic resin, melamine resin, urea resin, epoxy resin, unsaturated polyester resin, Rukido resins, silicone resins, can be used a diallyl phthalate resin, polyamide bismaleimide, poly bisamide thermosetting resin triazole and the like, and two or more of these blended material.

また、例えば紫外線などの照射によって重合を開始し、硬化する活性エネルギー線硬化樹脂としては、例えば、紫外線硬化型アクリルウレタン計樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート樹脂、紫外線硬化型ポリオールアクリレート樹脂、紫外線硬化型エポキシ樹脂などを挙げることができ、必要に応じて活性エネルギー線を照射することによってラジカルを発生する重合開始剤を用いることもでき、より強固に固めるためイソシアネートのような硬化剤を加えることもできる。
なお、ここで用いられる活性エネルギー線としては、代表的には、紫外線やX線、その他電子線、電磁波などが挙げられるが特に限定されるものではない。
Examples of the active energy ray-curable resin that starts and cures by irradiation with, for example, ultraviolet rays include, for example, an ultraviolet curable acrylic urethane meter resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, and an ultraviolet curable resin. Type polyol acrylate resin, UV curable epoxy resin, etc., and if necessary, a polymerization initiator that generates radicals by irradiating active energy rays can be used. Various curing agents can also be added.
In addition, as an active energy ray used here, although an ultraviolet-ray, an X-ray, other electron beams, electromagnetic waves, etc. are mentioned typically, it is not specifically limited.

また、ガラス等の無機系透明材料を用いることも可能であり、この場合には、電子ビーム等によってガラス表面を切削することにより上記のような反射防止構造を形成する方法や、本発明の反射防止構造を備えた型に溶融した無機系透明材料を流し込む方法によって基材表面に当該反射防止構造を形成することができる。   It is also possible to use an inorganic transparent material such as glass. In this case, a method of forming the antireflection structure as described above by cutting the glass surface with an electron beam or the like, or the reflection of the present invention. The antireflection structure can be formed on the surface of the substrate by a method in which a molten inorganic transparent material is poured into a mold having the prevention structure.

以下に、実施例に基づいて、本発明をさらに具体的に説明する。なお、本発明がこれらの実施例のみに限定されないことは言うまでもない。   Below, based on an Example, this invention is demonstrated further more concretely. Needless to say, the present invention is not limited to these examples.

(実施例1)
市販の電子線描画装置で作成した金型を使用して、この金型を170℃に加熱したのち、ポリカーボネート基材の両面に10MPaの圧力で1時間押し当てた後、70℃以下まで冷却した。これによって、表1に示すように、開口部の直径Dが1000nm、底面の直径が250nm、深さSが750nmであって、開口外周部分から底面外周部分に至る稜線が、2次の非線形式(2)で表される円錘台状をなす微細凹部2が六方細密状態(ピッチP=1000nm)に配列された反射防止構造1を両面に備えた反射防止成形体を作製した。
Example 1
This mold was heated to 170 ° C. using a mold created by a commercially available electron beam drawing apparatus, and then pressed on both sides of the polycarbonate substrate at a pressure of 10 MPa for 1 hour, and then cooled to 70 ° C. or lower. . As a result, as shown in Table 1, the diameter D of the opening is 1000 nm, the diameter of the bottom surface is 250 nm, the depth S is 750 nm, and the ridge line extending from the outer periphery of the opening to the outer periphery of the bottom is a second-order nonlinear equation. An anti-reflective molded body having anti-reflective structures 1 on both sides of which micro concave portions 2 having a frustum shape represented by (2) are arranged in a hexagonal close-packed state (pitch P = 1000 nm) was produced.

そして、得られた成形体に波長2000nmの赤外線を照射し、入射角度0度、測定角度0度における反射率を測定し、反射防止性能を評価した。
また、当該成形体の表面を、ブロード布を用いて、面圧392Paで5000回往復摺動した後における傷の発生具合を目視により観察し、傷の発生が確認できたものを「×」、発生が認められなかったものを「○」として、耐傷付き性を評価した。これらの結果を表2に示す。
And the infrared rays with a wavelength of 2000 nm were irradiated to the obtained molded object, the reflectance at the incident angle of 0 degree and the measurement angle of 0 degree was measured, and the antireflection performance was evaluated.
In addition, the surface of the molded body was observed by visual observation of the occurrence of scratches after reciprocating and sliding 5000 times at a surface pressure of 392 Pa using a broad cloth, and “x” Scratch resistance was evaluated with “◯” indicating that no occurrence was observed. These results are shown in Table 2.

(実施例2)
同様の電子線描画装置で作成した金型を使用し、上記実施例1と同様の操作を繰り返すことによって、ポリメチルメタクリレート基材の両面に、表1に示すように、開口部の直径Dが300nm、底面の直径が45nm、深さSが220nm、開口外周部分から底面外周部分に至る稜線が、2次の非線形式(2)で表される円錘台状をなす微細凹部2が六方細密状態(ピッチP=300nm)に配列された反射防止構造1を備えた反射防止成形体を作製した。
(Example 2)
As shown in Table 1, the diameter D of the opening is formed on both surfaces of the polymethyl methacrylate base by repeating the same operation as in Example 1 using a mold created by the same electron beam drawing apparatus. 300 nm, bottom diameter of 45 nm, depth S of 220 nm, the ridge line from the outer periphery of the opening to the outer periphery of the bottom is a frustum-shaped fine recess 2 having a frustum shape represented by the second-order nonlinear equation (2) An antireflection molded body provided with the antireflection structure 1 arranged in a state (pitch P = 300 nm) was produced.

そして、得られた成形体に波長555nmの可視光を照射し、入射角度0度、測定角度0度における反射率を測定し、反射防止性能を評価すると共に、耐傷付き性を上記同様の要領により評価した。この結果を表2に併せて示す。   The obtained molded product was irradiated with visible light having a wavelength of 555 nm, the reflectance at an incident angle of 0 degree and a measurement angle of 0 degree was measured, the antireflection performance was evaluated, and the scratch resistance was determined in the same manner as described above. evaluated. The results are also shown in Table 2.

(実施例3〜9)
上記実施例2と同様の操作を繰り返すことによって、ポリメチルメタクリレート基材の両面に、それぞれ表1に示す寸法を備え、それぞれの稜線形状を有する円錘台状の微細凹部2が六方細密状態に配列された反射防止構造1を備えた反射防止成形体をそれぞれ作製した。
そして、得られた各成形体について、反射率及び耐傷付き性を実施例2と同様の要領によりそれぞれ評価した。これらの結果を表2に併せて示す。
(Examples 3 to 9)
By repeating the same operations as in Example 2, the frustum-shaped fine recesses 2 having the dimensions shown in Table 1 on both sides of the polymethylmethacrylate base material and having the respective ridgeline shapes are in a hexagonal close-packed state. Each of the antireflection molded bodies provided with the arranged antireflection structures 1 was produced.
And about each obtained molded object, the reflectance and scratch resistance were evaluated by the same procedure as Example 2, respectively. These results are also shown in Table 2.

(比較例1)
市販の電子線描画装置で作成した金型を使用して、この金型に紫外線硬化アクリル樹脂を流し込み、ポリカーボネート(PC)基材を押し当てた状態で、紫外線を照射して固化させた。これによって、PCから成る基材の両面に、ポリメタクリル酸メチル(PPMA)から成り、底部外接円の直径Dが200nm、高さHが180nmである正四角錐(稜線は1次の線形式)をなす微細凸部が隙間なく配列された厚さ200nmの微細構造層を備えた反射防止成形体を作製した。
そして、得られた成形体について、反射率及び耐傷付き性を上記実施例と同様の要領によりそれぞれ評価した。その結果を表2に併せて示す。
(Comparative Example 1)
Using a mold created by a commercially available electron beam drawing apparatus, an ultraviolet curable acrylic resin was poured into the mold, and the polycarbonate (PC) substrate was pressed and solidified by irradiation with ultraviolet rays. As a result, on both sides of the substrate made of PC, a regular quadrangular pyramid (ridge line is a primary line form) made of polymethyl methacrylate (PPMA), having a diameter D of the bottom circumscribed circle of 200 nm and a height H of 180 nm. An antireflection molded body having a microstructure layer having a thickness of 200 nm in which the fine protrusions formed were arranged without gaps was produced.
And about the obtained molded object, the reflectance and scratch resistance were evaluated by the same procedure as the said Example, respectively. The results are also shown in Table 2.

Figure 2009198626
Figure 2009198626

Figure 2009198626
Figure 2009198626

この結果、本発明の範囲である実施例1〜9においては、いずれも入射電磁波に対する反射率が低く、耐傷付き性に優れることが確認された。
これに対し、比較例1の反射防止成形体においては、四角錐状の微細凸部から成るものであるから、特に耐傷付き性に劣る結果となった。
As a result, in Examples 1 to 9, which are the scope of the present invention, it was confirmed that all had low reflectance with respect to incident electromagnetic waves and excellent scratch resistance.
On the other hand, since the antireflection molded body of Comparative Example 1 is composed of fine convex portions having a quadrangular pyramid shape, the result is particularly poor in scratch resistance.

(a) 本発明の反射防止構造の一例を示す斜視図である。(b) 図1(a)に示した反射防止構造を構成する微細凹部の形状を説明する断面図である。(A) It is a perspective view which shows an example of the reflection preventing structure of this invention. (B) It is sectional drawing explaining the shape of the fine recessed part which comprises the antireflection structure shown to Fig.1 (a). 本発明の反射防止構造における底部反射面占有率及び開口縁反射面占有率について説明する平面図である。It is a top view explaining the bottom part reflective surface occupation rate and opening edge reflective surface occupation rate in the reflection preventing structure of this invention. 可視光の反射率に及ぼすA値(=2nS/λ)の影響を示すグラフである。It is a graph which shows the influence of A value (= 2nS / (lambda)) which has on the reflectance of visible light. 本発明の反射防止構造における微細凹部の稜線形状をm次の線形式で表した説明図である。It is explanatory drawing which represented the ridgeline shape of the fine recessed part in the reflection preventing structure of this invention in the m-th line form.

符号の説明Explanation of symbols

1 反射防止構造
2 微細凹部
2b 底部反射面
2f 開口縁反射面
Rb 底部反射面占有率
Rf 開口縁反射面占有率
DESCRIPTION OF SYMBOLS 1 Antireflection structure 2 Fine recessed part 2b Bottom reflection surface 2f Opening edge reflection surface Rb Bottom reflection surface occupation rate Rf Opening edge reflection surface occupation rate

Claims (8)

略円形又は多角形をなす開口部を備え、該開口形状に外接する円の径がDである円錐台状又は角錐台状をなす無数の錐台状微細凹部がピッチPで配列されて成り、上記錐台状微細凹部の底部と開口周縁部とに平面状の反射面を有すると共に、上記外接円径D及びピッチPが入射する電磁波の波長λよりも小さいことを特徴とする反射防止構造。   An opening having a substantially circular or polygonal shape, and an innumerable truncated cone-shaped concave portion having a truncated cone shape or a truncated pyramid shape whose diameter of a circle circumscribing the opening shape is D, are arranged at a pitch P, and An antireflection structure characterized by having a planar reflection surface at the bottom of the frustum-shaped fine recess and the peripheral edge of the opening, and wherein the circumscribed circle diameter D and pitch P are smaller than the wavelength λ of the incident electromagnetic wave. 上記錐台状微細凹部の底部反射面占有率Rbと開口縁反射面占有率Rfの比Rb/Rfが0.3〜2.0であると共に、微細凹部の深さSが次式(1)により算出される値であることを特徴とする請求項1に記載の反射防止構造。
S=A(λ/2n) ・・・(1)
(式中のnは微細凹部形成部分の平均屈折率、Aは0.6〜1.4の範囲の任意の値を示す)
The ratio Rb / Rf of the bottom reflecting surface occupancy ratio Rb and the opening edge reflecting surface occupancy ratio Rf of the frustum-shaped fine concave portion is 0.3 to 2.0, and the depth S of the fine concave portion is expressed by the following formula (1). The antireflection structure according to claim 1, wherein the antireflection structure is a value calculated by:
S = A (λ / 2n) (1)
(In the formula, n is the average refractive index of the fine recess forming portion, and A is an arbitrary value in the range of 0.6 to 1.4)
上記錐台状微細凹部の稜線形状が次式(2)で表わされるm次の非線形式で表される曲線をなし、次数mが1.5を超え、2.5以下であることを特徴とする請求項1又は2に記載の反射防止構造。
X=(D/2)×{1−(Z/s)}・・・(2)
(式中のsは錐台状微細凹部の稜線の延長線の交点までの深さを示す)
The ridgeline shape of the frustum-shaped fine recess is a curve represented by an mth-order nonlinear expression represented by the following formula (2), and the order m is more than 1.5 and not more than 2.5: The antireflection structure according to claim 1 or 2.
X = (D / 2) × {1- (Z / s) m } (2)
(S in the formula indicates the depth to the intersection of the extended lines of the frustum-shaped fine recesses)
上記錐台状微細凹部の開口形状への外接円径D及びピッチPが380nm以下であり、当該微細凹部の深さSが160〜240nmであることを特徴とする請求項1〜3のいずれか1つの項に記載の反射防止構造。   The circumscribed circle diameter D and the pitch P to the opening shape of the frustum-shaped fine concave portion are 380 nm or less, and the depth S of the fine concave portion is 160 to 240 nm. The antireflection structure according to one item. 上記錐台状微細凹部の開口形状への外接円径D及びピッチPが250nm以下であることを特徴とする請求項4に記載の反射防止構造。   The antireflection structure according to claim 4, wherein a circumscribed circle diameter D and a pitch P to the opening shape of the frustum-shaped fine concave portion are 250 nm or less. 請求項1〜5のいずれか1つの項に記載の反射防止構造を基材の少なくとも一方の面に備えていることを特徴とする反射防止成形体。   An antireflection molded article, comprising the antireflection structure according to any one of claims 1 to 5 on at least one surface of a substrate. 上記基材が透明であることを特徴とする請求項6に記載の反射防止成形体。   The antireflection molded body according to claim 6, wherein the base material is transparent. 請求項6又は7に記載の反射防止成形体を用いたことを特徴とする自動車部品。   An automobile part, wherein the antireflection molded body according to claim 6 or 7 is used.
JP2008038224A 2008-02-20 2008-02-20 Anti-reflective structure and anti-reflective molded body Pending JP2009198626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038224A JP2009198626A (en) 2008-02-20 2008-02-20 Anti-reflective structure and anti-reflective molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038224A JP2009198626A (en) 2008-02-20 2008-02-20 Anti-reflective structure and anti-reflective molded body

Publications (1)

Publication Number Publication Date
JP2009198626A true JP2009198626A (en) 2009-09-03

Family

ID=41142201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038224A Pending JP2009198626A (en) 2008-02-20 2008-02-20 Anti-reflective structure and anti-reflective molded body

Country Status (1)

Country Link
JP (1) JP2009198626A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018081A (en) * 2014-07-08 2016-02-01 株式会社タムロン Antireflection structure and antireflection infrared optical element
JP2016522452A (en) * 2013-06-19 2016-07-28 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. Manufacturing method of antireflection layer
JP2017030719A (en) * 2015-07-29 2017-02-09 大日本印刷株式会社 Vehicular upholstery and vehicular upholstery film
JP6298224B1 (en) * 2016-11-21 2018-03-20 大塚テクノ株式会社 Antireflection structure, camera unit, portable device, and manufacturing method of antireflection structure
JPWO2016194654A1 (en) * 2015-06-05 2018-03-22 ソニー株式会社 Solid-state image sensor
WO2018092353A1 (en) * 2016-11-21 2018-05-24 大塚テクノ株式会社 Anti-reflective body, camera unit, mobile device, and method for manufacturing anti-reflective body
WO2021100509A1 (en) * 2019-11-18 2021-05-27 ソニーセミコンダクタソリューションズ株式会社 Imaging device, method for manufacturing same, and electronic apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574001A (en) * 1980-06-10 1982-01-09 Sony Corp Nonreflective optical element
JP2003177207A (en) * 2001-12-11 2003-06-27 Konica Corp Antireflection film and polarizing plate and display device having the antireflection film
JP2007076242A (en) * 2005-09-15 2007-03-29 Fujifilm Corp Protective film
JP2007322763A (en) * 2006-06-01 2007-12-13 Nissan Motor Co Ltd Anti-reflection structure, anti-reflection structural body and its manufacturing method
JP2007322572A (en) * 2006-05-31 2007-12-13 Omron Corp Anti-reflection optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574001A (en) * 1980-06-10 1982-01-09 Sony Corp Nonreflective optical element
JP2003177207A (en) * 2001-12-11 2003-06-27 Konica Corp Antireflection film and polarizing plate and display device having the antireflection film
JP2007076242A (en) * 2005-09-15 2007-03-29 Fujifilm Corp Protective film
JP2007322572A (en) * 2006-05-31 2007-12-13 Omron Corp Anti-reflection optical element
JP2007322763A (en) * 2006-06-01 2007-12-13 Nissan Motor Co Ltd Anti-reflection structure, anti-reflection structural body and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522452A (en) * 2013-06-19 2016-07-28 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. Manufacturing method of antireflection layer
JP2016018081A (en) * 2014-07-08 2016-02-01 株式会社タムロン Antireflection structure and antireflection infrared optical element
JP2021097238A (en) * 2015-06-05 2021-06-24 ソニーグループ株式会社 Photodetector and ranging sensor
JPWO2016194654A1 (en) * 2015-06-05 2018-03-22 ソニー株式会社 Solid-state image sensor
US11990492B2 (en) 2015-06-05 2024-05-21 Sony Group Corporation Solid-state imaging sensor
US11557621B2 (en) 2015-06-05 2023-01-17 Sony Group Corporation Solid-state imaging sensor
US11121161B2 (en) 2015-06-05 2021-09-14 Sony Corporation Solid-state imaging sensor
JP2017030719A (en) * 2015-07-29 2017-02-09 大日本印刷株式会社 Vehicular upholstery and vehicular upholstery film
JP6298224B1 (en) * 2016-11-21 2018-03-20 大塚テクノ株式会社 Antireflection structure, camera unit, portable device, and manufacturing method of antireflection structure
US11493669B2 (en) 2016-11-21 2022-11-08 Otsuka Techno Corporation Anti-reflective body, camera unit, mobile device, and method for manufacturing anti-reflective body
KR101863528B1 (en) 2016-11-21 2018-05-31 오오쯔까 테크노 코포레이션 Anti-reflection structure, camera unit, portable device, and manufacturing method of anti-reflection structure
WO2018092353A1 (en) * 2016-11-21 2018-05-24 大塚テクノ株式会社 Anti-reflective body, camera unit, mobile device, and method for manufacturing anti-reflective body
WO2021100509A1 (en) * 2019-11-18 2021-05-27 ソニーセミコンダクタソリューションズ株式会社 Imaging device, method for manufacturing same, and electronic apparatus

Similar Documents

Publication Publication Date Title
JP5170495B2 (en) Antireflection microstructure and antireflection structure
JP2007264594A (en) Anti-reflection fine structure, anti-reflection molded body, method of producing the same
KR101045695B1 (en) Antireflective structure and antireflective molded body, and vehicle component using the antireflective molded body
JP2009198627A (en) Anti-reflective structure and anti-reflective molded body
US7940462B2 (en) Antireflective structure and antireflective molded body
JP2009198626A (en) Anti-reflective structure and anti-reflective molded body
JP2008090212A (en) Antireflection optical structure, antireflection optical structure body and its manufacturing method
JP2008158293A (en) Hydrophilic antireflection structure
KR20100116523A (en) Antireflection optical element, and method for producing original board
JP2009294341A (en) Water-repellent antireflection structure and water-repellent antireflection molding
JP2007322763A (en) Anti-reflection structure, anti-reflection structural body and its manufacturing method
JP2008122435A (en) Water repellent reflection preventive structure and its manufacturing method
JP2008203473A (en) Antireflection structure and structure
JP5146722B2 (en) Antireflection structure and structure
JP2007322767A (en) Anti-reflection structure, anti-reflection structural body and its manufacturing method
JP6349830B2 (en) Method for manufacturing antireflection article and method for manufacturing mold for manufacturing antireflection article
CN100541235C (en) Anti-reflection structure, antireflection molding and manufacture method and automobile component
EP3168656B1 (en) Optical element and method for producing same
JP2009198628A (en) Anti-reflective structure and anti-reflective molded body
JP2007240954A (en) Antireflection structure, antireflective molded article and its manufacturing method
JP2007187773A (en) Reflection prevention structure, reflection prevention molding and its manufacturing method
JP2008164996A (en) Chromogenic anti-reflection structure and structure body
JP6728674B2 (en) Visibility improvement film
WO2017126673A1 (en) Functional structural body
JP2014139667A (en) Transparent body and fitting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130107