JP2007322767A - Anti-reflection structure, anti-reflection structural body and its manufacturing method - Google Patents

Anti-reflection structure, anti-reflection structural body and its manufacturing method Download PDF

Info

Publication number
JP2007322767A
JP2007322767A JP2006153145A JP2006153145A JP2007322767A JP 2007322767 A JP2007322767 A JP 2007322767A JP 2006153145 A JP2006153145 A JP 2006153145A JP 2006153145 A JP2006153145 A JP 2006153145A JP 2007322767 A JP2007322767 A JP 2007322767A
Authority
JP
Japan
Prior art keywords
antireflection structure
fine
cone
filled
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006153145A
Other languages
Japanese (ja)
Inventor
Yuji Noguchi
雄司 野口
Takayuki Fukui
孝之 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006153145A priority Critical patent/JP2007322767A/en
Publication of JP2007322767A publication Critical patent/JP2007322767A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anti-reflection structure having flaw resistance, provided with a structure that dirt such as sebum hardly enters into a space part of a fine structure and capable of exhibiting excellent anti-reflection performance over a long term, and to provide an anti-reflection structural body provided with the structure and its manufacturing method. <P>SOLUTION: Fine particles 13 smaller than the wave length of visual light are filled to form gaps among the particles into space parts of projecting or recessed fine structure provided with many pyramid like fine projecting parts 12 or many pyramid like recessed parts 22 each having a circular or polygonal bottom smaller than the wave length of the visual light, that is, into the surroundings of the pyramid like fine projecting parts 12 or openings of the fine recessed parts 22, wherein the effective refractive index of the filled part is controlled to 1.10 to 1.35. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光の反射防止機能を発揮させることができる反射防止構造と、このような反射防止構造を備え、無反射パネルとして、例えば、自動車を始めとする種々の車両や、船舶、航空機などにおける各種メーター類や、ディスプレイ装置などに好適に使用することができる反射防止構造体、さらにはこのような反射防止構造体の製造方法に関するものである。   The present invention includes an antireflection structure capable of exhibiting an antireflection function of light, and such an antireflection structure, and as an antireflective panel, for example, various vehicles including automobiles, ships, airplanes, and the like The present invention relates to an antireflection structure that can be suitably used for various meters, display devices, and the like, and a method for manufacturing such an antireflection structure.

液晶ディスプレイやCRTディスプレイなど各種のディスプレイ装置、身近な例では、家庭用テレビの画面に外光や室内の照明などの影が映り込むと、本来の映像の視認性が著しく低下することがある。   In various display devices such as a liquid crystal display and a CRT display, and familiar examples, if a shadow such as external light or indoor lighting is reflected on the screen of a home television, the visibility of the original image may be significantly reduced.

また、例えば自動車の運転席には、スピードメータや燃料計などの各種計器類をまとめて収納したディスプレイ部があり、当該ディスプレイ部の前面には、メーターフロントカバーが嵌め込まれているが、このカバーに、フロントウインドウやサイドウインドウを通して車外の景色が映り込むことによって、ディスプレイ部の各種表示が見づらくなることがあるため、ディスプレイの上方にメーターフードを配置して、メーターフロントカバーへの外光入射を防止するようにしている。   For example, a driver's seat of an automobile has a display unit that stores various instruments such as a speedometer and a fuel meter. A meter front cover is fitted in front of the display unit. In addition, since the scenery outside the vehicle is reflected through the front window and the side window, it may be difficult to see various displays on the display unit.Therefore, a meter hood is placed above the display to allow external light to enter the meter front cover. I try to prevent it.

このような光の反射を防止するための構造としては、屈折率の異なる複数の薄膜から成る多層反射防止膜が知られているが、このような多層反射防止膜よりもさらに反射率を低下できるものとして、凹凸型微細構造を用いた反射防止構造の提案がなされている(例えば、特許文献1参照)。
当該特許文献1に記載の反射防止構造は、透明性成形品の表面に、透明性素材から成る無数の微細凹凸を光の波長以下のピッチで形成することにより、光の屈折率が厚み方向に変化するようにしたものであって、例えば波形あるいは鋸歯状の無数の微細凹凸が表面に形成されていることによって、凹凸の最表面では透明性素材の存在割合が限りなく0%に近いものとなって、実質的に空気の屈折率に等しくなる一方、凹凸の最底部では逆に空気の存在割合が限りなく0%に近いものとなって成形品の屈折率と等しくなり、中間部ではその断面における透明性素材の占める断面積に応じた屈折率となる結果、光の屈折率が当該反射防止構造の厚み方向に、空気の屈折率から透明性素材の屈折率の間で連続的に変化するようになることから、屈折率の異なる複数の薄膜から成る多層反射防止膜(この場合には屈折率が段階的に変化することになる)と同様の原理によって、当該反射防止膜よりも優れた反射防止性能を発揮するものとなる。
As a structure for preventing such reflection of light, a multilayer antireflection film composed of a plurality of thin films having different refractive indexes is known. However, the reflectance can be further reduced as compared with such a multilayer antireflection film. As an example, an antireflection structure using an uneven microstructure has been proposed (see, for example, Patent Document 1).
In the antireflection structure described in Patent Document 1, the refractive index of light is increased in the thickness direction by forming innumerable fine irregularities made of a transparent material on the surface of a transparent molded product at a pitch equal to or less than the wavelength of light. For example, an infinite number of fine irregularities in the shape of corrugations or serrations are formed on the surface, so that the ratio of the transparent material existing on the outermost surface of the irregularities is as close to 0% as possible. Thus, the refractive index of air is substantially equal to the refractive index of the air, while the ratio of the air is almost infinitely close to 0% at the bottom of the irregularities, and is equal to the refractive index of the molded product. As a result of the refractive index corresponding to the cross-sectional area occupied by the transparent material in the cross section, the refractive index of light continuously changes between the refractive index of air and the refractive index of the transparent material in the thickness direction of the antireflection structure. Because it comes to refraction Based on the same principle as a multilayer antireflection film consisting of a plurality of thin films having different refractive indices (in this case, the refractive index changes stepwise), the antireflection performance superior to that of the antireflection film is exhibited. Become.

また、同様の原理による反射防止性能を有する形状として、凹型(穴型)の微細構造を用いた反射防止構造が提案されている(例えば、特許文献2参照)。
特開2002−267815号公報 特開2004−177806号公報
Further, an antireflection structure using a concave (hole) microstructure has been proposed as a shape having antireflection performance based on the same principle (see, for example, Patent Document 2).
JP 2002-267815 A Japanese Patent Application Laid-Open No. 2004-177806

しかしながら、上記特許文献1に記載の反射防止構造においては、上記のように光の反射率の大幅な低下が可能であるものの、その表面に人の手が触れたり、表面を拭いたりするだけで、当該反射防止構造を構成する微細凹凸の先端が破壊されて、反射防止性能が損なわれ易く、耐傷付き性に劣るという問題点がある。
一方、上記特許文献2に記載の凹型微細構造においては、耐傷付き性には問題がないものの、穴状をなす凹部内に皮脂などの汚れが詰まった場合には、拭き取りが難しく、皮脂で凹型構造が埋まってしまうことによって、反射防止性能が著しく低下するという問題点がある。
However, in the antireflection structure described in Patent Document 1, although the light reflectance can be significantly reduced as described above, it is only necessary to touch the surface of the human hand or wipe the surface. The tip of the fine unevenness constituting the antireflection structure is broken, and the antireflection performance is easily impaired, and there is a problem that the scratch resistance is inferior.
On the other hand, in the concave microstructure described in the above-mentioned Patent Document 2, there is no problem with the scratch resistance, but when dirt such as sebum is clogged in the concave portion forming the hole shape, it is difficult to wipe off and the concave shape is sebum. When the structure is buried, there is a problem that the antireflection performance is remarkably lowered.

本発明は、光の波長以下のピッチに形成した凸型あるいは凹型の微細構造を備えた従来の反射防止構造における上記課題を解決すべくなされたものであって、その目的とするところは、耐傷付き性に優れると共に、微細構造の空間部分に皮脂などの汚れが侵入し難い構造を備え、優れた反射防止性能を長期に亘って発揮することができる反射防止構造と共に、このような構造を備えた反射防止構造体及びその製造方法、さらには、上記反射防止構造を備えた自動車用部品、例えばメーターフロントカバーやウインドウガラスなどを提供することにある。   The present invention has been made to solve the above-described problems in the conventional antireflection structure having a convex or concave microstructure formed at a pitch equal to or less than the wavelength of light. It has a structure that is excellent in adhesion and has a structure in which dirt such as sebum is difficult to enter into the space portion of the fine structure, and has such a structure with an antireflection structure that can exhibit excellent antireflection performance over a long period of time. It is another object of the present invention to provide an antireflection structure and a method for manufacturing the same, and further provide an automobile part having the antireflection structure, such as a meter front cover and a window glass.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、微細構造の空間部分、すなわち、凸型微細構造においては微細突起の周囲空間部分に、凹型微細構造においては穴状をなす微細凹部の開口内に、例えばシリカ等のナノ粒子を充填することによって、上記目的が達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the inventors of the present invention have formed a space portion of the fine structure, that is, a space portion around the fine protrusion in the convex fine structure, and a hole shape in the concave fine structure. The inventors have found that the above object can be achieved by filling nanoparticles, such as silica, into the openings of the fine recesses formed, and have completed the present invention.

本発明は上記知見に基づくものであって、本発明の反射防止構造は、略円形又は多角形底面を有する無数の錐体状微細突起を備え、当該突起の底面、又は底面に外接する円の直径Dが可視光線の波長より短い380nm以下である凸型微細構造の空間部分に、可視光線の波長よりも小さなナノ粒子をその粒子間に空隙ができるように充填し、当該ナノ粒子を充填した部分の有効屈折率が1.10〜1.35であることを特徴とし、同じく本発明の反射防止構造は、略円形又は多角形の開口部を有する無数の錐体状微細凹部を備え、当該凹部の開口部、又は開口部に外接する円の直径Dが同様に380nm以下である凹型微細構造の空間部分に、同様のナノ粒子をその粒子間に空隙ができるように充填し、当該ナノ粒子を充填した部分の有効屈折率が1.10〜1.35であることを特徴としている。   The present invention is based on the above findings, and the antireflection structure of the present invention includes innumerable conical fine protrusions having a substantially circular or polygonal bottom surface, and the bottom surface of the protrusion or a circle circumscribing the bottom surface. A space having a convex microstructure having a diameter D of 380 nm or less, which is shorter than the wavelength of visible light, is filled with nanoparticles smaller than the wavelength of visible light so that voids are formed between the particles, and the nanoparticles are filled. The effective refractive index of the portion is 1.10 to 1.35. Similarly, the antireflection structure of the present invention includes innumerable cone-shaped fine concave portions having substantially circular or polygonal openings, and Fill the space portion of the concave microstructure in which the opening D of the concave portion or the circle circumscribing the opening is similarly 380 nm or less with the same nano particles so that there are voids between the particles, and the nanoparticles Effective bending of the part filled with It is characterized in that the rate is 1.10 to 1.35.

また、本発明の反射防止構造体は、本発明の上記反射防止構造を透明基材の少なくとも一方の面に備えていることを特徴とし、当該反射防止構造体の製造方法においては、上記の微細構造を備えた成形型を準備し、この成形型を透明基材のガラス移転に点以上に加熱した状態で上記基材に押し当てたり、上記成形型と透明基材の間に活性エネルギー線硬化性樹脂を介在させた状態で活性エネルギー線を照射したりすることによって、当該透明基材の表面に上記した微細構造を形成し、当該微細構造の空間部分に、上記粒子を充填するようにしている。   The antireflection structure of the present invention is characterized in that the antireflection structure of the present invention is provided on at least one surface of a transparent substrate. In the method of manufacturing the antireflection structure, the fine structure described above is used. Prepare a mold with a structure, and press this mold against the substrate in a state where it is heated more than the point for glass transfer of the transparent substrate, or active energy ray curing between the mold and the transparent substrate By irradiating active energy rays in the state of interposing a functional resin, the fine structure described above is formed on the surface of the transparent base material, and the particles are filled in the space portion of the fine structure. Yes.

さらに、本発明の自動車用部品は、上記反射防止構造を備えていることを特徴とするものである。   Furthermore, the automotive component of the present invention is characterized by including the antireflection structure.

本発明によれば、可視光線の波長よりも小さい微細構造の空間部分、すなわち、凸型微細構造においては微細突起の周囲空間部分に、凹型微細構造においては穴状をなす微細凹部の開口内部に、可視光線の波長よりも小さいナノ粒子を空隙を有する状態に充填し、当該充填部分の有効屈折率を1.10〜1.35の範囲となるようにしたことから、屈折率の連続的変化に基づく光反射防止機能を確保しながら、微細構造の空間部分にナノ粒子が埋まって、その表面を平坦なものとすることができ、突起の変形や凹部開口内への皮脂の侵入が防止されることによって、耐傷付き性及び耐汚れ性が向上し、反射防止機能を長期に亘って維持することができる。   According to the present invention, the space portion of the fine structure smaller than the wavelength of visible light, that is, the space portion around the fine protrusion in the convex fine structure, and the inside of the opening of the fine concave portion forming a hole in the concave fine structure. Since the nanoparticle smaller than the wavelength of visible light is filled in a state having voids, the effective refractive index of the filled portion is in the range of 1.10 to 1.35. While ensuring the light reflection prevention function based on the nano-structure, the nano-particles are embedded in the space part of the microstructure and the surface can be flattened, preventing the deformation of the protrusions and the penetration of sebum into the recess openings As a result, the scratch resistance and stain resistance are improved, and the antireflection function can be maintained over a long period of time.

また、本発明の反射防止構造体は、その少なくとも一方の表面に、上記反射防止構造を備えたものであるから、光の反射率を大幅に低減して、室外景色などの映り込みを防止することができ、自動車を始めとする各種の部品、例えばメーターフロントカバーに適用した場合には、外光を遮断するためのフードを廃止したフードレスメーターを実現することができるようになる。   In addition, since the antireflection structure of the present invention is provided with the antireflection structure on at least one surface thereof, the reflectance of light is greatly reduced to prevent reflection of outdoor scenery and the like. When applied to various parts including automobiles, for example, a meter front cover, a hoodless meter in which a hood for blocking external light is eliminated can be realized.

以下、本発明の反射防止構造やこれを適用した反射防止構造体について、その製造方法と共に、さらに詳細に説明する。   Hereinafter, the antireflection structure of the present invention and the antireflection structure to which the antireflection structure is applied will be described in detail together with the manufacturing method thereof.

本発明の反射防止構造は、上記したように、略円形若しくは多角形底面を有する無数の錐体状微細突起、又は略円形若しくは多角形をなす開口部を有する無数の錐体状微細凹部を備えた凸型又は凹型微細構造の空間部分に、可視光線の波長よりも小さな粒子をその粒子間に空隙ができ、その有効屈折率が1.10〜1.35となるように充填した構造のものであって、微細突起の周囲に存在するナノ粒子によって微細突起先端部の変形や破損が防止されると共に、微細凹部の開口内部にナノ粒子が存在することによって皮脂などの汚れが侵入する余地がなくなることから、反射防止性能が長期に亘って維持されることになる。   As described above, the antireflection structure of the present invention includes innumerable cone-shaped microprojections having a substantially circular or polygonal bottom surface, or innumerable cone-shaped microrecesses having an approximately circular or polygonal opening. In a structure in which a space having a convex or concave microstructure is filled with particles smaller than the wavelength of visible light so that voids are formed between the particles and the effective refractive index is 1.10 to 1.35. In addition, the nanoparticles existing around the fine protrusions prevent deformation and breakage of the tip of the fine protrusions, and the presence of the nanoparticles inside the openings of the fine recesses leaves room for dirt such as sebum to enter. Accordingly, the antireflection performance is maintained for a long time.

図1は、上記反射防止構造を備えた本発明の反射防止構造体の形態例を示す概略断面図であって、図1(a)は、錐体状微細突起を備えた凸形微細構造のものを示し、図1(b)は、錐体状微細凹部を備えた凹型微細構造のものを示す。   FIG. 1 is a schematic cross-sectional view showing an embodiment of the antireflection structure of the present invention having the above antireflection structure, and FIG. 1 (a) shows a convex fine structure having cone-shaped fine protrusions. FIG. 1 (b) shows a concave microstructure having a cone-shaped fine recess.

図1(a)において、凸型微細構造から成る反射防止構造体10は、透明基材11上に、この例では円錐状をなし、底面径D、高さHの寸法を有する無数の錐体状微細突起12が、ピッチA(底面の中心間距離)で、密に(例えば、六方細密状態に)配置されており、このような凸形微細構造の空間部分、すなわち各錐体状微細突起12の周囲には、可視光線の波長よりも小さいナノ粒子13が空隙ができるように充填されており、各錐体状微細突起12がその先端部まで、これらナノ粒子13と空隙によって埋め尽くされ、当該反射防止構造体10の表面が平坦面となっている。   In FIG. 1A, an antireflection structure 10 having a convex fine structure is formed on a transparent substrate 11 in a conical shape in this example, and has an infinite number of cones having a bottom diameter D and a height H. The fine protrusions 12 are arranged densely (for example, in a hexagonal close-packed state) at a pitch A (distance between the centers of the bottom surfaces), and the space portion of such a convex fine structure, that is, each cone-shaped fine protrusion 12 is filled with nanoparticles 13 smaller than the wavelength of visible light so as to form voids, and each of the cone-shaped fine protrusions 12 is filled with the nanoparticles 13 and the voids up to the tip. The surface of the antireflection structure 10 is a flat surface.

このとき、上記錐体状微細突起12の底面径Dは、380nm以下とすることが必要であり、これによって反射防止機能を確保することができる。
また、底面の中心間距離で表わされるピッチAについても、380nm以下とすることが望ましく、これによって反射防止機能が確保される。
At this time, the bottom surface diameter D of the cone-shaped fine protrusions 12 needs to be 380 nm or less, thereby ensuring an antireflection function.
In addition, the pitch A expressed by the distance between the centers of the bottom surfaces is preferably 380 nm or less, thereby ensuring the antireflection function.

また、上記微細突起12の頂点から底面に下ろした垂線の距離、すなわち微細突起12の高さHについては、150〜1500nmの範囲とすることが望ましい。
すなわち、微細突起12の高さが150nmに満たない場合は、十分な反射防止性が発揮できない問題がある一方、1500nmを超えると、成形性が難しくなるが、これ以上の反射防止効果が望めないという不都合が生じることがあることによる。
Further, it is desirable that the distance of the perpendicular line extending from the apex of the fine protrusion 12 to the bottom surface, that is, the height H of the fine protrusion 12 is in the range of 150 to 1500 nm.
That is, when the height of the fine protrusions 12 is less than 150 nm, there is a problem that sufficient antireflection properties cannot be exhibited. On the other hand, when it exceeds 1500 nm, moldability becomes difficult, but no further antireflection effect can be expected. This is due to the inconvenience that may occur.

一方、図1(b)に示した凹型微細構造から成る反射防止構造体20は、透明基材11の表面に、この例では円錐状をなし、開口径D、深さHの寸法を有する無数の錐体状微細凹部22が、ピッチA(開口部の中心間距離)で、密に(例えば、六方細密状態に)配置されており、このような凹型微細構造の空間部分、すなわち上記微細凹部22の開口内に、ナノ粒子13が同様に充填されており、各錐体状微細凹部22がそのの開口面まで、これらナノ粒子13と空隙によって埋められており、当該反射防止構造体20の表面が、上記した凸形微細構造から成る反射防止構造体10と同様に平坦となっている。   On the other hand, the antireflection structure 20 having a concave microstructure shown in FIG. 1B has a conical shape in this example on the surface of the transparent substrate 11, and has an infinite number of dimensions having an opening diameter D and a depth H. Are arranged densely (for example, in a hexagonal close-packed state) at a pitch A (distance between the centers of the openings), and the space portion of such a concave microstructure, that is, the fine recess The openings of 22 are filled with the nanoparticles 13 in the same manner, and each of the cone-shaped fine recesses 22 is filled with the nanoparticles 13 and the gaps up to the opening surface thereof. The surface is flat like the antireflection structural body 10 having the convex fine structure described above.

このとき、上記錐体状微細凹部22の開口径Dは、380nm以下とすることが必要であり、これによって反射防止機能を確保することができる。
また、開口部の中心間距離で表わされるピッチAについても、380nm以下とすることが望ましく、これによって反射防止機能が確保される。
At this time, the opening diameter D of the cone-shaped fine concave portion 22 needs to be 380 nm or less, and this can ensure an antireflection function.
Further, the pitch A expressed by the distance between the centers of the openings is preferably 380 nm or less, thereby ensuring an antireflection function.

また、上記微細凹部22の底部の最低点から開口面までの距離、すなわち微細凹部22の深さHについては、上記した凸形微細構造から成る反射防止構造体10の場合と同様に150〜1500nmの範囲とすることが望ましい。   Further, the distance from the lowest point of the bottom of the fine recess 22 to the opening surface, that is, the depth H of the fine recess 22 is 150 to 1500 nm as in the case of the antireflection structure 10 having the convex microstructure. It is desirable to be in the range.

なお、上記反射防止構造体10及び20における錐体状微細突起12及び凹部22の形状については、何れも円錐形、すなわち底部及び開口部の形状が円形のものについて説明したが、これら底部及び開口部の形状が多角形の場合(突起及び凹部形状が角錐形)については、その多角形に外接する円の直径Dを上記した380nm以下の値となるようにする必要がある。   In addition, about the shape of the cone-shaped microprotrusion 12 and the recessed part 22 in the said reflection preventing structures 10 and 20, although all demonstrated cone shape, ie, the shape of a bottom part and an opening part is circular, these bottom part and opening were demonstrated. When the shape of the part is a polygon (projection and recess shape is a pyramid), the diameter D of the circle circumscribing the polygon needs to be set to the above-described value of 380 nm or less.

また、この場合のピッチについては、隣接する多角形の重心点間の距離をピッチAとし、これを上記のような値とすることが望ましい。
なお、多角形である底面及び開口部の重心の位置は、一般的な線形代数の計算で求めることができ、多角形の各頂点の位置ベクトルの総和を頂点数で割ったものとなる。すなわち、n角形における重心の位置gは、g=(Σa)/nで求めることができる。
In addition, regarding the pitch in this case, it is desirable that the distance between the centroid points of adjacent polygons is the pitch A, and this is the above value.
Note that the positions of the center of gravity of the bottom surface and the opening that are polygons can be obtained by general linear algebra calculation, and the sum of the position vectors of each vertex of the polygon is divided by the number of vertices. That is, the position g of the center of gravity in the n-gon can be obtained by g = (Σa) / n.

上記錐体状微細突起12の周囲の空間部分、及び上記錐体状微細凹部22の開口内部に充填されるナノ粒子13としては、例えばシリカやアルミナ、フッ化マグネシウム、フッ化カルシウム、樹脂粒子等の透明粒子を用いることができ、これら粒子をバインダーと共に適当な溶媒中に分散させたスラリーを凸型あるいは凹型微細構造の上に塗布することによって、空間部分や開口内部に充填し、粒子間に空隙を形成した状態に固着させることができる。
そして、このようなナノ粒子13と空隙から成る充填部分の有効屈折率が1.10〜1.35、より望ましくは1.10〜1.25の範囲内となるようにすることによって、当該充填部分以外の部位との間に屈折率よりも低いものとなり、当該構造体の表面から厚み方向に向かう屈折率の連続的変化に基づく光反射防止機能が発揮されることになる。
Examples of the nanoparticles 13 filled in the space around the cone-shaped fine protrusion 12 and the inside of the opening of the cone-shaped fine recess 22 include silica, alumina, magnesium fluoride, calcium fluoride, resin particles, and the like. Transparent particles can be used, and a slurry in which these particles are dispersed in a suitable solvent together with a binder is applied onto a convex or concave microstructure to fill the space or inside of the openings, and between the particles. It can be fixed in a state where voids are formed.
And by making the effective refractive index of the filling part which consists of such a nanoparticle 13 and a space | gap into the range of 1.10-1.35, more desirably 1.10-1.25, the said filling is carried out. The light reflection preventing function based on the continuous change of the refractive index from the surface of the structure toward the thickness direction is exhibited between the portion and the portion other than the portion.

なお、上記ナノ粒子13としては、1〜50nmの大きさを備え、当該粒子自体の屈折率が1.35〜1.55の範囲内のものを使用することが望ましい。
すなわち、ナノ粒子13の径が1nmに満たない場合には、含まれる空隙が少なくなるため、光の透過率が低くなり、50nmを超えると、微細凹部に充填しにくくなる傾向がある。一方、屈折率が1.55を超えると、ナノ粒子13と空隙から成る充填部分の有効屈折率を上記の範囲内とすることが難しくなることによる。
In addition, as said nanoparticle 13, it is desirable to use the thing provided with the magnitude | size of 1-50 nm, and the refractive index of the said particle itself in the range of 1.35-1.55.
That is, when the diameter of the nanoparticle 13 is less than 1 nm, the voids included are reduced, so that the light transmittance is lowered. When the diameter exceeds 50 nm, the fine recesses tend not to be filled. On the other hand, when the refractive index exceeds 1.55, it is difficult to make the effective refractive index of the filled portion composed of the nanoparticles 13 and the voids within the above range.

ここで、上記した有効屈折率とは、構造体水平方向の一辺の長さが可視光線の上限の波長である780nmより大きく、構造体垂直方向の長さが1〜10nmである単位体積で空間を分割したときの単位体積内の屈折率の平均値を意味し、該単位体積内で分布する屈折率の平均を計算することによって求めることができる。   Here, the above-mentioned effective refractive index is a unit volume in which the length of one side in the horizontal direction of the structure is larger than 780 nm, which is the upper limit wavelength of visible light, and the length in the vertical direction of the structure is 1 to 10 nm. Means the average value of the refractive index in the unit volume, and can be obtained by calculating the average of the refractive index distributed in the unit volume.

上記図1(a)及び(b)においては、円錐状をなす微細突起12、あるいは微細凹部22を備えた反射防止構造、すなわち錐体状微細突起12あるいは凹部22の側部縦断面形状が直線をなすものについて説明したが、本発明においては、直線のみならず、曲線をなすもの、すなわち微細突起12あるいは微細凹部22の側面が2次曲面(底面あるいは開口部が多角形)あるいは3次曲面(底面あるいは開口部が円形)を有するものであってもよく、本発明においては、このような曲面から成る側面を有する角錐や円錐状のものをも含めた形状を『錐体状』と称することにしている。   In FIGS. 1 (a) and 1 (b), the antireflection structure having the conical fine protrusions 12 or the fine concave portions 22, that is, the side longitudinal sectional shape of the conical fine protrusions 12 or the concave portions 22 is linear. However, in the present invention, not only a straight line but also a curved line, that is, a side surface of the fine protrusion 12 or the fine concave portion 22 is a quadratic curved surface (a bottom surface or an opening is a polygon) or a cubic curved surface. In the present invention, a shape including a pyramid having a curved surface and a conical shape is referred to as a “conical shape”. I have decided.

すなわち、本発明の反射防止構造においては、凸型微細構造を例として説明すると、個々の錐体状微細突起12の高さをH、微細突起12の底面の径(底面が多角形であるときは、その多角形に外接する円の径)をDとし、図2に示すように、錐体状微細突起12の頂点を通る垂直断面における底辺をX軸上に、頂点をZ軸上にとり、稜線上のX座標値を以下のようなn次の線形式(1)又は(2)で表わしたときに、当該線形式における次数nを1.1〜5の範囲とすることが望ましい。より望ましい範囲としては、1.5〜4の範囲であり、さらに望ましい範囲は、2〜4の範囲である。
X=(D/2)×{1−(Z/H)}・・・(1)
That is, in the antireflection structure of the present invention, the convex fine structure will be described as an example. When the height of each cone-shaped fine protrusion 12 is H, the diameter of the bottom surface of the fine protrusion 12 (when the bottom surface is a polygon) Is the diameter of the circle circumscribing the polygon) as D, and as shown in FIG. 2, the base in the vertical cross section passing through the apex of the cone-shaped fine protrusion 12 is taken on the X axis, and the apex is taken on the Z axis, When the X coordinate value on the ridge line is represented by the following n-th order linear format (1) or (2), the order n in the linear format is preferably in the range of 1.1 to 5. A more desirable range is 1.5 to 4, and a further desirable range is 2 to 4.
X = (D / 2) × {1- (Z / H) n } (1)

図3(a)は、ポリメチルメタクリエート基材の両面に、高さH=750nm、底面径D=ピッチA=250nmの上記線形式(1)で表わされる円錐近似形状をなし、次数nが異なる種々の形状の突起を形成した場合に、上記次数nと平均反射率(波長:380〜780nm)の関係を示したものであって、この図から明らかなように、次数nが1.1〜5の範囲で反射率を従来のものよりも低下させることができることが判る。   FIG. 3A shows a cone approximate shape represented by the above linear form (1) having a height H = 750 nm and a bottom diameter D = pitch A = 250 nm on both sides of a polymethyl methacrylate base material, and the order n is FIG. 6 shows the relationship between the order n and the average reflectance (wavelength: 380 to 780 nm) when protrusions having various different shapes are formed. As is apparent from this figure, the order n is 1.1. It can be seen that the reflectance can be lowered as compared with the conventional one in the range of ˜5.

上記線形式(1)においては、次数nが1を超えると、錐体状微細突起12の断面形状は、図4(a)に示すように側面が外側に膨出した釣鐘形となり、次数nが1の場合には、図4(b)に示すように突起の稜線形状が直線となり、完全な円錐や角錐形状となる。また、次数nが1よりも小さい場合には、図4(c)に示すように、側面が内側に凹んだ形状となる。
すなわち、次数nが1.1〜5であって、錐体状微細突起12が釣鐘形をなすときの反射率が、円錐形や角錐形の場合よりも小さいものとなる。
In the above linear form (1), when the order n exceeds 1, the cross-sectional shape of the cone-shaped fine protrusion 12 becomes a bell shape with the side surface bulging outward as shown in FIG. When 1 is 1, the ridge shape of the protrusion is a straight line as shown in FIG. 4B, and a complete cone or pyramid shape is obtained. Further, when the order n is smaller than 1, as shown in FIG.
That is, the order n is 1.1 to 5, and the reflectance when the cone-shaped fine protrusion 12 forms a bell shape is smaller than that of a cone shape or a pyramid shape.

また、錐体状微細突起12の頂点を通る垂直断面における底辺をX軸上に、頂点をZ軸上にとり、稜線上のZ座標値を以下のようなn次の線形式(2)で表わすこともできる。   Further, the base of the vertical cross section passing through the apex of the cone-shaped fine protrusion 12 is taken on the X axis, the apex is taken on the Z axis, and the Z coordinate value on the ridge line is expressed in the following n-order line format (2). You can also.

図3(b)は、図5に示すように、ポリメチルメタクリエート基材の両面に、距離H(深さ)=750nm、開口径D=ピッチA=250nmの上記線形式(2)で表わされる円錐近似形状をなし、次数nが異なる種々の形状の微細凹部22を形成した場合に、上記次数nと平均反射率(波長:380〜780nm)の関係を示したものであって、この図から明らかなように、当該線形式における次数nを1.1〜5の範囲とすることが望ましい。より望ましい範囲としては、1.5〜4の範囲であり、さらに望ましい範囲は、2〜4の範囲である。
Z={H/(D/2)}×X ・・・(2)
As shown in FIG. 5, FIG. 3 (b) is represented by the above linear form (2) with a distance H (depth) = 750 nm and an aperture diameter D = pitch A = 250 nm on both sides of the polymethyl methacrylate base material. This figure shows the relationship between the order n and the average reflectance (wavelength: 380 to 780 nm) in the case where the fine concave portions 22 having various shapes different in order n are formed. As is clear from the above, it is desirable that the order n in the line format be in the range of 1.1 to 5. A more desirable range is 1.5 to 4, and a further desirable range is 2 to 4.
Z = {H / (D / 2) n } × X n (2)

本発明の上記反射防止構造を透明基材の片面、望ましくは両面に設けることによって、反射防止構造体とすることができ、このような構造体を各種ディスプレイ装置のパネルや、ショウウインドウや展示ケースなどの透明パネルに適用することによって、外光や室内照明の反射を低減し、反射像の映り込みを効果的に防止して、映像や表示、内部展示物の視認性を向上させることができる。
また、自動車を始めとする各種の部品、例えば、ウインドウやルーフのガラス、メーターフロントカバー、ヘッドランプ、リヤフィニッシャー、液晶などの表示装置の最前面に用いるフィルムなど適用することによって、同様の反射防止効果を得ることができる。
By providing the antireflection structure of the present invention on one side, preferably both sides, of a transparent substrate, an antireflection structure can be obtained, and such a structure can be used as a panel of various display devices, a show window, or an exhibition case. By applying to a transparent panel, etc., it is possible to reduce the reflection of external light and room lighting, effectively prevent reflection of reflected images, and improve the visibility of images, displays, and internal exhibits .
In addition, by applying various parts such as automobiles, such as glass for windows and roofs, meter front covers, headlamps, rear finishers, and films used for the forefront of display devices such as liquid crystals, the same anti-reflection is applied. An effect can be obtained.

本発明の上記反射防止構造体を製造するに際しては、上記のような錐体状微細突起12あるいは微細凹部22から成る凸型あるいは凹型微細構造を備えた成形型を用意し、この成形型を成形しようとする透明基材のガラス移転点以上に加熱した上で、上記基材に押し当てることによって(熱ナノインプリント法)、あるいは上記成形型と透明基材の間に、活性エネルギー線硬化性樹脂を介在させた状態で、紫外線のような活性エネルギー線を照射し、当該樹脂を硬化させることによって(UVナノインプリント法)、上記透明基材の表面に上記のような凸型あるいは凹型微細構造を成形することができ、これら微細構造の上に、シリカやアルミナなどの粒子をバインダーと共に溶媒中に分散させたスラリーを塗布することによって、空間部分や開口内部に充填し、乾燥することによって粒子間に空隙を備えた状態に固着させることができる。   When the antireflection structure of the present invention is manufactured, a mold having a convex or concave microstructure composed of the cone-shaped fine protrusions 12 or the fine concave portions 22 as described above is prepared, and the mold is molded. After heating above the glass transition point of the transparent base material to be processed, the active energy ray-curable resin is applied by pressing against the base material (thermal nanoimprint method) or between the mold and the transparent base material. By irradiating active energy rays such as ultraviolet rays in the intervening state and curing the resin (UV nanoimprint method), the convex or concave microstructure as described above is formed on the surface of the transparent substrate. By applying a slurry in which particles such as silica and alumina are dispersed in a solvent together with a binder on these fine structures, the space portion Filling inside the opening, it can be fixed in a state having voids between the particles by drying.

上記透明基材の材料としては、例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリ塩化ビニール、ポリスチレン、ABS樹脂、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ガラス強化ポリエチレンテレフタレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、液晶性ポリマー、フッ素樹脂、ポリアレート、ポリスルホン、ポリエーテルスルホン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、シリコーン樹脂、ジアリルフタレート樹脂、ポリアミドビスマレイミド、ポリビスアミドトリアゾール等の熱硬化性樹脂、及びこれらを2種以上ブレンドした材料を用いることができる。
なお、透明基材としては、必ずしも無色透明である必要はなく、着色することも可能である。
Examples of the material for the transparent substrate include polyethylene, polypropylene, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polyvinyl chloride, polystyrene, ABS resin, AS resin, acrylic resin, polyamide, polyacetal, polybutylene terephthalate, and glass reinforced. Thermoplastic resins such as polyethylene terephthalate, polycarbonate, modified polyphenylene ether, polyphenylene sulfide, polyether ether ketone, liquid crystalline polymer, fluororesin, polyarate, polysulfone, polyethersulfone, polyamideimide, polyetherimide, thermoplastic polyimide, and phenol Resin, melamine resin, urea resin, epoxy resin, unsaturated polyester resin, alkyd resin, silicone resin, dia Rufutareto resin, polyamide bismaleimide, poly bisamide thermosetting resin triazole and the like, and can be used two or more kinds of these blended material.
In addition, as a transparent base material, it does not necessarily need to be colorless and transparent, and it can also color.

また、例えば紫外線などの照射によって重合を開始して、硬化する活性エネルギー線硬化樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート樹脂、紫外線硬化型ポリオールアクリレート樹脂、紫外線硬化型エポキシ樹脂などを挙げることができ、必要に応じて活性エネルギー線を照射することによってラジカルを発生する重合開始剤を用いることもでき、より強固に固めるためイソシアネートのような硬化剤を加えることもできる。
なお、ここで用いられる活性エネルギー線としては、代表的には、紫外線やX線、その他電子線、電磁波などが挙げられ、特に限定されるものではないが、安全性や作業の簡便さから、可視光線や紫外線が用いられることが多い。
Examples of the active energy ray curable resin that starts and cures upon irradiation with ultraviolet rays, for example, include ultraviolet curable acrylic urethane resins, ultraviolet curable polyester acrylate resins, ultraviolet curable epoxy acrylate resins, and ultraviolet rays. A curable polyol acrylate resin, an ultraviolet curable epoxy resin, and the like can be used, and a polymerization initiator that generates radicals by irradiating active energy rays can be used as necessary. Such a curing agent can also be added.
The active energy rays used here typically include ultraviolet rays, X-rays, other electron beams, electromagnetic waves, and the like, and are not particularly limited, but from the viewpoint of safety and ease of work, Visible light and ultraviolet light are often used.

また、ガラス等の無機系透明材料を用いることも可能であり、この場合には、有機シランを用いたゾル−ゲル法によって、上記のような反射防止構造を当該無機系材料の表面に形成する方法や、本発明の反射防止構造を備えた型に溶融した無機系透明材料を流し込む方法によって基材表面に凸型あるいは凹型微細構造を形成することができる。
なお、必要に応じて、溶融した無機系透明材料を流し込んだのち、冷却しないうちに同様の反射防止構造を有する第2の型を押し当てる、または両面に型を押し当てた無機系透明材料を軟化点まで加熱し、圧力をかけて形状を転写することによって、基材の両面に凸型あるいは凹型微細構造を形成することができる。
It is also possible to use an inorganic transparent material such as glass. In this case, the antireflection structure as described above is formed on the surface of the inorganic material by a sol-gel method using organosilane. A convex or concave microstructure can be formed on the surface of the substrate by the method or a method of pouring a molten inorganic transparent material into a mold having the antireflection structure of the present invention.
If necessary, after pouring a molten inorganic transparent material, a second mold having the same antireflection structure is pressed before cooling, or an inorganic transparent material with a mold pressed on both sides is used. By heating up to the softening point and applying pressure to transfer the shape, a convex or concave microstructure can be formed on both sides of the substrate.

以下に、実施例に基づいて、本発明をさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited only to these examples.

(実施例1)
市販の電子線描画装置で作成した凹型金型を使用した熱ナノインプリント法によって、ポリメチルメタクリレートの両面に、円形をなす底面の直径Dが250nm、底面の中心点間のピッチAが250nm、頂点から底面に下ろした垂線の距離(高さ)Hが750nmであって、次数nが1.1次の線形式(1)で表わされる稜線形状を有する無数の錐体状微細突起を備えた凸型微細構造を転写した。
Example 1
By a thermal nanoimprint method using a concave mold created with a commercially available electron beam drawing apparatus, the diameter D of the bottom surface forming a circle is 250 nm, the pitch A between the center points of the bottom surface is 250 nm on both sides of the polymethyl methacrylate, Convex shape having innumerable cone-shaped fine protrusions having a ridge line shape represented by a linear form (1) in which the distance (height) H of the perpendicular line dropped to the bottom surface is 750 nm and the order n is represented by the linear form (1) of the 1.1 order. The microstructure was transferred.

次に、この凸型微細構造を備えた上記ポリメチルメタクリレート基材の一方の面に、平均粒子径が13nmであって、その屈折率が1.46であるシリカ粒子54重量部とポリメチルフェニルシラン6重量部をメタノール50重量部中に分散させたスラリーを塗布し、紫外線照射後、100℃に加熱して乾燥させ、上記微細構造の空間部分に上記シリカ粒子と空隙から成る有効屈折率が1.20の部分を形成し、反射防止構造体を作製した。   Next, 54 parts by weight of silica particles having an average particle diameter of 13 nm and a refractive index of 1.46 on one surface of the polymethylmethacrylate base material having the convex microstructure and polymethylphenyl A slurry in which 6 parts by weight of silane is dispersed in 50 parts by weight of methanol is applied, irradiated with ultraviolet light, dried by heating to 100 ° C., and an effective refractive index consisting of the silica particles and voids is formed in the space portion of the microstructure. The portion of 1.20 was formed to produce an antireflection structure.

なお、得られた反射防止構造体の他方の面には、シリカ粒子スラリーを塗布することなく、凸型微細構造のままとした。
そして、シリカ粒子を充填した側の面から光を入射した時の反射率を測定した結果、0.53%であった。
Note that the other surface of the obtained antireflection structure was left with a convex microstructure without applying silica particle slurry.
And as a result of measuring the reflectance when light injects from the surface of the side filled with silica particles, it was 0.53%.

また、下記の要領によって、シリカ粒子を充填した反射防止構造面の鉛筆引っ掻き試験と汚れ拭き取り試験を実施したところ、何れも良好な結果が得られた。これらの結果を表1に示す。   Moreover, when the pencil scratch test and dirt wiping test of the antireflection structure surface filled with silica particles were carried out according to the following procedure, good results were obtained in both cases. These results are shown in Table 1.

〔鉛筆引っ掻き試験〕
JIS K 5600−5−4に基づく鉛筆硬度試験と同様の装置と条件のもとに、HBの鉛筆を用いて、試験面を1kg荷重で引っ掻き、目視によって傷が確認できないものを○、傷付が確認できたものを×として評価した。
〔汚れ拭き取り試験〕
0.1mLのスクワラン(屈折率1.45)を試験面に滴下し、キムワイプで塗り伸ばした後、ミクロスター(帝人社製)を用いて10往復させ、油脂汚れを拭き取り、拭き取り後のサンプルの反射率を測定した。
[Pencil scratch test]
Using the same equipment and conditions as in the pencil hardness test based on JIS K 5600-5-4, scratch the test surface with a 1 kg load using an HB pencil, ○ What was confirmed was evaluated as x.
[Dirt wiping test]
0.1 mL of squalane (refractive index of 1.45) is dropped onto the test surface, spread with Kimwipe, and then reciprocated 10 times using Microstar (manufactured by Teijin) to wipe off the oil stains. The reflectance was measured.

(実施例2)
上記実施例1に用いた凹型の金型形状を反転させた凸型金型を用いたこと以外は、上記実施例1と同様の操作を繰り返し、ポリメチルメタクリレートの表面に、円形をなす開口部を有し、上記実施例1の錐体状微細突起と同一寸法形状の錐体状微細凹部を無数に備えた凹型微細構造を転写すると共に、当該微細凹部の開口内にシリカ粒子を同様に充填して有効屈折率が1.20の部分を形成すると共に、裏面側には上記実施例1と同様の凸型微細構造を転写して、本例の反射防止構造体を作製した。
(Example 2)
Except that the convex mold obtained by inverting the concave mold used in Example 1 was used, the same operation as in Example 1 was repeated, and a circular opening was formed on the surface of polymethyl methacrylate. A concave microstructure having an infinite number of cone-shaped fine recesses of the same size and shape as the cone-shaped fine protrusions of Example 1 above, and similarly filling silica particles in the openings of the fine recesses As a result, a portion having an effective refractive index of 1.20 was formed, and a convex fine structure similar to that of Example 1 was transferred to the back surface side to produce an antireflection structure of this example.

そして、シリカ粒子を充填した側の面から光を入射した時の反射率を測定した結果、0.56%であった。
また、シリカ粒子を充填した反射防止構造面の鉛筆引っ掻き試験と汚れ拭き取り試験を同様に行ったところ、何れも良好な結果が得られた。これらの結果を表1に併せて示す。
And as a result of measuring the reflectance when light injects from the surface of the side filled with silica particles, it was 0.56%.
Further, when the pencil scratch test and the dirt wiping test on the antireflection structure surface filled with silica particles were conducted in the same manner, good results were obtained. These results are also shown in Table 1.

(実施例3)
線形式(1)における次数nを3次とすると共に、Hを250nmとした凸型金型を用いたこと以外は、上記実施例2と同様の操作を繰り返し、ポリメチルメタクリレートの表面に、無数の錐体状微細凹部を備えた凹型微細構造を転写し、上記微細凹部の開口内にシリカ粒子を同様の方法によって充填することにより有効屈折率が1.20の部分を形成すると共に、裏面側に上記実施例1と同様の凸型微細構造を転写して、本例の反射防止構造体とした。
(Example 3)
The same operation as in Example 2 was repeated except that a convex mold having an order n of 3 in the linear form (1) and H of 250 nm was used, and the surface of the polymethyl methacrylate was innumerable. A concave microstructure having a cone-shaped concave portion is transferred, and a portion having an effective refractive index of 1.20 is formed by filling silica particles in the opening of the fine concave portion in the same manner, and the back side A convex fine structure similar to that in Example 1 was transferred to the antireflection structure of this example.

そして、シリカ粒子を充填した側の面から光を入射した時の反射率を測定したところ、0.46%であった。
また、同様に、シリカ粒子を充填した反射防止構造面の鉛筆引っ掻き試験と汚れ拭き取り試験を行った結果、何れも良好な結果が得られた。これらの結果を表1に併せて示す。
And when the reflectance when light was incident from the surface on the side filled with silica particles was measured, it was 0.46%.
Similarly, as a result of conducting a pencil scratch test and a dirt wiping test on the surface of the antireflection structure filled with silica particles, good results were obtained. These results are also shown in Table 1.

(実施例4)
市販の電子線描画装置で作成した凸型金型を使用した熱ナノインプリント法によって、ポリメチルメタクリレートの両面に、円形をなす開口部の直径Dが250nm、開口部の中心点間のピッチAが250nm、開口面から最底部までの距離(深さ)Hが750nmであって、次数nが2次の線形式(2)で表わされる稜線形状を有する無数の錐体状微細凹部を備えた凹型微細構造を転写した。
Example 4
By a thermal nanoimprint method using a convex mold created by a commercially available electron beam drawing apparatus, the diameter D of the circular opening is 250 nm and the pitch A between the center points of the opening is 250 nm on both sides of the polymethyl methacrylate. A concave-shaped micro-recess having an infinite number of cone-shaped fine concave portions having a ridge line shape in which the distance (depth) H from the opening surface to the bottom portion is 750 nm and the order n is represented by a quadratic linear form (2) The structure was transcribed.

次に、上記凹型微細構造を備えた上記ポリメチルメタクリレート基材の一方の面に、上記同様のシリカ粒子スラリーを塗布することによって、上記微細凹部の開口内に上記シリカ粒子と空隙から成る有効屈折率が1.20の部分を形成し、反射防止構造体を作製した。
そして、シリカ粒子を充填した側の面から光を入射した時の反射率を測定した結果、0.31%であった。なお、得られた反射防止構造体の他方の面には、シリカ粒子スラリーを塗布することなく、凹型微細構造のままとした。
Next, by applying the same silica particle slurry to one surface of the polymethylmethacrylate base material having the concave microstructure, the effective refraction composed of the silica particles and voids in the opening of the fine recess. A portion having a rate of 1.20 was formed to produce an antireflection structure.
And as a result of measuring the reflectance when light injects from the surface of the side filled with silica particles, it was 0.31%. The other surface of the obtained antireflection structure was left as a concave microstructure without applying silica particle slurry.

また、同様の方法によって、鉛筆引っ掻き試験と汚れ拭き取り試験を実施したところ、何れも良好な結果が得られた。これらの結果を表1に併せて示す。   Moreover, when the pencil scratch test and the dirt wiping test were carried out by the same method, good results were obtained in both cases. These results are also shown in Table 1.

(比較例1)
円形底面の直径Dを500nm、底面の中心間のピッチAを500nmとした以外は上記実施例1と同様の凹型金型を用いて、ポリメチルメタクリレート基板の表面に無数の錐体状微細突起を備えた凸型微細構造を転写し、この上に上記シリカ粒子スラリーを塗布することによって、当該微細構造の空間部分に上記シリカ粒子と空隙から成る有効屈折率が1.20の部分を形成すると共に、裏面側に上記実施例1と同様の凸型微細構造を転写して、本例の反射防止構造体とした。
(Comparative Example 1)
Using the same concave mold as in Example 1 except that the diameter D of the circular bottom surface is 500 nm and the pitch A between the center of the bottom surface is 500 nm, innumerable cone-shaped fine protrusions are formed on the surface of the polymethyl methacrylate substrate. A portion having an effective refractive index of 1.20 consisting of the silica particles and voids is formed in a space portion of the microstructure by transferring the convex microstructure provided and applying the silica particle slurry thereon. Then, the same convex fine structure as in Example 1 was transferred to the back surface side to obtain the antireflection structure of this example.

そして、シリカ粒子を充填した側の面から光を入射した時の反射率を測定した結果、1.78%という高い反射率となった。
また、同様に、シリカ粒子を充填した反射防止構造面の鉛筆引っ掻き試験と汚れ拭き取り試験を行ったところ、油脂汚れ拭き取り後も反射率の増加は認められず、いずれも良好な結果が得られた。これらの結果を表1に併せて示す。
And when the reflectance when light was incident from the surface on the side filled with silica particles was measured, the reflectance was as high as 1.78%.
Similarly, when a pencil scratch test and a dirt wiping test were performed on the antireflection structure surface filled with silica particles, no increase in reflectivity was observed even after wiping oil and fat dirt, and good results were obtained in all cases. . These results are also shown in Table 1.

(比較例2)
上記実施例2において使用したものと同様の凸型金型を用いて、同様の方法を繰り返し、ポリメチルメタクリレート基材の両面に実施例2の表面側と同じ形状寸法の錐体状微細凹部を無数に備えた凹型微細構造を転写し、シリカ粒子スラリーを塗布することなく、本例の反射防止構造体とした。
(Comparative Example 2)
Using a convex mold similar to that used in Example 2 above, the same method is repeated, and conical fine recesses having the same shape and dimensions as the surface side of Example 2 are formed on both sides of the polymethyl methacrylate base. An infinite number of concave microstructures were transferred, and the antireflection structure of this example was obtained without applying silica particle slurry.

そして、当該反射防止構造体の反射率を測定した結果、0.10%であった。
また、同様の鉛筆引っ掻き試験と汚れ拭き取り試験を行った結果、鉛筆引っ掻き試験では、傷発生が確認されると共に、油脂汚れ拭き取り後の反射率の増加が認められ、汚れ除去性にも劣ることが確認された。これらの結果を表1に併せて示す。
And as a result of measuring the reflectance of the said antireflection structure, it was 0.10%.
In addition, as a result of performing the same pencil scratch test and dirt wiping test, in the pencil scratch test, the occurrence of scratches was confirmed, an increase in the reflectivity after wiping off the oil and grease dirt was observed, and the stain removability was inferior. confirmed. These results are also shown in Table 1.

(比較例3)
上記実施例2において使用したものと同様の凸型金型を用いて、同様の操作を繰り返し、ポリメチルメタクリレートの表面に、実施例2の表面側と同じ形状寸法の錐体状微細凹部を無数に備えた凹型微細構造を転写し、その上に平均粒子径が10nm、屈折率が1.46であるシリカ粒子49.5重量部ととポリメチルフェニルシラン0.5重量部ををメタノール50重量部中に分散させたスラリーを塗布し、紫外線照射後、100℃に加熱して乾燥させ、上記微細凹部の開口内にシリカ粒子と空隙から成る有効屈折率が1.45の部分を形成すると共に、裏面側に上記実施例1と同様の凸型微細構造を転写して、本例の反射防止構造体とした。
(Comparative Example 3)
Using a convex mold similar to that used in Example 2 above, the same operation is repeated, and a number of cone-shaped fine recesses having the same shape and dimensions as the surface side of Example 2 are formed on the surface of polymethyl methacrylate. The concave microstructure prepared in the above was transferred, and 49.5 parts by weight of silica particles having an average particle diameter of 10 nm and a refractive index of 1.46 and 0.5 parts by weight of polymethylphenylsilane were mixed with 50 parts by weight of methanol. The slurry dispersed in the part is applied, irradiated with ultraviolet rays, heated to 100 ° C. and dried to form a portion having an effective refractive index of 1.45 consisting of silica particles and voids in the opening of the fine recess. Then, the same convex fine structure as in Example 1 was transferred to the back surface side to obtain the antireflection structure of this example.

そして、得られた反射防止構造体のシリカ粒子を充填した側の面から光を入射した時の反射率を測定した結果、3.87%という高い値となった。
一方、シリカ粒子を充填した反射防止構造面の鉛筆引っ掻き試験と汚れ拭き取り試験を同様に行ったところ、油脂汚れ拭き取り後も反射率の増加は認められず、いずれも良好な結果が得られた。これらの結果を表1に併せて示す。
And as a result of measuring the reflectance when light was incident from the surface on the side filled with silica particles of the obtained antireflection structure, it was as high as 3.87%.
On the other hand, when the pencil scratch test and the dirt wiping test on the antireflection structure surface filled with silica particles were conducted in the same manner, no increase in reflectivity was observed even after wiping oil and fat dirt, and good results were obtained. These results are also shown in Table 1.

Figure 2007322767
Figure 2007322767

表1から明らかなように、所定の寸法形状の錐体状微細突起や凹部を備えた凸型あるいは凹型微細構造の空間部分にシリカ粒子を空隙をもって充填し、当該充填部分の屈折率を所定の値となるようにした実施例1〜4においては、優れた反射防止機能を有すると共に、耐傷付き性及び汚れ除去性に優れるのに対し、錐体状微細凹部のピッチが大きい比較例1においては、耐傷付き性や汚れ除去性には優れるものの、反射防止性能に劣り、シリカ粒子が充填されていない比較例2においては、反射防止性能には優れるものの、耐傷付き性及び汚れ除去性に劣り、シリカ充填部分の有効屈折率が高い比較例3においては、耐傷付き性や汚れ除去性には優れるものの、反射防止性能に劣ることが判明した。   As apparent from Table 1, silica particles are filled with voids in a space of a convex or concave microstructure having a cone-shaped fine protrusion or recess having a predetermined size and shape, and the refractive index of the filling portion is set to a predetermined value. In Examples 1 to 4 which are set to be values, while having an excellent antireflection function and excellent in scratch resistance and dirt removal, in Comparative Example 1 in which the pitch of the cone-shaped fine recesses is large Although the anti-scratch property and dirt removal property are excellent, the anti-reflection performance is inferior, and in Comparative Example 2 in which silica particles are not filled, the anti-reflection performance is excellent, but the scratch resistance and stain removal property are poor. In Comparative Example 3 in which the effective refractive index of the silica-filled portion was high, it was found that the antireflection performance was inferior although it was excellent in scratch resistance and dirt removal.

本発明の反射防止構造体の形態例として、錐体状微細突起を備えた凸型微細構造(a)と錐体状微細凹部を備えた凹型微細構造(b)を示すそれぞれ断面図である。FIG. 4 is a cross-sectional view showing a convex microstructure (a) having cone-shaped fine protrusions and a concave microstructure (b) having cone-shaped fine recesses as examples of the antireflection structure of the present invention. (a) 本発明の反射防止微細構造における錐体状微細突起の稜線形状をn次の線形式(1)で表した説明図である。(b) 本発明の反射防止微細構造における錐体状微細突起の稜線形状をn次の線形式(2)で表した説明図である。(A) It is explanatory drawing which represented the ridgeline shape of the cone-shaped fine processus | protrusion in the antireflection fine structure of this invention by the n-th line format (1). (B) It is explanatory drawing which represented the ridgeline shape of the cone-shaped fine processus | protrusion in the antireflection fine structure of this invention by the n-th line form (2). (a) 微粒子を充填していない錐体状微細突起の稜線形状をn次の線形式(1)で表した場合に、次数nと平均反射率の関係を示すグラフである。(b) 微粒子を充填していない錐体状微細凹部の稜線形状をn次の線形式(2)で表した場合に、次数nと平均反射率の関係を示すグラフである。(A) It is a graph which shows the relationship between order n and an average reflectance, when the ridgeline shape of the cone-shaped microprotrusion which is not filled with microparticles | fine-particles is represented by nth-order line format (1). (B) It is a graph which shows the relationship between order n and an average reflectance, when the ridgeline shape of the cone-shaped fine recessed part which is not filled with microparticles | fine-particles is represented by nth-order line format (2). (a)(b)及び(c)は、n次の線形式(1)で表した錐体状微細突起における稜線形状変化について次数nとの関係を示した概略図である。(A) (b) And (c) is the schematic which showed the relationship with the order n about the ridgeline shape change in the cone-shaped microprotrusion represented by the n-th line form (1). 基材表面に形成した錐体状微細凹部の形状例を示す斜視図である。It is a perspective view which shows the example of a shape of the cone-shaped fine recessed part formed in the base-material surface.

符号の説明Explanation of symbols

10 反射防止構造体(凸型微細構造)
11 透明基材
12 錐体状微細突起
13 粒子(+空隙)
20 反射防止構造体(凹型微細構造)
22 錐体状微細凹部
10 Antireflection structure (convex microstructure)
11 Transparent substrate 12 Cone-shaped fine protrusion 13 Particle (+ void)
20 Antireflection structure (concave microstructure)
22 Cone-shaped fine recess

Claims (15)

略円形又は多角形底面を有する無数の錐体状微細突起を備え、上記底面又は底面に外接する円の直径Dが380nm以下である凸型微細構造の空間部分に、可視光線の波長よりも小さなナノ粒子を空隙ができるように充填し、当該ナノ粒子を充填した部分の有効屈折率が1.10〜1.35であることを特徴とする反射防止構造。   An infinite number of cone-shaped microprojections having a substantially circular or polygonal bottom surface, and a space portion of a convex microstructure having a diameter D of 380 nm or less circumscribing the bottom surface or the bottom surface is smaller than the wavelength of visible light An antireflection structure, wherein nanoparticles are filled so as to form voids, and an effective refractive index of a portion filled with the nanoparticles is 1.10 to 1.35. 上記底面の重心点間のピッチAが380nm以下であることを特徴とする請求項1に記載の反射防止構造。   2. The antireflection structure according to claim 1, wherein a pitch A between centroids of the bottom surface is 380 nm or less. 上記錐体状微細突起の頂点から底面に下ろした垂線の距離Hが150nm〜1500nmであることを特徴とする請求項1又は2に記載の反射防止構造。   The antireflection structure according to claim 1 or 2, wherein a distance H of a perpendicular line extending from the apex of the cone-shaped fine protrusion to the bottom surface is 150 nm to 1500 nm. 上記錐体状微細突起の頂点を含み、底面に垂直な断面における頂点と底辺を結ぶ線の線形式が次式(1)で表わされ、次数nが1.1〜5であることを特徴とする請求項1〜3のいずれか1つの項に記載の反射防止構造。
X=(D/2)×{1−(Z/H)}・・・(1)
The line form of the line that includes the apex of the cone-shaped fine protrusion and connects the apex and the base in the cross section perpendicular to the bottom is expressed by the following equation (1), and the order n is 1.1 to 5: The antireflection structure according to any one of claims 1 to 3.
X = (D / 2) × {1- (Z / H) n } (1)
上記錐体状微細突起の頂点を含み、底面に垂直な断面における頂点と底辺を結ぶ線の線形式が次式(2)で表わされ、次数nが1.1〜5であることを特徴とする請求項1〜3のいずれか1つの項に記載の反射防止構造。
Z={H/(D/2)}×X ・・・(2)
The line form of the line that includes the apex of the cone-shaped fine protrusion and connects the apex and the base in the cross section perpendicular to the bottom is expressed by the following equation (2), and the order n is 1.1 to 5: The antireflection structure according to any one of claims 1 to 3.
Z = {H / (D / 2) n } × X n (2)
略円形又は多角形の開口部を有する無数の錐体状微細凹部を備え、上記開口部又は開口部に外接する円の直径Dが380nm以下である凹型微細構造の空間部分に、可視光線の波長よりも小さなナノ粒子を空隙ができるように充填し、当該ナノ粒子を充填した部分の有効屈折率が1.10〜1.35であることを特徴とする反射防止構造。   A wavelength of visible light is provided in a space portion of a concave microstructure having an infinite number of cone-shaped fine concave portions having a substantially circular or polygonal opening, and a diameter D of a circle circumscribing the opening or the opening is 380 nm or less. An antireflection structure, wherein smaller nanoparticles are filled so as to form voids, and an effective refractive index of a portion filled with the nanoparticles is 1.10 to 1.35. 上記開口部の重心点間のピッチAが380nm以下であることを特徴とする請求項6に記載の反射防止構造。   The antireflection structure according to claim 6, wherein the pitch A between the center of gravity of the openings is 380 nm or less. 上記錐体状微細凹部の最底部から開口面までの距離Hが150nm〜1500nmであることを特徴とする請求項6又は7に記載の反射防止構造。   The antireflection structure according to claim 6 or 7, wherein a distance H from the bottom of the cone-shaped fine concave portion to the opening surface is 150 nm to 1500 nm. 上記錐体状微細凹部の最底部を含み、開口面に垂直な断面における底部頂点と開口端を結ぶ線の線形式が次式(1)で表わされ、次数nが1.1〜5であることを特徴とする請求項6〜8のいずれか1つの項に記載の反射防止構造。
X=(D/2)×{1−(Z/H)}・・・(1)
The line form of the line connecting the bottom vertex and the opening end in the cross section perpendicular to the opening surface including the bottom of the cone-shaped fine recess is expressed by the following formula (1), and the order n is 1.1 to 5: The antireflection structure according to claim 6, wherein the antireflection structure is provided.
X = (D / 2) × {1- (Z / H) n } (1)
上記錐体状微細凹部の最底部を含み、開口面に垂直な断面における底部頂点と開口端を結ぶ線の線形式が次式(2)で表わされ、次数nが1.1〜5であることを特徴とする請求項6〜8のいずれか1つの項に記載の反射防止構造。
Z={H/(D/2)}×X ・・・(2)
The line form of the line connecting the bottom vertex and the opening end in the cross section perpendicular to the opening surface including the bottom of the cone-shaped fine recess is expressed by the following equation (2), and the order n is 1.1-5: The antireflection structure according to claim 6, wherein the antireflection structure is provided.
Z = {H / (D / 2) n } × X n (2)
上記空間部分に充填するナノ粒子の1次粒子径が1〜50nm、屈折率が1.35〜1.55であることを特徴とする請求項1〜10のいずれか1つの項に記載の反射防止構造。   11. The reflection according to claim 1, wherein the nanoparticles filled in the space portion have a primary particle diameter of 1 to 50 nm and a refractive index of 1.35 to 1.55. Prevention structure. 請求項1〜11のいずれか1つの項に記載の反射防止構造を透明基材の少なくとも一方の面に備えていることを特徴とする反射防止構造体。   An antireflection structure comprising the antireflection structure according to any one of claims 1 to 11 on at least one surface of a transparent substrate. 請求項1〜11のいずれか1つの項に記載の微細構造を備えた成形型を透明基材のガラス移転点以上に加熱した状態で上記基材に押し当て、当該基材の表面に形成した上記微細構造の空間部分に粒子を充填することを特徴とする反射防止構造体の製造方法。   A mold having the microstructure according to any one of claims 1 to 11 is pressed against the substrate in a state of being heated to a glass transfer point or more of the transparent substrate, and formed on the surface of the substrate. A method for producing an antireflection structure, wherein the space portion of the fine structure is filled with particles. 請求項1〜11のいずれか1つの項に記載の微細構造を備えた成形型と透明基材の間に活性エネルギー線硬化性樹脂を介在させた状態で活性エネルギー線を照射し、当該基材の表面に形成した上記微細構造の空間部分に粒子を充填することを特徴とする反射防止構造体の製造方法。   An active energy ray is irradiated in a state where an active energy ray-curable resin is interposed between a mold having the microstructure according to any one of claims 1 to 11 and a transparent base material, and the base material A method for producing an antireflection structure, wherein particles are filled in the space portion of the fine structure formed on the surface of the substrate. 請求項1〜11のいずれか1つの項に記載の反射防止構造を備えていることを特徴とする自動車用部品。   An automotive part comprising the antireflection structure according to any one of claims 1 to 11.
JP2006153145A 2006-06-01 2006-06-01 Anti-reflection structure, anti-reflection structural body and its manufacturing method Pending JP2007322767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153145A JP2007322767A (en) 2006-06-01 2006-06-01 Anti-reflection structure, anti-reflection structural body and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153145A JP2007322767A (en) 2006-06-01 2006-06-01 Anti-reflection structure, anti-reflection structural body and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007322767A true JP2007322767A (en) 2007-12-13

Family

ID=38855630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153145A Pending JP2007322767A (en) 2006-06-01 2006-06-01 Anti-reflection structure, anti-reflection structural body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007322767A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942446B1 (en) * 2008-03-31 2010-02-17 제이엠아이 주식회사 Anti-reflection panel with protection layer and manufacturing method thereof
JP2011062254A (en) * 2009-09-15 2011-03-31 Terumo Corp Optical probe
JP2011113066A (en) * 2009-11-30 2011-06-09 Dainippon Printing Co Ltd Method of manufacturing optical sheet, optical sheet and video display device
US9945987B2 (en) 2014-10-07 2018-04-17 Sharp Kabushiki Kaisha Transparent film, and method for producing transparent film
US10224126B2 (en) 2014-10-07 2019-03-05 Sharp Kabushiki Kaisha Transparent conductor, method for producing transparent conductor, and touch panel
JP2019529171A (en) * 2016-09-13 2019-10-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Laminate having wear-resistant layer, apparatus having the laminate, and method for producing the laminate
WO2023188922A1 (en) * 2022-03-30 2023-10-05 キヤノン株式会社 Member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942446B1 (en) * 2008-03-31 2010-02-17 제이엠아이 주식회사 Anti-reflection panel with protection layer and manufacturing method thereof
JP2011062254A (en) * 2009-09-15 2011-03-31 Terumo Corp Optical probe
JP2011113066A (en) * 2009-11-30 2011-06-09 Dainippon Printing Co Ltd Method of manufacturing optical sheet, optical sheet and video display device
US9945987B2 (en) 2014-10-07 2018-04-17 Sharp Kabushiki Kaisha Transparent film, and method for producing transparent film
US10224126B2 (en) 2014-10-07 2019-03-05 Sharp Kabushiki Kaisha Transparent conductor, method for producing transparent conductor, and touch panel
JP2019529171A (en) * 2016-09-13 2019-10-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Laminate having wear-resistant layer, apparatus having the laminate, and method for producing the laminate
WO2023188922A1 (en) * 2022-03-30 2023-10-05 キヤノン株式会社 Member

Similar Documents

Publication Publication Date Title
JP5170495B2 (en) Antireflection microstructure and antireflection structure
JP6424966B2 (en) Image projection structure and image projection method
JP2007264594A (en) Anti-reflection fine structure, anti-reflection molded body, method of producing the same
JP2009075539A (en) Anti-reflective structure and anti-reflective molded body
JP2007322763A (en) Anti-reflection structure, anti-reflection structural body and its manufacturing method
US7940462B2 (en) Antireflective structure and antireflective molded body
JP2007322767A (en) Anti-reflection structure, anti-reflection structural body and its manufacturing method
JP2008122435A (en) Water repellent reflection preventive structure and its manufacturing method
JP5146722B2 (en) Antireflection structure and structure
JP2008158293A (en) Hydrophilic antireflection structure
JP2008090212A (en) Antireflection optical structure, antireflection optical structure body and its manufacturing method
JP2007187868A (en) Wetting control antireflection optical structure and automotive window glass
JP5630076B2 (en) Reflective screen, video display system, and method of manufacturing reflective screen
WO2015089147A1 (en) Transparent diffusers for lightguides and luminaires
JP2008203473A (en) Antireflection structure and structure
KR20090033073A (en) Optical laminates, polarizing paltes and image display devices
JP2009294341A (en) Water-repellent antireflection structure and water-repellent antireflection molding
TWI702414B (en) Optical film and display device with touch panel
JP2009042714A (en) Water repellent anti-reflective structure and method of manufacturing the same
JP2009198626A (en) Anti-reflective structure and anti-reflective molded body
JP2011169961A (en) Hydrophilic antireflection structure and method of manufacturing the same
JP2007322877A (en) Optical laminated body
CN101034165A (en) Anti-reflection structure, anti-reflection mold body, method of producing the anti-reflection mold body, and automobile part
JP2007065563A (en) Antireflective optical structure
JP2009198628A (en) Anti-reflective structure and anti-reflective molded body