JP2011169961A - Hydrophilic antireflection structure and method of manufacturing the same - Google Patents

Hydrophilic antireflection structure and method of manufacturing the same Download PDF

Info

Publication number
JP2011169961A
JP2011169961A JP2010031256A JP2010031256A JP2011169961A JP 2011169961 A JP2011169961 A JP 2011169961A JP 2010031256 A JP2010031256 A JP 2010031256A JP 2010031256 A JP2010031256 A JP 2010031256A JP 2011169961 A JP2011169961 A JP 2011169961A
Authority
JP
Japan
Prior art keywords
unevenness
hydrophilic
antireflection structure
fine
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010031256A
Other languages
Japanese (ja)
Inventor
Kazuaki Tokuge
一晃 徳毛
Yuji Okuyama
裕司 奥山
Isao Yamamoto
功 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010031256A priority Critical patent/JP2011169961A/en
Publication of JP2011169961A publication Critical patent/JP2011169961A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrophilic antireflection structure which has a fine structure, having both of a light antireflection performance and hydrophilicity, is superior in durability, as well, and is capable of maintaining a stainproof performance excelling in the easiness of wiping off stains and the antireflection function over a long period; and to provide an article provided with such a hydrophilic antireflection structure, an automobile component, for instance. <P>SOLUTION: For a surface shape, on at least a part of a surface having a first irregularity 1, having periodicity shorter than the wavelength of a visible light beam, a second irregularity 2, whose irregularity interval and height difference are smaller than that of the first irregularity 1 is provided, and hence the contact angle with respect to water is set to 80° or smaller. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、親水性を有し、防汚性能、すなわち汚れの付着し難さと付着した場合の拭取り易さに優れると共に、光の反射防止機能を発揮する微細凹凸表面を備えた親水性反射防止構造と、このような親水性反射防止構造の製造方法に関するものである。   The present invention has hydrophilicity and antifouling performance, that is, excellent adhesion to dirt and ease of wiping when adhered, and a hydrophilic reflection having a fine uneven surface that exhibits an antireflection function for light. The present invention relates to a prevention structure and a method for producing such a hydrophilic antireflection structure.

自動車などの輸送用機器におけるメーターやナビディスプレイといった表示機器の表面に、車外の景色や照明、乗員の影などが映り込むと、表示されている情報に対する視認性が著しく低下することがある。
また、液晶ディスプレイやCRTディスプレイなど各種のディスプレイ装置、例えば家庭用テレビの画面に外光や室内の照明などの影が映り込むと、本来の映像の視認性が著しく低下することがある。
When scenery or lighting outside the vehicle, shadows of passengers, or the like are reflected on the surface of a display device such as a meter or a navigation display in a transport device such as an automobile, the visibility of displayed information may be significantly reduced.
In addition, when a shadow such as outside light or indoor lighting is reflected on various display devices such as a liquid crystal display and a CRT display, for example, a screen of a home television, the visibility of the original image may be significantly lowered.

このような光の反射を防止するための構造としては、屈折率の異なる複数の薄膜からなる多層反射防止膜が知られているが、このような多層反射防止膜よりもさらに反射率を低くすることができるものとして、微細凹凸構造を用いた反射防止構造が知られている(例えば、特許文献1参照)。   As a structure for preventing such reflection of light, a multilayer antireflection film composed of a plurality of thin films having different refractive indexes is known, but the reflectance is further lowered than such a multilayer antireflection film. An antireflection structure using a fine concavo-convex structure is known (see, for example, Patent Document 1).

上記のような凹凸微細構造表面に指紋等の汚れが付着した場合に、布で拭取ろうとしても、布の繊維が微細構造の底部にまで届かないために汚れが落ち難いことがある。
汚れの拭取り性を向上させるための手法としては、表面を親水化して水拭きの際に汚れを浮き上がらせて拭取りやすくすることが考えられる。
When dirt such as fingerprints adheres to the surface of the concavo-convex fine structure as described above, even if an attempt is made to wipe it off with a cloth, the cloth fiber may not reach the bottom of the fine structure, so that the dirt may be difficult to remove.
As a technique for improving the wiping property of dirt, it is conceivable to make the surface hydrophilic so that the dirt is lifted up when wiping with water to facilitate wiping.

このような微細凹凸から成る反射防止構造表面を親水化するために、このような反射防止構造の材料として、親水性材料を用いることが提案されている(例えば、特許文献2参照)。   In order to make the surface of the antireflection structure composed of such fine irregularities hydrophilic, it has been proposed to use a hydrophilic material as the material of such an antireflection structure (see, for example, Patent Document 2).

特開2002−256815号公報JP 2002-256815 A 特開2008−158293号公報JP 2008-158293 A

しかしながら、上記特許文献1に記載の反射防止構造は、光の波長以下のピッチに配列された無数の微細凹凸から成るものであるが、表面の親水性について、ほとんど考慮されておらず、防汚性能を満たしていない。
一方、特許文献2に記載の親水性反射防止構造においては、親水性の材料で表面を親水化することは可能であるものの、このような材料から成る微細凹凸は布などによる払拭に対する耐久性が低いという問題があった。
However, although the antireflection structure described in Patent Document 1 is composed of innumerable fine irregularities arranged at a pitch equal to or less than the wavelength of light, the hydrophilicity of the surface is hardly taken into consideration and the antifouling structure is not considered. The performance is not met.
On the other hand, in the hydrophilic antireflection structure described in Patent Document 2, it is possible to make the surface hydrophilic with a hydrophilic material, but the fine irregularities made of such a material have durability against wiping with a cloth or the like. There was a problem of being low.

本発明は、光の反射防止構造や親水性微細構造における上記課題を解決すべくなされたものである。
そして、その目的とするところは、光の反射防止性能と親水性とを兼ね備えると共に、耐久性に優れ、汚れの拭取り易さに優れる防汚性能と光の反射防止機能を長期間維持することができる親水性反射防止構造と、このような親水性反射防止構造を備えた物品、例えば自動車用部品を提供することにある。
The present invention has been made to solve the above-mentioned problems in the antireflection structure for light and the hydrophilic fine structure.
And the purpose is to maintain both anti-fouling performance and light anti-reflection function for a long period of time, having both anti-reflection performance of light and hydrophilicity, excellent durability and easy wiping of dirt. It is an object of the present invention to provide a hydrophilic antireflection structure capable of achieving the above and an article provided with such a hydrophilic antireflection structure, for example, an automotive part.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、反射防止機能を有する第1の凹凸を備えた表面上に、それよりも小さい第2の凹凸をさらに形成することによって、上記目的が達成できることを見出し、本発明を完成するに到った。   As a result of intensive investigations to achieve the above object, the present inventors have further formed a second unevenness smaller than that on the surface provided with the first unevenness having an antireflection function. The inventors have found that the above object can be achieved and have completed the present invention.

すなわち、本発明は上記知見に基づくものであって、本発明の親水性反射防止構造は、可視光線の波長よりも短い周期性を有する第1の凹凸を有する表面の少なくとも一部に、凹凸の間隔及び高低差が第1の凹凸よりも小さい第2の凹凸を備え、水に対する接触角が80°以下であることを特徴としている。   That is, the present invention is based on the above knowledge, and the hydrophilic antireflection structure of the present invention has irregularities on at least a part of the surface having the first irregularities having a periodicity shorter than the wavelength of visible light. It is characterized by having second irregularities whose spacing and height difference are smaller than the first irregularities, and having a contact angle with water of 80 ° or less.

また、本発明の親水性反射防止構造体は、上記した親水性反射防止構造を基材の少なくとも一方の面に備えていることを特徴とし、本発明の物品と共に、本発明の自動車用部品は、上記親水性反射防止構造を備えていることを特徴とする。   The hydrophilic antireflection structure of the present invention is characterized in that the above-described hydrophilic antireflection structure is provided on at least one surface of a substrate, and together with the article of the present invention, the automotive part of the present invention comprises: The above-mentioned hydrophilic antireflection structure is provided.

本発明によれば、光の波長よりも短い周期で配列された無数の微細凹凸を備えた第1の凹凸と、これよりも小さな第2の凹凸を第1の凹凸表面上に備えたものであるから、第1の凹凸によって光の反射防止機能が発揮される。そして、その上の第2の凹凸によって、第1の凹凸における微細凹凸の強度、すなわち対払拭耐久性に影響を及ぼすことなく親水性が付与され、光の反射防止性と親水性(防汚性能)を長期に亘って発揮させることができる。   According to the present invention, the first unevenness provided with innumerable fine unevenness arranged at a cycle shorter than the wavelength of light and the second unevenness smaller than this are provided on the first uneven surface. For this reason, the first unevenness exerts the light reflection preventing function. And the hydrophilicity is imparted without affecting the strength of the fine irregularities in the first irregularities, that is, the anti-wiping durability, by the second irregularities thereon, and the light antireflection property and hydrophilicity (antifouling performance) ) Can be exhibited over a long period of time.

本発明の親水性反射防止構造の一例を示す断面図である。It is sectional drawing which shows an example of the hydrophilic antireflection structure of this invention. 本発明の親水性反射防止構造における第1の凹凸の例として、円錐状をなす微細凸部から成る凹凸形状を示す斜視図である。It is a perspective view which shows the uneven | corrugated shape which consists of a fine convex part which makes cone shape as an example of the 1st unevenness | corrugation in the hydrophilic antireflection structure of this invention. 同じく本発明の親水性反射防止構造における第1の凹凸の他の例として、四角錐状をなす微細凸部から成る凹凸形状を示す斜視図である。Similarly, as another example of the first concavo-convex in the hydrophilic antireflection structure of the present invention, it is a perspective view showing a concavo-convex shape composed of fine convex portions having a quadrangular pyramid shape. 同じく本発明の親水性反射防止構造における第1の凹凸のさらに他の例として、円錐状をなす微細凸部と微細凹部とから成る凹凸形状を示す斜視図である。Similarly, as another example of the first unevenness in the hydrophilic antireflection structure of the present invention, it is a perspective view showing an uneven shape composed of a conical fine convex portion and a fine concave portion. 同じく本発明の親水性反射防止構造における第1の凹凸の別な例として、四角錐状をなす微細凸部と微細凹部とから成る凹凸形状を示す斜視図である。Similarly, as another example of the first unevenness in the hydrophilic antireflection structure of the present invention, it is a perspective view showing an uneven shape composed of fine convex portions and fine concave portions having a quadrangular pyramid shape. 本発明の親水性反射防止構造の一例として、比較例2により得られた構造体の表面形状を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface shape of the structure obtained by the comparative example 2 as an example of the hydrophilic antireflection structure of this invention. 本発明の親水性反射防止構造の他の例として、実施例2により得られた構造体の表面形状を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface shape of the structure obtained by Example 2 as another example of the hydrophilic antireflection structure of this invention. 本発明の親水性反射防止構造のさらに他の例として、実施例3により得られた構造体の表面形状を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface shape of the structure obtained by Example 3 as another example of the hydrophilic antireflection structure of this invention. 本発明の親水性反射防止構造の別の例として、実施例4により得られた構造体の表面形状を示す電子顕微鏡写真である。It is an electron micrograph which shows the surface shape of the structure obtained by Example 4 as another example of the hydrophilic antireflection structure of this invention.

以下、本発明の親水性反射防止構造やこれを適用した構造体について、その製造方法や実施形態などと共に、さらに詳細に説明する。   Hereinafter, the hydrophilic antireflection structure of the present invention and the structure to which the hydrophilic antireflection structure is applied will be described in more detail along with the manufacturing method and embodiments thereof.

本発明の親水性反射防止構造は、上記したように、可視光線の波長よりも短い周期性を有する第1の凹凸を有する表面の少なくとも一部に、凹凸の間隔及び高低差が第1の凹凸よりも小さい第2の凹凸を備えた構造を有し、水に対する接触角が80°以下である。
すなわち、図1は、本発明の親水性反射防止構造例を示す断面図であって、この親水性反射防止構造は、第1の凹凸1の表面上に、凹凸の間隔及び高低差において第1の凹凸1よりも小さい第2の凹凸2を備えている。
As described above, the hydrophilic antireflection structure of the present invention has the first unevenness in the interval between the unevenness and the height difference on at least a part of the surface having the first unevenness having a periodicity shorter than the wavelength of visible light. And a contact angle with water of 80 ° or less.
In other words, FIG. 1 is a cross-sectional view showing an example of the hydrophilic antireflection structure of the present invention, and this hydrophilic antireflection structure is formed on the surface of the first unevenness 1 in the first and second unevenness intervals and height differences. The second unevenness 2 smaller than the unevenness 1 is provided.

ここで、上記第2の凹凸2は、第1の凹凸1よりも小さいものでありさえすれば、形状的な限定はない。また、第1の凹凸1の表面積を増大させるという意味で、第1の凹凸1の表面上に隙間なく、密に配列されていることは必ずしも必要ではない。   Here, as long as the second unevenness 2 is smaller than the first unevenness 1, there is no shape limitation. In addition, it is not always necessary that the first unevenness 1 is densely arranged on the surface of the first unevenness 1 without a gap in the sense that the surface area of the first unevenness 1 is increased.

本発明の親水性反射防止構造においては、第1の凹凸1の表面上に、さらに微細な第2の凹凸2が存在することによって表面積が増大し、見かけ上表面張力が増加する。これによって、当該表面に付着した水は、より濡れ広がるようになり親水化する。
このときの親水性の指標としては、このような第1及び第2の凹凸1,2を備えた表面の水に対する接触角が80°以下であることが必要となる。これによって、表面を水拭きをした場合に、付着した汚れを浮き上がらせて拭取りやすくすることができる。なお、接触角の値は、小さいほど水との親和性が高く、防汚性が向上することから、40°以下であることがより望ましく、拭取る際の荷重や往復回数を減らすことができる。
In the hydrophilic antireflection structure of the present invention, the surface area is increased due to the presence of the finer second irregularities 2 on the surface of the first irregularities 1, and the surface tension is apparently increased. As a result, the water adhering to the surface becomes more wet and spreads and becomes hydrophilic.
As a hydrophilicity index at this time, it is necessary that the contact angle of the surface provided with the first and second irregularities 1 and 2 with respect to water is 80 ° or less. Thereby, when the surface is wiped with water, the attached dirt can be lifted to facilitate wiping. The smaller the contact angle, the higher the affinity with water and the better the antifouling property. Therefore, the contact angle is more preferably 40 ° or less, and the load and the number of reciprocations when wiping can be reduced. .

従来技術のように、微細凹凸を親水性材料で構成すると、凹凸表面に親水性官能基が多く存在すること等から微細凹凸の表面硬度が低下する傾向がある。そのため、付着した汚れを布等で拭取る作業を繰り返すうちに、微細凹凸の頂点付近から順次摩耗していき、凹凸形状が破壊されてしまい易くなる。
本発明においては、親水性材料を用いる代わりに第2の凹凸を付与することで親水性を発現させるので、微細凹凸の表面硬度には影響しない。このため、布等が拭取り時に接触する第1の凹凸の頂点付近は摩耗し難くなる。その結果、第1の凹凸の側面や底部には布等が接触し難くなり、付与された第2の凹凸と共に、凹凸形状が保持され易くなる。第2の凹凸の形状が保持されるため、親水性の低下(経時劣化)、水拭き時に汚れを浮き上がらせる作用の低下を防ぐことができる。
When the fine irregularities are made of a hydrophilic material as in the prior art, the surface hardness of the fine irregularities tends to decrease due to the presence of many hydrophilic functional groups on the irregular surface. For this reason, while the operation of wiping off the attached dirt with a cloth or the like is repeated, it gradually wears from the vicinity of the apex of the fine unevenness, and the uneven shape tends to be destroyed.
In this invention, since hydrophilicity is expressed by providing the 2nd unevenness | corrugation instead of using a hydrophilic material, it does not affect the surface hardness of a fine unevenness | corrugation. For this reason, it becomes difficult to wear near the vertex of the 1st unevenness which cloth etc. contact at the time of wiping off. As a result, it becomes difficult for the cloth or the like to come into contact with the side surface or bottom of the first unevenness, and the uneven shape is easily held together with the applied second unevenness. Since the shape of the 2nd unevenness | corrugation is hold | maintained, the fall of hydrophilicity fall (aging deterioration) and the fall of the effect | action which raises dirt at the time of water wiping can be prevented.

本発明の親水性反射防止構造において、第1の凹凸1としては、例えば図2に示すように、円錐状をなす微細凸部1aがX−Y方向に可視光線の波長よりも短い周期(すなわちピッチP)で配列(正方配列)された構造を採用することができる。
ここで言うピッチPとは、具体的には微細凸部1aの頂点間距離、あるいは底面の重心間距離として定義され、これが可視光線の波長以上、具体的には可視光の最小値380nm以上となると、回折光が発生し、反射防止性能が低下することから、380nm未満であることが求められ、特に250nm以下であることが好ましい。
In the hydrophilic antireflection structure of the present invention, as the first unevenness 1, for example, as shown in FIG. 2, the fine convex portion 1 a having a conical shape has a cycle shorter than the wavelength of visible light in the XY direction (that is, It is possible to adopt a structure arranged at a pitch P) (square arrangement).
The pitch P here is specifically defined as the distance between the vertices of the fine protrusions 1a or the distance between the centers of gravity of the bottom surfaces, which is equal to or greater than the wavelength of visible light, specifically, the minimum value of visible light of 380 nm or greater. Then, since diffracted light is generated and the antireflection performance is lowered, it is required to be less than 380 nm, particularly preferably 250 nm or less.

なお、微細凸部1aの周期的配列は、正方配列に限定されることはなく、六方配列でもよいことは言うまでもない。このとき、正方配列のように、方向によってピッチPが相違するような場合には、大きい方の値をピッチPと定義する。   Needless to say, the periodic arrangement of the fine protrusions 1a is not limited to a square arrangement, and may be a hexagonal arrangement. At this time, when the pitch P is different depending on the direction as in the square arrangement, the larger value is defined as the pitch P.

このように、円錐形状のような微細凸部1aを可視光線の波長よりも短いピッチPで規則的に配置して成る第1の凹凸1においては、その厚み方向の各断面における材料の占有面積によって定まる厚み方向の屈折率は、急激に変化することなく、空気の屈折率1.0から、材料の屈折率までなだらかに、連続的に変化するようになる。したがって、このような微細な凹凸1に入射した光は、ほとんど回折や反射が生じることなく直進することになって、入射表面における光の反射率を大幅に低減することができる。   Thus, in the 1st unevenness | corrugation 1 which arrange | positions the fine convex part 1a like a cone regularly with the pitch P shorter than the wavelength of visible light, the occupation area of the material in each cross section of the thickness direction The refractive index in the thickness direction determined by ## EQU1 ## changes smoothly from the refractive index 1.0 of air to the refractive index of the material without abrupt changes. Therefore, the light incident on such fine irregularities 1 travels straight with almost no diffraction or reflection, and the reflectance of light on the incident surface can be greatly reduced.

上記微細凸部1aの形状は、基端側から先端に向けて断面積が徐々に減少するような先細り形状である限り、特に限定はなく、図3に示すような角錐状(図では四角錐)のほか、椎の実状、砲弾状、釣鐘状、半紡錘形、側面が2次元曲面を有する角錐状のものでもよい。また、頂部を平坦化した円錐台状や角錐台状としてもよい。
さらには、凸部に換えて凹部とすることや、図4,5に示すように、微細凸部1aと微細凹部1bとが規則的に配置されたものにすることも可能である。また、正弦波形状の曲面が三次元的に連続するような凹凸面とすることもできる。
The shape of the fine convex portion 1a is not particularly limited as long as it is a tapered shape whose cross-sectional area gradually decreases from the proximal end side toward the distal end, and is a pyramid shape as shown in FIG. In addition, the shape of a vertebra, a shell, a bell, a semi-spindle, and a pyramid having a two-dimensional curved surface may be used. Moreover, it is good also as a truncated cone shape and a truncated pyramid shape which flattened the top part.
Furthermore, it is possible to use a concave portion instead of the convex portion, or to arrange the fine convex portion 1a and the fine concave portion 1b regularly as shown in FIGS. Moreover, it can also be set as an uneven surface where a sinusoidal curved surface continues three-dimensionally.

本発明の親水性反射防止構造における第1の凹凸1においては、微細凸部1aの高さHとピッチPの比H/Pで定義されるアスペクト比が1以上であることが望ましく、これによって光の反射率をより確実に低いものとすることができる。
なお、微細凸部1aに換えて微細凹部1bから成る凹凸構造の場合は、高さHに相当する凹部1bの深さH’を用いてH’/Pをアスペクト比とする。また、図4,5に示したように微細凸部1aと微細凹部1bが混在する場合には、最高部と最低部の差、すなわちH+H’を用いて(H+H’)/Pをアスペクト比と定義する。
In the first unevenness 1 in the hydrophilic antireflection structure of the present invention, it is desirable that the aspect ratio defined by the ratio H / P of the height H and the pitch P of the fine protrusions 1a is 1 or more. The light reflectance can be more reliably lowered.
Note that in the case of a concavo-convex structure including fine concave portions 1b instead of the fine convex portions 1a, the aspect ratio is set to H ′ / P using the depth H ′ of the concave portions 1b corresponding to the height H. 4 and 5, when the fine convex portion 1a and the fine concave portion 1b are mixed, the difference between the highest portion and the lowest portion, that is, H + H 'is used, and (H + H') / P is defined as the aspect ratio. Define.

一方、第2の凹凸2は、図1に示したように、凹凸の間隔及び高低差において第1の凹凸1よりも小さいものである限り、形状的な限定はない。
すなわち、第1の凹凸1の表面上に、さらに微細な第2の凹凸2が存在することによって表面積が増大し、見かけ上表面張力が増加する。
On the other hand, as shown in FIG. 1, the second unevenness 2 is not limited in shape as long as it is smaller than the first unevenness 1 in the unevenness interval and height difference.
That is, the surface area is increased due to the presence of the finer second irregularities 2 on the surface of the first irregularities 1, and the surface tension is apparently increased.

そして、本発明の親水性反射防止構造における凹凸表面の水に対する接触角を上記したように80°以下の親水性表面とするには、当該凹凸表面を構成する材料の水に対する接触角が90°未満の材料を用いることが望ましい。
すなわち、凹凸表面を構成する材料として、水に対する表面張力が空気に対する表面張力より小さい材料、つまり水に対する接触角が90°未満の材料を用いた場合、表面積の増大によって水はより濡れ広がるようになり、水に対する接触角が80°以下に親水化する。
And in order to make the contact angle with respect to the water of the uneven | corrugated surface in the hydrophilic antireflection structure of this invention 80 degrees or less as mentioned above, the contact angle with respect to the water of the material which comprises the said uneven | corrugated surface is 90 degrees. It is desirable to use less than the material.
That is, when the material constituting the uneven surface is a material whose surface tension against water is smaller than the surface tension against air, that is, a material whose contact angle with water is less than 90 °, the surface area increases so that the water spreads more wetly. Thus, the water contact angle becomes 80 ° or less.

このような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエチレンテレフタレート、ポリ塩化ビニール、ポリスチレン、AS樹脂、アクリル樹脂、ポリアミド、ポリアセタール、ポリブチレンテレフタレート、ガラス強化ポリエチレンテレフタレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリアレート、ポリスルホン、ポリエーテルスルホン、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等の熱可塑性樹脂や、フェノール樹脂、メラミン樹脂、ユリア樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ジアリルフタレート樹脂等の熱硬化性樹脂、あるいはこれらを2種以上ブレンドした材料、さらにはガラス、酸化ケイ酸、酸化アルミニウム等の透明無機材料を挙げることができる。   Examples of such materials include polyethylene, polypropylene, polyvinyl alcohol, polyvinylidene chloride, polyethylene terephthalate, polyvinyl chloride, polystyrene, AS resin, acrylic resin, polyamide, polyacetal, polybutylene terephthalate, glass reinforced polyethylene terephthalate, polycarbonate, Modified resins such as polyphenylene ether, polyphenylene sulfide, polyether ether ketone, polyarate, polysulfone, polyethersulfone, polyamideimide, polyetherimide, thermoplastic polyimide, phenol resin, melamine resin, urea resin, epoxy resin, Thermosetting resins such as saturated polyester resins, alkyd resins, diallyl phthalate resins, or two or more of these Rend material, more can be mentioned glass, oxide silicate, a transparent inorganic material such as aluminum oxide.

本発明の親水性反射防止構造を得るためには、第1の凹凸1を構成する微細凸部1aや微細凹部1bを反転させた無数の凹部や凸部を備えた成形型を用意し、この成形型と上記材料から成る基材の一方、又は双方を加熱した状態で両者を相対的に押し当てることによって、当該基材の表面に上記したような第1の凹凸1をまず成形する。   In order to obtain the hydrophilic antireflection structure of the present invention, a mold having innumerable concave portions and convex portions obtained by inverting the fine convex portions 1a and the fine concave portions 1b constituting the first concave and convex portions 1 is prepared. The first unevenness 1 as described above is first formed on the surface of the base material by relatively pressing one or both of the molding die and the base material made of the above material in a heated state.

そして、第1の凹凸1を備えた表面上に、第2の凹凸2を付与するには、上記により得られた第1の凹凸表面を、例えばコロナ放電、プラズマアーク、紫外線などに暴露する方法を採用することができる。
また、第1の凹凸1の表面をエッチング加工して、第2の凹凸2を形成する方法や、第2の凹凸2の形状の転写が可能な金型を用いて、第1、第2の凹凸を同時に成形する方法を採用することもでき、特に限定されない。
And in order to give the 2nd unevenness | corrugation 2 on the surface provided with the 1st unevenness | corrugation 1, the 1st uneven | corrugated surface obtained by the above is exposed to corona discharge, a plasma arc, an ultraviolet-ray etc., for example Can be adopted.
Further, the first and second surfaces can be etched using a method of forming the second unevenness 2 by etching the surface of the first unevenness 1 or using a mold capable of transferring the shape of the second unevenness 2. A method of simultaneously forming irregularities can also be employed, and is not particularly limited.

本発明の親水性反射防止構造を透明基材の片面、望ましくは両面に成形することによって、親水性反射防止構造体とすることができる。そして、このような親水性反射防止構造を、例えば、各種ディスプレイ装置のパネルやカバー、タッチパネル、ミラー、ウインドシールドガラス、ショウウインドウ、ショウケースなどに適用することができる。
これによって、外光や室内照明の反射を低減し、反射像の映り込みを効果的に防止して、映像や表示、内部展示物の視認性を向上させることができると共に、ほこりや手あかなどによる汚れを容易に拭き取ることができるようになり、このような効果を長期に亘って維持することができる。
By forming the hydrophilic antireflection structure of the present invention on one side, preferably both sides of a transparent substrate, a hydrophilic antireflection structure can be obtained. Such a hydrophilic antireflection structure can be applied to, for example, panels and covers of various display devices, touch panels, mirrors, windshield glass, show windows, show cases, and the like.
As a result, reflection of external light and indoor lighting can be reduced, reflection of reflected images can be effectively prevented, and visibility of images, displays, and internal exhibits can be improved. Dirt can be easily wiped off, and such an effect can be maintained over a long period of time.

以下に、本発明を実施例に基づいて、さらに具体的に説明するが、本発明はこれらの実施例のみに限定されないことは言うまでもない。   Hereinafter, the present invention will be described more specifically based on examples. However, it is needless to say that the present invention is not limited to these examples.

(実施例1)
市販の電子線描画装置によって作製した金型を使用して、図6に示すような高さH=390nmの3次元正弦波形状の稜線を有する錐体状をなす微細凸部がピッチP=300nmに六方細密配列して成る第1の凹凸を片面側に備えたアクリルフィルム(水に対する接触角:80°)を作製した。
得られたアクリルフィルムを凹凸面側が処理面となるようにコロナ放電器(300W)の電極間に設置し、速度2.14m/minで電極間を移動させることによって、第1の凹凸を備えた表面上に、第2の凹凸を形成し、第1の凹凸と第2の凹凸を備えた親水性反射防止構造体を得た。
Example 1
Using a mold produced by a commercially available electron beam drawing apparatus, fine projections having a cone shape having a three-dimensional sinusoidal ridgeline with a height H = 390 nm as shown in FIG. 6 have a pitch P = 300 nm. An acrylic film (contact angle with respect to water: 80 °) having first irregularities formed on a hexagonal close-packed surface on one side was prepared.
The obtained acrylic film was placed between the electrodes of the corona discharger (300 W) so that the uneven surface side became the treated surface, and moved between the electrodes at a speed of 2.14 m / min, thereby providing the first unevenness. On the surface, second irregularities were formed to obtain a hydrophilic antireflection structure having the first irregularities and the second irregularities.

このようにして得られた親水性反射防止構造体の凹凸形状を処理条件と共に表1に示す。
また、コロナ放電処理が安定する処理から14日経過後の構造体について、以下の要領によって、親水性能、反射防止性能、耐摩耗性能(耐久性)、防汚性能について評価した。これらの結果を表2に示す。
The uneven shape of the hydrophilic antireflection structure thus obtained is shown in Table 1 together with the treatment conditions.
Further, the structure after 14 days from the treatment where the corona discharge treatment is stabilized was evaluated for hydrophilic performance, antireflection performance, wear resistance performance (durability), and antifouling performance in the following manner. These results are shown in Table 2.

〔接触角の測定〕
親水性能の評価方法としては、接触角計(協和界面科学社製:CA−X)を用いて、得られた親水性反射防止構造体上に、シリンジから5μLの水を静置させて、その接触角を測定した。計測は5回行い、その平均値をもって各サンプルの接触角とした。
(Measurement of contact angle)
As an evaluation method of hydrophilic performance, using a contact angle meter (Kyowa Interface Science Co., Ltd .: CA-X), 5 μL of water was allowed to stand from the syringe on the obtained hydrophilic antireflection structure. The contact angle was measured. The measurement was performed 5 times, and the average value was used as the contact angle of each sample.

〔平均反射率の測定〕
反射防止機能の評価方法としては、380〜780nmの各波長について、変角分光光度計(大塚電子製:可視・近赤外自動変角測定装置)により、入射角0°のときの反射率を測定し、得られた値から平均反射率を算出した。
反射率の測定は、処理が安定する14日経過後(初期性能)と、100gf/□5cm(5cm角の正方形の面当たり100gf)の荷重がかかった布を100mm/sの速度で表面を5000回往復させる耐摩耗性試験後に実施し、その差ΔRをもって耐久性の指標とした。すなわち、反射率差ΔRが小さいほど、凹凸形状が耐摩耗性試験によっても破壊されていないことを示し、耐久性に優れていることになる。
[Measurement of average reflectance]
As an evaluation method of the antireflection function, the reflectivity at an incident angle of 0 ° is measured with a variable angle spectrophotometer (manufactured by Otsuka Electronics: visible / near infrared automatic variable angle measuring device) for each wavelength of 380 to 780 nm. The average reflectance was calculated from the measured value.
The reflectance is measured after lapse of 14 days (initial performance) after the treatment is stabilized, and a surface of the cloth subjected to a load of 100 gf / □ 5 cm (100 gf per 5 cm square surface) at a speed of 100 mm / s 5000 times. The test was conducted after the abrasion resistance test for reciprocation, and the difference ΔR was used as an index of durability. That is, as the reflectance difference ΔR is smaller, the uneven shape is not destroyed by the abrasion resistance test, and the durability is excellent.

〔防汚性能の評価〕
得られた親水性反射防止構造体の凹凸表面に手で触れることによって、指紋を付着させた後、水を浸み込ませたタオルによって拭き取り、指紋の残存状態を目視観察し、下記の3段階の基準に基づいて評価した。
3:拭取れる
2:拭き残しがある
1:拭取れていない
[Evaluation of antifouling performance]
After attaching the fingerprint by touching the uneven surface of the obtained hydrophilic antireflection structure with a hand, wipe it off with a towel soaked in water, visually observing the remaining state of the fingerprint, the following three steps Evaluation based on the criteria of.
3: Can be wiped away 2: There is unwiped residue 1: Not wiped off

実施例1において作製した親水性反射防止構造体表面の接触角は68°、平均反射率は0.12%、耐摩耗性試験による反射率の増加幅は0.26%、防汚性能は3段階評価の「2」であった。   The contact angle of the surface of the hydrophilic antireflection structure produced in Example 1 is 68 °, the average reflectance is 0.12%, the increase in reflectance by the wear resistance test is 0.26%, and the antifouling performance is 3 The rating was “2”.

(実施例2)
上記実施例1と同様の方法によってコロナ放電処理を行った表面に対して、同様の処理をさらに2回、都合3回のコロナ放電処理を同一表面上に繰り返すことによって、第1の凹凸表面上に第2の凹凸を形成し、当該実施例2の親水性反射防止構造体を得た。得られた構造体表面における凹凸形状の電子顕微鏡写真を図7に示す。
そして、上記性能について同様の評価を行った。その結果、当該構造体表面の接触角は33°、平均反射率は0.09%、耐摩耗性試験による反射率の増加幅は0.28%、防汚性能は3段階評価の「2」であった。これらの結果を表1に併せて示す。
(Example 2)
On the surface of the first uneven surface by repeating the same treatment two more times and conveniently three times on the same surface on the surface subjected to the corona discharge treatment by the same method as in Example 1 above. Second unevenness was formed on the surface to obtain the hydrophilic antireflection structure of Example 2. FIG. 7 shows an electron micrograph of the uneven shape on the surface of the obtained structure.
And the same evaluation was performed about the said performance. As a result, the contact angle of the structure surface is 33 °, the average reflectance is 0.09%, the increase in reflectance by the abrasion resistance test is 0.28%, and the antifouling performance is “2”, which is evaluated in three stages. Met. These results are also shown in Table 1.

(実施例3)
上記実施例1と同様の方法によってコロナ放電処理を行った表面に対して、同様の処理をさらに4回、都合5回のコロナ放電処理を同一表面上に繰り返すことによって、第1の凹凸表面上に第2の凹凸を形成し、当該実施例3の親水性反射防止構造体を得た。得られた構造体表面における凹凸形状の電子顕微鏡写真を図8に示す。
そして、上記性能について同様の評価を行った結果、当該構造体表面の接触角は6°、平均反射率は0.14%、耐摩耗性試験による反射率の増加幅は0.22%、防汚性能は3段階評価の「3」であった。これらの結果を表1に併せて示す。
(Example 3)
The same treatment is repeated four times on the surface subjected to the corona discharge treatment by the same method as in the first embodiment, and the corona discharge treatment is repeated five times on the same surface. Second unevenness was formed on the surface to obtain a hydrophilic antireflection structure of Example 3. FIG. 8 shows an electron micrograph of the uneven shape on the surface of the obtained structure.
As a result of performing the same evaluation on the above performance, the contact angle of the surface of the structure is 6 °, the average reflectance is 0.14%, the increase in reflectance by the wear resistance test is 0.22%, The soiling performance was “3” with a three-level rating. These results are also shown in Table 1.

(実施例4)
コロナ放電器の出力を600Wしたこと以外は、上記実施例3と同様の方法を繰り返すことによって、第1の凹凸表面上に第2の凹凸を形成し、当該実施例4の親水性反射防止構造体を得た。得られた構造体の表面における凹凸形状の電子顕微鏡写真を図9に示す。
そして、同様の評価試験を行った結果、当該構造体表面の接触角は8°、平均反射率は0.14%、耐摩耗性試験による反射率の増加幅は0.65%、防汚性能は3段階評価の「3」であった。これらの結果を表1に併せて示す。
Example 4
Except that the output of the corona discharger was 600 W, the same method as in Example 3 was repeated to form second irregularities on the first irregular surface, and the hydrophilic antireflection structure of Example 4 Got the body. FIG. 9 shows an electron micrograph of the concavo-convex shape on the surface of the obtained structure.
As a result of the same evaluation test, the contact angle of the surface of the structure was 8 °, the average reflectance was 0.14%, the increase in reflectance by the wear resistance test was 0.65%, and the antifouling performance Was 3 on a three-point scale. These results are also shown in Table 1.

(実施例5)
コロナ放電処理の出力を600Wとしたこと以外は、上記実施例3と同様の方法を繰り返すことによって、第1の凹凸表面上に第2の凹凸を形成し、当該実施例5の親水性反射防止構造体を得た。
そして、同様の評価試験を行った結果、当該構造体表面の接触角は9°、平均反射率は0.14%、耐摩耗性試験による反射率の増加幅は1.04%、防汚性能は3段階評価の「3」であった。これらの結果を表1に併せて示す。
(Example 5)
Except that the output of the corona discharge treatment was 600 W, the same method as in Example 3 was repeated to form second irregularities on the first irregular surface, and the hydrophilic antireflection of Example 5 concerned A structure was obtained.
As a result of the same evaluation test, the contact angle of the surface of the structure was 9 °, the average reflectance was 0.14%, the increase in reflectance by the wear resistance test was 1.04%, and the antifouling performance Was 3 on a three-point scale. These results are also shown in Table 1.

(実施例6)
コロナ放電器の出力を450Wとしたこと以外は、上記実施例2と同様の方法を繰り返すことによって、第1の凹凸表面上に第2の凹凸を形成し、当該実施例6の親水性反射防止構造体を得た。
そして、同様の評価試験を行った結果、当該構造体表面の接触角は34°、平均反射率は0.12%、耐摩耗性試験による反射率の増加幅は0.77%、防汚性能は3段階評価の「2」であった。これらの結果を表1に併せて示す。
(Example 6)
Except that the output of the corona discharger was set to 450 W, the same method as in Example 2 was repeated to form second irregularities on the first irregular surface, and the hydrophilic antireflection of Example 6 concerned A structure was obtained.
As a result of the same evaluation test, the contact angle of the surface of the structure was 34 °, the average reflectance was 0.12%, the increase in reflectance by the abrasion resistance test was 0.77%, and the antifouling performance Was "2" with a three-level rating. These results are also shown in Table 1.

(比較例1)
ジペンタエリスリトールヘキサアクリレート(東亞合成社、M−400)を70質量%、ポリエチレングリコールジアクリレートを25質量%、1−ヒドロキシシクロヘキシルフェニルケトン(チバ・スペシャリティケミカルズ社、イルガキュア184)を5質量%の割合で混合した樹脂組成物をアクリル樹脂フィルム上に塗布し、上記実施例で使用した金型を用いて樹脂組成物を押しつけた上で、フィルム側から積算光量3200mJ/cmの紫外線を照射して硬化を行った。これにより、上記実施例の第1の凹凸と同様の凹凸を片面側に備えたフィルムを作製した。そして、コロナ放電処理を施すことなく、このフィルムをそのまま比較例1の構造体として、同様の評価試験を実施した。
その結果、当該構造体表面の接触角は8°、平均反射率は0.15%、耐摩耗性試験による反射率の増加幅は1.80%、防汚性能は3段階評価の「3」であった。これらの結果を表1に併せて示す。
(Comparative Example 1)
70% by mass of dipentaerythritol hexaacrylate (Toagosei Co., Ltd., M-400), 25% by mass of polyethylene glycol diacrylate, and 5% by mass of 1-hydroxycyclohexyl phenyl ketone (Ciba Specialty Chemicals, Irgacure 184) The resin composition mixed in the above was applied onto an acrylic resin film, and after pressing the resin composition using the mold used in the above examples, an ultraviolet ray with an integrated light amount of 3200 mJ / cm 2 was irradiated from the film side. Curing was performed. This produced the film which provided the unevenness | corrugation similar to the 1st unevenness | corrugation of the said Example on the single side | surface side. And the same evaluation test was implemented by making this film into the structure of the comparative example 1 as it is, without giving a corona discharge process.
As a result, the contact angle of the structure surface is 8 °, the average reflectance is 0.15%, the increase in reflectance by the abrasion resistance test is 1.80%, and the antifouling performance is “3”, which is evaluated in three stages. Met. These results are also shown in Table 1.

(比較例2)
上記各実施例において使用した、高さH=390nmの円錐状をなす微細凸部がピッチP=300nmに六方細密配列して成る第1の凹凸を片面側に備えたアクリルフィルムを、コロナ放電処理を施すことなく、そのまま当該比較例2の構造体として、同様の評価試験に供した。得られた構造体表面における凹凸形状の電子顕微鏡写真を図6に示す。
その結果、当該構造体表面の接触角は78°、平均反射率は0.13%、耐摩耗性試験による反射率の増加幅は0.67%、防汚性能は3段階評価の「1」であった。これらの結果を表1に併せて示す。
(Comparative Example 2)
A corona discharge treatment is performed on the acrylic film provided with the first irregularities on one side, which are formed in a hexagonal close-packed arrangement of fine convex portions having a conical shape with a height of H = 390 nm, and used in each of the above examples. The structure of Comparative Example 2 was subjected to the same evaluation test as it was. FIG. 6 shows an electron micrograph of the uneven shape on the surface of the obtained structure.
As a result, the contact angle of the structure surface was 78 °, the average reflectance was 0.13%, the increase in reflectance by the abrasion resistance test was 0.67%, and the antifouling performance was “1”, which was evaluated in three stages. Met. These results are also shown in Table 1.

Figure 2011169961
Figure 2011169961

Figure 2011169961
Figure 2011169961

表1及び表2に示した結果から明らかなように、光の反射防止機能を発揮する第1の凹凸を有する表面上に、それよりも小さい第2の凹凸を備えた本発明の実施例による構造体は、反射防止性能、耐久性、防汚性(親水性)に優れることが確認された。   As is apparent from the results shown in Tables 1 and 2, according to the embodiment of the present invention having the second unevenness smaller than the first unevenness on the surface exhibiting the light reflection preventing function. It was confirmed that the structure was excellent in antireflection performance, durability, and antifouling property (hydrophilicity).

これに対し、第2の凹凸を備えていない比較例の構造体においては、耐久性あるいは防汚性において劣ることが判明した。
すなわち、上記実施例と同じ材料から成る比較例2においては、同様の形状・寸法の凹凸(第1の凹凸)を備えているものの、第2の凹凸がないことから、親水性が低く、防汚性に劣ることが判った。また、親水性材料の添加によって、材料自体の親水性を高めた比較例1においては、第1の凹凸だけでも高い親水性を示し、防汚性に優れてはいるものの、耐久性に難点があることが確認された。
On the other hand, it was found that the structure of the comparative example not provided with the second unevenness was inferior in durability or antifouling property.
In other words, Comparative Example 2 made of the same material as the above example has unevenness (first unevenness) having the same shape and dimensions, but has no second unevenness, and thus has low hydrophilicity and is prevented. It turns out that it is inferior to soiling. Further, in Comparative Example 1 in which the hydrophilicity of the material itself is increased by the addition of the hydrophilic material, even if only the first unevenness shows high hydrophilicity and excellent antifouling property, there is a difficulty in durability. It was confirmed that there was.

一方、実施例の中では、特に実施例2,3,4,6による親水性反射防止構造において、防汚性と耐久性のバランスが優れ、これら性能が両立できていることが確認された。   On the other hand, in the examples, particularly in the hydrophilic antireflection structures according to Examples 2, 3, 4, and 6, it was confirmed that the balance between antifouling property and durability was excellent and these performances were compatible.

コロナ放電処理の回数を1回から5回まで増加させる(実施例1〜3)ことにより、第2の凹凸の高さとピッチが大きくなり、表面積が増大することで、水接触角が小さくなった。また、コロナ放電処理の電力を増加させる(実施例2と6、実施例3〜5)ことで、同様に水接触角が小さくなったが、耐久性の評価である耐摩耗性試験前後の反射率の変化が大きくなった。
この現象のメカニズムは未解明であるが、放電処理の電力を大きくすることで、第2の凹凸のうち、第1の凹凸の頂点付近(耐摩耗性試験で摩擦布が接触する部位)に設けられるものの形状が局部的に大きくなり、構造強度が低下して摩耗性が低下してしまったことが推測される。
By increasing the number of corona discharge treatments from 1 to 5 (Examples 1 to 3), the height and pitch of the second unevenness increased and the surface area increased, thereby reducing the water contact angle. . Further, by increasing the power of corona discharge treatment (Examples 2 and 6, Examples 3 to 5), the water contact angle was similarly reduced, but reflection before and after the wear resistance test, which is an evaluation of durability. The rate change has increased.
The mechanism of this phenomenon is unclear, but by increasing the electric power of the discharge treatment, it is provided near the top of the first concavo-convex (the part where the friction cloth contacts in the wear resistance test) among the second concavo-convex. It is presumed that the shape of the product was locally increased, the structural strength was reduced, and the wearability was reduced.

1 第1の凹凸
2 第2の凹凸
1 1st unevenness 2 2nd unevenness

Claims (6)

可視光線の波長よりも短い周期性を有する第1の凹凸を有する表面の少なくとも一部に、凹凸の間隔及び高低差が第1の凹凸よりも小さい第2の凹凸を備え、水に対する接触角が80°以下であることを特徴とする親水性反射防止構造。   At least part of the surface having the first unevenness having a periodicity shorter than the wavelength of visible light is provided with second unevenness in which the interval and height difference between the unevenness is smaller than the first unevenness, and the contact angle with water is A hydrophilic antireflection structure characterized by being 80 ° or less. 第1の凹凸表面における凹凸のピッチが380nm未満、アスペクト比が1.0以上であることを特徴とする請求項1に記載の親水性反射防止構造。   The hydrophilic antireflection structure according to claim 1, wherein the uneven pitch on the first uneven surface has a pitch of less than 380 nm and an aspect ratio of 1.0 or more. 凹凸表面を構成する材料の水に対する接触角が90°未満であることを特徴とする請求項1又は2に記載の親水性反射防止構造。   The hydrophilic antireflection structure according to claim 1, wherein a contact angle of the material constituting the uneven surface with respect to water is less than 90 °. 請求項1〜3のいずれか1つの項に記載の親水性反射防止構造を基材の少なくとも一方の面に備えていることを特徴とする親水性反射防止構造体。   A hydrophilic antireflection structure comprising the hydrophilic antireflection structure according to any one of claims 1 to 3 on at least one surface of a substrate. 請求項1〜3のいずれか1つの項に記載の親水性反射防止構造を備えていることを特徴とする物品。   An article comprising the hydrophilic antireflection structure according to any one of claims 1 to 3. 自動車用部品であることを特徴とする請求項5に記載の物品。   The article according to claim 5, wherein the article is an automotive part.
JP2010031256A 2010-02-16 2010-02-16 Hydrophilic antireflection structure and method of manufacturing the same Pending JP2011169961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010031256A JP2011169961A (en) 2010-02-16 2010-02-16 Hydrophilic antireflection structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010031256A JP2011169961A (en) 2010-02-16 2010-02-16 Hydrophilic antireflection structure and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011169961A true JP2011169961A (en) 2011-09-01

Family

ID=44684186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010031256A Pending JP2011169961A (en) 2010-02-16 2010-02-16 Hydrophilic antireflection structure and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011169961A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038288A1 (en) * 2012-09-05 2014-03-13 シャープ株式会社 Moth-eye film
JP2014115634A (en) * 2012-12-06 2014-06-26 Tatung Co Antireflection substrate structure and manufacturing method thereof
JP2014141085A (en) * 2012-12-28 2014-08-07 Dainippon Printing Co Ltd Dew condensation suppression member for indoor interior
JP2014145868A (en) * 2013-01-29 2014-08-14 Ricoh Co Ltd Optical element, mold and optical device
JP2016522452A (en) * 2013-06-19 2016-07-28 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. Manufacturing method of antireflection layer
JP2018053210A (en) * 2016-09-30 2018-04-05 株式会社クラレ Multi-layered body and manufacturing method thereof, and composite body and method for manufacturing the same
CN108780241A (en) * 2016-03-02 2018-11-09 Pa·科特家族控股有限公司 Method for manufacturing display equipment and display equipment
JP2020532454A (en) * 2017-08-29 2020-11-12 ゼット・エフ・アクティブ・セーフティ・アンド・エレクトロニクス・ユーエス・エルエルシー Vehicle driving support system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116689A (en) * 2001-10-18 2003-04-22 Toto Ltd Anti-fogging mirror and method of manufacturing the same
JP2007187868A (en) * 2006-01-13 2007-07-26 Nissan Motor Co Ltd Wetting control antireflection optical structure and automotive window glass
JP2008122435A (en) * 2006-11-08 2008-05-29 Nissan Motor Co Ltd Water repellent reflection preventive structure and its manufacturing method
JP2009193002A (en) * 2008-02-18 2009-08-27 Housetec Inc Molding structure
JP2010000719A (en) * 2008-06-20 2010-01-07 Mitsubishi Rayon Co Ltd Film-like replica mold, its manufacturing method, and manufacturing method of film product having fine uneven structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116689A (en) * 2001-10-18 2003-04-22 Toto Ltd Anti-fogging mirror and method of manufacturing the same
JP2007187868A (en) * 2006-01-13 2007-07-26 Nissan Motor Co Ltd Wetting control antireflection optical structure and automotive window glass
JP2008122435A (en) * 2006-11-08 2008-05-29 Nissan Motor Co Ltd Water repellent reflection preventive structure and its manufacturing method
JP2009193002A (en) * 2008-02-18 2009-08-27 Housetec Inc Molding structure
JP2010000719A (en) * 2008-06-20 2010-01-07 Mitsubishi Rayon Co Ltd Film-like replica mold, its manufacturing method, and manufacturing method of film product having fine uneven structure

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014038288A1 (en) * 2012-09-05 2016-08-08 シャープ株式会社 Moth eye film
WO2014038288A1 (en) * 2012-09-05 2014-03-13 シャープ株式会社 Moth-eye film
US9411158B2 (en) 2012-09-05 2016-08-09 Sharp Kabushiki Kaisha Moth-eye film
JP2014115634A (en) * 2012-12-06 2014-06-26 Tatung Co Antireflection substrate structure and manufacturing method thereof
US9224893B2 (en) 2012-12-06 2015-12-29 Tatung Company Antireflection substrate structure and manufacturing method thereof
JP2014141085A (en) * 2012-12-28 2014-08-07 Dainippon Printing Co Ltd Dew condensation suppression member for indoor interior
JP2014145868A (en) * 2013-01-29 2014-08-14 Ricoh Co Ltd Optical element, mold and optical device
JP2016522452A (en) * 2013-06-19 2016-07-28 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウFraunhofer−Gesellschaft zur Foerderung der angewandten Forschung e.V. Manufacturing method of antireflection layer
CN108780241A (en) * 2016-03-02 2018-11-09 Pa·科特家族控股有限公司 Method for manufacturing display equipment and display equipment
CN108780241B (en) * 2016-03-02 2021-12-07 Pa·科特家族控股有限公司 Method for manufacturing display device and display device
JP2018053210A (en) * 2016-09-30 2018-04-05 株式会社クラレ Multi-layered body and manufacturing method thereof, and composite body and method for manufacturing the same
JP2020532454A (en) * 2017-08-29 2020-11-12 ゼット・エフ・アクティブ・セーフティ・アンド・エレクトロニクス・ユーエス・エルエルシー Vehicle driving support system
JP7284745B2 (en) 2017-08-29 2023-05-31 ゼット・エフ・アクティブ・セーフティ・アンド・エレクトロニクス・ユーエス・エルエルシー Vehicle driving support system

Similar Documents

Publication Publication Date Title
JP2011169961A (en) Hydrophilic antireflection structure and method of manufacturing the same
JP5170495B2 (en) Antireflection microstructure and antireflection structure
RU2480340C1 (en) Water repellant film and component with said film for vehicle
JP5267798B2 (en) Scratch-resistant water-repellent structure and scratch-resistant water-repellent structure
KR101421757B1 (en) Optical laminate, polarizer and image display unit
JP5947379B2 (en) Antireflection structure, manufacturing method thereof, and display device
KR101510974B1 (en) Transparent conductive film and touch panel
JP2008122435A (en) Water repellent reflection preventive structure and its manufacturing method
JP2007322763A (en) Anti-reflection structure, anti-reflection structural body and its manufacturing method
JP2007076242A (en) Protective film
JP2009042714A (en) Water repellent anti-reflective structure and method of manufacturing the same
JP2007264594A (en) Anti-reflection fine structure, anti-reflection molded body, method of producing the same
KR100957890B1 (en) Water repellent anti-reflective structure body, vehicle component comprising the same and manufacturing method for the same
JP5630635B2 (en) MICROSTRUCTURE, ITS MANUFACTURING METHOD, AND AUTOMOBILE PARTS USING THE MICROSTRUCTURE
KR20110003266A (en) Optical element, method for producing the same, and display apparatus
KR20110124376A (en) Anti-dazzling optical laminate
TWI536049B (en) Optical film
JP4894663B2 (en) Water-repellent structure and water-repellent molded product
JP2008203473A (en) Antireflection structure and structure
JP2010201799A (en) Water-repellent structure and water-repellent structure body
JP5146722B2 (en) Antireflection structure and structure
JP2009294341A (en) Water-repellent antireflection structure and water-repellent antireflection molding
JP6166472B2 (en) Fingerprint-resistant film and electrical / electronic device
TW202217364A (en) Display articles with diffractive, antiglare surfaces and thin, durable antireflection coatings
TWI657927B (en) Optical element, optical composite element, and optical element with protective film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140331