WO2018110018A1 - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
WO2018110018A1
WO2018110018A1 PCT/JP2017/033842 JP2017033842W WO2018110018A1 WO 2018110018 A1 WO2018110018 A1 WO 2018110018A1 JP 2017033842 W JP2017033842 W JP 2017033842W WO 2018110018 A1 WO2018110018 A1 WO 2018110018A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
uppermost layer
optical element
here
Prior art date
Application number
PCT/JP2017/033842
Other languages
French (fr)
Japanese (ja)
Inventor
松坂慶二
能勢正章
中村勝也
青木洋輔
今関秀和
水町靖
野村康之
濱敬二
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2018110018A1 publication Critical patent/WO2018110018A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to an optical element formed with a multilayer film.
  • in-vehicle cameras are mounted on vehicles for driving support of vehicles. More specifically, a camera that captures the back and sides of the vehicle is mounted on the body of the automobile, and the image captured by the camera is displayed at a position where the driver can visually recognize it. Contributes to safe driving.
  • Patent Document 1 discloses a technique for obtaining a photocatalytic effect by applying Ti nanoparticles to a surface using spray coating or the like for spectacle lenses or building materials. It is also conceivable to apply Ti nanoparticles to the object side surface of an imaging lens mounted on a vehicle-mounted camera using such technology.
  • an imaging lens or the like mounted on a vehicle-mounted camera is used in a harsh environment, sufficient environmental resistance is required. More specifically, there is a possibility that the exposed optical surface of the imaging lens may be damaged or eroded by impacts, wind pressure, and sand dust splashed by traveling. Furthermore, there is a risk of surface deterioration and alteration due to acid rain and chemicals such as detergents and waxes used during car washing. In particular, if oil, grease, dust, or the like adheres to the optical surface of the imaging lens, the optical surface may become clouded over time, and if the optical surface is in contact with dirt for a long time, the optical surface itself May be altered.
  • the glass substrate is acid-resistant.
  • the material must be limited to a material having a high scratch resistance, which causes a problem that the degree of design freedom for controlling the optical characteristics is greatly impaired.
  • Patent Document 2 discloses a conductive optical member having excellent acid resistance.
  • the technique of Patent Document 2 uses a material with low photocatalytic activity, and it is difficult to obtain a sufficient photocatalytic effect.
  • the optical member is a film, there is a problem that scratch resistance cannot be secured. Similar problems may occur in communication optical elements used outdoors.
  • An object of the present invention is to provide an optical element having a multilayer film excellent in acid resistance and scratch resistance and capable of exhibiting a photocatalytic effect.
  • an optical element reflecting one aspect of the present invention is an optical element having a glass substrate on which a multilayer film of three or more layers is formed. It has one low refractive index layer and at least one high refractive index layer, the uppermost layer farthest from the glass substrate is the low refractive index layer, and the high refractive index layer adjacent to the uppermost layer is A functional layer mainly composed of a metal oxide having a photocatalytic function, wherein at least one of the high refractive index layers is formed from a specific material mainly composed of Ta, Hf, Zr, or Nb; The following conditional expression is satisfied. 150 nm ⁇ Tcat ⁇ 700 nm (1) 100 nm ⁇ TH (2) here, Tcat: film thickness of functional layer TH: total film thickness of high refractive index layer formed from specific material
  • FIG. 1 is a diagram schematically showing a cross section of an optical element according to the present embodiment.
  • An optical element 100 shown in FIG. 1 has a multilayer film MC having a structure in which low refractive index layers L and high refractive index layers H are alternately laminated on a glass substrate (glass substrate) GL.
  • the high refractive index layer H may be in contact with the glass substrate GL.
  • Such an optical element 100 can be used as an in-vehicle lens or a communication lens.
  • the layer located between the glass substrate GL and the functional layer 20 may be replaced with an equivalent film of an intermediate refractive index layer instead of a high refractive index layer or a low refractive index layer.
  • the uppermost layer 10 farthest from the glass substrate GL is a low refractive index layer L
  • the high refractive index layer H adjacent to the uppermost layer 10 is a functional layer 20 of a metal oxide having a photocatalytic function.
  • the functional layer 20 exhibits a photocatalytic function using active oxygen excited by UV light through or through the uppermost layer 10, the functional layer 20 is preferably placed as close as possible to the uppermost layer 10.
  • the functional layer 20 has a thickness exceeding 100 nm adjacent to the uppermost layer 10. Furthermore, it is preferable to use a metal oxide having a photocatalytic effect and a photoactive effect as the functional layer 20 because the surface organic substances can be removed and the hydrophilicity of the uppermost layer 10 can be maintained.
  • the functional layer 20 using TiO 2 is preferably formed using IAD (Ion Assisted Deposition (hereinafter referred to as IAD)) because the photocatalytic effect is enhanced.
  • IAD Ion Assisted Deposition
  • Photocatalytic function means that strong oxidative power is generated when sunlight or artificial light is incident, effectively removes harmful organic compounds and bacteria, etc. that come in contact with water.
  • the self-cleaning function such as washing with water or the like without fixing oily stains, for example, is a function of titanium dioxide.
  • adjacent to the uppermost layer means that the function is not hindered between the uppermost layer 10 and the functional layer 20 in addition to the case where the uppermost layer 10 and the functional layer 20 are in close contact with each other. This includes the case where a layer (for example, a layer of 20 nm or less) is provided.
  • At least one of the high refractive index layers H is formed of a specific material mainly containing any one of Ta, Hf, Zr, and Nb.
  • a specific material mainly containing any one of Ta, Hf, Zr, and Nb.
  • substances that are effective in improving acid resistance include Ta, Hf, Zr, and Nb oxides.
  • “Main component” means that the content of the element is 51% by weight or more, preferably 70% by weight or more, more preferably 90% by weight, and still more preferably 100% by weight.
  • the optical element 100 of the present embodiment satisfies the following conditional expression.
  • the film thickness of the functional layer 20 can be ensured that the value of the formula (1) is equal to or greater than the lower limit, a sufficient photocatalytic effect can be expected.
  • the thickness of the functional layer 20 increases, the photocatalytic effect can be expected.
  • the value of the expression (1) should be less than the upper limit. Is desirable.
  • it is satisfy
  • the total film thickness of the high refractive index layer H can be ensured that the value of the formula (2) is not less than the lower limit, sufficient acid resistance can be expected.
  • the upper limit of the formula (2) a common-sense total film thickness naturally becomes the upper limit in securing the optimum design of the optical element 100.
  • it is satisfy
  • the high refractive index layer H or the functional layer 20 adjacent to the uppermost layer 10 is preferably formed from an oxide (for example, TiO 2 ) containing Ti as a main component. This is because Ti oxides such as TiO 2 have a very high photocatalytic effect.
  • the top layer 10 is formed of SiO 2.
  • UV light is hard to be incident at night or outdoors, and the hydrophilic effect is reduced with an oxide mainly composed of Ti.
  • the hydrophilic effect can be exhibited by forming the top layer 10 from SiO 2 and scratch resistance. Sex is also enhanced.
  • SiO 2 is used for the uppermost layer 10, scratch resistance is improved by performing a heat treatment at 500 ° C. for 2 hours after film formation.
  • the uppermost layer 10 is preferably formed from a mixture of SiO 2 and Al 2 O 3 (provided that the composition ratio of SiO 2 is 90% by weight or more). Thereby, a hydrophilic effect can be exhibited at night or outdoors, and scratch resistance is further improved by using a mixture of SiO 2 and Al 2 O 3 .
  • scratch resistance is improved by performing a heat treatment at 500 ° C. for 2 hours after film formation. Note that it is preferable to use IAD when a part or all of the uppermost layer 10 is formed. Thereby, the scratch resistance is improved.
  • Each layer of the multilayer film MC is formed by a vapor deposition method, and any one of the layers is preferably formed by IAD. Scratch resistance can be further improved by film formation by IAD.
  • the value of the expression (7) When the value of the expression (7) is below the upper limit, the ion assist power does not become too weak, the value D (iad) is stabilized, and the photocatalytic effect can be stabilized. On the other hand, if the value of the expression (7) is equal to or higher than the lower limit, the value D (iad) does not become too small even if the ion assist power is increased, and a high-density film is not formed and the photocatalytic effect is maintained. Can do.
  • the filling rate indicates the proportion of atoms in the volume of the film.
  • the calculation formula when the filling rate is F is shown below.
  • a value F (noiad) described later is calculated in the same manner.
  • F (nf1-nf2 + 0.33) /0.33 here, nf1: Refractive index of the uppermost layer film after standing for 24 hours in an environment at a temperature of 25 ° C. and a humidity of 50% RH nf2: Refractive index of the uppermost layer film in a vacuum (during film formation)
  • the value of the equation (8) When the value of the equation (8) is equal to or higher than the lower limit, the ion assist power is not weakened, the value F (iad) is stabilized, and the photocatalytic effect can be stabilized. On the other hand, if the value of the formula (8) is below the upper limit, the value F (iad) does not become too large even if the ion assist power is increased, and a high-density film is not formed and the photocatalytic effect is maintained. Can do.
  • the uppermost layer 10 is formed without using the IAD method, it is preferable that the following conditional expression is satisfied. 25 nm ⁇ D (noad) ⁇ 50 nm (9) here, D (noiad): nano-indentation depth of the uppermost layer 10 formed without using the IAD method
  • the value of formula (9) is equal to or greater than the lower limit, even if the amount of oxygen introduced during film formation is reduced, the value D (noad) does not become too small and a high-density film is not formed, and the photocatalytic effect is maintained. be able to.
  • the value of equation (9) is less than or equal to the upper limit, even if the amount of oxygen introduced is increased, the value (noad) does not become too large, and a film having a density that can withstand optical applications can be formed.
  • the uppermost layer 10 preferably satisfies the following conditional expression. 60 nm ⁇ TL ⁇ 350 nm (3) here, TL: film thickness of the uppermost layer 10
  • the photocatalytic effect can be exhibited by exchanging active oxygen excited by UV light through the uppermost layer 10.
  • the value of the formula (3) is equal to or higher than the lower limit, the uppermost layer 10 can be made strong and sufficient scratch resistance can be secured.
  • it is satisfy
  • the optical element 100 satisfies the following conditional expression. 1.3 ⁇ NL ⁇ 1.5 (4) 1.9 ⁇ NH ⁇ 2.45 (5) here, NL: Refractive index at the d-line of the material of the low refractive index layer L NH: Refractive index at the d-line of the specific material
  • the optical element 100 having desired optical characteristics can be obtained.
  • the d line means light having a wavelength of 587.56 nm.
  • SiO 2 having a refractive index of 1.48 at d-line or MgF 2 having a refractive index of 1.385 at d-line can be used.
  • Ta, Hf, Zr, and Nb oxides can be suitably used as the specific material that satisfies the formula (5).
  • the optical element 100 satisfies the following conditional expression. 1.7 ⁇ Ns ⁇ 2.2 (6) here, Ns: Refractive index at d line of glass substrate GL
  • the optical performance of the optical element 100 can be enhanced with a compact configuration by satisfying the expression (6) as the refractive index at the d-line of the glass substrate GL in terms of optical design.
  • the multilayer film of the present invention By forming the multilayer film of the present invention on the glass substrate GL satisfying the formula (6), it can be used for a lens exposed to the outside world, and both excellent environmental resistance and optical performance are achieved. Is possible.
  • the film thickness, density, film formation recipe of the multilayer film uppermost layer SiO 2 , and the TiO 2 film thickness of the functional layer 20 adjacent to the uppermost layer 10 are optimized to maximize the photocatalytic effect and scratch resistance.
  • it has sufficient acid resistance by providing an appropriate film thickness using a material mainly composed of Ta, Hf, Zr, and Nb for the multilayer film.
  • a photocatalytic multilayer film that can be provided can be realized.
  • the optical element 100 has a multilayer film excellent in acid resistance and scratch resistance as described above, can exhibit a photocatalytic effect, and is suitably used for an in-vehicle lens, a communication lens, or a building material.
  • Example 2 an example suitable for the above-described embodiment will be evaluated in comparison with a comparative example.
  • a film deposition apparatus BES-1300 manufactured by SYNCHRON Co., Ltd. was used, and NIS-175 was used as an ion source for IAD.
  • the inventors of the present invention formed a multi-layer film of 9 layers by a vapor deposition method on a glass substrate while changing the film formation formulation of the uppermost layer and used for the test. did. More specifically, as shown in Table 1, the glass substrate TAF3: the (HOYA Co. refractive index 1.80) on the low refractive index layer with SiO 2, OA600 (manufactured by Canon Optron Inc. A high refractive index layer using a material and a functional layer using TiO 2 were stacked in the order shown in Table 1 to form a film. As the uppermost layer, SiO 2 was used.
  • each film thickness (d (nm)) was made constant, and the film formation rate RATE ( ⁇ / SEC) of each film was also made constant.
  • Table 1 shows the film configuration (the first layer is the layer in contact with the glass substrate (glass substrate), the same applies hereinafter), the film formation prescription, and the evaluation results.
  • “Layer” indicates a layer number
  • “Air” indicates a layer material
  • “d” indicates a layer thickness (the same applies to the following tables).
  • OA600 in the table is a mixture of Ta 2 O 5 , TiO and Ti 2 O 5 , and the specific composition thereof is mainly composed of tantalum oxide as shown in Table 2.
  • the film formation prescription is as shown in Table 1.
  • Table 1 Regarding the film formation of the uppermost layer, the presence or absence of oxygen gas and the amount of introduction when it is introduced, the presence and extent of IAD used for the film formation of SiO 2 are determined. 4 examples (test numbers 1-5 to 1-8) and 6 comparative examples (test numbers 1-1 to 1-4, 1-9, 1-10) were prepared, It used for the following tests. The heating temperature was 340 ° C., and the starting vacuum was 3.00E-03 Pa (3.00 ⁇ 10 ⁇ 3 Pa).
  • Fractor in Table 1 means that the oxygen gas introduction amount and the IAD conditions were changed.
  • APC means that the partial pressure is adjusted by an abbreviation of Auto Pressure Control
  • SCCM is an abbreviation of standard cc / min, 1 atm (atmospheric pressure 1013 hPa), 1 at 0 ° C. This is a unit indicating how many cc per minute.
  • IAD (H) indicates that the IAD power is set to (acceleration voltage 500 V, acceleration current 300 mA, oxygen introduction amount 50 SCCM), and IAD (M) indicates the IAD power (acceleration voltage 400 kV).
  • IAD (L) indicates that the IAD power is set to acceleration voltage 300 V, acceleration current 300 mA, oxygen introduction amount 50 SCCM.
  • the test sample is immersed in a solution adjusted to PH 1.7 by adding nitric acid to 5% strength saline solution, and the size and number of white spots are measured with a stereomicroscope ( ⁇ 58 times). Counting was evaluated as x when the white spot was visually observed to such an extent that it could not be practically used, and evaluated as o when the white spot was not visually observed.
  • the “scratch resistance test” is evaluated as ⁇ when a test piece is rubbed 250 times with a tortoise scourer under a load of 2.0 kg and a scratch affecting the photographed image is attached when used as a camera lens, or When such a flaw did not adhere, it was set as evaluation o.
  • Photocatalytic effect measurement is performed by irradiating a test sample with a black light (model number BL20) of YAZAWA at a distance of 30 mm from the test sample for 5 minutes, and then using “visualiser Pen” of inkintelient. Changes were evaluated in stages. Here, when the color change is minimal, the photocatalytic effect is absent (evaluation x), when the color change is small, the photocatalytic effect is almost absent (evaluation ⁇ ), and when the color change is medium, the photocatalytic effect is excessive None (evaluation ⁇ ), and those having a large degree of color change had a photocatalytic effect (evaluation ⁇ ).
  • test numbers 1-1 to 1-10 were good with no evaluation x for acid resistance and scratch resistance.
  • evaluation results for the photocatalytic effect There were variations in the evaluation results for the photocatalytic effect.
  • the evaluation of the photocatalytic effect of test numbers 1-1 and 1-2 was evaluated as x. This is because use of IAD improves the film density of the uppermost layer (SiO 2 ) (strengthening the scratch resistance), but it is difficult for active oxygen excited by UV light to pass through.
  • the evaluation of the photocatalytic effect of Test No. 1-3 was x. This is because without the introduction of oxygen gas, the uppermost layer (SiO 2 ) becomes insufficiently oxidized, so that it becomes difficult for active oxygen excited by UV light to pass through.
  • the evaluation of the photocatalytic effect of Test No. 1-4 was ⁇ . This is because, even if oxygen gas is introduced, if the amount of introduction is insufficient, SiO 2 becomes insufficiently oxidized, making it difficult for active oxygen excited by UV light to pass. On the other hand, in the test numbers 1-5 to 1-10 in which the power of IAD was lowered or the oxygen introduction amount was made appropriate without using IAD, the photocatalytic effect was evaluated as “good”.
  • test numbers 1-9 and 1-10 were ⁇ . This is because the greater the amount of oxygen gas introduced, the higher the photocatalytic effect, but the lower the film density, the weaker the scratch resistance of the film.
  • the scratch resistance was ⁇ for test numbers 1-1 to 1-8 in which IAD was used or the oxygen introduction amount was appropriate. From the above results, it was found that the prescriptions of test numbers 1-5 to 1-8 are preferable in order to achieve both the photocatalytic effect and the scratch resistance.
  • FIG. 2 is a graph showing the spectral characteristics of the multilayer film of test numbers 1-6, which is an example.
  • the vertical axis represents reflectance (unit:%), and the horizontal axis represents wavelength (unit: nm). (The same applies to the following figures). It can be seen that the multilayer film shown in FIG. 2 has antireflection characteristics in the visible range of approximately 400 to 700 nm. Since the layer configuration is the same, the other multilayer films shown in Table 1 have similar spectral characteristics.
  • the inventors of the present invention have the following components on the glass substrate: A 9-layer or 7-layer multilayer film was formed by a vapor deposition method while changing the above and was used for the test.
  • the multilayer films with test numbers 2-1 to 2-7 use SiO 2 as the uppermost layer, and the multilayer films with test numbers 2-8 to 2-10 have SiO 2 and Al 2 O 3 as the uppermost layers. A mixture with is used. Further, the film thickness of the high refractive index layer mainly composed of Ta in each multilayer film is changed as shown in Table 3. Only the multilayer film of test number 2-6 has 7 layers, and the others have 9 layers. Only for the multilayer film of test number 2-6, the film thickness of the uppermost layer is 220 nm or more, and the film thickness of the other multilayer film is 90 nm or less. OA600 was used for all high refractive index layers. The evaluation content of each test is the same as described above.
  • the multilayer film of test number 2-1 using SiO 2 as the uppermost layer and the multilayer film of test number 2-8 using a mixture of SiO 2 and Al 2 O 3 as the uppermost layer are high refractive index layers.
  • the total film thickness was 90.3 nm, but the acid resistance test was evaluated as x.
  • the other multilayer films were evaluated as “good” in the acid resistance test.
  • the scratch resistance test and the evaluation of the photocatalytic effect measurement were good.
  • the high refractive index layer has sufficient acid resistance when the total thickness of the high refractive index layer is 100 nm or more, regardless of the component of the uppermost layer. Further, it can be seen that when the film thickness of the uppermost layer is in the range of 80 to 230 nm, the acid resistance and scratch resistance are satisfied, and a sufficient photocatalytic effect can be obtained.
  • FIG. 3 is a diagram showing the spectral characteristics of the multilayer film with test number 2-3 as an example
  • FIG. 4 is a diagram showing the spectral characteristics of the multilayer film with test number 2-4 as an example.
  • FIG. 5 is a diagram showing the spectral characteristics of the multilayer film of test number 2-5 as an example
  • FIG. 6 shows the spectral characteristics of the multilayer film of test number 2-6 as an example.
  • FIG. 7 is a diagram showing the spectral characteristics of the multilayer film of test number 2-7 as an example, and the vertical axis represents the reflectance and the horizontal axis represents the wavelength.
  • the multilayer films shown in FIGS. 3 to 5 have antireflection characteristics in the visible range of approximately 400 nm to 700 nm. It can be seen that the multilayer film shown in FIG. 6 has antireflection characteristics in the infrared region of approximately 1150 nm to 1800 nm. It can be seen that the multilayer film shown in FIG. 7 has antireflection characteristics in the visible range of approximately 400 nm to 700 nm.
  • the inventors of the present invention applied a vapor deposition method while changing the top layer component and the high refractive index layer component on the glass substrate.
  • a multilayer film of layers was formed and used for the test. More specifically, as shown in Table 4, when a multilayer film is formed on a glass substrate TAF3 (manufactured by HOYA Co., Ltd .: refractive index 1.80), the uppermost layer is SiO 2 (in the d-line).
  • the IAD is set to (acceleration voltage 300 V, acceleration current 300 mA, oxygen introduction amount 50 SCCM), or a mixture of SiO 2 and Al 2 O 3 as the uppermost layer (refractive in d-line) IAD at the time of using (rate 1.475) was set to (acceleration voltage 300 V, acceleration current 250 mA, oxygen introduction amount 50 SCCM).
  • TiO 2 was used as a functional layer adjacent to the uppermost layer.
  • the deposition rate RATE ( ⁇ / SEC) of each film was constant.
  • the film forming conditions not specifically shown are the same as those described above. Table 4 shows the film configuration, film formation recipe, and evaluation results.
  • the multilayer films with test numbers 3-1 to 3-7 use SiO 2 as the uppermost layer, and the multilayer films with test numbers 3-8 to 3-14 have SiO 2 and Al 2 O 3 as the uppermost layers. A mixture with is used.
  • the multilayer films of test numbers 3-1 and 3-8 use Ta 2 O 5 for the high refractive index layer (also referred to as a high material), and the multilayer films of test numbers 3-2 and 3-9. HfO 2 is used for the high refractive index layer, and the multilayer films of test numbers 3-3 and 3-10 use ZrO 2 for the high refractive index layer, and the test numbers 3-4, 3-
  • the multilayer film No. 11 uses Nb 2 O 5 for the high refractive index layer, and the multilayer films Nos.
  • the multilayer films of ⁇ 6 and 3-13 use TiO 2 for the high refractive index layer, and the multilayer films of test numbers 3-7 and 3-14 have a compound of TiO 2 and La ( Lanthanum titanate (LaTiOx) manufactured by MERCK is used.
  • the refractive index of the high refractive index layer is as shown in Table 4.
  • the acid resistance test was evaluated as x.
  • the other multilayer films were evaluated as “good” in the acid resistance test.
  • the scratch resistance test and the evaluation of the photocatalytic effect measurement were good. From the above, at least one of the high refractive index layers satisfies the acid resistance and scratch resistance by using a specific material mainly containing any one of Ta, Hf, Zr, and Nb, and provides a sufficient photocatalytic effect. I understand that.
  • Tcat film thickness (nm) of the high refractive index layer or functional layer adjacent to the uppermost layer
  • TH Total film thickness (nm) of the high refractive index layer formed from a specific material
  • TL film thickness of the top layer (nm)
  • NL Refractive index at d line of material of low refractive index layer
  • NH Refractive index at d line of specific material
  • Ns Refractive index at d line of glass substrate
  • the “nanoindentation indentation depth” in the table indicates that a single layer film having a thickness of 200 nm is formed on a glass plate, and the nanoindentation measuring device is a minimal indentation hardness tester ENT manufactured by Elionix. -100 was fitted with a 115 ° triangular pyramid diamond indenter and pressed against the membrane for measurement. In the measurement, the indenter gives a load at a load speed of 0.2 mgf / sec, holds the maximum load of 0.98 mN for 1 second, then unloads at the same load speed, and determines the indenter indentation depth obtained from a series of operations. The indentation depth when the maximum load was reached was obtained from the load curve.
  • “indentation depth range” indicates conditional expression (7) or (9), and “filling rate range” indicates conditional expression (8) or (10).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

An optical element is provided which has a multilayer film with excellent acid resistance and scratch resistance and which can exhibit a photocatalytic effect. This optical element has a glass substrate on which a multilayer film of three or more layers is formed, wherein the multilayer film comprises at least one low refractive index layer and at least one high refractive index layer, the top layer furthest from the glass substrate is a low refractive index layer, a high refractive index layer adjacent to the top layer is a functional layer having a metal oxide with a photocatalytic function as the main component, and at least one of the high refractive index layers is formed from a specific material having any of Ta, Hf, Zr and Nb as the main component, and satisfies the following conditional expressions: 220nm ≤ Tcat ≤ 600nm (1) 100nm ≤ TH (2) Here, Tcat is the film thickness of the functional layer, and TH is the total film thickness of the high refractive index layers formed from the specific material.

Description

光学素子Optical element
 本発明は、多層膜を成膜した光学素子に関する。 The present invention relates to an optical element formed with a multilayer film.
 例えば車両の運転支援のため、車両に車載カメラを搭載することが行われている。より具体的には、車両の後方や側方を撮像するカメラを自動車の車体に搭載し、このカメラによって撮像された映像を運転者が視認可能な位置に表示することによって死角を減らし、これにより安全運転に貢献できる。 For example, in-vehicle cameras are mounted on vehicles for driving support of vehicles. More specifically, a camera that captures the back and sides of the vehicle is mounted on the body of the automobile, and the image captured by the camera is displayed at a position where the driver can visually recognize it. Contributes to safe driving.
 ところで、車載カメラは車外に取り付けられる場合が多く、そのレンズ上に水滴や泥等の汚れがしばしば付着する。レンズに付着した水滴や汚れの度合によっては、カメラで撮像された画像が不鮮明となるおそれがある。そこで、レンズの物体側面に光触媒物質を塗布することで、紫外線の照射により表面に付着した有機物質を洗浄する技術が開発されている。例えば特許文献1には、眼鏡レンズや建材用途としてスプレーコーティング等を用いてTiナノ粒子を表面に塗布し光触媒効果を得る技術が開示されている。かかる技術を利用して、車載カメラに搭載される撮像レンズの物体側面に、Tiナノ粒子を塗布することも考えられる。 By the way, in-vehicle cameras are often mounted outside the vehicle, and dirt such as water droplets or mud often adheres on the lens. Depending on the degree of water drops and dirt adhering to the lens, the image captured by the camera may become unclear. In view of this, a technique has been developed in which a photocatalytic substance is applied to the object side surface of a lens to clean organic substances adhering to the surface by ultraviolet irradiation. For example, Patent Document 1 discloses a technique for obtaining a photocatalytic effect by applying Ti nanoparticles to a surface using spray coating or the like for spectacle lenses or building materials. It is also conceivable to apply Ti nanoparticles to the object side surface of an imaging lens mounted on a vehicle-mounted camera using such technology.
 ところで、車載カメラに搭載される撮像レンズ等においては、過酷な環境下で使用されるため、十分な耐環境性能が要求される。より具体的には、車両の走行に伴う衝撃や風圧、走行により跳ね上げられた砂塵により、露出した撮像レンズの光学面が傷損や浸食を受ける可能性がある。さらには、酸性雨や、洗車等の際に使用される洗剤やワックス等の薬剤により表面劣化や変質を生ずるおそれがある。特に、撮像レンズの光学面に油脂や埃、粉塵等が付着すると、時間経過に伴って光学面に曇りが生ずる場合があり、また、光学面に汚れが長時間接していると、光学面自体が変質してしまう場合がある。 By the way, since an imaging lens or the like mounted on a vehicle-mounted camera is used in a harsh environment, sufficient environmental resistance is required. More specifically, there is a possibility that the exposed optical surface of the imaging lens may be damaged or eroded by impacts, wind pressure, and sand dust splashed by traveling. Furthermore, there is a risk of surface deterioration and alteration due to acid rain and chemicals such as detergents and waxes used during car washing. In particular, if oil, grease, dust, or the like adheres to the optical surface of the imaging lens, the optical surface may become clouded over time, and if the optical surface is in contact with dirt for a long time, the optical surface itself May be altered.
 従って、特許文献1に開示された技術を利用して、車載用途等の過酷な環境で使用される撮像用レンズ等の物体側面にTiナノ粒子を塗布する場合には、ガラス基材を耐酸性や耐傷性に強い材料に限定せざるを得ず、それにより光学特性を制御する設計自由度が大きく損なわれてしまうという問題がある。 Therefore, when the Ti nanoparticles are applied to the side surface of an object such as an imaging lens used in a harsh environment such as an in-vehicle application using the technology disclosed in Patent Document 1, the glass substrate is acid-resistant. In addition, the material must be limited to a material having a high scratch resistance, which causes a problem that the degree of design freedom for controlling the optical characteristics is greatly impaired.
 これに対し特許文献2には、耐酸性に優れた導電性光学部材が開示されている。しかし、特許文献2の技術では光触媒活性の低い材料を使用しており、十分な光触媒効果を得ることは困難である。また当該光学部材がフィルムのため、耐傷性が確保できていないという問題もある。同様の問題は、屋外において用いられる通信用の光学素子等においても生じうる。 On the other hand, Patent Document 2 discloses a conductive optical member having excellent acid resistance. However, the technique of Patent Document 2 uses a material with low photocatalytic activity, and it is difficult to obtain a sufficient photocatalytic effect. Further, since the optical member is a film, there is a problem that scratch resistance cannot be secured. Similar problems may occur in communication optical elements used outdoors.
国際公開第1996/029375号International Publication No. 1996/029375 特開2013-174787号公報JP 2013-174787 A
 本発明は、耐酸性、耐傷性に優れた多層膜を有し、光触媒効果を発揮できる光学素子を提供することを目的とする。 An object of the present invention is to provide an optical element having a multilayer film excellent in acid resistance and scratch resistance and capable of exhibiting a photocatalytic effect.
 上述した目的のうち少なくとも1つを実現するために、本発明の一側面を反映した光学素子は、3層以上の多層膜を成膜したガラス基材を有する光学素子において、多層膜は、少なくとも1層の低屈折率層と、少なくとも1層の高屈折率層とを有しており、ガラス基材から最も遠い最上層が低屈折率層であり、最上層に隣接した高屈折率層が光触媒機能を有する金属酸化物を主成分とする機能層であって、高屈折率層のうち少なくとも1層は、Ta、Hf、Zr、Nbのいずれかを主成分とする特定材料から形成され、以下の条件式を満たす。
 150nm≦Tcat≦700nm   (1)
 100nm≦TH           (2)
ここで、
Tcat:機能層の膜厚
TH:特定材料から形成された高屈折率層の総膜厚
In order to achieve at least one of the objects described above, an optical element reflecting one aspect of the present invention is an optical element having a glass substrate on which a multilayer film of three or more layers is formed. It has one low refractive index layer and at least one high refractive index layer, the uppermost layer farthest from the glass substrate is the low refractive index layer, and the high refractive index layer adjacent to the uppermost layer is A functional layer mainly composed of a metal oxide having a photocatalytic function, wherein at least one of the high refractive index layers is formed from a specific material mainly composed of Ta, Hf, Zr, or Nb; The following conditional expression is satisfied.
150 nm ≦ Tcat ≦ 700 nm (1)
100 nm ≦ TH (2)
here,
Tcat: film thickness of functional layer TH: total film thickness of high refractive index layer formed from specific material
本実施形態にかかる光学素子の断面を模式的に示す図である。It is a figure which shows typically the cross section of the optical element concerning this embodiment. 実施例である供試番号1-6の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test numbers 1-6 which are an Example. 実施例である供試番号2-3の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristic of the multilayer film of the test number 2-3 which is an Example. 実施例である供試番号2-4の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test number 2-4 which is an Example. 実施例である供試番号2-5の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of the test number 2-5 which is an Example. 実施例である供試番号2-6の多層膜の分光特性を示す図である。It is a figure which shows the spectral characteristics of the multilayer film of test number 2-6 which is an Example. 実施例である供試番号2-7の多層膜の分光特性を示す図であるIt is a figure which shows the spectral characteristics of the multilayer film of test number 2-7 which is an Example
 以下、本発明の実施形態を、図面を参照して説明する。図1は、本実施形態にかかる光学素子の断面を模式的に示す図である。図1に示す光学素子100は、ガラス基材(ガラス基板)GL上に低屈折率層Lと高屈折率層Hとが交互に積層された構造の多層膜MCを有するものである。但し、ガラス基材GLに高屈折率層Hが接していても良い。このような光学素子100は、車載用レンズや通信用レンズとして用いることができる。また、図1において、ガラス基材GLと機能層20との間に位置する層を、高屈折率層や低屈折率層の代わりに、中間屈折率層の等価膜として置換しても良い。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a cross section of an optical element according to the present embodiment. An optical element 100 shown in FIG. 1 has a multilayer film MC having a structure in which low refractive index layers L and high refractive index layers H are alternately laminated on a glass substrate (glass substrate) GL. However, the high refractive index layer H may be in contact with the glass substrate GL. Such an optical element 100 can be used as an in-vehicle lens or a communication lens. In FIG. 1, the layer located between the glass substrate GL and the functional layer 20 may be replaced with an equivalent film of an intermediate refractive index layer instead of a high refractive index layer or a low refractive index layer.
 図1において、ガラス基材GLから最も遠い最上層10が低屈折率層Lであり、最上層10に隣接した高屈折率層Hが光触媒機能を有する金属酸化物の機能層20である。比較的強度が高い低屈折率層Lを最上層10とすることで、耐傷性を向上できる。また、機能層20は、最上層10を通じて又は介してUV光で励起した活性酸素を用いて光触媒機能を発揮するため、最上層10にできるだけ近い位置に置くことが好ましい。最上層10に隣接して機能層20を設けることで、例えば光触媒機能を有効に発揮できる。また、機能層20として、最上層10に隣接して100nmを超える膜厚とすることが望ましい。さらに、機能層20として、光触媒効果、光活性効果を持つ金属酸化物を用いることで、表面有機物を除去し最上層10の親水性を維持できるので好ましい。TiOを用いた機能層20は、IAD(イオンアシストデポジション(Ion Assisted Deposition)(以下、IADという))を用いて成膜すると光触媒効果が高まるので好ましい。 In FIG. 1, the uppermost layer 10 farthest from the glass substrate GL is a low refractive index layer L, and the high refractive index layer H adjacent to the uppermost layer 10 is a functional layer 20 of a metal oxide having a photocatalytic function. By using the low refractive index layer L having a relatively high strength as the uppermost layer 10, scratch resistance can be improved. Moreover, since the functional layer 20 exhibits a photocatalytic function using active oxygen excited by UV light through or through the uppermost layer 10, the functional layer 20 is preferably placed as close as possible to the uppermost layer 10. By providing the functional layer 20 adjacent to the uppermost layer 10, for example, a photocatalytic function can be effectively exhibited. Further, it is desirable that the functional layer 20 has a thickness exceeding 100 nm adjacent to the uppermost layer 10. Furthermore, it is preferable to use a metal oxide having a photocatalytic effect and a photoactive effect as the functional layer 20 because the surface organic substances can be removed and the hydrophilicity of the uppermost layer 10 can be maintained. The functional layer 20 using TiO 2 is preferably formed using IAD (Ion Assisted Deposition (hereinafter referred to as IAD)) because the photocatalytic effect is enhanced.
 「光触媒機能」とは、太陽光や人工光が入射することにより強力な酸化力が生じ、接触してくる有機化合物や細菌等の有害物質を有効に除去すること、親水作用により、水滴が表面にとどまることを防ぎ、また、油性等の汚れが定着せずに水等で洗浄されること等のセルフクリーニング機能をいい、例えば二酸化チタンが持つ機能である。なお、「最上層に隣接する」とは、最上層10と機能層20とが密着している場合の他、最上層10と機能層20との間に、その機能の発現を妨げないとみなせる層(例えば20nm以下の層)を設ける場合も含む。 “Photocatalytic function” means that strong oxidative power is generated when sunlight or artificial light is incident, effectively removes harmful organic compounds and bacteria, etc. that come in contact with water. In addition, the self-cleaning function such as washing with water or the like without fixing oily stains, for example, is a function of titanium dioxide. Note that “adjacent to the uppermost layer” means that the function is not hindered between the uppermost layer 10 and the functional layer 20 in addition to the case where the uppermost layer 10 and the functional layer 20 are in close contact with each other. This includes the case where a layer (for example, a layer of 20 nm or less) is provided.
 また、高屈折率層Hのうち少なくとも1層は、Ta、Hf、Zr、Nbのいずれかを主成分とする特定材料から形成されている。耐酸性向上に効果のある物質として、特にTa、Hf、Zr、Nbの酸化物がある。「主成分とする」とは、当該元素の含有量が51重量%以上、好ましくは70重量%以上、より好ましくは90重量%、さらに好ましくは100重量%であることを意味する。 Further, at least one of the high refractive index layers H is formed of a specific material mainly containing any one of Ta, Hf, Zr, and Nb. Examples of substances that are effective in improving acid resistance include Ta, Hf, Zr, and Nb oxides. “Main component” means that the content of the element is 51% by weight or more, preferably 70% by weight or more, more preferably 90% by weight, and still more preferably 100% by weight.
 さらに、本実施形態の光学素子100は以下の条件式を満たす。
 150nm≦Tcat≦700nm   (1)
 100nm≦TH           (2)
ここで、
Tcat:最上層10に隣接した高屈折率層H又は機能層20の膜厚
TH:特定材料から形成された高屈折率層Hの総膜厚
Furthermore, the optical element 100 of the present embodiment satisfies the following conditional expression.
150 nm ≦ Tcat ≦ 700 nm (1)
100 nm ≦ TH (2)
here,
Tcat: film thickness TH of the high-refractive index layer H or functional layer 20 adjacent to the uppermost layer 10: total film thickness of the high-refractive index layer H formed from a specific material
 (1)式の値が下限以上であると、機能層20の膜厚を確保できるから、十分な光触媒効果を期待できる。一方、機能層20の厚さが増大すればするほど光触媒効果を期待できるが、その代わり多層膜に要求される所望の特性を得にくくなるので、(1)式の値は上限以下とすることが望ましい。なお、好ましくは、以下の式を満たすことである。
 220nm≦Tcat≦600nm   (1')
さらに好ましくは、以下の式を満たすことである。
 250nm≦Tcat≦600nm   (1")
Since the film thickness of the functional layer 20 can be ensured that the value of the formula (1) is equal to or greater than the lower limit, a sufficient photocatalytic effect can be expected. On the other hand, as the thickness of the functional layer 20 increases, the photocatalytic effect can be expected. However, since it becomes difficult to obtain desired characteristics required for the multilayer film, the value of the expression (1) should be less than the upper limit. Is desirable. In addition, Preferably, it is satisfy | filling the following formula | equation.
220 nm ≦ Tcat ≦ 600 nm (1 ′)
More preferably, it is satisfy | filling the following formula | equation.
250 nm ≦ Tcat ≦ 600 nm (1 ″)
 さらに(2)式の値が下限以上であると、高屈折率層Hの総膜厚を確保できるから、十分な耐酸性を期待できる。なお、(2)式の上限については特に規定がないが、光学素子100の最適設計を確保する上で常識的な総膜厚が自ずと上限になる。なお、好ましくは、以下の式を満たすことである。
 150nm≦TH           (2')
Furthermore, since the total film thickness of the high refractive index layer H can be ensured that the value of the formula (2) is not less than the lower limit, sufficient acid resistance can be expected. Although there is no particular limitation on the upper limit of the formula (2), a common-sense total film thickness naturally becomes the upper limit in securing the optimum design of the optical element 100. In addition, Preferably, it is satisfy | filling the following formula | equation.
150 nm ≦ TH (2 ′)
 最上層10に隣接した高屈折率層H又は機能層20が、Tiを主成分とする酸化物(例えばTiO)から形成されていると好ましい。TiO等のTi酸化物は光触媒効果が非常に高いからである。 The high refractive index layer H or the functional layer 20 adjacent to the uppermost layer 10 is preferably formed from an oxide (for example, TiO 2 ) containing Ti as a main component. This is because Ti oxides such as TiO 2 have a very high photocatalytic effect.
 最上層10がSiOから形成されていると好ましい。夜間や屋外等ではUV光が入射しにくく、Tiを主成分とする酸化物では親水効果が低下するが、かかる場合でも最上層10をSiOから形成することで親水効果を発揮でき、また耐傷性もより高められる。最上層10にSiOを用いる場合、成膜後に500℃で2時間の加熱処理を施すことで、耐傷性が向上する。 Preferably the top layer 10 is formed of SiO 2. UV light is hard to be incident at night or outdoors, and the hydrophilic effect is reduced with an oxide mainly composed of Ti. However, even in such a case, the hydrophilic effect can be exhibited by forming the top layer 10 from SiO 2 and scratch resistance. Sex is also enhanced. When SiO 2 is used for the uppermost layer 10, scratch resistance is improved by performing a heat treatment at 500 ° C. for 2 hours after film formation.
 最上層10がSiOとAlとの混合物(但し、SiOの組成比が90重量%以上)から形成されていると好ましい。これにより夜間や屋外等でも親水効果を発揮でき、またSiOとAlとの混合物とすることで耐傷性もより高められる。最上層10にSiOとAlとの混合物を用いる場合、成膜後に500℃で2時間の加熱処理を施すことで、耐傷性が向上する。なお、最上層10の一部又は全部を成膜する際にIADを用いると好ましい。これにより、耐傷性が向上する。 The uppermost layer 10 is preferably formed from a mixture of SiO 2 and Al 2 O 3 (provided that the composition ratio of SiO 2 is 90% by weight or more). Thereby, a hydrophilic effect can be exhibited at night or outdoors, and scratch resistance is further improved by using a mixture of SiO 2 and Al 2 O 3 . When a mixture of SiO 2 and Al 2 O 3 is used for the uppermost layer 10, scratch resistance is improved by performing a heat treatment at 500 ° C. for 2 hours after film formation. Note that it is preferable to use IAD when a part or all of the uppermost layer 10 is formed. Thereby, the scratch resistance is improved.
 多層膜MCの各層は蒸着法で成膜されており、各層のうちいずれかの層はIADで成膜されていると好ましい。IADによる成膜で耐傷性をより向上できる。 Each layer of the multilayer film MC is formed by a vapor deposition method, and any one of the layers is preferably formed by IAD. Scratch resistance can be further improved by film formation by IAD.
 最上層10は、IAD法で成膜される場合、以下の条件式を満たすことが好ましい。
 12nm≦D(iad)≦30nm   (7)
ここで、
D(iad):IAD法で成膜された最上層10のナノインデテーション押し込み深さ
When the uppermost layer 10 is formed by the IAD method, it is preferable that the following conditional expression is satisfied.
12 nm ≦ D (iad) ≦ 30 nm (7)
here,
D (iad): Nano-indentation depth of the uppermost layer 10 formed by the IAD method
 (7)式の値が上限以下であると、イオンアシストのパワーが弱くなりすぎず、値D(iad)を安定させ、光触媒効果を安定させることができる。一方、(7)式の値が下限以上であると、イオンアシストのパワーを強くしても値D(iad)が小さくなりすぎず、高密度の膜が成膜されず光触媒効果を維持することができる。 When the value of the expression (7) is below the upper limit, the ion assist power does not become too weak, the value D (iad) is stabilized, and the photocatalytic effect can be stabilized. On the other hand, if the value of the expression (7) is equal to or higher than the lower limit, the value D (iad) does not become too small even if the ion assist power is increased, and a high-density film is not formed and the photocatalytic effect is maintained. Can do.
 最上層10は、IAD法で成膜される場合、以下の条件式を満たすことが好ましい。
 0.8nm≦F(iad)≦0.97nm  (8)
ここで、
F(iad):IAD法で成膜された最上層10の充填率
When the uppermost layer 10 is formed by the IAD method, it is preferable that the following conditional expression is satisfied.
0.8 nm ≦ F (iad) ≦ 0.97 nm (8)
here,
F (iad): Filling rate of the uppermost layer 10 formed by the IAD method
 ここで、充填率は、膜の体積のうちの原子の割合を示す。充填率をFとしたときの計算式を以下に示す。後述する値F(noiad)も同様に計算する。
 F=(nf1-nf2+0.33)/0.33
ここで、
nf1:温度25℃湿度50%RHの環境中に、24時間放置した後の最上層膜の屈折率
nf2:真空中(成膜中)の最上層膜の屈折率
Here, the filling rate indicates the proportion of atoms in the volume of the film. The calculation formula when the filling rate is F is shown below. A value F (noiad) described later is calculated in the same manner.
F = (nf1-nf2 + 0.33) /0.33
here,
nf1: Refractive index of the uppermost layer film after standing for 24 hours in an environment at a temperature of 25 ° C. and a humidity of 50% RH nf2: Refractive index of the uppermost layer film in a vacuum (during film formation)
 (8)式の値が下限以上であると、イオンアシストのパワーが弱くなりすぎず、値F(iad)を安定させ、光触媒効果を安定させることができる。一方、(8)式の値が上限以下であると、イオンアシストのパワーを強くしても値F(iad)が大きくなりすぎず、高密度の膜が成膜されず光触媒効果を維持することができる。 When the value of the equation (8) is equal to or higher than the lower limit, the ion assist power is not weakened, the value F (iad) is stabilized, and the photocatalytic effect can be stabilized. On the other hand, if the value of the formula (8) is below the upper limit, the value F (iad) does not become too large even if the ion assist power is increased, and a high-density film is not formed and the photocatalytic effect is maintained. Can do.
 なお、最上層10が、IAD法を用いずに成膜される場合、以下の条件式を満たすことが好ましい。
 25nm≦D(noiad)≦50nm   (9)
ここで、
D(noiad):IAD法を用いずに成膜された最上層10のナノインデテーション押し込み深さ
In addition, when the uppermost layer 10 is formed without using the IAD method, it is preferable that the following conditional expression is satisfied.
25 nm ≦ D (noad) ≦ 50 nm (9)
here,
D (noiad): nano-indentation depth of the uppermost layer 10 formed without using the IAD method
 (9)式の値が下限以上であると、成膜時の酸素導入量を減らしても、値D(noiad)が小さくなりすぎず、高密度の膜が成膜されず光触媒効果を維持することができる。一方、(9)式の値が上限以下であると、酸素導入量を増やしても、値(noiad)が大きくなりすぎず、光学用途に耐えうる密度の膜を成膜することができる。 If the value of formula (9) is equal to or greater than the lower limit, even if the amount of oxygen introduced during film formation is reduced, the value D (noad) does not become too small and a high-density film is not formed, and the photocatalytic effect is maintained. be able to. On the other hand, if the value of equation (9) is less than or equal to the upper limit, even if the amount of oxygen introduced is increased, the value (noad) does not become too large, and a film having a density that can withstand optical applications can be formed.
 また、最上層10が、IAD法を用いずに成膜される場合、以下の条件式を満たすことが好ましい。
 0.7≦F(noiad)≦0.87   (10)
ここで、
F(noiad):IAD法を用いずに成膜された最上層10のナノインデテーション押し込み深さ充填率
When the uppermost layer 10 is formed without using the IAD method, it is preferable that the following conditional expression is satisfied.
0.7 ≦ F (noad) ≦ 0.87 (10)
here,
F (noad): Nano-indentation depth filling rate of the uppermost layer 10 formed without using the IAD method
 (10)式の値が上限以下であると、成膜時の酸素導入量を減らしても、値F(noiad)が大きくなりすぎず、高密度の膜が成膜されずに光触媒効果を維持することができる。一方、(10)式の値が下限以上であると、酸素導入量を増やしても、値F(noiad)が小さくなりすぎず、光学用途に耐えうる密度の膜を成膜することができる。 If the value of equation (10) is below the upper limit, even if the amount of oxygen introduced during film formation is reduced, the value F (noad) does not become too large, and a high-density film is not formed, and the photocatalytic effect is maintained. can do. On the other hand, when the value of the expression (10) is equal to or higher than the lower limit, even if the amount of oxygen introduced is increased, the value F (noiad) does not become too small, and a film having a density that can withstand optical use can be formed.
 最上層10が以下の条件式を満たすと好ましい。
 60nm≦TL≦350nm      (3)
ここで、
TL:最上層10の膜厚
The uppermost layer 10 preferably satisfies the following conditional expression.
60 nm ≦ TL ≦ 350 nm (3)
here,
TL: film thickness of the uppermost layer 10
 (3)式の値が上限以下であると、最上層10を通じてUV光で励起した活性酸素をやり取りすることにより光触媒効果を発揮できる。一方、(3)式の値が下限以上であると、強固な最上層10とでき十分な耐傷性を確保できる。なお、好ましくは、以下の式を満たすことである。
 60nm≦TL≦250nm      (3')
When the value of the formula (3) is not more than the upper limit, the photocatalytic effect can be exhibited by exchanging active oxygen excited by UV light through the uppermost layer 10. On the other hand, when the value of the formula (3) is equal to or higher than the lower limit, the uppermost layer 10 can be made strong and sufficient scratch resistance can be secured. In addition, Preferably, it is satisfy | filling the following formula | equation.
60 nm ≦ TL ≦ 250 nm (3 ′)
 光学素子100が以下の条件式を満たすと好ましい。
 1.3≦NL≦1.5         (4)
 1.9≦NH≦2.45        (5)
ここで、
NL:低屈折率層Lの材料のd線での屈折率
NH:特定材料のd線での屈折率
It is preferable that the optical element 100 satisfies the following conditional expression.
1.3 ≦ NL ≦ 1.5 (4)
1.9 ≦ NH ≦ 2.45 (5)
here,
NL: Refractive index at the d-line of the material of the low refractive index layer L NH: Refractive index at the d-line of the specific material
 (4)、(5)式を満たすことで、所望の光学特性を有する光学素子100を得ることができる。ここで、d線とは波長587.56nmの波長の光をいう。低屈折率層Lの素材として、d線での屈折率が1.48であるSiOや、d線での屈折率が1.385であるMgFを用いることができる。また、(5)式を満たす特定材料として、Ta、Hf、Zr、Nbの酸化物を好適に用いることができる。 By satisfying the expressions (4) and (5), the optical element 100 having desired optical characteristics can be obtained. Here, the d line means light having a wavelength of 587.56 nm. As a material for the low refractive index layer L, SiO 2 having a refractive index of 1.48 at d-line or MgF 2 having a refractive index of 1.385 at d-line can be used. Further, Ta, Hf, Zr, and Nb oxides can be suitably used as the specific material that satisfies the formula (5).
 光学素子100が以下の条件式を満たすと好ましい。
 1.7≦Ns≦2.2         (6)
ここで、
Ns:ガラス基材GLのd線での屈折率
It is preferable that the optical element 100 satisfies the following conditional expression.
1.7 ≦ Ns ≦ 2.2 (6)
here,
Ns: Refractive index at d line of glass substrate GL
 光学設計上、ガラス基材GLのd線での屈折率として(6)式を満たすことで、コンパクトな構成とした上で光学素子100の光学性能を高められる。(6)式を満たすガラス基材GLに本発明の多層膜を成膜することで、外界に対して露出するレンズ等に用いることができ、優れた耐環境性能と光学性能とを両立することが可能となる。 The optical performance of the optical element 100 can be enhanced with a compact configuration by satisfying the expression (6) as the refractive index at the d-line of the glass substrate GL in terms of optical design. By forming the multilayer film of the present invention on the glass substrate GL satisfying the formula (6), it can be used for a lens exposed to the outside world, and both excellent environmental resistance and optical performance are achieved. Is possible.
 本実施形態によれば、多層膜最上層SiOの膜厚、密度、成膜処方及び最上層10に隣接した機能層20のTiO膜厚を最適化し、光触媒効果の最大化を図り且つ耐傷性を確保し、併せて多層膜にTa、Hf、Zr、Nbを主成分とする素材を用い適切な膜厚を設けることで十分な耐酸性を有するため、酸に弱いガラス基材GLにも設けることができる光触媒多層膜を実現できる。 According to this embodiment, the film thickness, density, film formation recipe of the multilayer film uppermost layer SiO 2 , and the TiO 2 film thickness of the functional layer 20 adjacent to the uppermost layer 10 are optimized to maximize the photocatalytic effect and scratch resistance. In addition, it has sufficient acid resistance by providing an appropriate film thickness using a material mainly composed of Ta, Hf, Zr, and Nb for the multilayer film. A photocatalytic multilayer film that can be provided can be realized.
 光学素子100は、上述の耐酸性及び対傷性に優れた多層膜を有し、光触媒効果を発揮することができ、車載用レンズや通信用レンズ、或いは建材に好適に用いられる。 The optical element 100 has a multilayer film excellent in acid resistance and scratch resistance as described above, can exhibit a photocatalytic effect, and is suitably used for an in-vehicle lens, a communication lens, or a building material.
(実施例)
 以下、上述した実施形態に好適な実施例を、比較例と比較して評価する。以下の実施例、比較例の多層膜を形成する上で、株式会社シンクロン製の成膜装置BES-1300を用い、IADのイオン源としてNIS-175を用いた。
(Example)
Hereinafter, an example suitable for the above-described embodiment will be evaluated in comparison with a comparative example. In forming the multilayer films of the following examples and comparative examples, a film deposition apparatus BES-1300 manufactured by SYNCHRON Co., Ltd. was used, and NIS-175 was used as an ion source for IAD.
(1)IADの有無と酸素導入量とに関する評価
 本発明者らは、ガラス基材上に、最上層の成膜処方を変えつつ蒸着法にて9層の多層膜を形成して試験に供した。より具体的には、表1に示すように、ガラス基材TAF3(HOYA株式会社製:屈折率1.80)上に、SiOを用いた低屈折率層、OA600(キヤノンオプトロン株式会社製の素材)を用いた高屈折率層、TiOを用いた機能層を表1に示す順序で積層して成膜した。最上層としてはSiOを用いた。ここでは各膜厚(d(nm))を一定とし、各膜の成膜速度RATE(Å/SEC)も一定とした。膜構成(ガラス基材(ガラス基板)に接する層を1層目とする、以下同じ)、成膜処方及び評価結果を、表1に示す。なお、表1において、「Layer」は層の番号を示し、「Air」は層の材料を示し、「d」は層の厚さを示す(以下の表についても同様)。
(1) Evaluation on presence / absence of IAD and amount of oxygen introduced The inventors of the present invention formed a multi-layer film of 9 layers by a vapor deposition method on a glass substrate while changing the film formation formulation of the uppermost layer and used for the test. did. More specifically, as shown in Table 1, the glass substrate TAF3: the (HOYA Co. refractive index 1.80) on the low refractive index layer with SiO 2, OA600 (manufactured by Canon Optron Inc. A high refractive index layer using a material and a functional layer using TiO 2 were stacked in the order shown in Table 1 to form a film. As the uppermost layer, SiO 2 was used. Here, each film thickness (d (nm)) was made constant, and the film formation rate RATE (Å / SEC) of each film was also made constant. Table 1 shows the film configuration (the first layer is the layer in contact with the glass substrate (glass substrate), the same applies hereinafter), the film formation prescription, and the evaluation results. In Table 1, “Layer” indicates a layer number, “Air” indicates a layer material, and “d” indicates a layer thickness (the same applies to the following tables).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表中のOA600は、Ta、TiO、Tiの混合物であり、その具体的な組成は表2に示す通り、酸化タンタルを主成分とする。 OA600 in the table is a mixture of Ta 2 O 5 , TiO and Ti 2 O 5 , and the specific composition thereof is mainly composed of tantalum oxide as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の屈折率n(λ)は、以下の式で求めた。なお、本明細書中、屈折率はd線(波長587.56nm)で測定するものとする。
 n(λ)=A+A/(λ-A
ここで、λはd線の波長であり、実施例及び比較例で用いる素材のA、A、Aは、それぞれ以下の値である。
TAF3:A=1.768、A=14.724(nm)、A=181.535(nm)
OA600:A=2.014、A=31.680(nm)、A=233.891(nm)
SiO:A=1.460、A=0(nm)、A=0(nm)
TiO:A=2.013、A=36.149(nm)、A=284.651(nm)
The refractive index n (λ) in Table 1 was determined by the following equation. In this specification, the refractive index is measured by d-line (wavelength: 587.56 nm).
n (λ) = A 0 + A 1 / (λ−A 2 )
Here, λ is the wavelength of the d-line, and A 0 , A 1 , and A 2 of the materials used in the examples and comparative examples are the following values, respectively.
TAF3: A 0 = 1.768, A 1 = 14.724 (nm), A 2 = 181.535 (nm)
OA600: A 0 = 2.014, A 1 = 31.680 (nm), A 2 = 233.891 (nm)
SiO 2 : A 0 = 1.460, A 1 = 0 (nm), A 2 = 0 (nm)
TiO 2 : A 0 = 2.013, A 1 = 36.149 (nm), A 2 = 284.651 (nm)
 成膜処方は表1に示す通りであるが、最上層の成膜に関して、酸素ガスの導入の有無及び導入する場合にはその導入量、SiOの成膜に際し用いたIADの有無及び程度を変更して、4つの実施例(供試番号1-5~1-8)と、6つの比較例(供試番号1-1~1-4、1-9、1-10)を作製し、以下の試験に供した。それぞれ加熱温度は340℃、開始真空度は3.00E-03Pa(3.00×10-3Pa)とした。 The film formation prescription is as shown in Table 1. Regarding the film formation of the uppermost layer, the presence or absence of oxygen gas and the amount of introduction when it is introduced, the presence and extent of IAD used for the film formation of SiO 2 are determined. 4 examples (test numbers 1-5 to 1-8) and 6 comparative examples (test numbers 1-1 to 1-4, 1-9, 1-10) were prepared, It used for the following tests. The heating temperature was 340 ° C., and the starting vacuum was 3.00E-03 Pa (3.00 × 10 −3 Pa).
 なお、表1中の「因子」は、酸素ガス導入量とIADの条件を変更したことを意味する。ここで、「APC」は、Auto Pressure Controlの略で分圧を調整したことを意味し、「SCCM」は、standard cc/minの略であり、1気圧(大気圧1013hPa)、0℃で1分間あたりに何cc流れたかを示す単位である。 “Factor” in Table 1 means that the oxygen gas introduction amount and the IAD conditions were changed. Here, “APC” means that the partial pressure is adjusted by an abbreviation of Auto Pressure Control, and “SCCM” is an abbreviation of standard cc / min, 1 atm (atmospheric pressure 1013 hPa), 1 at 0 ° C. This is a unit indicating how many cc per minute.
 さらに表1中、IAD(H)とはIADのパワーを(加速電圧500V、加速電流300mA、酸素導入量50SCCM)に設定したことを示し、IAD(M)とはIADのパワーを(加速電圧400kV、加速電流400mA、酸素導入量50SCCM)に設定したことを示し、IAD(L)とはIADのパワーを(加速電圧300V、加速電流300mA、酸素導入量50SCCM)に設定したことを示している。 In Table 1, IAD (H) indicates that the IAD power is set to (acceleration voltage 500 V, acceleration current 300 mA, oxygen introduction amount 50 SCCM), and IAD (M) indicates the IAD power (acceleration voltage 400 kV). , Acceleration current 400 mA, oxygen introduction amount 50 SCCM), and IAD (L) indicates that the IAD power is set to acceleration voltage 300 V, acceleration current 300 mA, oxygen introduction amount 50 SCCM.
 「耐酸試験」は、濃度5%の食塩水に硝酸を加えてPH1.7に調整した液に、供試品を浸漬し、実体顕微鏡(×58倍)にて白点の大きさと数とを数えて、実用に供し得ない程度に白点が目視されれば評価×とし、白点が目視されなければ評価○とした。「耐傷試験」は、供試品を亀の子たわしで荷重2.0kgにて250往復こすり、カメラレンズとして用いたとき撮影画像に影響を与える傷が付着した場合には、評価▲とし、或いはそのような傷が付着しなかった場合には、評価○とした。 In the “acid resistance test”, the test sample is immersed in a solution adjusted to PH 1.7 by adding nitric acid to 5% strength saline solution, and the size and number of white spots are measured with a stereomicroscope (× 58 times). Counting was evaluated as x when the white spot was visually observed to such an extent that it could not be practically used, and evaluated as o when the white spot was not visually observed. The “scratch resistance test” is evaluated as ▲ when a test piece is rubbed 250 times with a tortoise scourer under a load of 2.0 kg and a scratch affecting the photographed image is attached when used as a camera lens, or When such a flaw did not adhere, it was set as evaluation o.
 「光触媒効果測定」は、供試品にYAZAWA社のブラックライト(型番BL20)を供試品から距離30mm離してUV光を5分間照射し、その後、inkintelligent社の「visualiser Pen」を用いて色変化を段階的に評価した。ここで、色変化度が極小のものは光触媒効果がなし(評価×)、色変化度が小のものは光触媒効果が殆どなし(評価▲)、色変化度が中のものは光触媒効果が余りなし(評価△)、色変化度が大のものは光触媒効果がある(評価○)とした。 “Photocatalytic effect measurement” is performed by irradiating a test sample with a black light (model number BL20) of YAZAWA at a distance of 30 mm from the test sample for 5 minutes, and then using “visualiser Pen” of inkintelient. Changes were evaluated in stages. Here, when the color change is minimal, the photocatalytic effect is absent (evaluation x), when the color change is small, the photocatalytic effect is almost absent (evaluation ▲), and when the color change is medium, the photocatalytic effect is excessive None (evaluation Δ), and those having a large degree of color change had a photocatalytic effect (evaluation ○).
(評価結果の考察)
 供試番号1-1~1-10のいずれも、耐酸性、耐傷性については評価×がなく良好であった。しかし、光触媒効果については、評価結果にバラツキがあった。具体的には、供試番号1-1、1-2の光触媒効果については評価が×であった。これは、IADを用いることで、最上層(SiO)の膜密度が向上する(耐傷性は強くなる)が、UV光で励起された活性酸素が通りにくくなるためであるといえる。また、供試番号1-3の光触媒効果についても評価が×であった。これは酸素ガス導入なしとすることで、最上層(SiO)が酸化不足になるから、UV光で励起された活性酸素が通りにくくなるためであるといえる。さらに、供試番号1-4の光触媒効果については評価が▲であった。これは酸素ガス導入を行っても、その導入量が不十分であるとSiOが酸化不足になるから、UV光で励起された活性酸素が通りにくくなるからである。これに対しIADのパワーを低くし、もしくはIADを用いず酸素導入量を適切にした供試番号1-5~1-10では光触媒効果については評価が○となった。
(Consideration of evaluation results)
All of the test numbers 1-1 to 1-10 were good with no evaluation x for acid resistance and scratch resistance. However, there were variations in the evaluation results for the photocatalytic effect. Specifically, the evaluation of the photocatalytic effect of test numbers 1-1 and 1-2 was evaluated as x. This is because use of IAD improves the film density of the uppermost layer (SiO 2 ) (strengthening the scratch resistance), but it is difficult for active oxygen excited by UV light to pass through. Further, the evaluation of the photocatalytic effect of Test No. 1-3 was x. This is because without the introduction of oxygen gas, the uppermost layer (SiO 2 ) becomes insufficiently oxidized, so that it becomes difficult for active oxygen excited by UV light to pass through. Further, the evaluation of the photocatalytic effect of Test No. 1-4 was ▲. This is because, even if oxygen gas is introduced, if the amount of introduction is insufficient, SiO 2 becomes insufficiently oxidized, making it difficult for active oxygen excited by UV light to pass. On the other hand, in the test numbers 1-5 to 1-10 in which the power of IAD was lowered or the oxygen introduction amount was made appropriate without using IAD, the photocatalytic effect was evaluated as “good”.
 一方、供試番号1-9、1-10の耐傷性については評価が▲であった。これは酸素ガス導入量を多くすればするほど、光触媒効果は高くなるが、膜密度が低くなることにより膜の耐傷性が弱くなるためである。これに対して、IADを使用、もしくは酸素導入量を適切にした供試番号1-1~1-8では耐傷性が○となった。以上の結果より、光触媒効果と耐傷性とを両立するためには、供試番号1-5~1-8の処方とすることが好ましいことが分かった。 On the other hand, the evaluation of the scratch resistance of test numbers 1-9 and 1-10 was ▲. This is because the greater the amount of oxygen gas introduced, the higher the photocatalytic effect, but the lower the film density, the weaker the scratch resistance of the film. On the other hand, the scratch resistance was ○ for test numbers 1-1 to 1-8 in which IAD was used or the oxygen introduction amount was appropriate. From the above results, it was found that the prescriptions of test numbers 1-5 to 1-8 are preferable in order to achieve both the photocatalytic effect and the scratch resistance.
 図2は、実施例である供試番号1-6の多層膜の分光特性を示す図であり、縦軸に反射率(単位:%)をとり、横軸に波長(単位:nm)をとって示している(以降の図も同様)。図2に示す多層膜は、概ね400~700nmの可視域で反射防止特性を有することが分かる。なお、層構成が同じであるため、表1に示すその他の多層膜も同様な分光特性を有する。 FIG. 2 is a graph showing the spectral characteristics of the multilayer film of test numbers 1-6, which is an example. The vertical axis represents reflectance (unit:%), and the horizontal axis represents wavelength (unit: nm). (The same applies to the following figures). It can be seen that the multilayer film shown in FIG. 2 has antireflection characteristics in the visible range of approximately 400 to 700 nm. Since the layer configuration is the same, the other multilayer films shown in Table 1 have similar spectral characteristics.
(2)最上層の成分及び膜厚と、高屈折率層の総膜厚とに関する評価
 本発明者らは、ガラス基材上に、最上層の成分と、高屈折率層の総膜厚とを変えつつ蒸着法にて9層又は7層の多層膜を形成して試験に供した。より具体的には、表3に示すように、ガラス基材TAF3(HOYA株式会社製:屈折率1.804)上に、SiO、又はSiOとAlとの混合物(SiOの組成比が90重量%以上)を用いた低屈折率層、OA600(キヤノンオプトロン株式会社製の素材)を用いた高屈折率層、TiOを用いた機能層を表3に示す順序で積層して成膜した。最上層としてはSiO又はSiOとAlとの混合物を用い、その際のIADのパワーを(加速電圧300V、加速電流300mA、酸素導入量50SCCM)に設定した。ここでは各膜の成膜速度RATE(Å/SEC)は一定とした。特に示さない成膜条件は、上述のものと同様である。膜構成、成膜処方及び評価結果を、表3に示す。
(2) Evaluation on the component and film thickness of the uppermost layer and the total film thickness of the high refractive index layer The inventors of the present invention have the following components on the glass substrate: A 9-layer or 7-layer multilayer film was formed by a vapor deposition method while changing the above and was used for the test. More specifically, as shown in Table 3, on glass substrate TAF3 (made by HOYA Co., Ltd .: refractive index 1.804), SiO 2 or a mixture of SiO 2 and Al 2 O 3 (SiO 2 A low refractive index layer using a composition ratio of 90% by weight or more), a high refractive index layer using OA600 (material manufactured by Canon Optron Co., Ltd.), and a functional layer using TiO 2 are laminated in the order shown in Table 3. To form a film. As the uppermost layer, SiO 2 or a mixture of SiO 2 and Al 2 O 3 was used, and the power of IAD at that time was set to (acceleration voltage 300 V, acceleration current 300 mA, oxygen introduction amount 50 SCCM). Here, the deposition rate RATE (Å / SEC) of each film was constant. The film forming conditions not specifically shown are the same as those described above. Table 3 shows the film configuration, film formation recipe, and evaluation results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 供試番号2-1~2-7の多層膜は、最上層にSiOを用いており、供試番号2-8~2-10の多層膜は、最上層にSiOとAlとの混合物を用いている。また、各多層膜におけるTaを主成分とする高屈折率層の膜厚は、表3に示すように変えている。なお、供試番号2-6の多層膜のみ7層であり、それ以外は9層である。供試番号2-6の多層膜のみ、最上層の膜厚を220nm以上とし、それ以外の多層膜は最上層の膜厚を90nm以下としている。高屈折率層は、全てOA600を用いた。各試験の評価内容は、上述したものと同様である。 The multilayer films with test numbers 2-1 to 2-7 use SiO 2 as the uppermost layer, and the multilayer films with test numbers 2-8 to 2-10 have SiO 2 and Al 2 O 3 as the uppermost layers. A mixture with is used. Further, the film thickness of the high refractive index layer mainly composed of Ta in each multilayer film is changed as shown in Table 3. Only the multilayer film of test number 2-6 has 7 layers, and the others have 9 layers. Only for the multilayer film of test number 2-6, the film thickness of the uppermost layer is 220 nm or more, and the film thickness of the other multilayer film is 90 nm or less. OA600 was used for all high refractive index layers. The evaluation content of each test is the same as described above.
(評価結果の考察)
 最上層にSiOを用いた供試番号2-1の多層膜、及び最上層にSiOとAlとの混合物を用いた供試番号2-8の多層膜は、高屈折率層の総膜厚が90.3nmであるが、耐酸試験の評価が×であった。それ以外の多層膜は、耐酸試験の評価が○であった。また、表3に示す全ての多層膜において、耐傷試験及び光触媒効果測定の評価が○であった。
(Consideration of evaluation results)
The multilayer film of test number 2-1 using SiO 2 as the uppermost layer and the multilayer film of test number 2-8 using a mixture of SiO 2 and Al 2 O 3 as the uppermost layer are high refractive index layers. The total film thickness was 90.3 nm, but the acid resistance test was evaluated as x. The other multilayer films were evaluated as “good” in the acid resistance test. Moreover, in all the multilayer films shown in Table 3, the scratch resistance test and the evaluation of the photocatalytic effect measurement were good.
 以上の評価結果を考察すると、最上層の成分に関わらず、高屈折率層の総膜厚が100nm以上であれば十分な耐酸性を有することが分かる。また、最上層の膜厚が、80~230nmの範囲で、耐酸性、耐傷性を満たし、十分な光触媒効果を得られることが分かる。 Considering the above evaluation results, it can be seen that the high refractive index layer has sufficient acid resistance when the total thickness of the high refractive index layer is 100 nm or more, regardless of the component of the uppermost layer. Further, it can be seen that when the film thickness of the uppermost layer is in the range of 80 to 230 nm, the acid resistance and scratch resistance are satisfied, and a sufficient photocatalytic effect can be obtained.
 図3は、実施例である供試番号2-3の多層膜の分光特性を示す図であり、図4は、実施例である供試番号2-4の多層膜の分光特性を示す図であり、図5は、実施例である供試番号2-5の多層膜の分光特性を示す図であり、図6は、実施例である供試番号2-6の多層膜の分光特性を示す図であり、図7は、実施例である供試番号2-7の多層膜の分光特性を示す図であり、それぞれ縦軸に反射率をとり、横軸に波長をとって示している。 FIG. 3 is a diagram showing the spectral characteristics of the multilayer film with test number 2-3 as an example, and FIG. 4 is a diagram showing the spectral characteristics of the multilayer film with test number 2-4 as an example. FIG. 5 is a diagram showing the spectral characteristics of the multilayer film of test number 2-5 as an example, and FIG. 6 shows the spectral characteristics of the multilayer film of test number 2-6 as an example. FIG. 7 is a diagram showing the spectral characteristics of the multilayer film of test number 2-7 as an example, and the vertical axis represents the reflectance and the horizontal axis represents the wavelength.
 図3~5に示す多層膜は、概ね400nm~700nmの可視域で反射防止特性を有することが分かる。図6に示す多層膜は、概ね1150nm~1800nmの赤外域で反射防止特性を有することが分かる。図7に示す多層膜は、概ね400nm~700nmの可視域で反射防止特性を有することが分かる。 It can be seen that the multilayer films shown in FIGS. 3 to 5 have antireflection characteristics in the visible range of approximately 400 nm to 700 nm. It can be seen that the multilayer film shown in FIG. 6 has antireflection characteristics in the infrared region of approximately 1150 nm to 1800 nm. It can be seen that the multilayer film shown in FIG. 7 has antireflection characteristics in the visible range of approximately 400 nm to 700 nm.
(3)最上層の成分と、高屈折率層の成分とに関する評価
 本発明者らは、ガラス基材上に、最上層の成分と高屈折率層の成分とを変えつつ蒸着法にて9層の多層膜を形成して試験に供試した。より具体的には、表4に示すように、ガラス基材TAF3(HOYA株式会社製:屈折率1.80)上に多層膜を成膜する際に、最上層としてSiO(d線での屈折率1.46)を用いる際のIADを(加速電圧300V、加速電流300mA、酸素導入量50SCCM)の設定とし、又は最上層としてSiOとAlとの混合物(d線での屈折率1.475)を用いる際のIADを(加速電圧300V、加速電流250mA、酸素導入量50SCCM)の設定とした。最上層に隣接する機能層としてはTiOを用いた。ここでは各膜の成膜速度RATE(Å/SEC)は一定とした。特に示さない成膜条件は、上述のものと同様である。膜構成、成膜処方及び評価結果を、表4に示す。
(3) Evaluation of the top layer component and the high refractive index layer component The inventors of the present invention applied a vapor deposition method while changing the top layer component and the high refractive index layer component on the glass substrate. A multilayer film of layers was formed and used for the test. More specifically, as shown in Table 4, when a multilayer film is formed on a glass substrate TAF3 (manufactured by HOYA Co., Ltd .: refractive index 1.80), the uppermost layer is SiO 2 (in the d-line). When the refractive index is 1.46, the IAD is set to (acceleration voltage 300 V, acceleration current 300 mA, oxygen introduction amount 50 SCCM), or a mixture of SiO 2 and Al 2 O 3 as the uppermost layer (refractive in d-line) IAD at the time of using (rate 1.475) was set to (acceleration voltage 300 V, acceleration current 250 mA, oxygen introduction amount 50 SCCM). TiO 2 was used as a functional layer adjacent to the uppermost layer. Here, the deposition rate RATE (Å / SEC) of each film was constant. The film forming conditions not specifically shown are the same as those described above. Table 4 shows the film configuration, film formation recipe, and evaluation results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 供試番号3-1~3-7の多層膜は、最上層にSiOを用いており、供試番号3-8~3-14の多層膜は、最上層にSiOとAlとの混合物を用いている。また、供試番号3-1、3-8の多層膜は、高屈折率層(High材ともいう)にTaを用いており、供試番号3-2、3-9の多層膜は、高屈折率層にHfOを用いており、供試番号3-3、3-10の多層膜は、高屈折率層にZrOを用いており、供試番号3-4、3-11の多層膜は、高屈折率層にNbを用いており、供試番号3-5、3-12の多層膜は、高屈折率層にOA600を用いており、供試番号3-6、3-13の多層膜は、高屈折率層にTiOを用いており、供試番号3-7、3-14の多層膜は、高屈折率層にTiOとLaの化合物(MERCK社製のチタン酸ランタン(LaTiOx))を用いている。高屈折率層の屈折率は表4に示すとおりである。 The multilayer films with test numbers 3-1 to 3-7 use SiO 2 as the uppermost layer, and the multilayer films with test numbers 3-8 to 3-14 have SiO 2 and Al 2 O 3 as the uppermost layers. A mixture with is used. The multilayer films of test numbers 3-1 and 3-8 use Ta 2 O 5 for the high refractive index layer (also referred to as a high material), and the multilayer films of test numbers 3-2 and 3-9. HfO 2 is used for the high refractive index layer, and the multilayer films of test numbers 3-3 and 3-10 use ZrO 2 for the high refractive index layer, and the test numbers 3-4, 3- The multilayer film No. 11 uses Nb 2 O 5 for the high refractive index layer, and the multilayer films Nos. 3-5 and 3-12 use OA600 for the high refractive index layer. The multilayer films of −6 and 3-13 use TiO 2 for the high refractive index layer, and the multilayer films of test numbers 3-7 and 3-14 have a compound of TiO 2 and La ( Lanthanum titanate (LaTiOx) manufactured by MERCK is used. The refractive index of the high refractive index layer is as shown in Table 4.
(評価結果の考察)
 高屈折率層にTiOを用いた供試番号3-6、3-13の多層膜、及び高屈折率層にTiOとLaとの混合物を用いた供試番号3-7、3-14の多層膜は、耐酸試験の評価が×であった。それ以外の多層膜は、耐酸試験の評価が○であった。また、表4に示す全ての多層膜において、耐傷試験及び光触媒効果測定の評価が○であった。以上より、高屈折率層のうち少なくとも1層は、Ta、Hf、Zr、Nbのいずれかを主成分とする特定材料とすることで耐酸性、耐傷性を満たし、十分な光触媒効果を得られることが分かる。
(Consideration of evaluation results)
Test numbers 3-6 and 3-13 using TiO 2 for the high refractive index layer, and test numbers 3-7 and 3-14 using a mixture of TiO 2 and La for the high refractive index layer In the multilayer film, the acid resistance test was evaluated as x. The other multilayer films were evaluated as “good” in the acid resistance test. Moreover, in all the multilayer films shown in Table 4, the scratch resistance test and the evaluation of the photocatalytic effect measurement were good. From the above, at least one of the high refractive index layers satisfies the acid resistance and scratch resistance by using a specific material mainly containing any one of Ta, Hf, Zr, and Nb, and provides a sufficient photocatalytic effect. I understand that.
(4)まとめ
 以上の評価結果を、実施例と比較例とに分けて表5にまとめて示す。ここで、
Tcat:最上層に隣接した高屈折率層又は機能層の膜厚(nm)
TH:特定材料から形成された高屈折率層の総膜厚(nm)
TL:最上層の膜厚(nm)
NL:低屈折率層の材料のd線での屈折率
NH:特定材料のd線での屈折率
Ns:ガラス基材のd線での屈折率
である。
(4) Summary The above evaluation results are shown in Table 5 separately for Examples and Comparative Examples. here,
Tcat: film thickness (nm) of the high refractive index layer or functional layer adjacent to the uppermost layer
TH: Total film thickness (nm) of the high refractive index layer formed from a specific material
TL: film thickness of the top layer (nm)
NL: Refractive index at d line of material of low refractive index layer NH: Refractive index at d line of specific material Ns: Refractive index at d line of glass substrate
 なお、表中の「ナノインデンテーション押し込み深さ」は、ガラス板に単層膜を200nmの厚さで成膜し、ナノインデンテーション測定装置として、格式会社エリオニクス製の極小押し込み固さ試験機ENT-2100に、稜間隔115°三角錐ダイヤモンド圧子を取り付け、これを膜に押し付けて測定を行った。測定は、圧子が0.2mgf/secの荷重速度で負荷を与え、最大荷重0.98mNを1秒間保持した後、同様の荷重速度で除荷を行い、一連の動作から得られる圧子押し込み深さと荷重曲線とから、最大荷重に到達したときの押し込み深さを求めた。表5において、「押し込み深さ範囲」は条件式(7)又は(9)を示し、「充填率範囲」は条件式(8)又は(10)を示す。 The “nanoindentation indentation depth” in the table indicates that a single layer film having a thickness of 200 nm is formed on a glass plate, and the nanoindentation measuring device is a minimal indentation hardness tester ENT manufactured by Elionix. -100 was fitted with a 115 ° triangular pyramid diamond indenter and pressed against the membrane for measurement. In the measurement, the indenter gives a load at a load speed of 0.2 mgf / sec, holds the maximum load of 0.98 mN for 1 second, then unloads at the same load speed, and determines the indenter indentation depth obtained from a series of operations. The indentation depth when the maximum load was reached was obtained from the load curve. In Table 5, “indentation depth range” indicates conditional expression (7) or (9), and “filling rate range” indicates conditional expression (8) or (10).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (12)

  1.  3層以上の多層膜を成膜したガラス基材を有する光学素子において、
     前記多層膜は、少なくとも1層の低屈折率層と、少なくとも1層の高屈折率層とを有しており、
     前記ガラス基材から最も遠い最上層が前記低屈折率層であり、
     前記最上層に隣接した前記高屈折率層が光触媒機能を有する金属酸化物を主成分とする機能層であって、
     前記高屈折率層のうち少なくとも1層は、Ta、Hf、Zr、Nbのいずれかを主成分とする特定材料から形成され、
     以下の条件式を満たす光学素子。
     150nm≦Tcat≦700nm   (1)
     100nm≦TH           (2)
    ここで、
    Tcat:前記機能層の膜厚
    TH:前記特定材料から形成された前記高屈折率層の総膜厚
    In an optical element having a glass substrate on which a multilayer film of three or more layers is formed,
    The multilayer film has at least one low refractive index layer and at least one high refractive index layer,
    The uppermost layer farthest from the glass substrate is the low refractive index layer,
    The high refractive index layer adjacent to the uppermost layer is a functional layer mainly composed of a metal oxide having a photocatalytic function,
    At least one of the high refractive index layers is formed of a specific material mainly containing any one of Ta, Hf, Zr, and Nb.
    An optical element that satisfies the following conditional expression.
    150 nm ≦ Tcat ≦ 700 nm (1)
    100 nm ≦ TH (2)
    here,
    Tcat: film thickness TH of the functional layer TH: total film thickness of the high refractive index layer formed from the specific material
  2.  前記機能層が、Tiを主成分とする酸化物から形成されている請求項1に記載の光学素子。 The optical element according to claim 1, wherein the functional layer is formed of an oxide containing Ti as a main component.
  3.  前記最上層がSiOから形成されている請求項1又は2に記載の光学素子。 The optical element according to claim 1, wherein the uppermost layer is made of SiO 2 .
  4.  前記最上層がSiOとAlとの混合物から形成されている請求項1又は2に記載の光学素子。 The optical element according to claim 1, wherein the uppermost layer is formed of a mixture of SiO 2 and Al 2 O 3 .
  5.  前記多層膜の各層は蒸着法で成膜されており、前記各層のうちいずれかの層はイオンアシストデポジションで成膜されている請求項1~4のいずれかに記載の光学素子。 5. The optical element according to claim 1, wherein each layer of the multilayer film is formed by an evaporation method, and any one of the layers is formed by ion-assisted deposition.
  6.  以下の条件式を満たす請求項1~5のいずれかに記載の光学素子。
     60nm≦TL≦350nm      (3)
    ここで、
    TL:前記最上層の膜厚
    The optical element according to any one of claims 1 to 5, which satisfies the following conditional expression.
    60 nm ≦ TL ≦ 350 nm (3)
    here,
    TL: film thickness of the uppermost layer
  7.  前記最上層は、イオンアシストデポジションで成膜され、以下の条件式を満たす請求項1~6のいずれかに記載の光学製品。
     12nm≦D(iad)≦30nm   (7)
    ここで、
    D(iad):前記イオンアシストデポジションで成膜された前記最上層のナノインデテーション押し込み深さ
    The optical product according to any one of claims 1 to 6, wherein the uppermost layer is formed by ion-assisted deposition and satisfies the following conditional expression.
    12 nm ≦ D (iad) ≦ 30 nm (7)
    here,
    D (iad): Nano-indentation depth of the uppermost layer formed by ion-assisted deposition
  8.  前記最上層は、イオンアシストデポジションで成膜され、以下の条件式を満たす請求項1~7のいずれかに記載の光学製品。
     0.8nm≦F(iad)≦0.97nm  (8)
    ここで、
    F(iad):前記イオンアシストデポジションで成膜された前記最上層の充填率
    The optical product according to any one of claims 1 to 7, wherein the uppermost layer is formed by ion-assisted deposition and satisfies the following conditional expression.
    0.8 nm ≦ F (iad) ≦ 0.97 nm (8)
    here,
    F (iad): Filling rate of the uppermost layer formed by the ion-assisted deposition
  9.  前記最上層は、イオンアシストデポジションを用いずに成膜され、以下の条件式を満たす請求項1~6のいずれかに記載の光学製品。
     25nm≦D(noiad)≦50nm   (9)
    ここで、
    D(noiad):前記イオンアシストデポジションを用いずに成膜された前記最上層のナノインデテーション押し込み深さ
    The optical product according to any one of claims 1 to 6, wherein the uppermost layer is formed without using ion-assisted deposition and satisfies the following conditional expression.
    25 nm ≦ D (noad) ≦ 50 nm (9)
    here,
    D (noad): Nano-indentation depth of the uppermost layer formed without using the ion-assisted deposition
  10.  前記最上層は、イオンアシストデポジションを用いずに成膜され、以下の条件式を満たす請求項1~6及び9のいずれかに記載の光学製品。
     0.7≦F(noiad)≦0.87   (10)
    ここで、
    F(noiad):前記イオンアシストデポジションを用いずに成膜された前記最上層の充填率
    The optical product according to any one of claims 1 to 6 and 9, wherein the uppermost layer is formed without using ion-assisted deposition and satisfies the following conditional expression.
    0.7 ≦ F (noad) ≦ 0.87 (10)
    here,
    F (noad): Filling rate of the uppermost layer formed without using the ion assist deposition
  11.  以下の条件式を満たす請求項1~10のいずれかに記載の光学素子。
     1.3≦NL≦1.5         (4)
     1.9≦NH≦2.45        (5)
    ここで、
    NL:前記低屈折率層の材料におけるd線での屈折率
    NH:前記特定材料のd線での屈折率
    The optical element according to any one of claims 1 to 10, which satisfies the following conditional expression.
    1.3 ≦ NL ≦ 1.5 (4)
    1.9 ≦ NH ≦ 2.45 (5)
    here,
    NL: refractive index at the d-line in the material of the low refractive index layer NH: refractive index at the d-line of the specific material
  12.  以下の条件式を満たす請求項1~11のいずれかに記載の光学素子。
     1.7≦Ns≦2.2         (6)
    ここで、
    Ns:前記ガラス基材のd線での屈折率
    The optical element according to any one of claims 1 to 11, which satisfies the following conditional expression.
    1.7 ≦ Ns ≦ 2.2 (6)
    here,
    Ns: Refractive index at d-line of the glass substrate
PCT/JP2017/033842 2016-12-14 2017-09-20 Optical element WO2018110018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016242186A JP2020024238A (en) 2016-12-14 2016-12-14 Optical element
JP2016-242186 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018110018A1 true WO2018110018A1 (en) 2018-06-21

Family

ID=62558422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033842 WO2018110018A1 (en) 2016-12-14 2017-09-20 Optical element

Country Status (2)

Country Link
JP (1) JP2020024238A (en)
WO (1) WO2018110018A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030247A (en) * 2018-08-20 2020-02-27 株式会社タムロン Optical element having stain resistant layer
EP3660548A1 (en) * 2018-11-26 2020-06-03 Konica Minolta, Inc. Optical member and producing method of optical member
EP3901671A1 (en) * 2018-12-21 2021-10-27 Konica Minolta, Inc. Dielectric multilayer film, method for producing same and optical member using same
JPWO2020129424A1 (en) * 2018-12-21 2021-11-11 コニカミノルタ株式会社 Dielectric film, its manufacturing method and optical members using it
US12024767B2 (en) 2018-12-21 2024-07-02 Konica Minolta, Inc. Dielectric film, method for producing same and optical member using same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131513A (en) * 1998-10-28 2000-05-12 Toyota Motor Corp Surface mirror
JP2000326440A (en) * 1999-05-19 2000-11-28 Hoya Corp Object having multilayer optical thin film including photocatalytic function and its manufacture
JP2000329904A (en) * 1999-05-18 2000-11-30 Hoya Corp Article for having antireflection film having photocatalyst function and production therefor
JP2001152418A (en) * 1999-11-30 2001-06-05 Sekisui Jushi Co Ltd Cloudiness preventive reflecting mirror and its manufacturing method
JP2005003614A (en) * 2003-06-13 2005-01-06 National Institute Of Advanced Industrial & Technology Heat mirror and performance evaluation test therefor
JP2006106242A (en) * 2004-10-04 2006-04-20 Seiko Epson Corp Antireflection film and optical article having same
JP2008107425A (en) * 2006-10-23 2008-05-08 Ichikoh Ind Ltd Mirror and hydrophilic composite film having photocatalytic activity
JP2011039218A (en) * 2009-08-10 2011-02-24 Seiko Epson Corp Method for producing optical article
JP2011242697A (en) * 2010-05-20 2011-12-01 Tokai Kogaku Kk Plastic optical product and plastic lens for spectacles
JP2013545145A (en) * 2010-12-10 2013-12-19 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Optical component with antireflective coating with low reflectivity in both ultraviolet and visible regions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131513A (en) * 1998-10-28 2000-05-12 Toyota Motor Corp Surface mirror
JP2000329904A (en) * 1999-05-18 2000-11-30 Hoya Corp Article for having antireflection film having photocatalyst function and production therefor
JP2000326440A (en) * 1999-05-19 2000-11-28 Hoya Corp Object having multilayer optical thin film including photocatalytic function and its manufacture
JP2001152418A (en) * 1999-11-30 2001-06-05 Sekisui Jushi Co Ltd Cloudiness preventive reflecting mirror and its manufacturing method
JP2005003614A (en) * 2003-06-13 2005-01-06 National Institute Of Advanced Industrial & Technology Heat mirror and performance evaluation test therefor
JP2006106242A (en) * 2004-10-04 2006-04-20 Seiko Epson Corp Antireflection film and optical article having same
JP2008107425A (en) * 2006-10-23 2008-05-08 Ichikoh Ind Ltd Mirror and hydrophilic composite film having photocatalytic activity
JP2011039218A (en) * 2009-08-10 2011-02-24 Seiko Epson Corp Method for producing optical article
JP2011242697A (en) * 2010-05-20 2011-12-01 Tokai Kogaku Kk Plastic optical product and plastic lens for spectacles
JP2013545145A (en) * 2010-12-10 2013-12-19 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Optical component with antireflective coating with low reflectivity in both ultraviolet and visible regions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030247A (en) * 2018-08-20 2020-02-27 株式会社タムロン Optical element having stain resistant layer
EP3660548A1 (en) * 2018-11-26 2020-06-03 Konica Minolta, Inc. Optical member and producing method of optical member
EP3901671A1 (en) * 2018-12-21 2021-10-27 Konica Minolta, Inc. Dielectric multilayer film, method for producing same and optical member using same
JPWO2020129424A1 (en) * 2018-12-21 2021-11-11 コニカミノルタ株式会社 Dielectric film, its manufacturing method and optical members using it
EP3901671A4 (en) * 2018-12-21 2022-02-23 Konica Minolta, Inc. Dielectric multilayer film, method for producing same and optical member using same
JP7415949B2 (en) 2018-12-21 2024-01-17 コニカミノルタ株式会社 Dielectric film, its manufacturing method, and optical components using the same
US12024767B2 (en) 2018-12-21 2024-07-02 Konica Minolta, Inc. Dielectric film, method for producing same and optical member using same

Also Published As

Publication number Publication date
JP2020024238A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
WO2018110018A1 (en) Optical element
US10732325B2 (en) Hydrophilic multilayer film and method for producing same, and imaging system
TWI301799B (en)
CN100480736C (en) MgF2 optical thin film, optical device having the same, and method for producing the MgF2 optical thin film
CN111095037B (en) Antireflection film, optical element, and optical system
CN111263910B (en) Lens unit
JP4190773B2 (en) Antireflection film, optical lens and optical lens unit
WO2018110017A1 (en) Optical product
WO2010134457A1 (en) Optical product and plastic lens for eyeglass
JP2018159892A (en) Lens with water-repellent antireflection film and method for producing the same
JP6656389B2 (en) Antireflection film, method of manufacturing antireflection film, optical element and optical system
CN110476088A (en) The manufacturing method of optical thin film, optical element, optical system and optical thin film
WO2019240040A1 (en) Method for producing optical element and optical element
JP2023073340A (en) Lens unit and camera module
WO2017002965A1 (en) Optical product, plastic lens, and eye glasses
JP2013105846A (en) Optical component having antifogging film and semiconductor device
JP6989289B2 (en) Lens with hydrophilic antireflection film and its manufacturing method
JP7468624B2 (en) Optical Components
JPH11109104A (en) Reflection preventing film
JP2020122912A (en) Lens with film, lens unit and camera module
JP2023182008A (en) Spectacle lens
WO2024066880A1 (en) S-polarized light transflective film, windshield window, display apparatus, and transportation device
JP7385178B2 (en) Optical element and method for manufacturing optical element
JP7349687B2 (en) optical element
WO2020251060A1 (en) Optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP